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Abstract

In this thesis, a study of electron measurement in Pb-Pb collisions at 2.76 TeV
with the ALICE experiment is presented. First electron identification methods
are studied with two sets of cuts, making use of the Time Projection Cham-
ber (TPC), Time-of-Flight (TOF) and Inner Tracking System (ITS) detectors.
Methods of unfolding of the pT , η, φ spectrum of electrons are discussed, includ-
ing a 3-dimensional Bayesian unfolding method and a minimization unfolding
method. These methods are applied to simulated data and compared with the
MC spectrum. The Bayesian method is applied to real data afterwards.
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Chapter 1

Motivation

Mankind has always been curious about how the universe started. Many re-
ligions are claiming that it started with the touch of a creator, which created
everything we know. Others have been arguing that the universe has always
existed, and will always exist. This debate has been going on for centuries.

However, the arguments were almost all philosophical, until Albert Einstein
created his theory of general relativity. From his theory Alexander Friedmann
derived that the universe should be an expanding system. Edwin Hubble sup-
ported this idea with observation of effects of an expanding universe. His obser-
vations are some of the first physical evidence found against a static universe.

A later breakthrough was the observation of the cosmic microwave back-
ground. This background shows us that the very early universe was dense and
hot. Such extreme energies are rarely found now, except in relativistic heavy
ion collisions, such as those prodcued at the LHC at CERN.

At CERN, ions are accelerated to relativistic speeds. These collisions cause
extreme physical conditions, similar to those just after the Big Bang [11]. At
such extreme energies quarks are freed from their bonds in hadrons (p,n, etc).
This ’soup’ of free quarks is called a Quark-Gluon Plasma (QGP).

One of the subdetectors of the LHC, A Large Ion Collider Experiment (AL-
ICE), is designed to study the states of matter in relativistic ion collisions, such
as QGP[12]. A commonly used way to look at these kind of material states,
QGP in particular, is to look at the photons emitted in the collision. Photons
do not interact strongly, so they will not interact with the matter in different
phases as they pass through it(see figure 1.1 for the aftermath of a collsion).

To measure photons different methods are used, but a regularly used method
is by looking at virtual photon conversions:

γ∗ → e+ + e−

By looking at correlated dielectron pairs with very small invariant mass we
have access to the production of photons. This means that the measurement of
electrons and positrons is a first step for measuring the photons, which is a step
in measuring the properties of the QGP.

In this thesis, a study of electron measurement in Pb-Pb collisions at 2.76
TeV with the ALICE experiment is presented. First electron identification meth-
ods are studied with two sets of cuts, making use of the Time Projection Cham-
ber (TPC), Time-of-Flight (TOF) and Inner Tracking System (ITS) detectors.
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Figure 1.1: The evolution of a QGP created after a collision.[13]

Methods of unfolding of the pT , η, φ spectrum of electrons are discussed, includ-
ing a 3-dimensional Bayesian unfolding method and a minimization unfolding
method. These methods are applied to simulated data and compared with the
MC spectrum. The Bayesian method is applied to real data afterwards.
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Chapter 2

Data Analysis

2.1 The ALICE Experiment

ALICE is one of the detectors at the Large Hadron Collider (LHC)[14]. It is fo-
cused on heavy-ion collisions, and has many detectors, including a central barrel,
which consists of the detectors ITS, TPC, TOF, HMPID, EMCAL, PHOS and
muon detectors, and a forward muon spectrometer, as shown in figure 2.1. The
studies performed in this thesis are done within the central barrel of ALICE. In
this thesis, the detectors Inner Tracking System(ITS),a Time Projection Cham-
ber(TPC) and Time of Flight(TOF) are used for elctron identification. These
detectors are explained more detail in this section.

2.1.1 TPC

The Time Projection Chamber (TPC) consists of a chamber filled with 90%
neon and 10% CO2, with readout chambers at the ends and in the middle, with
an electric field. [2]

When a particle enters the TPC, it will ionizes the gas present. The electric
field causes the electrons to move towards the readout chambers. At the readout
chambers, an avalanche is caused, which will create a peak in the electric signal
of the anode. The location of the signal indicates the φ and the r coordinates
of the tracklet, but not the coordinate along the beam axis.

By measuring the time it takes for the ionized gas to drift towards the readout
chambers, we can get the z coordinate. Integrating the drift velocity over time
results in the location of the ionization. Since all coordinates are known, the
path of the particle can be tracked through TPC. Using the curvature of the
track (thanks to the magnetic field), the momentum can be determined. [1]

The TPC still gives more information, namely the height of the peak of
the anode. This height is proportional to the energy loss of the track, dE

dx .
The energy loss of high-energy particles in materials has been heavily stud-
ied. For instance, the Bethe-Bloch formula describes the energy loss for bigger
particles[1]:

dE

dx
=

4π

mec2
· nz

2

β2
·
(

e2

4πε0

)2

·
[
ln

(
2mec

2β2

I · (1− β2)

)
− β2

]
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Figure 2.1: An overview of ALICE
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Figure 2.2: The dE
dx measurement of TPC plotted versus TPC momentum.
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Figure 2.3: nσeTOF versus TPC momentum.

with n the electron density and z the charge of the particle moving through the
gas. For electrons at lower momenta corrections to the Bethe-Bloch are needed
as they are smaller particles so they interact differently with matter. Figure 2.2
illustrates that the different energy loss of different particles can also be seen in
TPC. The TPC signal of different particles can be distinguished, but there are
regions in which some of the particle distributions overlap.

So it is possible to predict the energy loss for particles with known momen-
tum, mass and charge. We can compare this with the measured result using the
relative deviation of the measured enegy loss from the expected one, normalized
by the detector resolution, defined as: [3]:

nσx
TPC =

(
dE
dx

)
TPC measured

−
(
dE
dx

)
expected for x

(pTPC measured)

σ

with σ the detector resolution of TPC. The mean of the distribution of nσx
TPC

for particle x is not exactly 0, as the calbiration of the TPC dE
dx models is not

perfect.

2.1.2 TOF

The Time-Of-Flight (TOF) detector (as shown in figure 2.1) measures the time
when a particle passes through it. This measurement is also done by looking at
the ionization trail caused by the particle. The electrons freed by the particle
directly cause a shower, which is stopped by a resistive plate (as shown in figure
2.4). This happens multiple times during the passing of the particle, so an
electrical signal is measured when the particle passes.[4]
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Figure 2.4: An illustration of the principle on which TOF depends[4]

Using the momentum and a suspected mass we can predict the time the
track takes to move from the collision to the TOF, ∆T . If we use the measured
time of collision Tcollsion, the same information can be measured. We can define
a similar nσ for TOF[3]:

nσx
TOF =

(TTOF measured − Tcollision)−∆Texpected for x(pmeasured, l)

σ

with l the track length and σ the combined detector resolution. This combined
detector resolution is the detector resolution of TPC Tcollision and the influence
of l on ∆T . This enables us to seperate other particles from electrons, as shown
in figure 2.3, where individual particles can be distinguished. This figure also
shows that TOF can be used to seperate electrons from kaons and protons.

2.1.3 ITS

The Inner Tracking System (ITS) is the detector closest to the beam in ALICE.
It is used to assist the TPC in tracking and for particle identification. It consists
of 6 layers of silicon detectors, with each 2 layers a different detector type. This
can be seen in the smaller figure in figure 2.1.

The two innermost layers to the beam are the Silicon Pixel Detectors (SPD).
Like the other detectors used in my thesis they work by measuring the electron
showers generated by the ionization of silicon by particles. The amount of
pixels(256 circular × 32 rows) enables precise tracking close to the beam.[5]
They are used for tracking, and requiring a hit in the first SPD layer helps
remove secondary particles created in ALICE.

The second two layers are the Silicon Drift Detectors (SDD). Silicon Drift
Detectors are similar to the TPC because they measure the particles by ioniza-
tion at the end of the chambers, and use the drift time to extract one of the
coordinates. They can also measure the energy loss. [1]

The outer two layes are Silicon Strip Detectors (SSD). SSD is very similar to
SDD. The difference between them is that charges move towards strips in SSD,
instead of the end of the chambers in SDD. [6]
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Figure 2.5: The dE
dx measurement of ITS versus the TPC momentum.

The energy loss of ITS is shown in figure 2.5. In this figure different particles
can be distinguished, although electrons and pions cannot. K and p can still be
distinguished at lower momentum.

Similar to the TPC, we can compare the measured dE
dx to the expected dE

dx
defining the value[3]:

nσx
ITS =

(
dE
dx

)
ITS measured

−
(
dE
dx

)
Expected for x

(pmeasured)

σ

with σ the resolution of ITS.

2.2 Data sample

The analysis jas been performed on two different types of datasets. Monte-
Carlo(MC) HIJING Pb-Pb events at 2.7 TeV were used to get the detector
response for unfolding (section 2.4), as well as forthe electron particle identifi-
cation study. The electron PID cut was checked on tested data and then used
for unfolding measured electrons produced in real Pb-Pb collisions at TeV, data
taken in 2011

2.2.1 Kinematics

For hadron collider experiments, different kinematical properties are used rather
then the usual px, py, pz. The kinematics that are used more often are pT , η and
φ. The transverse momentum pT is defined as

pT =
√
p2
x + p2

y
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The kinematical property φ is defined as the angle with the x-axis, which is
aligned towards the center of the LHC ring. The pseudorapidity η is not a
coordinate seen much outside of particle physics. It is defined as

η = − log

(
tan

(
θ

2

))
with θ the angle of the momentum with the z-axis, the beam direction. This
coordinate is used in particle physics because the particle distribution as a
function of η is fairly constant(as can be seen in figure 2.36), and also because
it is approximately the Lorentz boost for the coordinate system that makes the
particles move only perpendicular to the beam[15].

2.2.2 Event and track quality cuts

Event cuts

We reject events that do not satisfy:

Ncontributors to vertex > 0

|zvertex| < 10cm

centrality(V0M) < 10%

The meaning and reasoning behind these requirements are discussed in this
section. Only those events where there are tracks which are used determine the
vertex(Ncontributors to vertex > 0) are selected. The vertex is the location of the
collision. Events are also cut on zvertex to ensure that the event happened within
the center of ALICE, so events must have the property that |zvertex| < 10cm.

Centrality is another criteria on which we select our events. Centrality can
be best explained as a measure for how offset the two lead ions are if they
collide[7]. A centrality of 0 means head-on collision. The centrality can be
estimated from the multiplicity distributions of multiple detectors in ALICE.
Only central collisions will be considered, so events will be required to have
centrality < 10%(using centrality estimator “V0M” to calculate centrality).
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2.2.3 Track cuts

For both MC and real data we reject tracks that do not satisfy

|η| < 0.8

pT > 0.3GeV/c

track refit in TPC and ITS

χ2
ITS/NClusters ITS < 36

χ2
TPC/NClusters TPC < 4

Hit in the first layer of ITS

NITS clusters ≥ 4

NTPC clusters > 70

Ncrossed rows TPC/Nfindable clusters TPC > 0.8

Ncrossed rows TPC > 100

DCAxy < 1cm

DCAz < 3cm

reject kink daughters

The meaning and reasoning behind these requirements are discussed in this
section.

The tracks which do not have enough transverse momentum to be detected
by TOF are rejected, so only tracks with pT > 0.3GeV/c are accepted. To avoid
edge effects, only tracks that are well within the acceptance of ALICE detectors
in the central barrel are selected. This means tracks with |η| > 0.8 are rejected.

The tracks are found by fitting in TPC and ITS inward, after which a fit
is done outward. Then, the refit is done, which is a fit inward again. Tracks
are required to be refit in TPC and ITS. A selection on the fit quality is done
by requiring χ2

ITS/NClusters ITS < 36 and χ2
TPC/NClusters TPC < 4 (this χ2 is the

goodness-of-fit χ2 for the tracks). To reject electrons coming from secondary
decays, the tracks are required to have a hit in the first layer of ITS(SPD).

To improve TPC and ITS PID performance, Nclusters ITS ≥ 4 andNclusters TPC >
70 are required. Further more, tracks are required to satisfyNcrossed rows TPC/Nfindable clusters TPC >
0.8 and Ncrossed rows TPC > 100 to improve the TPC momentum resolution.
The tracks are required to originate close to the vertex, so DCAxy < 1cm and
DCAz < 3cm are required, where DCA means distance of closest approach
to the vertex of the event. The so-called kink daughters are rejected. Kink
daughters are particles which are decay products of particles being tracked. For
instance, in the TPC a π+ is tracked, which decays into e+νe within TPC. Then
if this e+ is tracked, it is a kink daughter[6].

2.3 Electron identification

Using the AliRoot framework, for each detector and a certain particle the num-
ber of standard deviations can be retrieved, called nσyX for detector X detect-
ing particle y (as described in section 2.1)[3]. These variables are retrieved
for electron identification. In MC simulations to amount of electrons in a cer-
tain nσ region, and the amount of hadrons, can be retrieved. Hadron con-
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tamination and PID efficiency are often used to justify the goodness of a PID
scheme. Hadron contamination is fraction of tracks which are non-electron, i.e.
Nnon-electron tracks within PID cut/Ntracks within PID cut. PID efficiency is the num-
ber of electrons within the PID cut divided by the number of total electrons:
Nelectron tracks within PID cut/Nelectron tracks.

For dielectron analysis, it is required that the hadron contamination is no
bigger than 10%. In order to achieve this goal, PID schemes has been checked
with MC, and corresponding hadron contamination and PID efficiency are com-
pared.

At first, a spherical cut has been considered:

(nσeTPC)2 + (nσeTOF)2 + (nσeITS)2 < 16

(nσKTPC)2 + (nσKTOF)2 + (nσKITS)2 > 16

(nσpTPC)2 + (min(nσpTOF, 20))2/32 + (nσpITS)2 > 16

nσeTPC > −2.7e−0.4357pTPC nσπTPC > 4

This set of cuts consists of a spherical inclusion electron cut and spherical re-
jection cuts for π and K. The minimum in the spherical K rejection is due to
a limitation of my analysis task, the saved bin range(this minimum does im-
prove the PID cut quality). Further more, two pion rejection cuts are used. A
parametrization of the π rejection cut for real data has been used to reject π.
A secondary rejection cut has been used to improve perfomance of the PID in
MC analysis.

Another PID method with a less complex parametrization for p(and K)
rejection has been checked. This rectangular cut includes:

|nσeTPC| < 4

|nσeTOF| < 4

nσeITS < 2.5

nσeTPC > −2.7e−0.4357pTPC nσπTPC > 4

This set of cuts consists of a TPC electron inclusion cut, a TOF electron
inclusion cut, an ITS electron inclusion cut and the same two pion rejection
cuts. The asymmetry in ITS is used to increase PID efficiency, because in the
bins in which ITS is useful to reject π and K, the distribution of π and K lies
above nσeITS = 0.

Due to the imperfect PID calibration, the electron distributions of nσeTPC

and nσeTOF are not centered at 0. Because the same cut is required in MC as
in real data, a small compensation has been applied to translate the cut used
in MC to a cut on real data, as listed in the following:

|nσeTPC + .3| < 4

|nσeTOF + .2| < 4

nσeITS < 2.5

nσeTPC > −2.7e−0.4357pTPC

This cut is used to estimate contamination by doing a double Gaussian fit on
TPC, on the data that is cut with the ITS and TOF cuts. However, this
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Figure 2.6: The PID efficiency and contamination of the spherical electron PID
cut in MC simulations.

contamination estimation does not take into account particles that the TPC
can not seperate from electrons, and also does not work when this fit does not
convergence correctly.

2.3.1 Results

In figure 2.6a the hadron contamination of the spherical cut is shown, and in
figure 2.6b the PID efficiency of this cut. The hadron contamination is always
below 10% so the spherical electron PID cut can be used for dielectron analysis.
The PID efficiency of the spherical cut is approximately 65% for p < 2GeV/c,
so the amount of electrons rejected by the spherical PID cut is not very high.

The effect of the spherical cut on the PID response can be seen in figures
2.7, 2.8, 2.9 and 2.10. In figure 2.7 the effects of the TPC pion rejection can
be seen, before(left) and after(right) the spherical PID cut. The black line is
the imperical parametrization for pion rejection. Protons and kaons are also
rejected, which is also illustrated in figure 2.8. This figure further illustrates the
effect of the electron inclusion cut, as the kaon, proton and pion distributions
are all partly eleminated directly by the cut.

Figure 2.9 further illustrates the reason for use of TOF, as the particles other
then the electron have a more widespread distrbution before the spherical PID
cut(upper). Figure 2.10 shows that ITS is only useful for certain p bins, as the
overall spectrums overlap. However, as shown in figure 2.5, ITS can still be used
to reject protons or kaons.

The PID efficiency and hadron contamination of the rectangular electron
PID cut are shown in figure 2.11b and 2.11a, respectively. The hadron contam-
ination is slightly worse for the rectangular cut than the spherical cut, but the
PID efficiency increases significantly. For the rectangular cut, dielectron studies
can still be done as the contamination is less then 10%, and the PID efficiency
is approximately 75% for p < 2GeV/c.

The results of the rectangular electron PID cut on MC data are shown in
figure 2.12, 2.13, 2.14 and 2.15. In figure 2.12 the effects of the TPC pion
rejection can be seen, before(left) and after(right) the rectangular PID cut.
The black line is the imperical parametrization for pion rejection. By the nσeTPC

12



1

10

210

310

410

510

TPC
p1 10

 
e T

P
C

σn

-20

-15

-10

-5

0

5

10

15

20

PID information before cut for all particlesPID information before cut for all particles

1

10

210

310

TPC
p1 10

 
e T

P
C

σn

-20

-15

-10

-5

0

5

10

15

20

PID information after cut for all particlesPID information after cut for all particles

Figure 2.7: The distribution of nσeTPC vs p for the MC simulation before and
after the spherical electron PID cut
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Figure 2.8: The distribution of of nσeTPC for the MC simulation before and after
the spherical electron PID cut.
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Figure 2.9: The distribution of nσeTOF for the MC simulation before and after
the spherical electron PID cut.
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Figure 2.10: The distribution of nσeITS for the MC simulation before and after
the spherical electron PID cut.
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Figure 2.11: The PID efficiency and contamination of the rectangular electron
PID cut on MC simulations.

electron inclusion cut protons and kaons are also heavily rejected outside of a few
momentum bin, which is also illustrated in figure 2.13, where the distribution
of nσeTPC can be seen for different particles.

Figure 2.14 further illustrates the reason for use of TOF, as the particles
other then the electron have a more widespread distrbution before the rect-
angular PID cut(upper), and it can be seen in the lower figure that after the
rectangular PID cut, they are significantly reduced. Figure 2.15 shows the nec-
cesity of the ITS cut, as after the rectangular PID cut, there is a peak of the
proton and the kaon distributions to the right of the nσeITS limit of the rectan-
gular PID cut.

The effects on the PID distributions of the PID electron cut on real data are
shown in figures 2.16, 2.17,2.18 and 2.19. Figures 2.16, 2.17 and 2.18 indicate in
the lower or right figure that after the PID cut the nσeTPC and nσeTOF distribu-
tions have a peak around approximately 0, different from the shapes before the
PID cut. The ITS distribution is still peaked at approximately nσeITS = 0 after
the PID cut, which can be seen in figure 2.19. So the shapes of the distributions
indicate that the PID cut seperates electrons from other particles.

In a few p slices, the contamination (caused by particles which TPC can
seperate from electrons ) is calculated. This value was never higher then .01%,
but does not take into account the bins in which convergence is nontrivial, and
particles which the TPC does not seperate(for instance, protons at p = 1GeV/c).
Two of these fits are shown in figure 2.20. This small contamination estimation
also indicates that the PID cut seperates electrons from other particles.
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Figure 2.12: The distribution of nσeTPC vs p for the MC simulation before and
after the rectangular electron PID cut
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Figure 2.13: The distribution of nσeTPC for the MC simulation before and after
the rectangular electron PID cut.
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Figure 2.14: The distribution of nσeTOF for the MC simulation before and after
the rectangular electron PID cut.
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Figure 2.15: The distribution of nσeITS for the MC simulation before and after
the rectangular electron PID cut.
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Figure 2.16: The distribution of nσeTPC vs p for real data before and after the
rectangular electron PID cut.
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Figure 2.17: The distribution of nσeTPC(p integrated) for real data before and
after the rectangular electron PID cut.
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Figure 2.18: The distribution of nσeTOF(p integrated) for real data before and
after the rectangular electron PID cut.
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Figure 2.19: The distribution of nσeITS(p integrated) for real data before and
after the rectangular electron PID cut.
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Figure 2.20: The distribution of nσeTPC in certain p slices, for real data after the
rectangular electron PID cut, without the TPC cuts. A double Gaussian fit of
this histogram is done. This Gaussian fit is used to approximate contamination
by particles which TPC can seperate from electrons. This contamination is
never higher then 0.01%

2.4 Unfolding

With the identified electrons we can measure thier spectrum in the (pT , η, φ)
phasespace. However, this measured spectrum is not identical to the true spec-
trum, which contains the physics we are after. A naive way of obtaining the
true spectrum is to use an efficiency correction, which can be calculated with
MC simulations:

εbin i =
Nreconstructed in bin i

Ngenerated in bin i

This operation is naive because it fully ignores all correlations between bins in
phasespace. Tracks which belong in a certain true bin in the (pT , η, φ) phas-
espace, get distributed over a number of bins in the measured spectrum. The
distribution for every bin is the so called detector response (which we denote
by R(m, t), the probability of a track in true bin t to end up in measured bin
m). So rather than just multiplying every bin with an efficieny correction, a
different method needs to be used. Methods that can help us to achieve this are
called unfolding methods.

2.4.1 Theory

A priori the measured distribution M(m) and the detector response R(m, t) are
known.The detector response can be extracted from simulations, or obtained
by calibration of the detector. A detector response generated from the same
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dataset that I will use is illustrated in figure 2.21. From the measured spectrum
and the detector response, we wish to extract the true spectrum T (t). For high
enough statistics, we can expect:

M(m) =
∑
t

R(m, t)T (t)

by definition of R(m, t).
One might guess that inversion of the matrix R(m, t) should be enough to

get T (t) from M(m), but this is often not true. The matrix R(m, t) might
not be invertible, but even if it is, it might result in a true spectrum T (t) that
looks nothing like the spectrum you might expect. Because of the resolution
effect, high variance may occur in the data, as this can be compensated for in
neighbouring bins[8].

Unfolding algorithms can unfold the reconstructed spectrum of tracks into
the true spectrum of measured tracks, after which an effective efficiency correc-
tion. This effective efficiency correction is defined as:

εbin i =
Nreconstructed in bin i

Ngenerated in bin i

This effecitve efficiency correction is also obtained from MC simulations. By
dividing the unfolded spectrum by this effective efficiency correction, the true
spectrum can be obtained. The unfolding algorithms can take into account the
efficiency correction by scaling the detector response(by the efficiency correc-
tion), but in this thesis this is not considered to reduce computational complex-
ity.

Bayesian Unfolding

One of the algorithms to unfold is called Bayesian Unfolding(known in other
fields as Richardson-Lucy deconvolution[9]), proposed in use for particle physics
by d’Agostini[10]. This method is named after Bayes law:

P (T |M) =
P (M |T )P (T )

P (M)

In our notation, this is(normalization to make the spectrum a chance is not nec-
essary, as the true spectrum has the same amount of particles as the measured
spectrum):

R̃(m, t) =
R(m, t)T (t)

M(m)

with R̃(m, t) being the matrix that corresponds with the true “response” given a
certain measured value. Because M(m) =

∑
t′ R(m, t′)T (t′) this can be written

as:

R̃(m, t) =
R(m, t)T (t)∑
t′ R(m, t′)T (t′)

Then because T (t) =
∑
m R̃(m, t)M(m) we know that:

T (t) =
∑
m

R(m, t)T (t)M(m)∑
t′ R(m, t′)T (t′)
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This relation on its own is not useful. However, iteration over this algorithm is
possible:

Tn+1(t) =
∑
m

R(m, t)Tn(t)M(m)∑
t′ R(m, t′)Tn(t′)

It has been shown (by applying this strategy on simulations[9][10]) that when
iterating with this algorithm there is not only convergence, but convergence to
the true distribution.

Minimization with regularization

Another method of unfolding is considering the χ2 of the true spectrum Ti(t),
which is defined as:

χ2 =
∑
m

(
M(m)−

∑
tR(m, t)T (t)

e(m)

)2

with e(m) as the error in the measurement. Note that this is the same χ2 as
the χ2 for goodness of fit. This can be explained by considering that the χ2

minimization as a fit. The bins of true spectrum are the parameters of the
fitfunction, and the fitted function is

∑
tR(m, t)T (t).

Minimization of this factor will only result in something similar to calculating
the inverse, however. To emphasize the smoothness of the spectrum to the
minimizer, an extra term called a regularization term is required.

Many regularization terms can be used. The choice of regularization mostly
depends on what kind of smoothness you expect from your spectrum. A few
possible regularization terms are

∑
i

∑
t

(
(U(t)− U(t+ ei)

U(t)

)2

(2.1)

∑
i

∑
t

(
2U(t)− U(t+ ei)− U(t− ei)

U(t)

)2

(2.2)

∑
i

∑
t

(
2 ln(U(t))− ln(U(t+ ei))− ln(U(t− ei)

ln(U(t)

)2

(2.3)

where ei is the unit vector in direction i. These regularization terms are added
to the χ2 term after being multiplied by a constant, the regularization factor.

2.4.2 Method

Unfolding was applied on the 3-dimensional (pT , η, φ) spectrum of electrons
identified with the PID method discussed eariler. To compensate for possible
correlations, the whole spectrum was unfolded, rather than just the projec-
tions(if the (pT , η, φ) distributions of electrons are truly independent, then this
is not necessary). The 3-dimensional spectrum contains more information as
well, since for instance for electrons in every η bin we know their pT distribu-
tion.
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Figure 2.21: The detector response for pT for PID electrons can be seen here.
Note that this is not a projection of a 3-dimensional detector response, as such
a projection would not be normalized.

The detector response was extracted from the simulations for the same col-
lision system and centrality bin (explained in 2.2). Because the data is 3-
dimensional, the detector response is 6-dimensional. The effective efficiency was
also extracted using this simulation. The effective efficiency is used to correct
data from the unfolded spectrum.

For Bayesian unfolding, the convergence criterion used for this thesis is that∑
t

(
Tn(t)−Tn−1(t)

Tn−1(t)

)2

< 0.00001 · N with N the number of bins(as described

in [8]). The error is calculated by slightly changing the measurement(using a
Poisson distribution for every bin) and then unfolding again[8].

χ2 unfolding with regularization has been simplified because of convergence
issues. Only the pT dimension was unfolded. Regularization term 2.1 was used,
with a regularization factor of 105.

For testing the unfolding on the simulated data, the dataset is splitted in
two halves, with one part used for the detector response, and the other half
for the data to be unfolded. The data is splitted because otherwise the detec-
tor response would be perfect for the given dataset, and that means that the
simulated result is not representative for the real result.

2.4.3 Results

Testing Bayesian unfolding with simulated data

A 2-dimensional detector response generated from the same data is shown in
figure 2.21.
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Figure 2.22: The results for 3-dimensional Bayesian unfolding on MC PID e−

and a comparison with the MC spectrum of reconstructed tracks, projected to
the pT axis.
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Figure 2.23: The results for 3-dimensional Bayesian unfolding on MC PID e−

and a comparison with the MC spectrum of reconstructed tracks, projected to
the η axis.
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Figure 2.24: The results for 3-dimensional Bayesian unfolding on MC PID e−

and a comparison with the MC spectrum of reconstructed tracks, projected to
the φ axis.
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Figure 2.25: The comparison of the result of 3-dimensional Bayesian unfolding
on MC PID e+ with the MC spectrum of tracks of the pT direction.
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Figure 2.26: The comparison of the result of 3-dimensional Bayesian unfolding
on MC PID e+ with the MC spectrum of tracks of the η direction.
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Figure 2.27: The comparison of the result of 3-dimensional Bayesian unfolding
on MC PID e+ with the MC spectrum of tracks of the φ direction.
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Figure 2.28: The efficieny of the pT spectrum.

The results of the Bayesian unfolding of MC data using a 6-dimensional
response can be seen in figures 2.22, 2.23 and 2.24 for e−, and in figure 2.25,
2.26 and 2.27 for e+. The unfolded spectra for η and φ(in figures 2.23 and 2.24
for e−, and 2.23 and 2.24 for e+, respectively) are very consistent with MC,
besides one φ bin for e−, as they are all nearly 1. The error for the φ bin could
possibly be explained by the errors of the detector response.

For the pT spectrum, visible in figure 2.22 and 2.25, the ratio of MC and
unfolded as also approximately 1. However, there are big oscillations in the pT
spectrum above 3 GeV/c, for both e− and e+. These oscillations might also
be caused by errors in the detector response, or by the algorithm. Because
neighbouring bins are heavily correlated, spectra with oscillations can produce
the same spectrum as those without[8].

This unfolded result has been corrected for efficiency. The efficiency correc-
tion is illustrated in figures 2.28, 2.29 and 2.30, where the efficiency corrections
of projections are drawn(not the projections of the efficiency, as those would
not be normalized, but the efficiency corrections used when unfolding only one
dimension). Note that these figures do not display correlations, but these cor-
relations have been taken into account. The efficiency corrected spectra can be
seen in figures 2.31, 2.32 and 2.33. Similar effects are visible as in the spec-
tra without efficiency correction, as these are merely a multiplication of these
spectra.

Testing unfolding with regularization with simulated data

Unfolding with χ2 minimization has been looked at in less detail than the
Bayesian unfolding. The results of one-dimensional χ2 unfolding with linear
regularization(regularization term 2.1), with a regularization factor of 105, are
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Figure 2.29: The efficieny of the η spectrum.
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Figure 2.30: The efficieny of the φ spectrum.
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Figure 2.31: The results for 3-dimensional Bayesian unfolding on MC PID e−

after an efficiency corretion and a comparison with the MC spectrum of particles,
projected to the pT axis. As a comparison, the measured spectrum has also been
given the same efficiency correction(which is the naive way to do this).
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Figure 2.32: The results for 3-dimensional Bayesian unfolding on MC PID e−

after an efficiency corretion and a comparison with the MC spectrum of particles,
projected to the η axis. As a comparison, the measured spectrum has also been
given the same efficiency correction(which is the naive way to do this)
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Figure 2.33: The results for 3-dimensional Bayesian unfolding on MC PID e−

after an efficiency corretion and a comparison with the MC spectrum of particles,
projected to the φ axis. As a comparison, the measured spectrum has also been
given the same efficiency correction(which is the naive way to do this).

shown in figure 2.34. For the moment, technical issues with the minimizer pre-
vent the calculation of errors. This can be investigated given extra time. Figure
2.34 shows that the one-dimensional χ2 unfolding with regularization provides
a lot less oscillations then the Bayesian unfolding(figure 2.22). This may be
caused by the dimensionality of the problem, but it seems more reasonable that
the regularization term reduces these oscillations.

Unfolding of real data

The results of the Bayesian unfolding can be seen in figures 2.35,2.36,2.37,2.38,2.39
and 2.40. The unfolding does not seem to have much effect in all these figures.
This could be caused by the use of a detector response that does not correspond
to the real detector response. Because MC is used in this thesis for the detecor
response, imperfections in simulations can be the cause of this effect.
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Figure 2.35: The results for 3-dimensional Bayesian unfolding on real data with-
out efficiency correction, projected to pT .
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Figure 2.36: The results for 3-dimensional Bayesian unfolding on real data with-
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Figure 2.37: The results for 3-dimensional Bayesian unfolding on real data with-
out efficiency correction, projected to φ.
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Figure 2.38: The results for 3-dimensional Bayesian unfolding on real data with
efficiency correction, projected to pT . As a comparison, the measured spectrum
has also been given the same efficiency correction(which is the naive way to do
this).
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Figure 2.39: The results for 3-dimensional Bayesian unfolding on real data with
efficiency correction, projected to η. As a comparison, the measured spectrum
has also been given the same efficiency correction(which is the naive way to do
this).
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Figure 2.40: The results for 3-dimensional Bayesian unfolding on real data with
efficiency correction, projected to φ.As a comparison, the measured spectrum
has also been given the same efficiency correction(which is the naive way to do
this).
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Chapter 3

Conclusion and Summary

3.1 Conclusion and Outlook

The Bayesian unfolding still works to some degree with the amount of bins used
in this thesis, as the results are clearly better than just an efficiency correction.
However, the result has a lot of variance. This may be fixed by smoothing
the eventual histogram, by averaging over nearby bins(for instance T (t) = (1−
α)T (t) + α

3n

∑n
i=1 T (t + ei) + T (t) + T (t − ei) with α a smoothing factor, ei

the unit vector in the ith direction, and n the number of dimensions). This
should fix many of the issues present in the current Bayesian method, as shown
in figure 2.22.

The χ2 minimization unfolded spectrum on the other hand looks great, but
this spectrum is not unfolded 3-dimensionally. The χ2 minimization can be
extended to a multidimensional case, see section 2.4.1.

The effect of the detector resonse is not studied in this thesis, whcih can be
added by iterating over multiple variations of the detector response, given more
time.

It seems that the Bayesian algorithm is not really useful for unfolding datasets
with large amount of bins, as the part of the algorithm that used to prevent
large fluctuations, seems to be limited for higher statistics. The χ2 minimization
algorithm looks like a promising solution to solve this.

3.2 Summary

To investigate such the hot and dense matter states created in heavy ion col-
lisions, we can use electron pairs produced from conversions of virtual photon
with the ALICE experiment. For this purpose, electron identification methods
are studied with both MC and real data. Electrons can be selected by making
use of the detectors ITS, TPC and TOF in ALICE. We can use multiple al-
gorithms to compensate for the detector resolution in the measurements, such
algorithms are called unfolding algorithms. Simply multiplying by an efficiency
is not a good way to get the true spectrum. Bayesian and χ2 minimization
algorithms are discussed and used in this thesis.
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