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Abstract

This thesis explores the exact differences between the two most well-known
no-hidden variable theories: the Bell theorem and the Kochen-Specker the-
orem. Furthermore, it tries to place a newer result called ‘the free will
theorem’, as developed by John Conway and Simon Kochen, in this context.
To compare the Bell and Kochen-Specker theorems a reformulation of the
two theorems by David Mermin will be discussed, which turns out to lead to
an even stronger no-hidden variable theory. From the discussion of the free
will theorem and the critical reactions it has elicited, it will become clear
that the free will theorem is actually very similar to this stronger no-hidden
variable theory.
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Chapter 1

Introduction

Quantum mechanics has puzzled physicists ever since it was first formulated
in the twenties and thirties of the twentieth century. On the one hand it
is the most successful theory in the sense that it makes the most exact ex-
perimentally confirmed predictions. On the other hand the interpretation
of the theory gives rise to many conceptual problems and counterintuitive
phenomena, such as the probabilistic nature of the theory, quantisation, en-
tanglement, the wave-like behaviour of matter and the curious nature of
measurement. Because of this, there are many questions about the interpre-
tation of the quantum mechanical theory. Does it in any way correspond to
reality? And if it does, in what way? Is the theory a complete description
of nature or is some deeper understanding missing? For many physicists,
the choice has been not to give too much attention to these questions and
instead focus on using the theory. If it is the most accurate theory ever
devised, why worry about its interpretation? Others have been bothered by
the conceptual issues raised by quantum mechanics and developed theorems
and experiments trying to find out the precise relation between quantum
theory and reality.

One such person was Albert Einstein. Together with Boris Podolsky and
Nathan Rosen he developed an argument (known as the EPR-argument)
showing that considering quantum mechanics to be a complete theory leads
to a contradiction [11]. It was not until almost thirty years later, that their
argument was disproved by John Stewart Bell [3]. Ironically, Bell showed
that it was actually the assumptions made by Einstein, Podolsky and Rosen
that were wrong, leaving the issue of the completeness of quantum mechanics
undecided. In the decades following Bell’s paper several other theorems have
been developed which put further constraints on the possibility of theories
which are more complete than quantum mechanics. Such supposedly more
complete theories are called hidden variable theories, with ‘hidden variable’
referring to the information and parameters absent in quantum theory and
representing a more fundamental level of reality. The most important theo-
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rem, besides Bell’s theorem, which puts constraints on such hidden variable
theories is the Kochen-Specker theorem [14], which was also independently
developed by Bell himself [4].

The goal of this thesis is twofold. Firstly, the aim is to research the
nature of the Bell and Kochen-Specker theorems and the exact relation
between the two theorems. To do so − besides discussing both theorems −
a reformulation of the two theorems developed in 1990 by David Mermin
[15], which is based on an expansion of the EPR-argument by Daniel M.
Greenberger, Michael A. Horne and Anton Zeilinger (together GHZ, see
[12] and [13]), will be treated. This reformulation of the two so-called no-
hidden variable theories enables an exact comparison. Secondly, the aim is
to evaluate the ‘free will theorem’, as developed by John Conway and Simon
Kochen (see [8] and [10]). This theorem uses aspects of both the Bell and
Kochen-Specker theorems in making rather provocative statements about
particles having free will. At the same time, it has been accused of simply
coming down to Bell’s theorem. To find out what the theorem amounts
to, some of the criticisms the theorem has elicited and a reformulation of
the theorem by Eric Cator and Klaas Landsman [5] will be discussed. The
hope is that this discussion will also help in achieving the first aim of a
better understanding of the relation between the Bell and Kochen-Specker
theorems. Before discussing the topics above, however, the issues of realism
and completeness will first be discussed in some detail, to be able to place
the different theorems in context.
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Chapter 2

Preliminaries

2.1 Realism and instrumentalism

One of the most important philosophical issues in physics concerns the in-
terpretation of theories. The issue is whether physical theories describe
a physical reality existing independently of measurement or that physical
theories are merely instruments used for predictions. In the first case, cor-
responding to a realist interpretation, physical theories are judged on the
extent to which they express reality. In the second case, corresponding to
an instrumentalist interpretation, theories are judged on the extent to which
they are useful in giving the right predictions. The debate over realism and
instrumentalism is very interesting in the case of quantum mechanics, due to
some of the theory’s unique features. It is also important for understanding
the idea behind hidden variable theories and therefore the relevant issues of
the debate will be discussed in this chapter, which is mainly based on [6].

Whereas in classical mechanics there is a direct link between the math-
ematical description of some physical system and the physical properties
of that system, in quantum mechanics the mathematical description of a
system (its wavefunction or more generally a vector in Hilbert space) does
not correspond to unique values for its properties. Quantum mechanics only
gives a probability distribution for the possible outcomes of a measurement
of a physical property of the system. Furthermore, in quantum mechanics
there are cases of perfect correlation where a combined system (e.g. two en-
tangled particles) does have a well-defined value for some physical property
(e.g. the sum of spin), but the constituent systems (the two separate par-
ticles) are only described by a probability distribution for the value of this
property (their spin). Experiments have confirmed these predicted proba-
bility distributions and thereby quantum theory as well.

Therefore the most fundamental description quantum mechanics gives of
particles is a probabilistic one. This, however, raises some conceptual diffi-
culties. First of all, in classical physics probabilities indicate a theory is not
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complete. Stating that throwing a 6 with a dice has a 1 in 6 chance is only
an indication of our ignorance about the exact position, mass, etc. of the
dice, with which one theoretically should be able to predict the outcome of
a throw. Does this mean that quantum mechanics is incomplete in a similar
way? A second problem is that quantum mechanics gives a probability dis-
tribution for the physical properties of a system, but when a measurement
is made of some physical property of this system, one will find some specific
value. Furthermore, subsequent measurements − for as long as the system
is not disturbed and did not have time to evolve dynamically − will return
this same value. So did the system actually have a value for the measured
property before measurement? Again, this would mean quantum mechanics
is an incomplete theory. Another issue here is how the measurement affected
the system. If the system did not have a well-defined value before measure-
ment but does just afterwards, a measurement affects the system in a very
curious way. There is clearly an inconsistency between the dynamics of the
system, as described by the Schrödinger equation, and the sudden ‘collapse’
of the wavefunction upon measurement (see [1]).

These conceptual problems raises the question to what extent quantum
mechanics describes a physical reality independent of measurement. Does
the formalism describe some fundamental reality which exists outside of the
theory? Or is there possibly a more fundamental reality than what is de-
scribed by quantum mechanics, like classical mechanics is more fundamental
than classical statistical mechanics? Or, from an instrumentalist perspec-
tive, should quantum mechanics merely be considered as a functional tool
for predicting outcomes of measurements?

Some of the aspects of quantum mechanics would suggest an instru-
mentalist interpretation. Quantum mechanics makes very exact and well-
confirmed predictions, thereby making it a very good theory according to an
instrumentalist’s criteria. Furthermore, an instrumentalist interpretation of
quantum mechanics would to some extent avoid the conceptual problems as
described above. For example, in this perspective, the issue whether quan-
tum mechanics is complete is only to some extent of interest. Understanding
quantum theory on a more fundamental level than probabilistic predictions
would only be of any use if it would lead to any new useful predictions. In
a realist interpretation, however, the issue of completeness is of great inter-
est. Both possibilities − considering quantum mechanics to be complete or
incomplete − will be discussed in the next paragraph.

2.2 Completeness

One option is considering quantum mechanics to be incomplete. As dis-
cussed, this implies the probabilities predicted by quantum mechanics fol-
low from some more fundamental level of reality. This more fundamental
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level is associated with a so-called ‘hidden variable’, an as yet unspecified
variable. A major problem with theories based on these hidden variables is
that they make the same predictions as quantum mechanics but need more
parameters (which the hidden variable represents) to do so. Furthermore,
for reproducing the same predictions as quantum mechanics some ad hoc
assumptions are made about the nature of the hidden variable. So in this
way realism can be upheld, but no empirical evidence can be given for it.

The second option is to consider quantum mechanics a complete theory.
For a realist this raises the problem of measurement as described in the pre-
vious paragraph. Furthermore, it goes against our intuition that for example
a particle simply does not have well-defined values for its properties. Still
there have been several versions of this type of realist interpretation, of which
some seem quite exotic. For example, in 1961, Eugene Wigner proposed a
theory in which consciousness was crucial in defining what a measurement
constitutes. And in 1957, Hugh Everett proposed the many-worlds interpre-
tation in which at every measurement the world divides itself in as many
worlds as there are possible outcomes of the measurement. Both proposals,
however, suffer from methodological problems. In Wigner’s case conscious-
ness is assumed not be physically understandable, thereby not improving
physical understanding of the theory. In Everett’s case extra parameters
are introduced without empirical justification, since the other worlds are by
their nature unobservable for us. Another possibility is a kind of pure quan-
tumrealism. In this case, considering quantum mechanics to be a complete
theory implies that the most fundamental level of nature corresponds to a
system’s state Ψ as found in the quantum mechanical formalism. So then
on this level nature is probabilistic and reality is considered to be directly
described by the mathematical formalism of quantum mechanics.

Historically, the counterintuitiveness of the interpretation just described
has been a reason for people to oppose the completeness of quantum me-
chanics. The most well-known example of this is the argument developed by
Einstein, Podolsky and Rosen. As stated in the introduction, in 1964 Bell
developed a theorem on the basis of a modified EPR-argument that demon-
strated that it was actually EPR’s assumption, locality, that had to be given
up and not the completeness of quantum mechanics. Bell’s theorem is in
this sense an example of a so-called no-hidden variables theorem (also called
a no-go theorem): a theorem that tries to show that certain hidden variable
theories lead to predictions which do not conform to quantum mechanical
predictions. When these predictions can be experimentally verified, these
no-go theorems make it an experimental issue to decide if a specific type of
hidden variable theory is possible. As becomes clear in the next chapter,
such experiments have been performed in the case of Bell’s theorem, clearly
in agreement with the theorem.
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Chapter 3

Bell’s theorem

3.1 EPR-argument

Bell’s theorem [3] is a reaction to an argument developed by Einstein, Podol-
sky and Rosen [11] which clearly points out the conceptual problems of quan-
tum mechanics. Einstein, Podolsky and Rosen start off by arguing that in
the case of two noncommuting observables there are two possibilities: ei-
ther the description of reality by quantum mechanics is not complete or the
two noncommuting observables cannot have simultaneous reality. The au-
thors then propose a situation in which two systems, of which the states are
known, interact until some time t, after which the two systems are supposed
not to interact anymore. From the time t the state of the combined system
can be calculated using the Schrödinger equation, whereas the states of the
separate systems are unknown.

Now one can measure some physical attribute on one of the systems
and then, using the knowledge of the combined system, one immediately
knows the value for this same physical attribute of the other system. De-
pending on what quantity one chooses to measure this other system can be
left in different states. However, since there is no interaction between the
two systems after the time t (the locality assumption), both states should
be elements of the same reality, according to EPR. Now imagine choosing
between measuring any of two noncommuting physical quantities, say posi-
tion and momentum. In both cases one could predict some property (either
position or momentum) of the other system with certainty, thereby making
both an element of reality (according to EPR’s definition of physical real-
ity). This means that they have simultaneous reality, which contradicts the
second of the possibilities given by EPR. Therefore only the first option is
left: quantum mechanics is incomplete.

The modified EPR-argument on which Bell builds his theorem is the
one formulated by Bohm and Aharonov and is one which concretises the
original version. It is as follows (Bohm and Aharonov mainly developed
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their argument with polarisation properties of correlated photons, but this
works just the same): two spin 1/2 particles are in the singlet state and move
away from a common origin in opposing directions (this could be the decay
of a neutral pi meson into an electron and a positron). Now one measures
the spin-component in direction a for both particle 1 and 2. According
to quantum mechanics, if the spin-component (in units of h̄/2) of either
particle is +1, it is −1 for the other particle and vice versa, regardless of
the distance between the particles. So if one measures the a-component
of spin for particle 1, the a-component of spin of particle 2 is immediately
known. Assuming the measuring device and particle on one side do not
influence the measuring device and particle on the other side (the locality
assumption), this leads to the conclusion that the spin of both particles must
be predetermined and therefore that quantum theory is not complete.

3.2 Bell’s inequalities

In reaction to the EPR-argument and the modified version by Bohm and
Aharonov, Bell followed the strategy for a no-go theorem: make some as-
sumption for a possible hidden variable theory, find out what predictions it
leads to and then compare this to the (possibly experimentally confirmed)
quantum mechanical predictions. Bell started off with a slight change in
setup compared to the argument described before: the direction in which
the spin is measured is now different for the two particles, with a for parti-
cle 1 and b for particle 2. The value in both instances can be either +1 or
−1, so A(a, λ) = ±1 and B(b, λ) = ±1 with λ being the hidden variable.
Now Bell proposed to calculate the expectation value P (a,b) of the product
of A and B, using the probability distribution of the hidden variable ρ(λ).
Thereby he made it possible to compare a hidden variable theory to quan-
tum mechanical statistical predictions. Working out the assumptions about
the hidden variable theory lead to the Bell inequalities, which turned out to
be in disagreement with what follows from quantum mechanics.

The derivation of the inequalities is as follows: define the hidden variable
as λ (which could be any type of variable) with∫

ρ(λ)dλ = 1. (3.1)

The locality assumption implies that both A and B are independent of the
configuration b and a of the other detector, that is:

A(a,b, λ) = A(a, λ), (3.2)

B(a,b, λ) = B(b, λ). (3.3)

Now the expectation value of the product of A and B is

P (a,b) =

∫
ρ(λ)A(a, λ)B(b, λ)dλ. (3.4)
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Furthermore we know that if the spin of both particles is measured in the
same direction, they will be each others opposites, that is

A(a, λ) = −B(a, λ). (3.5)

So equation 3.4 becomes

P (a,b) = −
∫
ρ(λ)A(a, λ)A(b, λ)dλ. (3.6)

Now if c is another vector

P (a,b)− P (a, c) = −
∫
ρ(λ)[A(a, λ)A(b, λ)−A(a, λ)A(c, λ)]dλ (3.7)

= −
∫
ρ(λ)[1−A(b, λ)A(c, λ)]A(a, λ)A(b, λ)dλ, (3.8)

with the last equation following from A(b, λ)2 = 1. Now considering that
A(a, λ)A(b, λ) = ±1 and ρ(λ)[1−A(b, λ)A(c, λ)] ≥ 0 it follows that

| P (a,b)− P (a, c) |≤
∫
ρ(λ)[1−A(b, λ)A(c, λ)]dλ. (3.9)

Using equation 3.5 this can be more simply expressed as

| P (a,b)− P (a, c) |≤ 1 + P (b, c), (3.10)

which is the original Bell inequality [3, 7].

3.3 Consequences

Quantum mechanics, however, predicts [3, p. 404]

P (a,b) = −a · b. (3.11)

It can easily be seen that this does not agree with the Bell inequality. Imag-
ine a and b make a 90 degree angle with each other and c is exactly in
between them in the same plane. Then, according to quantum mechanics,
P (a,b) = 0 and P (a, c) = P (a, c) = −1

2

√
2, which does not fulfill the Bell

inequality. Since the quantum mechanical result has been experimentally
confirmed [13], this leads to the conclusion that the hidden variable the-
ory assumed in Bell’s theorem is incorrect. More specifically, local hidden
variable theories are incorrect.

At first, one might think nonlocality would contradict relativity theory,
since in the case of entanglement there is evidently some influence which
travels faster than light (otherwise the perfect correlation cannot be ex-
plained). The reason that influences with superluminal speeds are prohib-
ited in relativity theory is that in some inertial frames those influences travel
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back in time. If the influence is a causal one, this would mean the effect pre-
cedes the cause which leads to a logical contradiction. One option to avoid
this problem would be to state that the results of the spatially separated
measurements were predetermined. In this case this does not refer to the
particles having well-defined values before measurement, but it means that
everything, including the choice of the experimenter in which direction to
measure, was determined in such a way as to preserve the correlation. This
so-called superdeterminism, however, has few proponents (with the notable
exception of Gerard ’t Hooft), since it excludes any form of free will.

So what is the way out of this problem? Well, it is not clear whether
there actually is a problem. That is to say, it is not clear in what way
the nonlocality found in entanglement actually contradicts relativity theory.
This has to do with the probabilistic nature of the outcome of measure-
ments, due to which someone performing a measurement has no influence
on the outcome of the measurement. From this it follows that if an experi-
menter A decides to do a measurement on particle 1, another experimenter
B measuring particle 2 cannot in any way know whether experimenter A has
performed a measurement. Furthermore, if both these two measurements
are repeated, both experimenters will get the same statistics for the mea-
surement results. Only when the experimenters compare their results, the
correlation between the particles becomes apparent. Without any knowledge
of the measurement results of the other experimenter, there is no informa-
tion as to whether the other experimenter has performed any measurements.
The conclusion is that no information can be send using entanglement and
that the influence therefore is not causal, at least not in the sense that, for
superluminal speeds, it can lead to a logical contradiction. So at least there
seems to be no obvious contradiction with relativity theory.
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Chapter 4

The Kochen-Specker
theorem

4.1 Introduction

Following Bell’s theorem many similar no-hidden variable theorems have
been developed. Differences between these theorems are that they attack
hidden variable theories based on different assumptions and therefore also
lead to different restrictions on possible hidden variable theories. As stated
in the introduction, the most important of these is the Kochen-Specker theo-
rem [14], which has been developed independently by Bell as well [4]. While
Bell’s original theorem focuses on statistical correlations (the expectation
value of the product of the spin in two different directions), the Kochen-
Specker theorem focuses on perfect correlations. The Kochen-Specker theo-
rem is in this sense closer to the original EPR-argument where the direction
of both detectors is the same, a situation about which Bell’s theorem makes
no statement.

For comparing the two theorems it is important to note the strategy of
no-go theorems as outlined in section 3.2: compare some functional relation
which follows from quantum mechanics with that what follows from the
assumptions made in the hidden variable theory. As became clear in the
previous chapter, in the case of Bell’s theorem the functional relation is
given by P (a,b) = −a · b (equation 3.11) and this is compared to the Bell
inequalities that follow from the locality assumption made for the hidden
variable theory. In the case of the Kochen-Specker theorem, which concerns
perfect correlations, this works in a slightly different way. In this case we
are not talking about statistics, but about specific values for observables. It
turns out that this makes it possible to directly find out if a physical system
can have well-defined values for its physical properties.

The method for doing so is as follows. First note that any mutually
commuting set of observables is simultaneously measurable and that the
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outcome of such a measurement will be a set of simultaneous eigenvalues.
From this it follows, according to quantum mechanics, that any relation be-
tween operators belonging to these mutually commuting observables should
also be valid for the simultaneous eigenvalues. Furthermore, if you try to
assign values to observables, these should be their eigenvalues, since these
are the ones that are revealed upon measurement. Now these remarks are
true for any commuting subset of the total set of observables. Therefore the
question is whether values can be assigned to the observables in such a way
that the functional relations hold in any commuting subset.

4.2 Proof

In the case of the Kochen-Specker theorem the observable to be discussed
can be the square of orthogonal spin-components of a particle with spin 1.
These can be either 1 or 0, since the non-squared spin-component can be
either 1, 0 or −1. It follows from quantum mechanics that in this case the
squared orthogonal spin-components commute and are therefore simultane-
ously measurable. Furthermore, for the sum of the squared spin-components
quantum mechanics gives the functional relation

S2
u + S2

v + S2
w = s(s+ 1) = 2, (4.1)

with u, v and w specifying orthogonal directions and s = 1 since the particle
has spin 1. Now the question in this case is whether a particle can have well-
defined values for it squared spin in all directions, while still satisfying the
functional relation as just specified. It turns out that this is not possible.

From equation 4.1 it follows that of each three orthogonal components
two components should have value 1 and one component value 0. This
means no two orthogonal components can have value 0 and pairs of opposite
directions have the same value. Using a geometrical argument it can then be
shown that no configuration can be made where both the particle’s squared
spin-component is defined in all directions and these functional relations
apply. Kochen and Specker used a set of 117 directions to prove this, but
the same argument has been made using 33 and 31 (respectively by Peres,
and Conway and Kochen) directions. The configuration by Peres can be
represented graphically most clearly, using the three superimposed colored
cubes of figure 4.1a. One obtains the three cubes by rotating the uncolored
cube by 45 degrees about its coordinate axes. The 33 directions consist
of the symmetry axes of the three superimposed colored cubes, all going
through the common center of the cubes.

In their 2009 article about the free will theorem Conway and Kochen
present the proof of Kochen-Specker in the conceptually easiest way, using
the 33 directions of Peres [10]. The task is to find a set of directions for which
it is impossible to assign each direction either the value 1 or the value 0 with
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(a) (b)

Figure 4.1: (a) The three superimposed cubes of Peres’ configuration and
(b) the representation of the proof by Conway and Kochen [10].

the property that each subset of three mutually orthogonal directions contain
twice the value 1 and once the value 0. Conway and Kochen associate each
direction which has value 1 with an odd number and each direction which
has value 0 with an even number, thereby making it easier to refer to the
specific direction while at the same time knowing its value. The result can
be seen in figure 4.1b. Here the 33 directions are represented by points on
the surface of the uncolored cube. In the proof the first time a number of
a direction is used it is used only as a label for referring to that specific
direction. Only afterwards it is determined whether this direction should be
even or odd, though of course the directions are immediately given the right
parity.

Conway and Kochen start with the coordinate axes, giving two axes an
odd number (axes 1 and −1, corresponding to twice the value 1 for squared
spin) and one an even number (axis 2, corresponding to the value 0 for
squared spin). Rotating about axis 2 gives the triple (2,3,−3), making axes
3 and −3 odd. Furthermore, both (3,4,−x) and (−3,−4,x) form a triple,
since they each correspond to the axes through the centers of two edges and
the center of a face of one of the superimposed cubes (e.g. directions 3, 4
and −x correspond to the green cube). Due to symmetry considerations,
directions 4 and −4 can, without loss of generality, be chosen to be even
(choosing other directions comes down to rotating about direction 2). From
a 90 degrees rotation about direction 1 that moves 7, 5 and 9 to 4, 6 and
x it can be seen that 5 is orthogonal to 4, 6 and x, while 6 is orthogonal
to 7, 5 and 9. Since we have taken direction 4 to be even, 5 must be odd,
making 6 even, making 7 and 9 odd. In the same way it can be seen that
directions −7, −5 and −9 are odd and −6 is even. Now both (8,−7,9) and
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(−8,7,−9) form a triple (just like the (3,4,−x) triple), making both 8 and
−8 even. These directions, however, are orthogonal and both even, leading
to a contradiction.

4.3 Consequences

The conclusion of the Kochen-Specker theorem is then that attributes (such
as spin) cannot be assigned to all particles in such a way that the relations
between these attributes still hold (in this case equation 4.1). Therefore
the Kochen-Specker theorem shows that the result of any individual mea-
surement (of spin in this case) is not predetermined independently of the
choice of measurements. In other words, it only allows contextual hidden
variable theories. Essential for proving this is that the Kochen-Specker the-
orem makes use of a three-dimensional space (squared spin-component in
three directions). Two dimensions do not give enough degrees of freedom
to prove the above point. Actually in the case of the EPR-argument a clas-
sical, deterministic, local model can be made that reproduces the results of
quantum mechanics [4].

Furthermore, it is important to note that the way the Kochen-Specker
theorem is presented here is much less mathematical than how it was stated
originally. In its original version, the Kochen-Specker theorem − a special
case of a more general result by A.M. Gleason from 1957 − actually does not
make any reference to a particular state. Using a particular state, as was
done in this chapter, does make the proof conceptually insightful. However,
unlike in the case of Bell’s theorem, it is not necessary for proving the
Kochen-Specker theorem.
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Chapter 5

Mermin’s reformulation

5.1 Greenberger-Horne-Zeilinger

As has become clear in the two previous chapters, the Bell and Kochen-
Specker theorems are both no-hidden variable theories, but apply to slightly
different situations. Like the EPR-argument, on which Bell’s theorem is a re-
action, the Kochen-Specker theorem discusses perfect correlations. Further-
more, while Bell’s theorem needs a particular state (entanglement) to arrive
at a contradiction, the Kochen-Specker theorem does not. The Kochen-
Specker theorem has, however, historically received significantly less atten-
tion from physicists, due to its mathematical and − at least seemingly −
complex nature. Therefore a logical question is whether it it possible to for-
mulate a conceptually easier theorem, in the mind of Bell’s theorem, which
applies to perfect correlations. This is exactly what Greenberger, Horne and
Zeilinger showed in their 1989 paper [12] and subsequently worked out in
another paper (together with Abner Shimony, [13]).

They did this by changing the setup into one with the spin of three or four
entangled spin 1/2 particles being measured instead of just two. For certain
configurations of the direction of the detectors perfect correlation occurs.
For example in the case of the four entangled particles the product of the
spins in four given directions equals ±1 if the angles the four detectors make
with a specified direction add up to 0 or 180 degrees. This is the equivalent
of the functional relation of Bell’s theorem (equation 3.11). The situation
thus created is very similar to the EPR-argument as formulated by Bohm
and Aharonov, but then with three or four particles.

It turns out, just as was the case for the Kochen-Specker theorem, that
these extra dimensions offers enough freedom to demonstrate a contradic-
tion for perfect correlations. In other words, there is no possibility to assign
values to the spin-components of the four particles in such a way that the
functional relation is always satisfied. So while in the case of perfect corre-
lations in the EPR-argument a classical, local, deterministic model can be
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made that reproduces the results of quantum mechanics, this is not possible
in the cases with three or four particles. Therefore Greenberger, Horne and
Zeilinger conclude that the impossibility of a classical, local, deterministic
theory cannot only be proven in the general case (Bell’s theorem), but also
in the EPR case of perfect correlations [12, 13].

5.2 Mermin

Following these publications, David Mermin reformulated the no-go theorem
of GHZ [15, 16], thereby making it conceptually easier to understand and
at the same more suitable for a comparison of the Bell and Kochen-Specker
theorems. Mermin considers the spin-component of particles in the two
orthogonal directions x and y. The operators for these spin-components
can be written as σ1x for the x-component of particle 1 and so on for the
y-component and other particles. Consider, as an example, a generalization
Mermin made of an argument similar to Kochen-Specker by Peres. In this
case we take the four spin operators σ1x, σ2x, σ1y and σ2y , combinations of those
(but not the combinations σ1xσ

1
y and σ2xσ

2
y since those are combinations of

two noncommuting operators) and the operator σ1zσ
2
z . These can be seen in

figure 5.1a.
Now the assumption made is that all the physical attributes correspond-

ing to these operators have well-defined values. As stated before, the strat-
egy is to find out what this leads to and compare it to some functional
relation following from quantum mechanics. First, note that the observ-
ables on every row and on every column are mutually commuting. In the
case of the bottom row and the column to the right this is true because for
every possible pair there are two anticommutations. Furthermore, it follows
from quantum mechanics that σ2i = 1 and σiσj = −σjσi = iσk (and so on
for cyclic permutations) with i, j and k orthogonal directions. From this it
follows that the product of the three observables in the column to the right
is −1 and the product of the three observables on the other columns and
on all rows is +1. So these are some functional relations that follow from
quamtum mechanics.

Now we have to find out what the assumption of all observables having
well-defined values leads to. Since the observables on every row and column
are mutually commuting, any relation between these observables must also
be satisfied by the values assigned to these observables. So the product
of the values assigned to the observables on every row and column should
be +1, except for the column on the right where it should be −1. This,
however, means that the product of all nine observables is +1 when using
the products of the rows and −1 when using the products of the columns.
Because of this contradiction the assumption has to be false. This proof is a
version of the Kochen-Specker theorem and arrives at the same conclusion:
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(a)

(b)

Figure 5.1: Mermin’s (a) square and (b) pentagram [16].

only contextual hidden variable theories are possible. The outcome of a
measurement apparently depends on which set of observables it is measured
in.

In order to reformulate the argument by GHZ, Mermin followed a sim-
ilar method for three particles. Now the relevant spin operators are the 6
operators for the x- and y-components of the three particles together with
the 4 products of three commuting operators σ1xσ

2
xσ

3
x, σ1yσ

2
yσ

3
x, σ1yσ

2
xσ

3
y and

σ1xσ
2
yσ

3
y to form 10 operators in total. Again, the assumption is made that

the observables belonging to the 10 operators all have well-defined values.
The operators can be put on the vertices of a pentagram in such a way that
the operators on each of the straight lines of the pentagram commute, see
figure 5.1b. For the horizontal line this is true because, again, for every
possible pair there are two anticommutations.

Just as in the case of the previous example, we now look to the prod-
uct of observables on the different lines and compare this to product over
all lines. From the relations between spin operators given in the previous
example it follows that the product of the observables on the horizontal line
is −1 and it is +1 on the other lines (the functional relation). Since the op-
erators on the straight lines commute, they have simultaneous eigenstates
with corresponding simultaneous eigenvalues which should also satisfy the
these relations. So the product of the values assigned (the assumption) to
the operators on the straight lines should be +1, except for the horizontal
line where it should be −1. From this it follows that the product of all
five lines of products must be −1. However, since every operator appears
twice in this total product the outcome should be +1, again leading to a
contradiction. So just like the previous example, this proof is equivalent to
the Kochen-Specker theorem. This version, however, has the advantage that
it can be made into a theorem in the mind of Bell, while still applying to
perfect correlations.
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To do so, Mermin takes the three-particle system to be in the simulta-
neous eigenstate of the operators σ1yσ

2
yσ

3
x, σ1yσ

2
xσ

3
y and σ1xσ

2
yσ

3
y for which all

three gave eigenvalue 1. Because these commute with σ1xσ
2
xσ

3
x this eigen-

state is also an eigenstate of that operator. Furthermore, since σ1xσ
2
xσ

3
x =

−(σ1xσ
2
yσ

3
y)(σ1yσ

2
xσ

3
y)(σ1yσ

2
yσ

3
x), it has eigenvalue −1. Now the connection

with GHZ becomes clear. Take, in line with the EPR-argument, the par-
ticles to be spatially separated. Then one can with certainty predict the
outcome of a measurement of for example the x-component of the spin of
some particle by measuring the y-component of the two particles far away.
The same prediction can be made about a particle’s y-component, but then
by measuring the y-component of one other particle and the x-component of
the other particle. In both cases this follows from the eigenvalue equations,
which serve as the functional relations. Also, in both cases there is a perfect
correlation.

Just like in Bell’s theorem, the assumption is now that, since the particles
are spatially separated, no influence can occur and therefore the particles
already have well-defined values for their spin-components before measure-
ment. Like before, these values should satisfy the relations that are true for
the operators, in this case the eigenvalue equations. So if, say, σ1x, σ2x and
σ3x are measured in an eigenstate of σ1xσ

2
xσ

3
x with eigenvalue −1, the product

of the results of the three measurements should also be −1. This gives four
equations:

v(σ1y)v(σ2y)v(σ3x) = 1,

v(σ1y)v(σ2x)v(σ3y) = 1,

v(σ1x)v(σ2y)v(σ3y) = 1,

v(σ1x)v(σ2x)v(σ3x) = −1,

with v(σ1x) signifying the value assigned to the x-component of the spin of
particle 1 and so on for the y-component and the other particles. It turns out
that, in a similar way as before, this leads to a contradiction: the product of
all the terms on the left gives +1 (since every value appears twice), while the
product of the terms on the right gives −1. Again, the conclusion is that not
all physical attributes can have well-defined values. There is, however, an
important difference with the previous examples, as will be discussed below.

5.3 Consequences

The question asked at the beginning of this chapter was whether it is possible
to formulate a theorem that applies to perfect correlation but is conceptu-
ally not as difficult as the Kochen-Specker theorem. It turns out that this is
possible through Mermin’s reformulation of both Peres and GHZ. There is,
however, another important advantage of the reformulation of GHZ. To see
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this, first consider the case of the Kochen-Specker theorem and its reformu-
lations by Mermin (see figure 5.1). Here a contradiction is derived with the
assumption of noncontextual values for any arbitrary observables. So the
Kochen-Specker theorem says assigning to all observables a noncontextual
value is impossible. The conclusion, as stated before, is that the outcome of
a measurement apparently depends on the context, or set of measurements,
it is measured in. One could think, however, that this is not so surprising.
If you measure some observable in two sets of mutually commuting observ-
ables, of which the additional observables of one set do not commute with
the additional observables of the other, you need two different measurement
setups. So is it not possible that the value of an observable depends on this
measurement context? On the other hand the statistics of a measurement
is independent of the context, a fact for which such a contextual hidden
variable theory would have no explanation.

Altogether, it is not totally clear whether noncontextuality is a reason-
able assumption for a hidden variable theory. However, the strength of GHZ
and Mermin’s reformulation of this result is that it makes this discussion ir-
relevant. Here noncontextual values are only assigned to the observables of
which the locality assumption requires them to have noncontextual values.
So this theorem says you cannot even just assign noncontextual values in
the cases where this is required by locality. In other words, the assumption
of noncontextuality is replaced by the weaker assumption of locality. Still,
a contradiction is derived and therefore this version can be considered a
stronger result since it places the most restrictive constraints on possible
hidden variable theories. The weaker assumption of locality was of course
also made in Bell’s theorem, but Bell only applies to statistical correlations.
By expanding the situation to three particles, GHZ introduce extra degrees
of freedom with which the stronger result can be proven even in the case of
perfect correlations [12, 13].

To understand another difference between the theorems, it is useful to
find out why Mermin’s reformulation of the argument by Peres (see figure
5.1a) cannot be used to formulate an argument similar to GHZ. The method
would be to assume the two particles are spatially separated and in the sin-
glet state. Furthermore, noncontextual values are only assumed in the cases
this is required by locality, so only for the local observables σ1x, σ2x, σ1y and
σ2y . Since the other five observables involve spin operators of both particles
they are nonlocal and will therefore not be assumed to have noncontextual
values (an assumption which is made in the Kochen-Specker theorem). In
Mermin’s reformulation of GHZ an eigenstate of the nonlocal observables
was now chosen to still be able to assign values to the nonlocal observables
(from which the necessity of using a particular state can be seen). To do so,
however, the nonlocal observables have to be mutually commuting. This is
not the case for the five nonlocal observables in Peres’ argument and there-
fore no GHZ-type argument can be developed. From this it becomes clear
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why Bell and GHZ need a particular state and Kochen-Specker does not,
a difference which is sometimes regarded as an advantage of the Kochen-
Specker theorem. Mermin argues, however, that this difference should be
seen as merely a technical consequence of the less restrictive assumptions
made by Bell and GHZ, leaving them less degrees of freedom [16].
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Chapter 6

The free will theorem

6.1 The original free will theorem

As became clear in the previous chapter, Mermin’s reformulation of the
argument by GHZ combined aspects of both the Bell and Kochen-Specker
theorems. This is also true for the so-called ‘free will theorem’, developed
by Conway and Kochen [8]. As its name indicates, the theorem arrives
at conclusion about free will instead of locality. In Conway and Kochen’s
words, “it asserts, roughly, that if indeed we humans have a free will, then
elementary particles already have their own small share of this valuable
commodity” [10, p. 226]. It is quite a controversial theorem and it has
generated several critical responses. Some of these criticisms concern their
supposedly inappropriate use of the term ‘free will’ and others state that the
theorem actually comes down to Bell’s theorem. Especially this last criticism
is of interest for evaluating the different no-go theorems, since the free will
theorem also explicitly uses the results of the Kochen-Specker theorem. In
reaction to the critical responses, Conway and Kochen formulated the ‘strong
free will theorem’ [10], which will also be discussed in order to evaluate the
theorem. Lastly, an article by Cator and Landsman [5], in which they follow
a method similar to Mermin’s, will be treated briefly. They reformulate the
Bell and the free will theorem in a mathematical way, enabling an exact
comparison. However, before discussing all these issues, the theorems itself
will first be outlined.

Conway and Kochen’s argument proceeds from the Kochen-Specker the-
orem and starts off with three axioms:

1. SPIN. The SPIN axiom states that “measurements of the squared
(components of) spin of a spin 1 particle in three orthogonal directions
always gives the values 1, 0 and 1 in some order” [10, p. 227].

2. TWIN. The TWIN axiom states that a measurement of the squared
spin-components of two twinned spin 1 particles in parallel directions
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will yield the same result.

3. FIN. The FIN axiom states that “there is a finite upper bound to the
speed with which information can be effectively transmitted” [8, p. 3].

The SPIN axiom is the same quantum mechanical prediction the Kochen-
Specker theorem uses to prove attributes of physical systems cannot all have
well-defined values. The content of the TWIN axiom also follows directly
from quantum mechanics and it is similar to the perfect correlation discussed
before in the EPRB-argument with two spin 1/2 particles, the particles being
in an entangled state with total spin zero. Conway and Kochen formulate
the TWIN axiom more precisely as follows: when experimenter A measures
the squared spin-components of particle 1 in the three orthogonal directions
x, y and z and experimenter B measures the squared spin-component of
particle 2 in the direction w, and w is in the same direction as either x, y
or z, the values will correspond. Here the direction w is taken to be one of
the 33 directions of Peres’ configuration (of the Kochen-Specker proof) and
the triple x, y and z is taken to be one of the 40 orthogonal triples that one
gets from completing all orthogonal pairs in that configuration. While both
of these axioms follow from quantum mechanics, the FIN axiom does not.
Maybe not surprisingly, this is the axiom which has been criticised.

From the three axioms Conway and Kochen deduce their free will the-
orem. It concerns the experiment specified above, in which experimenter
A measures the squared spin-component of particle a in three orthogonal
directions of the 40 directions and experimenter B measures the squared
spin-component of particle b in one of the 33 directions. It states that “if
the choice of directions in which to perform spin 1 experiments is not a func-
tion of the information accessible to the experimenters, then the responses
of the particles are equally not functions of information accessible to them”
[8, p. 3]. From this conclusion it can be seen that statements about the sup-
posedly ‘free will’ of the particle only apply when one makes the assumption
an experimenter can freely choose a measurement direction. Here Conway
and Kochen define free choice of the experimenters as a choice that is “not
a function of the information accessible to them” [8, p. 4].

To prove their theorem Conway and Kochen make the assumption that
the responses of the particles are a function of the information available
to them. By α they signify all the information contained in the backward
light-cone of particle a and by β the same for particle b. They split this in-
formation into the choice of measurement directions and respectively α′ and
β′ signifying the information available just before making the choice of mea-
surement directions. Then the outcome of a measurement of the squared
spin-component of particle a in some direction z (as part of a simultane-
ous measurement of the squared spin-component in the three orthogonal
directions x, y and z) depends on the other two directions x and y and on
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α′:
S2
a,z = S2

a,z(x, y, α
′), (6.1)

and the same for a measurement in the direction w for particle b:

S2
b,w = S2

a,w(u, v, β′). (6.2)

Now the TWIN axiom states that if experimenters A and B choose the
same direction for measurement (that is z = w) the two outcomes show a
perfect correlation:

S2
a,z(x, y, α

′) = S2
b,w(u, v, β′). (6.3)

Furthermore, the assumption about free choice implies B can choose to mea-
sure w as part of any orthogonal triple u, v and w. Due to the FIN axiom,
this can have no effect on the outcome of A’s measurement. This means
that the outcome of B’s measurement is independent of the two orthogonal
directions u and v, that is

S2
b,w(u, v, β) = S2

b,w(β), (6.4)

and the same is true for A’s measurement. This, however, directly contra-
dicts the Kochen-Specker theorem (and thereby the SPIN axiom), since it
implies the value of any squared spin-component is independent of the or-
thogonal triple it is measured in. Conway and Kochen conclude from the
contradiction that equations 6.1 and 6.2 do not hold, meaning that the out-
comes of the measurements do not depend on the information contained in
the backward light-cone of the respective particles. Therefore the response of
both particles is free in the sense that it is not a function of the information
accessible to them [2, 8].

6.2 Criticism

As stated at the beginning of this chapter, the free will theorem has elicited
several critical responses. One main point of criticism concerns Conway and
Kochen’s use of the term ‘free will’. The way they define a choice as being
free − “not a function of the information accessible” [8, p. 4] or “not a
function of the past” [10, p. 228] − suggests the rather peculiar idea that
a choice can be independent of the history of the one making the choice.
Furthermore, Conway and Kochen’s use of the term differs from what is
commonly meant by free will. An example can be found in Conway and
Kochen’s discussion of the possibility of spontaneous information becoming
available to a particle just after the measurement directions are chosen (say
at a time t = t0). Such information could influence the outcome of a mea-
surement, but is not included in the derivation of the theorem (equations 6.1
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and 6.2). Conway and Kochen state that such information would not change
anything about the conclusion of the free will theorem, since it would mean
the universe has taken a free decision at the time t0. However, it seems to
make more sense not to talk of a ‘free decision’ in this case, but instead of
an inherent probabilistic nature of the universe.

The same line of thought can be applied to the use of the term ‘free will’
for the experimenter. Regardless of philosophical problems surrounding the
meaning and existence of ‘free will’, one can reasonably state that the choice
of the experimenter for a certain measurement direction is a purely arbitrary
choice. That is to say, the choice of the experimenter is independent of
other factors relevant to the problem at hand (e.g. the incoming particle)
and can therefore be considered random. In this way it can be seen that
it matters not so much whether and to what extent the experimenter has
‘free will’, but the more what the assumption of free choice comes down to:
the choice of measurement direction being random. The only other option is
the superdeterminism discussed in section 3.3, implying particles (or as such
the universe) already know in advance in what direction an experimenter
will measure. Therefore, being able to cope with choice of measurement
directions as random is a very reasonable requirement for a theory.

Other objections have been raised against the validity of theorem itself,
most notably by Angelo Bassi and Giancarlo Ghirardi [2], and Roderich
Tumulka [17]. Both reacted to the 2006 article by stating that Conway and
Kochen arrive at the wrong conclusion based on their proof. They state
that the right conclusion is exactly the one made by Bell in 1964: nature
is non-local. Therefore the original FIN axiom should be considered wrong.
They indicate that Bell’s theorem only required the TWIN analogue for two
spin 1/2 particles, Bell’s version of locality and the assumption about free
choice. Without any functional relation of the sort of equations 6.1 and 6.2
(which relates the outcome of measurements with past information), Bell
still arrived at a contradiction. Therefore one of his assumptions had to be
wrong. Since the TWIN axiom follows directly from quantum mechanics
(and is experimentally verified) and almost no-one is willing to deny free
choice, locality had to be given up.

Conway and Kochen, however, do include a fourth assumption on deter-
minism − meaning outcomes of measurements are a function of the past −
in their proof, as formulated in equations 6.1 and 6.2. Furthermore, they
state that the FIN axiom cannot be given up since it follows from relativ-
ity theory and the authors therefore conclude the determinism assumption
is false. It is interesting to compare this conclusion to the EPR-argument.
Here, the similar assumptions of free choice, quantum formalism and locality
lead Einstein, Podolsky and Rosen to conclude determinism (which implies
quantum mechanics is incomplete). So if, like Conway and Kochen, one as-
sumes locality, this implies determinism. Then, however, we have made all
assumptions of the free will theorem which leads to a contradiction. There-
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fore the free will theorem itself should also be regarded as a nonlocality
proof. The objection then is that even if Conway and Kochen would have
formulated the right conclusion, they would not have presented any new
result.

Another point of criticism concerns Conway and Kochen’s inaccurate
use of relativity theory, locality and the term ‘information’. Tumulka in-
dicates that Conway and Kochen are unclear in their distinction between
locality, no-signaling and what Tumulka calls ”effective locality”, equating
all of these, at different points of their theorem, with the FIN axiom. Fur-
thermore, Bassi and Ghirardi note that for Conway and Kochen information
seems to include everything that can determine the outcome of a measure-
ment. The influences involved in perfect correlations, however, would then
also fall under this category of ‘information’. At the same time, Conway
and Kochen state that “there is a finite upper bound to the speed with
which information can be effectively transmitted” [8, p. 3]. However, as was
discussed in section 3.3, it is not clear why such influences could not travel
faster than the speed of light.

6.3 The strong free will theorem

Conway and Kochen’s 2009 article ‘The Strong Free Will Theorem’ [10] was
in part a response to these criticisms. In this article the authors state that
Bassi and Ghirardi miss the point regarding the FIN axiom. They state that
the FIN axiom was only applied to the choice made by the experimenter
and the response of the spatially separated particle and not to any other
information. By changing the axiom FIN into the MIN axiom they hope to
have made this clear. In doing so they also included the assumption about
free choice implicit in the 2006 article:

3. MIN. The MIN axiom states that, assuming the experiments per-
formed by experimenters A and B are space-like seperated, A and
B can freely choose a measurement direction and the response of re-
spectively particle b and a is independent of this choice.

Again, Conway and Kochen restrict the choice of measurement directions to
the 40 orthogonal triples for experimenter A and the 33 directions of Peres’
configuration for experimenter B. And like before, free choice is “that the
choice an experimenter makes is not a function of the past” [10, p. 228].
The conclusion of the strong free will theorem is that the response of a spin
1 particle to the described experiment is free in the sense that it is not
a function of the past. They specify this definition of freedom as “not a
function of properties of that part of the universe that is earlier than this
response with respect to any given inertial frame” [10, p. 228].

In their 2009 article and in an earlier response from 2007 [9], Conway and
Kochen repeatedly state that the critical responses of Tumulka and Bassi and
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Ghirardi mistook their FIN axiom for Bell’s locality condition. They indicate
that they are aware that Bell’s locality condition was proven to be incorrect
by Bell’s theorem (under the assumption of free choice), but state that their
FIN axiom follows from causality and relativity. They do not anywhere seem
to discuss, though, the importance of the distinction between locality and
no-signalling. Several times they simply state that the influences involved
in twinned entanglement cannot travel faster than the speed of light, since
this would contradict causality. But again, as discussed before, it is not in
any sense clear that this is the case. The experimenters have no influence
whatsoever on the outcome of their measurements and as such no influence
on the outcome of the other experimenter’s measurement. The only influence
is that some specific but random outcome of both measurements becomes
reality.

6.4 Cator and Landsman

To conclude the discussion on the free will theorem, a recent article by Eric
Cator and Klaas Landsman [5] will be treated. The authors discuss the
similarities between the strong free will theorem and Bell’s original theorem
and state that the two theorems arrive at very similar conclusions on the
basis of very similar assumptions. Therefore the authors make mathematical
reformulations of both theories, making an exact comparison possible. Cator
and Landsman’s conclusion is that “the Strong Free Will Theorem uses
fewer assumptions than Bell’s 1964 theorem, as no appeal to probability
theory is made.” Roughly, this also became clear in the previous paragraphs.
Like Bell’s theorem, the strong free will theorem uses a particular state
and assumes locality. However, while Bell’s theorem is based on statistical
correlations, the free strong free will theorem is based on perfect correlations
and therefore does not need probability theory. Cator and Landsman also
indicate one drawback of Conway and Kochen’s theorem: since experiments
confirming Bell’s theorem only make use of spin 1/2 particles, the strong
free will theorem so far lacks experimental confirmation.

Another issue that the authors address is the apparent inconsistency
between assuming a deterministic hidden variable theory and assuming free
choice for the experimenter. The problem is that the hidden variables should
contain all the information relevant to the experiment, but leave the experi-
menters free to choose a measurement direction. To resolve this issue, Cator
and Landsman at first treat the apparatus settings as random variables, in
the line of the discussion in section 6.2. Subsequently, independence assump-
tion are made about the choice for apparatus settings being independent of
the hidden variable. In this way any vague notions about free will are ex-
cluded and and an exact, mathematical comparison can be made of which
the result was described above.
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Chapter 7

Conclusion

From the preceding chapters some conclusions regarding the two aims of
the thesis can be made. The first of these was to evaluate the two most
important hidden variable theorems − the Bell and Kochen-Specker theo-
rems − and the relation between them. On the basis of chapters 3 and 4,
several differences can be distinguished. Bell’s theorem makes use of statis-
tical correlations, needs a particular state for its proof and assumes locality,
which is to say it only assumes noncontextual values if required by locality.
The Kochen-Specker theorem, however, applies to perfect correlations, does
not need a particular state and assumes noncontextuality for all values. So
on the one hand Bell’s theorem makes weaker assumptions for the hidden
variable theory, thereby placing the most restrictive constraints on such a
theory. On the other hand the Kochen-Specker theorem applies to the per-
fect correlations as also found in the original EPR-argument, whereas Bell’s
theorem does not.

As became clear in chapter 5, it is possible to construct a stronger result
combining aspects of both the Bell and Kochen-Specker theorems. The
argument by GHZ and Mermin’s subsequent reformulation apply to perfect
correlations, need a particular state and assume nonlocality, again meaning
they only assume noncontextual values if required by locality. So in this case
a no-hidden variables theory can be developed on the basis of the weaker
assumptions even in the case of perfect correlations. Another advantage
of this argument is that it is significantly easier to convey than the two
original no-go theorems. The only possible downside would be that, like
Bell’s theorem, it needs a particular state for its proof to work. It seems,
however, that this should in the first place be seen as a technical consequence
of the fact that a weaker assumption leaves less degrees of freedom for the
no-hidden variable theorem.

In line with this, it is interesting to compare the number of dimensions
needed for proving the several theorems in the case of perfect correlations. In
the two-dimensional case of the EPR-argument a no-hidden variable theory
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is impossible (actually a classical, local, deterministic model can actually be
developed). In the three-dimensional case of the Kochen-Specker theorem
(represented by the three orthogonal squared spin-components) a no-hidden
variable theory is possible, but rather difficult. In the four-dimensional case
of Mermin’s reformulation of Peres (2 orthogonal spin-components of 2 par-
ticles giving 2∗2 = 4 dimensions) a no-hidden variable theory is conceptually
very easy. And lastly, in the eight-dimensional case of Mermin’s reformula-
tion of GHZ (2 orthogonal spin-components of 3 particles giving 2∗2∗2 = 8
dimensions) the strongest no-hidden variable theory can be developed.

The second aim of this thesis was to evaluate Conway and Kochen’s
(strong) free will theorem. Altogether, both the free will theorem and the
strong free will theorem at least roughly come down to Bell’s theorem. In this
sense the theorem has not so much to do with free will as with nonlocality.
Actually, as became clear from the discussion of the critical responses to
the theorem, Conway and Kochen’s choice for the term ’free will’ does not
seem to improve understanding. Even more importantly, the authors were
unclear in their use of the different forms of locality and therefore arrived at
the wrong conclusion. Crucial to this is the probabilistic nature of quantum
mechanics, due to which the superluminal influences of entanglement cannot
be used to convey information. Therefore there seems to be no contradiction
between relativity theory and the nonlocality of entanglement.

If on the basis of the strong free will theorem the right conclusion −
nonlocality − is formulated, it is however a very interesting result. The free
will theorem uses perfect correlations, a particular state and only assumes
noncontextuality if required by locality. In this way it is similar to the argu-
ment by GHZ and Mermin’s subsequent reformulation. So possibly a more
accurate name for Conway and Kochen’s result is ’the strong nonlocality
theorem’.
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