
Domain-Wall Motion in Materials with

Perpendicular Magnetic Anisotropy

Author
D.M.F. Hartmann

Supervisors
E. van der Bijl1, R.A. Duine1,

R. Lavrijsen2, and H.J.M. Swagten2

1 Institute for Theoretical Physics, Utrecht University
2 Physics of Nanostructures, Eindhoven University of Technology

June 18, 2014

Abstract

This Thesis reports on our theoretical and experimental study of
the motion of magnetic domains in perpendicular magnetic anisotropy
materials. We show that spatial fluctuations of the DMI give rise to a
local in plane magnetic field parallel to the domain wall. Our calcula-
tions on the atomic scale also point out that the sign and magnitude of
the DMI strength is strongly related to the interface structure. This re-
sult motivated our experimental study on interface effects which shows
that the in-plane magnetic field dependence of the domain wall mo-
tion is governed by sample growth parameters. We show that in-plane
field effects enter the creep theory in novel ways. Our work leads
to new insights concerning the Dzyaloshinskii-Moriya-Interaction, in-
plane magnetic fields, creep theory and effects of the conditions under
which the studied samples are grown.
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1 Introduction

In 1965 Gordon Moore stated his famous law about the ever increasing
capacity of computers. More precisely, Moore stated that the amount of
transistors in an integrated circuit doubles every two years [1], resulting in a
higher working speed and larger memory capacity. Today we can look back
and see that the prophecy of Moore has indeed unfolded and shows no sign
of weakening as depicted in figure 1.

Figure 1: Moore’s law in practice. The dots mark the transistor
count for integrated circuits at their date of introduction. The
line indicates a doubling of the transistor count every two years.
Figure taken from [2].

However, Moore’s
law is no law like
others in physics:
We do not stand
from a distance, let
nature do its way
obeying its laws and
observe that indeed
by some force in na-
ture somehow the
computer capacity
keeps on increasing.
We are very much
involved in this law
ourselves, continu-
ously crossing the
borders of what is
known and expand-
ing the horizon of
science and its ap-
plications in soci-
ety. Moore’s law
is not specifically a
law of nature, but one of mankind, and the forces at play are those of desires
to understand and develop. It are also exactly these forces that have led me
to form this Thesis.

Recently a new type of data storage, to carry on the legacy of Moore’s
law, was introduced by Stuart Parkin (IBM). This so called Racetrack Mem-
ory uses the controlled movement of a Domain Wall (DW) in magnetic
nanowires to create a nonvolatile data storage device [3]. In this device the
nanowire is a racetrack and the magnetic domains are the cars or bits - an
up domain corresponds to a 1 and a down domain to a 0 - passing by a
read and write device (illustrated in figure 2), driven by an external field
or current. By bending the nanowire in a u-shape and using an array of
such wires, this type of data storage uses all three dimensions, increasing its
storage density. However, for high performance and reliability, DW motion
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Figure 3: Two chiralities for the DW. The chirality of a DW determines how it is driven
by a current. Figure taken from [4].

needs to be well understood. This is one of the reasons why DW motion
in ultrathin magnetized metals has become an increasingly popular topic of
study.

Figure 2: The Racetrack Mem-
ory. The blue and red areas mark
the different magnetic domains cor-
responding to bits of data. Figure
adapted from [9].

A crucial element for the racetrack mem-
ory to work is that all DWs move in the
same direction when driven by an exter-
nal force. A study of the current driving
mechanism of DWs shows that coherent mo-
tion occurs when all DWs are chiral, i.e.
they turn in the same sense [4, 5, 6, 7].
In figure 3 two types of chiralities are il-
lustrated for a certain type of DW. As dis-
cussed in literature and as we will also show
in this Thesis the Dzyaloshinskii-Moriya-
Interaction (DMI) makes one specific turn-
ing sense energetically favorable above oth-
ers, thereby insuring coherent DW motion
in systems where DMI is present [4, 5, 6, 7].
Understanding the origin of the DMI, its ef-
fect on the motion of DWs and how it can
be tuned and measured is therefore of cru-
cial importance. As shown in literature and
also discussed in this thesis, the DMI acts
as a local in-plane (IP) magnetic field per-
pendicular to the domain wall [4, 5, 6, 7, 8].
So, to measure the DMI and its effect on

DW motion the IP field dependence of the motion of a field driven DW is
studied.

However, the motion of DWs itself is a long studied topic, still in devel-
opment today. In 1998 Lemerle et al. proposed to use the phenomenological
theory of creep to describe the thermally assisted motion of DWs in dis-
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ordered systems with small external driving forces [10]. This creep theory
suggest an exponential dependence of the following form:

ln(v) ∝ − Uc
kBT

(
fc
f

)µ
, (1)

where Uc is an energy scaling, kB the Boltzmann constant, f the driving force
with fc the critical force at which the DW depins at T = 0K and µ the creep
exponent which classifies the universality class and depends on the type of
disorder and dimensionality of the material. In numerous studies equation
1 has been checked and confirmed for simplified cases, i.e. one- or two-
dimensional perpendicular magnetic anisotropy (PMA) systems with only
an out-of-plane (OOP) magnetic field as the driving force [10, 11, 12, 13]. A
good understanding how IP fields and the DMI enter this creep theory may
be used to accurately measure the DMI strength.

In this Thesis the DMI and IP field effects on DW motion are elaborately
studied. Experimental research reported on in this Thesis has led to an
extensive revisit of this creep theory. The experiment was done to gain
insight in how interface properties of the metallic multilayered structures
studied affect the DMI. In this research symmetric samples of the same
size and thickness are grown under different circumstances, resulting in a
variation in the interface roughness. Next, the IP field dependence of the
velocity is determined for each sample as well as other sample properties,
such as the anisotropy and magnetic moment. As will be described in this
Thesis the results are in disagreement with other studies and have led to an
interesting discussion and increased interest in the creep theory.

The remainder of this Thesis is organized as follows. First, the theoret-
ical background of DW dynamics is explained in section 2. Then, based on
the theory and proposed origin of the DMI, in section 3 we study how the
roughness of the interface between the metallic layers of the studied ma-
terial influences the DMI and how a DMI that spatially fluctuates affects
the DW dynamics. Motivated by our experimental research, we discuss in
section 4 an extension of creep theory with respect to IP magnetic field and
DMI. Next, this theory is used to form one- and two-dimensional models
of magnetic domain expansion in section 5. These models will be used to
compare the theory with experimental observations. After the theoretical
work, in section 6 the experiment and its results are described. The results
and theory are compared and interpreted in section 7. This leads to the
discussion, conclusion and lastly, the outlook given in section 8.
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2 Theoretical Background

In this Thesis it is assumed that the reader has basic knowledge about elec-
tromagnetism, quantum mechanics, classical mechanics, statistical physics
and classical field theory. Standard references are [14, 15, 16, 17, 18].

2.1 System Description

The type of system studied in this Thesis is a one-dimensional (1D) or
two-dimensional (2D) system corresponding to a nanowire or surface, re-
spectively, composed of ultrathin metallic layers of which at least one is fer-
romagnetic. The ferromagnetic layer is sandwiched between non-magnetic
layers. The typical thicknesses of these layers are on the order of nanometers
and often the ferromagnetic layer is two to four layers of atoms thick.

In the 1D systems we define our Cartesian coordinate system with the
x-axis along the length of the nanostrip and the z-axis perpendicular to the
plane of the layers. For the 2D systems we define the Cartesian x-y plane to
be parallel to the plane of the layers and the x-axis parallel to the applied
IP magnetic field. In figure 4 the systems that are studied are illustrated
schematically.

(a) The thin nanowire

(b) The wide nanowire (c) The 2D system

Figure 4: The studied systems. The vector markings indicate the direction of the magne-
tization in the ferromagnetic layer.

2.1.1 Perpendicular Magnetic Anisotropy

The materials used give the system a perpendicular magnetic anisotropy
(PMA), i.e. the magnetic moment of the ferromagnetic layer is always
pointing in a direction perpendicular to the plane of nanowire or surface
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(except locally at the position of the DW as we see in figure 7). The PMA
in the ferromagnetic ultrathin layer arises due to hybridization processes be-
tween the electron shells of the ferromagnetic and nonmagnetic layers. This
effect is called magnetocrystalline anisotropy and occurs on the interface, so
by making ultrathin layers the interface effects, i.e. the magnetocrystalline
anisotropy, dominate over bulk effects, i.e. shape anisotropy, as illustrated
in figure 5. For more details on this process we refer to [19, 20].

Figure 5: When the ferromagnetic layers are thin enough, interface effects become more
important than bulk effects. SO magnetocrystalline anisotropy then dominates over shape
anisotropy. Figure taken from [20].

In our studied systems and choice of coordinates, the z-axis becomes a
magnetic easy axis and the IP axes become hard axes. In section 2.2.1 the
energy cost of spin orientation along the easy or hard plane is worked out
for the entire system.

2.1.2 Material

For the ferromagnetic layer Cobalt (Co) is often used. The method of creat-
ing the samples is by sputtering which is further described in section 6.1.1.
For this method the use of Cobalt as the ferromagnetic layer is convenient,
since its materialistic properties are such that it attaches well to the antifer-
romagnetic underlayer due to epitaxial matching of the lattice structures.

The nonmagnetic layers are mostly formed with Platinum (Pt), and
sometimes other heavy metals with the 5d electron shell occupied. Platinum
atoms have a high spin-orbit coupling which turns out to be an essential
ingredient for the DMI. The Platinum also exhibits a strong hybridization
with the Cobalt, resulting in a large PMA.

8



Figure 6: Typical sample
Ta(4)\Pt(4)\Co(0.6)\Pt(4)

In some experiments Iridium (Ir) is used to
form a layer on top of the ferromagnetic layer. It
turns out that the Iridium layer reverses the sign
of the DMI for the sample [21], however it is not
yet understood why this effect occurs. In section
3.3 the effect of this extra layer will be discussed
and a possible explanation is given.

The metallic layers are grown on a substrate,
consisting of 500µ m Silicon Si, with approxi-
mately 100nm silicon dioxide (SiO2) on top. The
theoretical work of this Thesis applies to a broader
range of structures and different types of metals,
although the above mentioned materials are the
ones used in the experimental work of this Thesis.
In figure 6 a typical sample is illustrated schematically.

2.2 Domain Walls

Because of the PMA, the spins in the ferromagnetic layer are either pointing
up or down. At nonzero temperature it is possible have multiple domains
in the ferromagnetic layer with a different orientation perpendicular to the
plane of the layers. Between two such domains there is a domain wall where
the orientation of the spins rotates continuously between the different do-
main orientations over a finite length, the DW width, from here on denoted
as λ.

From literature we know and in this Thesis we also demonstrate that
how the spin orientation flips in a DW is crucial information for driving the
DW and can be determined by the properties of the sample, such as the
anisotropy or the DMI, and external factors, such as a magnetic field [4, 5,
6, 7, 22]. Let us denote the magnetization direction in the ferromagnetic
layer by a unit vector,

~Ω =

 cos(φ) sin(θ)
sin(φ) sin(θ)

cos(θ)
,

 (2)

where φ is the azimuthal angle, and θ the polar angle.
To describe whether a DW goes from an up domain to a down domain,

or the other way around, as the x-coordinate increases we define the domain
wall charge Q of the DW,

Q =

{
+1, if limx→±∞Ωz = ∓1
−1, if limx→±∞Ωz = ±1

. (3)

So at a DW the polar angle θ rotates from 0 to π if Q = 1 or from π to 0 if
Q = −1. In section 2.2.2 the profile of θ is calculated for a simple system. It
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is the azimuthal angle φ that determines properties relevant for the driving
of a DW.

In literature a distinction is often made between two types of DWs. The
Néel wall has it’s magnetic orientation always in the x-z plane (where the
x-axis is now chosen to be perpendicular to the DW), so either φ = 0 or
φ = π corresponding to a clockwise or counterclockwise sense of rotation re-
spectively. For the Bloch wall the azimuthal angle is either φ = π

2 or φ = 3π
2 ,

meaning that if the x-coordinate increased the magnetization start pointing
out of the x-z plane to flip its orientation. In figure 7 the two different types
are illustrated. Note that these two types of DWs are extremes; the value of
φ can (and often will) lie somewhere in between these purely Bloch or Néel
states.

(a) The Néel wall (b) The Bloch wall

Figure 7: Two types of DWs. Figure adapted from [23]

2.2.1 Energy Density

To study a DW a convenient starting point is the energy of the system. In
the most simple case there are three effects at play that contribute to the
energy density. Namely, the exchange interaction, the anisotropy and the
external magnetic field.

The exchange interaction actually gives rise to ferromagnetism and orig-
inates from the Pauli exclusion principle and Coulomb repulsion between
two neighboring spins. It is energetically favorable for the two spins to align.
A misalignment of neighbors gives an energy contribution proportional to
~Ω(~x) · ~Ω(~x + ~a), where ~a the vector connecting two neighbors. To find the
total energy one needs to sum over all particles and their neighbors. In the
continuum limit the sum becomes an integral over space and the difference
in magnetization for a spin with its neighbors becomes a spatial derivative.
Given the spin exchange energy Js and the lattice spacing a we find the
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exchange energy to be

Eexchange[~Ω] =

∫
d~x

a3

Js
2

(∇~Ω(~x))2. (4)

where Js is the spin exchange stiffness with dimensions Jm2. Here, ∇~Ω
is to be interpreted as the ∇ operator working on the components of ~Ω.
The factor 1

2 compensates for the doublecounting of neighbors. By partial
integration we obtain the more commonly found expression

Eexchange[~Ω] =

∫
d~x

a3

(
−Js

2
(~Ω(~x) · ∇2~Ω(~x))

)
. (5)

As mentioned in section 2.1.1 there is an energy cost or gain when a spin
aligns itself along a hard or easy axis respectively. To lowest order in ~Ω this
is described by ±Ki

2 Ωi(~x)2 where i = x, y, z and Ki > 0 is the anisotropy
energy constant with dimension J. The factor 1

2 is mainly a convention by
the choice of Ki. If i is an easy axis the energy term becomes negative(−)
and positive(+) when i is a hard axis. Again, by taking the summation over
all particles we find in the continuum limit

Eanisotropy[~Ω] =

∫
d~x

a3

(
Kx

2
Ωx(~x)2 +

Ky

2
Ωy(~x)2 − Kz

2
Ωz(~x)2

)
(6)

The energy contribution of the external magnetic field ~B is the Zeeman
energy, given by

Eexternal[~Ω] =

∫
d~x

a3
(−µB~Ω(~x) · ~B), (7)

where µB = 9.27400915(23) · 10−24JT−1 is the Bohr magneton.

Assuming for simplicity no external magnetic field, from these three
contributions we find the energy density in terms of θ and φ by filling in
the definition given in equation 2 of the magnetization in terms of spherical
coordinates

E [θ,∇θ, φ,∇φ] =
Js
2

((∇θ)2 + sin2(θ)(∇φ)2)

+
Kx

2
cos2(φ) sin2(θ) +

Ky

2
sin2(φ) sin2(θ)− Kz

2
cos2(θ),

(8)

such that

E[θ, φ] =

∫
d~x E [θ,∇θ, φ,∇φ]. (9)
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2.2.2 Shape

From the requirement that systems in equilibrium obey the Euler-Lagrange
equations we use the derived energy density in equation 8 to find equations
for the fields θ(~x, t) and φ(~x, t). For simplicity we consider the 1D system as
in figure 4a with only two domains and one DW. We assume φ to be constant
and for wires we have that Kx � Ky from shape anisotropy. Thus φ equals
0 or π, i.e. the DW is of the Néel type. The Euler-Lagrange equations then
give

∂E
∂θ

= ∇ ∂E
∂(∇θ)

; (10)

⇒ −Kz

2

∂ cos2(θ)

∂θ
= Js∇2θ. (11)

For this system, derivatives with respect to the y and z coordinate can be
neglected, so∇θ = ∂θ

∂x . Now if we multiply equation 11 with ∂θ
∂x and integrate

over x, we find:

−Kz

Js
cos2(θ) + C = (

∂θ

∂x
)2, (12)

with C and integration constant. As we send x→ −∞ we know that dθ
dx → 0

and cos(θ(x)) → Q. So we find C = Kz
Js

. Using the goniometric identity

sin2 a+ cos2 a = 1 and taking the square root we find:

Q
∂θ

∂x
=

√
Kz

Js
sin(θ). (13)

Now we can separate variables. A primitive of the function 1
sin(θ) is ln(tan( θ2)).

To find the integration constant we define the DW position rDW as such that
θ(x = rDW ) = π/2. And so we find:

ln (tan(θ/2)) =
Q

λ
(x− rDW ), (14)

with λ =
√

Kz
Js

a typical length scale for the DW width. Here we can

clearly see how properties of the material influence the DW width λ, i.e.
the exchange interaction tries to keep λ small, whilst the anisotropy favors
larger values of λ. The above equation we can rewrite to:

θ(x) = 2 arctan(e
Q
λ

(x−rDW )), (15)

We now have an expression for the form of the magnetization in a static
situation. To account for arbitrary azimuthal angles φ and study the time
dependence we make the DW position and the azimuthal angle dependent
on time. So we get te system:

θ(x, t) = 2 arctan(e
Q
λ

(x−rDW (t))); (16)

φ(x, t) = φ0(t). (17)
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Throughout this Thesis we make the ansatz that θ and φ will remain of this
form when the DW is moving.

2.3 Dzyaloshinskii-Moriya-Interaction

A fourth important contribution to the energy of the system comes from
the DMI which was proposed around 1959 by Dzyaloshinskii and Moriya
[24, 25]. The DMI is a main theme in this Thesis because its theory is still
in development. In 1980 Fert suggested that several experimental results
can be explained by the DMI as an effect between two spin particles and a
spin-orbit coupling atom in a system with Structural Inversion Asymmetry
(SIA) [26]. Understanding the origin and effects of the DMI is still a popular
topic of research [8, 27].

Figure 8: Model of two
spin particles(SA and
SB) interacting with a
high spin-orbit atom via
the DMI.

Suppose we have two spin particles ~SA and ~SB
close to a surface of a bulk material with high spin-
orbit coupling. Now there is a closest atom in the
bulk material. Denote the vectors from this atom to
the spin particles as ~rA and ~rB. The situation is illus-
trated in figure 8. The DMI strength is proportional
to these vectors [26],

EDMI ∝
r̂A · r̂B

|~rA||~rB||~rAB|
(r̂A × r̂B) · (ŜA × ŜB). (18)

This characterization of the DMI we use in this The-
sis. Note that depending on the mechanism of de-
scribing magnetism, other characterizations are possible, for example in
terms of Berry phase theory [27].

2.3.1 Estimate of Magnitude

Experimental research shows that for Spin-Hall-Torque (SHT) driven DW’s
there can be an offset in the DW speed with respect to the external longitudi-
nal magnetic field [3, 4, 7, 12]. The DMI is used to explain this phenomenon,
because in the equations of motion the DMI term, like the external longitu-
dinal magnetic field term, appears in front of the cosine as will be discussed
in section 2.3.2.

However, this explanation is only valid if the DMI strength is of the same
order as the other terms in the equations of motion. The strength of the
DMI is estimated according to this offset in the magnetic field. But by using
the following relation for the atomic model we can calculate the real DMI
strength [26], using

EDMI = −V1
sin(kF (|~rA|+ |~rB|+ |~rAB|) + π

10Zd)(r̂A · r̂B)

|~rA||~rB||~rAB|
(r̂A×r̂B)·(ŜA×ŜB),

(19)
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with

V1 = −135π

32

λdJ
2
s

E2
Fk

3
F

sin(
π

10
Zd). (20)

Here, the vectors are displayed in figure 8. We consider a Platinum atom for
the high spin-orbit coupling atom for this material is often used in experi-
ments. In equation 20, λd is the spin-orbit coupling constant for a d-electron.
For platinum we have λd ≈ 0.5eV ≈ 8× 10−20J. Furthermore, Js is the ex-
change interaction energy term. A typical value is Js ≈ 4 × 10−21J. The
term EF is the Fermi energy; EF = h̄2

2me
k2
F ≈ 9.3 × 10−20J for platinum.

The Fermi wavenumber is kF ; kF =
3
√

3π2n with n the number of free elec-
trons per unit volume. For platinum we have kF ≈ 3.9 × 109m−1. Finally,
Zd is the number of electrons in the d-subshell. For platinum there are five.

We also approximate the length of the vectors |~rA| ≈ |~rB| ≈ |~rAB| ≈
5× 10−10m and that the angle ϕ between ~rA and ~rB equals ϕ = π

3 rad. We
fill in these values, in equations 20 and 19 to find:

V1 ≈ 6× 10−51m3J, (21)

So now we state that the energy contribution is

EDMI = ~ADMI · (ŜA × ŜB), (22)

where | ~ADMI | = |ADMI ŷ| = ADMI ≈ 10−23J . Later on we will compare
this value with experiments where a DMI strength is found by fitting to the
data. To do this, we first determine how this DMI strength ADMI we found
enters the energy density.

2.3.2 Contribution to Energy Density

To extend this result on the atomic scale to a length scale over the entire
material we transform ŜA to a more general spin at position x, namely
~Ω(x) the magnetization unitvector. Then we approximate the spin of the

neighboring spin particle (ŜB) in terms of ~Ω(x): ŜB ≈ ~Ω(x) +a∂
~Ω(x)
∂x , where

a ≈ 5× 10−10m is the distance between two particles. We now have

EDMI = ADMI

∑
i

(
ŷ · (~Ω(xi)× ~Ω(xi+1))

)
= ADMI

∑
i

(
ŷ · (~Ω(xi)× (~Ω(xi) + a

∂~Ω

∂x
|x=xi))

)

= ADMIa
∑
i

(
ŷ · (~Ω(xi)× (

∂~Ω

∂x
|x=xi))

)
. (23)

Once again, we take the continuum limit, transforming the summation over
lattice positions to an integral over dx

a . We then obtain the DMI energy:

EDMI = ADMI

∫
dx

a
(ŷ · (~Ω(x)× ∂~Ω

∂x
). (24)
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For neighboring particles along the y direction we find a similar expression
via the same method. So the total DMI energy contribution becomes

EDMI = ADMI

∫
d~x

a3
(ŷ · (~Ω× ∂~Ω

∂x
− x̂ · (~Ω× ∂~Ω

∂y
). (25)

There is no contribution in the z direction, because the interface is in the
x-y plane, so from integrating over the z coordinate, we only obtain a factor
of order a.

The order of magnitude of the ADMI term is approximated as |ADMI | ≈
10−23J. When experimental data is fitted to a model with DMI [4], one finds
that de DMI constant is of the order 10−24 ∼ 10−23/−24J, which is of the
same order as our found value for ADMI . This shows that the DMI effect
of the form as suggested by Fert [26] could be of relevance in studying the
motion of a DW.

Equation 25 already is of the from of an integral of an energy density
over space. For completeness we denote here the total energy density in
terms of the spherical coordinates θ and φ.

E =
Js
2

(∇θ)2 +
Kx

2
cos2(φ) sin2(θ) +

Ky

2
sin2(φ) sin2(θ)

− Kz

2
cos2(θ) +ADMI

(
cos(φ)

∂θ

∂x
+ sin(φ)

∂θ

∂y

)
.

(26)

We will use this energy density throughout this Thesis.

2.3.3 Long Range Effect

Figure 9: Model of two
spin particles interact-
ing with high spin-orbit
atoms via the DMI.

To estimate the effect of atoms in the second layer of
the high spin-orbit coupling material we will express
the effect ε2 of one atom in the second layer in terms
of the effect ε1 of the above atom in the first layer.
The ratio η = ε2

ε1
will tell us the relevance of atoms

in the second layer. The model studied is illustrated
in figure 9.

We express the vectors ~rA,2 and ~rB,2 in terms of
~ξ, ~rA,1 and ~rB,1

~rA,2 = ~rA,1 + ~ξ; (27)

~rB,2 = ~rB,1 + ~ξ. (28)

Note that the difference vector ~rAB is the same for the vectors from the
atoms. We now make some assumptions to simplify the model and make a
well-founded estimate:
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• There is symmetry in the y, z-plane, so the x-component of ~rA,1 is
equal to minus the x-component of ~rB,1. Also this gives ξ equals λ
times the z-component of ~rA,1 or ~rB,1.

• The four particles all lie in the x, z-plane, so the y-components of ξ,
~rA,1 and ~rB,1 are zero and thus ~rB,1,x = −~rA,1,x = ~rB,1,z tan(ϕ)

Using equation 18, some goniometrics and the linearity of the dot- and
crossproduct we find an expression for η in terms of λ and ϕ

η =
(1 + λ) sec6(ϕ)(−(1 + λ)2 + tan2(ϕ)

(tan2(ϕ)− 1)((1 + λ)2 + tan2(ϕ))3
(29)

In figure 10 the dependence of η on λ and ϕ is shown. Atoms in the second
layer contribute significantly to the DMI because for λ ≈ 1 and π

16 ≤ η ≤
π
5

we find η ≈ 0.25. This implies that effects of the lower layers contribute
significantly to the DMI energy. As we can see from equation 29 the energy
is inversely related to the distance squared.



(a)





(b)

Figure 10: Graphs of the ratio η = ε2
ε1

. a: η is plotted as a function of ϕ for λ = 1 (Blue),
λ = 2 (Red) and λ = 3 (Green). b: η is plotted as a function of λ for ϕ = π/6 (Blue),
ϕ = π/7 (Red) and ϕ = π/8 (Green).

2.4 Domain-Wall Motion

Now that we have an expression for the energy density and the fields θ(x, t)
and φ0(t) we can study the dynamics of the system. Ultimately, we are
interested in finding an equation for the DW velocity, denoted by ṙDW .
Here, we work out three ways to obtain equations of motion for the DW.
The first method makes use of the Landau-Lifschitz-Gilbert (LLG) equation
directly, which describes the time evolution of the magnetization function.
In the second method the equations of motion are obtained by varying the
corresponding action of the system. This method is in fact equivalent to
working out the LLG equation. The third is quite a different approach and
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uses the phenomenological theory of creep to calculate the DW speed, as
suggested by Lemerle [10].

By combining the previous subsections we obtain an expression for the
energy density which includes the DMI

E [Ω,∇Ω] =
Js
2

(∇~Ω(~x))2

+

(
Kx

2
Ωx(~x)2 +

Ky

2
Ωy(~x)2 − Kz

2
Ωz(~x)2

)
− g~Ω · ~B +ADMI(ŷ · (~Ω×

∂~Ω

∂x
+ x̂ · (~Ω× ∂~Ω

∂y
),

(30)

or, in terms of θ and φ we obtain equation 26. We shall use these specific
energy densities to determine the equations of motion.

2.4.1 Landau-Lifschitz-Gilbert Equation

The time evolution of the magnetization is successfully described by the
LLG equation [28]. The equation is given by

∂~Ω

∂t
+ ~vs · ∇~Ω = ~Ω× ~Heff − αG~Ω×

(
∂~Ω

∂t
+

β

αG
~vs · ∇~Ω

)
, (31)

where vs is the injected spin current proportional to the current density, αG
is the Gilbert damping constant, β is a dimensionless parameter accounting
for the dissipative spin-transfer-torque (STT) and ~Heff = −δE/h̄δ~Ω is the
effective field determined by the functional derivative of the energy E of
the system. From the energy density given by equation 30 we can calculate
~Heff . It is given by

−h̄ ~Heff =
δE[~Ω]

δ~Ω
= −Js~∇2~Ω +Kx

~Ωx +Ky
~Ωy −Kz

~Ωz − g ~H

+ 2ADMI(x̂× ∂y~Ω− ŷ × ∂x~Ω)

(32)

We assume that the DW is straight and perpendicular to the long axis
of the wire, so we study a system as in figure 4a. Next, we insert the
functional derivative back in the LLG equation 31 and project the result
on the variables rDW and φ0 using equations 16 and 17, and taking the
inner product with ∂~Ω/∂rDW and ∂~Ω/∂φ0 respectively. By integrating over
the spatial coordinates we then obtain a system of two coupled differential
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equations for rDW and φ0, given by

h̄

λ
(1 + α2

G)
∂rDW
∂t

=
vs
λ
h̄(1 + αGβ) +QgαGBz +

Q

2
(Kx −Ky) sin(2φ0)

+Q
π

2
gBy cos(φ0) +

π

2
(
ADMI

λ
−QgBx) sin(φ0);

(33)

h̄(1 + α2
G)
∂φ0

∂t
= Q

vs
λ
h̄(αG − β)− gBz +

αG
2

(Kx −Ky) sin(2φ0)

+
π

2
αGgBy cos(φ0) +

π

2
αG(Q

ADMI

λ
− gBx) sin(φ0).

(34)

From 33 we see the velocity is determined by the OOP magnetic field Bz
and the applied current vs, as expected, but also by the IP fields and the
DMI. In this light, the DMI can be accounted for as an effective IP field
HDMI = ADMI/gλ at the position of the DW always pointing perpendicular
to the DW, i.e. in the x-direction. The time evolution of φ0 is described by
equation 34 which, unfortunately, cannot be solved analytically. However,
this equation does give insight in the behavior of the DW; because we expect
azimuthal magnetization angle φ0 to stabilize in physical systems, ∂φ0/∂t
will be equal to zero and therefore we see that in systems with a high DMI
the DW will be of the Néel type, whilst a large anisotropy constant Kx

favors the Bloch DW type.

Now, by considering only an external OOP magnetic field or only a spin
current we can see how the DW is driven by these forces. In the case where
also ADMI = 0 there is an analytical solution, given by

dx

dτ
= Q

Bz
Bc

+
vsβ

vcαG
+

1

1 + α2
G

√
(
Bz
Bc

+
vs
vc

β − αG
αG

)2 − 1, (35)

where we defined the rescaled time τ =
(Kx−Ky)t

2h̄ and DW position x = rDW
λ ,

the critical magnetic field Bc =
αG(Kx−Ky)

2g and current vc =
λ(Kx−Ky)

2h̄ . The
physical solution is given by the real part of the solution. The results are
plotted in figure 11. An important feature we see in the plots is the so called
Walker-Breakdown point; beyond a certain strength of the driving force, the
velocity drops when the force is increased. This occurs due to the fact that
the azimuthal DW angle φ0 cannot stabilize as follows from equation 34,
meaning that φ0 starts precessing, resulting in an oscillatory motion and a
less efficient driving of the DW.

When we introduce the DMI in the equations of motion, the system no
longer has an analytical solution. The numerical results are plotted in figure
12. The plots clearly show an effect of the DMI on the Walker-Breakdown
point. With the method of numerical solving we can also account for IP
magnetic fields. Later on in this Thesis we will study the dynamics of the
system in more detail using this numerical method.
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(a) (b)

Figure 11: Plots of the DW velocity as a function of the scaled magnetic field and current
showing the Walker-Breakdown phenomena. (a) OOP magnetic field dependence of DW
velocity for αG = 0.1 (blue), αG = 0.5 (purple) and αG = 0.9 (brown). (b) Spin current
dependence of DW velocity for αG = 0.5 and β = 0.1 (blue), β = 0.5 (purple) and β = 0.9
(brown).

(a) (b)

Figure 12: Plots of the DW velocity with ADMI = Ac = λ(Kx −Ky)/π. The red dashed
lines correspond to the solutions with ADMI = 0 as in figure 11. (a) OOP magnetic field
dependence of DW velocity for αG = 0.5. (b) Spin current dependence of DW velocity for
αG = 0.5 and β = 0.1 (blue), β = 0.5 (purple) and β = 0.9 (brown).

2.4.2 Variation of the Action

A well known method of deriving equations of motion is by use of the Hamil-
ton Formalism. It states that the action is minimized in a system in equilib-
rium. From this principle the Euler-Lagrange equations are derived which
have also been used in a simpler form in section 2.2.2. We can obtain an
effective action from the energy of equations 8 and 9. If we fill in the as-
sumption for θ and φ from equations 16 and 17, and integrate over space,
again for a system as in figure 4a, we find an action in terms of rdw and φ0.
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We leave out constant constant terms, to find the following action [28]

A(rdw, φ0) =

∫
dt
λ

a3

(
−h̄(

rDW
λ

φ̇0 +
vs
λ
φ0)− Kx

2
cos2(φ0)

− Ky

2
sin2(φ0) + gQBz

rdw
λ

+
π

2
(QgBx −

ADMI

λ
) cos(φ0) +Q

π

2
gBy sin(φ0)

)
.

(36)

We can obtain equations of motion by varying this action. However, dis-
sipation is not included in these equations. To account for damping, we
introduce the dissipation functional:

R(Ω) = h̄αG

∫
dt

∫
dx

a3

(
(
∂

∂t
+

β

αG
~vs · ∇)Ω

)2

=
h̄αG
a3

∫
dt

(
1

λ2
(
β

αG
vs − ˙rdw)2 + φ̇0

2
)
. (37)

The equations of motion are found by solving

δA(Ω)

δΩ
=
δR(Ω)

δΩ̇
, (38)

which gives

δA(Ω)

δrdw
=
δR(Ω)

δ ˙rdw
; (39)

δA(Ω)

δφ0
=
δR(Ω)

δφ̇0

, (40)

by use of which we find

φ̇0 + αG
˙rdw
λ

=
βvs
λ

+
QgBz
h̄

; (41)

˙rdw
λ
− αGφ̇0 =

vs
λ

+Q
Kx −Ky

2h̄
sin(2φ)

+
π

2h̄

(
(
ADMI

λ
−QgBx) sin(φ0) +QgBy cos(φ0)

)
. (42)

This is a system of two equations which is equivalent to equations 33 and
34.

2.4.3 Creep Theory

To study the motion of domains in systems with disorder and at a finite
temperature the theory of creep can be used. The creep theory is valid
for DW driving forces f � fc, the so-called creep-regime, where fc is the
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critical driving force at which the DW starts moving at T = 0K. When
f � fc, the so-called flow-regime, the DWs move as if there is no disorder
and the velocity depends linearly on f . When f approaches fc the DW
motion enters the depinning-regime, where the dependence on f of the DW
velocity changes continuously from exponential to linear. The regimes are
illustrated in figure 13. It is interesting to point out that creep theory applies
to a broader range of systems than just the motion of magnetic domains.
Also the expansion of a water droplet on paper or cracks in a solid medium
are well described by this theory [10, 29].

Figure 13: Driving force f dependence of the DW velocity in the creep-, depinning- and
flow-regime. The dashed lines indicate exponential and linear behavior. The dotted lines
arre the boundaries of the regimes. Figure adapted from [29].

The theory of creep is mostly useful for studying motion under an ap-
plied external magnetic field as a driving force [10]. Expansions of magnetic
domains in 2D, as in figure 4c will be studied in this Thesis with the use of
the theory of creep.

Figure 14: Due to disorder the
energy landscape for the DW has
hills. By thermal fluctuations the
DW can hop over these hills. Fig-
ure taken from [30].

As mentioned in the introduction, in the
creep regime the velocity of the DW de-
pends via an exponential relation on the
driving force described by equation 1. This
follows from the well known Arrhenius law
as we will show here. The theory of creep
is based on DW motion through some po-
tential energy landscape by thermal fluctu-
ations. The argument of the exponential
function is given by the the minimized free
energy change ∆Fmin, divided by the ther-
mal energy kBT . This free energy is mini-
mized over the length L of a DW segment
that hops a distance u over the potential
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landscape by a thermal fluctuation as shown in figure 14.
So, to obtain an expression for the DW motion using creep theory, we

need to determine ∆F and minimize it. To determine ∆F we need to
ask ourselves the question what changes energetically if a DW segment of
length L hops over a distance u. One important effect is that the DW
stretches and bends, giving a local increase in DW length. The energy
corresponding to this change in length is εDW δl where εDW is the energy
per unit length of the DW and δl is the increase in DW length. To calculate
the contribution, assume u� L and make the second order approximation
δl = 2(

√
u2 + L2 − L) ≈ u2/L.

The other effect is that the area of the domain increases which means
that more spins align with the applied external magnetic field (that is, when
sign(u) = sign(QBz)), lowering the Zeeman energy by a factor−2Hzµ0MstδA
where µ0 is the magnetic permeability, Ms the saturation magnetization, t
the thickness of the ferromagnetic layer and δA = Lu the increase in area.

Combining the two contributions, we find the free energy

∆F = εDW
u2

L
− 2Mstµ0HLu. (43)

Now, u is a function of L, with the proportionality u ∝ uc( LLc )ζ [31]. In this

proportionality uc is the roughness of the DW segment, Lc = (ε2DW ξ
2/∆V )1/3,

ζ is the wandering exponent and ξ is the correlation length of the disorder
potential V with strength ∆V . Using this proportionality, we set the deriva-
tive of the above free energy with respect to L to zero, to find the value of
L for which the free energy is minimal. To solution is given by

L = Lc

(
εDWuc

2Mstµ0BzL2
c

2ζ − 1

ζ + 1

) 1
2−ζ

. (44)

Plugging this back in equation 43 we obtain the minimized free energy dif-
ference

∆Fmin = ε
1−µ
3

DWu
2+µ
c ξ−

2+4µ
3 ∆V

1+2µ
3

2ζ

1 + ζ

(
2ζ − 1

2(ζ + 1)

)µ
(Mstµ0Bz)

−µ, (45)

with µ = (2ζ − 1)/(2− ζ).
Now the Arrhenius law states that the rate khop of a hopping event

is proportional to the Boltzmann weight of the minimized free energy dif-
ference, khop ∝ exp(−∆Fmin/kBT ). The hopping rate times the hopping
distance gives us the DW speed, so also the DW speed is proportional to
this exponent. Now, by defining the energy constant Uc = (µuc/2(µ +
1)ξ)µεDWu

2
c/(1+µ)Lc and the critical magnetic field Bc = εDW ξ/MstL

2
c we

obtain the final expression for the DW speed:

ṙDW = v0 exp

(
−Uc
kBT

(
Bc
Bz

)µ)
, (46)
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with v0 some proportionality constant. The result corresponds to the liter-
ature [31, 32].

Since the theory of creep is well applicable to DWs driven by magnetic
fields, this theory will also be used in this Thesis to study the effect of IP
magnetic fields and the DMI on the DW motion. It will be studied which
terms in this theory are dependent on the IP magnetic field in order to
understand experimental results.
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3 Fluctuating Dzyaloshinskii-Moriya-Interaction

Most models of DW motion which include the DMI assume that the ef-
fect of the DMI is constant throughout the material. However, the DMI is
caused by an interaction between spins and atoms with a large spin-orbit
coupling [26] as explained in section 2.3, so the DMI certainly fluctuates at
an atomic length scale. Furthermore, in experimental research no perfect
epitaxial interfaces between the ferromagnetic and nonferromagnetic layer
can be created, which may cause the DMI to fluctuate on an even larger
length scale. As is shown in figure 15 the interfaces are not even well de-
fined.

Pt

Pt

Co68B32

SiO2

Protecting Layer

Figure 15: This high resolution transmission electron microscopy image of a
Pt(4nm)\Co68B32(0.6nm)\Pt(6nm) trilayer, formed by sputter deposition, shows that
the interface between layers is far from perfect.

If the lengthscale of these DMI fluctuations becomes of the same order
as the DW width λ there might be an effect of these fluctuations in the
equations of motion. In this section it is studied what the effects are of
these fluctuations on different length scales and if these effect are relevant
in the study of DW motion. First, we will estimate the order of magnitude
of the DMI fluctuations by studying different interface profiles. Next, we
determine the equations of motion with a variable DMI using the method
described in section 2.4.2. These equations will give insight in how the DMI
fluctuations affect the DW motion. We will then calculate the DMI energy
for different interface profiles to determine the averaged effective DMI for
the system. This analysis will be used as a possible explanation for certain
experiments.
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3.1 Estimate of Magnitude

Figure 16: Perfect
model of the interface
between two layers

To estimate the effect on the DMI strength of imper-
fections in the PMA material, we study three models of
what the interface might look like on an atomic scale.
These models are illustrated in figure 17. For these three
models the total energy due to DMI will be calculated
involving only nearest neighbors of the heavy atoms with
strong spin-orbit coupling.

We know the effect of second layer interactions from
the calculations in section 2.3.3, so this approximation
will be rough and an extension to including more interactions than just those
of the nearest neighbors might be necessary. The energy of each model will
be compared to the energy of a perfect interface as in figure 16.

Model 1 Model 2 Model 3

Figure 17: More realistic models of the interface between two layers of the PMA material.
These models will be studied in order to estimate the size of fluctuations in the DMI.

For simplicity we first assume that the magnetization direction changes
by an equal amount when we move an atomic distance along the x-direction,
that is ∂x~Ω is constant. This gives that the crossproduct between two hori-
zontally neighboring spins has a constant value, independent of the position
in the model. And the crossproduct between two vertically neighboring spins
is zero, because they are pointing in the same direction. In figure 18 the
possible configurations of a spin-orbit coupled atom and two spin particles
are illustrated with their associated energy.

If we include boundaries, the total energy due to DMI in the perfect
model, as in figure 16, equals 8ε. Simple counting of the possible configura-
tions and energies gives us the energies in table ?? for the three models as
in figure 17.

Model 1 2 3

Energy 2ε 2ε 3ε

Table 1: Energies of the models. ??
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Figure 18: Energy contribution due to the DMI caused by an interaction between de
spin particle marked with the green line and one of the neighbors with the central heavy
spin-obit coupling atom in the centre.

This tells us that on a length scale of 4 times the distance between atoms,
the DMI energy can fluctuate with an amplitude of 63 ∼ 75% of the average
DMI energy for these models.

The imperfections in the surfaces studied here are still quite modest, the
sputtering technique is not as will become more clear in section 6. Inter-
mixing of Pt atoms in the Co layer can certainly occur and the interface
roughness can be much higher. As we will show in section 3.3 there can
even be certain types of surfaces that give rise a DMI energy of opposite
sign. Here we have shown that the DMI can certainly fluctuate on larger
lengthscales, so before studying more interfaceprofiles we first study how a
nonconstant DMI enters the equations of motion for DWs.
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3.2 Effect on Equation of Domain-Wall Motion

Let us redo the variation of the action to obtain equations of motion as in
section 2.4.2, but now taking de DMI strength to be a function of position
x, so ADMI = ADMI(x). The action remains the same as in equation 36,
however, when we now integrate over space we also have to include the
position dependence of ADMI . So if we introduce the variable DMI by

DDMI(rdw) ≡
∫ ∞
−∞

ADMI(x)
∂θ(x, rdw)

∂x
dx, (47)

we obtain an effective action of the same form as 36 with DDMI instead of
ADMIπ:

A(rdw, φ0) =

∫
dt
λ

a3

(
−h̄(

rDW
λ

φ̇0 +
vs
λ
φ0)− Kx

2
cos2(φ0)

− Ky

2
sin2(φ0) + gQBz

rdw
λ

+
π

2
QgBx cos(φ0) +Q

π

2
gBy sin(φ0)− DDMI

2λ
cos(φ0)

)
.

(48)

Note that if we set ADMI(x) = ADMI,0, then, by using the boundary con-
ditions of θ, we get that DDMI = QπADMI,0. Which is in agreement with
the calculations for constant DMI as in equation 36.

We now get an extra term when calculating the functional derivative
δA

δrDW
. Again, by setting the functional derivatives equal to the functional

derivatives of the dissipation functional as in equation 37 we obtain the
following system of equations:

φ̇0 + αG
˙rdw
λ

=
βvs
λ

+
QgBz
h̄
− λ

h̄

∂DDMI

∂rdw
cos(φ0); (49)

˙rdw
λ
− αGφ̇0 =

vs
λ

+Q
Kx −Ky

2h̄
sin(2φ)

+
1

2h̄

(
(
DDMI

λ
−QπgBx) sin(φ0) +QπgBy cos(φ0)

)
, (50)

which can be rewritten as

h̄

λ
(1 + α2

G)
∂rDW
∂t

=
vs
λ
h̄(1 + αGβ) +QgαGBz +

Q

2
(Kx −Ky) sin(2φ0)

+ (
π

2
QgBy +

αG
2

∂DDMI

∂rdw
) cos(φ0) + (

DDMI

2λ
−Qπ

2
gBx) sin(φ0);

(51)

h̄(1 + α2
G)
∂φ0

∂t
= Q

vs
λ
h̄(αG − β)− gBz +

αG
2

(Kx −Ky) sin(2φ0)

+ (
π

2
αGgBy −Q

1

2

∂DDMI

∂rdw
) cos(φ0) +

π

2
αG(Q

DDMI

λ
− gBx) sin(φ0).

(52)
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These equations of motion have many similarities with the equation of mo-
tion for constant DMI. The difference is an additional term proportional to
∂DDMI
∂rdw

in the prefactor of the cos(φ0) term. The effect of fluctuations in
the DMI acts as an effective magnetic field in the ŷ-direction at the posi-
tion of the DW. We see from these equations that for DMI fluctuations the
derivative ∂DDMI

∂rdw
has to be of the order DDMI/λ ≈ 10−15Jm−3 to be of

relevance for the equations of motion. Fluctuations of this magnitude on
the lengthscale of λ can be achieved with certain interface profiles.

3.3 Interface Effects

If we assume that the Co and Pt atoms are arranged on a square lattice,
we can systematically study the effect of intermixing, defects and interface
roughness on the DMI. For this analysis we will again use the table of ener-
gies as in figure 18. The complete set of all possible configurations can be
worked out by use of this table. Here, we only mention the interesting and
relevant results.

3.3.1 Intermixed atoms

Depending on the softness of the metal underlayer and the velocity of the
deposited atoms, atoms of one layer can become embedded the underlying
material thus creating an intermixture. In this Thesis we refine our study
to systems more or less similar to the stack illustrated in figure 6. So the
only relevant type of intermixing that occurs is between the Co layer and
the Pt layer. In figure 19 the two different types are illustrated.

(a) (b)

Figure 19: The two different possible intermixes. The blue spheres represent Co atoms
and the brown spheres represent Pt atoms. (a) An intermixed Pt atom in the Co layer.
(b) An intermixed Co atom in the Pt layer.

By assuming periodic boundary conditions we can calculate the two en-
ergies of these models in terms of ε with the use of figure 18. The calculation
of the intermixed Pt atom follows from summing all energy contributions
in the energy table and dividing by two. However, one can also use sym-
metry arguments to obtain the same answer, namely, that the total energy
contribution is zero. For the intermixed Co atom there has to be another
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Co atom outside the region illustrated in figure 19b in order to have DMI.
However, when on top or directly below there is a row of Co atoms the total
contribution of the intermixed atom remains zero.

From these simplistic calculations it follows that intermixing has no effect
on the DMI. However, as will be discussed in section 6, intermixing should
not be ignored because for intermixed Pt atoms, the Co atoms can induce
a magnetic moment on the Pt atom, increasing the total magnetic moment
of the material.

3.3.2 Defects

In any real lattice, defects can occur, also on the interface between two
layers of different material. When such a defect occurs there is a local effect
on the DMI. In figure 20 the two relevant kind of defects are illustrated.
For comparison the energy of the perfect interface here is 6ε. We can easily

(a) (b)

Figure 20: The two different possible defects at the interface. (a) A Pt defect. (b) A Co
defect.

calculate the DMI of the models. The results are shown in table 2. Evidently,
the absence of a Co atom in the lattice has the greatest effect effect, causing
a drop in DMI energy for the below Pt atom and its nearest neighbors, whilst
the absence of a Pt atom only reduces the DMI energy for one column.

Model a b

Energy 4ε 2ε

Table 2: Energies of the models of figure 20.

3.3.3 Interface Roughness

Most relevant for fluctuations in the DMI is the interface roughness, as we
will see here. There is an infinite number of possible interface structures
so we have restricted ourselves to some interesting cases for 4 × 4 lattice
models. By use of the table in figure 18 the DMI energy can be calculated
for any given strucure. The models we study are depicted in figure 21.
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(a) Model 1 (b) Model 2 (c) Model 3

(d) Model 4 (e) Model 5 (f) Model 6

Figure 21: Some of the possible interface structures.

If we again assume periodic boundary conditions, the total DMI energy
follows from straightforward calculations. For the perfect interface we have
a total energy of 8ε as mentioned earlier. In table 3 the energy for the models
in figure 21 are given.

Model 1 2 3 4 5 6

Energy 3ε −8ε 3ε 0 2ε 0

Table 3: Energies of the models of figure 21.

The first observation of these results is that the energies never exceed nor
reach the 8ε value of the perfect interface. So in the roughness some energy
is lost by averaging. However, the amount of roughness does not seem to
further lower the energy because for example models 1 and 3 have the same
energy. A second observation is that in some interface structures the DMI
energy contribution is zero. The energy contribution can locally still be
nonzero, but averaged over the lattice, the contributions cancel out. The
third observation is that for model 2 we find a negative energy contribution
which would also result in a negative sign in front of the DMI term in the
eqautions of motion.

Especially this third observation is interesting, because recently an ar-
ticle has been published about this very phenomenon, i.e. DMI inversion
[21]. This sample is quite similar to the one illustrated in figure 6, the only
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difference is that there is an extra layer of Iridium (Ir) between the Co layer
and the top Pt layer.

A possible explanation for this phenomenon is that due to the materi-
alistic properties of the Iridium, the system prefers to form an interface as
model 2, depicted in figure 21b. One possible way to test this hypothesis is
to measure the total magnetic moment of the sample and compare this with
the expected magnetic moment based solely on the volume of the ferromag-
netic material. If the interface is as in model 2, there might be an additional
magnetic moment induced on some of the nonferromagnetic atoms.

3.3.4 Hexagonal Lattice

The above study of interface roughness assumes that the atoms of the stud-
ied material are ordered in a square lattice. A similar analysis can also be
done for the hexagonal lattice. The DMI energy contribution table for the
hexagonal lattice is shown in figure 22. We remark that the energy quanta
ε is not equal for the tables of the square and hexagonal lattice. The effects

Figure 22: Energy contribution due to the DMI caused by an interaction between de
spin particle marked with the green line and one of the neighbors with the central heavy
spin-obit coupling atom in the centre.
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of defects and intermixing are similar for both lattices due to the same sym-
metries. Although relevant, in this Thesis the hexagonal lattice will not be
further investigated. The study of interface roughness for different lattice
types in relation to the DMI could provide valuable input for micromagnetic
simulations of DW motion. These simulations can then be used to quanti-
tatively describe the interface roughness by comparing the simulated DMI
with experiments.
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4 Field Driven Creep Theory

In numerous studies the creep theory as described in section 2.4.3 has been
checked and confirmed for simplified cases, i.e. one- or two-dimensional
PMA systems with only an OOP magnetic field as the driving force. How-
ever, here we show that just by introducing an in-plane (IP) magnetic field,
the creep theory becomes more complex because, depending on the DW
azimuthal angle φ, the IP field contributes to the DW energy density and
to the driving force f ∝ H⊥ cos(φ) + H‖ sin(φ), where φ = 0 (π/2) corre-
sponds to a Bloch (Néel) DW. Also, in PMA multilayers with a structural
inversion asymmetry the DMI takes on a crucial role by not only giving
an offset in the IP magnetic field component perpendicular to the DW, i.e.
in the energy density and driving force H⊥ → (H⊥ − HDMI), but also by
affecting the stiffness of the DW as we will show in this section.

4.1 Contributions of the IP Field and DMI

When introducing an IP magnetic field and DMI into the theory of creep, the
main question becomes what terms in equations 46 and 45 are in some way
dependent on the IP magnetic field or DMI. For this question we propose
the answer that the IP magnetic field enters the creep theory in three ways.
First, by contributing to the driving force f . Second, by affecting the energy
density of the DW and thereby also the azimuthal magnetization angle of the
DW, which in turn affects the contribution to the driving force. And third,
by influencing the DW stiffness, giving rise to a stiffness renormalization
depending on the strength of the DMI and the IP field. In this section these
three contributions will be further examined in the light of previous, less
complete examinations. In our system of study no current will be applied,
but only an external magnetic field ~B = (Bx, By, Bz). We will also account
for an interfacial DMI.

4.1.1 Driving Force

The driving force of a DW is characterized in the equations of motion. Our
starting point here are the equations 33 and 34. For our studied system
there is no spin current vs. Also, suppose for simplicity that By = 0 and
that we study a system with no IP anisotropy, so Kx = Ky. By looking for
a stable solution for φ̇0, we find φ0 = arcsin(2gBzλ/παG(gBxλ+QA)) from
equation 52, which is a real solution if 2|Bz| ≤ παG|HDMIQ− Bx|. In this
case we find that the DW velocity is given by vDW = αGgQBz/h̄λ, from
inserting φ0 in equation 51 and thus the IP field dependence is eliminated
by φ0. If 2|Hz| > παG|HDMIQ−Bx| the angle φ0 cannot stabilize and keeps
on rotating, resulting in a less efficiënt driving of the DW. The closer Hx

gets to HDMI , the faster φ0 precesses and so the slower the DW is driven.
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So to some extent the IP field influences the driving force for values of Bx
around HDMI , resulting in a symmetry not around Bx = 0, but around
Bx = HDMI .

By numerically solving the equations of motion we can determine the
DW velocity dependence on the applied IP magnetic field. The result is
plotted in figure 23. This plot clearly shows the behavior just described,

Figure 23: Plot of DW velocity dependence on Bx showing the less efficient driving regime
around HDMI = 0.5Bc. Here αG = 0.5 and Bz = 1.5Bc.

i.e. for large enough Bx the azimuthal DW angle φ0 can stabilize, canceling
out the effect of the IP magnetic field and the DMI on the DW motion,
but for Bx near HDMI the velocity drops quadratically. The size of this
quadratic regime is determined solely by the dimensionless parameter αG;
for small values of αG the regime becomes bigger. This result thus shows a
clear dependence of the driving force on the IP magnetic field and the DMI.

The result is also backed up by experimental research where also this
parabola shaped dip is observed around an nonzero value of Bx [21, 31, 32]
and also the flattening of the curve is observed for larger values of Bx [33].
Also in the experiments done for this Thesis, these two phenomena have
been observed, as we will discuss in more detail in section 6. However, by
most experimental research groups, this flattening is not fully understood
because they explain the parabolic shape by inserting the IP magnetic field
effect in the energy density εDW term in the creep theory which works well
for values of Bx around HDMI , but it does not predict the flattening for
larger values of Bx. This method will be covered in section 4.1.2.

An important remark to make here is that the method used to calculate
these equations of motion and the numerical result of the DW velocity plot
do not account for any disorder/pinning potential landscape. Of course,
in reality a disorder potential is always present. Therefore, these results

34



should be interpreted as a characterization of the driving force in the theory
of creep, where the disorder potential is considered, rather than a direct
result for the DW velocity.

4.1.2 Energy Density

A crucial element of the creep theory is the energy density of the system
[10, 30, 31, 32]. As shown in section 2.4.3, the term Uc(fc/f)µ in equation 1
follows from the minimization of the free energy of a DW with length L which
moves a small distance u� L over the potential landscape. The exponent µ
is given by µ = (d+2ζ−2)/(2−ζ), where d is the dimension of the interface
and ζ is the wandering exponent. The last term in equation 43 is the energy
gain from the increased area which now has a parallel aligned magnetization
with the OOP field as illustrated in figure 24 (there is an additional factor
of 2 because the image only shows the upper half of the problem). The

Figure 24: Change of the area of the domains when a Néel DW of length L is displaced
by a small distance u. This figure only shows the upper half of the displacement.

same figure also gives insight in how the IP field contributes to the free
energy: there is an increase of area with an IP magnetization. So we expect
a contribution of −πMstµ0( ~HDMI+ ~HIP ) · φ̂0)(2∆S) where φ̂0 is direction of
the magnetization at the DW (φ̂0 ≈ (cos(φ0)− u

L sin(φ0), sin(φ0)+ u
L cos(φ0)))

and ∆S is the difference in area between the two boxes in figure 24. We use
a small angle approximation χ ≈ u/L so

1/ cos(χ) ≈ 1

1− u2

2L2

≈ 1 +
u2

2L2
;

(53)
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∆S = S2 − S1

= L
λ

cos(χ)
− Lλ

≈ Lλ(1 +
u2

2L2
)− Lλ

= λ
u2

2L
.

(54)

So, a contribution of

∆FIP = −πMstµ0( ~HDMI + ~HIP ) · φ̂0)λu2/L, (55)

from the IP field is expected. This term originates also from the elongation
of the DW and can therefore be included in εDW .

Let us study this εDW because it is in the minimized free energy difference
of equation 45 to the power (1 − µ)/3. For simplicity, assume again that

By = 0. We get a contribution linear in u2

L , independent of the angle φ0.
We abbreviate these linear contributions by the stiffness εel. It is called a
stiffness, because this term likes to keep the DW segment short and straight.
In section 4.1.3 we elaborately investigate this stiffness in relation to the DMI
and IP magnetic fields. If we now choose our coordinates as such that the
DW segment is parallel to the y-axis, the contribution from the anisotropy
is 2Kxλt cos2(φ0). Hence, the energy density is given by

εDW = εel + 2Kxλt cos2(φ0)− πMsλt(Bx −HDMI) cos(φ0). (56)

In this equation φ0 is chosen such that the energy density is minimized.
By setting the derivative with respect to φ0 to zero we find that the global
minimum is reached for φ0 equal to zero or π when |Bx − HDMI | ≥ 4Kx

πMs

and equal to arccos(πMs(Bx −HDMI)/4Kx) otherwise. If we plug in these
results in equation 56 we find that

εDW =

{
εel − π2λMs

4Kx
(Bx −HDMI)

2, when|Bx −HDMI | ≥ 4Kx
πMs

;

εel + 2Kxλt−Msλt|Bx −HDMI |, otherwise.
(57)

Now we can insert this energy density in equation 45 to see how the DW
velocity depends on the IP magnetic field. For most samples the exponent
µ is 1/4, so the power of the IP magnetic field dependence of εDW coinci-
dentally then also is (1− µ)/3 = 1/4. This has led to confusion because in
some research groups, the IP magnetic field effect on the energy density in
the creep theory is taken to be equivalent to the effect on the driving force
from the argument that they both appear in the creep exponent to the same
power [21, 31, 32, 21]. However, this is only the case when µ = 1/4.
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(a)

(b)

Figure 25: Plots of the DW velocity dependence on Bx according to IP magnetic field
modification of the energy density. Here HDMI = 15mT , around this value we observe
the symmetry. (a) Contour plot of log(ṙDW ) as a function of the IP and OOP magnetic
field. (b) Plot of the DW velocity profile against the IP magnetic field Bx.

In figure 25a the result is shown in a contour plot and in figure 25b the
velocity is plotted against the IP magnetic field for constant Bz. We see
again the symmetry for values of Bx around HDMI .

As mentioned in section 4.1.1 one drawback of this model is that ṙDW →
∞ as Bx → ±∞. Intuitively, this is not expected since the azimuthal DW
angle will be chosen as such to cancel the strong effect of the IP magnetic
field. Also, experimentally a flattening of the velocity is observed [33] and
described in section 6.

4.1.3 Effective Stiffness

As we have seen the creep theory is based on a competition between two
effects of a displacement u of a DW segment of length L. The energy gain
from the increased area of OOP aligned magnetization is balanced by the
energy cost of stretching and bending the DW. Here, we further study the
cost of bending the DW segment in terms of the stiffness, introduced above
as εel.

The exchange stiffness, expressed in the energy density by Js, immedi-
ately characterizes this bending cost because the exchange interaction prefers
an alignment of nearest neighbors and therefore a straight DW. However,
we show here that the introduction of DMI influences this stiffness. By ap-
plying a IP field this DMI contribution can be tuned. To see how this effect
arises, we study the system as in figure 4b and consider its energy density.
Assume again that there is no IP anisotropy, so Kx = Ky. We rewrite the
energy density of equation 30 in terms of θ and φ0, where φ0 is assumed to
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depend on only on y.

E(θ, φ0) =
Js
2

(
sin2(θ)(∂yφ0)2 + (~∇θ)2

)
− K

2
cos2(θ)− g

(
Bz cos(θ)

+ sin(θ)(Bx cos(φ0) +By sin(φ0))
)

+ADMI

(
sin(φ0)∂yθ

+ cos(φ0)(cos(θ) sin(θ)∂yφ0 + ∂xθ)
)
.

(58)

The total energy is the integral of E over the wire. By integration along the
thickness and length of the wire and by leaving out the constant terms, we
find

E[φ0, X] =

∫
Lzdy

a3

(
Js
λ

(∂yX)2 − 2gQBzX

+ π (ADMIQ− gλBx) cos(φ0)

− π (AQ∂yX + gλBy) sin(φ0)

)
.

(59)

In equilibrium, the energy E will be minimized with respect to the free
parameters φ0 and X. So by setting the functional derivatives zero we can
solve exactly for φ0. We find that φ0 has to obey

π(ADMIQ− gλBx) sin(φ0) + (ADMIQ∂yX + gλBy) cos(φ0) = 0. (60)

The exact solution for φ0 is

φ0(y, t) = arctan

(
gλHy +AQ∂yX

gλHx −AQ

)
, (61)

illustrating the IP field and the DW tilt (i.e. ∂yX) effect on φ0. This term
corresponds with theoretical results found in literature on DW tilting [13,
34]. It also shows that when gλBx approaches ADMI , the IP field counters
the DMI resulting in a Bloch wall (φ0 = Qπ/2). When we stay away from
this limit, φ0 remains small and we can use a second order approximation
arctan(x) ≈ x to find:

φ0(y, t) ≈ gλBy +ADMIQ∂yX

gλBx −ADMIQ
. (62)

We plug this in back in the energy E from equation 59 and use again the
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small angle approximation sin(x) ≈ x and cos(x) ≈ 1− x2/2 to find

E[X] =

∫
Lzdy

a3

(
− 2gQBzX

+
ADMIgπQλ

2By
ADMIQ− gλBx

∂yX

+

(
Js
λ
−

A2
DMIπ

2(ADMIQ− gλBx)

)
(∂yX)2

)
.

(63)

Now we see three terms in the integral, of which the first is the driving term
by the OOP field which we already have seen before. The second induces
a tilt ∂yX in the DW as a direct consequence of a nonzero DMI and the
IP By field [13, 34]. This second term is competing with the third term,
which prefers to keep the line X(y, t) straight and vertical (i.e. parallel to
the y-axis). The third term is therefore interpreted as the effective stiffness
of the DW, inversely related to the elasticity. Interestingly, we observe that
the DMI introduces an additional term ∆εel to this stiffness. Whereas the
usual stiffness is expected to be Js, we now define an effective stiffness ε̃el
as:

ε̃el = Js −
A2
DMIπλ

2(ADMIQ− gλBx)
. (64)

In figure 26 ∆εel is shown as a function of Bx.

Figure 26: Stiffness contribution ∆εel for large DMI

An important feature of this DMI effect on the creep theory is that
it is antisymmetric around Bx = HDMI . A DW segment becomes more
elastic when Bx is more negative, whilst the segment gets a higher stiffness
for larger positive Bx. Intuitively, this can be understood in the following
way. Suppose the DMI is dominant forcing the DW to be of the Néel type.
Consider now a positively charged DW, then if Bx is positive, it aligns
with the magnetization at the DW. Now bending the DW would cause the
magnetization at the DW to misalign with the IP field, being energetically
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less favorable. So in this case, due to the DMI the DW is more stiff. Now
suppose Bx is negative and therefore antiparallel with the magnetization
at the DW. Any bending of the DW would now be energetically favorable
because the antiparallel alignment costs the most energy, thus making the
DW more elastic.

To study if the addition of ∆εel to the stiffness is significant, we compare
the orders of magnitude of Js and ADMIλ. To estimate Js we use that
λ =

√
Js/Kz so Js = λ2Kz. Experimental measurements suggest a value

for Kz in the order of Kz ≈ 104∼5Jm−3 (see section 6), which is also found
in literature [4, 32]. In the same literature the typical value λ ≈ 10−(8∼9)m
is used for the DW width. So Js is estimated by Js ≈ 10−(11∼14)Jm−1. In
section 2.3.1 the value of ADMI is estimated by a calculation on the atomic
scale with the result ADMI ≈ 10−(3∼4)Jm−2, which is of the same order as
found in experiments [4]. And so ADMIλ ≈ 10−(11∼14)Jm−1 ≈ Js. This
is quite a rough estimation but it does show that the DMI contribution to
the stiffness can be significant. For a better approximation we consider the
fitted parameters: J = 10−11Jm−1, K = 2 ·105Jm−3 and A = 5 ·10−4Jm−2

so λ = 7nm and Aλ = 4 ·10−12Jm−1 [4]. So in this case the two terms differ
only in half an order of magnitude.

Note that this contribution to the stiffness is only valid in the regime
where HDMI � Bx, as mentioned before. When Bx approaches the HDMI

value, the azimuthal DW angle φ0 goes to Qπ/2 and the contribution to the
stiffness is lost.

4.2 Modified Creep Theory

We have seen that the driving force, the energy density and the stiffness of
the DW are influenced by the IP magnetic field and the DMI. The question
now is how these three effects are translated to one model describing the
motion of the DW.

For these three contributions there are three partly overlapping regimes
that are of relevance.

• For the driving force the regime where 2|Bz| > παG|HDMIQ− Bx| is
of relevance.

• In the energy density a distinction between the regime |Bx−HDMI | ≥
4Kx
πMs

and its complement has to be made.

• The effective stiffness correction is only valid when |Bx−HDMI | � 1.

We cannot explicitly describe how the driving force modification enters the
theory of creep because we only have a characterization of it. To include
the effective stiffness, we can just insert the result in the energy density
computation by adding the term ADMIQ∂yX sin(φ0) before minimizing over
φ0. The minimization is then no longer solvable by analytic methods, so we
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compute the energy density numerically. The results will be shown and
extended to 2D models in section 5.

An important remark to make here is that there might be more effects
of the DMI and IP magnetic field on the theory of creep. One such effect
might be that the DW width λ can depend on the DMI and IP magnetic
field, which is intuitively quite reasonable. This DW width λ occurs almost
everywhere in the calculations of DW motion, so if there is an effect on λ it
is likely to be significant.
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5 Models of Domain-Wall Motion

Up to now, we have discussed multiple methods of deriving the equations of
motion which take into account the DMI and the IP magnetic field. To test
the validity of these methods and their results we need to compare them with
experiments. Most experiments consist of observing the expansion of a 1D
domain as in figures 4a and 4b, or a 2D domain as in figure 4c. Therefore, to
compare theory with experiment we need to develop models of DW motion
for these 1D and 2D systems, which is exactly what we will do in this section.
This section will mostly be a demonstration of results since the underlying
theory and methods have already been covered in the previous sections.

First, we consider the LLG and use the numerical solving method to
study how 1D DWs move with a DMI and IP magnetic field. To some
extent this has already been done in section 2.4.1. Then we extend this
method to 2D system and study the time evolution of a circular domain.
Next, we consider how the theory of creep extends to 2D systems, because
this theory does take into account the disorder potential. In this approach
we will consider the theory of creep that is used by other research groups
and found in literature, as well as the theory of creep suggested in section
4.

5.1 Landau-Lifschitz-Gilbert Equation

The equations of motion, 33 and 34, that have been derived from the LLG
equation in section 2.4.1 can only be solved analytically in simplified cases,
e.g. with only a OOP magnetic field Bz and no DMI or IP magnetic field.
So to study the DW dynamics for more generalized situations, we solve the
obtained equations of motion numerically. Recall the scaling parameters we

introduced earlier: τ =
(Kx−Ky)t

2h̄ , x = rDW
λ , Bc =

αG(Kx−Ky)
2g , vc =

λ(Kx−Ky)
2h̄

and Ac = λ(Kx −Ky)/π.
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Figure 27: Results of the numerical solution method. (a) Time evolution of the rescaled
DW position. We can see that the motion becomes constant after some time. (b) Linear
fit (dashed red line) to the DW position. To be sure that the DW velocity has stabilized,
the fit is made to the numerical data after 300 time units.
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In figure 27a we see the time evolution of the rescaled DW position.
It approaches constant motion after approximately 20 units of time. We
determine the average DW velocity by making a linear fit after 300 units
of time - to be safe - which is shown in figure 27b. To test if this method
works well, we calculate the velocities with the numerical method for the
simplified cases and then compare it with analytical result. As we can see
in figure 28, the numerical method of determining the velocity works well.
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Figure 28: Comparison of the numerical method (red dots) with the analytical method
(blue line). The numerical data agrees well with the analytical result.

Now that we have confirmed the legitimacy of our method, we can study
the behavior of the DW velocity with DMI and IP magnetic fields. For the
1D model we have already shown the DW velocity profile with respect to
the IP magnetic field along the x direction in figure 23. Here, in figure 29,
we show it again along with the DW velocity profile for an IP field along the
y direction. The important feature of the profile in figure 29a is the domain

(a) (b)

Figure 29: DW velocity profiles with respect to the IP magnetic fields Bx (a) and By (b)

around HDMI where the velocity drops parabolically. It follows directly from
the equation of motion 34 for φ0 that the width of this domain is exactly
Bz

4
παG

, as discussed in section 4. So for small values of the dimensionless
Gilbert damping parameter αG, this domain becomes larger. The relevance
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of this result has already been discussed in part and will become more clear
when our experimental results are described in section 6.

In figure 29b the same phenomenon occurs. This is also due to the same
fact that the azimuthal DW angle φ0 cannot stabilize, i.e. there is no value
of φ0 such that φ̇0 as in equation 34 equals zero, so the driving of the DW
becomes less efficient because energy is lost in the motion of φ0.

For the study of 2D system we extend the 1D models in the following
way: In the 2D system we assume a circular up-magnetized domain centered
at the origin. We use polar coordinates ϕ and rDW to describe the shape of
the DW. We apply an IP field along the cartesian x direction and calculate
the DW velocity as a function of the normal n̂DW to the DW given the
values of HDMI and Bz. This normal is given by

n̂DW =
∂~rDW
∂ϕ

× ẑ, (65)

where we have defined ~rDW = rDW r̂ and r̂ = (cos(ϕ), sin(ϕ)).

Next, we apply the 1D model for a moving DW on a line along this
normal. For the 1D model we have that the IP field is now given by ~BIP =
Bxn̂DW . The OOP magnetic field and the DMI do not change for the 1D
model. We calculate the velocity of the DW along this normal. Then we
translate this velocity to the radial velocity by multiplying it with n̂DW · r̂.
Then, we let the system evolve a timestep and redo the entire calculation.
This method will also be used for extending the theory of creep to 2D models

Now let us extend the 1D results from the LLG to 2D systems by use
of the method described above. The result is shown in figure 30 where the
lines represent the postion of the DW at different times. The figure shows
an asymmetric expansion due to the IP field and the DMI. It also shows
that the shape deforms away from the initial circular shape. This result can
only be used to speculate about the true expansion shape, since disorder is
not accounted for.

5.2 Creep Theory

The models obtained from the LLG equation are not quite representative
for real systems because the disorder potential is not taken into account.
For comparison with experiments the creep theory is more appropriate. As
elaborately discussed in section 4, there are multiple ways to include the
DMI and IP magnetic field into the theory of creep. To determine which
way suits experimental observations and results best we work out the model
found in literature and our own model as described in section 4.2 and extend
it to 2D systems.
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Figure 30: Model of the expansion of a magnetic domain obtained from the LLG equation.
The lines indicate the DW position at consecutive time steps.

5.2.1 Regular Creep Theory

In literature, the IP magnetic field is included in the theory of creep only by
considering its effect on the energy density [21, 31, 32] as described in section
4.1.2. For 1D systems the resulting velocity profiles have already been shown
in figure 25. To extend this result to 2D systems we need to add a term to
the energy density for the IP magnetic field, parallel to the length of the
DW. In the minimization of the energy density over the azimuthal DW angle
we get an additional term −πMsλt sin(φ0).

In figure 31 the result is shown. Here, we also see the asymmetry occur-
ring due to the DMI and IP magnetic field. This shape has been observed in
external experiments as well as our own. However, we also observe a much
higher degree of deformation, as we will show and discuss in section 6.

5.2.2 Modified Creep Theory

As mentioned in section 4, we have not reached the point where we can give
a theory of creep which includes all effects of the DMI and IP magnetic field.
We have seen the effect on the driving force, which is emphasized and once
again illustrated in section 5.1. In section 5.2.1 we extended the effect of
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Figure 31: Model of the expansion of a magnetic domain obtained from the theory of
creep. The lines indicate the DW position at consecutive time steps

the energy density on the creep theory. Here, we will show the effect of only
the stiffness modification.

One of the most important features of this stiffness modification is that
it is antisymmetric around Bx = HDMI with respect to the IP magnetic
field, whereas the above mentioned and illustrated effects are symmetric
around the effective DMI field. This antisymmetry follows from equation
64 which shows that when HDMI − Bx → −(HDMI − Bx), then ε̃ − Js →
−(ε̃− Js). Recall that this effect is only valid for |Bx −HDMI | � 0. When
Bx approaches HDMI , the arctangens exponentially flattens off to ±π/2.

By inserting an exponential flattening for Bx approaching HDMI , we
obtain the results for the effect of the stiffness modification on the domain
wall motion. The results are illustrated in figure 32.

Extending this result to a 2D domain expansion is beyond the scope of
this Thesis as we will use the 1D to gain sufficient insight in the effect of the
stiffness modification. Together with the theory described in the previous
section we can use this result to suggest an explanation for observations
from the experiment of this Thesis, which we shall discuss in the following
section.
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Figure 32: Plots of the DW velocity dependence on Bx according to IP magnetic field
modification of the DW stiffness. Here HDMI = 15mT , around this value we observe the
antisymmetry. (a) Contour plot of log(ṙDW ) as a function of the IP and OOP magnetic
field. (b) Plot of the DW velocity profile against the IP magnetic field Bx.
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6 Experiment

Fundamental phenomena related to interface effects in layered perpendicular
magnetic anisotropy materials are not completely understood. Experimental
measurements on PMA materials with SIA give rise to the existence of an
interaction between neighboring spin particles near a metal with high spin-
orbit coupling, the DMI, as mentioned in 2.3. Motivated by the theoretical
work on the fluctuating DMI due to interface structures explained in section
3, we want to study the effect of manipulations to the interface on the DMI.
Also, explicit insight in dependence of this DMI on SIA and other interfacial
parameters remains to be uncovered.

In this research, we attempt to chart one of these parameters, namely
the relative (i.e. top/bottom) interface roughness and intermixing. So we
introduce a SIA in a layered material, not by varying the top and bottom
layer thickness, nor by varying the type of material, but by creating a differ-
ence in the way the interfaces are formed. It is expected that a well-defined,
smooth interface gives a different DMI contribution compared with an inter-
face which is more rough and rugged. Recent experimental data show that
the behavior of DW motion in PMA materials with SIA varies with changes
in the roughness of an interface between the ferromagnetic and nonferromag-
netic material [35]. In this research we attempt to study if these changes are
correlated to the strength of the DMI by studying the DW velocity profile
with respect to the IP magnetic field of the different samples. As men-
tioned in the previous sections, the effective DMI field HDMI can occur as
a symmetry point in these profiles, so the profile can therefore be used as a
measurement of the DMI. A key requirement is of course that the profiles
are in line with the theory.

We demonstrate in our experiment that there are significant effects on
the DW velocity profiles with respect to the IP magnetic field from variations
in the interface formation. In terms of the currently known theory for these
profiles, our observations cannot be fully understood. This is the main
motivation for revisiting the theory of creep in section 4, taking IP magnetic
fields and the DMI into account.

In this part of the Thesis, we explain the experiment. Since the theoreti-
cal background for this research is already elaborately discussed we start by
describing the research method, which ranges from the method of forming
samples to data gathering and analysis. Then we give the results of the
experiments. In section 7 we interpret these results and compare them with
other experiments.

6.1 Method

In order to understand and interpret the obtained data and results from
the experiment it is imperative to comprehend the methods of acquisition.

48



Here, we describe the applications that have been used for our research to
form samples and acquire data. First we describe the process of how the
samples are formed and how we can change the structure of the interface by
varying certain parameters. Next, the Kerr microscopy and experimental
setup is explained, which is used to observe the DW and its dynamics. This
is followed by the description of the Vibrating Sample Magnetometer (VSM),
the Superconducting Quantum Interface Device (SQUID) and the method
of High Resolution Transmission Electron Microscopy (HRTEM) which are
all used for determining the degree of intermixing and interface roughness
of the samples. Finally, we describe the method of determining the strength
of the PMA.

6.1.1 Sputter Deposition

In order to study the effects on the DMI strength of SIA by interface rough-
ness and intermixing, we first need to be able to make PMA samples, where
we can vary the smoothness of the interface. This can be achieved by con-
trol over certain parameters in the process of making the sample. Samples
usually are made using the sputter deposition technique, where layers of
different material are formed upon each other.

To create a sample by sputter deposition a thin (∼ 500µm) substrate
is placed in an ultra high vaccum chamber of low pressure (∼ 10−6Pa) un-
derneath the target, which is the material that has to be deposited on the
substrate. Next, Argon (Ar) gas is injected into the chamber. Then, a
voltage is applied between the target (kathode) and the substrate (anode).
This creates a plasma of Ar ions, which are then accelerated towards the
kathode due to the electric field. For kinetic energies much bigger that
the thermal energies, the collisions between the Ar ions and the target
breaks off atoms of the target material, which then are deposited around
the chamber and, most importantly, on the substrate. Behind the target a
magnet is placed to increase the interaction between Ar-ions and the tar-
get. In figure 33 the sputter deposition setup is illustrated schematically.

Figure 33: Schematic illustration of the
sputter deposition setup.

To form a thin layer of well de-
fined thickness of the target material
on the substrate, a mechanical shut-
ter is placed between the target and
substrate before turning on the volt-
age. Then, after turning on the gas
flow and the voltage, the shutter is re-
moved and after the right amount of
time the voltage is switched off, im-
mediately stopping the sputter depo-
sition.
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To determine the right amount of
time, a calibration is needed. This calibration is done by sputtering on the
system for a well known long time τ , then by atomic force microscopy the
thickness D of the deposited layer is determined to obtain the growthrate
r = D/τ . In for our experimental setup we find growthrates of the order of
1Ås−1. In the calibration the error is of order 10−3Ås−1.

For our experiment we study the effect of the Ar gas flow, which deter-
mines the pressure inside the sputter chamber at the moment of deposition
of the layers of the sample. We expect that by increasing the gas flow the
kinetic energy of the broken off atoms is lowered by collisions with the gas,
causing the the target atoms to reach the substrate surface with less en-
ergy. Therefore the gas flow influences the roughness and intermixing of the
interfaces between different deposited materials. So by controlling the gas
flow we can influence the interface. For this experiment an array of samples
had been made of the structure as in figure 6. However, when depositing
the last Pt layer, the Ar gas flow varies for each sample, causing a variation
between the samples in the top interface.

The process of making the samples with sputter deposition is sensitive to
imperfections and errors since layers are formed of only several atoms thick.
Therefore, the samples are cleaned thoroughly to maintain a clean surface.
The silicon substrate is used because the surface is perfectly straight on the
atomic scale.

6.1.2 Kerr Microscopy

Once the samples are formed we want to determine the DW velocity profiles
with respect to the IP magnetic field. So we want to study the motion
of DWs. In order to do this we have to be able to observe the magnetic
domains. This can be done by the use of the Magneto Optical Kerr Effect
(MOKE); when light reflects from a magnetized surface, its polarization can
change [36, 37].

For Kerr microscopy the MOKE is used to chart different magnetic do-
mains by the light intensity. A beam of light passes trough a polarization
filter and then reflects on the surface of the studied sample. Due to the
MOKE, the reflected light pick up a different polarization where also the
magnetization of the sample differs. Next, the reflected light passes through
the analyzer polarization filter before being captured by a camera. The dif-
ference in polarization is then translated to a difference in intensity in the
camera image, thereby distinguishing the different magnetic domains. In
figure 34 the Kerr Microscopy setup is illustrated schematically.

Due to the PMA in our samples, we only need to distinguish between
two types of domains, i.e. either up or down. Because we want to observe
the regime where DW velocities are of the order of ∼ 10µms−1, we use
an optical magnification such that the resolution of the obtained image is
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Figure 34: Schematic illustration of the Kerr Microscopy setup. Figure adapted from [40]
where more details can be found.

∼ 30µm per pixel. This length then also becomes the measurement error of
the DW position defined here as the boundary between two domains.

To form and expand magnetic domains and study the DW dynamics
with an IP magnetic field applied, three electromagnetic coils are used ; one
to apply a magnetic field in the z direction, and two with a magnetic core to
insure a more homogeneous magnetic field in the x direction. The magnetic
field generated by these coils is linear with the applied currents over the
coils (as long as the magnetic core is not saturated), so in the experimental
setup the magnetic field is controlled by means of controlling the current.

In figure 35 the Kerr microscope with magnetic coils is displayed. By
measuring the magnetic field in the center of the setup, the coils are cali-
brated. For this experiment two sets of coils have been used: The so called
3D magnet (named so because it also has coils for the y direction, but
these are not used in this experiment) which can apply an IP magnetic field
of up to ∼ 40mT (see figure 35a) and an OOP field of maximum magni-
tude of ∼ 100mT (see figures 35b and 35c). The error in the calibrations
is ∼ 0.05mT for both coils. The second set is the IP magnet with OOP
magnet sample holder, which is actually the combination of only two coils
generating an IP magnetic field where in the sample holder there is a coil
generating an OOP magnetic field, as the name suggests. For the last set,
IP magnetic fields of ∼ 350mT can be realized, however the OOP magnetic
field is limited to ∼ 40mT. The error in the calibration for the IP field coils
is ∼ 0.5mT and for the sample holder coil it is ∼ 0.005mT. However, by
not perfectly positioning the sample there might be leakage from one field
into the other for both sets of coils. This is an experimental feature which
is difficult to avoid, so it has to be eliminated in the analysis of the data.

In figure 36 the expansion of a magnetic domain is shown by subtracting
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(d)

Figure 35: Photo’s of the Kerr microscope setup. (a) The 3D magnet. (b) The IP magnet.
(c) the OOP magnet embedded in the sample holder. (d) the Kerr microscope.

two images takes at different times. The distance indicated with the arrow,
divided by the time difference gives the DW velocity. The data for this
experiment are obtained by recording suchs expansions of magnetic domains
in a given combination of OOP and IP magnetic field. For each sample
we find a suitable OOP field at which the DW moves at velocities of ∼
10µms−1 because this are the speeds that can be accurately measured with
lengthy measurement. Then we look for a location in the sample where
magnetic domains frequently nucleate. At this position we make recordings
of expanding magnetic domains with a fixed OOP magnetic field, but varying
the IP magnetic field for each recording over the whole range of possible IP
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magnetic fields. This data is then analyzed by determining the DW position
as a function of time along a line that has a certain angle with the direction
of the applied IP magnetic field. As expected (see sections 2,4 and 5) the
DW position scales linear with time, so a linear fit is made to obtain the
DW velocity.

Figure 36: Illustration of the magnetic domain expansion. The figure is obtained by
subtracting two images, taken at different times. The velocity can be determined by the
distance marked by the arrow, divided by the time difference.

To compensate for the possible leakage of the IP field in the OOP field,
another equivalent data set is acquired and analyzed in the same way, but
with the OOP field inverted. So we study both positively and negatively
charged DWs. By then also inverting the obtained DW velocities, the two
velocity profiles should overlap. However, if there is a leakage, the net OOP
field would be larger for one dataset, whereas it is smaller for the other,
resulting in an increasing difference of measured DW velocities between the
two datasets for increasing OOP magnetic fields. The data from figure 41b
exhibits this leakage.

To compensate for any leakage the two velocities measured at a fixed
OOP field should be somehow averaged, but not in a straight forward way
because only for small differences a linear averaging is appropriate. The
difference in velocities is caused by a difference in the OOP magnetic fields,
so to average correctly between the two velocities, we need to know how
the DW velocity scales with the OOP magnetic field. As suggested by the
theory of creep, this scaling is exponential ln(vDW ) ∝ B−µz , so a logarithmi-
cal average would be appropriate. To test if indeed the dependence of the
DW velocity on Bz is exponential a series of measurements is done where
the OOP magnetic field is varied and with no IP magnetic field. This mea-
surement indeed confirms the exponential behavior and also shows that, as
expected, µ ≈ 1/4. In appendix B the measurement for determining the
exponent µ and its results are described.
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6.1.3 VSM-SQUID

If the thickness of the ferromagnetic layer, as well as the magnetic moment
per unit volume for the ferromagnetic material is known, then by determin-
ing the surface area of the sample it can be computed how large the total
magnetic moment should be. However, when intermixing between the layers
occurs an additional magnetic moment can be induced on the antiferromag-
netic particles. So by measuring the total magnetic moment of the sample
and subtracting the expected magnetic moment, we can quantize the degree
of intermixing between the layers. For the measurement of the magnetic
moment the VSM-SQUID apparatus is used, which is the combination of
a Vibrating Sample Magnetometer (VSM) and Superconducting QUantum
Interference Device (SQUID).

In the SQUID a magnetic flux through a superconducting loop is mea-
sured by letting a current enter the loop from one side and exit at the other.
From Lenz’ law a second current circulates the loop countering the magnetic
flux. However, because the flux enclosed by the loop has to be an integer
of magnetic flux quanta, the current can also flow in the other direction. A
changing magnetic flux thus gives rise to an oscillating current. By placing
Josephson junctions in the two branches a voltage arises as a function of
the magnetic flux. The VSM measures the magnetic moment of the sample
by vibrating a saturated sample inside such a SQUID loop. The vibration
causes a change in the magnetic flux passing through the SQUID loop.

This method of measuring the magnetic moment is extremely sensitive
and accurate. Typical measured values are ∼ 106Am−1 and the measure-
ment error is ∼ 104Am−1.

6.1.4 High Resolution Transmission Electron Microscopy

To get an idea of how rough the interface is, one would ideally just take
a look at how the atoms are arranged in the sample. This can be done to
some extent by the use of High Resolution Transmission Electron Microscopy
(HRTEM). The resolution of a HRTEM image is ∼ 0.05nm, so rows of single
atoms in a crystal can be distinguished. However, in HRTEM images it is
difficult to distinguish between different species of atoms. Therefore, this
method can only be used to speculate about the roughness of the interface.

To study a sample with HRTEM an ultra thin slab of the sample has to
be made, because HRTEM works by transmitting a beam of electrons trough
the sample. By use of a Focussed Ion Beam (FIB), such a thin slab can be
cut from a sample. During the transmission, electrons interact with the
sample, thereby forming an image with some imaging device after passing
trough the sample. For our experiment the HRTEM imaging is done by
Marcel Verheijen from the Group Plasma & Materials Processing from the
Eindhoven University of Technology.
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6.1.5 Anisotropy

Figure 37: Illustration of the Anisotropy
measurement setup. Figure adapted from
[38]

By using Stoner-Wohlfarth theory,
the strength of the PMA can be deter-
mined. An external magnetic field B
is applied under a certain angle α with
the normal to the surface of the sam-
ple. Then we measure the component
of the magnetization along the easy
axis by using the anomalous Hall ef-
fect. From this we can determine the
angle θ between the easy axis and the
magnetization, see also figure 37. The
Stoner-Wohlfarth theory then dictates that the total energy of the system,
given by

E = Kz sin2(θ)− µ0MsB cos(α− θ), (66)

Figure 38: Dataset with fit from Stoner-
Wohlfarth theory. Figure adapted from
[38]

is minimized. This criteria allows
us to calculate Kz by means of do-
ing a series of measurements varying
the angle α and the strength B and
then fitting to this dataset with fit
parameter Kz. For larger values of α
and large external magnetic fields, the
Stoner-Wohlfarth theory is not valid
anymore due to other effects in the
ferromagnetic layer such as buckling.
For our research, the fits are made to
the datasets for values of α ≤ 70◦. A
typical dataset with fit is shown in fig-

ure 38.

In the measurement, the strength of the anomalous Hall effect is mea-
sured by applying a current trough the sample in the plane of the external
magnetic field and the easy axis and then measuring the voltage over the
direction perpendicular to this plane. The results with their errors are listed
and discussed in section 6.2.

Because the PMA for the samples arises due to interface effects between
the ferromagnetic and nonferromagnetic layers, the PMA strength can give
information about the interface structure. So for our experiment a variation
of the anisotropy between the samples indicates a variation in the interface
structure. As mentioned, we expect that for lower Ar gas flows the interface
will be more rough and thus the anisotropy field will be lower because less
interface area is aligned with the plane of the layers.
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6.2 Results

For this experiment an array of samples has been made using sputter depo-
sition. All samples are equivalent concerning the layer materials and thick-
nesses. The samples are denoted by Ta(4nm)/Pt(4nm)/Co(0.6nm)/Pt(4nm).
The difference between the samples is that when growing the last Pt layer
the Ar gas flow has been varied from 2.1sccm (standard cubic centimeter
per minute) to 40sccm which determines the Ar pressure during the deposi-
tion. The hypothesis is that a higher gas flow would cause the deposition to
become less violent because the target atoms lose energy by collisions with
the Ar gas, thereby making the interface between the Co and last Pt layer
less rough. Since the DMI arises due to SIA [26], we would also expect a
difference in DMI strengths for the different samples.

In an attempt to determine the strength of the DMI, we want to measure
the DW velocity profile with respect to the IP magnetic field. If we observe
a value B0 around which the profile is mirror symmetric, we find the DMI
strength ADMI = B0gλ. So, using Kerr microscopy the velocity profiles
have been determined for a set of samples where the Ar gas flow is varied
between 2.1sccm and 10sccm. Also, to determine that indeed the interfaces
are altered by the varying Ar gas flow, the anisotropy field of the samples has
been measured, the total magnetic moment of the samples was determined
and HRTEM images have been made to determine the interface roughness,
degree of intermixing and interfaces structure respectively. During this pro-
cess some interesting observations have been made. The interpretation and
comparison with theory and literature will be done in section 7.

6.2.1 Expansion Shape

The first remarkable observation is that the shape of the domains changes
when increasing the IP magnetic field. Also, for different gas flow rates
different shapes are observed. The observations for two samples with Ar flow
rates 2.1sccm and 10sccm are shown in figure 39. Notice that for the sample
with the high gas flow becomes increasingly asymmetric by first taking on an
egg-like shape at Bx = 15mT and then becoming more teardrop-like shaped
at Bx = 39mT. However, the sample with the lower gas flow does not show
this behavior, i.e. it takes on an elliptical shape and shows asymmetrical
expansion, but not as extreme as for the high gas flow sample and the
asymmetry does not further increase for increasing IP magnetic field.

Due to the current experimental setup, we only measure the DW veloci-
ties for one value of the OOP magnetic field per sample because we can only
accurately observe velocities of the order ∼ 1µms−1. However, it would be
interesting to study if the shape also changes for different OOP magnetic
fields, especially since the driving force is characterized by a domain whose
width depends directly on the OOP magnetic field as explained in section
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Figure 39: Kerr Microscopy images of DW expansion for two samples with Ar gas flow
10sccm (a-c) and 2.1sccm (d-f), with different IP magnetic fields. The spots in the center
mark the nucleation points of the domain. (a,d) Bx = 0mT.(b,e) Bx = 15mT.(c,f)
Bx = 39mT.

4.1.1. By use of OOP magnetic field pulses, it is possible to study the
shapes and velocity profiles for higher OOP magnetic fields. At the time of
the research for this Thesis, this setup was not available.

Another important observation is that the shape is slightly tilted with
respect to the applied IP magnetic field as illustrated in figure 40, that is
the horizontal axis of inversion symmetry for the shape has a nonzero angle
with the direction of the IP magnetic field. This phenomenon might be just
due to an experimental artefact, but it is also observed by other research
groups [21].

6.2.2 Velocity Profiles

Figure 39 is taken from recordings of the DW expansion using the Kerr mir-
croscope. From these recordings datasets are formed by analyzing the DW
position and time. Linear fits to these sets give us the DW velocity along
a chosen direction. As mentioned in section 6.1, there might be leakage
from the IP magnetic field to the OOP magnetic field (This of course also
works the other way around, but because the OOP magnetic field is con-
stant throughout the measurement series, this contribution will only give
a constant offset). To account for this leakage we logarithmically average
between the velocities of negative and positive domains. In figure 41 the
velocity profiles for two samples with Ar gas flow 2.1sccm and 10sccm are
shown for positive and negative domains.
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Figure 40: The shape of the expansion of a magnetic domain for one of our samples with
an applied IP magnetic field. The symmetry axis appears to be slightly tilted with respect
to the applied IP magnetic field.

(a) (b)

Figure 41: DW velocity profiles for two samples with Ar gas flow 10sccm (a) and 2.1sccm
(b). The blue dots mark the velocity profile for a positive domain and the purple dots
mark a negative domain. The sample of figure (b) was not aligned perfectly with the
setup. However by logarithmic averaging this can be compensated for.

This result is remarkable. To start with figure 41a, it looks like the DMI
strength is just outside our measurement range and the velocity profile looks
quite like the expected profile from the regular theory of creep as illustrated
in figure 25b. However, if we try to fit such a curve from the theoretical
model to this data set (see figure 42), we see that the measure profile flattens
on the right hand side. As mentioned in section 4 this is something we
intuitively expect to happen and also follows from the characterization of
the driving force.

The second figure 41b is most interesting since it is nothing like the
profiles expected from the regular theory. The result is reproducible and
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Figure 42: By fitting the regular theory of creep to our data, we observe that the profile
flattens which is not explained by the theory.

shows approximately mirror symmetric behavior around Bx = 0. However,
instead of having a minimum, it has a maximum.

If the exponent µ could take on negative values, this phenomenon could
be explained to some extent by the regular theory of creep. However, µ < 0
is not possible [31]. It would imply a finite DW speed when Bz = 0mT.
Also our measurement of µ for this sample shows that its value is positive
(see appendix B).

In figure 43 the result is shown of the entire measurement. Here, we
study how the DW velocity profiles change for the different samples, by
determination of the profiles for an array of samples grown with Ar gas flow
ranging from 2.1sccm to 10sccm, compensating for leakage as mentioned
above and scale the profiles on their OOP magnetic driving field via the

suggested relation ln(vDW ) ∝ −B−1/4
z .

log(v
D
W )B

z 1/4

10sccm

8sccm

5sccm

4sccm
6sccm

3sccm

2.1sccm

Figure 43: Scaled DW velocity profiles with respect to the IP magnetic field Bx for
samples grown with Ar gas flow 2.1sccm (red), 3sccm (orange), 4sccm (yellow), 5sccm
(green), 6sccm (blue), 8sccm (purple), 10sccm (black). It shows that the change from the
profile in figure 41a to the profile from figure 41b seems to happen continuous.
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The results show that the profile changes continuously and that for an
Ar gas flow around 5sccm a maximum starts to form. In section 7 we
further investigate this result, give a possible explanation and compare it
with literature.

6.2.3 Anisotropy Measurement

To gain insight in the degree of interface roughness the anisotropy field for
the samples has been determined using the Stoner-Wohlfarth theory.

Figure 44: As expected we observe an increase of the effective anisotropy field with
increasing Ar gas flow.

In figure 44 the results are shown. The results are in line with our
expectation that the anisotropy increases for increasing Ar gas flow. One
possible explanation, as also suggested in section 6.1.5, is that due to the
higher gas flow, the interface is less rough and thereby more interface area is
aligned with the plane of the layers. As explained in section 2.1.1, magnetic
anisotropy arises due to effects on the interface with the easy axis perpen-
dicular to the interface plane. So if we expect a smoother interface at higher
Ar gas flows, we expect an increase of area aligned with the plane of the
layers, thus an increase of PMA strength.

6.2.4 Magnetic Moment

When a nonmagnetic atom is embedded in a ferromagnetic material, a mag-
netic moment might be induced on the nonmagnetic atom. Thus a mea-
surement of the total magnetic moment of the sample can give an indication
of the degree of intermixing. The magnetic moment is determined with the
VSM-SQUID setup for an array of samples with the same surface area (and
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thereby the same volume of ferromagnetic material) grown with different Ar
gas flows. The results are shown in figure 45.

Figure 45: Measurement of the magnetic moment in units emu/cc = 103Am−1 for samples
with different Ar gas flows. The red line indicates the expected magnetic moment derived
from the volume of ferromagnetic material.

An important remark to make here is that although the measurement
of the magnetic moment is very accurate, hence the small errorbars, the
calculation of the expected magnetic moment is less accurate due to the
uncertainty of the layer thickness of the ferromagnetic layer. For a thickness
of 0.6nm we expect that the layer consists of approximately 3 or 4 atoms. As
already argued in section 3 the thickness can vary locally by approximately
one lattice spacing distance, resulting in an error of 25 ∼ 33% locally.

Most measured magnetic moments lie close around the calculated mag-
netic moment. However, the sample grown with an Ar gas flow rate of
40sccm does seem to show a significant increase of magnetic moment. The
question now arises if this is due to intermixing because we expected that for
higher Ar gas flow rates the impacts of the deposited atoms are less violent,
creating a smoother interface with less intermixing.

6.2.5 HRTEM Images

We conclude our experimental research by the study of HRTEM images of
our samples. The imaging process and sample preparation is lengthy and
expensive, so for this Thesis HRTEM images were only made for two samples
grown with Ar gas flow rates of 2.1sccm and 10sccm. The images are shown
in figure 46.

It is hard to distinguish between the different species of atoms, but the
images do give insight in the lattice structure. The images emphasize that
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Figure 46: HRTEM images for two samples with Ar gas flow 2.1sccm (a) and 10sccm (b).

the interface structure is not defined in a clear way. However, from these
images no remarkable difference can be observed between the two samples.
Other techniques need to be used to gain more insight in the structure of
the sample. Here, our experiment meets the limit of current technology.
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7 Interpretation and Comparison

Inthis Thesis numerous remarkable and interesting results have been ob-
tained both theoretically and experimentally. Here we interpret and com-
pare our experimental results, our theory and results to literature. First,
we briefly consider the results from the fluctuating DMI theory. Then we
elaborately treat the subject of creep theory with IP magnetic fields and
DMI. Finally, we discuss the effect of varying growth parameters on the IP
magnetic field dependence of the DW velocity.

7.1 Iridium and DMI Inversion

One interesting result from the theoretical discussion on fluctuating DMI
is that DMI fluctuations enter the equation of motion for DWs as an effec-
tive IP magnetic field parallel to the DW. However, the fluctuation term
∂rDWDDMI can be negative, positive and zero and is very local, so this
effective field is hard to observe and it is not yet feasible to set up an exper-
iment to measure this local field. The theoretical discussion, combined with
HRTEM images do imply that the DMI is not necessarily constant and may
depend on the length scale of the DW width λ.

A result that does exhibits a connection with feasible experiment followed
from the elementary study of interface profiles for the square lattice. As
mentioned before, profiles such as the one illustrated in figure 21b allow for
a negative energy contribution. One can also easily see that by making the
peaks longer, the energy further decreases with −4ε per added atom.

Recent experimental research done by Hrabec et al. has shown that for
samples with an Ir layer between the top Pt layer and the Co layer suggest
that the sign of the DMI effect on the DW motion is reversed [21]. For this
Thesis a similar sample was grown to see if we can reproduce this result. The
measurement is described in appendix A. Our measurement also confirms
the DMI contribution has switched from sign compared to samples without
the Ir layer. The results of the measurement from the group of Hrabec et
al. are shown in figure 47.

Clearly the inversion arises due to the introduction of a thick enough
layer of Ir. This critical thickness is approximately the size of two atoms.
One possible explanation for this phenomenon is that due to the Ir layer,
interface structures like the one in figure 21b are formed. Increasing the Ir
layer thickness would then result in a similar effect as adding more atoms to
the peak. So for sufficiently thick Ir layers, the negative energy contribution
from the top interface overcomes the positive contribution from the bottom
interface and the total DMI effect on the DW motion is inversed.

This explanation is highly speculative and should be further investigated
by imaging the true structure of the interface with for example HRTEM
imaging. Also the theoretical models of interface profiles need to be further
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Figure 47: Experimental data from the research group of Hrabec et al. on samples with an
Ir layer below the top Pt layer with varying thickness. (a-c) Kerr microscopy image of the
three studied samples with the same applied IP magnetic field. The Ir layer thicknesses
t are t = 0nm (a), t = 0.23nm and t = 0.46nm (c). (c) already shows the DMI effect has
switched sign. (d) The data fitted to models from the regular creep theory. Figure taken
from [21].

explored by studying more profiles for different lattice structures. This the-
ory on interface effect could be used in micromagnetic simulation, making
the interface roughness and lattice structure a simulation parameter to set
the DMI.

7.2 IP Field Creep Theory

Our more controversial results regard the theory of creep combined with
IP magnetic fields. First, the shapes of the expanding magnetic domain
with an applied IP magnetic field, especially the egg-like and teardrop-like
shapes, are not expected from the regular theory of creep as we see from the
simulation in figure 31. In some literature it is suggested that the shape of
the DW expansion remains circular, and the center of the circle shifts along
the applied IP magnetic field [32]. In figure 48 their observation motivating
this statement is shown.

Where the regular theory of creep does not predict nor explain the egg-
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Figure 48: Observation of an expanding domain with an applied IP magnetic field Bx =
0mT (a) and Bx = 50mT (b). In both cases the expansion shape is circular. Figure taken
from [32].

like and teardrop-like shapes, the suggested modification to the stiffness does
give insight into why we observe this shape. Recall that the formula for the
modified stiffness is

ε̃el = Js −
A2
DMIπλ

2(ADMIQ− gλBx)
. (67)

Now, on one side of the expanding domain at the position of the DW the
effective DMI field and the IP magnetic field align, e.g. in figure 39c that
would be the right hand side, so the denominator of the second term in
equation 67 becomes smaller, thus the second term itself becomes bigger,
hence the total stiffness decreases due to the minus sign in front of the second
term. On the other side, e.g. the left hand side, the effective DMI field and
the IP magnetic field are anti parallel, resulting via the same reasoning in
an increased stiffness. So at one side of the domain the DW becomes more
elastic, whilst at the other side the DW becomes more stiff. This explains
indeed the observed shape since on the side where the DMI field and IP
magnetic field align, the DW makes a sharp bend, whilst at the other side
the DW is near straight.

Another possible explanation comes from the same theory which we used
to derive the stiffness modification in section 4.1.3. Recall that in equation
63 the second term corresponds to a tilting of the DW whenever an IP
magnetic field, parallel to the DW is applied. When the parallel magnetic
field By is positive, i.e. when B̂y × ẑ = x̂, the derivative ∂yX becomes
negative. This follows from minimizing equation 63 with respect to ∂yX
which is just a second order polynomial.

This results in a tilt of the DW in the counterclockwise direction. Anal-
ogously, if the parallel magnetic field is negative, the DW tilts clockwise.
Now we approximate the shape of the domain by an n-sided polygon. For
simplicity we take here n = 4 so we study a rectangle with two sides aligning
with the IP magnetic field. For a positive IP magnetic field, the magnetic
field at the bottom of the square is positive and parallel to the DW, so there
the DW is tilted counterclockwise. On the top side the parallel magnetic
field is negative, rotating the DW clockwise. On the left right hand side,
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there is no component of the magnetic field parallel to the DW, so no tilt-
ing occurs there. The argument is illustrated in figure 49. The rectangular
shape then indeed becomes more egg-like or teardrop-like shaped. Now by
taking the limit n→∞ the argument applies to the real shape arguing that
indeed the shape loses its vertical inversion symmetry. An inversion of the
IP magnetic field also inverts the tilts and thus the shape, which we also
observe in our experiment.

Figure 49: Transformation of a simplified, i.e. rectangular, magnetic domain shape, solely
due to tilting.

Second, the slight tilt of the expansion shape is an interesting and repro-
ducible phenomenon. The effect might occur just because of a misalignment
of the camera and the magnetic coils. if this would be the case, then the tilt
observed by inverting the IP magnetic field should be along the same line.
This topic needs to be further investigated.

Third, the DW velocity profiles do not compare well with reports in
literature and regular theory of creep. In section 5 we implemented the
regular theory in 2D models of magnetic domain expansion and we can
see that the shapes do not correspond for certain samples with nonzero IP
magnetic fields. This has caused us to revisit the theory of creep, as done
in section 4.

The three effects of the DMI and IP magnetic fields on the theory of
creep we suggested, give us tools to better understand the velocity profiles.
As we have seen, the characterization of the driving force also predict an
offset in the profile due to the DMI and can be used to gain insight in
why the flattening of the profiles occur. The effect on the energy density is
already part of the regular theory of creep, but we argued that it is not the
same effect as the driving force modification. Most insightful probably is the
theory about the modification to the stiffness, which has already provided us
with a way of understanding the expansion shapes. An important question
to ask here is in what other ways the DMI and IP magnetic field can enter
creep theory. As mentioned before, a good candidate is the DW width λ.
How the DW width λ is affected by the IP magnetic field and the DMI
should be further investigated.

The two most important observations from the DW velocity profiles are
the flattening and the maximum for higher gas flows. As already men-
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tioned, this flattening is not predicted by the regular theory of creep, but it
does follow from intuitive arguments and our characterization of the driv-
ing force. This flattening can also function as a check for this driving force
characterization because the characterization predicts a certain width of a
domain outside which the flattening occurs. This width can be observed
and the only parameters affecting it are the Gilbert damping parameter αG
and the applied OOP magnetic field Bz. An important remark to make
here is that the value of Bx at which the egg-like domain expansion shape
becomes teardrop-like, is also approximately the value where the velocity
profile starts flattening.

The maximum in the DW velocity profiles, which occurs for the samples
with lower Ar gas flows, is most controversial. In no way can the regular
theory of creep allow for such a feature, thus this observation proves to be the
largest motivation to rethink our current understanding of magnetic domain
expansion and the theory of creep. However, once again, our suggested
modification to the stiffness of the DW provides us with a way to understand
this controversial phenomenon. In section 5.2.2 we implemented the stiffness
modification in the theory of creep and illustrated its effect on the DW
velocity profiles (see figure 32). Note that only the effect of the stiffness
modification is shown, other effects are neglected. In figure 32b we see a
maximum occurring at some value of Bx, larger than the effective DMI
field. So here we at least have a theory where maxima are allowed.

To test if indeed this maximum occurs due to the stiffness modification,
the velocity profile should be measured for a broader domain of IP magnetic
fields. The theory predicts then that there is a minimum further to the left
in this profile. If this speculative explanation would be valid, the question
arises why we do not observe this maximum in the DW velocity profiles of
samples grown with higher Ar gas flow rates. We suggest that for lower gas
flow rates, the effect of the stiffness modification becomes more dominant.
This dominance arises due to the fact that the amplitude of the modification
to the stiffness scales with λ, which in turn scales with 1/

√
Kz. As the

anisotropy measurement described in section 6.2.3 shows, the anisotropy
field decreases when the Ar gas flow rate lowers. Thus, the amplitude,
which scales with 1/

√
Kz increases, making the stiffness modification more

relevant for lower Ar gas flow rates.

7.3 Measuring the DMI

For the experiment, the original plan was to measure the DMI as a function
of the Ar gas flow rate growth parameter. We expected to be able to deter-
mine the DMI by reading of the value of the minimum in the DW velocity
profiles with respect to the IP magnetic field. As we have already elabo-
rately discussed, these profiles do not correspond to the profiles expected
from the regular theory [32]. We once again stress that before using the

67



theory as a method of measuring the DMI, which some research groups are
already doing [21], the theory should be further investigated and revised.

Aside from the discussion on the legitimacy of the theory of creep, our
experiment shows that the Ar gas flow growth parameter has a significant
effect on the shape of expanding magnetic domains and on the DW velocity
profiles with respect to the IP magnetic field. In literature often only the
layer thicknesses of the samples are mentioned. We want to stress that sam-
ple growth parameters also influence the magnetic properties of the sample
significantly.
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8 Discussion, Conclusion and Outlook

To conclude this Thesis, we briefly discuss our methods and assumptions and
then summarize the important results and conclusions that can be drawn
from from our research, give an outlook on the implications of our results
and suggest future research topics and studies.

To reflect back on our own work some important points of discussion need
to be mentioned. First, the validity of the ansatz on the DW shape needs to
be questioned. This ansatz is used throughout the theoretical work to derive
models for the motion of magnetic domains and thereby has an important
effect on our results. Also, the definition of our DW width λ follows from the
DW shape which is derived from the Euler-Lagrange formalism applied on
a simple Lagrangian density. However, the ansatz is reasonable for current
or field driven systems, since the theory using this ansatz compares well to
experiment [4, 5, 34]. The inclusion of IP magnetic fields might have an
interesting effect on the definition of λ and the DW-shape and this should
be investigated in future research.

Second, we want to stress once again that in this Thesis, the results
derived from the LLG equation do not account for disorder potentials and
therefore need to be interpreted as a speculative characterization of the true
process. In future research this potential should be studied. This can easily
be done by including a potential term in the derived equations of motion for
the DW.

Third, in our theoretical work on the modifications to the creep theory
we might not only overlook ways in which the IP magnetic field and DMI
enter the theory, but we also might count certain effects double. The three
suggested effect should not be regarded as disjoint, but as potentially over-
lapping parts of an unknown whole. One might wonder for example if the
stiffness modification is (or should be) somehow included in the effect from
the energy density.

As for our important results, from the theoretical work on Fluctuating
DMI we have seen that local fluctuations in the DMI strength give rise to
an effective IP magnetic field parallel to the DW. It would be interesting to
setup an experiment where this effective IP magnetic field can be observed.
However, due to the fact that the DMI fluctuations occur on a small length
scale, this effective field is not constant throughout the material. However, if
our understanding of the tunability of the DMI further develops, one might
be able to make a sample with a fixed DMI gradient over the entire length
of the sample. Then we should be able to observe the effective IP magnetic
field due to the DMI variation.

More amenable to experimental research is the study of the effect of inter-
face structures on the DMI. As we have elaborately discussed, it is possible
to define certain interface structures where the total energy contribution of
the DMI changes sign with respect to a perfect/straight interface structure.
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This result is used to speculate about the origin of the phenomenon where
indeed a DMI inversion is observed by the introduction of a thick enough Ir
layer underneath the top Pt layer. To further investigate this speculation,
the theory on interface structures should be broadened, not only accounting
for square or hexagonal lattices, but also different types of lattices with im-
perfections. Relevant insight in the interface structures can also come from
high resolution images of such samples, for example by use of HRTEM,
energy dispersive X-ray spectroscopy mapping or atomic force microscopy.

The experiment done for for this Thesis and our theory on field driven
creep theory show that the creep theory needs to be revised to form a more
complete model of domain wall motion in PMA materials with IP magnetic
fields. The series of measurements of our samples have shown shapes of the
magnetic domain and DW velocity profiles that are not explained by the
regular theory of creep. Our suggested modifications of the theory of creep
do, to some extent, explain our observations and provide insight in the
magnetic properties of the material and how they are affected by growth
parameters. However, before setting up a more comprehensive theory of
creep, these suggested modifications should be further investigated, inter
alia, by measuring the DW velocity profiles over a larger domain. Also, we
propose that the IP magnetic field and the DMI can affect the DW width λ,
which plays an important role in the overal theory of the motion of magnetic
domains.

An important conclusion that can be drawn here is that currently the
theory has not developed far enough in order to measure the DMI strength
of a sample. More insight is needed regarding the magnetic properties and
processes of magnetic domains in PMA materials when an IP magnetic field
is applied.

Also, the effect on magnetic properties of sample growth parameters,
such as gas flow rates during the sputter deposition, on magnetic properties
of the material appear to be quite significant. The DW velocity profiles
change significantly by variation of the Ar gas flow when sputtering the top
layer and also the anisotropy field increases significantly for higher gas flows.
In this Thesis only the effect of the gas flow rate of Ar during the sputter
deposition of the top Pt layer is studied. Future research can focus for
example on the effect of temperature or the distance between the target and
substrate during the sputter deposition. The effect of growth parameters
can then be used to tune magnetic properties of the material such as the
DMI.

The experiment done for this Thesis is of an exploratory nature. To
fully comprehend the effect of varying the Ar gas flow during the sputter
deposition of the top Pt layer, a lengthier series of measurements needs to
be done, averaging over multiple different samples to cancel experimental
errors, exploring a broader domain of IP magnetic fields and determining
the DW velocity profiles for varying values of the OOP magnetic field to
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further study the flattening and shape of the expanding domains.
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Appendix

A Reproduction of DMI inversion

An interesting phenomenon recently observed by Hrabec et al. is the in-
version of the DMI effect in a sample with an Ir layer between the top Pt
layer and the Co layer compared with a similar sample without the Ir layer
[21]. In this Thesis it is suggested that this phenomenon might occur due
to effects of the structure of the interface between the ferromagnetic and
antiferromagnetic layer.

For this Thesis the DMI inversion phenomenon has been reproduced. We
indeed observe a DMI inversion, which can be concluded just from imaging
the shape of the expanding domain with an applied IP magnetic field. For
positive DMI the DW moves faster along the direction of the IP magnetic
field and slower in the antiparallel direction, as follows directly from the
theory of creep. This speed difference is reversed when the DMI switches
sign. As we can see from our own observation, the introduction of the Ir
layer had indeed caused a negative DMI (see figure 50).

Figure 50: Expansion shape of a sample with an additional Ir layer between the top Pt
layer and Co layer. The image is formed by subtracting two images at different times,
thereby indicating the nucleation point with the dark spot inside the domain. The DM
moves fastest in the direction antiparallel to the applied IP magnetic field, thus indicating
a negative DMI.
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B Measurement of Creep Exponent

In this Thesis we observed DW velocity profiles with respect to the IP mag-
netic field exhibiting a maximum. To only way a maximum can occur from
the regular theory of creep is when the exponent µ becomes negative. This,
however, would give us other complications, namely that the DW velocity is
nonzero for zero OOP magnetic field which is physically not realistic. This
consideration did provide an extra motivation to roughly measure the value
of µ.

A second motivation came from the argument in the current theory of
creep that the effect of the IP magnetic field on the driving force is in fact
the same as the effect on the energy density because they occur in the
exponent with the same power. However their powers are only the same is
(1 − µ)/3 = µ, thus if µ = 1/4. By the definition of µ and the wandering
exponent ζ, µ can be either 1 or 1/4. µ 6= 1/4 would then lead to an
interesting discussion. However, for our kind of samples µ has always found
to be 1/4 [31].

The most relevant motivation comes from the data analysis used to de-
termine the DW velocity profiles with respect to the IP magnetic field. As
described, to compensate for leakage of the IP magnetic field to the OOP
magnetic field, the DW velocities are measured for positive and negative
domains. The two measured velocities at a given IP magnetic field then
need to be averaged correctly. This can be done if we know how the DW
velocity depends on the OOP magnetic field. The creep theory suggests
ln vDW ∝ −B−µz , so to properly average, we need to confirm that indeed the
velocity of the DW scales exponentially with the OOP magnetic field and
that µ equals 1/4. This can be done by fitting the the above relation to a
dataset consisting of DW velocities at given OOP magnetic fields.

The data points and the fit result with fitted value and error of µ are
shown in figure 51. It indeed shows that the velocity scales exponentially
with the applied OOP magnetic field and that, within the error range, µ =
1/4. This result can now be used to average correctly and compensate for
leakage.
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Figure 51: Measurement of the creep exponent µ by means of fitting ln(vDW ) = v0−B−µ
z .

The fit values and errors are shown in the tables above the graphs. The measurement has
been done for two samples with Ar gas flow rate 2.1sccm (a) and 10sccm (b).
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