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Abstract

In this Thesis we theoretically investigate charge-current-induced spin current injection
as a result of a gradient in the magnetization on an interface between a ferromagnetic
material and a normal metal, using a continuum scattering method in a three terminal set-
up. We find that the injected spin current is determined by the magnetization, its derivative
and their cross product. We also find an expression for the reverse effect, a spin-current-
induced charge current on the same interface. As an application, we consider the injected
spin current due to a charge current flowing through a magnetic skyrmion and the effect it
has on the skyrmion dynamics. We find that the speed of the skyrmion can be tuned by
adjusting the thickness of the layer of the normal metal.

1



Contents

1 Introduction 3

2 A current-induced spin current as a result of a gradient in the magnetization 5
2.1 The interface parameter g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Scattering on a ferromagnet with constant magnetization . . . . . . . . . 5
2.1.2 Time reversal symmetry and scattering . . . . . . . . . . . . . . . . . . . 7
2.1.3 A spin current as a result of a gradient in the magnetization . . . . . . . 8

2.2 A spin-current-induced charge current . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Onsager reciprocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 A spin-current-induced charge current . . . . . . . . . . . . . . . . . . . . 11

3 Skyrmions on a FM-NM interface 13
3.1 Skyrmion profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Dynamics of the skyrmion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Discussion and conclusions 18

A Appendix 20
A.1 Derivation of the transmitted spin current . . . . . . . . . . . . . . . . . . . . . . 20
A.2 Transmission and reflection coefficients . . . . . . . . . . . . . . . . . . . . . . . . 21
A.3 Approximate solution to the spin diffusion equation . . . . . . . . . . . . . . . . 22
A.4 Derivation of the Thiele equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2



1 Introduction

In the field of spintronics, spin currents are of great importance [1]. If these currents, in which
electrons with different spin move in different directions, can be controlled and detected, it would
for instance be very useful for the development of storage devices that use the spin of an electron.
There are multiple ways to induce a spin current, such as the spin Hall effect [2] and the spin
Seebeck effect [3].

Recently another method for the injection of a spin current was proposed on the interface of
a ferromagnetic and a nonmagnetic metal (FM-NM) [4]. If a charge current jc flows along such
an interface, a spin current is injected into the normal metal, with spin polarization equal to

jsin = − ~ggLµBP
8πG0Ms|e|

Ω(x)× [(jc · ∇)Ω(x)]. (1)

In this equation, g is an interface parameter, gL is the Landé g factor, µB is the Bohr magneton, P
is the spin polarization of the spin current in the ferromagnet, G0 is the quantum of conductance,
Ms is the saturation magnetization, e is the electron charge and Ω is the unit magnetization
vector in the ferromagnetic metal. The situation is schematically depicted in Fig. 1.

Figure 1: An interface between a ferromagnetic metal (FM) and a normal metal (NM) and a
charge current flowing along it. Provided that the gradient of the magnetization is nonzero, a
transverse spin current is injected into the normal metal.

It is important to note that this effect requires the magnetization to be nonconstant. Other-
wise, the injected spin current would be zero according to Eq. (1). In Chapter 2 of this Thesis,
we look at a spin current injection that has terms that scale with the magnetization gradient
as well. Instead of using a tight-binding method as in Ref. [4], we use a continuum scattering
description with three terminals to find the spin current injection in one of the terminals as a
result of a charge current through the other two. We find a similar expression to the one in Eq.
(1), where the spin polarization of the injected spin current scales with the cross product of the
magnetization and its gradient.

After that we turn to the reverse effect of that in Eq. (1), which is a charge current on the
FM-NM interface induced by a spin current in the nonmagnetic metal. This effect suggests an
immediate method for detecting a spin current by measuring the induced charge current (or the
corresponding voltage difference).

3



Finally, in Chapter 3 we study an application of the injected spin current, in the form of
the dynamics of a skyrmion. Skyrmions are interesting because they could be used in memory
devices to carry information [5]. A skyrmion is a configuration of the magnetization that looks
like a spiral. In Ref. [6], the dynamics of a skyrmion as a result of a charge current was studied.
We will follow the same steps for a skyrmion on a FM-NM interface on which the charge current
will also induce a spin current into the normal metal, which in turn leads to an extra torque on
the skyrmion. It turns out that the resulting speed of the skyrmion is tunable by varying the
thickness of the normal metal layer.

We start the next chapter with a simple model to find an injected spin current using a
continuum scattering method. After that, we use time reversal symmetry to simplify the result.
Then a more complex situation is studied to find an injected spin current of the same form as
in Eq. (1). In Chapter 3 we first find the profile of the skyrmion, after which we study the
dynamics of the skyrmion.
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2 A current-induced spin current as a result of a gradient
in the magnetization

In the first few sections of this chapter we use Landauer-Büttiker theory to find an expression
for the spin current. We consider electrons that are scattered on a region with constant mag-
netization. Assuming we know all the transmission and reflection coefficients we can derive an
expression for the spin current in terms of those coefficients. In the last section we look at the
reverse effect of Eq. (1), using the theory of Onsager reciprocity.

2.1 The interface parameter g

In Ref. [4] the interface parameter g in Eq. (1) was found by using a tight-binding method. In
the following, we will derive an expression for a spin current injection in the normal metal using
an alternative method: we assume the electrons are scattered by a magnetic region in space.
First, we consider the case with only one such region and the polarization of the spin current
will then only have a term which scales with the magnetization Ω. After that, we turn to a more
complex set-up, for which the polarization of the spin current will have more terms, including
one containing the cross product of the magnetization and its gradient, just like in Eq. (1).

2.1.1 Scattering on a ferromagnet with constant magnetization

Figure 2: A three-terminal scattering set-up, with all terminals ending in a magnetic element
with constant magnetization Ω, with t and t′ the transmission coefficients from terminal 1 and
2 to terminal 3 and r the reflection coefficient in terminal 3.

We first consider the two-dimensional set-up of Fig. 2, which consists of three terminals which
all end at a small rectangular magnetic region with constant magnetization Ω. The goal is to find
the spin current in terminal 3 as a result of scattering off the ferromagnetic region. Assuming
that the potentials in all terminals are constant and that the terminals are narrow enough to
consider them as one-dimensional, we can describe the spatial part of the wave function for an
incoming electron in terminal 1 as ψ(x) = Aeikx, with A some normalization constant. For
an electron with spin up (|↑〉) which enters terminal 1 there are multiple possibilities for what
will happen. The electron can be reflected or transmitted into either terminal 2 or 3 and the
spin of the electron can stay the same or change to spin down (|↓〉). We are interested in the
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resulting spin current in terminal 3. As a result of the spin rotation symmetry, the transmission
coefficients for an electron can be written as

t =

(
t↑↑ t↓↑
t↑↓ t↓↓

)
= ts1 + ttΩ · τ . (2)

Here, tij is the reflection coefficient for an incoming electron with spin projection |i〉 and outgoing
with spin projection |j〉. Furthermore, 1 is the 2× 2 identity matrix and τ is a vector containing
the Pauli matrices as entries. The coefficients ts and tt are complex numbers which are fully
determined by transmission in the case Ω = ẑ. For a single electron entering terminal 1 with
spin (|↑〉), the wave function in terminal 3 is given by

ψ(y) = Ae−iky (t↑↑ |↑〉+ t↑↓ |↓〉) . (3)

The spin current Is1 in the third terminal as a result of this single electron is given by the
expectation value of the spin current operator ~

2τp, where p = −i~ d
dy is the momentum operator:

Is1,1↑ = −~2k

2m

(
t∗↑↑ 〈↑|+ t∗↑↓ 〈↓|

)
τ (t↑↑ |↑〉+ t↑↓ |↓〉) . (4)

To find the total spin current in the terminal as a result of incoming electrons out of terminal 1,
we have to take into account the contribution of incoming electrons with spin |↓〉 and integrate
over al possible wave numbers k. The total spin current is given by

Istot,1 = Ω

∫ µ+|e|V

0

dε (t∗stt + tst
∗
t ) . (5)

as derived in Appendix A.1 and were zero temperature is assumed. It should be noted that this
can be written as the integral over t∗s (ttΩ) + ts (ttΩ)

∗
, which will become important in the next

example. For the total spin current in terminal 3 we need to sum the contributions from all
terminals

Istot = Ω

(∫ µ+|e|V

0

dε (t∗stt + tst
∗
t ) +

∫ µ

0

dε (t∗stt + tst
∗
t ) +

∫ |e|U
0

dε (r∗srt + rsr
∗
t )

)
, (6)

as is derived in Appendix A.1. Here, rs and rt are the coefficients for reflection in terminal 3,
defined similarly to Eq. (2). It should be noted that we assume t = t′ because of the symmetry
of the problem.

There is also another way to look at this problem, using the Landauer formula, which
states that the conductance scales with the transmission coefficient. First, we note that
2(t∗stt + tst

∗
t ) = |t̃↑↑|2 − |t̃↓↓|2, with t̃↑↑ and t̃↓↓ the transmission coefficients for a spin-|↑〉 and

|↓〉 electron respectively in the case Ω = ẑ. This agrees with the intuitive notion of a spin
current that different spins move in different directions. We now set Ω = ẑ, so that the system
is collinear. In that case we can treat spin up and down separately, because no spin flip takes
place according to Eq. (2). The current of spin τ -particles in terminal 3 is given by [7]

Iτ =
|e|
2π
|t̃ττ |2(U − V1), (7)

where V1 is the potential in terminal 1. Here we used the fact that the transmission coefficients
for transmission in the opposite direction are equal, which will be proven in the next section.
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The spin current in terminal 3 is given by subtracting the spin-|↓〉 current from the spin-|↑〉 and
summing the contributions from terminal 1 and 2. Taking into account that the spin polarization
vector is in the Ω direction, we can write the spin current in terminal 3 as

Is =
|e|Ω
2π

(|t̃↑↑|2 − |t̃↓↓|2)(U − V1 − V2). (8)

This expression is similar to the one in Eq. (6), but the integral has now been carried out.

2.1.2 Time reversal symmetry and scattering

Before we proceed with the next example of an injected spin current, we make a digression to
find a relation between transmission coefficients for transmission in the opposite direction, which
we already used in the previous paragraph. A set-up with only two terminals will be used but
this theory can easily be extended to more terminals. The situation we will consider is depicted
in Fig. 3.

Figure 3: The same set-up as in Fig. 2, but now with only two terminals. The transmission and
reflection coefficients from the left are t and r and from the right we have t′ and r′.

We will follow the same steps as in Ref. [8]. There, a simple relation is derived for the
scattering matrix for a system with time reversal symmetry. However, our system is not invariant
under time reversal, since the magnetization Ω will change to −Ω if t → −t. On the left
side, we have a wave function |ψ〉Lτ = φinLτ |� τ〉 + φoutRτ |� τ〉 and on the right side we have
|ψ〉Rτ = φoutRτ |� τ〉+φinLτ |� τ〉. Here, the arrow in the bra gives the direction of the velocity and
τ gives the spin projection of the state and can be either up (↑) or down (↓).

We define the incident wave amplitude as a =
(
φinL↑, φ

in
L↓, φ

in
R↑, φ

in
R↓

)T
and the outgoing wave

amplitude is b =
(
φoutL↑ , φ

out
L↓ , φ

out
R↑ , φ

out
R↓

)T
, where the T denotes the transpose. The 2× 2 trans-

mission and reflection matrices for the left side are t and r respectively and for the right side we
define t′ and r′ in a similar fashion. By definition of the scattering matrix SΩ, we can write

b = SΩa (9)

where SΩ is a 4× 4 matrix given by

SΩ =

(
r t′

t r′

)
. (10)

Since probability should be conserved, S is unitary. Because of that we can rewrite Eq. (9) as

a∗ = STΩb
∗. (11)
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We now introduce the time reversal operator Θ. For spin 1
2 -particles, such as electrons, Θ

can be written as

Θ = −iτyK. (12)

Here, K denotes the complex conjugation operator. This operator reverses the direction of the
particle, which is clear from the preceding example. Indeed, the spatial part of the wave function
was given by eikx and complex conjugation is equivalent to changing k to −k. It should be noted
that τy is a 2 × 2 Pauli matrix that works on all transmission and reflection matrices in the
scattering matrix separately, so Θ can be understood as [9]

Θ = KC = K


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , (13)

where C is the 4× 4-matrix above.
Just as in Ref. [8], we have Θb = Ca∗ and Θa = Cb∗. One finds

a∗ = −CΘb = −CΘSΩa = −CS−ΩΘa = −CS−ΩCb
∗, (14)

where we used Eq. (9) and the fact that ΘSΩ = S−ΩΘ, which follows from the fact that time
reversal symmetry changes the magnetization from Ω to −Ω. Combining this with Eq. (11)
leads to the conclusion

STΩ = −CS−ΩC. (15)

To profit from this relation, we just plug in Eq. (10) and Eq. (2). Using t = ts1 + ttΩ · τ ,
t′ = t′s1 + t′tΩ · τ , r = rs1 + rtΩ · τ and r′ = r′s1 + r′tΩ · τ , we find from Eq. (15) that

rs − rtΩz −rt(Ωx + iΩy) ts − ttΩz −tt(Ωx + iΩy)
−rt(Ωx + iΩy) rs + rtΩz −tt(Ωx + iΩy) ts + ttΩz
t′s − t′tΩz −t′t(Ωx + iΩy) r′s − r′tΩz −r′t(Ωx + iΩy)

−t′t(Ωx − iΩy) t′s + t′tΩz −r′t(Ωx − iΩy) r′s + r′tΩz

 =


rs − rtΩz −rt(Ωx + iΩy) t′s − t′tΩz −t′t(Ωx + iΩy)

−rt(Ωx + iΩy) rs + rtΩz −t′t(Ωx + iΩy) t′s + t′tΩz
ts − ttΩz −tt(Ωx + iΩy) r′s − r′tΩz −r′t(Ωx + iΩy)

−t′t(Ωx − iΩy) t′s + t′tΩz −r′t(Ωx − iΩy) r′s + r′tΩz

 . (16)

It follows immediately that ts = t′s and tt = t′t, which tells us that the transmission matrices
for transmission in the opposite direction are equal. This situation is easily generalized to n
terminals. In that case, the relation (15) is the same, but the matrix C will be a 2n×2n-matrix,
extended by adding an extra copy of the 2 × 2-matrix −iτy, for each extra terminal, on the
diagonal.

2.1.3 A spin current as a result of a gradient in the magnetization

Now, we consider the following situation, depicted in Fig. 4. Now, there are two ferromagnetic
regions with slightly different magnetization, Ω1 and Ω2 respectively. Therefore, Ω2 can be
approximated by Ω2 ≈ Ω1+ ∂Ω1

∂x dx, where dx is the small distance between the two ferromagnetic
regions. In principle, there are infinitely many reflections possible between the two ferromagnetic
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Figure 4: Another three-terminal scattering set-up, now with two magnetic boxes with different
magnetizations Ω1 and Ω2. The transmission and reflection coefficients t, t1, t2, r, r1 and r2

correspond to the arrows depicted above.

boxes, but only terms that contain at most two reflections will be considered. Again, we are
going to sum the contributions of all terminals. First we need to find the transmission matrices
and reflection matrices for all relevant situations. Suppose for instance an incident particle in
terminal 1. It can either be transmitted directly into terminal 3 or it can take the route tr2t1 to
enter terminal 3. So, the total transmission coefficient is given by

t1�3 = t+ tr2t1. (17)

Similarly, the transmission coefficient for an electron entering terminal 2 is

t2�3 = t(1 + r2r1)t2, (18)

and the reflection coefficient in terminal 3 is

t3�3 = r + tr2t, (19)

where we used the fact that the transmission coefficients for transmission in the opposite direction
are equal. The only thing we have to do is to express these matrices in the form

ti�3 = ai1 + bivi · τ , (20)

with vi an arbitrary three-dimensional vector and ai and bi arbitrary complex numbers. In that
case we can use the observation we made at the end of Chapter 2.1.1 that the spin current in
terminal 3 as a result of the electrons that enter terminal i is an integral over ai(bivi)

∗+a∗i (bivi).
As it turns out, it is always possible to write the transmission and reflection coefficients in the
form of Eq. (20). This follows from the fact that, for arbitrary vectors v and w, we have

(v · τ )(w · τ ) = vaτawbτb

= (vawb)(δab1 + iεabcτc)

= (v ·w)1 + i(v ×w) · τ, (21)

where we used the Einstein summation convention. Expressions for ai, bi and vi are derived
in Appendix A.2 and are shown in Tab. 1. It follows that the contribution of each terminal
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contains three terms: one that scales with Ω1, one that scales with the gradient of Ω1 and one
scaling with the cross product of the two, i.e. Ω1 × ∂Ω1

∂x . This last term is of the same form

as the spin injection of Eq. (1). Since Ω1, ∂Ω1

∂x and Ω1 × ∂Ω1

∂x are orthogonal, they span the
whole space which means the spin polarization can in principle be in any direction. However,
it should be noted that the coefficients in front of the vectors are completely determined by the
transmission and reflection coefficients in the case Ω = ẑ and the potentials in the three terminals.

a1 = ts(1 + r2
st

1
s + r2

t t
1
t ) + tt(r

2
t t

1
s + r2

st
1
t )

a2 = ts((1 + r2
sr

1
s + r2

t r
1
t )t

2
s + (r2

sr
1
t + r2

t r
1
s))t

2
t + tt((1 + r2

sr
1
s + r2

t r
1
t )t

2
t + (r2

sr
1
t + r2

t r
1
s)t

2
s)

a3 = rs + ts(r
2
sts + r2

t tt) + tt(r
2
t ts + r2

stt)
b1v1 = (ts(1 + r2

st
1
s + r2

t t
1
t ) + tt(r

2
t t

1
s + r2

st
1
t ))1+ ((ts(r

2
t t

1
s + r2

st
1
t ) + tt(1 + r2

st
1
s + r2

t t
1
t ))Ω1 +

i(tsr
2
t t

1
t + ttr

2
t t

1
s)Ω1 × ∂Ω1

∂x dx+ (tsr
2
t t

1
s − ttr2

t t
1
t )
∂Ω1

∂x dx
b2v2 = (ts((1+r2

sr
1
s+r2

t r
1
t )t

2
s+(r2

sr
1
t+r2

t r
1
s))t

2
t+tt((1+r2

sr
1
s+r2

t r
1
t )t

2
t+(r2

sr
1
t+r2

t r
1
s)t

2
s))Ω1+

(ts(r
2
t r

1
st

2
s + (1 + r2

sr
1
s)t

2
t ) − tt(r2

t r
1
t t

2
s + r2

sr
1
t t

2
t ))

∂Ω1

∂x dx + i(ts(r
2
t r

1
t t

2
s + r2

sr
1
t t

2
t ) +

tt(r
2
t r

1
st

2
s + (1 + r2

sr
1
s)t

2
t ))Ω1 × ∂Ω1

∂x dx

b3v3 = (rt + ts(r
2
t ts + r2

stt) + tt(r
2
sts + r2

t tt))Ω1 + i(tsr
2
t tt + ttr

2
t ts)Ω1× ∂Ω1

∂x dx+ (tsr
2
t ts−

ttr
2
t tt)

∂Ω1

∂x dx

Table 1: The coefficients from Eq. (20) for all three terminals

2.2 A spin-current-induced charge current

So far we have considered a charge current on a FM-NM interface with non-constant magne-
tization that induces a transverse spin current into the normal metal. There is also a reverse
effect, e.g. a charge current on the interface as a result of a spin current in the normal metal.
To describe this, the theory of Onsager reciprocity will be used.

2.2.1 Onsager reciprocity

The first law of thermodynamics relates the entropy S to so-called state variables, like the energy
U , the volume V and the number of particles N :

TdS = dU + PdV − µdN. (22)

In principle there can be more state variables, like the volume or the number of particles of
another species. For every state variable ai, we can define a conjugate force by

Xi = T
∂S
∂ai

. (23)

For instance, the conjugate force of N is minus the chemical potential µ. In so called linear
response, which ignores higher order contributions of the conjugate forces, we can write for the
time derivative of every state variable ai [10]

.
ai =

M∑
k=1

LikXk. (24)

10



Figure 5: A small box on the NM-FM interface, with a spin current flowing in the z-direction
and a charge current in the x- and y-direction. At the sides of the box the corresponding values
of the (spin) chemical potential are given.

Here M is the number of state variables and L is some M ×M -matrix. The principle of Onsager
reciprocity says there is a relation between the matrix coefficients which is given by [10]

Lik(Bext,Ω) = εkεiLki(−Bext,−Ω), (25)

where Bext is an external magnetic field and Ω is the unit magnetization in the system. The
factor εi is 1 if the state variable is even under time reversal symmetry and −1 in any other case.
For example, the velocity of a particle is odd under time reversal symmetry, because if the time
is reversed the velocity of the particle will be in the opposite direction.

2.2.2 A spin-current-induced charge current

Now we return to the FM-NM interface. We consider a small box on the interface with dimensions
∆x, ∆y and ∆z and a charge current flowing in the (x, y)-plane and a spin current in the negative
z-direction. This implies the chemical potential decreases from µ to µ−|e|∆Vi in both directions
i with the direction of the current. Similarly the value of the spin chemical potential, which is
called the spin accumulation µs, is ∆µs higher on top of the small box. The situation is shown
in Fig. 5.

In this case the only relevant state variables are N and N s, where the latter is the number
of particles with spin in each direction. The volume of the box is kept fixed and we assume the
total energy to be constant. The time derivative of (22) then reads

T
.

S = −µdN
dt
− µs · dN

s

dt
. (26)

If we consider the total change in the entropy of the box, the value for the sides where a current
flows out needs to be subtracted from the value of the sides where the current flows in. We then
find

T
.

S = −|e|∆Vx
dNx
dt
− |e|∆Vy

dNy
dt
−∆µs · dN

s

dt
. (27)

Now we can make certain identifications: |e|dNi

dt = Ii, the charge current in the i-direction, and
dNs

dt = 2
~I

s, with Is the spin current. After dividing by the volume of the box ∆x∆y∆z and
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taking the limit that the dimensions of the boxes go to zero, the intensive equation

T
.
s = E · jc − 2|e|

~
∂µs

∂z
· js, (28)

arises, with s = S
∆x∆y∆z the entropy density, E = −

(
∆Vx

∆x ,
∆Vy

∆y

)
the electric field, jc =(

Ix
∆y∆z ,

Iy
∆x∆z

)
the charge current density and js = Is

∆x∆y the spin current density. Now, the

principle of Onsager reciprocity comes into play. It states there exists a matrix L with the
symmetry of Eq. (25) such that(

jci
jsj

)
= L

(
Ei

− 2
~
∂µs

j

∂z

)
. (29)

Using Ohm’s law (jc = σE) in combination with Eq. (1) leads to an expression for L12. Since
a charge current is even under time reversal symmetry and a spin current is odd and the unit
magnetization appears twice in Eq. (1), the only difference between the off diagonal terms of L
is a minus sign, according to Eq. (25). The coefficient L12 relates the induced charge current to
the gradient of the spin accumulation. To find the connection with the spin current density, a
variant of Ohm’s law for spin currents is needed: js = −π~σe2

∂µs

∂z [4]. Rearranging terms gives

jci =
ggLµBP

4πMs|e|

(
Ω× ∂Ω

∂xi

)
· js, (30)

which is the desired formula for a spin-current-induced charge current on the interface. For a spin
current induced by the spin Hall effect, the spin current density is of order 10−6 kg s−1, which
implies, taking ∂Ω

∂xi
≈ 1

λsk
= 108 m−1, gL = 1.2, P = 0.40, g = 1015 Ω−1 m−2 and Ms ≈ 106

A m−1, an induced charge current density of order 104 A m−2. Here λsk is the approximate
skyrmion size, which is a length scale for the magnetization gradient, as we will see later on.
This corresponds to a voltage difference ∆V of ∆V

λsk
≈ 10−3 V m−1, where we used σ = 107 Ω−1

m−1 for the conductivity. This voltage is small, but measurable.
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3 Skyrmions on a FM-NM interface

Having discussed the spin current injection into a normal metal, we now turn to an application
in the form of the dynamics of a skyrmion. A skyrmion is a spiral-like configuration of the
magnetization, of which the movement is influenced by various torques including one as a result
of a spin current. This torque is present because the injected spin current reduces the angular
momentum of the skyrmion [4]. Because the presence of a skyrmion ensures that the magneti-
zation is non-constant, a current through a FM-NM interface with a skyrmion will induce a spin
current in the normal metal which in turn will influence the dynamics of the skyrmion. First
we take a look at the skyrmion profile and after that we study the influence of the injected spin
current on the dynamics of the skyrmion.

3.1 Skyrmion profile

(a) φ0 = 0 (b) φ0 = π/2

Figure 6: A schematic picture of two skyrmions, with different azimuthal angle φ0.

We consider a two dimensional FM-NM interface with a single skyrmion located on
the interface. A skyrmion is a rotationally symmetric profile of the magnetization,
such as shown in Fig. 6. After parameterizing the unit magnetization as Ω(x) =
(sin(θ(ρ)) cos(φ(ρ)), sin(θ(ρ)) sin(φ(ρ))), cos(θ(ρ))) in terms of polar coordinates (ρ, ϕ), this sym-
metry is made explicit by making the functions θ and φ independent of the angle ϕ. Furthermore,
the skyrmions we consider have constant azimuthal angle φ(ρ) = φ0. The configuration of the
skyrmion is determined by the energy functional E(Ω), as derived in Ref. [6]:

E(Ω) = dF

∫
dx

(
− Js

2
Ω · ∇2Ω +K(1− Ω2

z) +
C

2
(ẑ ×Ω) · (∇×Ω)

+ µ0MsH(1− Ωz)− µ0MΩ ·Hd

)
. (31)

Here, dF is the thickness of the ferromagnetic layer. The first term in Eq. (31) is proportional to
the spin stiffness Js and is an energy exchange term, which penalizes spatial changes in the mag-
netization. The second term, proportional to some constant K, is an anisotropy term, because
the z-direction is favorable for the magnetization. The next term is the so called Dzyaloshinskii-
Moriya interaction term and the last two terms correspond to an external magnetic field Hẑ and
a dipolar field Hd respectively. To find the differential equation that determines the skyrmion
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profile, one should plug in the parametrization of the magnetization and take the functional
derivative to θ, just as in Ref. [6]. One then finds that θ obeys

d2θ

dρ̃
+

1

ρ̃

dθ

dρ̃
− sin θ cos θ

ρ̃2
+ cosφ0

sin2 θ

ρ̃
−
(
C1 + C3 cos2 φ0

)
sin θ cos θ − C2 sin θ = 0. (32)

Here, C1 = 2JsK/C
2, C2 = µ0JsHM/C2 and C3 = 2µ0JsM

2/C2 are all dimensionless constants
and ρ̃ = ρ/λsk the dimensionless radial position, where λsk = Js/C is the approximate skyrmion
size. It turns out that C1 ≈ 16, C2 ≈ 0.36, C3 ≈ 9 and φ0 ≈ 0 [11]. By taking these values and
using the boundary conditions θ(0) = π and θ(∞) = 0 we can numerically solve Eq. (32) for θ,
which will be needed later on.

Now we return to the spin current injection from Eq. (1). After using the numerical solution
found for the skyrmion profile, we can find the polarization and the strength of the spin current
in the normal metal. Fig. 7(a) shows the direction of the spin polarization as a function of the
position. In Fig. 7(b) the same plot is made for the situation with azimuthal angle φ0 = π/2,
using the same function for the polar angle θ(ρ), which does not really depend on the azimuthal
angle φ0. It turns out that the spin polarization of the injected spin current strongly depends
on the azimuthal angle φ0.

(a) φ0 = 0 (b) φ0 = π/2

Figure 7: The direction of the spin polarization as a function of the scaled position for two
different angles of the azimuthal angle φ0 of the skyrmion.

The magnitude of the spin current largely depends on the magnetization gradient of the
skyrmion. Indeed, for the experimentally determined values in the previous paragraph, the
gradient of θ is plotted in Fig. 8 for λsk = 20 nm. Since the injected spin current contains two
terms, one containing the derivative of θ and one scaling with λsk/ρ̃, the injected spin current is
negligible outside a small area, which is approximately a circle with radius λsk.

3.2 Dynamics of the skyrmion

As a result of the injected spin current in the normal metal, there is an additional torque
that works on the skyrmion. Therefore, the presence of a non-magnetic layer will influence the
dynamics of the skyrmion when a current flows trough the interface. First, we need the total
spin current in the normal metal. As a result of the injected spin current, there will be spin
accumulating at the interface, so the so-called spin accumulation µs will be nonzero on the
interface. As a result of this there will be a spin backflow in the normal metal. To find the
backflow we first need the spin accumulation which obeys the spin diffusion equation [4]

∇2µs(x, y, z) =
µs(x, y, z)

λ2
sd

. (33)
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Figure 8: The derivative of θ as a function of ρ̃ for λsk = 20 nm.

Here, λsd is the spin diffusion length of the normal metal. Under the assumption the diffusion in
the x- and y-direction is negligible, an analytical solution for the total spin flow can be obtained.
This approximation is valid if the skyrmion size is much larger than the spin diffusion length of
the normal metal. The solution for the spin accumulation is derived in Appendix A.3 and given
by

µs = −
4πλsdG0 cosh ( z+dNλsd

)

4πσ sinh ( dNλsd
) + λsdg↑↓ cosh ( dNλsd

)
jsin. (34)

Here, σ is the conductivity of the normal metal and dN the thickness of the normal metal. Now,
the backflow on the interface is proportional to the spin accumulation on the interface and the
net flow on the interface, which is the sum of the inflow and the backflow, can be written as

jsnet =
1

1 + λsdg↑↓

4πσ coth( dNλsd
)
jsin. (35)

Here g↑↓ is the mixing conductance of the normal metal. The net spin flow induces an additional
torque on the skyrmion, which is proportional to the net spin flow itself. In the presence of
other torques as a result of the charge current, the dynamics of the skyrmion is described by the
Landau-Lifschitz-Gilbert (LLG) equation, which reads [4, 6]

∂Ω

∂t
=

γ

Ms
Ω× δE[Ω]

δΩ
− αGΩ× ∂Ω

∂t
+

γ

MsdF
jnet +

∂Ω

∂t

∣∣∣∣
current

. (36)

Here, γ is the gyromagnetic ratio, E(Ω) the energy functional from Eq. (31), αG the Gilbert
damping constant and dF the thickness of the ferromagnet. The last term in the above equation
describes the current-induced torques on the skyrmion and is given by

∂Ω

∂t

∣∣∣∣
current

= a(jc · ∇)Ω + a′Ω× (jc · ∇)Ω + bΩ× (jc × ẑ) + b′Ω× (Ω× (jc × ẑ)), (37)

where a, a′, b and b′ are system parameters that cannot be calculated analytically, in general.
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To further study the dynamics we need a modified version of the Thiele equation, which
describes the dynamics of a skyrmion. Since we are looking for solutions that minimize the
energy, the term containing the functional derivative of the energy is zero. Assuming that the
solution of the LLG equation is of the form Ω(x−X(t)), where X(t) is the position of the center
of the skyrmion at time t, the Thiele equation can be obtained from the LLG equation by first
taking the cross product of the LLG equation with Ω, then taking the inner product with ∂Ω

∂xi

after which one integrates over the whole space. The result is the following equation

−εij(
.

Xj + ajcj ) = −D(αG
.

Xi + (a′ + c′)jci )− b′λskI ′Rijjcj , (38)

as is derived in Appendix A.4. Here c′ = −γggL~µBP
2M2

s |e|dF
1

4πσ+λsdg↑↓coth(dN/λsd)
and D and I ′ are

both dimensionless numbers, which can be calculated numerically for any skyrmion profile. Fur-
thermore, Rij is the 2× 2 rotation matrix corresponding to a counterclockwise rotation over an
angle φ0. One of the current induced torques does not contribute to the velocity of the single
skyrmion at all, as a result of the symmetries of the skyrmion. Since c′ influences the skyrmion
velocity in exactly the same way as a′, it may seem to be possible to define a new constant which
captures both contributions. However, this is not the case, since a′ depends on the strength of
a charge current-induced torque, while c′ describes the torque on the skyrmion as a result of the
spin injection into the normal metal, for which the normal metal needs to be present.
Since c′ is negative, the presence of a normal metal layer slows the skyrmion down. The ratio
between a′ and c′ is given by

c′

a′
= − γg~

MsdFβ0

1

4πσ + λsdg↑↓coth(dN/λsd)
, (39)

where β0 is the nonadiabaticity parameter. Typical values for these parameters are g = 1015 Ω−1

m−2 Ms = 3× 105 A m−1, dF = 3 nm, β0 = 0.04, σ = 9.5× 106,Ω−1 m−1, g↑↓ = 1015 Ω−1 m−2.
In figure the ratio between the two coefficients is plotted as a function of the scaled thickness of
the thickness of the normal metal dN

λsd
for different values of the spin diffusion length λsd, where

we have taken λsk = 20 nm.
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Figure 9: The ratio of c′ and a′ plotted as a function of the scaled thickness of the normal metal
layer for different values of the spin diffusion length.

From Fig. (9), we see that the effect of the spin current induced torques increases as a
function of the thickness of the normal metal. For small values of the spin diffusion length, the
ratio between the coefficients does not really depend on the thickness of the normal metal layer,
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because for realistic values of the thickness the ratio is already at its minimal value. However,
for instance in copper, with λsd ≈ 250 nm, the thickness of the copper layer does influence the
values of the ratio between the coefficients. It should be noted that for these values of λsd the
earlier assumption λsd � λsk is false. In realistic settings, the skyrmion moves only in one
direction. The reason for this is that in for instance the y-direction, the skyrmion will reach the
end of the layer at some point. In that case there will be an extra force on the skyrmion in the

y-direction, such that the speed
.

Y will be zero. Using the Thiele equation, we can now make an
estimate of the speed in the x-direction. Using the values above and b′ = ~γθSH

2|e|MsdF
[11], λsd = 2

nm, jc = 1011x̂ A m−2, αG = 0.2, dN = 20 nm, dF = 20 nm and θSH = 0.1, leads to
.

X ≈ 10 m
s−1.
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4 Discussion and conclusions

In this Thesis we considered a model for spin current injection from a ferromagnetic into a
normal metal, using a continuum scattering method with three terminals. It was found that
the polarization of the spin current depends on the cross product of the magnetization and
its gradient, which was derived in Ref. [4] using a completely different model. However, two
other terms were also present. After that, a mechanism for the detection of a spin current was
constructed, using the reverse effect of what we just described. For a spin current induced by
the spin Hall effect, we found that the induced charge current leads to a voltage in the order of
nanovolts, which is certainly measurable.

It should be noted that the injected spin current is first order in gradients of the magneti-
zation. One can find a more accurate description if higher order terms are considered as well.
Furthermore, the model assumes all terminals are small enough to be treated one-dimensionally,
which means only the zeroth mode is occupied in the transverse direction. This could be improved
by allowing higher modes in the transverse direction as well, which would lead to transmission
and reflection coefficients that not only depend on the spin and wave number of the incoming
wave, but on the transverse mode as well.

In the second model, with two magnetic regions, only terms with at most two reflections
between those regions were considered. An analytical solution for the case with infinite reflections
can be obtained using a geometric series. The injected spin current would still be a linear
combination of the magnetization, its derivative and their cross product. However, the coefficients
in front of those vectors would also depend on the magnetization.

In the future, one could use a more realistic model for the band structure in the metal. Now,
we have assumed that all energies below the chemical potential are allowed. To give a more
accurate description, the band structures of the metal can be taken into account. In that case,
some energies are excluded from the integrals. It should be noted that in that case the injected
spin current is still a linear combination of the same vectors, but the coefficients in front of them
will, in general, be different.

In the second part, we found that the spin current injection can be used to tune the speed
of a skyrmion on a FM-NM interface. Since one of the current induced torques is exactly of the
same form as the spin current induced torque, one can measure the effect of the spin current
on the skyrmion by varying the thickness of the normal metal layer, because the ratio of the
strength of the two torques is of order unity for reasonable values of the thickness.

For skyrmions, the polarization of the injected spin currents is highly dependent on the
constant azimuthal angle φ0, which is an example of the fact that the polarization can change
drastically if the magnetization is changed, which follows from Eq. (1). Since for a skyrmion the
magnetization is practically constant outside a region with sides of the order of 10 nm, the spin
current is injected only locally into the normal metal.

The torque on the skyrmion was derived, assuming that the injected spin current diffuses
only in the z-direction. This assumption is valid if the skyrmion size is much larger than the
spin diffusion length, which is not always true for realistic situations. When diffusion in the
other direction is included, one has to resort to numerical methods to find a solution of the spin
diffusion equation (33). One way to do this, is rewriting the differential equation Eq. (33) into
the integral equation [4]∫

dx′K(x− x′, y − y′, z)jsnet(x′, y′), (40)

and it can be shown that the Fourier transform of the kernel K(kx, ky, z) of this integral equation
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is equal to

K̂(kx, ky, z) = −G0λsd
σ

cosh( z+dNλsd

√
(k2
x + k2

y)λ2
sd + 1)√

(k2
x + k2

y)λ2
sd + 1 sinh( dNλsd

√
(k2
x + k2

y)λ2
sd + 1)

. (41)

However, the backflow term in the net spin current jsnet depends on µs itself and to find an
actual solution an iterative method could be used.

A possible direction for future research is a lattice of skyrmions instead of only a single
skyrmion. In that case, the skyrmions will also interact with each other, leading to extra torques
that should be considered, which will influence their motion.
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A Appendix

A.1 Derivation of the transmitted spin current

We start from Eq. (4) which is

Is1,1,↑ = −~2k

2m

(
t∗↑↑〈↑| +t∗↑↓〈↓|

)
τ (t↑↑ |↑〉+ t↑↓ |↓〉) . (42)

Now, we can simplify this using the expectation value for the Pauli matrices which are

〈↑| τ |↑〉 = −〈↓| τ |↓〉 = ẑ; (43a)

〈↑| τ |↓〉 = (〈↓| τ |↓〉)∗ = x̂− iŷ, (43b)

and plug this in to find:

Is1,1↑,x = −~2k

2m
(t∗↑↑t↑↓ + t↑↑t

∗
↑↓)

= −~2k

2m
((t∗s + t∗tΩz)tt(Ωx + iΩy) + (ts + ttΩz)t

∗
t (Ωx − iΩy))

= −~2k

2m
((t∗stt + tst

∗
t )Ωx + 2|tt|2ΩzΩx + i(t∗stt − tst∗t )Ωy), (44)

and

Is1,1↑,y = − i~
2k

2m
(−t∗↑↑t↑↓ + t↑↑t

∗
↑↓)

= − i~
2k

2m
(−(t∗s + t∗tΩz)tt(Ωx + iΩy) + (ts + ttΩz)t

∗
t (Ωx − iΩy))

= −~2k

2m
(−i(t∗stt − tst∗t )Ωx − 2i|tt|2ΩzΩy + (t∗stt + tst

∗
t )Ωy), (45)

and

Is1,1↑,z = −~2k

2m
(|t↑↑|2 − |t↑↓|2)

= −~2k

2m
((t∗s + t∗tΩz)(ts + ttΩz)− t∗t (Ωx − iΩy)tt(Ωx + iΩy))

= −~2k

2m
(|ts|2 + (t∗stt + tstt∗)Ωz + |tt|2Ω2

z − |tt|2(Ω2
x + Ω2

y))

= −~2k

2m
(|ts|2 + |tt|2(2Ωz − 1) + (t∗stt + tst

∗
t )Ωz). (46)

We can do a similar thing for an electron with spin |↓〉:

Is1,1↓ = −~2k

2m

(
t∗↓↓〈↓| +t∗↓↑〈↑|

)
τ (t↓↓ |↓〉+ t↓↑ |↑〉) . (47)

Simplifying leads to

Is1,1↓,x = −~2k

2m
(t∗↓↓t↓↑ + t↓↓t

∗
↓↑)

= −~2k

2m
((t∗s − t∗tΩz)tt(Ωx − iΩy) + (ts − ttΩz)t∗t (Ωx + iΩy))

= −~2k

2m
((t∗stt + tst

∗
t )Ωx − 2|tt|2ΩzΩx + i(−t∗stt + tst

∗
t )Ωy), (48)
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and

Is1,1↓,y = − i~
2k

2m
(t∗↓↓t↓↑ − t↓↓t∗↓↑)

= − i~
2k

2m
((t∗s − t∗tΩz)tt(Ωx − iΩy)− (ts − ttΩz)t∗t (Ωx + iΩy))

= −~2k

2m
(i(t∗stt − tst∗t )Ωx + 2i|tt|2ΩzΩy + (t∗stt + tst

∗
t )Ωy), (49)

and

Is1,1↓,z = −~2k

2m
(−|t↓↓|2 + |t↓↑|2)

= −~2k

2m
(−(t∗s − t∗tΩz)(ts − ttΩz) + t∗t (Ωx + iΩy)tt(Ωx − iΩy))

= −~2k

2m
(−|ts|2 + (t∗stt + tstt∗)Ωz − |tt|2Ω2

z + |tt|2(Ω2
x + Ω2

y))

= −~2k

2m
(|ts|2 − |tt|2(2Ωz − 1) + (t∗stt + tst

∗
t )Ωz). (50)

To find the spin current in terminal 3 as a result of electrons entering terminal 1, we sum the
contributions of the spin |↑〉 and spin |↓〉 electrons, to find

Is1,1↑ + Is1,1↓ = −~2k

m
(t∗stt + tst

∗
t )Ω. (51)

Integrating this over all possible values of k leads to Eq. (5). Similar expression hold for the
contributions of terminal 2 and 3. For terminal 3, the wave function is slightly different and is
given by

ψ(y) = Aeiky |↑〉+Ae−iky((r↑↑) |↑〉+ r↑↓ |↓〉) , (52)

for a particle incoming with spin |↑〉. However, the extra term cancels when one adds the
contribution of the spin down particles. Intuitively, this is clear, because for the incoming
particles in terminal 3 there is no preferred direction for the spin, so they will not contribute to
the spin current.

A.2 Transmission and reflection coefficients

In this appendix we find explicit expressions for the ai, bi and vi in Eq. (20). We start with the
case i = 1. Using (21), we calculate

t1�3 = t+ tr2t1 = t+ t((r2
st

1
s + r2

t t
1
t )1 + (r2

t t
1
sΩ2 + r2

t t
1
sΩ1 + ir2

t t
1
tΩ1 ×Ω2) · τ )

= (ts(1 + r2
st

1
s + r2

t t
1
t ) + tt(r

2
t t

1
s + r2

st
1
t ))1 + ((ts(r

2
t t

1
s + r2

st
1
t ) + tt(1 + r2

st
1
s + r2

t t
1
t ))Ω1

+ i(tsr
2
t t

1
t + ttr

2
t t

1
s)Ω1 ×

∂Ω1

∂x
dx+ (tsr

2
t t

1
s − ttr2

t t
1
t )
∂Ω1

∂x
dx) · τ , (53)
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where we used Ω2 = Ω1 + ∂Ω1

∂x dx and Ω1 · ∂Ω1

∂x dx = 0, which follows from the fact that Ω is a
unit vector. For i = 2 we find

t2�3 = t(1 + r2r1)t2

= (ts((1 + r2
sr

1
s + r2

t r
1
t )t

2
s + (r2

sr
1
t + r2

t r
1
s))t

2
t + tt((1 + r2

sr
1
s + r2

t r
1
t )t

2
t

+ (r2
sr

1
t + r2

t r
1
s)t

2
s))1 + ((ts((1 + r2

sr
1
s + r2

t r
1
t )t

2
s + (r2

sr
1
t + r2

t r
1
s))t

2
t

+ tt((1 + r2
sr

1
s + r2

t r
1
t )t

2
t + (r2

sr
1
t + r2

t r
1
s)t

2
s))Ω1

+ (ts(r
2
t r

1
st

2
s + (1 + r2

sr
1
s)t

2
t )− tt(r2

t r
1
t t

2
s + r2

sr
1
t t

2
t ))

∂Ω1

∂x
dx

+ i(ts(r
2
t r

1
t t

2
s + r2

sr
1
t t

2
t ) + tt(r

2
t r

1
st

2
s + (1 + r2

sr
1
s)t

2
t ))Ω1 ×

∂Ω1

∂x
dx) · τ , (54)

and for i = 3 we have

t3�3 = r + tr2t = (rs + ts(r
2
sts + r2

t tt) + tt(r
2
t ts + r2

stt))1 + ((rt + ts(r
2
t ts + r2

stt)

+ tt(r
2
sts + r2

t tt))Ω1 + i(tsr
2
t tt + ttr

2
t ts)Ω1 ×

∂Ω1

∂x
dx+ (tsr

2
t ts − ttr2

t tt)
∂Ω1

∂x
dx) · τ .

(55)

Now, we have written all complete transmission and reflection coefficients in the desired form.

A.3 Approximate solution to the spin diffusion equation

In this appendix we derive Eq. (34) from Eq. (33) using the approximation that ∇2 = ∂2

∂z2 . First
we need the boundary conditions for this differential equation:

∂µ

∂z

∣∣∣∣
z=−dN

= 0; (56a)

∂µ

∂z

∣∣∣∣
z=0

= −G0

σ
(jsin + jsback). (56b)

These equations say that the gradient of the spin accumulation should scale with the spin current
on the boundary of the normal metal. The backflow jsback on the interface scales with the spin
accumulation itself

jsback =
g↑↓

4πG0
µ

∣∣∣∣
z=0

. (57)

To find the solution to these set of equations, we use the ansatz µ(x, y, z) =
f(x, y) cosh (z/λsd + z0) with f an arbitrary vector valued function and z0 some real number.
This leads to

µ = −
4πλsdG0 cosh ( z+dNλsd

)

4πσ sinh ( dNλsd
) + λsdg↑↓ cosh ( dNλsd

)
jsin. (58)

We immediately find the backflow of the spin current, using equation (57) as

jsback = − 1
4πσ
λsdg↑↓

tanh ( dNλsd
) + 1

jsin, (59)
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and the net spin spin flow, given by the sum of the injected spin current and the backflow, as

jsnet =
1

1 + λsdg↑↓

4πσ cotanh(dNλ )
jsin, (60)

which is Eq. (34).

A.4 Derivation of the Thiele equation

The Thiele equation in Eq. (38) can be derived from Eq. (36), using the ansatz Ω(x −X(t)).
To do this, we first take the cross product of Ω with the LLG equation and subsequently take
the inner product with ∂Ω

∂xi
. The last step is integrating the resulting equation over the whole

space. Now, we are going to follow these steps for all terms in the LLG equation. We are looking
for solutions of the equations of motion and such solutions minimize the energy. Therefore, the
term containing the functional derivative of the energy functional is zero in this description. For
the first term ∂Ω

∂t , we have∫
dx

∂Ω

∂xi
·(Ω× ∂Ω

∂t
) =

∫
dx

∂Ω

∂xi
·(Ω×(−

.

Xj
∂Ω

∂xj
)) = −

.

Xj

∫
dx Ω·

(
∂Ω

∂xj
× ∂Ω

∂xi

)
= 4πεij

.

XjW,

(61)

where W is the winding number of the skyrmion, defined by W = 1
4π

∫
dxΩ · (∂Ω

∂x ×
∂Ω
∂y ). The

winding number of a skyrmion is always an integer and is in this case given by W = −1.
For the second term in the equation we first remark

Ω×
(

Ω× ∂Ω

∂t

)
= Ω

(
Ω · ∂Ω

∂t

)
− ∂Ω

∂t
(Ω ·Ω) = −∂Ω

∂t
, (62)

where we have used the fact that Ω is a unit vector, which implies 0 = 1
2
∂
∂t ||Ω|| = Ω · ∂Ω

∂t . Using

the descriptions of the derivatives ∂
∂x and ∂

∂y in cylindrical coordinates we find:

∂Ω

∂x
· ∂Ω

∂t
= −

(
cos2 ϕ

(
dθ

dρ

)
+

sin2 θ sin2 ϕ

ρ2

)
.

X−
(

sinϕ cosϕ

((
dθ

dρ

)2

− sin2 θ

ρ2

))
.

Y (63)

∂Ω

∂y
· ∂Ω

∂t
= −

(
sin2 ϕ

(
dθ

dρ

)
+

sin2 θ cos2 ϕ

ρ2

)
.

Y−
(

sinϕ cosϕ

((
dθ

dρ

)2

− sin2 θ

ρ2

))
.

X. (64)

So the desired integral is given by∫
dx

∂Ω

∂xi
·
(

Ω×
(
− αGΩ× ∂Ω

∂t

))
= αG

∫
dx

∂Ω

∂xi
· ∂Ω

∂t
= −4παGD

.

Xi, (65)

where D is a dimensionless number given by D = 1
4

∫∞
0
dρ( sin2 θ

ρ + ρ( dθdρ )2).
Now, we are ready to calculate the two current-induced torques that contain a gradient of the
magnetization. Indeed, by writing

∂Ω

∂t
= −(

.

X · ∇)Ω, (66)
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we see that those terms are of the same form as the two terms we just calculated. Therefore, we
have ∫

dx
∂Ω

∂xi
· (Ω× a(jc · ∇)Ω) = −4πaεijjjW ; (67)

∫
dx

∂Ω

∂xi
· (Ω× a′(Ω× (jc · ∇)Ω)) = −4πa′εijjjD. (68)

For the next term we first note:

dΩ

dxi
·(Ω× (bΩ× (jc × ẑ))) = b

dΩ

dxi
·(Ω (Ω · (jc × ẑ))− jc × ẑ (Ω ·Ω)) = −b

(
dΩ

dxi
· (jc × ẑ)

)
.

(69)

The first term vanishes because the change in the unit vector Ω is always perpendicular to the
vector itself, as we saw earlier. We find, using polar coordinates and integrating the ϕ-coordinate,

∫
dx
∂Ω

∂x
· (jc × ẑ) = 4π(−jc1 sin(φ0) + jc2 cos(φ0))λskI; (70)

∫
dx
∂Ω

∂y
· (jc × ẑ) = 4π(−jc1 cos(φ0)− jc2 sin(φ0))λskI. (71)

In this equation, I is a dimensionless number, given by I = 1
4

∫∞
0
dρ̃ (sin θ+ ρ̃ cos θ dθdρ̃ ), where we

introduced the dimensionless variable ρ̃ = ρ
λsk

. By writing cos θ dθdρ̃ = d sin θ
dρ̃ , we find I = 0 after

partial integration. The boundary term at infinity vanishes since θ(ρ) goes faster to zero than
1
ρ . (In fact, for the solutions of the differential equation that determines the skyrmion profiles, θ
is practically zero if ρ is greater than a certain value which is approximately the skyrmion size
λsk.)
For the last term we note that

Ω× (Ω× (Ω× (jc × ẑ))) = −Ω× (jc × ẑ) = ẑ(Ω · jc)− jc(Ω · ẑ). (72)

For the desired integrals, we then find:∫
dx

((
∂Ω

∂x
· ẑ
)

(Ω · jc)−
(
∂Ω

∂x
· jc
)

(Ω · ẑ)

)
= 4π(−jc1 cos(φ0) + jc2 sin(φ0))λskI

′; (73)

∫
dx

((
∂Ω

∂y
· ẑ
)

(Ω · jc)−
(
∂Ω

∂x
· jc
)

(Ω · ẑ)

)
= 4π(−jc1 sin(φ0)− jc2 cos(φ0))λskI

′. (74)

I ′ is another dimensionless number, given by an integral as well: I ′ = 1
4

∫
dρ̃ (sin θ cos θ − θ). We

can write the above equations in the following convenient way:∫
dx

∂Ω

∂xi
· (Ω× (b′Ω× (Ω× (jc × ẑ)))) = b′λskI

′
ijj

c
j , (75)

where we introduced I ′ij = −I ′Rij(φ0), with Rij the elements of the orthogonal matrix corre-
sponding to a counterclockwise rotation of the plane over an angle φ0.
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The only contribution to be included is the one of the net spin current on the interface. We note
that, combining equation (1) and (60), that we can write

γ

MsdF
jsnet = c′Ω× (jc · ∇)Ω, (76)

with c′ = −γggL~µBP
2M2

s |e|dF
1

4πσ+λsdg↑↓cotanh(dN/λsd)
. This is of exactly the same form as one of the

current-induced torques, for which we earlier calculated the contribution. So collecting all the
terms, we find the so called Thiele equation:

−εij(
.

Xj + ajcj ) = −D(αG
.

Xi + (a′ + c′)jci ) + b′λskI
′
ijj

c
j . (77)
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