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Abstract

At any place where a river flows into the sea, fresh and saline water are mixed. This salinity-
gradient energy or “blue energy” can be harvested, e.g. using capacitive mixing. The reverse process
is also possible: water desalination using capacitive demixing in a three-step cycle. In this thesis,
the aim is to find the optimal desalination cycle, such that the required work per liter desalinated
water is minimal. In order to find the optimal cycle, the parameter space of two variables is explored:
the temperature, and the ratio between the engine volume and the water volume that is made fresh
during one cycle. Numerical solutions to the lattice-gas Poisson-Boltzmann equation for parallel-
plate capacitors show that desalination processes are the most efficient at low temperatures, with an
increase in work of 0.31% per degree for a volume ratio of 1.33, where the needed work per secured
liter fresh water W

Vb
is 1.74 kJ/liter at 0 ◦C. Calculations regarding the volume ratio indicate that

desalination processes are the most efficient for the case when the volume of secured fresh water per
cycle is large compared to the engine volume.

Contents

1 Introduction 2
1.1 Blue engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Electric double-layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The reverse cycle: desalination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theory 6
2.1 Debye length and Bjerrum length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Dielectric constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Poisson-Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Lattice-gas Poisson-Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Work per cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Numerical results 11
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Investigating the desalination cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Temperature effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Effects of the volume ratio between the engine and the fresh water volume . . . . . . . . . 14

4 Conclusion and outlook 16

5 Acknowledgements 17

Appendix A Numerical method 19

1



1 Introduction

Today’s world-wide energy demand is enormous, and will only increase in the future. As the forecast
of the depletion of fossil fuels like coal and oil at some point is certain, the world’s attention for ways
to generate power has gradually shifted to more sustainable possibilities. Nowadays, solar energy, wind
energy, and energy obtained from biomass are very popular options, though many more can be named.
Very recently, a way was suggested to harvest energy from CO2 emissions [1].

A very interesting possibility in generating sustainable energy involves the use of water in some way,
e.g. turbines driven by the tides [2, 3], and the mixing of fresh and salty water [4–9]. The extracting of
this latter salinity-gradient energy or “blue energy”, is in principle possible at any place where a river
flows into the sea. Due to the irreversible mixing of fresh and salty water, the entropy of the system
increases, and free energy is dissipated. This dissipation is about 2 kJ per liter of river water, which can
be compared to the energy produced in a waterfall of 200 m [4].

Many existing techniques to harvest this salinity-gradient energy involve the use of membranes, like
pressure-retarded osmosis [5, 6] and reverse electrodialysis [7, 8]. However, these membranes require
rather advanced technology, are expensive for large-scale systems, and are easily polluted. Recently, a
device was suggested by Brogioli [9] to gain this blue energy using capacitive mixing. This technique
consists of a cyclic process, in which a capacitor is alternatingly charged and discharged in fresh and
saline water. It is this type of engine that is the subject of this thesis.

Whereas this engine extracts energy from the mixing of fresh and saline water, it is also possible to
do the reverse. In this way, energy is needed to demix saline water, such that it is possible to achieve
water desalination. Of course, the need of fresh water is another important subject for some parts of the
world.

In this thesis, the aim is to find the most optimal cycle, i.e. to find the cycle that requires the least
input of energy per secured liter of fresh water. In order to do this, the parameter space of two variables
is studied: the temperature, and the ratio between the engine volume and the water volume that is
made fresh during one cycle. Desalination cycles are calculated for different temperatures and different
volumes of secured fresh water per cycle. In this way, the theoretically most effective cycle for these
parameters can be found. Also interesting are, amongst others, the effects of the engine size, geometry
of the electrodes, and the needed input of power, i.e. required energy per unit time, but those are left
for future studies.

1.1 Blue engines

The type of engine which was suggested by Brogioli, consists of a system of two porous carbon electrodes,
which form a capacitor immersed in an aqueous solution, as can be seen in Fig. 1a. Having an internal
surface area of the order of 103 m2 per gram of carbon and a typical pore size inside the electrodes of the
order of nanometers, the capacitance of these electrodes can be very large. These enormous surface areas
and very small distances between the electrodes are the reason why these electrodes are sometimes called
supercapacitors. The engine as proposed by Brogioli accomplishes a four-step charging and discharging
cycle, as shown in Fig. 2a. First, the engine is filled with saline water and the capacitor is charged grand-
canonically, i.e. in contact with a infinite large reservoir of saline water, such that the surface charge
density σ on the electrodes increases. Next, the salt water in the engine is replaced with fresh water.
Saline water is better able to screen the immersed surface charge than fresh water. Since the electrostatic
potential depends on the ion concentration in the electrolyte, the potential across the capacitor will be
lower for higher ion concentrations. As a result of the described flushing step, the electrostatic potential
across the capacitor increases. The third step in the cycle consists of the discharging of the capacitor
immersed in fresh water, and in the fourth step the fresh water is replaced by salt water again. Then,
the system has returned to its initial state, and the cycle can be repeated. By making the salt water
more fresh and the fresh water more salty, the ionic entropy of the system increases during the cycle.
The cycle will effectively produce energy, because the electrodes discharge at a higher potential than at
which they are charged.

By mapping this blue engine and corresponding variables to heat engines, Boon and Van Roij iden-
tified the Brogioli cycle as the “blue” equivalent of the Stirling heat engine [10]. In this mapping, the
variables {S, T, V,−p} (i.e. entropy, temperature, volume, and pressure of the gas in the Stirling en-
gine) correspond to {N,µ,Q,Ψ} (i.e. number of salt ions, their chemical potential, the charge on the
electrode, and the electrostatic potential at the surface of the electrode) [11]. They were able to map
the theoretically most efficient heat engine, the so-called Carnot engine, onto blue engines, giving the
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(a)

(b)

Figure 1: (a) A typical setup for a blue engine using capacitive mixing. The system, consisting of two porous
carbon electrodes in a volume filled with water, is connected to a reservoir with a low ion concentration (fresh
water) on the left, and a reservoir with a high ion concentration (saline water) on the right. During the process,
the electrodes are alternatingly charged and discharged, connected to alternatingly the fresh water reservoir or
the saline water reservoir, or disconnected from both. (b) Whenever a charged object is placed into an ionic
solution, an electric double-layer forms. The ions in the water try to screen the charge of the immersed object,
such that the whole becomes electrically neutral. A first layer of charge stems from the immersed object, whereas
a second much more diffuse second layer consists of the screening charges in the electrolyte. This screening layer
can be divided in a Stern layer with a thickness of the radius of an ion, where the ions cannot be due to their
finite size, and a diffuse layer. The screening typically happens within a few Debye lengths κ−1, which can be
found in Eq. (1). In the Stern layer, the electrostatic potential Ψ(z) decreases linearly, and declines exponentially
in the diffuse layer.

theoretically most efficient blue engine. From now on, this type of cycle will be referred to as the Boon
cycle.

The Boon cycle is shown in Fig. 2a, where the potential Ψ of the capacitor is plotted as a function of
the surface charge density σ. The system starts in point A, representing a low-charge state in saline water.
The system is connected to a saline water reservoir (e.g. the sea), and in the step AB the electrodes are
grand-canonically charged, very similar to the charging step in the Brogioli cycle. However, in point B
the engine is disconnected from the salt water bath, and the capacitor is charged canonically, i.e. such
that the number of ions in the system is fixed, during step BC. This causes the ion concentration to
drop and the potential to rise, until the water salinity in the engine is equal to fresh water salinity in
point C. There, the engine is connected to a fresh water reservoir (e.g. a river), and is discharged grand-
canonically. In point D, the engine is disconnected from the bath, and the electrodes are discharged
canonically during the DA trajectory, so that the ion concentration increases again, and the potential
decreases. In point A, the water in the engine is now salty again, such that the system is left in its initial
state, and the cycle can be repeated.

1.2 Electric double-layers

When a charged particle or charged electrode is placed into an ionic solution, in order to screen the
charge of the object the density of oppositely charged ions near the object increases and like charges are
repelled, as can be seen in Fig. 1b. Ions of like charge as the immersed object are called coions. Ions of
opposite charge are referred to as counterions.

In 1879, Hermann von Helmholtz proposed the first model to treat this type of system [12]. He coined
the term “electric double-layer”, which consists of the combination of the layer of charge of the immersed
object, and the screening layer of oppositely charged ions in the solvent. In this model, the object layer
is directly screened at a distance d from the plane by a layer of counterions of diameter d

2 . Beyond this
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Figure 2: (a) Two charging and discharging cycles in the charge-voltage representation, for a planar capacitor
with pore size L = 4 nm at T = 290 K. The red dotted ABC’D’A cycle and blue ABCDA cycle refer to the cycles
decribed by Brogioli [9] and Boon [10], respectively. During step AB, the engine is connected to a salty water
reservoir of high ion concentration ρH = 0.6 M. In the CD and C’D’ trajectories, the engine is connected to a
fresh water reservoir of low ion concentration ρL = 0.024 M. Whereas the Brogioli cycle uses a flushing step in
BC’ and C’A by replacing the saline water with fresh water and vice versa, in the Boon cycle the electrodes are
being charged and discharged further, being disconnected from the reservoirs. The enclosed area of the cycles in
this figure equals, up to a constant, the energy that can be harvested from one cycle, as will be shown in Eq.(21).
The curves have been calculated numerically as described in section 3. (b) A charging and discharging cycle
ABCA in the charge-voltage representation, for a planar capacitor with pore size L = 4 nm at T = 290 K. The
high ion concentration in the salt water reservoir is ρH = 0.6 M, while the low fresh water ion density ρL equals
0.024 M. In the charging step AB, the engine of volume Ve is connected to a bath of finite size Vb = 0.75Ve.
During this cycle, work is required to be done on the system such that the initially salt water in volume Vb is
made fresh. Up to a constant, this work equals the enclosed area of the curve in this figure, as will be shown in
Eq.(21). This curve has been calculated numerically, as described in section 3.

distance, coion and counterion densities equal the bulk ion density. A much more sophisticated model
was introduced in 1913 by Louis Georges Gouy [13] and David Chapman [14]. Still treating the ions as
pointlike particles, they modelled the counterion layer to be much more diffuse than the single plane-like
Helmholtz layer. This diffuse double-layer is described by Boltzmann-like profiles for the ion densities

ρ±(z) = ρs exp(∓ eψ(z)
kBT

), with ρ±(z) the ion densities of positive and negative charge, ρs the ion density
in the bulk, ψ(z) the electrostatic potential, and z the distance from the electrode. Though this model
already forms a much more accurate description, the assumption of the ions being pointlike is not always
justified. As can be expected, this approach starts breaking down for high packing fractions, typically
occurring close to the plates at high voltages. Since an infinite amount of point particles can be packed
here, the capacitance in the Gouy-Chapman model shows unphysical divergence in this regime, as will
be shown in Fig. 5a. In 1924, Otto Stern (also known for the Stern-Gerlach experiment) suggested a
combination of the Helmholtz and the Gouy-Chapman model [15]. In reality, ions do have a finite size,
and hence cannot approach the surface closer than a few ångström. The ions in the Gouy-Chapman
model can only be as close to the plates as some distance d, which is taken to be the radius of the
ion. Then, a Helmholtz-type layer can be found at this distance, and beyond lies the diffuse part of the
double-layer. This approach is called the Gouy-Chapman-Stern model.

1.3 The reverse cycle: desalination

Whereas a blue engine produces energy by effectively making the salty water more fresh and the fresh
water saltier, it is the purpose of desalination to make salt water fresh, requiring work to be done on the
system. Desalination is basically the reversed process of harvesting blue energy. Continuing the analogy
between heat and blue engines, a desalination device based on this scheme could be named as well a
“blue fridge”.

The system of interest in this thesis consists of an engine of volume Ve, with two electrodes immersed
in an aqueous solution, connected to an infinitely large reservoir of salt water (like the sea) at high
concentration ρH , and to a finite volume Vb. This latter volume is in each cycle initially filled with sea
water, to be made fresh (at low concentration ρL) by the “fridge” during one cycle. In this system, there
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is no more an infinite large fresh water reservoir, such that one of the grand-canonical steps does not
take place in the desalination cycle.

The reverse process of a desalination cycle is a blue engine with limited fresh water supply [10]. If
both cycles are represented in the (σ,Ψ)-plane, the only difference between them is the direction in which
the trajectories are covered.

The functioning of the desalination engine can be described by a three-stage cycle ABCA as shown
in Fig. 2b. In the first step AB, the engine is coupled to the volume Vb, and is initially filled with sea
water. The electrodes are immersed in salt water at concentration ρH , and canonically charged from
state A at a charge density σA to a higher σB in state B, hereby causing the salt concentration to drop
to ρL in both Vb and Ve. Subsequently, in point B the engine and the bath are disconnected, such that
the obtained fresh water in volume Vb can be secured. During the step BC the electrodes in Ve are
canonically discharged to a charge density σC in state C, such that the ion concentration in the middle
of the pores increases to the original sea-level ρH . Finally, the engine is connected to the salt water
reservoir in state C. The trajectory CA describes the grand-canonically discharging of the system to the
initial electrode charge density, where the water is salty again. Since the salt water bath is infinitely
large, the transfer of a finite number of ions will not affect the bulk salt concentration in the reservoir.
This means the system is back in its initial state after performing one cycle. The secured fresh water
can be taken away from the volume Vb. After Vb has been filled again with sea water, the cycle can be
started again.
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2 Theory

2.1 Debye length and Bjerrum length

The typical distance over which the charge of an object immersed in an aqueous solution is screened,
serves as a measure of the width of the electric double-layer. This measure is called the Debye length
κ−1, and is defined as:

κ−1 =
√

8πλBρs
−1
, (1)

with ρs being the ion density of coions and counterions in the bulk, such that the total ion bulk concen-
tration equals 2ρs. Here, λB denotes the Bjerrum length, which is defined as

λB =
e2

4πε0εkBT
, (2)

with e = 1.602 · 10−19C the elementary charge, kB = 1.381 · 10−23 J/K the Boltzmann constant, T the
temperature in Kelvin, ε0 = 8.854 · 10−12 F/m the electrical permittivity in vacuum, and ε and relative
electrical permittivity. The Bjerrum length is the distance between two unit charges e, for which the
thermal energy kBT equals the total strength of the Coulomb interaction potential. In water (ε = 80)
at room temperature, λB is 0.72 nm. In Fig. 3, the Debye length and the Bjerrum length are plotted
against temperature for different values of the ion bulk concentration.

2.2 Dielectric constant

Unlike its name, the dielectric constant ε is not a constant, but depends on various parameters of the
system and may vary with position in the electrolyte [16,17]. In this thesis, local effects will be neglected
by taking ε as a global constant. However, dependences on temperature and ion bulk density will be
taken into account, using the relation between ε and temperature T and ion density ρs in water, as found
experimentally in Ref. [18],

ε = ε(T )a(ρs), (3)

with

ε(T ) = 249.4− 0.788T + 7.20 · 10−4T 2, (4)

and

a(ρs) = 1.000− 0.2551ρs + 5.151 · 10−2ρ2
s − 6.889 · 10−3ρ3

s, (5)

with T the temperature in Kelvin, and ρs the ion density in the reservoir in molarity. This simplified
expression will be used in the numerical calculations of this thesis.
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Figure 3: The Debye length κ−1 from Eq. (1) (a) and the Bjerrum length λB from Eq. (2) (b), plotted
against temperature for different ion bulk densities ρs = {0.024, 0.2, 0.6} M. Regarding the dielectric constant,
the temperature and ion density dependent relation (3) is used. As the temperature increases, λB rises and κ−1

decreases. For higher ion concentrations, λB is larger, whereas κ−1 is much smaller.
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2.3 Poisson-Boltzmann equation

To describe an electric double-layer at an electrode, the potential and ion density profiles must be known.
Since charges are present, a first ingredient for this calculation can be taken from electrostatics. The

Poisson equation ∇2ψ(r) = − ρ(r)
4πε0ε

, with ψ(r) the electrostatic potential and ρ(r) the charge density at
position r, gives the relation between potential and charge at some position r. A second equation is a
mean-field Boltzmann distribution from statistical physics, where the energy of an ion with charge ±e
at position z is approximated by ±eψ(z), so that ρ±(z) = ρs exp(∓ eψ(z)

kBT
). The most important equation

of this thesis can be obtained from these results: the Poisson-Boltzmann equation

∇2φ(r) = κ2 sinhφ(r), (6)

with φ(r) the dimensionless electric potential φ(r) = eψ(r)
kBT

at position r outside the electrode, and κ−1

the Debye length, as defined in Eq. (1).
Studying blue engines implies studying electric double-layers, which involves solving the Poisson-

Boltzmann equation for various systems and conditions. Together with appropriate boundary conditions,
this equation can be solved analytically for some cases. Global charge neutrality of the system imposes
a first boundary condition. This involves assuming the gradient of the potential goes to zero for large
distances from the electrode, since any non-zero change in the first derivative implies charge being present:

lim
z→∞

φ(z) = 0. (7)

For a parallel plate capacitor with planar geometry, this condition changes to

φ′(L/2) = 0, (8)

because of charge-neutrality of a half-capacitor and the symmetry with respect to the midplane between
the both plates at z = 0 and z = L.

Another condition is provided by the use of Gauss’ law ∇ · E = ρ
4πεε0

, where ∇ · E denotes the
divergence of the electric field, and ρ the total electric charge density. For a one-electrode system with
planar geometry, such that position r becomes distance z, this condition takes the form of

φ′(0) = −4πλBσ. (9)
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Figure 4: Analytic solution to the Poisson Boltzmann equation (10) with boundary conditions Eqs. (7) and
(8) for T = 290 K. In (a) the solution is plotted for ion bulk density ρs = 0.6 M and surface charge density
σ = {0.1, 0.5, 10.0}e nm−2, indicated by the blue, red dashed, and green dotted lines, respectively. From Eq.
(8), it can be seen that the surface charge density σ influences the steepness of the potential at the electrode. As
this slope increases, the potential at the electrode rises. In (b), the solution is plotted for σ = 1.0e nm−2 and
ρs = {0.024, 0.2, 0.6} M indicated by the blue, red dashed, and green dotted lines, respectively. As the ion bulk
density ρs increases, the Debye length, over which the screening of the plate charges typically occurs, becomes
smaller, and the electrode potential φ(0) decreases.
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Figure 5: (a) The dimensionless potential at the electrode in the Gouy-Chapman model βeΨGC versus the

dimensionless surface charge σ
σ∗ , with β = 1

kBT
. The figure shows that for high ΨGC, the capacitance C =

(
dΨ
dQ

)−1

diverges. (b) The crossover surface charge decreases when the bulk salinity ρs increases for T = 290 K. For large
values of ρs, the linear screening regime vanishes, and ions already adsorb at the electrode for low σ.

Using boundary conditions Eqs. (7) and (9), the analytical solution to Eq. (6) for a system of one
electrode of planar geometry reads

φ(z) = 2 ln

[
1 + γ exp(−κz)
1− γ exp(−κz)

]
, (10)

with integration constant γ =

√
1+(y/2)2−1

y/2 , where y = 4πλBσ
κ is the dimensionless surface charge density.

In Figs. 4a and 4b, the solution Eq. (10) is plotted for different values of surface charge density σ and
ion bulk concentration ρs, respectively.

Since the electrodes in the engine are being charged and discharged, i.e. ions adsorb and desorb at
the electrode, the cationic and anionic adsorption must be calculated. This is the excess number of ions
per unit surface area, defined by

Γ(σ, ρs) =

∫ z=L/2

z=0

dz (ρ±(z)− ρs) . (11)

Note that the profiles are integrated up to z = L/2 for the half-capacitor considered. Local charge
neutrality implies that σ = Γ−(σ, ρs)− Γ+(σ, ρs). The total ion adsorption is defined by

Γ±(σ, ρs) = Γ+(σ, ρs) + Γ−(σ, ρs). (12)

The total number of ions in the volume can thus be calculated using

N = 2ρsV +AΓ(σ, ρs). (13)

Note that if the system consists of the engine only, V = Ve, and the relation simplifies to N/A =∫ z=L/2
z=0

dz (ρ+(z) + ρ−(z)).
Evaluating Eq. (10) at z = 0, the surface potential ΨGC can be derived as

eΨGC

kBT
= 2 sinh−1

( σ
σ∗

)
, (14)

with σ∗ = κ
2πλB

the cross-over surface density that separates the linear screening regime σ � σ∗ from
non-linear screening σ � σ∗. In the linear screening regime, the double layers repel coions and attract
counterions at the same rate, such that the total ion concentration remains constant and the adsorption
Γ is small. For higher σ, ions start being adsorbed at the electrodes. For T = 290 K and ρs = 0.6 M, σ∗

is around 0.071e nm−2. The behaviour of σ∗ for different ρs can be found in Fig. 5b. Writing Q = σA
and using Eq. (14), the differential capacitance C = dQ

dΨ can be written as

CGC

A
=
κε

4π
cosh

(
eΨGC

2kBT

)
. (15)
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Figure 6: Solutions to the lattice-gas Poisson-Boltzmann equation (17) (full lines) and the normal Poisson-
Boltzmann equation (6) (dashed lines) for (a) the potential and (b) the coion (red and blue) and counterion
densities (green and purple). The counterion density in the lattice-gas equation is higher than in the point-
particle approach, and near the plate the top of the curve is flattened, such that the unphysical steep line near
the electrode of the counterion density in the Poisson-Boltzmann equation is somewhat corrected for. However,
the potential profile of the lattice-gas (blue) lies much higher than that one in the normal Poisson-Boltzmann
equation (orange dashed). The parameters used are T = 290 K, a surface charge density of 2.0e nm−2, an ion
radius of 0.34 nm, ion bulk concentration for both coions and counterions of 0.6 M, which correspond to a Debye
length of 0.38 nm. (c) Including a Stern layer prohibits the ions to be closer to the plate than their own radius,
indicated by the vertical orange dotted line at r = 0.34 nm. This can be clearly seen in the coion and counterion
density profiles (increasing and decreasing full lines, respectively). The potential (blue dashed line) first decreases
linearly in the Stern layer, and after in the diffuse layer exponentially.

In this equation, the afore-mentioned problem of the divergence of C at high Ψ in the Gouy-Chapman

model can be observed. Rewriting C =
(

dΨ
dQ

)−1

gives a way to note this divergence in Fig.5a too. The

slope of the mentioned curve goes to zero, such that C will blow up.

2.4 Lattice-gas Poisson-Boltzmann equation

In the previous section the limitations of the Gouy-Chapman model, and in particular of the underlying
assumption that ions can be considered as point particles, have been shown. For high packing fractions,
which occur close to the plates at high voltages, some adjustments have to be made. In this section, a
modification on the Poisson-Boltzmann equation (6) will be discussed, by including a finite ion size.

Taking the size of the ions to be v = a3, the ion packing fraction η = 2v (ρ+(r) + ρ−(r)) can be
defined, the factor 2 originating from the fact that the electrolyte contains both coions and counterions.
Different routes lead to a new expression for the ionic density ρ±. Examples include a derivation from
the Helmholtz free energy of the system as done in Ref. [19], and formulating the grand-potential of the
system as a functional, and next taking the derivative with respect to ρ±(r), as can be found in Ref. [10].
The ion densities can then be written as

ρ±(r) = ρs
exp

(
∓ eΨ(r)

kBT

)
1− η0 + η0 cosh

(
eΨ(r)
kBT

) , (16)

where η0 = 2vρs denotes the packing fraction in the reservoir. Combining this with the Poisson equation
from electrostatics, yields

φ′′(z) =
κ2 sinhφ(z)

1− η0 + η0 coshφ(z)
, (17)

which will be referred to from now on as the modified or lattice-gas Poisson-Boltzmann equation. Note
that for a → 0 and η0 → 0 since v = a3, this expression indeed reduces to the Poisson Boltzmann
equation (6). In Figs. 6a and 6b, the normal and the lattice-gas Poisson-Boltzmann equations are
compared by using their numerical solutions.

Considering the capacitance of these electric double-layers, Kornyshev was able to derive analytically
a result that will be reproduced here [19]. Integrating Eq. (17) with respect to z yields

φ′(z) = ∓ 1

λB

√
2

η0

√
ln (1− η0 + η0 coshφ(z)). (18)
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Figure 7: The capacitance formula (19) as derived in Ref. [19] divided by C0 = ε0εκ, plotted versus the dimen-
sionless surface potential φ0 in (a), and the surface charge density formula (20), plotted versus the dimensionless
surface potential φ0 in (b), for ion reservoir packing fractions η0 = {0.1, 0.33, 1.0}, indicated by the green, red
dashed, and blue dotted lines, respectively. For both plots, T = 290 K and ρs = 0.6 M. From (a) can be seen
that the capacitance curve shows bell-shape behaviour for η0 > 1

3
, camel-shape behaviour for η0 < 1

3
, and a

transition between those regimes at γ = 1
3
. From (b) can be observed that for increasing surface potentials, the

surface charge density rises more strongly for lower ion packing fractions. For both figures, the parameters used
are T = 290 K, ρs = 0.6 M, and an ion radius of 0.34 nm.

Using Gauss’ law, the capacitance formula as described in Ref. [19] can be found:

CK = ε0εκ
cosh(φ0/2)

1− η0 + η0 coshφ0

√
2η0 sinh2 (φ0/2)

ln (1− η0 + η0 coshφ0)
, (19)

where φ0 = φ(z = 0) denotes the dimensionless surface potential. Note that for η0 → 0, this expression
reduces to the Gouy-Chapman capacitance in Eq. (15). In Fig. 7a, CK/C0 is plotted as a function of
φ0 for as a variety of η0, where C0 = ε0εκ.

From Eq. (18), the surface charge density σ can be rewritten in terms of the dimensionless potential
φ(z),

σ =
κ

2πλB

√
2η0

√
ln (1− η0 + η0 coshφ0(z)). (20)

This relation between σ and φ0 is plotted in Fig.7b for different values of the ion packing fraction in the
bulk η0. It is observed that the surface density rises more strongly for lowing ion bulk packing fractions.
Note that this expression reduces to Eq. (14) for small values of the dimensionless surface potential φ0.

2.5 Work per cycle

As known from thermodynamics, the electrostatic work needed or extracted from one cycle equals the
enclosed area in the (Q,Ψ)-plane, and can be calculated as

W = −
∮

ΨdQ. (21)

In this thesis, the work needed for desalination cycles at different temperature will be calculated, by first
calculating numerically the curves (a typical desalination curve is shown in Fig. 2b). Once the profile of
a curve is known, the work can be found by calculating its enclosed area.
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3 Numerical results

3.1 Introduction

Blue engines consist of porous electrodes immersed in the electrolyte. These porous media have a highly
irregular geometry on the microscale. For the model used, a crude approximation is made by assuming
that geometry effects are of subordinate importance, and that the internal surface A of the electrode is
primarily important to the effectiveness of blue engines. The porous electrode is simplified to a model
of parallel plate capacitors, each with surface A. For the description of blue engines in this thesis, only
one electrode from the capacitor is considered, without loss of generality because of the symmetry of
this model. Thus, the volume of the engine can be written as Ve = ALe/2, with Le/2 the length of the
half-capacitor. Further studies could examine the same problem in e.g. cylindrical geometries.

In order to find the optimal cycle, the parameter space of two variables is explored: the temperature
T , and the ratio x ≡ Ve

Vb
between the engine volume Ve and the fresh water volume Vb that is produced

over one cycle.
The central point of the calculations is the numerical solution of Eq. (17) with boundary conditions

Eqs. (8) and (9). For the numerical method used, please see appendix A. Unfortunately, attempts
to include a Stern layer in the used model have not been successful. Therefore, the ion density near
the plates is described by the diffuse layer only. The interval z ∈ [0, L2 ] is divided into a grid of 5000
equidistant points. The ion volume is set to be v = a3, with a = 0.55 nm. The distance between the
two electrodes in the engine, the pore size L, is taken to be 4 nm. The afore-mentioned temperature-
dependent ε(T, ρ) from Eq. (3) is used to calculate the Bjerrum length, which is 70 nm for T = 290 K
and ρs = 0.6 M. The low and high ion concentrations in the reservoir, corresponding to fresh and salty
water, are taken to be ρs = ρL = 0.024 M and ρs = ρH = 0.6 M, respectively.1

The desalination cycle is fully characterized by the value of the surface charge in state point A
(σA = 0.75e nm2), and the salinities in sea ρH and river ρL. State point B can be found using the fact
that the pores have then taken up 2(ρH − ρL)(Ve + Vb) ions with respect to state point A. During the
canonical discharging step BC, 2(ρH − ρL)Ve ions are dissolved in the engine, such that the salinity in
the engine equals the sea salinity ρH again. The remaining surplus of ions 2(ρH − ρL)Vb determines the
value of σC , and this amount is released into the salt water bath during the grand-canonical discharging
trajectory CA.

In this system, there is a very clear physical boundary. The potential Ψ must not be larger than
Ψmax = 1.229V, which corresponds to a dimensionless potential φmax ' 50 [20].2 If the potential is
increased beyond this value, a reduction-oxidation reaction may happen in the form of electrolysis, hence
removing our electrolyte. Therefore, values of the surface charge density σ larger than, say, 5e nm−2,
should be avoided.

3.2 Investigating the desalination cycle

A first step consists of investigating the influence of the temperature and ion density dependent dielectric
constant ε(T, ρs). Fig. 8 shows the desalination curve from Ref. [10] where ε = 80, compared to a
curve where the experimental dielectric constant from Eq. (3) is taken into account, i.e. a varying the
dielectric constant, since ρs varies throughout the cycle. For T = 290 K, ε(ρs = 0.024) = 74.9, and
ε(ρs = 0.6) = 80.9, showing a difference of 8% for the extremes in ion bulk concentration used. The
desalination cycle with a fixed ε = 80 requires an energy input of W/Vb = 2.56 kJ per secured liter of
fresh water, or W/A = 0.962 kBT nm−2. Using Eq. (3), this becomes W/Vb = 1.84 kJ per secured liter
of fresh water, or W/A = 0.691 kBT nm−2. Clearly, taking a fixed ε = 80 leads to an overestimation of
the work required per cycle. A second point of interest are the potential profiles and ion density profiles
at the three state points A, B, and C of the desalination cycle, shown in Fig. 9.

1Note that one can easily convert concentrations between molarity and nm−3 by using the Avogadro constant NA =
6.022 · 1023 mol−1.

2This value is the standard reduction potential (i.e. at temperature T = 298 K, and pressure p = 1 atm, equivalent to
p = 101.325kPa) for which the chemical reaction O2 + 4H+ + 4e− 
 2H2O takes place. Reduction potentials at other
temperatures can be calculated as described in Ref. [21]. However, since this thesis is not written for experimental purposes,
calculating reduction potentials for different circumstances goes beyond its scope. Therefore, the standard potential is taken
into account as a fixed physical constraint in the numerical calculations.
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Figure 8: Desalination cycles ABCA with ε = 80 (full blue curve), and ε = ε(T, ρ) (dashed red curve) from
Eq. (3). For both cycles, the same parameters have been used: T = 290 K, x = 1.33, and the width of the
half-capacitor L = 2 nm. The cycle with a fixed ε = 80 yields a required energy input of W/Vb = 2.56 kJ per
secured liter of fresh water, or W/A = 0.962 kBT nm−2. Using Eq. (3), this becomes W/Vb = 1.84 kJ per secured
liter of fresh water, or W/A = 0.691 kBT nm−2. Taking a fixed ε = 80 clearly leads to an overestimation of the
work required per cycle.

3.3 Temperature effects

For increasing temperatures, the Debye length κ−1 from Eq. (1) decreases, resulting in a shorter distance
in which the surface charges on the plate are screened. Since the electrolyte is an aqueous solution, the
natural range in which the temperature can be varied is between T = 0 ◦C or T = 273 K, and T = 100 ◦C
or T = 373 K. In the calculations, a step size of 10 ◦C has been used on this interval, such that for 11
different temperatures the required work per cycle is calculated. This has been done for two different
values of the volume ratio x, being x = 1.33 and x = 5.0.

Fig. 10 represents the results of the calculations. Figs. 10a and 10c show desalination cycles for
different temperatures in the (σ,Ψ)-representation, x being 1.33 and 5.0, respectively. As the temperature
increases, the surface potential at the electrode for which the cycle takes place also becomes larger. The
work required for one cycle was calculated using Eq. (21). For the parameters of the cycle discussed
here, at a temperature of T = 273 K, a value of W/Vb = 1.74 kJ per secured liter of fresh water, or
W/A = 0.695 kBT nm−2, was found for x = 1.33. For x = 5.0, a value of W/Vb = 2.01 kJ per secured
liter of fresh water, or W/A = 0.214 kBT nm−2 is reported in this thesis. As the temperature rises,
the work required to perform one cycle also increases. Figs. 10b and 10d show the calculated work for
different temperatures, normalized to the cost per cycle W273K at T = 273 K. For x = 1.33, this yields
the fitted linearly relation

W (T )

W273K
= 1.00312 + 0.00309T. (22)

This relation implies an increase in work of 0.31% per degree. This leads up to a difference of 30.9% at
the highest temperature if the extremes are compared. Regarding x = 5.0, the normalized work curve is
fitted linearly with the relation

W (T )

W273K
= 1.00183 + 0.00345T, (23)

implying an increase in work of 0.35% per degree, and leading up to a maximal difference of 34.5% if the
extremes are compared.

These results imply that desalination processes are the most efficient, i.e. cost the least amount of
work, at very low temperatures, say in the Arctic regions.3

The same results as in Fig. 10b have been found by others, using the same type of model, and a
hard-sphere model described by Fundamental Measure Density Functional Theory. 4

3This means, however, for the reverse process (a blue engine with a limited fresh water supply), that the energy gained
by the capacitive mixing of salt and fresh water at a given temperature is optimal at high temperatures, say in the tropics.

4M. Janssen and A. Härtel, work in progress.

12



counterion density

coion density

potential

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

z@nmD

Ρ
±

@M
D

Φ
HzL

(a)

counterion density

coion density

potential

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

10

12

z@nmD

Ρ
±

@M
D

Φ
HzL

(b)

counterion density

coion density

potential

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

10

z@nmD

Ρ
±

@M
D

Φ
HzL

(c)

Figure 9: Potential profiles (dashed lines) and co- and counterion density profiles (increasing and decreasing,
respectively, full lines) in the three states (a) A, (b) B, and (c) C of the desalination cycle as described in Fig.2b
and Fig.8 (dashed curve). For this cycle, T = 290 K, half-capacitor width L = 2 nm, an ion radius of 0.34 nm,
and volume ratio x = 1.33. The surface charge density in state point A is fixed at σA = 0.75e nm−2. Together
with the fresh water reservoir salinity ρs = 0.024 M (in point B) and saline water ion concentration ρs = 0.6
M (in points A and C), this determines the values of the surface charge density in state points B and C, with
σB = 2.84e nm−2 and σC = 1.99e nm−2. As the Debye length depends on salinity, this length is κ−1 = 0.38
nm for ρs = 0.6 M in A and C , and κ−1 = 1.97 nm for ρs = 0.024 M in B. It can be seen that the ion density
flattens near the electrode, and unphysical high ion packings are prevented. The fact that the potential is much
higher for electrolyte with a low ion concentration than with a high ion concentration can be seen clearly from
the comparison of on the one hand state point B at ρs = 0.024 M, and on the other hand the state points A and
C at ρs = 0.6 M.
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Figure 10: On the left, desalination cycles are shown for different temperatures for x = 1.33 (a) and for x = 5.0
(c). It can be seen that as the temperature increases, the surface potential at the electrode for which the cycle
takes place also increases. The figures on the right represent the calculated work for different temperatures,
normalized to the cost per cycle W273K at T = 273 K for x = 1.33 (b) and for x = 5.0 (d). Clearly, as
temperature increases, the amount of needed work also increases. An increase of 0.31% and 0.35% per degree
of temperature increase is observed for x = 1.33 and for x = 5.0, respectively. Thus, the desalination cycle is
optimal for low temperatures. These figures represent the results of numerical calculations.
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The comparison of the calculations for both x = 1.33 and x = 5.0 already shows a significant difference
between required work per secured liter of fresh water for different amounts of secured fresh water during
one cycle. This parameter space will be explored further in the next section.

3.4 Effects of the volume ratio between the engine and the fresh water vol-
ume

In order to study the effect of the size of the fresh water volume Vb coupled to the engine of size Ve
in the AB trajectory, it is useful to consider the ratio x. This ratio influences the cycle in two closely
related ways. First, the behaviour of the AB curve, during which the engine is connected to the bath,
is determined by x. For small bath volumes compared to the engine volume and thus large x, this step
becomes essentially canonical and will resemble the BC curve, where the system is canonically discharged.
As x decreases, the engine is coupled to an increasingly reservoir-like volume. The charging curve will
become more grand-canonical, and will start resembling the grand-canonical discharging trajectory CA.
Note that for a real thermodynamically large bath, the uptake of ions by the electrodes does not influence
the reservoir ion density ρs, whereas the trajectory consists of decreasing the ion density in the engine
from sea to river salinity. The second way how the cycle is influenced by x, is that it determines the
value of σC , the surface charge density in state point C. The number of ions originating from the bath
that is adsorped on the electrodes during the AB stage, must be desorbed while the system is in contact
with the salty water reservoir. The ratio x, or the relative number of ions from the bath, therefore
determines the length of the grand-canonical discharging step CA. Since σA is fixed, this influences the
value of σC . Note that this change also stems from the increasingly reservoir-like character of the fresh
water volume for smaller x. In Fig. 11 desalination cycles are plotted for x = 1.0, x = 2.5, and x = 10.0.
It can be seen that for increasing x the canonical charging AB curve starts resembling the canonical
discharging BC trajectory, as a declining number of ions stemming from the fresh water volume must be
dumped in the salty water reservoir. Numerical calculations have been performed in the range between
x = 0.5 and x = 10. The same parameters from the previous section are used, with the only difference
that the system operates at constant temperature T = 290 K. From Fig. 12a, it can be observed that
for increasing x the cycle takes place at substantial lower values for the voltage Ψ and surface density
σ. The work required for one cycle was calculated using Eq. (21). As can be seen from Fig. 12a, the
enclosed area decreases for higher values of x. However, the amount of secured fresh water during each
cycle also diminishes. Interestingly, the amount of energy needed per liter of secured fresh water, shown
in Fig. 12b, diminishes with declining x. This suggests that desalinating is optimal for small x, i.e. for
large amounts of secured fresh water during one cycle.

The reverse process of desalination, i.e. a blue engine with a limited fresh water supply, is the most
beneficial if the energy harvested per liter of fresh water is maximal. This is the case for small values of x.
However, for small x, the bath volume is much larger than the engine volume. Consequently, the uptake
of ions in the AB trajectory by the electrodes must be much larger. Since the system has a constraint on
the value of Ψ in order to prevent electrolysis from happening, it must be noted that one can not exceed
some minimal value for x. If this would be the case, the cycle can not be performed. However, for x ≈ 0.2
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Figure 11: Desalination cycles for (a) x = 1.0, (b) x = 2.5, and (c) x = 10.0, x denoting the fraction between
engine volume and secured fresh water volume per cycle Ve

Vb
, using T = 290 K, a fixed σA = 0.75e nm−2, the

salty water reservoir concentration ρs = 0.6 M, and the ion bulk density in the secured fresh water volume as
ρs = 0.024 M. As x increases, the AB trajectory starts to resemble more the canonical discharging step BC. For
smaller values of x, the AB curve starts to look more like the grand-canonical discharging stage CA, as more ions
must be adsorped from Vb to make its water fresh and dumped later in the reservoir.
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Figure 12: (a) Desalination cycles for different temperatures. It can be seen that for increasing x, the values
of the surface charge density and surface potential for which these cycles occur decrease. The enclosed area,
and thus the work needed per cycle, also decreases. However, per cycle also a smaller amount of fresh water is
secured. (b) The required work per secured liter of fresh water plotted against the volume ratio x. The work
needed is obviously minimal for low values of x, i.e. large amounts of secured fresh water per cycle. These figures
represent the results of numerical calculations.

state point C starts to cross the AB trajectory in the calculations. This is unphysical behaviour, since
the canonical charging stage AB by definition can not be steeper than the grand-canonical discharging
step CA in the charge-voltage representation. This showed a limitation in the calculations in the used
model, which unfortunately could not be solved. Therefore, the possibility of calculating this minimum
lies beyond the scope of the model.

15



4 Conclusion and outlook

In this thesis, capacitive demixing of salty water, or water desalination, is described. In a three-stage
cycle a finite volume of initially saline water is made fresh, requiring work to be done on the system.
The aim has been to find the optimal cycle, such that the required work per liter desalinated water is
minimal. Calculations regarding temperature effects show that the difference between the work needed
at 273 K and 373 K, can go up to 31% for x = Ve

Vb
= 1.33, with W

Vb
= 1.74 kJ per liter desalinated water

at T = 0 ◦C. For x = 5.0, the difference between 0 ◦C and 100 ◦C is even 35%, with W
Vb

= 2.01 kJ/liter at
T = 0 ◦C. Desalination processes are therefore the most efficient at low temperatures. The second line
of calculations focussed on the influence of the volume ratio x, and showed that the desalination cycle
costs the least amount of energy per liter of secured fresh water for small x, i.e. large fresh water bath
volumes compared to the engine volume. These results will help in the search for a desalination process
that requires a minimum input of energy.

In fact, these results indicate too that the reversed desalination process, i.e. a blue engine with limited
fresh water supply, is a very promising technology to generate sustainable energy. Since the outcome of
the calculations also applies to the blue engine, it shows that there is a great energy potential that could
be harvested by capacitive mixing of fresh and saline water. Thus, the largest amount of energy can be
harvested from high temperature systems, and for which the volume of mixed fresh water per cycle is
small compared to the engine volume. Assuming that the engine described in this thesis could harvest
the energy from the complete outflow of the Rhine, this would result in an energy production of 9.52 ·107

kWh a day, equivalent to 2.95% of the national energy consumption of the Netherlands. These numbers
are of course rough estimates, but do give an idea of the vast potential this capacitive mixing technology
offers.5

Improvements on the current work include implementing a Stern layer in the model, and taking
into account a more sophisticated description of the dielectric constant. Furthermore, the calculated
work needed for desalination cycles for different temperatures has been fitted linearly. More calculations
could increase the accuracy of the fit. The distance between the two plates of the capacitor, taken
constant throughout this work, gives another parameter space that could be explored. Additionally, as
the electrodes in a blue engine are made of porous carbon and the pore size will vary throughout the
electrode, a pore size distribution could be taken into account. Also, capacitors with different geometries
could be studied. Another interesting line of work is investigating the work input per time, or the power
needed to perform a cycle. This will prove if the described processes are truly efficient in time, which is
of great importance for this technique to eventually become a useful application in society.

5The outflow of the Rhine is about 2200 m3/s. If one supposes that a blue engine behaves fully according to the model
used in this thesis and an engine efficiency of 100%, an energy output of 1.80 kJ/liter fresh water at T = 283 K and
x = 1.33, would lead to 9.52 · 107 kWh a day. The national energy consumption of the Netherlands is roughly 193 kWh
per person per day, such that the harvested energy is 2.95% of the national energy consumption. Please note that these
numbers are very rough estimates, and their only purpose is to give an idea of the order of magnitude of energy that this
capacitive mixing technology offers.
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Appendix A Numerical method

In this thesis, the so-called “shooting method” is used to solve numerically the lattice-gas Poisson-
Boltzmann equation (17) for the dimensionless potential φ(z) and co- and counterion densities ρ±(z) as
a function of the distance from the electrode z.

In general, next to a differential equation, two boundary conditions of the form f(z1) = a and
f(z2) = b can be imposed. The shooting method searches through possible starting conditions of the
form f ′(z1) = c, so that upon evaluating the differential equation it satisfies the two boundary conditions.

From the lattice-gas Poisson-Boltzmann equation

d2φ(z)

dz2
=

κ2 sinhφ(z)

1− η0 + η0 coshφ(z)
,

the first derivative can be named dφ(z)
dz = ξ. This results in two equations:

f1(φ, z, ξ) =
dξ

dz
=

κ2 sinhφ(z)

1− η0 + η0 coshφ(z)
, and (24)

f2(φ, z, ξ) =
dφ(z)

dz
= ξ. (25)

The next step is to introduce a grid of N + 1 points on the interval z ∈ [0, L]. The interval consists of N
intervals of length h = L

N , such that zi = ih with i = 0, 1, 2, ..., N . The dimensionless potential φ(z) can
now be discretized, such that φ(zi) ≡ φi. Note that the accuracy of this method increases when using a
smaller step size h. All this yields three equations:

zi+1 = zi + h, (26)

φi+1 = φi + hf1(φi, zi, ξi), and (27)

ξi+1 = ξi + hf2(φi, zi, ξi). (28)

With these equations, the further progress of the function is calculated, and checked if it corresponds
with the other two boundary conditions (this approach “shoots” and sees if the found solution fits).
Based on how the found solution diverges, one can easily adjust the third imposed boundary condition,
until finally an acceptable solution is found.

Note that this method also works the other way around: instead of imposing e.g. f(z2) = b, one
can also impose f ′(z1) = c. The shooting method then searches through starting conditions of the
form f(z2) = b, so that upon evaluating the differential equation it satisfies the two imposed boundary
conditions.
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