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Abstract

We explore light-induced magnetic fields for neutral atoms, which arise
when atoms adiabatically follow spatially varying dressed states. We in-
vestigate normal modes resulting from phenomenological equations for
atoms with different spin in a cigar shaped harmonic trap, in such mag-
netic fields and with spin drag present. Within the adiabatic approxi-
mation, we determine the light-induced magnetic field and we propose a
setup to implement this in our experiment. Our results pave the way for
studying transverse spin transport in the intrinsic regime.
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Introduction

In recent years, a lot of research has been done in the field of ultra-cold atoms
and it is still developing [1, 2, 3, 4]. Since the implementing of evaporative
cooling after laser cooling, we can reach temperatures as low as nanokelvins,
where a new form of matter was reached, Bose-Einstein condensates, and
where we can study macroscopic quantum systems. Much research has been
done towards spin-orbit coupling in these systems [5, 6, 7], and we will now
address the spin Hall effect, where we have a force perpendicular to the speed
of the atom, which depends on the spin of the atom. The spin Hall effect is
widely studied in the field of spintronics as a means to get spin currents [8]. By
studying the same effect in cold atom systems, we reach a completely different
regime where the spin transport is determined by intrinsic effects, such as
interactions, rather than extrinsic effects such as e.g. disorder.
For charged particles, the normal Hall effect arises when the particles move
through a magnetic field, but for neutral atoms, this is not the case and we
have no magnetic force perpendicular to their velocity. Here we will consider
a pseudo magnetic field, induced by a properly designed laser field, which does
couple to neutral particles and causes them to act like charged particles in a
magnetic field, with the corresponding Lorentz force [9, 10]. It is a spin Hall
effect, because it depends on the spin orientation of the particle. It arises when
atoms adiabatically follow a spatially dependent dressed state, which is an
eigenstate of the atom-light coupling. This magnetic field is a geometric effect,
because it depends on the geometry of the path through the laser field, but not
on the speed of the atom or the intensity of the laser. For the atoms to follow
the local dressed state adiabatically, their speed cannot be too high, so that
their position varies relatively slowly compared to their internal state. This is
comparable to the Born-Oppenheimer approximation in molecular physics.

In this Bachelor Thesis, we explore these light-induced magnetic fields
and how to implement them in our experiment. In order to get a feeling for
what is happening and to get a first idea of the order of magnitude of the effects
we could get, in section 1, we investigate normal modes of phenomenological
equations for atoms with different spin, which are in a cigar shaped harmonic
trap, with a magnetic field and spin drag. Here we describe the centre of mass
motion by equations for a single particle. In section 2 we derive the expression
for the pseudo magnetic field, starting with a standard Hamiltonian with an
atom-light coupling term, and, after we apply the adiabatic approximation,
ending up with a Hamiltonian which looks exactly the same as the Hamiltonian
for a charged particle in a electromagnetic field, that gives rise to a Lorentz
force. In section 3 we propose a laser configuration to implement this pseudo
magnetic field in our experiment, and investigate the conditions that need to
be satisfied and the choices in parameters we have. It turns out that we are
able to choose our parameters such that we get a magnetic field which should
give measurable effects. In section 4, we end with a discussion and an outlook
on some possible measurements and other setups in order to increase the effect.

3



1 Phenomenological description

In this section we study the normal modes of the atomic cloud in the presence
of a pseudo magnetic field on the basis of phenomenological equations.

1.1 Equations of motion

We start with phenomenological classical equations for the centre of mass, equa-
tions for a particle in a harmonic potential, with a magnetic field and linear
spin-drag:

m↑~̈r↑ = −m↑ωi2~r↑ + ~̇r↑ × ~B − γi(~̇r↑ − ~̇r↓),

m↓~̈r↓ = −m↓ωi2~r↓ − ~̇r↓ × ~B − γi(~̇r↓ − ~̇r↑), (1)

where m is the mass, ~rσ is the position of the centre of mass of the cloud with
spin projection σ, ωi is the trap-frequency in the i-direction, ~B is the (pseudo-)
magnetic field and γi is the spin-drag in the i-direction. Here i ∈ {x, y, z}. We
can have different ω and γ for different directions. Notice that the sign of the
magnetic force is opposite for opposite spins. It turns out that linear spin-drag
is a good approximation in our experiment [11].

Now we take m↑ = m↓ ≡ m, ωx = ωy ≡ ωr, γx = γy ≡ γr and ~B = B~y. We

take ~B in the y-direction and not in the z-direction, because this is convenient
in our experiment. Then we get, shown as a matrix equation:

m


ẍ↑
ÿ↑
z̈↑
ẍ↓
ÿ↓
z̈↓

 =


−γr 0 −B γr 0 0

0 −γr 0 0 γr 0
B 0 −γz 0 0 γz
γr 0 0 −γr 0 B
0 γr 0 0 −γr 0
0 0 γz −B 0 −γz

·

ẋ↑
ẏ↑
ż↑
ẋ↓
ẏ↓
ż↓



+


−mωr2 0 0 0 0 0

0 −mωr2 0 0 0 0
0 0 −mωz2 0 0 0
0 0 0 −mωr2 0 0
0 0 0 0 −mωr2 0
0 0 0 0 0 −mωz2

·

x↑
y↑
z↑
x↓
y↓
z↓

. (2)

1.2 Dimensionless Equations

To make the equations dimensionless, we write t = τt0 with t0 a useful unit of
time. Also we write x = Xr0, y = Y r0 and z = Zz0, with r0 and z0 useful units
of distance. We use the same unit for the x- and y-direction, because these are
equivalent. We take t0 = 1

ωr
, which is Tr

2π , with Tr the radial oscillation period.

Additionally we take r0 =
√

kBT
mω2

r
and z0 =

√
kBT
mω2

z
, with kB the Boltzmann
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constant and T the temperature. This is about the maximum distance from the
centre a particle with energy kBT can classically reach in a harmonic potential.

With this the derivative with respect to time becomes ∂
∂t = ∂τ

∂t
∂
∂τ = 1

t0
∂
∂τ =

ωr
∂
∂τ and thus we can rewrite the derivatives with respect to time as ẋ↑ =

r0ωr
∂X↑
∂τ , ż↑ = z0ωr

∂Z↑
∂τ , ẍ↑ = r0ω

2
r
∂2X↑
∂τ2 and z̈↑ = z0ω

2
r
∂2Z↑
∂τ2 . Using r0

z0
=√

kBT

mω2
r√

kBT

mω2
z

= ωz

ωr
, the dimensionless equations then become:



Ẍ↑
Ÿ↑
Z̈↑
Ẍ↓
Ÿ↓
Z̈↓

 =
1

mωr



−γr 0 −B ωr

ωz
γr 0 0

0 −γr 0 0 γr 0
B ωz

ωr
0 −γz 0 0 γz

γr 0 0 −γr 0 B ωr

ωz

0 γr 0 0 −γr 0
0 0 γz −B ωz

ωr
0 −γz

·


Ẋ↑
Ẏ↑
Ż↑
Ẋ↓
Ẏ↓
Ż↓



+



−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −(ωz

ωr
)2 0 0 0

0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −(ωz

ωr
)2

·

X↑
Y↑
Z↑
X↓
Y↓
Z↓

 . (3)

Now we choose to use the following parameters: a = γr
γz
, b = B

γz
and c = γz

m ,
where a and b are dimensionless, while c is not. These parameters are chosen this
way to see the competition between B and γz. We do not make c dimensionless
in order to keep c and ωr independent parameters.
In equation 3, the y-direction is completely uncoupled, with two normal modes
in this direction; an in-phase harmonic oscillation and an out-of-phase damped
harmonic oscillation. The equations for the x- and z-direction are, with the new
parameters:
Ẍ↑
Z̈↑
Ẍ↓
Z̈↓

=
c

ωr


−a −bωr

ωz
a 0

bωz

ωr
−1 0 1

a 0 −a bωr

ωz

0 1 −bωz

ωr
−1



Ẋ↑
Ż↑
Ẋ↓
Ż↓

+


−1 0 0 0
0 −(ωz

ωr
)2 0 0

0 0 −1 0
0 0 0 −(ωz

ωr
)2



X↑
Z↑
X↓
Z↓

.
(4)
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1.3 Normal modes

To determine the normal modes, we try a solution of the form ~a · eiωτ . The
vector ~a is a vector with components for both spins, like in the matrix equations.
Equation 4 puts restrictions on ~a and ω, and in order to satisfy this, the following
equation has to hold:

−ω2Ma · ~a = iωMv · ~a+Mr · ~a, (5)

where Ma, Mv and Mr are the matrices in front of the acceleration-, velocity-
and positionvector. Rewritten this becomes:

(−ω2Ma − iωMv −Mr) · ~a = ~0. (6)

To find non-trivial solutions for ~a, the determinant of the combined matrix
on the left side has to be equal to zero. This gives an equation for ω and by
this the possible frequencies of the normal modes are determined. When we
substitute every possible ω, we find the corresponding ~a.

In the case of the dimensionless equations from equation 4, this gives the
following equation for ω:

det


−ω2+ aciω

ωr
+1 ibcω

ωz
− iacωωr

0

− ibcωωz

ω2
r

−ω2+ ciω
ωr

+
ω2

z

ω2
r

0 − icωωr

− iacωωr
0 −ω2+ aciω

ωr
+1 − ibcωωz

0 − icωωr

ibcωωz

ω2
r

−ω2+ ciω
ωr

+
ω2

z

ω2
r

=0. (7)

For a spherical trap, everything simplifies a lot, but for an asymmetric trap this
is not the case. In most cases, it is still possible to find the ω analytically, but
the expressions are quite large and give little insight. Also Mathematica is not
able to solve for ~a and therefore I have chosen to determine these numerically,
since it does not give many advantages to try to get these analytically.
The determinant is a polynomial of degree 8 in ω and thus the equation has
8 solutions for ω. These give 4 qualitatively different motions. The found ω
are expressed in dimensionless units; t0 is merged into the used ω to make it
dimensionless. So what is really determined, is, in normal units, ωt0 = ω

ωr
.

In appendix A, the normal modes are examined in detail. Here, we will
focus on the normal mode which starts from the in-phase oscillation in the z-
direction, because this one is the most relevant for our experiment. To make
the figures, we used the following values: c = 1 Hz, ωr = 100 rad

s , ωz = 4 rad
s and

a = 0. We choose c this way, because c only comes in pairs with b in this mode,
since there is no drag. Another way of looking at this is that we choose a new
parameter bc = B

m for modes without drag. We choose the ω this way, because
they are relevant for our experiment. We choose a this way, because we are not
hydrodynamic in the radial direction.
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1.4 In-phase oscillation in the z-direction

This mode starts from the mode in which both clouds oscillate in-phase in the
z-direction. When we turn on the B-field, the clouds are separated in the r-
direction, since the B-field acts oppositely on the clouds and their velocities are
(approximately) in the same direction. Since there is no relative movement in
the z-direction and there is no drag in the r-direction, there is no damping in
this mode. In figure 1 the angular frequency is plotted against the B-field and
in figure 2 the trajectory is plotted for B

m = 100 Hz.

100 200 300 400 500
B�m HHzL

0.01

0.02

0.03

0.04

Ω�Ωr

Figure 1: The angular frequency ω
ωr

as a function of B
m for the in-phase oscilla-

tion in the z-direction. Because there is no damping this quantity is completely
real.

-1.0 -0.5 0.5 1.0
x H

kB T

mΩr
2
L

-1.0

-0.5

0.5

1.0

z H
kB T

mΩz
2
L

Figure 2: Trajectory of the normal mode starting from the in-phase oscillation
in the z-direction. Note that we use different units on the axes. Here, b = 100,
so B

m = 100 Hz.
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1.5 Numerical solutions

This section is about numerical solutions of the equations with proper initial
conditions. The most relevant initial conditions are with both clouds given an
initial displacement in the z-direction and no initial velocity. We will only state
the results for this case. By applying a real magnetic field with a gradient, as
a potential, we can give the clouds a displacement. Because the spins of the
clouds are opposite, they get an opposite displacement. In this setup, we thus
(approximately) start in the out-of-phase oscillation, the spin dipole mode, for
which the trajectory is shown in figure 3.

-0.04 -0.02 0.02
x H

kB T

mΩr
2
L

-0.10

-0.05

0.05

0.10

z H
kB T

mΩz
2
L

Figure 3: Numerically calculated trajectory in which the clouds start with an
opposite displacement. Note that we use different units on the axes. Here,
b = 100 and c = 1 Hz, so B

m = bc = 100 Hz.

However, drag is very important in this mode, and therefore it is better
to give both clouds the same displacement instead of opposite. This can be
realized by first giving one cloud a displacement, then flipping half of the spins,
creating two clouds and immediately after that letting them go. This way we
have two clouds with different spin, that start with the same displacement.
Another way of getting this initial situation is to displace the minimum of the
trap. When done fast enough, this is effectively the same as giving our clouds
a displacement. We choose our parameters the same as before, for the same
reasons: a = 0, c = 1 Hz, ωr = 100 rad

s and ωz = 4 rad
s . Figure 4 and figure 5

show the trajectories for these initial conditions and parameters and different
values of b.
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-0.10 -0.05 0.05 0.10
x H

kB T

mΩr
2
L

-0.10

-0.05

0.05

0.10

z H
kB T

mΩz
2
L

Figure 4: Numerically calculated trajectory in which the clouds start with the
same displacement. Note that we use different units on the axes. Here, b = 100
and c = 1 Hz, so B

m = bc = 100 Hz.

-0.0001-0.00005 0.00005 0.0001
x H

kB T

mΩr
2
L

-0.10

-0.05

0.05

0.10

z H
kB T

mΩz
2
L

Figure 5: Numerically calculated trajectory in which the clouds start with the
same displacement. Note that we use different units on the axes. Here, b = 0.1
and c = 1 Hz, so B

m = bc = 0.1 Hz.
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From the figures, we see that the trajectories are similar, even though b
differs by a factor 103. The differences for different b are the amplitude in the
r-direction, which gets larger with larger b, and the behaviour of the wiggles.
Also we see that there is indeed no damping (a = 0 and no relative motion in
the z-direction). The observation that the trajectories are similar has to do
with the shape of the trap, a cigar shape. Because of that the speed in the
r-direction remains relatively small and the B-field has a small effect on the
movement in the z-direction. For the r-direction, it gives rise to a force which
is proportional to the speed in the z-direction. This varies relatively slowly and
because of that it can be seen as a constant displacement of the minimum of
the trap in the r-direction. The force in the r-direction is opposite for the two
clouds, the displacement is thus also opposite and the clouds separate. Above
arguments are only valid because of the shape of the trap and in this case the
B-field, in first approximation, only affects the displacement of the clouds in
the r-direction.

On z = 0, the clouds have the highest speed in the z-direction and therefore
also the largest displacement. Moreover, it is the most natural point to look at
in the experiment. In figure 6 the displacement in the r-direction at z = 0 is
plotted as a function of B

m , as determined by numerical calculations, together
with values for the normal mode and an analytic expression which is given in
the next subsection.

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

50 100 150 200 250
B�m HHzL

0.02

0.04

0.06

0.08

ra H

T kB

mΩr
2
L

Figure 6: The radial displacement at z = 0 as a function of B
m (blue) plotted

together with our analytic expression (red line) and values found for the normal
mode (green).

10



1.5.1 Approximation for the displacement

With the above observations about the behaviour in a cigar shaped trap, we
derive an analytic expression as an approximation for the displacement. This
expression follows from classical energy considerations. At the initial situation
the total energy is equal to 1

2mω
2
zz

2
start and this is conserved because there is

no drag. Here zstart is the starting amplitude. At z = 0, there is no potential
energy for the z-direction and the energy is equal to 1

2mv
2
z+ 1

2mω
2
rr

2
a, neglecting

the speed in the r-direction. Here, vz is the speed in the z-direction and ra is the
amplitude in the r-direction. The B-field gives a force in the r-direction equal
to vzB and this is (approximately) compensated by the force of the harmonic
potential in the r-direction as a result of the displacement in the r-direction.
This way we look at it as a displacement of the equilibrium point in the r-
direction. The force of the harmonic potential in the r-direction is equal to
mω2

rra and with this we get the following equations:

1

2
mω2

zz
2
start =

1

2
mv2

z +
1

2
mω2

rr
2
a, (8)

vzB = mω2
rra. (9)

We can eliminate vz and rewrite the resulting equation to get an expression for
ra:

ra =
Bωzzstart

ωr
√
m2ω2

r +B2
, (10)

and this can be rewritten in terms of our used parameters

ra =
bcωzzstart

ωr
√
ω2
r + b2c2

. (11)

In our numerical calculations zstart and ra are given in units of z0 and r0. To
get our analytic expression in these units, we need to substitute zstart → z̄startz0

and ra → r̄ar0. This way we get a factor z0
r0

= ωr

ωz
in our expression and with

this we get for the analytic expression in new units:

r̄a =
bcz̄start√
ω2
r + b2c2

. (12)

When we plot this together with the found numerical values, we get figure 6,
which shows that our expression is a good first approximation. The values found
for the in-phase normal mode in the z-direction are also plotted, which fit even
better.
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1.5.2 Numerical ω

The trajectory starts in a maximum in the z-direction and when the trajectory
is at the maximum again, the movement repeats itself. Therefore we can numer-
ically determine the period by looking at the maxima. We can then determine
ω by ω = 2π

Tz
, with Tz the period. The result of this calculation for different b is

shown in figure 7. The parameters are again chosen to be a = 0, ωr = 100 rad
s

and ωz = 4 rad
s .

50 100 150 200

B

m
HHzL

0.01

0.02

0.03

0.04

Ω

Ωr

Figure 7: Numerically determined ω as a function of Bm with the initial condition
that both clouds have the same displacement of 0.1 z0 (blue), plotted together
with ω from the in-phase normal mode of the z-direction (red line).

Because we start in the in-phase normal mode in the z-direction, when the
magnetic field is absent, thus without any coupling to the r-direction, we start
with ω = 0.04ωr = ωz, in normal real units. When we turn on the B-field,
we do not exactly start in this normal mode anymore, because in the normal
mode the speed in the r-direction is nonzero at the maximum of the z-direction,
while in our initial conditions it is. As a result of this we get the wiggles in the
trajectories of figure 4 and figure 5 compared to the clean ellipse of the normal
mode in figure 2. However, we do excite this normal mode most and because of
that ω as a function of b is almost the same as is shown in figure 7.
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2 Derivation of the pseudo magnetic field

This section is about the origin of the pseudo magnetic field. We closely
follow the articles of Dalibard et al.[9] and Zhu et al.[10]. The most important
assumption is that the atoms adiabatically follow a spatially dependent dressed
state in the light field. From this we get a Hamiltonian which has exactly the
same form as the Hamiltonian of an atom in an electromagnetic field, which
gives rise to an effective magnetic field when the rotation of the pseudo vector
potential ~A is nonzero. The adiabatic assumption will be valid when the local
dressed state varies much more slowly than the internal state of the atom.
Therefore the speed of the atoms cannot be too high, because this determines
the speed of change in the local dressed state. This is captured in an adiabatic
condition.

We begin with the following Hamiltonian:

Ĥ =

[
P̂ 2

2m
+ V (~r)

]
Î + ~Û , (13)

where P̂ is the momentum operator, m is the mass, V (~r) is the potential, ~ is
the Planck constant and Û is the atom light coupling, given by

Û =

 0 0 Ω1

0 0 Ω2

Ω∗1 Ω∗2 2∆

 , (14)

where Ωi are the Rabi frequencies and ∆ is the detuning of the laser light
from resonance. This is appropriate for a Λ-type atom, represented in figure 8,
which has an excited state and two different ground states. Û is given in the
internal basis as shown in figure 8 and we are now going to change basis into
the eigenstates of the atom light coupling.

Figure 8: Λ-type atom with two ground states and one excited state, coupled
by Rabi frequencies Ω1 and Ω2, with detuning ∆ from resonance.
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2.1 Eigenstates

First we write Ω1 = Ω sin(θ)eiφ and Ω2 = Ω cos(θ), where Ω =

√
|Ω1|2 + |Ω2|2.

The eigenstates of Û are our dressed states and we will choose these as our new
internal basis, for which we are going to write down the new expression of the
Hamiltonian. The eigenstates are the following [10]:

|χ1〉 =

 cos(θ)
− sin(θ)e−iφ

0

 , (15)

with eigenvalue 0.

|χ2〉 =

 sin(θ) cos(γ)eiφ

cos(θ) cos(γ)
− sin(γ)

 , (16)

with eigenvalue ∆−
√

∆2 + Ω2, where γ is defined by tan γ =
√

∆2+Ω2−∆
Ω .

|χ3〉 =

 sin(θ) sin(γ)eiφ

cos(θ) sin(γ)
cos(γ)

 , (17)

with eigenvalue ∆ +
√

∆2 + Ω2.

In appendix B we show that these states are indeed eigenstates with the
corresponding eigenvalues. It is easily shown that they are normalized, ||χi〉| =
1. Also they are mutually orthogonal, as they should be for a Hermitian matrix,
so it is an orthonormal basis:

〈χ2|χ3〉 = sin2(θ) sin (γ) cos (γ)+cos2(θ) sin (γ) cos (γ)−sin (γ) cos (γ) = 0,

〈χ2|χ1〉 = cos (θ) sin (θ) cos (γ)e−iφ − sin (θ)e−iφ cos (θ) cos (γ) = 0,

〈χ3|χ1〉 = cos (θ) sin (θ) sin (γ)e−iφ − sin (θ)e−iφ cos (θ) sin (γ) = 0. (18)
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2.2 Momentum operator

Now we calculate how the momentum operator P̂ acts on the full atomic state,
when written in the dressed internal basis, which is also spatially dependent.

P̂ |Ψ〉 = −i~~∇
3∑
j=1

ψj(~r, t) |χj(~r)〉

= −i~
3∑
j=1

((~∇ψj(~r, t)) |χj(~r)〉+ ψj(~r, t) |~∇χj(~r)〉)

= −i~
3∑

j,l=1

((δlj ~∇ψl) |χj〉+ 〈χl|~∇χj〉ψj |χl〉)

= −i~
3∑

j,l=1

(δlj ~∇ψl + 〈χj |~∇χl〉ψl) |χj〉

=
3∑

j,l=1

((δljP̂ − ~Ajl)ψl) |χj〉 , (19)

where we defined ~Ajl = i~ 〈χj |~∇χl〉 and we used the completeness relation in
the third step. Notice that we have re-expressed the operator in a way that only
acts on the spatial state of the atom. When written as a matrix this equation
becomes:

P̂ |Ψ〉 =

 P̂ − ~A11 − ~A12 − ~A13

− ~A21 P̂ − ~A22 − ~A23

− ~A31 − ~A32 P̂ − ~A33

 ·
 ψ1

ψ2

ψ3

 , (20)

where |Ψ〉 = (ψ1, ψ2, ψ3)
T

is in the new internal basis of dressed states of the
atom light coupling. With this we find for P̂ 2:

P̂ 2 |Ψ〉=

 P̂− ~A11 −~A12 −~A13

−~A21 P̂− ~A22 −~A23

−~A31 −~A32 P̂− ~A33

·
 P̂− ~A11 −~A12 −~A13

−~A21 P̂− ~A22 −~A23

−~A31 −~A32 P̂− ~A33

·
 ψ1

ψ2

ψ3

=


(
P̂−~A11

)
2+ ~A12

~A21+ ~A13
~A31 −~A12

(
P̂−~A22

)
−
(
P̂−~A11

)
~A12+ ~A13

~A32 −~A13

(
P̂−~A33

)
−
(
P̂−~A11

)
~A13+ ~A12

~A23

−~A21

(
P̂−~A11

)
−
(
P̂−~A22

)
~A21+ ~A23

~A31

(
P̂−~A22

)
2+ ~A12

~A21+ ~A23
~A32

~A13
~A21−

(
P̂−~A22

)
~A23− ~A23

(
P̂−~A33

)
−~A31

(
P̂−~A11

)
+ ~A21

~A32−
(
P̂−~A33

)
~A31 −~A32

(
P̂−~A22

)
+ ~A12

~A31−
(
P̂−~A33

)
~A32

(
P̂−~A33

)
2+ ~A13

~A31+ ~A23
~A32

·( ψ1

ψ2

ψ3

)
.

(21)
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In our adiabatic approach, we assume the off-diagonal elements of the Hamil-
tonian negligible compared to the diagonal. If that would not be the case and
we start in one particular dressed state, the coupling between the different
dressed states would, according to the Schrödinger equation, give a nonzero
time derivative of another dressed state, while we assume that the atom stays
in the dressed state we started in. The condition for this is given in the next
section in equation 35. For now we just state what it looks like when we apply
the adiabatic approximation. For P̂ 2 we have found for the diagonal elements,
P̂ 2
ll = (P̂ − ~All)

2 +
∑
j 6=l

~Alj ~Ajl and with this the diagonal elements of our new
Hamiltonian (in the basis of dressed states) become

Ĥll =
1

2m

(P̂ − ~All)
2 +

∑
j 6=l

~Alj ~Ajl

+ V + ~λl =
(P̂ − ~All)

2

2m
+ V ∗, (22)

where V ∗ =
∑
j 6=l

~Alj
~Ajl

2m +V +~λl, the effective potential and λl is the eigenvalue

Û , which arises because we are in a basis of eigenstates. In appendix C, V ∗ is
worked out more explicitly and there will also be a notion about where the
adiabatic condition comes from.

2.2.1 Schrödinger equation

By projecting the full Schrödinger equation on |χl〉, taking the inner product
with 〈χl|, we find:

i~
∂

∂t
ψl = Ĥllψl =

(
(P̂ − ~All)

2

2m
+ V ∗

)
ψl. (23)

Here we used the result for the Hamiltonian, that it only has diago-
nal elements and that the eigenstates are independent of time, so that
〈χl| i~ ∂

∂t (ψl |χl〉) = i~ ∂
∂tψl.

We see that this has the same form as the Schrödinger equation for a
charged particle in an electromagnetic field, for which the Hamiltonian looks

like Ĥ = (P̂−q ~A)2

2m + qV . This gives rise to the Lorentz force, in particular to

a magnetic force when the rotation of ~A is nonzero. Here q is the charge and
to get our Hamiltonian, we take q = 1. Since we have the same Schrödinger
equation, we have the same motion and therefore we can indeed identify ~All
with the vector potential in electrodynamics, with the same properties with
respect to the motion of the particles, in particular that it gives rise to a
magnetic field equal to the rotation of this vector potential. In this case, ~All
does not depend on time, we do not get a pseudo electric field from the vector
potential.
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2.3 Effective magnetic field

Now we calculate explicitly what the effective vector potential and the effective
magnetic field look like. First we calculate:

∂

∂x
|χ1〉 =

∂

∂x

 cos(θ)
− sin(θ)e−iφ

0

 =

 − sin(θ) ∂θ∂x
i sin(θ)e−iφ ∂φ∂x − cos(θ)e−iφ ∂θ∂x

0

 ,

and similar for ∂
∂y and ∂

∂z . With this we have for the vector potential

~A11 = i~ 〈χ1|~∇χ1〉

= i~

 −i∂φ∂x sin2(θ) + cos(θ) ∂θ∂x sin(θ)− cos(θ) ∂θ∂x sin(θ)

−i∂φ∂y sin2(θ) + cos(θ) ∂θ∂y sin(θ)− cos(θ) ∂θ∂y sin(θ)

−i∂φ∂z sin2(θ) + cos(θ)∂θ∂z sin(θ)− cos(θ)∂θ∂z sin(θ)


= ~ sin2(θ)~∇φ. (24)

For |χ2〉 we have, by the same procedure,

∂

∂x
|χ2〉 =

 eiφ cos(γ) cos(θ) ∂θ∂x − sin(γ) sin(θ)∂γ∂xe
iφ + eiφi cos(γ)∂φ∂x sin(θ)

cos(γ) ∂θ∂x (− sin(θ))− cos(θ)∂γ∂x sin(γ)

− cos(γ)∂γ∂x

 ,

and similar for ∂
∂y and ∂

∂z . With this we calculate

~A22 = i~ 〈χ2|~∇χ2〉 = i~

 〈χ2|~∇χ2〉x
〈χ2|~∇χ2〉y
〈χ2|~∇χ2〉z

 , (25)

with components

〈χ2|~∇χ2〉x =i
∂φ

∂x
sin2(θ) cos2(γ)− cos(θ) sin(θ)

∂θ

∂x
cos2(γ)

+ cos(θ)
∂θ

∂x
sin(θ) cos2(γ)− ∂γ

∂x
sin(γ) sin2(θ) cos(γ)

− cos2(θ) sin(γ)
∂γ

∂x
cos(γ) +

∂γ

∂x
sin(γ) cos(γ)

=i
∂φ

∂x
sin2(θ) cos2(γ), (26)

and thus we have for the vector potential

~A22 = −~ sin2(θ) cos2(γ)~∇φ ≈ −~ sin2(θ)~∇φ, (27)

because cos2(γ) ≈ 1 when ∆ � Ω. So indeed the opposite spins have opposite
vector potential and therefore opposite magnetic field.

17



For the magnetic field we have:

~B = ~∇× ~A = ~∇× (±~ sin2(θ)~∇φ)

= ±2~ sin(θ) cos(θ)

 ∂θ
∂y

∂φ
∂z −

∂θ
∂z

∂φ
∂y

∂θ
∂z

∂φ
∂x −

∂θ
∂x

∂φ
∂z

∂θ
∂x

∂φ
∂y −

∂θ
∂y

∂φ
∂x


= ±~ sin(2θ)(~∇θ × ~∇φ), (28)

where we used ∂2φ
∂x∂y −

∂2φ
∂y∂x = 0 in the third step. This expression for ~B shows

that there needs to be a gradient in both θ and φ and that these gradients
should not be collinear if we want a nonzero magnetic field. The gradient in φ
implies a gradient in the phase of the laser beams. The gradient in θ implies
a gradient in the intensity ratio. According to the article of Dalibard et al.[9],
the gradient in θ can also be a gradient in detuning from resonance. Notice
also that ~B is independent of the intensity of the laser light, showing that the
pseudo magnetic field is a geometric effect and the intensity just has to be large
enough to satisfy the adiabatic condition.

When we rewrite equation 28 in terms of tan(θ) = |Ω1|
|Ω2| , so that it is written in

terms of the intensity ratio and phase difference, we get the following equation
for ~B:

~B =
~
2
~∇
(

1− tan2(θ)

1 + tan2(θ)

)
× ~∇φ =

~
2
~∇

1− |Ω1|
|Ω2|

2

1 + |Ω1|
|Ω2|

2

× ~∇φ (29)
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3 Experimental implementation

In this section we discuss the experimental implementation of the light-induced
magnetic field. We choose a laser configuration and for this we determine suit-
able parameters.

3.1 Laser configuration

For our actual experiment, we want to use the proposal in the articles of Dal-
ibard et al.[9] and Zhu et al.[10] of two Gaussian counter-propagating laser
beams which are spatially shifted. This is represented in figure 9. In the Rabi
frequencies for these beams we take k1 = k2 = k, because they are almost equal;
the energy difference between the ground states is negligible compared to the
energy difference with the excited state, and the detuning is still relatively small.
We also neglect deflection along the x-axis. The profile of the laser beams then
becomes

Ω1 = Ω0 exp

(
−(x− a)2

w2

)
exp(−iky),

Ω2 = Ω0 exp

(
−(x+ a)2

w2

)
exp(iky), (30)

where a is the displacement of the laser beams from the centre and w is the
waist of the laser beam profile, which we take equal for both lasers. With

this, the phase difference φ = 2ky, Ω sin(θ) = Ω0 exp(−(x−a)2

w2 ) and Ω cos(θ) =

Ω0 exp(−(x+a)2

w2 ), so that

tan(θ) =
exp(−(x−a)2

w2 )

exp(−(x+a)2

w2 )
= exp

(
4ax

w2

)
. (31)

With this we have the following equations for ~A and ~B:

~A = ±~ sin2(θ)~∇φ = ±~(
tan(θ)√

1 + tan2(θ)
)2 · 2kŷ = ± 2k~

1 + exp(−8ax
w2 )

ŷ (32)

~B = ~∇× ~A = ±16~ka
w2

exp(−8ax
w2 )

(1 + exp(−8ax
w2 ))2

ẑ = ±4~ka
w2

1

cosh2( 4ax
w2 )

ẑ. (33)

Figure 9: Setup for the laser beams. Two Gaussian counter-propagating laser
beams, which are spatially shifted by a distance a from the y-axes, and in the
middle the cloud of atoms.
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3.2 Conditions

If we want |χ2〉 to have a negligible contribution of the excited state, so that
we do not have to worry about heating from spontaneous emission, we need
sin γ ≈ 0 and for this we need to have ∆� Ω as we will now show. If ∆� Ω,
we have

lim
Ω
∆→0

tan γ= lim
Ω
∆→0

√
∆2+Ω2−∆

Ω
= lim
ζ→0

√
1+ζ2 − 1

ζ
= lim
ζ→0

ζ√
1+ζ2

1
=0, (34)

where we used l’Hôpital’s rule. Since tan γ → 0 implies sin γ → 0, |χ2〉 has a
negligible contribution of the excited state when ∆ � Ω. This gives the first
condition.

According to the article of Zhu et al.[10], the adiabatic condition is:

cos2(θ)|~v · ~∇(tan(θ)eiφ)| � Ω2

2∆
, (35)

where ~v is the velocity of the atoms. This is commented on in appendix C.
Worked out explicitly for our configuration it becomes

1

1 + tan2(θ)
|~v · ~∇(tan(θ)eiφ)| = 1

1 + exp( 8ax
w2 )
|~v · ~∇(exp(

4ax

w2
)ei2ky)|

=
exp( 4ax

w2 )

1 + exp( 8ax
w2 )
|vx

4a

w2
+ vy2ki|

=

√
v2
x4a2

w4 + v2
yk

2

cosh( 4ax
w2 )

� Ω2

2∆
. (36)

Now we use the definition of Ω from section 2.1,

Ω =
√
|Ω1|2 + |Ω2|2

=

√
Ω2

0(exp(
−2(x− a)2

w2
) + exp(

−2(x+ a)2

w2
))

= Ω0 exp(
−x2

w2
) exp(

−a2

w2
)

√
2 cosh(

4ax

w2
) (37)

and the final expression for the adiabatic condition becomes:√
v2
x4a2

w4
+ v2

yk
2 � Ω2

0

∆
exp(

−2x2

w2
) exp(

−2a2

w2
) cosh2(

4ax

w2
) = α

Ω2
0

∆
. (38)

From the condition we see that the newly defined adiabatic factor α =

exp(−2x2

w2 ) exp(−2a2

w2 ) cosh2( 4ax
w2 ) has to be large wherever you want the effect.

20



Now we take l as half the length over which we want the effect in the x-
direction, so that the ends of this region are at −l and at +l and we write a, w
and x in units of l, a→ āl, w → w̄l and x→ x̄l, to get from equation 33:

B = ±4~kā
lw̄2

1

cosh2( 4x̄ā
w̄2 )

. (39)

The factor in the adiabatic condition (plotted in figure 10) becomes:

α = exp(
−2x̄2

w̄2
) exp(

−2ā2

w̄2
) cosh2(

4āx̄

w̄2
). (40)

-4 -2 2 4
x HlL

0.1

0.2

0.3

0.4

0.5

0.6

Α

Figure 10: The factor in the adiabatic condition as a function of x̄ for {ā, w̄} =
{ 2

3 ,
3
2} (green), {ā, w̄} = {1, 1} (blue) and {ā, w̄} = { 3

2 ,
2
3} (red). These are all

qualitatively different shapes the adiabatic factor can take.

As can be seen from figure 10, the minimum for the adiabatic factor at
the interval (−l,+l) (where we want the effect), occurs at x̄ = 0 or at the
boundary of this interval, so at x̄ = 1. Since we want the effect over the whole
region, the bottleneck is where the adiabatic factor is minimum. Therefore
we want this factor to be large both at x̄ = 0 and at x̄ = 1. In figure 11 is
shown from what region we can choose ā and w̄ in order to have the adiabatic
factor greater than 0.1 or 0.5 for the whole region. Which one is appropriate

depends on how much the adiabatic condition can be satisfied by
Ω2

0

∆ , and the
factor could possibly be even lower than 0.1. However, a more homogeneous
satisfied adiabatic condition seems more natural and may also be better when
considering heating effects, since we need less intensity.
For small ā, the laser beams are close to the centre and we can get a problem
at x̄ = 1, and for large ā, the laser beams are far from the centre and we can
get a problem at x̄ = 0. This can always be solved by increasing w̄. These
observations can also be seen in figure 11. We can also see from the figure
which ā we can use for a fixed w̄ and still have a suitably large adiabatic factor.
Notice that the spike follows about ā = w̄

2 , so this is a good choice to start
from most of the time.
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a HlL

0.5
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2.0

w HlL

Figure 11: Regions in the āw̄-plane for which the adiabatic factor is greater than
0.1 (lighter blue) and for which it is greater than 0.5 (darker blue) everywhere
on the interval (−l,+l).

The expression for B in new units of l, equation 39, shows that the effect
is inversely proportional to the system length l, and also that it only depends
on ā and w̄ through the combination parameter ā

w̄2 . This parameter, together
with the system length l, completely determines the value and shape of B as a
function of x̄ for a given k. We now investigate what will be good choices for
this parameter. When we choose it too large, the effect will only be large in
a small region and when we choose it too small, the effect will be on a large
length scale, but small everywhere. This is also illustrated by calculating the
integral

∫∞
−∞

α
cosh2(4αx)

dx =
∫∞
−∞

1
cosh2(4s)

ds = 1
2 , which shows that we can

only redistribute the area of the plot of B and not increase it, because this is
independent of ā

w̄2 . We thus search for a value of ā
w̄2 which distributes this in

an optimal way. Since ā
w̄2 is the relevant parameter, in figure 12 we also plot

the regions for which the adiabatic factor is greater than a certain value in the
w̄2ā-plane. In this plane, the slope of the line between the origin and a point is
equal to ā

w̄2 , so we can easily see what ā and w̄ we can choose for a given ā
w̄2 .

This also shows the maximum value of ā
w̄2 we can achieve, keeping the adiabatic

condition in mind. This is the maximum slope for which the line through the
origin intersects with the colored region.
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Figure 12: Regions in the w̄2ā-plane for which the adiabatic factor is greater
than 0.1 (lighter blue) and for which it is greater than 0.5 (darker blue) every-
where on the interval (−l,+l).

3.2.1 Homogeneous magnetic field

One possible condition we could impose in order to choose a value for ā
w̄2 , is

to demand that the magnetic field is homogeneous within a certain percentage.
Since the expression for B has its maximum at x̄ = 0 and it monotonously
decays when moving away from x̄ = 0, B(x̄ = 0) and B(x̄ = 1) differ the most.
Since 1

cosh(0) = 1, we can set 1
cosh( 4ā

w̄2 )
= f where f is the relative factor we

allow. For a factor closer to 1, we need ā
w̄2 closer to zero. However, the greater

ā
w̄2 , the greater B(x̄ = 0), thus here we need a compromise. When we want B to
vary within 10 percent, we can take 1

cosh2( 1
3 )
≈ 0.90, or when we want B to vary

within 6 percent, we can take 1
cosh2( 1

4 )
≈ 0.94. This fixes 4ā

w̄2 = 1
3 or 4ā

w̄2 = 1
4 .

3.2.2 Maximum value of B at a certain value of x̄

Another condition in order to find a value for ā
w̄2 , is to demand that the value

of B is optimal at a certain fixed nonzero x̄. We write B = 4~kā
lw̄2

1
cosh2( 4āx̄

w̄2 )
=

~k
lx̄

γ
cosh2(γ)

, with γ = 4āx̄
w̄2 , where x̄ is a constant parameter. The function γ

cosh2(γ)

is plotted in figure 13, its maximum is at γ ≈ 0.772 and it is largest for γ around
this value. The condition for maximum B fixes 4āx̄

w̄2 ≈ 0.772. Here x̄ is the point
at which we want the B-field as great as possible, so natural points would be
for example x̄ = 1, at the boundary, or x̄ = 1

2 , which is at the middle from the
centre.

0.5 1.0 1.5 2.0
Γ

0.1

0.2

0.3

0.4

Γ

cosh2 HΓL

Figure 13: A plot of γ
cosh2(γ)

.
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3.3 Putting in the numbers

The relevant equations for the experiment, in which we want to put in real
values, are the expression for B and the adiabatic condition, which we now
restate:

B = ±4~kā
lw̄2

1

cosh2( 4x̄ā
w̄2 )

. (41)

√
v2
x4ā2

l2w̄4
+ v2

yk
2 � α

Ω2
0

∆
. (42)

In our experiment we use sodium atoms, which have a mass of m = 3.816·
10−26 kg and we use laser light of wavelength λw of 589 nm, so that k = 2π

λw
=

1.067·107 m−1. For vi, the speed we use in the adiabatic condition, we take

v =
~kdB

m
=

2π~
λdBm

=

√
2πkBT

m
≈ 47.7

√
|T | m

s
, (43)

where λdB = ~
√

2π
mkBT

is the thermal de Broglie wavelength, T is the tempera-

ture, kB = 1.38·10−23 J
K , the Boltzmann constant, and ~ = 1.05·10−34 Js, the

Planck constant.

For the intensity, we use the formula s0 = 2|Ω|2
γ2 , where γ = 10 MHz. When

we set ∆ = C1Ω0, where C1 � 1 with the condition ∆ � Ω in mind, and

set C2

√
v2
x4ā2

l2w̄4 + v2
yk

2 = α
Ω2

0

∆ for the adiabatic condition, with C2 � 1, we get

Ω0 = C1C2

α

√
v2
x4ā2

l2w̄4 + v2
yk

2. Now we can write the equation for s0 at the centre

of one laser beam as:

s0 =
2

γ2

C2
1C

2
2

α2

(
v2
x4ā2

l2w̄4
+v2

yk
2

)
=
C2

1C
2
2 |T |
α2

(
1.82·10−10ā2

|l|2w̄4
+ 5.18·103

)
. (44)

The factor ā
w̄2 < 1 for almost all practical choices of ā and w̄, and for |l| >

10−6 m, the first term in the brackets is negligible (the adiabatic condition is
determined by the phase gradient of the laser and not by the gradient in intensity

ratio) and we can write s0 ≈ 5.18·103C
2
1C

2
2 |T |
α2 .

3.3.1 Trial setup

In order to explore the experimental results we get from the chosen laser
setup, we want to try some configurations which are easy to implement in our
experiment. We will put our laser beams perpendicular to the long axes of our
cigar shaped cloud of atoms, shown in figure 14. The effect is smaller than if
we would put the lasers along the long axes, but probably it will be still large
enough to measure effects. In our particular setup, the length scale l is 0.8 mm.
We want to try ā = 1 and w̄ ∈ {1, 2, 4}.
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Figure 14: Trial setup for the laser beams, which is similar to figure 9.

From figure 11 we see that for w̄ = 1, we need to use the adiabatic factor
α = 0.1 and for the other two we can use α = 0.5. The adiabatic condition

then becomes
Ω2

0

∆ �
vyk
α = 5.01·108

√
|T |
α Hz, where we have neglected the term

with vx, which is much smaller. We can use T = 10−6 K, ∆ = 109 Hz and
Ω0 = 108 Hz, so that the adiabatic condition is satisfied.

The value of B at x̄ = 0 becomes B(x̄ = 0) = 4~kā
lw̄2 ≈ 5.6 ·10−24 1

w̄2
kg
s . In

section 1 we plotted for B
m and in this case we get B

m ≈
147
w̄2 Hz. Although we used

another aspect ratio for the trap, we can still use the results as approximation,
because we get very similar shaped plots for ω for different cigar shaped traps.
By comparing the value we found for B

m with figure 1, we see that we can expect
a noticeable change in the frequency when the effect would be homogeneous over
the cloud. However, we have values ā

w̄2 out of {1, 1
4 ,

1
16}, and the effect at the

boundary, B(x̄ = 1) is a factor 1
cosh( 4ā

w̄2 )
= {0.001, 0.4, 0.94} smaller. We see

that the last is very homogeneous and the first is not. In figure 15 the value of
B
m is plotted for the x̄ ∈ (−1, 1) for these different choices of w̄.
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x HlL
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B�m HHzL

Figure 15: B
m as a function of x̄ for w̄ = 1 (red), w̄ = 2 (green) and w̄ = 4

(blue).
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4 Discussion and Outlook

4.1 Discussion

We have shown the origin of the light-induced magnetic field and calculated the
magnitude of the magnetic field for a realistic situation, for which we determined
suitable parameters. From our phenomenological description, we expect this to
give measurable effects in the experiment, so it is a good idea to investigate
the effects further. However, there can be several side effects and it could be
difficult to get the initial conditions right. Also, the adiabatic condition is not
easily satisfied; we need slow atoms (low temperatures) and high intensities to
make it work.

4.1.1 Theoretical improvements

Since the effect relies on the adiabatic approximation, the description of the
adiabatic condition should be improved, possibly through perturbation theory,
so that we can have more confidence in the theory. Also the extra potential
effects should be analyzed in more detail. In section 1 we described the effects
of a magnetic field by phenomenological equations. Here improvements can
be made, for example by taking into account interactions between atoms and
by using a quantum mechanical description. Effects could be calculated both
for a thermal cloud and a Bose-Einstein condensate to see what differences we
get. However, the main purpose of this thesis was to investigate experimental
implementation of these light-induced magnetic fields and to verify that we can
get measurable effects. The prospects for this are positive.
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4.2 Outlook

When the setup of section 3.3.1 is implemented we can try to determine that it
is indeed a Hall effect by showing that the displacement is opposite for opposite
velocity of the cloud. For this we need a setup with large B in the middle, so
we could choose w̄ = 1 or w̄ = 2. After this we could try to quantitatively
measure the change in the collective mode frequency or the displacement ra at
z = 0, possibly as a function of B.

Another possibility is to try to use the effect multiple times by using
multiple pairs of laser beams, created by putting a mask (a plate with holes in
it) in front of a larger laser beam, to make a grid of laser beams. One of the
drawbacks here is that you cannot add the B-fields, you have to go back to
the intensity ratio in equation 29. The result is shown in figure 16. For large
spacing between laser pairs, we have a change in sign of the B-field, when we go
from one pair to another. This is because you can pair two lasers from different
laser pairs and have a configuration opposite to the normal pairs, with large ā.

When the trial setup gives nice results, we can try to align the laser beams
along the long axis of the cloud. This is a lot harder to implement in our
experiment and proper alignment of the lasers is also a lot harder because the
length scales are smaller and the alignment comes very precise. The B-field
however, can be a lot higher, since the effects is inversely proportional to the
system length l. Then we could choose to make a homogeneous B-field and by
varying ā and w̄ we can choose the value for B within a fairly large region. We
would also make optimal use of our cigar shaped trap, because we can have the
large B-field for a relatively large system even though one direction is restricted
to a small length scale.

-4 -2 2 4
x�w

-4

-2

2

wB�hk

Figure 16: B as a function of x, for several pairs of laser beams. The dimen-
sionless units are chosen this way for convenience. Here, for each laser pair,
a = w

2 and the space between laser pairs is w (red), 2w (blue), 3w(green) and
4w (yellow).
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A Normal modes

In this appendix we examine the normal modes in detail. For the figures, we
use the following values: c = 1 Hz, ωr = 100 rad

s , ωz = 4 rad
s and a = 0. We

choose c this way, so that we can plot for b = bc = B
m more easily, when c itself

is not a relevant parameter and only comes in pairs with b, that is in a mode
where there is no drag. When there is drag, we will plot for several values of
c. Another way of looking at this is that we choose a new parameter B

m for
the modes without drag, and this parameter is what we use on our axes for all
figures. We choose the ω this way, because they are relevant for our experiment.
We choose a this way, because we are not hydrodynamic in the radial direction.
Subsection A.5 is about the differences we get when a is not equal to zero. The
modes are labeled according to the motion with B = 0, or equivalently b = 0.
The first subsection is already included in the main text, but is mentioned here
for completeness of this appendix.

A.1 In-phase oscillation in the z-direction

This mode starts from the mode in which both clouds oscillate in-phase in the
z-direction. When we turn on the B-field, the clouds are separated in the r-
direction, since the B-field acts oppositely on the clouds and their velocities are
(approximately) in the same direction. Since there is no relative movement in
the z-direction and there is no drag in the r-direction, there is no damping in
this mode. In figure 17 the angular frequency is plotted against the B-field and
in figure 18 the trajectory is plotted for B

m = 100 Hz.
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Figure 17: The angular frequency ω
ωr

as a function of B
m for the in-phase oscilla-

tion in the z-direction. Because there is no damping this quantity is completely
real.
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Figure 18: Trajectory of the normal mode starting from the in-phase oscillation
in the z-direction. Note that we use different units on the axes. Here, b = 100,
so B

m = 100 Hz.

29



A.2 Out-of-phase oscillation in the r-direction

This mode starts from the mode in which the clouds oscillate out-of-phase in
the r-direction, the spin dipole mode. When we turn on the B-field, the z-
component of the force of this field is the same on both clouds, because both
the velocity in the r-direction and the effect of B are opposite for the clouds.
Because of that the clouds get the same speed in the z-direction. Since there
is no drag in the r-direction and there is no relative speed in the z-direction,
there is no damping in this mode. In figure 19 the angular frequency is plotted
against the B-field and in figure 20 the trajectory is plotted for B

m = 100 Hz.
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Figure 19: The angular frequency ω
ωr

as a function of B
m for the out-of-phase

oscillation in the r-direction. Because there is no damping this quantity is
completely real.
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Figure 20: Trajectory of the normal mode starting from the out-of-phase oscil-
lation in the r-direction. Note that we use different units on the axes. Here,
b = 100, so B

m = 100 Hz.
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A.3 In-phase oscillation in the r-direction

This mode starts from the mode in which both clouds oscillate in-phase in the
r-direction. When we turn on the B-field, the clouds are separated in the z-
direction, since the B-field acts oppositely on the clouds and their speed in
the r-direction is the same. The clouds get a relative speed in the z-direction
and because of that there is damping in this mode. Therefore the value of c
is important and we will plot for different c in the following figures. When
B gets larger, the relative speed gets larger and because of that the damping
gets larger. The amplitude is larger also. These observations can be seen by
comparing figure 24 and figure 25, which have been plotted for the same amount
of time. We also see that the frequency is a lot higher in figure 25 compared to
figure 24, which is in agreement with figure 22.
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Figure 21: The angular frequency ω
ωr

as a function of B
m for the in-phase oscilla-

tion in the r-direction. Because there is damping this quantity has a real (blue)
and an imaginary (red) part, which is hardly visible. In this figure, c = 1 Hz.
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Figure 22: The angular frequency ω
ωr

as a function of B
m for the in-phase oscilla-

tion in the r-direction. Because there is damping this quantity has a real (blue)
and an imaginary (red) part. In this figure, c = 10 Hz.
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Figure 23: Trajectory of the normal mode starting from the in-phase oscillation
in the r-direction. Note that we use different units on the axes. Here, b = 100
and c = 1 Hz, so B

m = bc = 100 Hz.
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Figure 24: Trajectory of the normal mode starting from the in-phase oscillation
in the r-direction. Note that we use different units on the axes. Here, b = 10
and c = 10 Hz, so B

m = bc = 100 Hz.

-1.0 -0.5 0.5 1.0
x H

kB T

mΩr
2
L

-0.04

-0.02

0.02

0.04

z H
kB T

mΩz
2
L

Figure 25: Trajectory of the normal mode starting from the in-phase oscillation
in the r-direction. Note that we use different units on the axes. Here, b = 100
and c = 10 Hz, so B

m = bc = 1000 Hz.
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A.4 Out-of-phase oscillation in the z-direction

This mode starts from the mode in which the clouds oscillate out-of-phase in
the z-direction, the spin dipole mode. When we turn on the B-field, both clouds
are moved in the r-direction. The force is the same, because the speed in the
z-direction is opposite, as is the effect of the B-field. This mode is over-damped
when c is too large, and in the experiment we expect it to be. When B is large
enough, we may get to a point where the mode is not completely over-damped
anymore. The B-field does not influence the absolute speed, but it does turn
the velocity partially into the r-direction, in which there is no drag and because
of which the speed in the z-direction gets smaller. Also the clouds are no longer
in the minimum of the radial potential, and because of energy conservation, the
clouds will have lower speed, and thus also lower relative speed. Because of this
the damping gets less when B gets larger.
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Figure 26: The angular frequency ω
ωr

as a function of B
m for the out-of-phase

oscillation in the z-direction. Because there is damping this quantity has a real
(blue) and an imaginary (red) part. In this figure, c = 1 Hz.
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Figure 27: The angular frequency ω
ωr

as a function of B
m for the out-of-phase

oscillation in the z-direction. Because there is damping this quantity has a real
(blue) and an imaginary (red) part. In this figure, c = 10 Hz.
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Figure 28: Trajectory of the normal mode starting from the out-of-phase oscil-
lation in the z-direction. Note that we use different units on the axes. Here,
b = 100 and c = 1 Hz, so B

m = bc = 100 Hz.
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Figure 29: Trajectory of the normal mode starting from the out-of-phase oscil-
lation in the z-direction. Note that we use different units on the axes. Here,
b = 100 and c = 10 Hz, so B

m = bc = 1000 Hz.

For b = 10 and c = 10 Hz, thus B
m = bc = 100 Hz, the trajectory is over-

damped and there is no point in plotting its trajectory. This and the plot of
figure 29 are in agreement with figure 27, which shows a certain critical value
for B

m above which the trajectory is no longer over-damped.

34



A.5 Differences when there is also drag in the r-direction

When we choose a = 1 instead of a = 0, we have the same drag in both
directions and now we consider the differences we get in comparison with the
previous normal modes.
The in-phase oscillation in the r-direction and the out-of-phase oscillation in
the z-direction do not have any relative motion in the r-direction and therefore
the value of a has no influence on the trajectories.
In the in-phase oscillation in the z-direction, the speed in the r-direction is
relatively small, and therefore also the relative speed is small. Because of this
there is hardly any difference when we put a = 1 instead of a = 0. Only for the
out-of-phase oscillation in the r-direction, there is a clear difference and this is
because the relative movement in the r-direction is precisely the most important
movement in this mode. The trajectory is still comparable, with the difference
that the trajectory gets smaller every cycle, as is shown in figure 30.
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Figure 30: Trajectory of the normal mode starting from the out-of-phase oscil-
lation in the r-direction. Note that we use different units on the axes. Here,
b = 100, c = 1 Hz and a = 1, so B

m = bc = 100 Hz.
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B Eigenstates

In this appendix, we check that the states in section 2.1 are indeed eigenstates
of Û :

Û |χ1〉 =

 0 0 Ω1

0 0 Ω2

Ω1
∗ Ω2

∗ 2∆

 ·
 cos(θ)
− sin(θ)e−iφ

0


=

 0
0

Ω sin(θ)e−iφ cos(θ)− Ω cos(θ) sin(θ)e−iφ

 =

 0
0
0

 . (45)

Û |χ2〉 =

 0 0 Ω1

0 0 Ω2

Ω1
∗ Ω2

∗ 2∆

 ·
 sin(θ) cos(γ)eiφ

cos(θ) cos(γ)
− sin(γ)


= cos(γ)

 Ω sin(θ)eiφ∆−
√

∆2+Ω2

Ω

Ω cos(θ)∆−
√

∆2+Ω2

Ω

Ω sin2 (θ) + Ω cos2 (θ) + 2∆∆−
√

∆2+Ω2

Ω


=

 cos (γ) sin (θ)eiφ(∆−
√

∆2 + Ω2)

cos (γ) cos (θ)(∆−
√

∆2 + Ω2)

cos (γ)∆−
√

∆2+Ω2

Ω (∆−
√

∆2 + Ω2)


= (∆−

√
∆2 + Ω2) |χ2〉 . (46)

Û |χ3〉 =

 0 0 Ω1

0 0 Ω2

Ω1
∗ Ω2

∗ 2∆

 ·
 sin(θ) sin(γ)eiφ

cos(θ) sin(γ)
cos(γ)


= Ω cos(γ)

 sin(θ)eiφ

cos(θ)

sin2(θ)
√

∆2+Ω2−∆
Ω + cos2(θ)

√
∆2+Ω2−∆

Ω + 2∆
Ω


= (∆ +

√
∆2 + Ω2) |χ3〉 . (47)

where we used sin(γ) = cos(γ) tan(γ) = cos(γ)
√

∆2+Ω2−∆
Ω and in the final step

Ω
tan(γ) = Ω2

√
∆2+Ω2−∆

= ∆ +
√

∆2 + Ω2.
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C Potential and adiabatic condition

In this appendix, we work out V ∗ =
∑
j 6=l

~Alj
~Ajl

2m + V + ~λl more explicitly. By

explicit calculation, using the definition ~Ajl = i~ 〈χj |~∇χl〉, we can show that

the following equations for ~Ajl hold:

~A12 = ~A∗21 = ~ cos(γ)eiφ(i~∇θ − sin(θ) cos(θ)~∇φ), (48)

~A13 = ~A∗31 = ~ sin(γ)eiφ(i~∇θ − sin(θ) cos(θ)~∇φ), (49)

~A23 = ~A∗32 = −~ sin2(θ) sin(γ) cos(γ)~∇φ+ i~~∇γ. (50)

With this we can show that the terms in
∑
j 6=l

~Alj
~Ajl

2m are the following:

~A12
~A21

2m
=
| ~A12|2

2m
=

~2 cos2(γ)

2m
(|~∇θ|2 + sin2(θ) cos2(θ)|~∇φ|2), (51)

~A13
~A31

2m
=
| ~A13|2

2m
=

~2 sin2(γ)

2m
(|~∇θ|2 + sin2(θ) cos2(θ)|~∇φ|2), (52)

~A23
~A32

2m
=
| ~A23|2

2m
=

~2

2m
(sin4(θ) sin2(γ) cos2(γ)|~∇φ|2 + |~∇γ|2). (53)

C.1 Adiabatic condition

We are only interested in |χ1〉 and |χ2〉, and for these the eigenvalues λi are
0 and ∆ −

√
∆2 + Ω2 respectively. Since ∆ � Ω, we can expand λ2 as

λ2 = ∆(1 −
√

1 + ( Ω
∆

2
) ≈ −Ω2

2∆ . The adiabatic condition according to Zhu

et al.[10], equation 35, is based on the condition that the off-diagonal elements
in the Hamiltonian are much smaller than the difference of the eigenvalue contri-
butions, which are in the potential V ∗: ~λ1 and ~λ1. The off-diagonal elements
in the Hamiltonian are the off-diagonal elements of P̂ 2 divided by 2m. When
we explicitly calculate the diagonal element P̂21, we get:

P̂21 = − ~A21(P − ~A11)− (P − ~A22) ~A21 + ~A23
~A31

= −( ~A21P + P ~A21) + ( ~A21
~A11 + ~A22

~A21 + ~A23
~A31) (54)

And, using above expressions for ~Ajl:

( ~A21
~A11 + ~A22

~A21 + ~A23
~A31) = ~2e−iφ sin(γ)(~∇θ−i cos(θ) sin(θ)~∇φ)· ~∇γ (55)

When we work out the left hand side of the adiabatic condition of equation
35, making a convenient choice for the phase inside the absolute value and
comparing with ~A12 above, we get

cos2(θ)|~v · ~∇(tan(θ)eiφ)| = |~v ·(− sin(θ) cos(θ)~∇φ+i~∇θ)| = | ~p
m
·

~A12

~ cos(γ)
| (56)

When we approximate sin(γ) = 0 and cos(γ) = 1 (see the beginning of section

3.2), we can compare equation 54 (keeping in mind that ~A12 = ~A∗21 and P̂21 =

P̂12
∗
, since it is Hermitian) with equation 55 and equation 56, and see that it is

plausible for the adiabatic condition to look like this.
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