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ABSTRACT

We investigate whether quantum fluctuations can have a significant impact on
the evolution of the universe, by studying the (late-time) backreaction of a
massless scalar field with a possible coupling ξ to the Ricci scalar on an FLRW
background. The main motivation for this work is the observed late-time ac-
celeration of the universe, for which no satisfactory explanation has been given
yet. At the same time, cosmological perturbation theory establishes that we can
take quantum fluctuations in a gravitational setting seriously, and some of their
effects are well studied and in agreement with observations. This opens up the
question if the energy density and pressure of these quantum fluctuations could
account for the observed late-time acceleration of the universe.
In addition to the usually assumed history of the universe (an inflationary, ra-
diation and matter dominated period), we assume an initial radiation period in
order to resolve IR divergences that are otherwise present in two point correla-
tion functions for nonzero ξ. We canonically quantize the field and compute the
one loop expectation value of the energy-momentum tensor with respect to the
Bunch-Davies vacuum during radiation and matter domination. We compare
the expectation values with the background quantities in order to estimate the
significance of the quantum backreaction. For ξ < 0, we find that this backreac-
tion can become significant, but the quantum energy density is negative during
inflation and radiation. For ξ < −0.057, the quantum energy density becomes
comparable to the background energy density already during inflation, which
makes late-time predictions for these values unreliable. For −0.057 < ξ < 0, we
find a transient phenomenon when the conformal Hubble rate becomes compa-
rable to the conformal Hubble rate at the beginning of inflation. That is, when
those scales become comparable, the quantum energy density goes from a period
where it is negative but grows with respect to the background to a period where
it is positive but decays with respect to the background. In between, there is a
period where the energy density seems to grow from negative to positive rather
quickly and during which the quantum fluid has negative pressure. We can tune
the duration of inflation and the value of ξ such that the backreaction is not too
big during inflation and radiation and for which this transient behavior becomes
significant at low redshift, rendering it potentially observable.
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1. INTRODUCTION

Measurements of the power spectrum of temperature fluctuations in the cosmic
microwave background (CMB) by the WMAP and PLANCK collaborations
([17],[9]) support the idea that the very early universe went through a period of
rapid acceleration, called inflation, during which vacuum quantum fluctuations
were stretched to macroscopic scales to form seeds for the density perturbations
that at later times evolved into galaxy clusters and the temperature anisotropies
in the CMB. In particular, this means we can take quantum fluctuations in
gravitational settings seriously, and their effects might be observable. A natural
question therefore seems to be if the quantum fluctuations can have any other
effects. For instance: can they influence the dynamics of the expansion of the
universe through its energy density and pressure?
The hope that this might indeed be the case, comes from the discovery that the
universe recently entered a new period of accelerated expansion ([16],[15]); an
effect often referred to as dark energy. A satisfactory explanation for this dark
energy has not been given yet. The most natural candidate seems to be the in-
troduction of a positive cosmological constant in Einstein’s equations. However,
for this to accurately explain dark energy, the cosmological constant has to be
extremely small in order for its effects to become measurable only so recently.
This is often referred to as the cosmological constant problem ([35],[28]). An-
other simple way of stating the dark energy problem is: why now? This is the
main motivation for studying a model for late-time quantum backreaction.
A first hint that perhaps the energy density and pressure in quantum fluctua-
tions could account for late-time acceleration was given by Janssen and Prokopec
([24]), who showed that the evolution of the universe through different eras of
constant deceleration has a significant effect on the evolution of the scalar field.
In particular, they show that the energy density in the quantum fluid scales
differently during different eras. They did not, however, compute the effects on
a background resembling the history of our universe. This was done for a mini-
mally coupled massless scalar field by Glavan, Prokpec and Prymidis ([20]), who
found that the quantum backreaction of this field does not become significant
during matter era, and, moreover, its contribution to the matter content is the
same as cold dark matter, so we should not expect anything resembling dark
energy from it. At the same time, [24] showed that when we include a coupling
of the scalar field to the Ricci scalar, parametrized by a dimensionless coupling
constant ξ, the quantum backreaction can dominate the background and scale
like vacuum energy (even though it has the wrong sign).
There are a couple of difficulties in the computation of the energy-momentum
tensor of a quantized scalar field on evolving FLRW backgrounds. We first have
to find the proper vacuum state for the field, which is not trivial on curved
backgrounds (see [4]). Moreover, the natural choice, a global Bunch-Davies
vacuum ([20]), yields an IR divergent energy-momentum tensor for nonmini-
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mally coupled massless scalar fields on inflationary backgrounds. This issue is
resolved by introducing an artificial initial radiation period, during which the
Ricci scalar is zero and the vacuum state is more obvious and does not lead
to IR divergences in the energy-momentum tensor. This was suggested in [24]
as well. Furthermore, a general feature of quantum field theory (QFT) is the
appearance of UV divergences. The method we use to deal with them is di-
mensional regularization and renormalization, which allows us to maintain all
the symmetries of the theory ([30],[5]). This means UV divergences first have
to be regularized by dimensional regularization, which automatically subtracts
power-law divergences. The remaining logarithmic divergence (that exhibits it-
self as a 1/D-4 divergence) is absorbed into a higher derivative counterterm,
which entails renormalization. Finally, the main practical problem is our in-
ability to solve the equations of motion analytically for general backgrounds.
Therefore, we assume that the transitions between periods of constant deceler-
ation in the history of our universe are very fast and compute the leading order
contributions in this ’fastness’. Using the hierarchy in the physically relevant
scales for the late-time result, we are able to extract the dominant late-time
results analytically.
Having resolved those issues, we calculate the dominant contributions to the
late-time energy density and pressure of the quantum fluid in order to get a
first order approximation of how the quantum fluid might influence the dynam-
ics of the evolution of the universe.



2. EVOLVING UNIVERSE

The main object of interest in this thesis and probably in cosmology in general
is the cosmological scale factor a(t), which measures the distance between any
two given points in the universe as a function of time. The fact that such a
universal function of time exists is perhaps the most striking example of the
revolution in our understanding of space and time Albert Einstein caused when
he introduced his theory of general relativity in 1915. In contrast to what people
used to believe, Einstein found that space and time are not static concepts, but
rather dynamical object that respond to the presence of matter (in its broadest
form) according to Einstein’s field equations

Gµν =
8πGN
c4

Tµν , (2.1)

where Gµν is the Einstein tensor and Tµν is the energy-momentum tensor of the
matter present. Also, GN is Newton’s constant and c the speed of light. One
could in principle add a cosmological constant term Λgµν to the left hand side
of this equation as well. We come back to this issue later, but for our purposes
it will suffice to assume this is zero and investigate any nontrivial terms as
part of the right hand side, i.e. as part of the energy-momentum tensor of
the matter content of the universe. Even without the cosmological constant,
(2.1) are complicated, nonlinear equations that are in general not easy to solve.
However, in the cosmological setting, greatly simplifying assumptions can be
made on the metric and energy-momentum tensor, which reduce the Einstein
equations to two independent equations known as the Friedmann equations.

2.1 FLRW universe

Analysis of the dynamics of the universe starts with the cosmological principle:

The universe is spatially isotropic and homogeneous on large (enough) scales.

Roughly this means that the universe looks the same in all directions and from
all points in space (at the same instant in time); the former being the isotropy
and the latter homogeneity. Actually, not all observers will see an isotropic
universe. Indeed, the motion of the earth causes observers moving with the earth
to observe a dipole anisotropy when observing the cosmic microwave background
(CMB). Only so called comoving observers observe an isotropic universe. In this
context, isotropy defines what we mean by comoving observers and it defines
the constant time spatial hypersurfaces. Even though the cosmological principle
does not hold at the scale of our solar system, observations indicate that indeed
the distribution of stars and galaxies is very isotropic and homogeneous on
large scales. Moreover, precision measurements of the CMB show that on the
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very largest scales we can observe today, there are some small fluctuations in
the density field, but they are of order 10−5. Thus, isotropy is a very good
approximation on these scales. Homogeneity has not been measured to this
precision, but galaxy surveys indicate that this is also a very good assumption.
Assuming the dynamics of the space-time curvature are determined by the large
scale distribution of matter 1, one can show that the only metric that satisfies the
cosmological principle is the Friedmann-Lemâıtre-Robertson-Walker (FLRW)
metric,

ds2 = −dt2 + a2(t) [ dr2

1 − κr2 + r
2dΩ2] , (2.2)

where a(t) is the aforementioned scale factor, we have set c = 1 and κ = {−1,0,1}
determines if the universe has constant negative, zero, or positive spatial cur-
vature. A comoving observer is now formally defined as an observer at rest
in these coordinates, whose motion can be shown to be the motion along the
geodesics of this metric. In accordance with current observational bounds, we
will assume the universe to be spatially flat throughout. For convenience, we
define a new conformal time coordinate

dη = dt

a(t) , (2.3)

where dt corresponds to the the time measured in the rest frame of a comoving
clock. In these coordinates, we can rewrite the metric as

gµν(η) = a2(η)ηµν , (2.4)

which we formally extend to D − 1 spatial dimensions (D ∈ C) by letting

ηµν = diag(−1,1,1, . . .). (2.5)

One can simply read D = 4 for this chapter, it is only for dimensionally regu-
lating energy-momentum tensor of the quantum fluid later on, that we need to
consistently write all formulas in D dimensions. Isotropy and homogeneity also
require the components of the energy-momentum tensor of the matter in the
universe to satisfy

T00 = a2(η)ρ(η), T0i = 0, Tij = δija2(η)p(η), (2.6)

which we call energy density and pressure to make contact with the definition
of the energy-momentum tensor of a perfect fluid in its rest frame. One feature
of Einstein’s equation is that it satisfies the covariant conservation law Gµν;ν =
Tµν;ν = 0. For an FLRW metric, the only nontrivial equation we get from this is
the conservation equation,

ρ′ + (D − 1)H(ρ + p) = 0, (2.7)

where H is the conformal Hubble parameter,

H = aH = da
dt

= a
′

a
. (2.8)

1 The backreaction of small scale nonlinearities has been proposed to influence the back-
ground evolution as an explanation for dark energy [26], but it was later argued that this is
not the case [2]
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Here and from here on forward, a prime denotes differentiation with respect to
conformal time η. Plugging our metric and energy-momentum tensor into (2.1),
we find that the dynamics of the FLRW space-time, characterized by H and a,
is dictated by the Friedmann equations

(H
a
)
2

= 8πGN
3c2

6

(D − 2)(D − 1)ρ, (2.9)

H′ −H2

a2
= −4πGN

c2
2

(D − 2) (ρ + p) . (2.10)

Since (2.7) was also derived from (2.1), it should follow from the Friedmann
equations, which indeed it does. On top of this, if we assume the matter content
of the universe to be made up of several non-interacting perfect fluids, they
should all satisfy the conservation equation and the energy density and pressure
in the Friedmann equations should be replaced by a sum over the various fluids.

2.2 Solutions for constant equation of state

We can solve these equations for H(η) if we assume a constant a constant
equation of state,

ptot = wρtot, (2.11)

where w is a constant in time. Then the conservation equation tells us

ρ = ρ0 (
a0
a

)
2ε

, (2.12)

for constant

ε = D − 1

2
(w + 1). (2.13)

Upon dividing the second Friedmann equation by the first, this gives,

−q ≡ äa
ȧ2

= H
′

H2
= 1 − ε, (2.14)

where q is the deceleration parameter and dots denote differentiation with re-
spect to physical (comoving) time. From this we see that for constant equation
of state, the universe is accelerating for ε < 1 and decelerating for ε > 1. The
equations are solved in terms of H(η) or a(η) as

H(η) = H0

1 +H0(ε − 1)(η − η0)
; (2.15)

a(η) = [1 +H0(ε − 1)(η − η0]
1
ε−1 , (2.16)

where H0 = H(η0) and we defined a(η0) = 1. In our calculations, the evolution
of the universe will be encoded mainly in the time dependence of H. We can
get some feeling for the physical meaning of this conformal Hubble parameter
by studying the lightlike geodesics of the FLRW metric. Using

dH
da

= (1 − ε)H
a
, (2.17)
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we can solve the geodesic equation ds2 = 0, to find that the coordinate distance
traveled by a photon emitted at η0 is given by

∣x − x0∣ = ∣ 1

1 − ε (
1

H0
− 1

H) ∣. (2.18)

Obviously, the limit ε → 1 (constant H) has to be taken with some care, but if
we assume a period of constant acceleration, followed by a period of constant
deceleration, so that H first increases by a lot and subsequently decreases, this
equation tells us that coordinate distances larger than H−1

0 cannot exchange
signals until H becomes of order H0 again during deceleration. This way, com-
paring Hubble rates at different times tells us something about the coordinate
distances that are in causal contact. We call scales larger than H−1 at a certain
time superhorizon, and scales smaller than H−1 subhorizon scales.

2.3 Brief history of our universe

As shown in the previous section, for perfect fluids the evolution of the universe
is completely determined by the equation of state parameter w. In this section
we investigate what sort of fluids play a role in our universe. The easiest fluid
to consider is pressureless dust. All cold atoms that make up galaxies are
considered dust. Moreover, it has been shown that most of the dust content in
the universe is due to the yet unidentified cold dark matter, that seems to only
interact gravitationally and is indeed pressureless (ref). The fluid of atoms and
cold dark matter thus has w = 0, which means the energy density scales as

ρdust ∼ a−3. (2.19)

This means that if we assume initial conditions ȧ > 0 (a(t0) > 0 always), the
energy density dilutes with time due to the increased volume of the expanding
universe. From now on we will refer to this component of the universe as the
matter component. Another obvious component of the energy density of our
universe is radiation (as for instance the existence of the CMB shows), or more
generally relativistic particles (such as light neutrinos). In order to derive its
equation of state, let us consider a photon in a one dimensional box of length L.
The energy density is then simply Eγ/L. The average pressure exerted on the
walls by this gas is in one dimension equal to the (time) average force it exerts
on the walls, given by

P av1D = F av1D,γ = [dp
dt

]
av

= 2p

c/2L = Eγ/L = ρ1D, (2.20)

where p is the momentum of the photon and c its speed (the speed of light). So
in one dimension w = 1 for a relativistic gas. In three dimensions, roughly the
pressure of a photon is averaged over three dimensions, which is why in three
dimensions the equation of state for a relativistic gas is w = 1/3. Then

ρrad ∼ a−4, (2.21)

which is also intuitively true from a quantum mechanical point of view as in
an expanding universe, the number density of photons decreases as a−3 and the
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energy per photon decreases because of the cosmologically stretched wavelength
by an additional factor a−1. Based on their scaling, at very late times, the
matter energy density dominates, whereas at very early times the radiation
energy density dominates. This is a first model of the history of our universe:
some initial conditions for expansion (Big Bang), followed by an era whose
evolution is determined by a relativistic gas, followed by an era dominated
by the matter energy density. Naively, these are the two constituents of the
universe. However, observations and theory have forced us to consider at least
one more type of fluid. Before we discuss those, let us briefly comment on the
time variable often used in cosmology. Since we believe the universe has always
expanded and because often in cosmology the object of interest is the scale
factor, different times in the past are often denoted by the value of the scale
factor at that time. To attach a more physical meaning to the scale factor, note
that a photon that was emitted at some time te with wavelength λe, experiences
a cosmological redshift due to the expanding space and at t0 is observed to have

wavelength a(t0)
a(te)λe. Since we like a timescale where today corresponds with

zero, we introduce a redshift variable z,

a(t0)
a(te)

≡ 1 + ze. (2.22)

2.3.1 Inflation

Currently most cosmologists believe the radiation era was preceded by an era
of more or less exponential growth of the scale factor. This can be achieved
by considering ’vacuum energy’, whose energy density by definition has to be
constant regardless of the expansion of the universe. From the first Friedmann
equation, we can then derive

ȧ

a
=H = H

a
∝√

ρvac = constant, (2.23)

which means a ∼ eH0t indeed. From the conservation equation we can infer that
such a vacuum energy has to have an equation of state parameter w = −1. The
study of the origins of inflation has become a field of its own and we will not
try to say something about it here. Let us just note that even though inflation
gained some initial success as a resolution to some outstanding problems in cos-
mology that go under the name of the flatness, horizon and monopole problem,
later on it was realized that inflation makes some significant predictions of some
of the properties of the CMB, which have been experimentally verified most
precisely by the Planck collaboration [9]. It is these predictions of some of the
properties of the CMB that seems to build the strongest case for inflation (but
also see the BICEP2 observation of B-mode polarization [18]). In particular, the
combination with the theory of quantum perturbations coupled to the evolving
background explains several aspects of the CMB power spectrum very neatly.
Let us remark that the strongest part of the argument for inflation (apart from
the BICEP2 results) probably comes from the coherence of all Fourier modes in
the sky (see Dodelson’s coherent phase argument for inflation [12]).
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2.3.2 Dark Energy

As recognized by the Nobel Prize Committee in 2011, an important new chap-
ter was added to the field of cosmology when the groups of Riess (including
fellow Nobel prize winner Schmidt) and Perlmutter ([15], [16]) in the late 90’s
independently showed that the universe has been expanding in an accelerating
fashion since a redshift of approximately 0.5.
They obtained their result by measuring the redshift-luminosity relation of Type
1a supernovae, which are considered standard candles, meaning their luminosity
is assumed to be known. Luminosity simply means the amount of energy an
object emits per unit of time. Then the luminosity we observe today depends
on the area over which the energy has been smeared out, which tells us about
the physical distance to the object now. Combining this with the information
about the ratio of scale factors at the time of emission and today (through the
redshift) for several sources at different redshifts, they obtained estimates on
the acceleration of the scale factor, which is roughly ε = 1+ q = 0.4 today. Later
on it was shown that these values are consistent with other observations as well
([17],[9]).
Curiously, so far, all measurements are pretty much consistent with another
vacuum energy-like component in the universe, that today makes up roughly 70
percent of the energy density of the universe (recall that for these values, this
component of the energy density is negligible for redshifts 2 and higher as the
matter energy density was much higher back then); this is often referred to as
dark energy. The main problem with dark energy seems to be the question: why
now? Namely, if we assume that it is indeed due to some sort of vacuum energy,
the different scaling of the vacuum energy and matter would have the energy
density in both fluids be comparable only for a very limited amount of time (in
terms of doubling times of the universe). There seems to be no natural expla-
nation why that time is so close to the present. There are plenty discussions
of the fine-tuning problem of a cosmological constant as well as the expected
quantum mechanical contributions to it in the literature. We refer the reader
to an article by Weinberg [35] and Nobbenhuis’ PhD thesis [28] for discussions
of the cosmological constant problem.
The question of why dark energy kicks in now was one of the main reasons
for the work in this thesis. In particular, we show that the energy-momentum
tensor of quantum fluctuations coupled to gravity, i.e. feeling the effects of the
expansion, changes qualitatively as the universe goes from era to era, which we
hope could help answer the question why the accelerated expansion kicked in so
recently.

2.4 Assumed history

Since we want to see if the nonminimally coupled scalar field backreaction can
play the role of dark energy, we do not consider a dark energy dominated era a
priori. Furthermore, we will assume an extra radiation period preceding inflation
as suggested in [24]. The reason for this is that on inflationary backgrounds,
infrared (IR) divergence problems occur in trying to define the quantum state
of the scalar field. We come back to these divergences in the next chapter.
For a discussion of the validity of this approach, we refer to [24]. Finally, we
assume the transitions between different eras are fast, i.e. if τn parametrizes the
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timescale of the n-th transition, is should be small compared to the timescale
of the background evolution, τn ≪ H−1

n . The pictures to keep in mind are 2.1
and 2.2.

ΕR

Ε I

ΕR

ΕM

Η

1

3

2

2

ΕHΗL

Fig. 2.1: Evolution of ε

Η0 Η1 Η2

H0

H2

H1

H

Η

H
HΗL

Fig. 2.2: Evolution of H
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2.5 energy-momentum from the action principle

In order to study the energy and pressure of less standard fluids like quantum
fluids, it is very useful to realize that the Einstein field equations (and therefore
the Friedmann equations) can be derived from an action principle. We start
with the Einstein-Hilbert action,

SH = 1

16πGN
∫

√−gRdDx, (2.24)

where g = det(gµν) and R is the Ricci scalar. According to the variational
principle the equations of motion for the metric (the action depends solely on
the metric), are obtained by demanding that the action be stationary with
respect to variations of the metric. Indeed, careful analysis of the dependence
of the Ricci scalar on the metric yields Einstein’s equation in vacuum:

1
√−g

δSH
δgµν

= Gµν = 0. (2.25)

Moreover, if we include other fields with an action SM(gµν , ψ), we obtain the
Full Einstein equation provided,

Tµν(gµν , ψ) =
−2

√−g
δSM
δgµν

. (2.26)

The factor −2 has to do with the convention for the prefactor of SM . It turns out
this is a good definition for the energy-momentum of matter fields. In particu-
lar, for the Klein-Gordon field action, in flat space (gµν = ηµν), it corresponds
to the canonical energy-momentum tensor obtained from Noether currents cor-
responding to Poincare transformations. For higher-spin fields, the above defi-
nition of the energy-momentum tensor seems to be even more sensible than the
canonical one. In particular, one can show that for a coordinate transformation
(diffeomorphism) invariant action,

∇µTµν = 0, (2.27)

by virtue if the matter field equations of motion (i.e. δSM /δψ = 0). Similarly,
the contracted Bianchi identity Gµν;µ = 0 is a direct consequence of the diffeomor-
phism invariance of the Einstein-Hilbert action. For a more complete discussion
of general relativity from an action point of view see for instance Wald’s book
on General Relativity [34]. This definition of the energy-momentum tensor we
will use below when studying quantum fields on an FLRW background.



3. QUANTUM FIELD THEORY IN CURVED SPACE-TIME

Without a satisfactory theory of quantum gravity at our disposal, one could
argue against any attempt to try to understand the effect of nontrivial back-
grounds, such as an expanding universe, on quantum fields. Nonetheless, in
the 70’s and early 80’s, consensus was reached that a semiclassical approach
to quantum fields in curved backgrounds seems reasonable, analogous to the
success of treating QED processes, like photon emission by an atom, in a back-
ground electric or magnetic field. The goal of this chapter is to familiarize the
reader with the framework in which one studies quantum fields in curved back-
grounds. The classic reference is Birrel and Davies [4], which is also the basis
of the presentation in this chapter.

3.1 A semiclassical approach

In a sense, Einstein’s theory of general relativity consists of two parts. The first
part tells us how space-time responds to the presence of matter fields; this is
given by Einstein’s field equations and is obtained in the Lagrangian formulation
by varying the action with respect to the metric. Second, it tells us how matter
responds to the curvature of space-time; given by the geodesic equation and
obtained by varying the action with respect to the matter field under consider-
ation. It is this second part that forms the starting point of the semiclassical
approach: given some classical, curved background, we hope to find a proper
description of a quantum field living on this background.
Immediately, one could dispute this approach. Namely, by the equivalence prin-
ciple, all forms of energy should couple to gravity equally strongly. Therefore,
if we allow a quantum matter field to be coupled to a curved background, we
should consider a quantum version of the metric field itself, coupled to the back-
ground as well. This seems to confront us with the problems of quantum gravity
again. Indeed, in a consistent semiclassical approach to quantum gravity, this is
inevitable. This problem is resolved by treating the background as some fixed
background plus small perturbations (the usefulness of this approach was shown
by ’t Hooft and Veltman [31]). These perturbations can then be transferred to
the right hand side of Einstein’s equation so that we can treat them as just
another source field (the graviton field).
Again this approach is not completely satisfactory. Namely, like in ordinary
QFT, in calculating observables for these perturbations, divergences occur due
to loop diagrams. For QED, this problem is fixed by including a finite number
of counterterms to the action and renormalizing the particle masses, charges
and wavefunctions. The fact that we only need a finite amount of countert-
erms crucially depends on the fact that the QED coupling constant αe (e2/4π
in natural units) is dimensionless, which makes sure divergences only arise up
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to a certain order in perturbation theory. In contrast, the coupling constant for
the gravity fluctuations, GN , has dimensions (length)2, which makes the the-
ory non-renormalizable: the divergences cannot be fixed by including a finite
number of new terms. At the same time, though, the dimensionality of the
gravity coupling constant guarantees that any term in perturbation theory that
contains GN (i.e. diagrams with a gravity vertex), have to be accompanied by
some length scale l, that depends on the problem at hand. Now suppose we only
consider large enough length scales such that l−2GN ≪ e2 ∼ O(1). Then, higher
order contributions in the gravity perturbations can be neglected with respect to
the so called one loop graviton contribution (containing no vertices) and higher
order contributions from other fields. For the moment we will not comment on
the higher order contributions from the matter fields and just assume that when
interactions between these fields become important on some length scale, it is
sufficient to neglect higher order contributions from the graviton.
The above reasoning might make it sound like a quantum theory of gravity is
not very appealing. This is the opposite of what we wish to argue. In fact, the
modern point of view is that General Relativity as we know it is just a leading
term in an effective field theory, very much like people think about the standard
model as leading terms in an effective field theory (see, for instance, [36]). This
means that even without knowledge of the UV behavior of Gravity, a quantum
theory of gravity makes perfect sense if we are interested in its low energy effects
(see [13]). In this low energy regime, higher loop diagrams are suppressed by
the largeness of the Planck mass and we can truncate perturbation theory at
a certain loop. This will introduce a finite number of divergences that can be
canceled by a finite number of counterterms, which introduces finite shifts in
observables that cannot be derived in the effective, low energy theory, but can,
and should, be measured by experiment. Once this is done, the theory can make
perfect predictions up to some low energy scale.
In this thesis, we truncate perturbation theory at the one loop order. That is,
we consider only diagrams consisting of bare Feynman propagators. More pre-
cisely, we compute the expectation value of the energy-momentum tensor for the
quantum field (coupled to the classical background) with respect to the vacuum
state of the universe (in the Heisenberg picture), using only the bare Feynman
propagator evaluated at the same space-time point (3.1). Since these will turn

Fig. 3.1: 1-loop diagram

out to be divergent, it is necessary to include counterterms. In principle, these
counterterms would imply new interactions leading to new divergences, but as
argued, if we restrict the applicability of our theory to large enough scales (i.e.
energies below the Planck energy), these interactions are not relevant and the
1-loop theory, including a finite number of counterterms should suffice as an
effective theory at low energies.



3. Quantum field theory in curved space-time 17

Knowing the effect of the background on the quantum field, we next wish to
investigate a first order approximation to the first part of general relativity:
how does the matter content influence the background. As can be seen from
the Friedmann equations, the background responds to the energy density and
pressure of the fluids present. Therefore, we expect the expectation value of
the energy density to be a first estimate of how quantum fluctuations backreact
(3.1).

backreaction ∼ ⟨0∣T̂µν ∣0⟩∝ h̵. (3.1)

Since the bare propagator we use for these calculations is determined by the
background, this calculation can only be trusted as long as the backreaction
is small, i.e. the evolution of the background is not altered by the quantum
energy density and pressure. Yet, we are interested in precisely the scenarios
for which the backreaction becomes significant. Treating the backreaction as
a small perturbation, this means we have to take into account its small effect
on the background, which changes the quantum propagator and in turn gives a
correction to the expectation value of the quantum energy-momentum tensor.
Note that this correction to the energy momentum tensor is of order h̵2: the
propagator (which is itself of order h̵) gets ”dressed” by a correction to the
background of order h̵. Repeating this procedure amounts to a series of cor-
rections in increasing powers of h̵. Schematically, this is depicted in figure 3.2,
where the full arrow represents the total energy-momentum of the background
plus quantum fluid and the bare arrow represents the classical background that
we expand around. Furthermore, two thin loops mean the background has
been modified by the one loop result, etc. This equation is reminiscent of, for

=

=

+

+ + +
Fig. 3.2: Schematic solution for the full energy-momentum

instance, Hartree-Fock theory in condensed matter (see, for instance, [29]). Sim-
ilar to that theory, our hope is to be able to resum this entire class of diagrams
to get a non-perturbative approximation of the energy-momentum content- and
evolution of the universe. This means that if we can neglect higher loop contri-
butions (that might appear in a full, interacting theory)1, we might get a full
quantum mechanical final answer, for which the matter content in the universe
is eventually completely dominated by the quantum fluid.
For simplicity, we model these fluctuations by a simple massless scalar field.

1 Whether or not we can neglect this has to be checked by actually calculating higher loop
contributions for models that contain interaction terms in the Lagrangian as well (we do not
consider those terms in this thesis)
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Conveniently, it has been shown, that, up to some tensorial structure, the gravi-
ton backreaction can be related to the backreaction of a masselss scalar field
([22], [20]). Also, the Higgs field is an interesting candidate for the type of scalar
field that we study [3]. Finally, we note that the main nontriviality we encounter
when extending QFT to curved space-times is the definition of the vacuum state
in (3.1). The framework for these one loop computations is presented in the next
sections.

3.2 Some elements of QFT in Minkowski space

Since we assume the reader has some knowledge of QFT in flat space, we will
be very brief in this section and just highlight some aspects that are important
when extending QFT to curved backgrounds. Actually, since we will not study
interactions, the necessary knowledge of QFT is very modest. Basically, we are
only concerned with two steps. First, given a Lagrangian, we quantize the theory
in the Heisenberg picture according to canonical quantization, and second, we
need to understand how this quantization is related to the vacuum state.

3.2.1 Scalar field canonical quantization

The action for a free, massive scalar field is

S = ∫ dDxL = −1

2
∫ dDx [ηµν∂µφ∂νφ +m2φ2] = 1

2
∫ dDxφ (◻ −m2)φ, (3.2)

where ◻ = ηµν∂µ∂ν . Using the variational principle, we obtain the Klein-Gordon
field equation of motion

(◻ −m2)φ = 0. (3.3)

The canonical conjugate momentum is given by

π = δL
δ (∂0φ)

= ∂0φ. (3.4)

Canonical quantization is obtained by promoting the field to an operator and
imposing equal time commutation relations 2

[φ̂(η, x), π̂(η, y)] = iδD−1(x − y),
[φ̂(η, x), φ̂(η, y)] = [π̂(η, x), π̂(η, y)] = 0, (3.5)

where in flat space, η is just the ordinary time coordinate. Solutions to the
equation of motion that satisfy the commutation relations are

{b̂(k)uk(η)
eik⋅x

(2π)D−1 , b̂
�(k)u∗k(η)

eik⋅x

(2π)D−1}
k

, (3.6)

indexed by the vector k and where k = ∣k∣, satisfying

[b̂(k), b̂�(k′)] = (2π)D−1δD−1(k − k′),
[b̂(k), b̂(k′)] = [b̂�(k), b̂�(k′)] = 0, (3.7)

2 Formally canonical quantization requires one to define a Hamiltonian, which comes down
to the procedure we follow
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and

[∂2η + k2 +m2]uk(η) = 0, (3.8)

and satisfying the Wronskian normalization

W{uk, u∗k} = uk
←→
∂ηu

∗
k = uk∂ηu∗k − (∂ηuk)u∗k = i. (3.9)

In fact,we can define a time independent inner product on the space of solutions

(f1, f2) = −i∫ dD−1xW{f1, f2}, (3.10)

where the integral is over a spacelike hyperplane of simultaneity at instant η.
With respect to this inner product, (3.6) is a complete set of orthonormal solu-
tions, i.e. we can expand any solution as

φ̂(η, x) = ∫
dD−1k

(2π)D−1
(b̂keik⋅xuk + b̂�ke

−ik⋅xu∗k) . (3.11)

Thus, the quantum field is determined by the choice of mode functions uk(η)
and the the way the ladder operators 3.7 act on the Hilbert space (i.e. the
definition of the vacuum).

3.2.2 Defining the vacuum state

Let us consider the following operator

N̂k = b̂�kb̂k. (3.12)

Using the commutation relations for the ladder operators (3.7, one can now
show that

[N̂k, N̂k′] = 0, (3.13)

and for eigenstates ∣nk⟩ of N̂k with eigenvalue nk,

N̂kb̂
�

k∣nk⟩ = (nk + 1)∣nk⟩,
N̂kb̂k∣nk⟩ = (nk − 1)∣nk⟩. (3.14)

This way, the ladder operators go through the spectrum of eigenstates of what
we can now call number operator N̂ . Since

nk = ⟨nk∣N̂k∣nk⟩ = (b̂�k∣nk⟩)
�
b̂�k∣nk⟩ ≥ 0, (3.15)

by non negativeness of the norm of a Hilbert space state, we find that N̂k

acting on an eigenstate has to have non negative eigenvalue. Combining this
with (3.14), we conclude that there has to exist a state ∣0⟩ such that for all k,

b̂k∣0⟩ = 0. (3.16)

We can use this state to build the Hilbert space in this Fock basis by acting
on it with the b̂�k operators. Moreover, we can show that this way we find all

eigenstates of the operator N̂ . Namely,

N̂k∣ψ⟩ = λ∣ψ⟩ Ô⇒ N̂kb̂k∣ψ⟩ = (λ − 1)∣ψ⟩. (3.17)
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Thus, repeatedly acting on the state ∣ψ⟩ with b̂k must again give ∣0⟩. This
proves the original state can be obtained by repeatedly acting with the creation
operator on ∣0⟩. Now that we have a basis of our Hilbert space, we can study
how the scalar field acts on it. For given k the space of solutions to (3.8) is two
dimensional, so that we can expand

uk(η) = αk
1√
2ωk

e−iωkη + βk
1√
2ωk

eiωkη, (3.18)

where ω2
k = k2 +m2. The coefficients α and β are called Bogolyubov coefficients

and the Wronskian normalization of the mode functions puts the following con-
straint on them,

∣αk ∣2 − ∣βk ∣2 = 1. (3.19)

The Hamiltonian for the scalar field is given by

H = ∫ dD−1x
1

2
[π2 + (∇φ)2 +m2φ2] . (3.20)

Computing the expectation value of the Hamiltonian for eigenstates of N̂ =
∏k N̂k, which we denote by ∣n⟩ =∏k ∣nk⟩, yields,

⟨n∣Ĥ ∣n⟩ = ∫ dD−1k (∣αk ∣2 + ∣βk ∣2) [nk +
1

2
δD−1(0)]ωk, (3.21)

where we used ⟨n∣̂bk b̂−k ∣n⟩ = ⟨n∣̂b�k b̂
�

−k ∣n⟩ = 0 and we note that this form is a con-
sequence of the fact that the Hamiltonian is time-independent. The divergent
δ function is a formal symbol for the integral

∫
dD−1k′

(2π)D−1
[b̂(k), b̂�(k′)] . (3.22)

we come back to its interpretation shortly. From this we conclude that the
lowest energy (vacuum) state in this basis is ∣0⟩. Moreover, this shows how the
vacuum energy depends on the choice of mode functions through the dependence
on Bogolyubov coefficients. Now, in this flat space-time example, it is obvious
that because of (3.19), this vacuum energy is minimized by choosing βk = 0. This
then completely determines the properties of the scalar field. In particular, for
this choice, the eigenstates of the number operator N̂ are also eigenstates of the
Hamiltonian, so that the energy of these states is well defined. The vacuum
energy is

E0 =
1

2
δD−1(0)∫ dD−1kωk. (3.23)

In order to understand the nature of the divergent prefactor, it is instructive to
compare this to the result for the energy of this quantum field in a finite volume
V. In that case, the integral over momenta is replaced by a sum over a discrete
set of momenta that fit in this volume and the commutation relation involve
Kronecker δ symbols. In that case we find for the vacuum energy

E0 =
1

2
∑
k

ωk ≈
1

2

V

(2π)D−1 ∫ dD−1kωk. (3.24)
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From this we conclude that the divergent prefactor should be interpreted as an
infinite spatial volume. In the remainder of this thesis we are interested in the
energy density, which in this case becomes

ρq = lim
V→∞

E0

V
= 1

2
∫ dD−1kωk. (3.25)

This is the standard QFT result for the UV divergent energy density in a quan-
tum field. Since for most physical observables energies are only relevant relative
to the vacuum energy, this contribution is often removed by for instance the
normal ordering prescription. There are cases where the vacuum energy might
become important, such as the Casimir effect [8], although it is not yet estab-
lished if its observation proves the existence of the vacuum energy [21]. If we
include gravity, however, the equivalence principle suggests we should take all
forms of energy equally seriously, which is why we study the vacuum energy in
curved space-time here. Interestingly, on curved backgrounds, the lowest energy
state is not so easily found. In particular, since

∂ηe
−iωkη ∝ e−iωkη, (3.26)

in Minkowski space, we are sure that time evolution does not change a positive
frequency mode function (with power −iωkη) into a negative frequency mode
function. This guarantees that if βk is zero at some point in time, it will remain
zero always and the vacuum state is unaltered as time progresses. On curved
backgrounds this is the part of the story that drastically changes. Namely,
the existence of positive and negative frequency mode functions is ultimately
a consequence of the existence of a timelike Killing vector in Minkowski space,
which need not be the case in curved spaces.

3.3 Nonminimally coupled scalar field on curved backgrounds

In the spirit of the minimal substitution principle of general relativity, the action
for a massless scalar field on curved backgrounds is obtained by expressing the
Minkowski action in a coordinate free form,

S = −1

2
∫ dDx

√−g [(∂µφ∂νφ) gµν + ξRφ2] (3.27)

= 1

2
∫ dDx

√−gφ (◻ − ξR)φ, (3.28)

where the d’Alembertian is now given by ◻ = gµν ▽µ ▽µ. Apart from the
standard introduction of the metric tensor gµν into the action, we also include an
explicit coupling to the Ricci scalar R. The coupling constant ξ is dimensionless,
so it should naturally be of order one. Two values are of special interest though.
First, the simplest option is that is ξ = 0, so called minimal coupling. This
case was studied in [20]. Since they found no significant backreaction, and
inspired by the findings in [24], in this work we investigate nonminimal coupling.
In particular we suspect a significant backreaction for ξ < 0, which will make
the coupling to the Ricci scalar act as a negative mass term for the scalar
field. Another value that is particularly important for flat FLRW metrics is the
conformal coupling

ξ = (D − 2)
4(D − 1) , (3.29)
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which is 1/6 in four dimensions. For this value of ξ, if we rescale the metric

gµν → g̃µν = Ω2(x)gµν , (3.30)

and simultaneously consider the field

φ̃(x) = Ω
2−D
2 (x)φ(x), (3.31)

φ̃ satisfies the same equation in terms of g̃µν as φ in terms of gµν . For details see
appendix B. For zero spatial curvature we saw that by going to conformal time,
the FLRW metric is conformally Minkowskian. Thus, on these backgrounds,
for ξ = 1/6, we expect the same results we found for flat space-time. This is a
useful check on our calculations. We actually use this knowledge to rewrite the
equations of motion in a simpler form. From (3.27), we obtain the equation of
motion for the scalar field

(◻ − ξR)φ = 0. (3.32)

Quantization of this theory in curved spaces is an obvious extension of flat
space-time quantization (up to the definition of the vacuum). The canonical
conjugate momentum in curved spaces is

π = δL
δ (∇0φ)

, (3.33)

where we note that the covariant derivative reduces to an ordinary derivative
when acting on scalars.

3.4 Nonminimally coupled scalar field on FLRW backgrounds

In this section we apply the formulas of the previous section to FLRW back-
grounds. We comment on the solutions for the mode functions on certain classes
of FLRW backgrounds.
Using expressions for geometric quantities on FLRW backgrounds from ap-
pendix A, the equation of motion becomes

[∂2η −∑
i

∂2i +H(D − 2)∂η + ξ(D − 1) (2H′ + (D − 2)H2) ]φ = 0. (3.34)

Suggested by our knowledge about conformal coupling, we rewrite this using

a
D−2
2 (x)φ̃ = φ(x), (3.35)

as

[∂2η −∑
i

∂2i + f(η)] (φ̃) = 0, (3.36)

where

f(η) = −2H′ + (D − 2)H2

4
[D − 2 − 4ξ(D − 1)]. (3.37)

This very much resembles the equation of motion for a massive scalar field in
Minkowski space. The difference is that here the mass term is time dependent
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and for ξ less than the conformal coupling value (3.29) (1/6 in four dimensions),
it is also negative provided

H′ > −D − 2

2
H2, (3.38)

which is true for all non-radiation eras of the universe we consider. During
radiation, when ε = 2, the Ricci scalar vanishes, and the equations are simply
those of Minkowski space. This is why even for nonminimal coupling, an initial
radiation period acts as a good IR regulator. We come back to this later. On
FLRW backgrounds the canonical momentum is

π = aD−2φ′. (3.39)

Again, we impose the canonical commutation relations (3.5). Then any solution

for the operator φ̂ can be expanded (again along the lines of the flat space
exposition) as

φ̂(η, x) = a 2−D
2 ∫

dD−1k

(2π)D−1
(b̂keik⋅xuk + b̂�ke

−ik⋅xu∗k) , (3.40)

where the b̂k operators satisfy the ladder commutation relations (3.7) and the
mode functions uk satisfy the mode equation

[∂2η + k2 + f(η)]uk = 0, (3.41)

and are normalized by the Wronskian condition

W{uk, u∗k} = uk
←→
∂ηu

∗
k = i. (3.42)

It turns out to be impossible to solve the equation of motion (3.41) for arbitrary
functions of conformal time f(η). Therefore, we make some general remarks
about the solution next, and solve it for constant deceleration (constant ε)
backgrounds.

3.4.1 WKB-like approximation

In this section we use a WKB-like method to obtain a UV (large k) asymptotic
expansion for the mode functions. For large k, we can neglect f in the equation
of motion and a basis of solutions is given by

{e−ikη, eikη} , (3.43)

which still have to be normalized by the Wronskian. This is why we now look
for general solutions of the positive frequency form

uUVk (η) = A(k, η)e−ikη, (3.44)

where A(k, η) should be obtainable as an expansion in 1/k. Since the Wronskian
is nonzero, the other linearly independent (negative frequency) solution is just
the complex conjugate of this. Substituting this into (3.41) yields an equation
for A,

A′′

k
+ f
k
A − 2iA′ = 0, (3.45)
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which is solved iteratively for large k. The procedure is to first neglect the 1/k
terms, which yields a zeroth order solution A(0) = A0, a constant. Then, we use
this zeroth order solution for the part of the equation proportional to 1/k and
obtain a first order correction

A(1) = A0(1 +
iF1

k
), (3.46)

where
2F ′

1 + f = 0. (3.47)

Repeating this exercise indeed yields an expansion for A in 1/k. The full positive
frequency solution is

uUVk (η) = A0e
−ikη (1 + iF1

k
+ F2

k2
+ iF3

k3
+ F4

k4
+ . . .) , (3.48)

where for i ≥ 2,
F ′′
i−1 + (−1)i−1F ′

i + fFi−1 = 0. (3.49)

Integration constants obtained in solving this equation are fixed by the Wron-
skian. In particular

A0 =
1√
2k
. (3.50)

Additional Wronskian constraints are, order by order,

2F2 + F 2
1 − F ′

1 = 0

2F4 + 2F1F3 + F 2
2 − F ′

3 + F ′
2F1 − F ′

1F2 = 0. (3.51)

This allows one to solve for the mode function to fourth order in 1/k, up to an
overall constant phase that can always be added to the mode functions without
changing the physics. This is worked out in appendix C. We stress that uUVk
should not be considered a full solution to the mode equation. The asymptotic
expansion allows one to approximate a full solution to arbitrary order in 1/k,
but the series need not be convergent, so that we cannot interpret it as a reg-
ular function. What we can say, though, is that any true solution has a UV
expansion that is some linear combination of the positive and negative frequency
asymptotic expansions. More precisely, any solution can be approximated in the
UV as

uk(η) = α(i)k (η)u(i)k (η) + β(i)k (η)u(i)∗k (η), (3.52)

where

u
(i)
k (η) = 1√

2k
e−ikη (1 + . . . + Fi

ki
) . (3.53)

Since u
(i)
k solves the mode equation to order i, the Bogolyubov coefficients are

constant and satisfy (3.19) to this order as well. Now suppose the evolution
of the universe is such that there is an initial and final period during which
the frequency character of the mode function does not change. By this we

mean that there exist exact solutions that have α
(i)
k (η) = 1 and β

(i)
k (η) = 0 to

arbitrary order in 1/k (we call this a positive frequency expansion) during this
initial and final period (we will show that constant ε periods are such periods).
These are in general not the same solutions for both periods. Suppose ubk has a
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positive frequency UV expansion during the initial period and uek has a positive
frequency expansion during the final period. Since they are both exact solutions
to the mode equation, we can write

ubk = αkuek + βkue∗k , (3.54)

for which the Bogolyubov coefficients are constant and satisfy (3.19) exactly.
Now, let us compare the UV expansion of the left- and right hand side. Since

ubk has α
(i)
k = 1 and β

(i)
k = 0 to infinite order initially, and since they have to be

constant to this order as well, the UV expansion has to be positive frequency
to infinite order at all times. In particular, since we know the UV expansion
of uek is positive frequency to infinite order during the final period, αk and βk,
relating ubk and uek, respectively have to go to 1 and 0 faster than any inverse
power of k. This is a crucial result for treating the UV part of the energy-
momentum tensor. Let us stress that this result depends on the smoothness of
the background, as the solutions we are considering only form a complete basis
for smooth differential equations. In fact, below we show that for discontinuous
evolution of the background, the result changes. Another way of stating the
above result is that positive frequency behavior is an adiabatic invariant during
the evolution of the universe and k acts as an adiabatic parameter. By the latter
we mean that the UV expansion (3.48) is also an expansion in (time-)derivatives
of the effective frequency

ω2
k = k2 + f(η), (3.55)

i.e. in derivatives of f (see [20]). Therefore, higher derivative contributions
come with higher powers of k, which makes sure this is indeed an adiabatic
expansion in the UV.

3.4.2 Constant ε background solutions and the vacuum

On constant ε backgrounds we can introduce a new variable (not to be confused
with the redshift parameter)

z = ± k

(ε − 1)H , (3.56)

such that z > 0 always (so the definition is different for ε > 1 and ε < 1). Using

z′ = ±k, (3.57)

on constant ε backgrounds, the mode equation in terms of z becomes

[z2 ∂
2

∂z2
+ z2 + ν2 − 1

4
]uk = 0, (3.58)

where

ν2 = 1

4
+ (D − 2ε)

4(ε − 1)2 [D − 2 − 4ξ(D − 1)]. (3.59)

Note that this is irrespective of the sign of (ε − 1). By looking for solutions of
the form

√
zw(z), one recognizes Bessel’s equation. We propose the following

solutions: on decelerating backgrounds:

uk =
√
πz

4k
H(2)ν (z) and u∗k =

√
πz

4k
H(1)ν (z); (3.60)
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and on accelerating backgrounds:

uk =
√
πz

4k
H(1)ν (z) and u∗k =

√
πz

4k
H(2)ν (z), (3.61)

where H
(2)
ν and H

(1)
ν are the Hankel functions of the second and first kind with

index ν respectively. These choices turn out to be convenient for the choice
of the vacuum. Also, these functions are normalized such that they satisfy
the Wronskian normalization condition. A general solution on a constant ε
background can thus be written as

Uk,ε(η) = αk,εuk,ε(η) + βk,εu∗k,ε(η), (3.62)

where, since the mode functions are normalized by the Wronskian, the Bo-
golyubov coefficients as always have to satisfy (3.19).
As we saw in the Minkowski space example, the choice of coefficients is inti-
mately related to the choice of vacuum. However, finding the vacuum state by
minimizing the Hamiltonian is not as trivial now, as the term f that corresponds
to the the mass term in Minkowski space is a time dependent function. This
need not be a problem per se as there might still be a state that minimizes the
expectation value of the Hamiltonian at all times. As was shown in [27], such
a state actually exists if the effective frequency ω2

k = k2 + f(η) is positive at all
times. This is not the case we study, as on constant ε backgrounds,

f(η) = −D − 2ε

4
[D − 2 − 4ξ(D − 1)], (3.63)

so that for ε < 2 and ξ less than the conformal coupling value (3.29) (cases we are
interested in), there are small k (IR) modes for which this effective frequency
becomes negative. For these modes obtaining a minimal expectation value of
the Hamiltonian is problematic for various reasons.
Firstly, the eigenstates obtained from the number operator (for which we know
what effect the ladder operators have on them), are no longer eigenstates of the
Hamiltonian. Moreover, if one were to turn the crank and still compute the
expectation values of the Hamiltonian for these states, one finds that no lowest
energy state exists; the expectation value of the energy density becomes negative
and is unbounded from below for excited states. This is a consequence of the
fact that for these imaginary frequencies, the mode functions do not oscillate
anymore, but grow in time (as a power law for time-dependent frequencies).
Accordingly, the expectation value of φ2 can be a growing negative quantity
(the expectation value of φ is always zero in our model). Also note that this
makes the QFT particle interpretation non applicable in this case.
This issue was partly resolved on accelerating expanding backgrounds by real-
izing that in the infinite past (η → −∞ 3) the conformal Hubble rate goes to
zero, and all modes have positive effective frequency. In fact, they all behave
as Minkowski modes. The vacuum is then defined by choosing mode functions
that minimize the Hamiltonian as η → −∞, i.e. the mode functions that reduce
to the Minkowski vacuum ones 1√

2k
e−ikη in this limit. This defines the so called

3 On constant ε expanding backgrounds, η goes from −∞ to 0 on accelerating backgrounds
and from 0 to ∞ on decelerating backgrounds. This is related to the fact that the scale factor
goes to zero in finite time on decelerating backgrounds.
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Bunch-Davies vacuum. However, it was shown [19] that the expectation value
of two point correlators are IR divergent in this vacuum. This tells us that the
Bunch-Davies vacuum is not a physically sensible state in the deep IR. We come
back to this issue at the end of this chapter.
On decelerating backgrounds this does not work as such an asymptotic past does
not exist. Namely, going back in time the curvature blows up in finite time and
the universe starts in a singularity (a big bang). Requiring the mode functions
to reduce to the Minkowski positive frequency solutions in the UV (k ≫ H,
i.e. positive effective frequency) still makes sense, but the IR treatment is less
obvious. In this thesis we define the state in the IR by means of the global
Bunch-Davies vacuum (see [20]), which is obtained by taking mode functions
that reduce to the Minkowski ones in the UV and analytically extending them
in the IR. In the jargon of the previous subsection, these are the exact solutions
that obey a positive frequency UV expansion during an initial period that does
not mix positive and negative frequency mode functions.
The UV expansion of constant ε mode functions is

uk→∞ =
√
πz

4k
H(2)ν (z)∣k→∞ →

1√
2k
e−i(z−

νπ
2 −π4 ),

u∗k→∞ =
√
πz

4k
H(1)ν (z)∣k→∞ →

1√
2k
ei(z−

νπ
2 −π4 ), (3.64)

which, up to a constant phase that can always be added to the mode functions
without changing physical observables, for decelerating universes can be written
as (see (2.15)),

uk→∞ = 1√
2k
e−ikη,

u∗k→∞ = 1√
2k
eikη. (3.65)

In contrast, on accelerating backgrounds the relation between z and η has an
extra minus sign, which is why we chose the Hankel functions of the first kind
in this case, such that again

uk→∞ = 1√
2k
e−ikη,

u∗k→∞ = 1√
2k
eikη. (3.66)

This means the global Bunch-Davies vacuum is obtained by taking α = 1 (where
we recall that the mode functions corresponding to this α are different for ac-
celeration and deceleration). Note that during radiation f(η) = 0, which makes
the theory conformal to a scalar field on Minkowski space and in that case the
vacuum is naturally well-defined in the IR. That is, the exact mode functions
are

uRadk = 1√
2k
e−ikη,

u∗,Radk = 1√
2k
eikη, (3.67)
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and the global Bunch-Davies vacuum is obtained by taking α = 1 and β = 0,
which defines an IR finite state ([24]). Since the Ricci scalar is zero during
radiation, one can check [20] that indeed the energy density and pressure of this
field in the Bunch-Davies vacuum of a radiation era are zero after dimensional
regularization, up to contributions of the conformal anomaly terms (see next
chapter), lending support to this choice of vacuum state. We use the fact that
the vacuum is well-defined during radiation in the last section of this chapter.

3.4.3 Sudden matchings

Lacking the analytical tools to investigate arbitrary evolutions of the universe,
we use the fact that far enough away from ε transitions, all derivatives of ε
vanish. This means any exact solution must reduce to a linear combination (by
means of Bogolyubov coefficients) of the constant ε solutions from the previous
section. Up to derivatives of ε, we can therefore decompose any exact solution
on these eras as

Uk,i = αk,iuk,i + βk,iu∗k,i, (3.68)

where uk,i is the BD mode functions for era i. Since these BD mode functions are
certainly not exact solutions for the full evolution of the universe, the expression
for the Bogolyubov coefficients is different for different eras. The main part of
this thesis comes down to finding these coefficients for the various eras without
knowledge of the full solution Uk (being positive frequency during the first era).
Our approach is to assume a smooth history of long constant ε periods alternated
by quick transitions. If τi characterizes the timescale of the i-th transition, by
quick we mean

τi ≪H−1
i , (3.69)

where Hi is the conformal Hubble rate at the time of matching (which is ap-
proximately constant if the transition is fast). Our goal is to obtain the leading
order result in τi, which is done by a so called sudden matching approxima-
tion. This means we consider a sudden transition in ε at some time ηi. In this
approximation, the Ricci scalar evolves discontinuously, which causes problems
we address shortly. The most we can ask for is for the mode function and its
derivative to be continuous for this sudden transition. The mode function then
reduces to the BD one on the initial era exactly and it has to be a linear com-
bination of the BD ones during subsequent eras. Let us denote the full mode
function during a certain era in terms of the BD ones for that era as

Ui(η) = α̃iui(η) + β̃iu∗i (η), (3.70)

where we dropped the k for notational convenience and i indicates which era
we are considering. The matching conditions then imply

α̃i = (−i) (Ui−1u∗′i −U ′
i−1u

∗
i ) ;

β̃i = (−i) (uiU ′
i−1 − u′iUi−1) , (3.71)

which have to be evaluated at the time of matching. As indicated in figure (2.2),
in this thesis we consider three matchings, at times η0 up to η2. The question
is how closely the Bogolyubov coefficients obtained in this way resemble actual
Bogolyubov coefficients that relate exact solutions to the smooth equation that
are positive frequency in the various eras. Physically, we expect the IR modes
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(k ≪Hi) to be qualitatively insensitive to the details of quick transitions (they
are definitely sensitive to the jump in ε between the initial and final era of
constant deceleration) and therefore we expect the leading order in small τi
result to be a good qualitative approximation for the IR modes. We come back
to the structure of Bogolyubov coefficients in the IR in a later chapter. In
particular, we show that the IR contributions do not qualitatively depend on
the number of intermediate matchings. This lends support to the claim that
sudden matchings are qualitatively a good approximation for IR modes, as any
smooth matching can be understood as a series of sudden matchings, which then
qualitatively behaves the same as one sudden matching.
For the same reason, we do not expect the leading order in τi result to be very
good for the UV modes. We can investigate this by studying a matching of an
initial BD mode onto an era of some different ε. Using the UV expansion of the
BD mode functions in both eras (3.48), we can obtain UV expansions for the
Bogolyubov coefficients (up to a constant phase),

α̃k,1 = 1 + iA1

k
+ A2

k2
+ . . .

β̃k,1 = e−2ikη0 [
B2

k2
+ iB3

k3
+ . . .] , (3.72)

where the coefficients Ai and Bi are nonzero for discontinuous functions f(η)
(see [20]). This contradicts the result from the previous section that βk should
fall off faster than any inverse power of k. In fact, as a consequence of this, new
logarithmic divergences UV divergences as well as power-law- and logarithmic
boundary divergences occur in the energy-momentum tensor, and they need to
be regulated. For a complete discussion we refer to [20]. For the remainder
of this thesis we use that, guided by the knowledge of the UV behavior of
the Bogolyubov coefficients, we can regulate the unphysical UV divergences by
appending an exponential suppression term to the β coefficients

βk,i → βk,ie
−τik, (3.73)

where τi mimics the finite timescale of the transition. This means we have to
modify αi as

αk,i →
√

1 + ∣βk,ie−τik ∣2
αk,i

∣αk,i∣
. (3.74)

which models the faster than power law suppression in the UV and leaves the IR
modes unaltered, which is what we expect on physical grounds. We stress that
the point of this regularization is not to obtain valid answers in the UV, but
rather it allows us to perform all intermediate steps in our calculation in order
to finally obtain the leading order contribution to the energy-momentum tensor,
which should be independent of τi if we want to make sensible predictions. A
full discussion of this exponential damping term as a UV regulator can also be
found in [20].

3.5 Initial radiation period and the vacuum

In this section we come back to the problem that the most common choice for
the vacuum state (the Bunch-Davies vacuum) on an inflationary background
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causes the expectation value of the two point correlator for the field we consider
to diverge in the IR, and it is therefore not a physically correct vacuum state in
the IR. One approach to solve this problem is to put the universe in a comoving
box that is super-Hubble initially. This means the size of the universe is fixed
in terms of the comoving coordinates, such that initially this size is much larger
that the inverse conformal Hubble rate at that time. As a result, in the Fourier
transform of the scalar field, an integral is replaced by a discrete sum over the
mode numbers that are allowed by the boundary conditions. Iin case of a super-
Hubble box, the modes we sum over are very close together compared to the
conformal Hubble rate, and we can approximate the sum by an integral from
some small longest mode k0 to infinity. This way, one effectively introduces an
IR cutoff which renders the propagator IR finite (see [32], [23]).
A more physical way of regulating the IR is to assume an additional radiation
period preceding inflation, as proposed by Janssen and Prokopec ([24]). As we
commented on above, the global Bunch-Davies vacuum state is well defined on
such a period. Moreover, Ford and Parker showed that if the initial state is IR
finite, no IR divergences will develop in finite time [19], so that this allows us to
compute the energy-momentum tensor for the full history of the universe. The
advantage of this method is that a fast transition (we assume it is fast in our
calculations) from a radiation dominated epoch to inflation seems more physi-
cally sensible than the universe actually living inside a finite comoving box.
Comparing the two methods ([24]), one finds that they qualitatively agree when
the radiation period is matched onto an accelerating period. This can be ex-
pected as in this case the comoving box size quickly grows more and more
super-Hubble, so that the details of its effect are ’washed out’. Matching onto a
decelerating period yields the opposite result, which can also be expected as in
this case the box size becomes sub-Hubble in due time. Since the main result in
our thesis occurs when the conformal Hubble rate today becomes comparable
to the conformal Hubble rate at the beginning of inflation, the results might
change for a cutoff regulator k0 method if it is chosen to be comparable to the
Hubble rate of the first matching (usually it is chosen super-Hubble). As argued
in ([24]), we suspect that for our radiation-era-method, the relevant effects all
come from IR particle creation, whereas a cutoff k0 ∼ H0 method would intro-
duce observable effects of the finite size of our universe. This is why we choose
to regulate the IR by means of this initial radiation era. To conclude, we note
that it might be interesting to investigate if one can qualitatively reproduce our
results for different regulating methods.
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Now that we know how to define energy and momentum in terms of the fields
on FLRW backgrounds, and we also know how to quantize the fields, it is in
principle a matter of computation to obtain the expressions for the expectation
value of the energy-momentum tensor. Using the action (3.27) for a non mini-
mally coupled massless scalar field and the definition of its energy-momentum
tensor (2.26), we find

Tµν = (∂µφ)∂νφ −
1

2
gµνg

αβ(∂αφ)∂βφ + ξGµνφ2 − ξ(∇µ∇ν − gµν◻)φ2. (4.1)

This we have to evaluate for the FLRW geometry. The geometric objects of
interest can be found in appendix A. Since we are after the scalar field back-
reaction, we wish to compute the expectation value of the energy-momentum
tensor. This is done by simply promoting the field in the above expression to
operators and taking expectation values with respect to the global BD vacuum
as defined in the previous section. Letting

ψk(η) = a
2−D
2 Uk(η), (4.2)

where Uk is the mode functions that reduces to the BD one in the initial era,
we start by computing some intermediate expectation values

⟨0∣∂ηφ∂ηφ∣0⟩ = ∫
dD−1k

(2π)D−1 ∣ψ
′(η, k)∣2

⟨0∣∂iφ∂jφ∣0⟩ =
δij

D − 1
∫

dD−1k

(2π)D−1 k
2∣ψ(η, k)∣2

⟨0∣φ2∣0⟩ = ∫
dD−1k

(2π)D−1 ∣ψ(η, k)∣
2

⟨0∣∂2ηφ2∣0⟩ = 2∫
dD−1k

(2π)D−1 ∣ψ
′(η, k)∣2 + ⟨0∣(∂2ηφ)φ∣0⟩ + ⟨0∣φ∂2ηφ∣0⟩. (4.3)

Let us calculate these latter two expectation values separately:

⟨0∣(∂2ηφ)φ∣0⟩ =

∫
dD−1k

(2π)D−1 ∫
dD−1k′

(2π)D−1 ⟨0∣(ψ
′′
k bk + ψ∗′′k b�−k)e

ikx(ψk′bk′ + ψ∗k′b�−k′)e
ik′x∣0⟩ =

∫
dD−1k

(2π)D−1ψ
′′
kψ

∗
k . (4.4)

Similarly

⟨0∣φ∂2ηφ∣0⟩ = ∫
dD−1k

(2π)D−1ψkψ
∗′′
k . (4.5)
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Thus

⟨0∣∂2ηφ2∣0⟩ = ∂2η⟨0∣φ2∣0⟩ = ∂2η ∫
dD−1k

(2π)D−1 ∣ψ(η, k)∣
2. (4.6)

And analogously

⟨0∣∂ηφ2∣0⟩ = ∂η ⟨Ω∣φ2∣0⟩ = ∂η ∫
dD−1k

(2π)D−1 ∣ψ(η, k)∣
2. (4.7)

Finally, we consider the term

⟨0∣∂i∂jφ2∣0⟩ =

∫
dD−1k

(2π)D−1 ∫
dD−1k′

(2π)D−1 ∂i∂j⟨0∣(ψkbk + ψ
∗
kb

�

−k)e
ikx(ψk′bk′ + ψ∗k′b�−k′)e

ik′x∣0⟩ =

∫
dD−1k

(2π)D−1 ∫
dD−1k′

(2π)D−1 (k + k
′)i(k + k′)j(2π)D−1ψkψ∗k′δ(k + k′) = 0. (4.8)

Realizing that by symmetric integration all terms that contain only one spatial
derivative will vanish, we can convince ourselves that there are no other non
vanishing expectation values appearing in the calculation of the expectation
value of the energy-momentum tensor. Our next task is to actually calculate
this expectation value. First we compute the 00 component:

Tηη =(∂ηφ)∂ηφ −
1

2
gηηg

αβ(∂αφ)∂βφ + ξGηηφ2 − ξ(∇η∇η − gηη◻)φ2

=(∂ηφ)∂ηφ +
1

2
[−(∂ηφ)∂ηφ + (∂iφ)∂iφ] + ξGηηφ2

− ξ[∂2ηφ2 − Γηηη∂ηφ
2 + (−∂2ηφ2 + Γηηη∂ηφ

2 + ∂2i φ2 − Γηii∂ηφ
2)]. (4.9)

Plugging in the above relations, we find

⟨0∣Tηη ∣0⟩ =∫
dD−1k

(2π)D−1 [
1

2
∣ψ′(η, k)∣2 + 1

2
k2∣ψ(η, k)∣2

+ 1

2
ξ(D − 1)(D − 2)H2∣ψ(η, k)∣2 + ξ(D − 1)H∂η ∣ψ(η, k)∣2]. (4.10)

Next we consider the other components of the energy-momentum tensor. Note
that the expectation values of all nondiagonal terms vanish, in particular the
covariant derivative parts vanish because the expectation value of terms with
one spatial derivative is zero. Then we find

Tjj =(∂jφ)∂jφ −
1

2
gjjg

αβ(∂αφ)∂βφ + ξGjjφ2 − ξ(∇j∇j − gjj◻)φ2

=(∂jφ)∂jφ −
1

2
[−(∂ηφ)∂ηφ + (∂iφ)∂iφ] + ξGjjφ2

− ξ[∂2jφ2 − Γηjj∂ηφ
2 − (−∂2ηφ2 + Γηηη∂ηφ

2 + ∂2i φ2 − Γηii∂ηφ
2)], (4.11)

where we sum over i, but not over j. This gives

⟨0∣Tjj ∣0⟩ =∫
dD−1k

(2π)D−1 [
1

2
∣ψ′(η, k)∣2 + ( 1

D − 1
− 1

2
)k2∣ψ(η, k)∣2

− 1

2
ξ(D − 2ε − 1)(D − 2)H2∣ψ(η, k)∣2 − ξ∂2η ∣ψ∣2

− ξ(D − 3)H∂η ∣ψ(η, k)∣2]. (4.12)
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We want to rewrite these expressions in terms of U = aD2 −1ψ. To that end we
note

ψ′ = (1 − D
2
)a−D2 a′U + a1−D2 U ′ = a1−D2 [(1 − D

2
)HU +U ′]

⇒ ∣ψ′∣2 = a2−D[(1 − D
2
)2H2∣U ∣2 + (1 − D

2
)H∂η ∣U ∣2 + ∣U ′∣2]. (4.13)

Furthermore,
∂η ∣ψ∣2 = a2−D[(2 −D)H∣U ∣2 + ∂η ∣U ∣2], (4.14)

and

∂2η ∣ψ∣2 = a2−D{[(2−D)2H2+(2−D)H′]∣U ∣2+2(2−D)H∂η ∣U ∣2+∂2η ∣U ∣2}. (4.15)

Thus we find for the nonzero expectation values of the energy-momentum tensor:

⟨0∣Tηη ∣0⟩ =∫
dD−1k

(2π)D−1 a
2−D{1

2
[(1 − D

2
)2H2∣U ∣2 + (1 − D

2
)H∂η ∣U ∣2 + ∣U ′∣2]

+ 1

2
k2∣U ∣2 + 1

2
ξ(D − 1)(D − 2)H2∣U ∣2

+ ξ(D − 1)H[(2 −D)H∣U ∣2 + ∂η ∣U ∣2]}; (4.16)

⟨0∣Tjj ∣0⟩ =∫
dD−1k

(2π)D−1 a
2−D(1

2
[(1 − D

2
)2H2∣U ∣2 + (1 − D

2
)H∂η ∣U ∣2 + ∣U ′∣2]

+ ( 1

D − 1
− 1

2
)k2∣U ∣2 − 1

2
ξ(D − 2ε − 1)(D − 2)H2∣U ∣2

− ξ{[(2 −D)2H2 + (2 −D)H′]∣U ∣2 + 2(2 −D)H∂η ∣U ∣2 + ∂2η ∣U ∣2}

− ξ(D − 3)H[(2 −D)H∣U ∣2 + ∂η ∣U ∣2]). (4.17)

Using the fact that U is a solution to the equation

U ′′ + [k2 + f(η)]U = 0, (4.18)

where

f(η) = −(D − 2ε)H2

4
[D − 2 − 4ξ(D − 1)], (4.19)

we find
∂2η ∣U ∣2 = −2(k2 + f)∣U ∣2 + 2∣U ′∣2, (4.20)

which implies

∣U ′∣2 = (k2 + f)∣U ∣2 + 1

2
∂2η ∣U ∣2. (4.21)
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Hence, in terms of U , the expressions become

⟨0∣Tηη ∣0⟩ =∫
dD−1k

(2π)D−1 a
2−D(1

2
(1 − D

2
)2H2∣U ∣2 + 1

2
(1 − D

2
)H∂η ∣U ∣2

+ 1

2
[(k2 + f)∣U ∣2 + 1

2
∂2η ∣U ∣2] + 1

2
k2∣U ∣2 + 1

2
ξ(D − 1)(D − 2)H2∣U ∣2

+ ξ(D − 1)H[(2 −D)H∣U ∣2 + ∂η ∣U ∣2])

=∫
dD−1k

(2π)D−1 a
2−D×

{[k2 + 1

2
f + (2 −D)2

8
H2 + ξ (2 −D)(D − 1)

2
H2]∣U ∣2

+ [2 −D
4
H + ξ(D − 1)H]∂η ∣U ∣2 + 1

4
∂2η ∣U ∣2}, (4.22)

and

⟨0∣Tjj ∣0⟩ =∫
dD−1k

(2π)D−1 a
2−D{[1

2
(1 − D

2
)2H2 + ( 1

D − 1
− 1

2
)k2

− 1

2
ξ(D − 2ε − 1)(D − 2)H2 − ξ(2 −D)2H2 − ξ(2 −D)(1 − ε)H2

− ξ(D − 3)(2 −D)H2 + 1

2
(k2 + f)]∣U ∣2+

H[1

2
(1 − D

2
) + ξ(D − 1)]∂η ∣U ∣2 + (1

4
− ξ)∂2η ∣U ∣2}, (4.23)

where we used H′ = (1 − ε)H2. Simplifying this expression, we obtain

⟨0∣Tjj ∣0⟩ =∫
dD−1k

(2π)D−1 a
2−D×

{[1

2
f + k2

D − 1
+ (D − 2)2

8
H2 + (2 −D)(D − 1)

2
H2ξ]∣U ∣2+

H[1

2
(1 − D

2
) + ξ(D − 1)]∂η ∣U ∣2 + (1

4
− ξ)∂2η ∣U ∣2}. (4.24)

Since we assume an isotropic universe, the argument is solely dependent on
the norm of k. Therefore, we can already perform the angular integrals. The
integral takes the following form:

∫
dkkD−2

(2π)D−1F (k)∫
2π

0
dθ1 ∫

π

0
dθ2 sin θ2 . . .∫

π

0
dθD−2 sinD−3 θD−2. (4.25)

This can be carried out with the help of the formula

∫
π

0
dθ sink θ =

Γ( 1
2
)Γ( 1

2
+ 1

2
k)

Γ(1 + 1
2
k)

, (4.26)

where Γ is the Euler Gamma function (ref). Consistently applying this formula
tells us that the angular integrations yield

2
ΓD−1( 1

2
)

Γ(1 + D−3
2

)
= 2

ΓD−1( 1
2
)

Γ(D−1
2

)
= 2π

D−1
2

Γ(D−1
2

)
. (4.27)
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Finally, we plug in this result, as well as the definition of f , to find

⟨0∣Tηη ∣0⟩ =
2a2−D

(4π)D−12 Γ(D−1
2

) ∫
∞

0
dkkD−2×

{[k2 + 1

4
(ε − 1)(D − 2)H2 − ξ(ε − 1)(D − 1)H2]∣U ∣2

+ [2 −D
4
H + ξ(D − 1)H]∂η ∣U ∣2 + 1

4
∂2η ∣U ∣2} ;

⟨0∣Tjj ∣0⟩ =
2a2−D

(4π)D−12 Γ(D−1
2

) ∫
∞

0
dkkD−2×

{[ k2

D − 1
+ 1

4
(ε − 1)(D − 2)H2 − ξ(ε − 1)(D − 1)H2]∣U ∣2+

[2 −D
4
H + ξ(D − 1)H]∂η ∣U ∣2 + (1

4
− ξ)∂2η ∣U ∣2}. (4.28)

Now that we have these results, we can investigate what happens when we
decompose the mode function during a particular era in terms of the BD ones,
Uk,i = αk,iuk,i + βk,iu∗k,i. It is then convenient to substitute everywhere:

∣U ∣2 = ∣u∣2 + 2∣β∣2∣u∣2 + αβ∗u2 + α∗βu∗2. (4.29)

Since the Bogolyubov coefficients are time-independent during one such era,
we can take them outside of the derivatives, and accordingly identify the terms
independent of α and β as ⟨Tµν⟩B-D, the terms proportional to ∣β∣2 as ⟨Tµν⟩β and
the remaining as ⟨Tµν⟩αβ . Since the β coefficients fall off faster than any power
in the UV, there are no UV divergences in the β and αβ parts of the energy-
momentum tensor. Therefore, for the regularization and renormalization of
the energy-momentum tensor we only have to consider the BD part. It should
be noted, though, that during inflation and matter era, the BD mode function
causes IR divergences in the energy-momentum tensor for ξ < 0, as the dominant
IR terms of the Hankel functions scale as k−ν , and ν is larger than 3/2 in this
case. By including an initial radiation period (ν = 1/2), we are sure the full
result does not develop divergences in finite time ([19]). The separate terms
do not have to be IR finite by themselves though. Careful consideration of the
lower limit is therefore necessary.

4.1 UV expansion

In order to identify the UV divergent terms in the energy-momentum tensor,
we solve the terms in the UV expansion of the BD mode function (3.48). This
is done in appendix C. The result is that we can approximate the norm squared
of the mode function as

∣u∣2 = 1

2k
[1 + V1

k2
+ V2
k4

+ . . .] , (4.30)

where

V1 = 2F2 + F 2
1 = −1

2
f(η)

V2 = 2F4 + 2F3F1 + F 2
2 = 1

8
(f ′′(η) + 3f2(η)) . (4.31)
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This yields a UV approximation for the BD part of the energy-momentum ten-
sor,

⟨0∣Tηη ∣0⟩BD,UV = a2−D

(4π)D−12 Γ(D−1
2

) ∫
∞

µ
dkkD−3×

{k2 + [1

8
(D − 2) (D − 2 − 4ξ(D − 1))H2]+

1

k2
[ 1

128
(D − 2 − 4ξ(D − 1))2 (−8H′′H + 4(H′)2 + 3(D − 2)2H4) ]},

(4.32)

and

⟨0∣Tij ∣0⟩BD,UV = δija
2−D

(4π)D−12 Γ(D−1
2

) ∫
∞

µ
dkkD−3×

{ k2

D − 1
+ [ − 1

4
(D − 2) (D − 2 − 4ξ(D − 1))H′

+ D − 2 − 4ξ(D − 1)
4(D − 1) (1

2
(D − 2)H2 +H′) ]+

1

k2
[ 1

128(D − 1) (D − 2 − 4ξ(D − 1))2 ×

( − 8H′′H + 4(H′)2 + 8H′′′ + 3(D − 2)2H4 − 12(D − 2)2H2H′)]}.
(4.33)

Next, we perform the trivial integrals over k from µ to ∞, drop the ∞ part by
moving to a dimension in which this term vanishes, and analytically continue to
D = 4, paying extra attention to the terms that are divergent in four dimensions.
In all non divergent terms, we simply let D → 4, but in terms multiplying
divergent factors (in our case 1/(D − 4)), we have to expand the prefactor for
small D − 4 in order to appropriately treat the finite contributions. This goes
under the name dimensional regularization ([30], [5]). First we analyze these
contributions for the 00 component, where we use Γ(3/2) = 1/(2√π):

⟨0∣Tηη ∣0⟩ = −
µ4

16π2a2
− (1 − 6ξ)H2µ2

16π2a2

− a
2−D (D − 2 − 4ξ(D − 1))2

128(4π)D−12 Γ(D−1
2

)
(−8H′′H + 4(H′)2 + 3(D − 2)2H4) µ

D−4

D − 4

(4.34)

This last term accounts for the divergent term, that has to be canceled by a
higher order contribution in the action, as well as some finite terms. In order
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to find these, we have to expand the prefactor up to linear order in D − 4:

a2−D (D − 2 − 4ξ(D − 1))2

128(4π)D−12 Γ(D−1
2

)
(−8H′′H + 4(H′)2 + 3(D − 2)2H4) =

[(1 − 6ξ)2

32π2a2
(−2H′′H + (H′)2 + 3H4)] + [3 (1 − 6ξ)2H4

32π2a2
] (D − 4)−

[((1 − 6ξ)2 log a

32π2a2
− (1 − 6ξ)(1 − 4ξ)

32π2a2
+

1
2
(1 − 6ξ)2 log 4π

32π2a2
+
γ3/2
2

(1 − 6ξ)2

32π2a2
)×

(−2H′′H + (H′)2 + 3H4) ](D − 4) +O ((D − 4)2) . (4.35)

Thus, we find for the UV part (large µ, small D−4) of the 00 component of the
energy-momentum tensor:

⟨0∣Tηη ∣0⟩ ≈ −
µ4

16π2a2
− (1 − 6ξ)H2µ2

16π2a2

− [(1 − 6ξ)2

32π2a2
(−2H′′H + (H′)2 + 3H4)] µ

D−4

D − 4
− [3 (1 − 6ξ)2H4

32π2a2
]+

[((1 − 6ξ)2 log a

32π2a2
− (1 − 6ξ)(1 − 4ξ)

32π2a2
+

1
2
(1 − 6ξ)2 log 4π

32π2a2
+
γ3/2
2

(1 − 6ξ)2

32π2a2
)×

(−2H′′H + (H′)2 + 3H4) ], (4.36)

where γ3/2 = 2 − γE − log 4, γE being the Euler-Mascheroni constant. We take
the same steps for the spatial components.

⟨0∣Tjj ∣0⟩ = −
µ4

48π2a2
− (2H2 −H′) (1 − 6ξ)µ2

48π2a2
− a2−D (D − 2 − 4ξ(D − 1))2

128(4π)D−12 Γ(D−1
2

)(D − 1)
×

( − 8H′′H + 4(H′)2 + 8H′′′ + 3(D − 2)2H4 − 12(D − 2)2H2H′) µ
D−4

D − 4
, (4.37)

which, to zeroth order in D − 4, comes down to

⟨0∣Tjj ∣0⟩ = −
µ4

48π2a2
− (2H2 −H′) (1 − 6ξ)µ2

48π2a2

− [(1 − 6ξ)2
96π2a2

(−2H′′H + (H′)2 + 3H4 + 2H′′′ − 12H2H′)] µ
D−4

D − 4

− [(1 − 6ξ)2
96π2a2

(3H4 − 12H2H′)]

+ [((1 − 6ξ)2
96π2a2

(log a + 1

2
log 4π + 1

2
γ3/2 +

1

3
) − (1 − 6ξ)(1 − 4ξ)

96π2a2
)×

(−2H′′H + (H′)2 + 3H4 + 2H′′′ − 12H2H′) ]. (4.38)

The divergence in the limit D → 4 has to be canceled by counterterms.
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4.2 Counterterms

We will see that it suffices to consider only the counterterm

Sct = αS1 = α∫ dDx
√−gR2. (4.39)

The contribution to the energy-momentum tensor (interpreting everything as a
contribution to the energy-momentum content of the universe) is then given by

Hµν =
−2

√−g
δS1

δgµν
= (gµνR2 − 4RRµν − 4gµν ◻R + 4∇µ∇νR) . (4.40)

In order to compute this, we use the following expressions for the Ricci tensor
and scalar and covariant derivatives in an FLRW background from the appendix
A. Then we find (keeping in mind that we also have to consider the time deriva-
tive of 1/a2):

H00 =
(D − 1)2

a2
{ − (D − 10)(D − 2)H4

+ [16 − 8(D − 2)]H′H2 + 4(H′)2 − 8HH′′}; (4.41)

Hjj = a
D − 1

a2
{[(D − 1)(D − 2)2 − 4(D − 2)2 + 16(D − 2) − 8(D − 3)(D − 2)]H4

+ [4(D − 1)(D − 2) − 52(D − 2) + 8(D − 3)(D − 2) − 16(D − 3) + 32]H′H2

+ [4(D − 1) − 24 + 8(D − 2)] (H′)2 − [8(D − 3) + 8(D − 2) − 32]HH′′ + 8H′′′}.

(4.42)

Next, we want to expand these expressions to first order in D − 4. This yields

H00 =
36

a2
[−2H′′H + (H′)2 + 3H4]

12

a2
[−4H′′H + 2(H′)2 + 9H4 − 6H′H2] (D − 4), (4.43)

and

Hjj =
12

a2
[−2H′′H + (H′)2 + 3H4 − 12H′H2 + 2H′′′]

4

a2
[10H′′H + 10(H′)2 − 3H4 − 30H′H2 + 2H′′′] (D − 4). (4.44)

Looking at the ultraviolet divergences in the original energy-momentum tensor
in (4.36) and (4.38), we find that in order to cancel them, we have to let

α = (1 − 6ξ)2
1152π2

( µ
D−4

D − 4
+ αf) , (4.45)

where αf is some finite constant, of which we have no reason to assume it is
zero (if we already include this term in the action). Then the contribution from
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the counterterm action becomes

H00 =
(1 − 6ξ)2
32π2a2

[−2H′′H + (H′)2 + 3H4] µ
D−4

D − 4

+ (1 − 6ξ)2
96π2a2

[−4H′′H + 2(H′)2 + 9H4 − 6H′H2]

+ (1 − 6ξ)2αf
32π2a2

[−2H′′H + (H′)2 + 3H4] , (4.46)

and

Hjj =
(1 − 6ξ)2
96π2a2

[−2H′′H + (H′)2 + 3H4 − 12H′H2 + 2H′′′] µ
D−4

D − 4

+ (1 − 6ξ)2
288π2a2

[10H′′H + 10(H′)2 − 3H4 − 30H′H2 + 2H′′′]

+ (1 − 6ξ)2αf
96π2a2

[−2H′′H + (H′)2 + 3H4 − 12H′H2 + 2H′′′] . (4.47)

These we have to combine with the result from the previous subsection to obtain
the full result.

4.3 UV Results

It turns out that on more general backgrounds (non-FLRW), it is necessary to
include the other higher derivative terms of the same order as R2 as well to
renormalize the theory. This conformal anomaly term does not vanish in the
conformal limit (ξ → 1/6 in four dimensions). It is given by ([4], [6], [14])

TCA00 = 1

2880π2a2
[2H′′H −H′2] + 3αCA

a2
[2H′′H −H′2 − 3H4]

TCAij = − δij

8640π2a2
[2H′′′ − 2H′′H +H′2]

+ δijαCA
a2

[−2H′′′ + 2H′′H −H′2 + 12H′H2 − 3H4] , (4.48)

where αCA is a free constant that combines with the finite parts form the ex-
pectation value of the scalar field and the counterterm of the previous section,
and can in principle be fixed by measurement. Adding up all contributions, we
get the following result for the µ-dependent UV-part of the one loop energy-
momentum-tensor:

⟨0∣Tηη ∣0⟩ ≈ −
µ4

16π2a2
− (1 − 6ξ)H2µ2

16π2a2
+ (1 − 6ξ)2

96π2a2
[−4H′′H + 2(H′)2 − 6H′H2]+

1

2880π2a2
[2H′′H − (H′)2] + (1 − 6ξ)2

32π2a2
(log a + α̃) [ − 2H′′H + (H′)2 + 3H4],

(4.49)

where

α̃ = 1

2
log 4π + 1

2
γ3/2 −

1 − 4ξ

1 − 6ξ
+ αf −

96π2

(1 − 6ξ)2αCA, (4.50)
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and

⟨0∣Tjj ∣0⟩ ≈ −
µ4

48π2a2
− (1 − 6ξ)µ2

48π2a2
[2H2 −H′] − 1

8640π2a2
[2H′′′ − 2H′′H + (H′)2]

+ (1 − 6ξ)2

288π2a2
[4H′′′ + 8H′′H + 11(H′)2 − 6H′H2 − 9H4]+

+ (1 − 6ξ)2
96π2a2

(log a + α̃ + 1

3
)[2H′′′ − 2H′′H + (H′)2 − 12H′H2 + 3H4]. (4.51)

On constant ε backgrounds, this reduces to

⟨0∣Tηη ∣0⟩ ≈ −
µ4

16π2a2
− (1 − 6ξ)H2µ2

16π2a2
− (1 − 6ξ)2

96π2a2
[6H4(1 − ε)(2 − ε)]

+ 1

2880π2a2
[3H4(1 − ε)2] + (1 − 6ξ)2

32π2a2
(log a + α̃) [3H4ε(2 − ε)], (4.52)

and

⟨0∣Tjj ∣0⟩ ≈ −
µ4

48π2a2
+ (1 − 2ε)(1 − 6ξ)H2µ2

48π2a2
+ (1 − 6ξ)2

288π2a2
[3H4(6 − 17ε + 8ε2)(2 − ε)]

− 1

8640π2a2
[3H4(1 − ε)2(3 − 4ε)] − (1 − 6ξ)2

96π2a2
(log a + α̃ + 1

3
)[3H4ε(2 − ε)(3 − 4ε)].

(4.53)

This is a satisfactory result, as we got rid of the divergences and expect the µ
dependence to cancel with contributions from the lower part of the full integral.
Moreover, we find that all finite terms contributing to the energy density and
pressure scale as (including the factor a−2 from (2.6)),

ρUVq , pUVq ∼ H
4

a4
(O(1) + log a) . (4.54)

On dimensional grounds, this has to be true for any finite contributions from
the BD part. As we shall see, these terms are subdominant contributions to the
final late time results.



5. IR STRUCTURE OF BOGOLYUBOV COEFFICIENTS

In this chapter we derive results for the structure of the IR dominant terms in
the Bogolyubov coefficients for multiple matchings. This is slightly technical
and can be skipped upon first reading. The reason we include it here is that the
Bogolyubov coefficients characterize the effect of the evolution of the universe
on the quantum field. As we show in the next chapter, for a large part of the
history of the universe, it is enough to only know the behavior of the Bogolyubov
coefficients in the IR. Also, this treatment shows that a sudden matching ap-
proximation seems to qualitatively capture the evolution of IR modes correctly.
In the sudden matching approximation, we decompose the mode function during
some era as

Ui = α̃iui + β̃iu∗i . (5.1)

It is convenient to also define ’partial’ Bogolyubov coefficients (no tilde) that we
would find if the mode function before the matching was the BD mode functions
for that era, i.e. they tell us how BD mode functions evolve,

αi = (−i) (ui−1u∗′i − u′i−1u∗i ) ;

βi = (−i) (uiu′i−1 − u′iui−1) . (5.2)

I matrix form, we then find

(α̃i β̃i
β̃∗i α̃∗i

) = (−i)(Ui−1 U ′
i−1

U∗
i−1 U∗′

i−1
)( u

∗′
i −u′i

−u∗i ui
) =

= (−i)(α̃i−1 β̃i−1
β̃∗i−1 α̃∗i−1

)(ui−1 u′i−1
u∗i−1 u∗′i−1

)( u
∗′
i −u′i

−u∗i ui
) =

= (α̃i−1 β̃i−1
β̃∗i−1 α̃∗i−1

)(αi βi
β∗i α∗i

) . (5.3)

If we assume the initial mode functions are the BD ones, α̃1 = 1 and β̃1 = 0, we
can extend this result to arbitrary matchings,

(α̃n
β̃n

) = Tn(k, ηn−1)Tn−1(k, ηn−2) . . . T2(k, η1)T1(k, η0)(
1
0
) , (5.4)

where the transfer matrices are

Ti(k, ηi−1) = (αi(k, ηi−1) β∗i (k, ηi−1)
βi(k, ηi−1) α∗i (k, ηi−1)

) . (5.5)

Next, our aim is to show that the form of the components of products of these
matrices is the same as the form of a single matrix in terms of the dependence
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on powers of k in the IR. We use the following expression for the mode function
during deceleration in order to keep track of the powers of k

H(2)ν (z) = i

sinπν
(J−ν(z) − eiπνJν(z)) , (5.6)

where z is defined in (3.56), and

Jν = (z
2
)
ν

Sν , (5.7)

where Sν is the regular power series

Sν =
∞
∑
n=0

(−1)n
n!Γ(ν + n + 1) (z

2
)
2n

. (5.8)

For simplicity, we will assume that we are only matching decelerating periods
onto each other right now. An intermediate acceleration era will does not quali-
tatively change the results, only the coefficient of the leading order term slightly
changes, but it is easy to calculate. We first use this to find an expression for
the partial coefficients for matching the first to the second era,

α2 = − i
π

4

z
1/2
1 z

1/2
2

sinπν1 sinπν2
×

{A−ν1,−ν2 (
z1
2
)
−ν1

(z2
2
)
−ν2

− e−iπν2A−ν1,ν2 (
z1
2
)
−ν1

(z2
2
)
ν2

− eiπν1Aν1,−ν2 (
z1
2
)
ν1

(z2
2
)
−ν2

+ eiπ(ν1−ν2)Aν1,ν2 (
z1
2
)
ν1

(z2
2
)
ν2

}, (5.9)

and

β2 = − i
π

4

z
1/2
1 z

1/2
2

sinπν1 sinπν2
×

{A−ν1,−ν2 (
z1
2
)
−ν1

(z2
2
)
−ν2

− eiπν2A−ν1,ν2 (
z1
2
)
−ν1

(z2
2
)
ν2

− eiπν1Aν1,−ν2 (
z1
2
)
ν1

(z2
2
)
−ν2

+ eiπ(ν1+ν2)Aν1,ν2 (
z1
2
)
ν1

(z2
2
)
ν2

}, (5.10)

where

Aa,b ∶= Sa (
1

2zb
Sb +

b

zb
Sb + S′b) − Sb (

1

2za
Sa +

a

za
Sa + S′a) , (5.11)

and the index of ν and z is a reminder of what ε value to plug in, see (3.59)
and (3.56). Again, this expression should be evaluated at the time of matching.
Note the similarity of these expressions up to some phases in the exponents. The
partial coefficients for the third era will of course be the same after replacing all
ones and twos with twos and threes. Now, we can multiply two matrices, and
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find

α̃3 = − i
π2

8

√
z1z2(η1)

√
z2z3(η2)

sinπν1 sinπν2 sinπν3
×

{(z1
2
)
−ν1

(z3
2
)
−ν3

B−ν1,−ν3 − e−iπν3 (
z1
2
)
−ν1

(z3
2
)
ν3

B−ν1,ν3

− eiπν1 (z1
2
)
ν1

(z3
2
)
−ν3

Bν1,−ν3 + eiπ(ν1−ν3) (
z1
2
)
ν1

(z3
2
)
ν3

Bν1,ν3}, (5.12)

and

β̃3 = − i
π2

8

√
z1z2(η1)

√
z2z3(η2)

sinπν1 sinπν2 sinπν3
×

{(z1
2
)
−ν1

(z3
2
)
−ν3

B−ν1,−ν3 − eiπν3 (
z1
2
)
−ν1

(z3
2
)
ν3

B−ν1,ν3

− eiπν1 (z1
2
)
ν1

(z3
2
)
−ν3

Bν1,−ν3 + eiπ(ν1+ν3) (
z1
2
)
ν1

(z3
2
)
ν3

Bν1,ν3}, (5.13)

with

Ba,b =Aa,ν2A−ν2,b (
H2

H1
)
ν2

−Aa,−ν2Aν2,b (
H2

H1
)
−ν2

. (5.14)

From this, the extension to three dimensions is clear. Namely, the prefactor has

to be multiplied by an additional
π
√
z3z4(η3)

2 sinπν4
, the ν3 powers become ν4 and the

B’s have to be replaced by C’s that satisfy

Ca,b =Ba,ν3A−ν3,b (
H3

H2
)
ν3

−Ba,−ν3Aν3,b (
H3

H3
)
−ν3

. (5.15)

Thus we find the the form of the Bogolyubov coefficients for several matchings
is the same in terms of the powers of k. It does however become increasingly
complicated to calculate the factors multiplying the respective terms. The lowest
order contribution in k is then found by collecting the lowest order terms in
the power series multiplying the first term in the above expression. The lowest
order contributions of the other terms are necessarily of higher order than these.
First we stress that after n−1 matchings, the dominant terms in the Bogolyubov
coefficients can be checked to have the form

α̃n = β̃n = β0k−ν1−νn . (5.16)

This is what we mean by the statement that evolution in the IR is qualitatively
insensitive to the details of the transition: including more intermediate transi-
tions does not change the k dependence. This can also be concluded from the
continuum limit that was calculated in [33]. Sudden matchings therefore seem
to yield a good qualitative approximation to the true evolution of the mode
function.



6. RESULTS

So far, we have derived the expression for the expectation value of the energy-
momentum tensor. In particular, we have shown how we treat the UV in order
to obtain a UV finite answer. We argued why we implement an initial radiation
era to render our calculation IR finite. By matching the modes onto this initial
state, we are sure that the full result is IR finite, i.e. we can extend the integral
over k from 0 to infinity. However, when splitting up the energy-momentum
tensor into the BD, β and αβ parts, we cannot be sure that these integrals are
individually IR finite. Indeed, the BD part is IR divergent for inflation and
matter era. We should therefore perform the integrals from some small k0 to
∞, and all k0 dependent terms have cancel in the limit k0 → 0 by virtue of the
results in [19]. On the practical side, in the following calculations the dominant
contributions will turn out to come from integrals that are IR finite, so we do
not have to bother with this.
Equipped with the knowledge of the behavior of the Bogolyubov coefficients
and the BD mode functions in the IR and the UV, our goal is to split up the
full integral in the β and αβ parts of the energy density and the pressure into
various regions for which we can approximate the Bogolyubov coefficients or
the mode functions, which allows us to obtain analytic results for these regions
separately. The reason we are able to do this is that there is a clear hierarchy
in the scales that appear in our problem. Moreover, this hierarchy of scales
tells us which terms give the dominant contributions to the energy density and
pressure.

6.1 Leading order late-time result

In this case, we have to consider the scales H0, τ0,H1, τ1,H2, τ2,H. All τ ’s
have to be included in order to make sure the final result does not contain UV
divergences. However, the dominant, finite contributions do not depend on τ0
and τ2. There are terms in the UV integral that have to depend on them, but
they are subdominant to the UV term we consider, which only depends on τ1.
For clarity, we neglect τ0 and τ2 in the following calculation and keep in mind
that the full result is UV finite. We comment on the effect of including them
later in this section. We do however keep the τ1 small but finite, in order to
say something about how the UV contribution compares to the IR contribution.
The hierarchy between the remaining scales we know to be

{H0,H} ≪H2 ≪H1 ≪ τ−11 . (6.1)

It turns out we do not have to assume any hierarchy between H0 and H in
order to analytically extract the dominant contribution. The integrals we have
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to calculate are

ρq =
1

4π2a4
∫

∞

0
[2k4 + k2F̂ρ(η)] ∣u3∣2;

pq =
1

4π2a4
∫

∞

0
[2
k4

3
+ k2F̂p(η)] ∣u3∣2, (6.2)

where

F̂ρ(η) = (1 − 6ξ)(ε − 1)H2 − (1 − 6ξ)H∂η +
1

2
∂2η ;

F̂p(η) = (1 − 6ξ)(ε − 1)H2 − (1 − 6ξ)H∂η +
1

2
(1 − 4ξ)∂2η . (6.3)

Recall that all physical UV divergences appear in the BD part and are accounted
for by counterterms. Finite contributions from this part must on dimensional
grounds scale as

⟨Tµν⟩BD ∼ H
4

a4
(O(1) + log a) , (6.4)

which will turn out to be a subdominant contribution in terms of the hierarchy
of scales. As indicated, there will be IR divergent contributions from the BD
integral, which have to cancel with subdominant contributions from the β and
αβ parts. However, since in the dominant parts we find no k0 divergences, we
do not bother with them and let k0 → 0.
Thus, we are only interested in the β and αβ parts. Writing

u3 = α0,3uM + β0,3u∗M , (6.5)

we are therefore interested in computing α0,3 and β0,3, where we assume the
universe was in the BD state during the initial radiation period. We split the
integral into an IR part, two intermediate parts and a UV part as

∫
∞

0
= ∫

µ

0
+∫

µ̃1

µ
+∫

µ̃2

µ̃1

+∫
∞

µ̃2

, (6.6)

where

{H0,H} ≪ µ≪H2 ≪ µ̃1 ≪H1 ≪ µ̃2 ≪ τ−11 . (6.7)

We will show that the dominant contribution in terms of the scales comes from
the IR part. Therefore we next derive the expressions for the Bogolyubov coef-
ficients in the IR.

6.1.1 Bogolyubov coefficients (in IR)

As can be seen in the previous chapter, in the IR, the Bogolyubov coefficients
are conveniently written in terms of partial Bogolyubov coefficients as

α0,3 = α0,1α1,3 + β0,1β∗1,3
β0,3 = α0,1β1,3 + β0,1α∗1,3, (6.8)

where, consistently,

α1,3 = α1,2α2,3 + β1,2β∗2,3
β1,3 = α1,2β2,3 + β1,2α∗2,3. (6.9)
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Namely, for the IR part of the integral, we can use the IR results for α1,3 and
β1,3:

α1,3 ≈ β1,3 ≈
iA1,3

kν1+ν3
, (6.10)

where, using that ε2 = 2 and accordingly ν2 = 1/2,

A1,3 =
2ν1+ν3π

4

(H1)ν1 (H2)ν3 (H1

H2
)

1
2

Γ(1 − ν1)Γ(1 − ν3)
×

×
(1 − ε1)ν1+

1
2 (ε − 1)ν3− 1

2 ( 1
2
− ν1)

sinπν1 sinπν3
[(ε − 1)(1

2
− ν3) − 1] . (6.11)

Thus we find

α0,3 = β0,3 =
iA1,3

kν1+ν3
(α0,1 − β0,1). (6.12)

This way the β and αβ parts combine as

2∣β0,3∣2∣uM ∣2 + α0,3β
∗
0,3u

2
M + α0,3∗β0,3u∗2M =

4∣β0,3∣2 [Re(uM)]2 = 4
∣A1,3∣2
k2ν1+2ν3

∣α0,1 − β0,1∣2 [Re(uM)]2 . (6.13)

The partial Bogolyubov coefficients for the first matching cannot be approxi-
mated if H ≈H0. Using that the radiation BD mode function satisfies

u′R(η) =
1√
2k
ik
H′

H2
e−i

k
H = −ikuR(η), (6.14)

we find

α0,1 = −iuR(η0) [u′∗I (η0) + iku∗I(η0)]
β0,1 = iuR(η0) [u′I(η0) + ikuI(η0)] . (6.15)

Then
α0,1 − β0,1 = −2i [Re(u′I) + ikRe(uI)] , (6.16)

where the lower case I, R and M stand for inflation, radiation and matter, re-
spectively. Now, since the energy-momentum tensor contains this term squared,
we compute

[Re(u′I)]
2 = [∂η0Re(uI)]

2 = ∂η0 [Re(uI)∂η0Re(uI)] −Re(uI)∂2η0Re(uI) =

= 1

2
∂2η0 [Re(uI)]

2 + (k2 + f(η0)) [Re(uI)]2 , (6.17)

Where in the last line we used the mode equation. Thus we obtain

∣α0,1 − β0,1∣2 =
2

k
{1

2
∂2η0 + 2k2 + fI(η0)} [Re(uI)]2 =

2

k
F̂ (η0) [Re(uI)]2 , (6.18)

where

fI(η0) = −(2 − εI)(1 − 6ξ)H2
0. (6.19)
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6.1.2 IR integral

The non BD part of the IR integral for the energy density (the pressure calcu-
lation is similar) in the introduced notation then becomes

ρq =
2∣A1,3∣2
π2a4

∫
µ

0
[2k4 + k2F̂ρ(η)]k−1−2νI−2νM F̂ (η0) [Re(uI)]2 [Re(uM)]2 .

(6.20)

It should be understood that uI = uI(η0) and uM = uM(η). The operators
consist of derivatives that can be taken outside of the integral and at most
a power of k2 in F̂ (η0), which is defined through (6.18). From the IR and
asymptotic expansion of the mode function one can infer that these integrals
are in fact IR and UV finite (for νI , νM > 3/2). Moreover, since the only scales
left in the integral are H0 and H, which are by definition much smaller than
µ, the result can be obtained as an expansion in µ−1, so that the leading order
result is simply obtained by extending the integral to infinity. The integrals we
are interested in are therefore

J̃(n,H0,H) = ∫
∞

0
dkk2n−1−2νI−2νM [Re(uI)]2 [Re(uM)]2

= ∫
∞

0

π2k2n−1−2νI−2νM

16(εM − 1)(1 − εI)H0H
J2
νI

( k

(1 − εI)H0
)J2

νM
( k

(εM − 1)H)

(6.21)

where for the full result we need to consider n = {1,2,3} and act with the
respective derivative operators. These integrals are known analytically in terms
of generalized hypergeometric functions 1. It turns out to be convenient to
rewrite this in terms of dimensionless variables x and y, in order to keep track
of the dimensionality of this term, through

H0 = yHt ; H = xHt, (6.22)

and plug in εM = 3/2 and denote qI = (1 − εI). Then the integral becomes

J̃(n,H0,H) =∫
∞

0
dk
π2k2n−1−2νI−2νM

8qIxyH2
t

J2
νI

( k

qIyHt
)J2

νM
( 2k

xHt
) . (6.23)

On dimensional grounds, we can now express the answer as a dimensionful
number times some dimensionless function of x and y,

J̃(n,H0,H) =H2n−2−2νI−2νM
t J(n,x, y). (6.24)

1 We actually only find analytic results when the arguments of the Bessel functions are
different. We therefore have to compute the integrals in two regions and glue the result
together at the end
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For x > 2qIy, this evaluates as

J(n,x, y) = 2−5π
1
2 (x

2
)−2+2n−2νI−2νM

Γ(− 1
2
+ n − νI)Γ(1 − n + νI + νM)

Γ( 3
2
− n + νI + νM)Γ( 3

2
− n + νI + 2νM)

×

×4F3[
1

2
,
1

2
− νI ,

1

2
+ νI ,1 − n + νI + νM ;

3

2
− n + νI ,

3

2
− n + νI + νM ,

3

2
− n + νI + 2νM ;

4q2Iy
2

x2
]+

+ 2−4π
3
2x−1−2νM (qIy)−1+2n−2νI

Γ( 1
2
− n + νI)Γ(n)

Γ(1 − n + νI)Γ(1 − n + 2νI)Γ2(1 + νM)×

×4F3[n,n − 2νI , n − νI ,
1

2
+ νM ;

1

2
+ n − νI ,1 + νM ,1 + 2νM ;

4q2Iy
2

x2
]. (6.25)

For x < 2qIy, we find

J(n,x, y) = 2−5π
1
2 (qIy)−2+2n−2νI−2νM

Γ(− 1
2
+ n − νM)Γ(1 − n + νI + νM)

Γ( 3
2
− n + νI + νM)Γ( 3

2
− n + νM + 2νI)

×

×4F3[
1

2
,
1

2
− νM ,

1

2
+ νM ,1 − n + νI + νM ;

3

2
− n + νM ,

3

2
− n + νI + νM ,

3

2
− n + νM + 2νI ;

x2

4q2Iy
2
]+

+ 2−4π
3
2 (2qIy)−1−2νI (

x

2
)−1+2n−2νM

Γ( 1
2
− n + νM)Γ(n)

Γ(1 − n + νM)Γ(1 − n + 2νM)Γ2(1 + νI)
×

×4F3[n,
1

2
+ νI , n − 2νM , n − νM ; 1 + νI ,1 + 2νI ,

1

2
+ 2 − νM ;

x2

4q2Iy
2
]. (6.26)

In terms of these integrals, we can define

Ĩ(n,H0,H) = ∫
∞

0
dkF̂ (η0){

π2k2n−1−2νI−2νM

8qIxyH2
t

J2
νI

( k

qIyHt
)J2

νM
( 2k

xHt
)} ,

(6.27)

where upon rewriting the derivatives with respect to η0 in terms if derivatives
with respect to y, we find

Ĩ(n,H0,H) =H2n−2νI−2νM
t {2J(n + 1, x, y) + [1

2
q2Iy

4∂2y + q2Iy3∂y − y2fI]J(n,x, y)}

=H2n−2νI−2νM
t I(n,x, y). (6.28)

Now that we have taken the derivatives with respect to η0, we can safely define
Ht = H0, which means we can set y equal to one. For the energy density we
then find

ρq =
2∣A1,3∣2
π2a4

H2n−2νI−2νM
0 {2I(2, x) + F̂ (η)I(1, x)} , (6.29)

which, upon rewriting the derivatives with respect to η in terms of derivatives
with respect to x and using εM = 3/2, becomes

ρq =
2∣A1,3∣2
π2a4

H4−2νI−2νM
0 {2I(2, x) + [1

2
(1 − 6ξ)x2 + 3

4
(1 − 4ξ)x3∂x +

1

8
x4∂2x] I(1, x)} .

(6.30)
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In fact, we only find analytic results for the integral J̃ when the arguments of
the Bessel functions are different. Therefore one has to compute the integral for
x > 2qIy and x < 2qIy separately and glue the results together. Comfortingly,
we find that the resulting function is at least continuous in x = 2qIy. Let us
rewrite the final result in terms of dimensionful and dimensionless quantities
explicitly

ρq =
H4

0

a4
(H1

H0
)
2νI

(H2

H0
)
2νM

(H1

H2
)×

2∣Ã1,3∣2
π2

{2I(2, x) + [1

2
(1 − 6ξ)x2 + 3

4
(1 − 4ξ)x3∂x +

1

8
x4∂2x] I(1, x)} ,

(6.31)

where now

Ã1,3 =
2νI−

5
2

π
Γ(νI)Γ(νM)(1 − εI)νI+

1
2 (νI −

1

2
)(νM + 3

2
). (6.32)

Realizing that all time dependence should be captured in the x dependence of
this expression and expressing everything in terms of known ratios of Hubble
rates, we write

ρq =H4
1 (H1

H0
)
2νI+2νM−12

(H1

H2
)
5−2νI

×

2∣Ã1,3∣2
π2

x8 {2I(2, x) + [1

2
(1 − 6ξ)x2 + 3

4
(1 − 4ξ)x3∂x +

1

8
x4∂2x] I(1, x)} ,

(6.33)

for which by definition x = 1 for H = H0. To obtain the actual, physical result,
one has to reinsert all factors of c and h̵, which means the energy density has
to be multiplied by h̵

c3
. Similarly, without these constants

pq =H4
1 (H1

H0
)
2νI+2νM−12

(H1

H2
)
5−2νI 2∣Ã1,3∣2

π2
×

x8 {2

3
I(2, x) + [1

2
(1 − 6ξ)x2 + 3

4
(1 − 16

3
ξ)x3∂x +

1

8
(1 − 4ξ)x4∂2x] I(1, x)} ,

(6.34)

6.1.3 Comparison with background

Including all constants straightaway, the background energy density is given by

ρb =
3c2

8πGN
H2 = 3c2H2

1

8πGN
(H1

H2
)
2

(H1

H0
)
−6
x6, (6.35)

where, again, x = 1 for H = H0. We are interested in the ratio of the energy
density and the background energy density,

ρq

ρb
= (h̵H1)2
(mP c2)2

(H1

H0
)
2νI+2νM−6

(H1

H2
)
3−2νI

×

16∣Ã1,3∣2
3π

x2 {2I(2, x) + [1

2
(1 − 6ξ)x2 + 3

4
(1 − 4ξ)x3∂x +

1

8
x4∂2x] I(1, x)} ,

(6.36)
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where mP =
√
h̵c/GN . Similarly, for the pressure we obtain

pq

ρb
= (h̵H1)2
(mP c2)2

(H1

H0
)
2νI+2νM−6

(H1

H2
)
3−2νI 16∣Ã1,3∣2

3π
×

x2 {2

3
I(2, x) + [1

2
(1 − 6ξ)x2 + 3

4
(1 − 16

3
ξ)x3∂x +

1

8
(1 − 4ξ)x4∂2x] I(1, x)} .

(6.37)

We assume the following numbers:

H1

H2
= a2
a1

= eNR = e60.77;

H2

H = ( a
a2

)
1
2

= e 1
2NM = e 1

2×8.09;

h̵H1 = 1.65875 × 1013GeV;

εI = 1 − qI = 0.01. (6.38)

The values we can in principle still vary are therefore the value of the nonminimal
coupling parameter ξ, and NI , defined through

H1

H0
= (a1

a0
)
qI

= eqI×NR , (6.39)

where NI = 65.47 corresponds to x = 1 today. The interesting values turn
out to be ξ ≈ −0.055, which corresponds to {νI , νM} ≈ 1.7. For these values,
lowering ξ mainly has the effect of increasing the prefactor. Increasing NI has
the combined effect of increasing the prefactor and redefining the value of x
that corresponds to the present. Assuming that H ∼ a−

1
2 during matter era

(this should be modified in case of significant backreaction), we plot the energy
density and pressure ratios for some values of NI and ξ as a function of the
scale factor. Our first plot (figure 6.1) is under the assumption that H0 = H
at present, i.e. NI = 65.47 and for a modest choice of ξ = −.055, such that the
backreaction is not too strong and we can more or less trust the result for a
reasonable period of time. For these values, ρq/ρb is −0.45 and −0.51 at the
end of inflation and during radiation respectively. We also plot a first estimate
of the total value of ε for the universe including the quantum fluid, which we
obtain from the total energy density and pressure by taking the ratio of the first
and the second Friedmann equation.

Next we push the values a little bit to show that on the one hand we can
tune the values of NI and ξ such that we are at a different position in the plot
(figure 6.2) today for roughly the same backreaction, and on the other hand
to show that under the naive assumption that the evolution of the universe is
forever dominated by the background fluid, the backreaction causes the universe
to accelerate between redshifts 0 and 2. We stress however that by the very fact
that the backreaction changes the acceleration parameter, this plot is incorrect
and a selfconsistent solution has to be found to really see what happens for the
values of NI = 68.47 and ξ = −0.05235. For these values ρq/ρb is −0.44 and −0.5
at the end of inflation and during radiation respectively.

We also plot the ξ dependence for fixed NI and vice versa in figures 6.3 and
6.4.
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Fig. 6.1: NI = 65.47 and ξ = −.055

In order to have a better understanding, we also computed the dominant terms
in case H0 ≪H and H0 ≫H by hand as well. This calculation is very similar to
the calculation for radiation we present below. In accordance with the full result,
we find that forH0 ≪H, the quantum energy density is negative and grows with
respect to the background for ξ < 0. ForH0 ≫H, this is also true if ξ < −1/3, but
for −1/3 < ξ < 0, it is positive and decays with respect to the background in the
limit. This means that when the conformal Hubble rates become comparable,
a transient behavior is inevitable for −1/3 < ξ < 0. This is a useful check on the
robustness of the transient behavior. Let us finally remark that for ξ < −0.057,
the backreaction becomes non-negligible already during inflation, which makes
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Fig. 6.2: NI = 68.57 and ξ = −.05235

statements about the late-time result unreliable for these values. The values of
interest for a late-time effect are therefore −0.057 < ξ < 0.

6.1.4 Subdominant contributions

In this section we argue why the intermediate and UV integrals are subdominant
contributions in terms of the hierarchy of scales. We do not bother with the
dimensionless coefficients here, since for a clear enough hierarchy we can safely
assume that the dimensionless prefactor is irrelevant. In this subsection, we will
therefore repeatedly drop any dimensionless prefactors for brevity. We wish to
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compute the integrals of the form

∫
∞

µ
dkk2n {2∣β0,3∣2∣uM ∣2 + α0,3β

∗
0,3u

2
M + α0,3∗β0,3u∗2M} , (6.40)

where n = {1,2} and we recall the scale separation (6.7). Since we do not know
how to analyze this full integral analytically, we separate the integral like before,

∫
∞

µ
= ∫

µ̃1

µ
+∫

µ̃2

µ̃1

+∫
∞

µ̃2

. (6.41)

First note that for all these integrals, we can UV approximate the matter mode
function

uUVM = 1√
2k
e−i

2k
H . (6.42)

Furthermore, we can expand a lot of the partial Bogoyubov coefficients that
make up the full coefficients for each of the regions of integration. For the first
integral, we can UV approximate the partial coefficients coming from the first
matching, and IR expand the ones coming from the second matching. For the
second integral, we can UV approximate the partial coefficients from the first
and third matching and only need to keep the ones from the second matching.
For the final integral, we can UV approximate the full Bogolyubov coefficients,
but cannot neglect the exponential regulating factor e−τ1k anymore. Recalling
the IR behavior of the Bogolyubov coefficients and the fact that the leading order
contribution in the UV is simply α = 1, β = 0, the leading order contribution to
the first integral is

∫
µ̃1

µ
dkk2n−2ν1−2H2ν1+1

1 {2∣α2,3 + β∗2,3∣2 + ((α2,3 + β∗2,3)2e−2i
2k
H + c.c.)} (6.43)

By performing partial integration on the exponents, we can actually show that
up to boundary dependent terms (that have to cancel with the other integrals),
finite contributions from these terms come with at least an extra factor H. Since
this is a small factor in terms of our hierarchy, we can restrict our attention to
the β part only. On dimensional grounds and by the fact that the only scale
remaining in the integrand is H2, any finite contribution from these terms has
to depend on the scales as

∫
µ̃1

µ
∼H2ν1+1

1 H3−2ν1
2 , (6.44)

where we used that the dominant term comes from the n = 2 integral, as the
other part comes with an extra factor H2. This we have to compare with the
scale dependence of what we claimed to be the dominant contribution

∫
µ

0
∼H2ν1+1

1 H2νM−1
2 H4−2νM−2νI

0 . (6.45)

The ratio of the dominant to the subdominant contribution is

(H2

H0
)
2νM+2νI−4

. (6.46)
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Now, since for εI,M ≥ 0 and ξ < 0, νI,M > 3/2, we find that indeed the IR part
of the integral is dominant in terms of the physical scales.
For the leading order contribution to the second integral, we can approximate

α0,3 ≈ α1,2; β0,3 ≈ β1,2. (6.47)

Again, by partial integration (basically the Riemann-Lebesgue lemma) we can
show that any finite contribution from the oscillatory terms is subdominant
with respect to the β part. Therefore the dominant contribution comes from an
integral of the type

∫
µ̃2

µ̃1

dkk3∣β1,2∣2. (6.48)

On dimensional grounds, again, we argue that any boundary independent con-
tribution to this integral has to scales as

∫
µ̃2

µ̃1

∼H4
1. (6.49)

However, we should in general be more careful with this contribution. Namely,
as was shown in [20], we expect a logarithmic UV divergence for this integral.
This is not important for the matter era dominant contribution, as will show
shortly, but it is important to investigate for the dominant contribution during
radiation era in case ξ → 0, i.e. νI,M → 3/2. We therefore include it in this
discussion. Careful analysis of β1,2 shows that a UV log divergence will arise
from a term proportional to

H3
1 ∫

µ̃2

µ̃1

dk∣JνI + iYνI ∣2 (
k

H1
) , (6.50)

where µ̃2 →∞. The UV log dependent result to this integral is

2
H4

1

π
(O(1) + log

µ̃2

H1
) . (6.51)

To this, we should add the result from the third and final integral we are con-
sidering in this subsection,

∫
∞

µ̃2

dkk3 {2∣βUV1,2 ∣2e−2τ1k + (α1,2β
∗
1,2)UV e−2i

2k
H −2τ1k + (α∗1,2β1,2)UV e2i

2k
H −2τ1k}

(6.52)

When we expand the result for small τ1, we find that the first term contains
a dominant contribution proportional to (using the same proportionality factor
as above),

H3
1 ∫

∞

µ̃2

dk∣JνI + iYνI ∣2,UV ( k

H1
) e−2τ1k =

=H4
1 ∫

∞

µ̃2

dk
2

πk
e−2τ1k = 2

H4
1

π
(O(1) + log

1

µ̃2τ1
) , (6.53)

and we find that this term nicely combines with the second integral to yield a
boundary independent contribution proportional to

2
H4

1

π
(O(1) + log (H1τ1)) . (6.54)
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In the UV, the oscillatory terms are of the form (see [20])

H2
1 ∫

∞

µ̃2

dkke−2i
2k
H −2τ1k, (6.55)

which evaluates to

H2
1H
H + 2µ̃2(2i +Hτ1)

4(2i +Hτ1)2
exp [−4i

µ̃2

H − 2τ1] ≈H2
1H

−i
16

(4µ̃2 − iH) exp [−4i
µ̃2

H ] ,

(6.56)

since Hτ1 is very small. We see that the leading order terms are all boundary
dependent and any subleading terms are suppressed by powers of Hτ1 and µ̃2τ1,
which are indeed small. Therefore we can neglect the contributions from the
oscillatory terms. Hence the final result for the two UV most integrals is the
one presented above. Now, we should compare this to the background, which
contributes as

# ×H4
1 (
H1

H0
)
2νI−3

(H2

H0
)
2νM−1

. (6.57)

For νI,M > 3/2, this term obviously dominates. When νI → 3/2, we have to be
a little more careful though. We should expand

(H1

H0
)
2νI−3

≈ 1 + (2νI − 3) log (H1

H0
) . (6.58)

Since we do not expect the dimensionless prefactor to contain any divergences
as νI → 3/2, the leading order term in this expression is just a constant. Thus,
we the dominant contribution comes from the IR integral even if ξ → 0, provided

∣ log (H1τ1) ∣ ≪ (H2

H0
)
2νM−1

, (6.59)

which seems like a reasonable assumption. Actually, a more careful look at the
integral from µ to µ̃1 shows that a log dependence on H2 is also present for
small (3 − 2νI). Therefore, the subdominant terms might at most add an extra
log dependence on H1 (from the lower boundary of the µ̃1 to µ̃2 integral) and
H2. In fact, analysis of the log dependences during radiation suggests that this
might indeed be the case. This does not alter which term dominates provided

∣ log (H1τ1) ∣ + ∣ log (H1

H2
) ∣ ≪ (H2

H0
)
2νM−1

, (6.60)

which still seems reasonable.

6.1.5 Dependence on τ0 and τ2

In this section we wish to investigate how sensitive our results are to the (un-
physical) UV details of the sudden matchings. This means that we wish to
study how our results change when

β0,1 → β0,1e
−τ0 ; β2,3 → β2,3e

−τ2 , (6.61)
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where

1

τ0
≫H0;

1

τ2
≫H2. (6.62)

In fact, we can readily argue that these dependences can be neglected in most
cases. Namely, for the assumed hierarchy, including these suppresion terms
only alters the partial Bogolyubov coefficients in the far UV, and in the far UV,
the dominant contribution to the energy density is obtained by approximating
the partial Bogolyubov coefficients from the first and third matching by α = 1
and β = 0, which is only a better approximation if we include the suppression
terms. Therefore, the only place the τ -dependence enters is in the far UV, for
which the leading order contribution does not come from taking β1,2 = 0 (as this
contribution is zero), and we have to include a nonzero τ1 as we did. Only in case
H0 ≈ H, we consider the full Bogolyubov coefficients. However, in this case we
can again calculate the IR integral we computed above, which is independent of
τ0 and include the τ0 dependence in one of the other integrals. Now, either τ−10

is comparable to one of the other scales, in which case the hierarchy argument
does not change, or we can split up the integral once more to contain a region
in which the only physical scale (after approximations) is τ0. In that case any
finite contribution is subdominant to the IR result by arguments similar to the
ones presented above. At the same time, in the latter case the approximations
for the remaining integrals are unchanged. The main point throughout is that
the dominant backreaction is does not come from UV modes, so they should
not qualitatively depend on these τ ’s if the transitions are fast. This concludes
the discussion of the dominant matter contribution.

6.2 Result radiation

To compute the result for the energy density and pressure during radiation, we
include three intermediate scales

H0 ≪ µ0 ≪H≪ µ≪H1 ≪ µ1 ≪ τ−11 . (6.63)

Again, we do not have to bother with an extra scale τ0 as this only affects the
subleading UV structure of the Bogolyubov coefficients, which we can neglect
when it comes to the partial Bogoyubov coefficients from the first matching.
We wish to calculate the β and αβ parts of

ρq =
1

2π2a4
∫

∞

0
[2k4 + k2F̂ρ(η)] ∣u2∣2;

pq =
1

2π2a4
∫

∞

0
[2
k4

3
+ k2F̂p(η)] ∣u2∣2, (6.64)

where

F̂ρ(η) = (1 − 6ξ)(ε − 1)H2 − (1 − 6ξ)H∂η +
1

2
∂2η ;

F̂p(η) = (1 − 6ξ)(ε − 1)H2 − (1 − 6ξ)H∂η +
1

2
(1 − 4ξ)∂2η . (6.65)

Here
u2 = α0,2uR + β0,2u∗R, (6.66)
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and

α0,2 = α0,1α1,2 + β0,1β∗1,2
β0,2 = α0,1β1,2 + β0,1α∗1,2. (6.67)

We split the integral as

∫
∞

0
= ∫

µ0

0
+∫

µ

µ0

+∫
µ1

µ
+∫

∞

µ1

, (6.68)

and approximate the coefficients and mode function according to the above
hierarchy of scales. As was the case for matter era, we expect the dominant
contribution to come from the integral up to µ. Therefore we focus on this
first and comment on the the remaining parts later. Similar to the matter
calculation, for this integration region, we can approximate

α1,2 ≈ β1,2 ≈
iA1,2

kν1+1/2
, (6.69)

where we used ν2 = 1/2, and we obtain A1,2 from the IR structure of the Bo-
golyubov coefficients,

A1,2 =
π1/2

4
(2(1 − εI)H1)νI+1/2 (

1

2
− νI)

1

Γ(1 − νI) sin(πνI)
. (6.70)

Then

2∣β0,2∣2∣uR∣2 + α0,2β
∗
0,2u

2
R + α0,2∗β0,2u∗2R =

4∣β0,2∣2 [Re(uM)]2 = 4
∣A1,2∣2
k2ν1+1

∣α0,1 − β0,1∣2 [Re(uR)]2 . (6.71)

Calculating explicitly, we obtain

α0,1 − β0,1 =
√
πzI
2
e
−i kH0 [JνI + i(

JνI
2zI

+ J ′νI)], (6.72)

where the prime denotes differentiation with respect to the argument zI . The
full expression then becomes

∣u2∣2 =
2π∣A1,2∣2
(1 − εI)H0

k−2ν1 ∣JνI + i(
JνI
2zI

+ J ′νI) ∣
2

[Re(uR)]2

= π
2∣A1,2∣2

2(1 − εI)
1

H0H
k−2ν1 ∣JνI + i(

JνI
2zI

+ J ′νI) ∣
2

J2
1
2

= ∣A0,2∣2
1

Hk
−2ν1 ∣JνI + i(

JνI
2zI

+ J ′νI) ∣
2

J2
1
2
, (6.73)

where

A0,2 =
π3/2

4
(2(1 − εI)H1)νI (

H1

H0
)
1/2

(1

2
− νI)

1

Γ(1 − νI) sin(πνI)
. (6.74)
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Plugging this into (6.64), we find for the energy density

ρq =
∣A0,2∣2
4π2a4

{ 1

H × ♢} + ∣A0,2∣2
4π2a4

F̂ρ(η){
1

H × ♣} , (6.75)

where

♢ = 2∫
µ

0
dk × k4−2ν1 ∣Jν1 + i(

Jν1
2z1

+ J ′ν1) ∣
2

( k

(1 − εI)H0
)J2

1
2
( kH)

♣ = ∫
µ

0
dk × k2−2ν1 ∣Jν1 + i(

Jν1
2z1

+ J ′ν1) ∣
2

( k

(1 − εI)H0
)J2

1
2
( kH) . (6.76)

We now wish to compute the leading order contributions to these integrals in
1/µ imposing the hierarchy H0 ≪H≪ µ. To this end we introduce yet another
intermediate scale µ0, such that H0 ≪ µ0 ≪ H. This allows us to compute two
integrals, one for which we can IR expand the matter mode function, and one
for which we can UV expand the Bogolyubov terms that depend on the ratio
k/H0, which simply comes down to setting α0,1 = 1 and β0,1 = 0. Thus we have
to compute the following integrals

♢1 =
1

Γ2( 3
2
)

1

H ∫
µ0

0
dk × k5−2νI ∣JνI + i(

JνI
2zI

+ J ′νI) ∣
2

( k

(1 − εI)H0
)

♢2 = 4
(1 − εI)H0

π
∫

µ

µ0

dk × k3−2ν1J2
1
2
( kH)

♣1 =
1

Γ2( 3
2
)

1

H ∫
µ0

0
dk × k3−2νI ∣JνI + i(

JνI
2zI

+ J ′νI) ∣
2

( k

(1 − εI)H0
)

♣2 = 4
(1 − εI)H0

π
∫

µ

µ0

dk × k1−2ν1J2
1
2
( kH) . (6.77)

The leading order in µ and µ0-independent contributions are found to be

♢1 =H6−2νI
0 H−1 4

π22νI
(1 − εI)6−2νI (νI − 1)(4ν2I − 1)

(2νI − 5)Γ(νI)2

+ H0

H
8

π2(5 − 2νI)
µ5−2νI (1 +O (H0

µ
))

♢2 =2H0H4−2ν1 (1 − εI)Γ(5/2 − νI)Γ(−3/2 + νI)
π3/2Γ(−1 + νI)Γ(−1/2 + ν1)

+H0H
4

π2(3 − 2νI)
µ3−2νI (1 +O (H

µ
))

♣1 =H4−2νI
0 H−1 1

π22νI
(1 − εI)6−2νI (4ν2I − 1)

(2νI − 3)Γ(νI)2

+ H0

H
4

π2(3 − 2νI)
µ3−2νI (1 +O (H0

µ
))

♣2 =H0H2−2ν1 (1 − εI)Γ(3/2 − νI)Γ(−1/2 + νI)
π3/2Γ(νI)Γ(1/2 + ν1)

+H0H
4

π2(1 − 2νI)
µ1−2νI (1 +O (H

µ
)) . (6.78)
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Next we look for the dominant terms in terms of our hierarchy. Realizing that
F̃ adds an extra factor H2, for non-half-integer values of νI > 3/2 the dominant
µ-independent contribution to the energy density is found to be ♣1. When νI
does become half-integer, new µ-independent terms occur as log dependences.
However, analysis of the corresponding powers of H0 and H show that these
contributions are subdominant for νI > 3/2. In case νI → 3/2, however, we find
new, non-subdominant, µ-independent contributions from ♢2 and ♣2. We treat
these limit below. For νI > 3/2, we thus find the dominant contribution to the
energy density to be

ρq =
∣A0,2∣2
4π2a4

F̂ρ(η){H4−2νI
0 H−2 1

π22νI
(1 − εI)6−2νI (4ν2I − 1)

(2νI − 3)Γ(νI)2
}

= 3H4
0

32π2a4
(H1

H0
)
2νI+1 (1 − εI)2(2 − ε)(1 − 6ξ)(2νI − 1)2

2νI − 3
ξ. (6.79)

Hence we find that it is negative for negative ξ. Also, this result shows that the
combined limit νI → 3/2 and ξ → 0 is nontrivial.

6.2.1 Subdominant contributions

The analysis of the contributions of the integral from µ upwards, is the same
as for matter. Namely, all information about the radiation and matter mode
functions and radiation-matter transition is lost in the dominant UV terms. We
repeat the results here. In general the first extra contribution is

∫
µ1

µ
∼H4

1 (O(1) +O (log ( µ1

H1
)) +O (log ( µ

H1
))) . (6.80)

The UV most contribution we thoroughly calculate this time, in order to be
able to compare it with the IR result in the limit νI → 3/2. We argued that the
dominant contribution comes from the β part

1

4π2a4
∫

∞

µ1

dk2k3∣β1,2∣2,UV e−2τ1k. (6.81)

The UV approximation of β1,2 was worked out in [20],

β1,2 =
1

2

H2
1

k2
. (6.82)

Thus the contribution to the energy density is

H4
1

8π2a4
∫

∞

µ1

dk
1

k
e−2τ1k = H4

1

8π2a4
(O(1) − log(µ1τ1)) . (6.83)

6.2.2 Limit infinite inflation and minimal coupling

In this section we assume εI = 0, ξ → 0, which implies νI → 3/2 and find the
leading order result for H0 → 0, which is consistent with the results above, as we
have already assumed H0 to be smaller than all other physical scales. Also note
that the leading order result as we found them above is in fact H0-independent
as ∣A0,2∣2 contains a factor H−1

0 . Now, as indicated, the limit has to be taken
with care and as argued above, this means we have to expand ♢2, ♣1 and ♣2
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for small (νI − 3/2). We first have to combine the latter two, divide by H and
act on it with the operator F̃ as can be seen from from the expression for the
energy density. When we subsequently add the term coming from ♢2, we find
that indeed all divergences cancel and the leading order result for the energy
density is found to be

H4
1

8π2a4
(−1 + 2γE + log(4) − log (H

µ
)) . (6.84)

As we hoped for, this reproduces the time dependence during radiation when
H0 → 0 as obtained in [20], when we combine it with the result for the far UV
integral obtained in the previous section,

ρq = −
H4

1

8π2a4
[log (Hτ1) +O(1)] . (6.85)

The reason we expect no log dependence on H1 to appear from the integral
from µ to µ1 is because on dimensional grounds, any log dependence on H1 has
to be accompanied by another physical scale, and since H and τ1 combine into
a dimensionless number, log dependences on H1 can only be accompanied by
scales µ and µ1, which have to cancel by construction of the integral, so no log
dependence on H1 should appear.
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Fig. 6.3: ξ dependence
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Fig. 6.4: NI dependence



7. DISCUSSION AND OUTLOOK

In this thesis we study the one-loop backreaction of a nonminimally coupled
massless scalar field on a universe that goes through a history of a series of
constant ε (deceleration) eras with fast transitions. We assume a fixed back-
ground metric and compute the one loop expectation value of the quantum
energy-momentum tensor in order to get a first approximation of its effect on
the background evolution. This means that our model is in principle predictive
only as long as the quantum fluid is subdominant to the background. When the
quantum backreaction becomes comparable to the background, a self-consistent
solution has to be found by resumming the class of diagrams presented in figure
3.2. Our hope is then that we could obtain a non-perturbative result for which
the energy density of the universe might eventually be completely dominated
by the quantum fluid.
Parametrizing the coupling to the Ricci scalar by ξ, we find that for ξ < −0.057
the quantum energy density starts dominating the background energy density
before the end of inflation, which makes late-time predictions unreliable. For
ξ ≈ −0.055, however, we find that the ratio of the quantum energy density to
the background energy density can be approximately 1/2 at the end of infla-
tion and during radiation and grow during matter era to eventually become
non-negligible. We find that during radiation, the quantum fluid has the same
equation of state as radiation. For the relatively large energy density ratio of 1/2
during radiation, we cannot be certain the quantum fluid does not change the
background evolution. However, we hope that the fact that the quantum fluid
behaves similar to classical radiation during a radiation era, means this does
not alter the background evolution too much. During matter, then, we find
that the quantum fluid is initially negative and growing more negative when
H0 ≪ H and subsequently becomes positive and decaying when H0 ≫ H. We
have plotted several examples of this transient behavior which can be considered
the main result in the thesis. Since it crucially depends on the comparison of
the conformal Hubble rates at the beginning of inflation and at late times, it
might add another point to the question: dark energy, why now? In addition to
the fact that the quantum fluid scales differently in different eras, its behavior
also depends on this relation between conformal Hubble rates. We show that
this transient behavior vaguely resembles dark energy. The precise effects are
however hard to estimate for multiple reasons. First, since the equation of state
changes in time rapidly, the effects of this fluid are hard to estimate. We have
used the equation of state, obtained by dividing the second Friedmann equation
by the first, as an indicator of the possible effects, but this is not very reliable if
the equation of state rapidly changes in time. Before a self consistent solution
is found, the plots for the cases in which the backreaction becomes important
should not be taken too literally.
Let us comment on the validity of this sudden matching approximation of the
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evolution of the universe. We have shown that the hierarchy of conformal Hub-
ble scales associated with the matchings is such that for a negative coupling
parameter ξ, the dominant contribution to the expectation value of the energy
and momentum of the quantum fluid is qualitatively insensitive to the details
of the second and third matching, i.e. the matching from inflation to radiation
and from radiation to matter. The reason is that the dominant result comes
from modes that are IR with respect to the conformal Hubble scale at the times
of those matchings, and, in agreement with [33], we find that the excitation
of modes during transitions is qualitatively independent on the details of the
transition. More precisely, we show that the scaling of the IR modes due to
several matchings only depends on the ε parameter (related to the acceleration
parameter) of the initial and final era. This agrees with physical intuition. We
do find, in agreement with [20] that the result during radiation does weakly
depend on the details of the first transition in the limit ξ → 0. Since the depen-
dence is only logarithmic, and, moreover, since we are mainly interested in the
nonminimally coupled case for interesting late-time effects, we do not comment
on this further. The final result does depend on more than just the IR most
modes with respect to the matching from radiation to inflation. However, it
only depends on scales comparable to the conformal Hubble rate at the time of
the first matching, and not on scales much larger than this. Therefore, if the
initial transition is fast compared to the Hubble rate, our result does capture
the dominant contributions. However, if the initial transition from radiation to
inflation is for some reason a very slow process, lasting several doublings of the
conformal Hubble rate, the leading order in small τ0 result can not be trusted
to be the dominant contribution to the true answer. A further direction of re-
search could be to investigate the results in case the transition from radiation
to inflation is very slow, modeled by a hyperbolic tangent for instance. This
might however be too hard to tackle analytically.
Since the transient phenomenon depends on the approximate equality of the
conformal Hubble rate at late times to the conformal Hubble rate at the time of
the radiation to inflation transition, the result does seem to depend on the IR
regulating method to some extend. It would be interesting do investigate if a
similar transient phenomenon can be obtained for other IR regulating methods.
However, we stress that our result comes from strong growth of IR modes, that
eventually become sub-Hubble again, which is a very physical process.
Apart from the late-time predictions, we found that the backreaction is always
negative during inflation. This result can already be found in [24], but they did
not comment on the sign. This opens up the possibility of studying its effect on
the expansion during inflation as well. One could for instance speculate on the
role of this quantum backreaction in ending inflation. In this context it might
also be interesting to study a scalar field with a nonzero expectation value (a
condensate), as the inflaton is believed to have. On the other hand, if this turns
out to be not such a good model for the termination of inflation, it might still
be useful to constrain the range of physically acceptable values of nonminimal
coupling in models resembling ours.
Let us also comment on the types of physical models that could display the
transient feature we found. First of all, we studied a massless bosonic field.
It has been shown that the one-loop graviton propagator is similar to a set
of massless scalar field propagators with different non-minimal couplings [22].
Concerning photons, naively one might expect no significant backreaction from
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them, as at the classical level as they couple conformally to gravity. However,
it has been shown that if we include other fields as well, this turns out to be
incorrect and significant photon production during inflation is in fact possible
[11]. In addition, the Higgs field might be a good candidate for this model as
well [3], since for a large part of the history of the universe, the electro-weak
symmetry is not broken and the Higgs field is massless. In fact, studying the
effects of the Higgs field as a massless, nonminimally coupled scalar field as a
candidate for inflation is an active field of research (although this might change
if the BICEP2 measurements are confirmed to be a primordial signal [10]), al-
though the nonminimal coupling is often believed to be of order 104 [1]. We find
that the backreaction grows a lot during inflation due to the instability for IR
modes. This is the reason we do not expect significant backreaction from fields
with large masses. In addition to bosonic fields, one might wonder if significant
backreaction can be expected from fermions. There are however reasons to be-
lieve this is not the case, as the Pauli exclusion principle forbids accumulation
of fermions in the IR, which has been shown to cause the fermion propagator
to be suppressed in the IR with respect to scalars and gravitons ([25]).
Finally, let us stress that we can tune our parameters (the nonminimal coupling
and the duration of inflation), such that the transient feature becomes signif-
icant at low redshifts, rendering it potentially observable by future missions
(The Dark Energy Survey (DES), Euclid (ESA)) that study the evolution of
the universe precisely in this range of redshifts.
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A. FLRW GEOMETRIC QUANTITIES

In most GR textbooks (e.g. [7]), one finds the following expressions:

δ
√−g
δgµν

= −1

2

√−ggµν (A.1)

δ(√−gR) = √−gGµνδgµν +
√−g∇σ[gµν∇σ(δgµν) −∇λ(δgσλ]. (A.2)

Nonzero Chistoffel symbols on FLRW backgrounds are

Γηηη =H
Γηij = Γηji =δijH

Γiηj = Γijη =δijH. (A.3)

From this we can deduce the non vanishing components of the Einstein tensor:

Gηη =
1

2
(D − 1)(D − 2)H2

Gij = − δij
(D − 2)(D − 2ε − 1)

2
H2. (A.4)

And for the Ricci tensor and scalar we have

R00 = −(D − 1)H′

Rjj =H′ + (D − 2)H2, (A.5)

which implies

R = D − 1

aD−2
(2H′ + (D − 2)H2) . (A.6)

Also we find

∇µ∇νφ2 =∂µ∂νφ2 − Γλµν∂λφ
2

=∂µ∂νφ2 − (δηµδηνΓηηη + δiµδjνΓηij)∂ηφ
2 − (δηµδjνΓiηj + δjµδηνΓijη)∂iφ2

=∂µ∂νφ2 − (δηµδην + δiµδjνδij)H∂ηφ2 − δij(δηµδjν + δjµδην)H∂iφ2. (A.7)

In particular
∇µ∇µφ2 = ∂µ∂µφ2 − (δηµ + δiµ)H∂ηφ2, (A.8)

where no sum over µ is intended.



B. CONFORMAL COUPLING

Using the expressions from appendix A, it is a tedious but straightforward ex-
ercise to compute how the Ricci scalar and covariant derivatives change if we
transform the metric according to

gµν → g̃µν = Ω(η)2gµν . (B.1)

The result can be found in for instance Birrell and Davies [4] (note the different
sign convention for the metric) and reads

R → R̃ = Ω−2R − 2(D − 1)Ω−3Ω;µνg
µν − (D − 1)(D − 4)Ω−4Ω;µΩ;νg

µν , (B.2)

and
◻φ→ ◻̃φ̃ = Ω−2 ◻ φ̃ + (n − 2)Ω−3gµν φ̃;µφ̃;ν . (B.3)

Now suppose we consider a rescaled field

φ→ φ̃ = Ω
2−D
2 φ. (B.4)

Then the latter expression becomes

◻̃φ̃ =Ω−2[(2 −D)Ω−D2 gµνΩ;µφ;ν + (2 −D)(−D
2
)Ω−D+22 gµνΩ;µφ;ν

+ (2 −D
2

)Ω−D2 (◻Ω)φ +Ω
2−D
2 ◻ φ]

+ (n − 2)gµνΩ−3Ω;µ [2 −D
2

Ω−D2 Ω;νφ +Ω
2−D
2 φ;ν]

= [Ω−2 ◻ φ +Ω−4 1

2
(2 −D)(D − 4)gµνΩ;µΩ;νφ +Ω−3 2 −D

2
(◻Ω)φ]Ω

2−D
2 .

(B.5)

Comparing this with the transformation of the Ricci scalar, we find that indeed,
for the combined rescaling of the metric and the scalar field,

◻̃φ̃ − ξR̃φ̃ = (◻ − ξR)φ, (B.6)

for

ξ = D − 2

4(D − 1) . (B.7)

Thus, the equation of motion for the rescaled field is the same as the equation of
motion without rescaling for conformal coupling. This means that a conformally
coupled scalar on FLRW should qualitatively behave the same as a scalar on
Minkowski space, as FLRW is conformally equivalent to Minkowski space.



C. UV EXPANSION BD MODE FUNCTION

Here derive the expression for the UV expansion (3.48). The equations we have
to solve are

2F ′
1 + f = 0,

F ′′
i−1 + (−1)i−1F ′

i + fFi−1 = 0, (C.1)

together with the Wronskian normalization conditions

2F2 + F 2
1 − F ′

1 = 0

2F4 + 2F1F3 + F 2
2 − F ′

3 + F ′
2F1 − F ′

1F2 = 0, (C.2)

where we have set A0 = 1/
√

2k in order to satisfy the zeroth order Wronskian
condition. Note that for the energy-momentum tensor, the quantity that mat-
ters is, to the order we are interested in for renormalization,

∣u∣2 = 1

2k
(1 + iF1

k
+ F2

k2
+ iF3

k3
+ F4

k4
)(1 − iF1

k
+ F2

k2
− iF3

k3
+ F4

k4
)

= 1

2k
∣u∣2 = 1

2k
[1 + V1

k2
+ V2
k4

] , (C.3)

where

V1 = 2F2 + F 2
1

V2 = 2F4 + 2F3F1 + F 2
2 . (C.4)

Using the first Wronskian equation in combination with the lowest order equa-
tion of motion for u, we readily obtain

V1 = −
1

2
f(η). (C.5)

Using the second Wronskian condition, we find

V2 = F ′
3 − F ′

2F1 + F ′
1F2. (C.6)

If we now use the first three equations of motion, combined with the first Wron-
skian condition, we can write this in terms of derivatives of F1 only, i.e. in terms
of f and its derivatives,

V2 =
1

8
[f ′′(η) + 3f2(η)] . (C.7)
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