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Abstract

The twodimensional material graphene features some unprecedented conductance properties, and is shap-
ing up to become an important material in nanoelectronics. However, electronic components like transistors
and diodes require a finite band gap to function; something that is absent in graphene. An approach to
resolve this is to confine graphene into narrow strips called graphene nanoribbons. It has been found that
strain and deformations can affect the electronic structure of graphene. Despite some theoretical efforts, it is
not yet known experimentally what the impact of deformations on graphene nanoribbons is. We have used
a scanning tunneling microscope to bend nanoribbons and find that the band gap of nanoribbons slightly
diminishes with curvature, by approximately 1.5 % nm/o.
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The recent hype on graphene should come as
no surprise, given its many unique properties. Its
characteristics like mechanical strength, electri-
cal conductivity and impermeability - to name
but a few - are unlike any materials discovered
so far. Even before its discovery, many theo-
reticians have made promising predictions on the
electronic properties of graphene, many of them
verified after the first succesful synthesis by Geim
and Novoselov[1].

Graphene is a single atom thick honeycomb-shaped
network of carbon atoms. The essentially twodimen-
sional material has only been discovered recently, but its
supposed applicability in and impact on electronics in-
dustry has generated a huge incentive to perform exten-
sive research[2]. One of the most important properties is
graphenes extremely good electrical conduction, arising
from its high charge carrier mobility.

Recently, the investigations on graphene extended to
graphene nanosystems - structures with the same honey-
comb building block, but with finite dimensions as op-
posed to the essentially twodimensional parent material.
One of these is the graphene nanoribbon (GNR), a nar-
row strip of graphene, which is the main focus of this
research. The main driving force for this is the opening
of a band gap[3]. Similarly, some researches have investi-
gated how a band gap can open up by straining graphene
sheets. The influence of bending (a specific type of strain)
on the electronic structure of graphene nanoribbons has
not been been adressed experimentally yet.

GRAPHENE

The first isolation of graphene has been performed by
peeling off some flakes from a piece of graphite (the ma-
terial in pencil lead) with scotch tape multiple times -
a method called the scotch tape method, or mechanical
exfoliation[4]. The properties of graphene only arise after
being free from the bulk graphite. Not long after that,
it was discovered that chemical vapor deposition (CVD)
can also be used for the growth of graphene[5]. Even
though samples produced by the scotch tape method are
often superior in quality than those grown by CVD[6],
there is a large incentive to use CVD because of scaling
issues[1][7].

Graphene is a material that features a very high
conductivity[1]. This is mainly due to its unique atomic
structure - a flat honeycomb lattice of carbon atoms - and
the resulting electronic structure. It turns out that the
band structure of graphene consists of a valence band and
conductance band that exactly touch at the Fermi level,
like two pencil tips. This makes graphene a zero-gap
semiconductor, with vanishing density of states (DOS)
at the Fermi energy. The DOS is furthermore linear at
either side of the Fermi level. These features will become

clear in the next chapter, where electronic structure cal-
culations are carried out. A linear dispersion means that
charge carriers in graphene can be thought to behave
pretty much as photons! This translates to an exceed-
ingly high conductivity. In fact, charge carriers are eas-
ily propelled up to relativistic speeds, and once graphene
starts to be incorporated in nanoelectronics, this prop-
erty will undoubtably play an important role in ultrafast
electronics[1][8].

The electronic properties of graphene may be approx-
imated in simple cases by the Drude model, some as-
pects of which are described in appendix A. The model
describes diffusive electron transport, and is capable of
yielding realistic values for resistivity and electron drift
velocity. Within this framework, the conductivity of a
material is proportional to its concentration of charge
carriers, and has the material-specific mobility as a pro-
portionality factor. The higher the mobility, the easier
it is for electrons and holes to flow through the mate-
rial. Geim and Novoselov found that the electron mo-
bility in graphene was over 1.5 · 104 cm2 V−1 s−1 [1],
and values in excess of 105 cm2 V−1 s−1 have already
been reported[9] - close to the theoretical room temper-
ature limit[10][11] and often higher than the best bulk
metallic conductors[1]. The hole mobility was observed
to be virtually the same as the electron mobility, which
is not unexpected considering graphene’s nearly symmet-
ric dispersion around the Fermi energy. The room tem-
perature carrier density is approximately 1012 cm2[10].
Multiplying this charge carrier density with the experi-
mental mobility already gives a value of the conductivity
that is much larger than bulk metallic conductors. More
transport properties of graphene can be appreciated in
the very complete work of Das Sarma and coworkers[12].

To optimize the conductance it would be beneficial to
have a nonzero density of states at the Fermi level, so that
the charge carrier density would be higher. This can be
done by shifting the Fermi energy, by means of intro-
ducing extrinsic carriers, or doping the material. Con-
sidering the fact that the Fermi level is determined by
charge neutrality, introduction of donor impurities shifts
the Fermi level up in the band structure, and vice versa
for acceptor impurities. But in addition to affecting nh
and ne, doping also affects µh and µe. The introduc-
tion of extrinsic carriers introduces scatterers, and the
result is a reduced mean free path and compromised
mobility[13][14].

An even more important feature is that the imple-
mentation of semiconductors in nanoelectronic compo-
nents like transistors and diodes, requires a finite band
gap[3][12]. Different approaches exist to open up the
band gap in graphene. One of these is co-doping. As
n-doping shifts the Fermi energy away from the VB and
p-doping shifts it away from the CB, the net effect of co-
doping donors and acceptors is to shift the bands apart.
Co-doping of nitrogen and boron has been the subject of
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FIG. 1. The different edge structures - armchair and zigzag
- that are encountered in graphene nanosystems. Hydrogen
atoms are not shown.

theoretical[15] and experimental[16][17] research. Hexag-
onal boron nitride (hBN) can be seen as the most ex-
treme case of co-doping, in which the total graphene A-
sublattice has been exchanged with nitrogen atoms and
the B-sublattice has been exchanged with boron atoms.
hBN exhibits a significant band gap, but at the same
time a low conductivity[18][19][20].

A second approach to generating narrow stripes of
graphene, known as graphene nanoribbons (GNRs).
These structures are “quantum confined” in one direc-
tion with respect to the parent material graphene, and
depending on the width and cutting direction, the band
gap can become nonzero. The conductance properties are
again limited by scatterers. But as long as the nanorib-
bon edges are smooth enough, the scattering problem
that hampered the co-doping method is absent in the
ribbon method[14].

GRAPHENE NANORIBBONS

Many approaches have been used to synthesize differ-
ent kinds of GNRs, most notably using laser cutting and
chemical unzipping of carbon nanotubes[21][22]. Even
scanning tunneling lithography has been used, where
the current between tip and substrate cuts away carbon
atoms[23]. A drawback of these methods is the lack of
control over the precise direction of the nanoribbon, and
the atomic defects in the edge, that give rise to scatter-
ing of free charge carriers[24]. In general, a graphene
nanosystem can have zigzag edges and armchair edges,
as shown in figure 1. The “cutting” direction has a large
influence on the band structure of nanoribbons[25].

An alternative approach to synthesize nanoribbons has
been used by Cai and coworkers[26]. They used an
on-surface, metal-catalyzed polymerization reaction in

ultra-high vacuum (UHV) conditions, utilizing 10,10’-
dibromo-9,9’-bianthracene as a precursor. Their reaction
allowed the production of atomically well-defined arm-
chair graphene nanoribbons (AGNRs) with a width of
seven atoms [27] (abbreviated 7-AGNR). The difference
between this method and the methods proposed previ-
ously is the bottom-up fabrication - building up from
molecular building blocks as opposed to breaking down
graphene and carbon nanotubes. Throughout this re-
search, the synthesis by Cai has been used to manufac-
ture AGNRs. The resulting nanoribbons have a structure
as displayed in figure 2.

Graphene nanoribbons, both the bottom-up and the
top-down versions, have already made it to the first nano-
electronic components[28][29][30]. They are indeed only
beginning to fulfill their promise as ultra-conductive fi-
nite gap semiconductors.

GRAPHENE SUBJECT TO STRESS

Now we want to look what happens when we take a
patch of graphene, and start pulling on it. This intro-
duces stress, and the graphene will deform accordingly.
The strain in the pulling direction and transverse direc-
tion as a result of the applied stress are described by
the Young’s modulus and the Poisson ratio[31]. These
can be related back to the elastic constants between the
atoms in graphene[32][33]. This is an important point
that I will come back to later in this thesis, but for now
it suffices to note that graphene - like all materials - expe-
riences some deformation when a stress is applied. Next,
we can observe what happens to the electronic struc-
ture. In aromatic structures, significant changes in the
electronic structure can in general be brought about by
a simple conformational change[34]. We may also sus-
pect that something will happen to the zero band gap in
graphene. In graphene, strain reduces the lattice sym-
metry. The symmetry of the reciprocal space is altered
accordingly, meaning that the dirac cones are also shifted

FIG. 2. A model of a 7-atom wide armchair graphene nanorib-
bon (7-AGNR).
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from their positions[8]. It has been found theoretically
that a band gap can open up after sufficient deforma-
tion, with threshold values for the applied tensile strain
ranging from 0 %[35][36] to in excess of 20 %[37]. Trans-
port characteristics are also altered[38]. Similar shifts of
the high-symmetry point in the reciprocal space are re-
ported in confined systems like carbon nanotubes[39] and
graphene nanoribbons[40].

We can conclude that the band gap of graphene is
tightly linked to its geometry, and can be tuned by con-
fining the material or straining it. Now we would like
to ask the question what would happen if we were to
combine both quantum confinement and strain engineer-
ing. For graphene nanoribbons, several theoretical efforts
have been carried out, for different kinds of deformations.

The geometry of nanoribbon deformations can be sim-
ulated using an atomistic molecular dynamics (or molec-
ular mechanics) method. For example, Neek-Amal and
Peeters used this method to simulate the out-of-plane
buckling of graphene nanoribbons subject to compressive
stress in the axial direction[41]. In general, molecular
mechanics is capable of generating reasonable geometries
for graphene and graphene nanosystems under strain, as
long as the correct elastic parameters are used[31][32][33].

Using such a rippled nanoribbon as an input for a
tight binding calculation, Costamagna and coworkers
were able to derive a flattening of the band structure
and an increase of the band gap with increasing rippling
amplitude[42]. Using a non-equilibrium Green’s function
formalism (NEGF, a popular tool in ballistic transport
calculations) they also calculated that the low-bias con-
ductance should vanish, even for metallic ribbons, as the
distortion is induced.

Li and coworkers considered both tensile and shear
strain on nanoribbons using density functional theory
(DFT) calculations[40]. Although the shear strain only
brought about very mild variations in the band gap, the
uniaxial strain had a very large effect. The simulations
showed a shifting of the band gap in a zigzag pattern with
approximately 100 meV per percent strain for armchair
ribbons of all widths. The results for tensile strain were
consistent with earlier work by Sun et al., who used both
DFT and tight binding[43], and Lu et al. [44].

Koskinen looked at a different kind of defor-
mation, namely the in-plane bending of graphene
nanoribbons[45]. Modeling the geometry itself with ob-
jective molecular dynamics[46] in large circular geome-
tries. A tight-binding calculation was performed on a
unit cell which was only a small part of this hoop. The
electronic structure calculations were performed within
the framework of density functional theory-based tight
binding (DFTB), and could later be reproduced well with
a nearest-neighbour tight binding model. He predicted
the band gap for 7-AGNR to slightly decrease as a re-
sult of effective stretching of the covalent bonds in the
molecule. The decrease is quadratic in the reciprocal of

FIG. 3. A model of a nanoribbon that is bent with the tip of
a scanning tunneling microscope

the radius of curvature, and gives band gap shifts of the
order of 50 meV for a curvature of 10 o nm−1.

Despite the richness in theories, experimental work on
straining graphene nanoribbons is still relatively unex-
plored territory. An experiment that approaches the de-
sired bending of nanoribbons is the lifting of 7-AGNR
off a metal surface with an STM tip by Koch et al. [47].
First, they carried out electronic structure calculations to
derive a density of states. Pseudoballistic transport was
modelled in terms of a transmission decay length β, which
steps down as resonances enter the bias window. Then
by pulling up nanoribbons, they found exponentially de-
caying transmission currents at different bias voltages,
the values of which correspond well with their predicted
values for β(E). The out-of-plane bend that the nanorib-
bon makes to achieve its thermodynamic lowest state is
claimed to lower the conductance somewhat, but its ef-
fect on the electronic structure was not established.

We are capable of manufacturing atomically precise 7-
AGNR using the method of Cai et al. [26]. Using our
scanning tunneling microscope, we can carefully monitor
all electronic properties. These atomically well-defined
systems have already been characterized well[48][49], so
they provide an excellent system to investigate the im-
pact of strain on electronic structure. In order to bring
about strain, we would like to physically bend a ribbon
over the surface with the tip of the scanning tunneling
microscope, like in the model of figure 3.

There are two main reasons why strain in graphene
nanoribbons is an important direction in GNR research.
First, when GNR will be applied in nanoelectronics, they
will inevitably experience some form of bending or strain.
Second, it will give insight into the laws governing the
relation between strain and electronic structure.

For this second reason, we would also like to in-
clude a theoretical part to the research. Therefore,
tight binding calculations will be performed on graphene
nanoribbons. Although not as accurate as (post) Hartree
Fock (HF) or density functional (HF) methods, tight
binding is encountered frequently in literature for elec-
tronic structure calculations on graphene and graphene
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nanosystems[8][50]. This is because it is a computation-
ally inexpensive and intuitively simple model, that still
happens to give good results on graphene and its nanosys-
tems. To simulate the deformations that we can bring
about with the tip of a scanning tunneling microscope, a
molecular mechanics method is used, similar to that used
by Neek-Amal and Peeters [41].

In summary, this research will focus on the following
questions: can we controllably bend graphene nanorib-
bons using SPM methods? Can we probe changes in the
electronic structure? Can we generate a satisfying theo-
retical framework for the situation? And can we relate
any possible changes to theoretical predictions?
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QUANTUM THEORY

A quantum system is fully described by its wavefunc-
tion, which is a solution to the Schrödinger equation
(SE). As the SE cannot be solved analytically for sys-
tems with more than two mutually interacting particles,
a number of approximations and assumptions should be
made. Different approximation schemes have been used
in the fields of solid state physics and quantum chem-
istry to deal with this problem in the most efficient way.
It turns out that atomistic tight binding is a perfect
tool for performing electronic structure calculations on
graphene nanosystems. It can furthermore be combined
with molecular mechanics, which allows the simulation
of strained nanoribbon geometries.

All measurements in this research have been performed
using scanning probe techniques. In scanning probe mi-
croscopy (SPM) an extremely sharp metal tip is brought
into close proximity of a flat surface. The surface is then
scanned, line by line. In scanning tunneling microscopy,
the tunnel current (the current that flows through the
vacuum gap) is recorded[1], whereas in atomic atomic
force microscopy, the force on the tip is measured[2].
Scanning probe microscopy is one of the few ways to
atomically resolve the structure of a surface, or struc-
tures lying on top of a surface. Techniques based on pho-
tonic imaging can not provide atomic resolution as this
is far below the diffraction limit. Techniques like scan-
ning electron microscopy (SEM) and transmission elec-
tron microscopy (TEM) use energetic electrons, rather
than photons, and can achieve much higher resolution.
However, the resolution is still larger than what can be
achieved in SPM.

Scanning probe techniques have the added advantage
that they allow spectroscopic measurements to be per-
formed. Apart from their imaging capabilities, they al-
low the possibility of measuring observables like the local
density of states and tip-sample interactions. Further-
more, the SPM tip can be used to controllably manipu-
late atoms and molecules on a surface. This chapter tries
to explain a couple of the powerful capacities of SPM af-
ter carefully explaining the background of the techniques.

Scattering of free electrons

As derived in appendix B, the wave function of an elec-
tron with energy E in a constant potential V < E is given
by

ψ(r, t) = c1e
i(k·r−ωt) + c2e

i(−k·r−ωt)

with c1 and c2 the amplitudes of the complex electron
waves, ω the angular frequency and k the wave vector,
the magnitude of which is determined by the parabolic

FIG. 1. “The Well (Quantum Corral)”, by artist Julian Voss-
Andreae, exhibiting data from Crommie, Lutz and Eigler[3],
who used scanning tunneling microscopy to make the confined
standing electron waves visible.

dispersion relation

E = V +
~2k2

2m
⇔ k2 =

2m(E − V )

~2

An electron scattering elastically on an interface of the
potential well to the vacuum will generate a standing
wave as a result of the interference of the incident and
reflected parts of the envelope. For the sake of argument,
let’s imagine a surface at x = 0, with a constant poten-
tial on the right and an infinite potential on the left. ψ
cannot penetrate into an infinite potential, but should be
continuous, so that there is a boundary condition ψ → 0
at the surface. This is ensured by setting

ψinc = cei(kx−ωt) ψrefl = −cei(−kx−ωt)

ψ = ψinc + ψrefl = c sin(kx)e−iωt

In general, electrons form standing waves around poten-
tial energy humps and “walls”. This is the basis of so-
called surface/edge/end/Tamm/Schottky states and de-
fect/scattering states, the former of which will be encoun-
tered in the case of graphene nanoribbons.

Quantum confinement

If a second wall is added at x = x0, the same argument
can be invoked to find a standing wave solution for the
SE

ψ = c sin(k(x− x0))e−iωt

For these wave functions to interconnect, the condition

kx = k(x− x0) + nπ ⇒ k =
nπ

x0

should be satisfied for integer values of n. The con-
structed wave functions should be orthonormal, mean-
ing that their overlap integral evaluates to one for a
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single wave function product and to zero for a prod-
uct of wave functions with different quantum numbers
(〈ψi|ψj〉 = δij). So in general, the wave functions of
a small system are standing waves that can be thought
of as superpositions of plane waves bouncing back and
forth. A beautiful experiment that visualized the for-
mation of these standing-wave states was carried out by
Crommie, Lutz and Eigler[3], where they could carefully
position iron atoms in a ring on a copper surface with
a scanning tunneling microscope (STM). The standing
electron waves result from scattering from the potential
energy humps that are cast by the atoms in the ring. An
STM scan reveals the the circular wave pattern, as seen
in figure 1.

A standing wave of the form ψ = c sin(kx)e−iωt is also
an eigenfunction of the constant-potential Hamiltonian.
Its eigenenergy is identical to the plane wave energy, fea-
turing the same quadratic dispersion. As long as the elec-
tron is in a constant potential, its dispersion is quadratic,
but k is quantized to the values k = nπ/x0 (for integer
values of n). The lowest energy is achieved for setting up
a wave with a single node: n = 1.

Now if N electrons reside in the volume between the
two boundaries, and their mutual repulsion is ignored,
they will pair up and decay to the lowest N/2 energy
levels. The Fermi wave number kF = Nπ/(2x0) is the
wave number of the highest energy electrons, and the
corresponding energy EF = V + ~2k2F /(2m) is known as
the Fermi energy. For any energy we have

E − V =
~2k2F
2m

=
~2N2π2

8mx20

The density of states - the number of states per unit
energy interval - is found straightforwardly by differenti-
ating N with respect to E.

DOS(E) =
∂N

∂E
=

∂

∂E

2
√

2mx0
~π

√
E − V

=

√
2mx0

~π
√
E − V

The density of states of a one-dimensional system is thus
a function that is strongly peaked (contains a singularity)
at E = V , and decays toward zero for higher energies.

The energy difference between the nth and the n+1th
eigenstate is

∆E =
~2π2[(n+ 1)2 − n2]

2mx20
=

~2π2[2n+ 1]

2mx20

≈ n~2π2

mx20

So when x0 is made small, the energy differences between
the levels increase. This effect is called quantum confine-
ment. A visual example of this effect can be seen in the

FIG. 2. A quantum dot rainbow. Each subsequent vial con-
tains quantum dots with increasing particle size, decreasing
HOMO-LUMO gap and increasing the fluorescence emission
wavelength. Courtesy of prof. Andries Meijerink, Condensed
Matter and Interfaces, Utrecht University.

quantum dots displayed in figure 2, where the increasing
particle size in the subsequent vials cause the fluores-
cence emission wavelength to shift to larger valued. To
examine this confinement somewhat more in detail, we
compare a wire of material of length x0 and a wire of
the same material of length 2x0. The energy difference
between the nth and n + 1th eigenstate is obviously 4
times larger for the smallest wire. However, the number
of electrons that go inside is proportional to the length
of the wire,

nF =
λ

2
x0

with λ the number of electrons per unit length of the
wire. The band gap is the energy difference between nF
and nF + 1, so

∆E ≈ nF~2π2

mx20
≈ λ~2π2

2mx0

This is another important result, that will be used in the
simulations in the next chapter. As long as there is a
quadratic dispersion, the band gap energy should go up
as x−10 upon confining a system.

Now it is time to look what happens to the energy
levels of a free-electron system upon placing additional
boundaries in the y-dimension, at y = 0 and y = y0.
The time-independent wave equation that satisfies the
boundary scattering condition becomes

ψ = ceik·r − ce−ik·r = c sin kxx sin kyy

with k quantized as

k = π

(
nx
x0

x̂ +
ny
y0

ŷ

)
where nx, and ny are positive integers. As long as the
dispersion relation is parabolic, the general solution for
few-dimensional systems scale as

DOS1D(E) = V0 +
c√
E
, DOS2D(E) = V0 + c
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DOS3D(E) = V0 + c
√
E

where the constants like mass, Planck’s constant and po-
tential energy are absorbed into the constants c. When
the background potential is not constant anymore, there
is the possibility of the formation of multiple bands.
These will all show up individually in the density of
states, at different characteristic energy onsets. Another
point is that the density of states is particularly peaked
for the one-dimensional case. The point where DOS goes
to infinity, is known as a van Hove-singularity[4].

Post free-electron models

The problems that we are interested in - the elec-
tronic structure of graphene and graphene nanorib-
bons - are many-body problems, with an inhomoge-
neous potential energy background cast by the nuclei and
electron-electron repulsion. The free-electron model al-
ways returns a parabolic dispersion and can not give any
material-specific structure in the density of states. It will
be shown that the free-electron model is really poor in
the case of graphene and graphene nanoribbons, and it
cannot account for their excellent transport properties.
This problem calls for refined models.

The wavefunction of the molecule is inherently a func-
tion of the coordinates of all electrons and all nuclei. The
Hamiltonian operator contains contributions from the in-
ternuclear repulsion, electron-nuclear attraction, kinetic
energy and electron-electron repulsion

Ĥ = V̂Ne −
~2

2m
∇2 + V̂ee + VNN

Obviously, it is impossible to solve the SE for thousands
of particles. Therefore, the following common approxi-
mations and simplifications will be made.

• The nuclei are considered stationary on the
timescale of electronic motion (Born-Oppenheimer
(BO) approximation). The BO approximation de-
couples the nuclear wave function from the elec-
tronic wave function.

• The electronic wave function is treated as a prod-
uct of single-electron wave functions (independent
particle model).

• Electron-electron repulsion is ignored.

In the nearly-free electron model, the constant poten-
tial background V is replaced by a perturbed potential
V (r) that varies across the unit cell. As shown in ap-
pendix B, the introduction of Fourier expansions for the
wave function and potential energy landscape yields the
central equations.(

Ei −
~2k2

2me

)
ψ(k) =

∑
Q

VQψ(k−Q)

where {Q} is the set of reciprocal lattice vectors. These
equations are related to the secular equations shown later
in this chapter.

The explicit introduction of the lattice may have a pro-
found impact on the dispersion and density of states of
a system. Later in this chapter, atomistic methods are
used which also take the graphene lattice into account,
and they are indeed found to give the correct dispersion
for graphene. Nearly-free electron models can also give
a band gap - something that does not exist in free elec-
tron models. Another way to resolve the featureless den-
sity of states of graphene is by taking relativistic effects
into account. The relativistic Klein-Gordon equation is
treated succinctly in appendix B, and also allows differ-
ent regimes in the dispersion relation.

Electron-electron repulsion, exchange and correla-
tion

One of the most severe assumptions in the free and
nearly-free electron models is the complete negligence of
electron-electron interaction. A crude model of electron
repulsion is the mean field Coulomb repulsion. A single-
electron wave function φ establishes a charge density

ρ(r1) = −e|φ(r1)|2

and the interaction of this charge density with an electron
(2) is found by integrating over the entire distribution of
electron (1)

E12 = e2
∫∫∫

ρ(∆r)dr1
4πε0|∆r|

= e2
∫∫∫

|φ(∆r)|2dr1
4πε0|∆r|

This second electron is not a point charge, but is also
diffuse. So the real mean-field repulsion is the integral
over both distributions

E12 = e2
∫∫∫ ∫∫∫

|φ1(∆r)|2|φ1(∆r)|2dr1dr2
4πε0|∆r|

=
e2

4πε0

〈
φ1

∣∣∣∣ |φ2〉〈φ2||∆r|

∣∣∣∣φ1〉
This so-called mean field approximation overestimates
electron-electron interaction for the simple reason that
electrons are found to move in a correlated, mutually
avoiding fashion. This happens in such a way that the
chance to find an individual electron at a certain point in
space in space is still given by |φ|2, but the chance to find
two electrons close together is smaller than |φ1|2|φ2|2.
Repulsion and correlation have large consequences for
computational effort in most models.
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Another important point is that van der Waals at-
traction is basically a correlation effect. It is explained
in terms of an induced-dipole induced-dipole attraction,
where the dipoles are created through correlation be-
tween the two electrons[5][6]. Empirically, this gives an
attractive energy between the two dipoles that scales as

EvdW ∝ r−6

where r is the separation. This interaction happens to be
very important in atomic force microscopy, as described
in appendix G.

The total electronic wave function of a two-electron
system may be represented as the product of single-
electron wave functions

Ψe = |1(1α)〉|1(2β)〉

that is, electron 1 with position 1 and spin α in orbital
|1〉 and electron 2 with position 2 and spin β in orbital
|1〉. However, electrons are indistinguishable, so that the
wave function with interchanged spins is just as valid.
The actual wave function is therefore a superposition of
wave function products. Another apparently equivalent
situation is encountered when the two particles are ex-
changed. By the Pauli exchange principle, the wave func-
tion should be antisymmetric for this operation

Ψe(1, 2) = −Ψe(2, 1)

so that the true wave function in the ground state is
represented as a Slater determinant.

Ψe = N

∣∣∣∣ |1(1α)〉 |1(1β)〉
|1(2α)〉 |1(2β)〉

∣∣∣∣
Eigenstates of the Hamiltonian should always be or-
thonormal, so that the normalization constant is N =
1/
√
n!, with n the number of single-electron wave func-

tions. As a means of convenient shorthand notation, an
antisymmetrization operator Â can be invoked from this
point on to turn a many-orbital product into the anti-
symmetrized Slater determinant (where Ψ̃ is the ground
state Slater matrix).

ÂΨ =
1√
n!

detΨ̃

Operating a Hamiltonian with a mean-field electron-
electron repulsion on a Slater determinant wave function
automatically gives a Coulomb term and an exchange
term.

Exchange lies on the basis of Pauli repulsion. If two
electrons with equal spin are forced into the same region
of space, they would render the Slater determinant 0,
and the total wave function would not be normalizable.
Therefore, electrons that are ”pushed together” have to
develop nodes in their wave function to remain orthonor-
mal. This increases their energy. Although the func-
tional form of Pauli repulsion strongly depends on the

type of system, it is more or less proportional to electron
density. Empirically, the Pauli repulsion energy is most
often modeled as

EP ∝ r−12

The Pauli interaction is the most important contribution
in AFM contrast formation, as described in appendix G.

SCANNING TUNNELING MICROSCOPY

In STM, an atomically sharp tip can be raster scanned
in the x, y and z-direction with great precision thanks
to piezoelectric elements. The tip is biased and posi-
tioned close to a conductive sample - on the order of a
few nm - to create a so-called tunnel barrier[1]. In the
next section, the tunnel effect is explained. After that,
it is explained how this effect is exploited in STM when
performing measurements on graphene nanoribbons.

Tunneling

The difference between the vacuum energy and the
Fermi energy is the work function.

Vvac − EF = W

A shortcoming of the free-electron model up to now is
that it thinks of the potential energy well of the solid as
infinitely deep. But by definition of the work function,
the depth of the well with respect to the vacuum is

Vwell − Vvac = W + EF

As shown in appendix B, the wave function for an elec-
tron in vacuum with too little energy to overcome the
potential is

ψ = c1e
k·r + c2e

−k·r

As long as these exponential solutions are only part of
the complete wavefunction, it may remain normalizable.
This means that electrons may effectively spill over into
the vacuum, past their classical turning points.

As an example we take a wall at x = 0 that separates
the potential V = 0 on the left and V = V > E on the
right. The wave function is written by tying together the
left and right solutions at x = 0 (omitting the exponen-
tially rising solution as it is unnormalizable).

ψl = c1e
ikx + c2e

−ikx ψr = c3e
−k′x

By choosing c3 = c1 + c2, the wave function becomes
continuous.

ψl(0) = c1e
0 + c2e

0 = c3 = c3e
0 = ψr(0)
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FIG. 3. A schematic energy diagram of a tunnel barrier at
high temperature (broad Fermi-Dirac distribution) and low
temperature (Fermi-Dirac distribution becomes step func-
tion). The black curves are the Fermi-Dirac functions, the
blue curves the density of states, and the gray areas the occu-
pied density of states and unoccupied density of states - the
integral over FD(E)DOS(E)) and (1-FD(E))DOS(E), respec-
tively. The bias potential is indicated on the right.

And momentum is conserved if 〈px〉l = 〈px〉r. This re-
quires that the total function is smooth across the bound-
ary, so that[

∂ψl
∂x

]
0

= ikc1 − ikc2 =

[
∂ψr
∂x

]
0

= −k′c3

ik(c1 − c2) = −k′(c1 + c2)⇒ c2
c1

=
ik + k′

ik − k′

If the vacuum is only a small gap between two al-
lowed regions, the free-electron wavefunctions may con-
nect through the vacuum. This means that an electron
incident on a vacuum barrier has a finite probability to
cross the gap. This phenomenon is the tunnel effect.

If we have a tunnel barrier, and a potential difference is
applied on the two sides, electrons may preferably tunnel
from the high energy side to the low energy side. So a net
current from high side to low side will occur, the strength
of which is dependent both on the size of the gap and the
integral over the occupied density of states (ODOS) on
the left to the unoccupied density of states on the right
(UDOS). A schematic picture is shown in figure 3.

A tunnel barrier is modeled as a square potential en-
ergy hump between x = 0 and x = x0 with V > E, so
that k2 = (V −E)/(2m~2), where E is the energy of the
electrons that are incident on the barrier. On either side
the potential energy is V < E so that plane waves inci-
dent on the barrier spill over. The wave vector on the
left is k1 = (E − V )/(2m~2) and on the right is k3 = k1.
The total wave function is defined in pieces as

ψ =


ψ1 = Aeik1x +Be−ik1x | x < 0

ψ2Ce
−k2x +Dek2(x−x0) | 0 ≤ x ≤ x0

ψ3Ee
ik3(x−x0) + Fe−ik3(x−x0) | x > x0



Application of continuity and smoothness at 0 and x0
easily leads to a set of four coupled equations, which are
solved for the expansion coefficients as

−1 −1 1 u 0 0
−in12 in12 −1 u 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 u −1 in32 −in32
0 0 u 1 −1 −1

 c = 0

with u = e−k2x0 , n12 = k1/k2 and n32 = k3/k2, and
where the trivial equations 0 ·c = 0 ·(A,B,C,D,E, F ) =
0 are added to make the matrix square. The allowed c
thus span the nullspace of this boundary condition ma-
trix. Now it turns out that there are two solution vectors
- the system is overdetermined. Obviously, any superpo-
sition of these is also a solution. The solution space re-
duces to one dimension when another constraint is added.
One can require that there are no ingoing waves from
the right by simply setting F to zero as an extra bound-
ary condition. The solutions to the tunnel barrier prob-
lem are depicted in figure 4. This picture shows electron
waves that are incident from the left and right, and inter-

FIG. 4. Two solutions for the tunnel barrier problem (k1 =
k2 = k3, x0 = 1/k2) and their linear superposition solution
upon setting the additional boundary condition F = 0 (no
incoming waves from the right). Blue = real, red = imaginary,
black = probability density amplitude (absolute squared wave
function).
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connect in the barrier region. The third situation has no
incoming waves from the right. The situation is now an
electron wave from the left that transmits a small part
to the right and has a large part reflecting on the barrier.
The incident and reflected waves interfere to generate a
standing wave pattern.

The charge density ρ of an electron wave ψ is given by
ρ = e|ψ|2. The continuity relation can be used to find
the current density

∇ · J = −e∂|ψ|
2

∂t

The solution in one dimension is

J =
~e

2mi

(
ψ∗
dψ

dx
− ψdψ

∗

dx

)
= e

(
ψ∗p̂ψ − ψp̂ψ∗

2m

)
For the left and right regions respectively, the current
evaluates to

Jleft = ~ke
|A|2 − |B|2

m
= Jright = ~ke

|E|2 − |F |2

m

For no incoming waves from the right, |F |2 = 0, so the
transmitted current from the left must be J = ~k|E|2/m.
This means that the coefficients must obey

|A|2 − |B|2 = |E|2

This is analogous to the Fresnel equations for a simple
wave transmission problem, where |A|2 is the incident
intensity, |B|2 is the reflected intensity, and |E|2 is the
transmitted intensity. Dividing all intensities through
|A|2 gives

|B|2

|A|2
+
|B|2

|A|2
= R+ T = 1

where R and T are the reflection and transmission coef-
ficient, respectively.

The transmission coefficient is proportional to

T ∝ e−2k2x0

demonstrating the extreme dependence of tunnel current
with vacuum gap size. For a vacuum gap of 5 eV - approx-
imately the work function of copper - the decay constant
k2 is 11.5 nm−1, meaning that a change in gap length of a
single Angstrom results in a 10-fold increase or decrease
in tunnel current!

It would be desirable to see how the probability current
depends on bias potential. If the left reservoir is biased
with respect to the right one

V1 = +eV/2, V2 = −eV/2

the wave vectors at the Fermi level k1 and k3 will start to
differ (k1 =

√
2m(E − V1)/~ < k3), which makes sense,

since a wave function of equal energy in higher potential

has a lower kinetic energy. Bardeen treated this situation
by splitting the wave function contributions on either side
of the barrier in the following two waves[7]:

ψA =

{
ψ1 = Aeik1x +Be−ik1x | x < 0

ψ2Ce
−k2x | 0 ≤ x ≤ x0

}

ψB =

{
ψ2 = Dek2(x−x0) | 0 ≤ x ≤ x0

ψ3Ee
ik3(x−x0) + Fe−ik3(x−x0) | x > x0

}
he started with wave function ψA, which satisfies the
Hamiltonian on the left and in the middle of the gap, but
not on the right side. The trick is to consider the Hamil-
tonian on the right side of the gap as a perturbation to
H on the left side. Since ψb satisfies the Hamiltonian in
the gap region and on the right, it is a solution to the
perturbation. The tunneling rate can then be found in
terms of Fermi’s golden rule

ΓA→B =
1

h
|〈ψB |Ĥ|ψA〉|2δA,occ(E − E0)δB,un(E − E0)

In the case of a continuum, δ(E −E0) = ρ(E −E0). For
the one-dimensional case, the matrix element 〈ψB |H|ψA〉
reduces to the formula of the probability current, and
therefore implicitly contains the factor e−2k2x. Addition-
ally, there is the condition that the tranfer rate to an oc-
cupied state or from an empty state is zero. The occupied
density of states on the positively biased “left” electrode
becomes ODOS = ρAFD(E + eV/2) and the unoccupied
density of states on the negatively biased “right” elec-
trode becomes UDOS = ρB(1 − FD(E − eV/2)), where
FD is the Fermi-Dirac distribution. These distribution
functions introduce the so-called bias window

Γ =
1

h

∫
|〈ψB |Ĥ|ψA〉|2ρAFD(E + eV/2)×

ρB(1− FD(E − eV/2))dE

So the tunnel current is proportional to the overlap inte-
gral over the UDOS and UDOS, as shown schematically
in figure 3.

The current is the surface integral of the transfer rate.
Only the wave function matrix element is a function of
surface integration.

I =
2e

h

∫ ∞
−∞

ρAρB |MAB |2 FD(1− FD)dE

with |MAB |2 =
∫
〈ψB |Ĥ|ψA〉dA and where the bias win-

dow is written succinctly as FD(1 − FD). The factor 2
comes from the fact that both spin-up and spin-down
electrons contribute.

19



FIG. 5. 1) The double tunnel barrier formed by tip, molecule
and substrate. The different tunneling processes are indicated
by the letters a, b and c. a: (rate-dependent) tunneling from
tip to molecule. b: fast tunneling from molecule to substrate.
c: background tunneling from tip to substrate.

Microscopy

Now we want to analyse the situation in which tunnel-
ing first occurs from tip to GNR, and then from GNR to
substrate. This two-step tunneling process is the situa-
tion that is encountered when scanning over nanoribbons
and performing spectroscopy experiments on them. In
addition to the two-step tunneling process, tunneling di-
rectly from tip to substrate without passing the molecule
may occur. The three processes in the double-barrier
tunnel junction are pictured in figure 5. The most com-
mon mode in which STM is performed is constant current
mode, in which the measured tunnel current is used as a
feedback parameter controlling the tip height. Therefore,
the tip height is constantly adjusted to keep the tunnel
current more or less constant. Doing this dynamically
while scanning across the surface allows for the visual-
ization of the ”height” profile of the surface. Of course,
since tunneling depends on the electronic structure of
the materials on either side of the junction, the observed
height is actually a convolution of real height and the
local density of states within the bias window. Neverthe-
less, it may be expected that STM images give a good
impression of the height profile.

An issue with the current formula so far is that the
bias window has edges with a width of order kT through
the Fermi-Dirac distributions. This means that the
electronic spectra of the molecules are smeared out by
roughly 26 meV at room temperature. This thermal
broadening comes on top of the natural broadening of the
energy levels through coupling with the substrate (and
tip)[8]. We would like to probe the electronic structure
of our molecules as accurately as possible, so our exper-
iments are performed at low temperatures (4K). There
are additional arguments for going to 4K - the reduction

of thermal vibrations of the sample, reduction of piezo
drift, reduced adsorbate mobility (including GNR) - all
of which will aid in creating a stable tunnel junction.
The Fermi-Dirac distributions at low temperatures can
be approximated as step functions, so that the new tun-
nel current formula becomes

I =
2e

h

∫ EF+ eV
2

EF− eV
2

ρAρB |MAB |2dE

The rate of tunneling from either electrode to the
molecule is roughly proportional to the coupling. Weak
coupling means that an electron can reside on the
molecule for a sufficient time. Strong coupling causes
the electronic structure of the molecule to become signifi-
cantly distorted, and electrons can be localized in orbitals
on both the tip and the molecule at the same time. The
time scale for tunneling is so short that the uncertainty in
energy becomes quite large. This causes lifetime broad-
ening. So in order to “see” a molecule in a relatively
unperturbed state, strong coupling is detrimental. One
of the important reasons to choose a gold substrate is the
fact that it is a noble metal, and as such establishes only
weak coupling[9]. The region between the ribbon and the
gold can be truly regarded as a second tunnel barrier[10].

There is a second kind of coupling: capacitative cou-
pling. When taking both electronic and capacitative cou-
pling into account, the double barrier junction can be re-
garded as an electronics problem. This is shown in figure
7. Now both the source and drain (the tip and substrate)

FIG. 6. A schematic energy diagram of a double tunnel bar-
rier, where a two-step tunneling process takes place. The
strongly asymmetric capacitative coupling “ties” the molecu-
lar density of states to the substrate voltage. The tunnel rate
is determined by tunneling from the ODOS of the tip to the
UDOS of the molecule (or vice versa for negative bias).
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FIG. 7. 1) An equivalent electronic circuit describing the
transport and capacitative coupling in the double tunnel bar-
rier.

are connected to the GNR via a resistor (Rtip and Rsub)
and a capacitor (Ctip and Csub). The capacities are de-
termined by geometric factors - the surface area and the
distance between molecule and metal. Since C = Q/∆V ,
the charge on the molecule can be written as

Qmol = Ctip(Vtip − Vmol) = Csub(Vsub − Vmol)

and the bias voltage is

Vmol =
CsubVsub + CtipVtip

Csub + Ctip

The electrostatic potential is thus determined by the
“capacitance-weighted” average of the bias of both tip
and substrate. The quantum mechanical structure - the
orbitals at their respective energy levels - comes on top
of this constant potential. Since GNR are large, flat
molecules, it is assumed from now on that Csub >> Ctip
so that Vmol ≈ Vsub. The capacitative effect of the tip
is thus ignored. So the molecule does not change ap-
preciably in electrostatic energy upon changing the bias
potential.

There are now two bias windows for each tunneling
step. The bias window between molecule and substrate
is much smaller than between tip and molecule. Since
the molecule is “tied” to the voltage of the substrate,
one can define the effective bias window, where the elec-
trostatic potential of molecule and substrate is set to a
reference value of zero. Now the bias window over the
tip-molecule junction runs from EF to EF + eV . Fur-
thermore, the tunnel barrier from the molecule to the
substrate is assumed to be much smaller than to the tip
(Rtip >> Rsub), so that the current from tip to molecule
becomes the rate-determining step for the total current,
and the electronic structure of the substrate is not im-
portant for the two-step tunnel process (although it does
show up in the background tunneling process shown in
figure 5).

I =
G0

e

∫ EF+eV

EF

ρmρt|Mm,t|2dE

where G0 is the conductance quantum and the subscripts
m, s and t refer to molecule, substrate and tip respec-
tively. When the tip has a relatively flat density of states
over a significant bias range, ρt can be taken outside of
the integral.

I = G0ρt

∫ EF /e+V

EF /e

ρm|Mm,t|2dV

Whether the tip is clean or not can be probed by sweeping
the bias voltage when the tip is in tunnel contact with
the gold surface.

When the clean tip is brought on top of a molecule
and the bias is increased, the current formula dictates
that the current steps up each time a molecular level
(or “transmission channel”) is passed. The derivative of
the current with respect to bias voltage, or differential
conductance, directly probes the density of states.

dI

dV
= G0ρtρm(V )|Mm,t|2 ∝ ρm(V )|〈ψm|ψt〉|2

Here, a result by Tersoff and Haman is used. They ar-
gued that, when the tip is atomically sharp, the tun-
nel matrix element is approximately proportional to the
square of the overlap integral with the molecular wave
function[11] (|Mm,t|2 ∝ |〈ψm|ψt〉|2). Figure 6 shows an
idealized situation of the problem at low temperature.
On the left side, the tip is depicted, with a flat density
of states, so that the occupied density of stated (ODOS)
is proportional to the Fermi-Dirac “step-function”. The
molecular states are tied capacitatively to the bias poten-
tial of the substrate. By opening the bias window, the
tunnel current will increase proportional to the current
integral, which contains the unoccupied density of states
on the molecule. The differential conductance then re-
turns the density of states on the molecule. Of course,
the sign of the bias can be changed, changing the di-
rection of the current from molecular occupied states to
unoccupied states on the tip.

A molecule, like a GNR, features a series of discrete
energy levels. However, due to lifetime broadening and
electronic interaction with the substrate, these levels are
broadened. The DOS can now be expanded as a sum of
Lorentzians.

ρm(V ) =
1

π

∑
i

γ

(V − Ei

e )2 + (γ2 )2

where Ei are the molecular eigenenergies and γ is the
homogeneous broadening. The differential conductance
is then written as

dI

dV
(x, y) ∝

∑
i

γ|ψm,i(x, y)|2

(V − Em

e )2 + (γ2 )2

Hence, the differential conductance can teach us two
things. In a bias voltage sweep experiment, one can probe
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the local density of states (the density of states in which
each energy level is weighed with a factor |ψ2|). Second,
a scan of the differential conductance at a bias voltage
in resonance with a single energy level Ei will provide an
image of the orbital |ψi|2.

Scanning tunneling spectroscopy

In an STM experiment, the tip can be positioned at
a certain point on the surface, and a scanning tunneling
spectroscopy (STS) measurement can be performed. As
the bias voltage is swept, the resulting tunneling current
is measured and the differential conductance can be cal-
culated by differentiating the current with respect to the
bias voltage. But in numerical derivation, noise in I is
amplified to a large extent. To obtain a better signal
to noise ratio, the technique of choice is to use a lock-in
amplifier.

The tunnel current can be written in terms of
the equivalent resistance of the tunnel junction R =∫ VB

EF /e
dI/dV dV . In the lock-in amplifier, a harmonic

oscillation is added to the bias voltage over the tunnel
junction.

V = VB + Vosc e
iωt

The result is a harmonic current through the junction

I =
VB
R

+
Vosc
R

eiωt

The current is fed back to the lock-in amplifier. First, a
band-pass filter discards the constant tunnel offset and
most of the noise. Then, the current oscillation is mul-
tiplied with the output signal, and the product signal is
integrated over a few cycles. The output voltage is ba-
sically the Fourier integral of the a.c. tip current over
the output signal of the lock-in amplifier. This output
voltage is proportional to the differential conductance.

Differential conductance mapping

A problem with STM is that one cannot really visu-
alize individual eigenstates after the HOMO or LUMO.
To do so, it is really necessarry to be able to look at the
differential conductance spatially. Intuitively, this tech-
nique can be seen as a method to “subtract” the first
orbital from the image containing both orbitals. Using
a harmonic oscillation generated by a lock-in amplifier,
we can bring a single molecular level in and out of reso-
nance of the bias window. Now, a scan can be made of
the differential conductance, returning an image of the
molecular orbital.

In general, energy levels are broadened by such an
amount that they may overlap significantly. Neverthe-
less, by choosing a small voltage oscillation around a

FIG. 8. An example of eigenstate superpositions in differ-
ential conductance mapping. For the sake of argument, two
random orbitals from the short nanoribbon were used that are
close in energy (∆E = 4 meV). The real density of states is
much more convoluted with multiple eigenstates in the vicin-
ity, so this should only be regarded as a simple model.

single level, it may often be possible to single out one
orbital[12]. Of course, when energy levels become closely
spaced, the scan still returns a superposition of orbitals.
Correct differential conductance maps are therefore cre-
ated by summing over all molecular orbitals, weighed by
their Lorentzian factors integrated over the entire volt-
age oscillation. An example of this procedure is given
in figure 8. The differential conductance first shows that
there are two levels close in energy in the density of states.
Mapping out the differential conductance spatially at a
bias level where the resonances overlap, or where the bias
oscillation - indicated by the horizontal arrows - spreads
out over multiple peaks, results in a pattern that is a
superposition of the individual eigenstates.

Manipulation

So far, many SPM techniques have been covered, but
the focus has been on probing. The extremely precise
control - on picometer scale - also allows for the precise
manipulation of molecules and atoms on surfaces. The
first success with STM atom manipulation came by Eigler
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FIG. 9. An experiment, in which a molecule was shifted over
a sodium chloride layer and contacted with another molecule
by means of SPM manipulation. Experiment performed by
Swart et al. [14]

and Schweizer, who managed to push xenon atoms into
the correct positions to have them spell out “IBM”, the
name of their company[13].

Most STM manipulation experiments described in lit-
erature involve the lateral manipulation of atoms or com-
plete molecules[15][14] (an example of which is given in
figure 9), picking up atoms and molecules with an STM
tip[16][17] and even giving voltage pulses to bring about
a reaction[18][19]. In this research, we will focus on in-
ducing conformational changes in a nanoribbon. The de-
tails of the nanoribbon manipulation experiments will be
treated in the next chapter.

ATOMISTIC QUANTUM METHODS

In contrast with the nearly free-electron model, where
the background potential is treated to first order as be-
ing constant, and only in higher order acquires a per-
turbation due to the lattice, the atomistic approach uses
the exact Coulomb interactions of all nuclei to build up
the potential energy landscape. The atomistic approach
was originally devised for nonperiodic, molecular sys-
tems, and as such is used chiefly with space-localized
basis functions rather than plane waves[20]. Neverthe-
less, extensions to periodic solids are used frequently
nowadays[21][22].

The molecular single-electron wave functions are usu-
ally approximated as linear combinations of atomic or-
bitals χi (LCAO approximation) in a molecule (although
some additional functions may be chosen that do not re-
ally relate to atomic orbitals).

φ =
∑
i

ciχi or φ = c.~χ

with ci the expansion coefficient of atomic orbital i, and
c and ~χ the coefficient vector and atomic orbital vec-
tor, respectively. The complete set of basis functions
that describes the atomic orbitals - for example, carte-
sian Gaussians or Slater-type orbitals of different size and

quantum numbers - is called the basis set. The projec-
tion of the basis set onto the atomic positions defines the
complete atomic orbital vector ~χ. The problem of find-
ing the molecular single-electron wave function is now
reduced to finding the correct expansion coefficients on
each atomic orbital.

The variational principle states that any wave function
estimate φ will have a higher energy than the ground-
state wave function φ0 (which is an eigenfunction of the
Hamiltonian), unless it is equivalent to the ground state
wave function, in which case the energies are equivalent

〈E〉 =
〈
φ
∣∣∣Ĥ∣∣∣φ〉 ≥ Ĥφ0

φ0

φ = φ0 ⇒
∂ 〈E〉
∂ci

=
∂
〈
c.~χ
∣∣∣Ĥ∣∣∣ c.~χ〉
∂ci

= 0 ∀ ci

This problem is analytically solved under the orthonor-
mality constraint (using the method of Lagrange multi-
pliers) to give the secular equations

HC = SCE

C is the matrix containing the expansion coefficient vec-
tors for each molecular wave function. E is a matrix con-
taining the electronic energies on its diagonal. H is the
Hamiltonian matrix, and S is the overlap matrix. Their
elements are

Hij =
〈
χi

∣∣∣Ĥ∣∣∣χj〉 Sij = 〈χi|χj〉

By virtue of the linearity of the Hamiltonian operator,
the Hamiltionan matrix H can be separated into (or
built up from) a single-electron Hamiltonian matrix and
a multi-electron Hamiltonian matrix

H = H1 + H2

The secular equations are a special kind of eigenvalue
problem, and can be solved using the machinery of linear
algebra. In the case that overlap is ignored, so that S = I,
they can be written as a trivial eigenvalue equation

C−1HC = E

so that the diagonal eigenenergy matrix E contains the
eigenvalues and C the eigenvectors of H. Each eigenvalue
Eii is the solution to the characteristic polynomial

det(H− EiiI) = 0

and the expansion coefficients are the elements of the
eigenvector c from the matrix C of that specific eigen-
value.

Hc = Eiic
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This last equation is the secular equations in single-
electron basis.

Although the addition of the overlap matrix means
that HC = SCE cannot be calculated anymore by a sim-
ple eigendecomposition, the secular equations can still be
solved in the single-electron form

(H− EiiS)c = 0

Eigendecomposition of the Hamiltonian matrix is thus
seen to involve solving the n-dimensional characteristic
polynomial for the eigenenergies and subsequent eigen-
vector formation by finding the nullspace (reduced: with-
out the trivial zero element) of all matrices H1 − EiiS,
defined as

N(H− EiiS) = {c|(H− EiiS)c = 0, c 6= 0}

For degenerate states, the eigenenergies are identical,
so that the nullspace contains multiple vectors for that
state. In general, the degeneracy level g is the dimen-
sionality of (reduced) nullspace

g(Eii) = span(N(H− EiiS))

Two degenerate eigenstates have the property that they
can be mixed

H(c1 + c2) = Hc1 + Hc2 = SEc1 + SEc2 = SE(c1 + c2)

This means that the superposition eigenstate c3 = c1+c2
is also an eigenstate of the Hamiltonian matrix. The en-
tire plane in state space spanned by vectors c1 and c2
contains solutions to the Hamiltonian, and the set of nor-
malized states span a circle. Two degenerate orthonor-
mal eigenstates can thus be mapped onto two other de-
generate orthonormal eigenstates by using a rotational
transformation(

c′1
c′2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
c1
c2

)
or, equivalently,(

ψ′1
ψ′2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
ψ1

ψ2

)
An example of a rotational transformation will be en-
countered in the tight binding calculations in the next
chapter.

We would like to solve the secular equations directly
for all orbitals, without going to the single electron basis
and applying all energy eigenvalues. The trick is to or-
thogonalize the atomic basis set and find the square root
of the overlap matrix so that the secular equations can
be rewritten to a simple eigenvalue problem.

• The (diagonal) eigenvalue matrix Λ and its corre-
sponding eigenvector matrix X of S are computed
by an eigendecomposition

Λ = X−1SX

The matrix X is thus an expansion coefficient ma-
trix that diagonalizes S. When X is applied to the
atomic orbitals ~χ, the resulting molecular orbitals
are mapped to orthogonal basis functions.

• Since Λ is diagonal, the square root of this matrix
is simply calculated as the matrix containing the
square root of all diagonal entries.

Λ
1
2 =
√

Λ

• Λ
1
2 is used to calculate the square root of S.

(S
1
2 )(S

1
2 ) = S = XΛX−1 = XΛ

1
2 Λ

1
2 X−1

= (XΛ
1
2 X−1)(XΛ

1
2 X−1)⇒ S

1
2 = XΛ

1
2 X−1

• The inverse of S
1
2 is calculated by a matrix inversion

algorithm.

S−
1
2 =

(
S

1
2

)−1
• Using these square root matrices, the secular equa-

tions are written as

HC = SCE = H(S−
1
2 S

1
2 )C = S(S−

1
2 S

1
2 )CE

HS−
1
2 (S

1
2 C) = S

1
2 (S

1
2 C)E

(S−
1
2 HS−

1
2 )(S

1
2 C) = (S

1
2 C)E

H′C′ = C′E

The last equations are the orthogonalized secu-
lar equations. They have the form of an eigen-
value equation, which we know how to solve (or let
the computer solve). Therefore, initially the ma-

trix H′ = S−
1
2 HS−

1
2 is calculated and subsequently

eigendecomposed.

• The resultant eigenvector matrix C′ = S
1
2 C is pre-

multiplied by S−
1
2 to give C.

Hartree Fock and Density functional Theory

Quantum chemical methods usually work in a couple of
steps, as follows. First, single electron integrations over
atomic orbitals are carried out and the resulting values
are stored in the Hamiltonian matrix and the overlap
matrix. For example

Hij,1 =

〈
χi

∣∣∣∣V̂Ne −
~2

2m
∇2

∣∣∣∣χj〉
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The functions χ themselves may be expanded in so-called
primitive functions (contractions), and the basis set may
be extended from the minimal case (diffuse orbitals, po-
larization functions, etc.). This increases the accuracy
of the computation but also the number of integrals to
obtain Hij,1. Evaluation of the multi-electron Hamilto-
nian matrix terms is more involved, and differs for var-
ious quantum chemical methods. In general, the multi-
electron Hamiltonian is adjusted several times during a
computation. The result after all molecular integral eval-
uations is an overlap matrix S and a Hamiltonian matrix
H, and at this point the secular equations can be solved.

The largest difference in quantum chemical methods is
how to account for the multiparticle term V̂ee.

• Using the mean-field repulsions between electron
densities set up by the respective atomic orbitals
(the two-electron Coulomb repulsion as set up by
the respective electron wave function densities).
This is done in the Hartree-Fock (HF) method.
Electron correlation effects can be accounted for by
using post-HF methods, albeit at a large computa-
tional cost that scales increasingly worse for large
systems.

• Using an empirical function(al), that depends on
the total electron density and that correctly ac-
counts for correlated repulsion. This is used in the
Kohn-Sham implementation of density functional
theory (DFT)[23].

In both cases, the calculated coefficients are a function
of the electron density through the multi-electron Hamil-
tonian. However, the electron density in turn is related
to the coefficients of occupied orbitals, which is the out-
put of the calculation. The problem is usually solved by
taking a guess density and iterating the calculation until
the input and output density are consistent. This proce-
dure is known as the self-consistent field (SCF) approach.
Whether or not a computation will actually converge is
a key issue in SCF computations. Various methods (like
density matrix damping, DIIS and level shifting) are used
to help convergence, but it may remain a problem in some
computations.

Density functional theory is the most popular quan-
tum chemical method nowadays, as the computational
cost is comparable to Hartree Fock but its results are of-
ten more accurate[24]. It is important to note that both
methods require the input of explicit functions, the basis
set, and the Hamiltonian and overlap matrix elements are
obtained by explicitly integrating over these functions.

Symmetry, sparsity and separability

The orbitals in graphene and graphene nanosystems
are derived from the s and p atomic orbitals of the carbon

atoms. The s-orbitals and two of the p-orbitals, lie in the
molecular plane. They span the so-called σ-framework.
The remaining p-orbitals protrude on either side of the
molecular plane, and combine to form the so-called π-
system. They will be denoted p⊥, indicating their per-
pendicularity with respect to the framework orbitals.

The orbitals spanning the π-system and σ-framework
are of different parity. p⊥-orbitals are, in contrast to the
other AO’s, antisymmetric with respect to reflection in
the z-plane.

φ2pz(−z) = −φ2pz(z), φ2px(−z) = φ2px(z)

The product of a symmetric and an antisymmetric func-
tion is antisymmetric

φ2pzφ2px(−z) = −φ2pzφ2px(z)

This property holds for every AO pair, regardless of (rela-
tive) position in the xy-plane. An overlap matrix element
is

Sij = 〈φ2px|φ2pz〉 =

∫∫ [∫ ∞
−∞

φ2pxφ2pzdz

]
dx dy

where the integral within brackets is expanded

[] =

∫ 0

−∞
φ2pxφ2pz(z)dz +

∫ ∞
0

φ2pxφ2pz(z)dz

and the antisymmetry is applied to the first term

[] = −
∫ ∞
0

φ2pxφ2pz(z)dz +

∫ ∞
0

φ2pxφ2pz(z)dz = 0

So the overlap of orbitals with different parity vanishes.
Especially in a high-symmetry system like graphene,
many elements in both the single-electron Hamiltonian
matrix and the overlap matrix integrate to zero, simply
because of the orthogonality of the basis functions. Also
- this is completely general - the magnitudes of matrix
elements that are not orthogonal still approaches zero
quite quickly when AO’s become separated by a couple
of nm. These effects render the single-electron Hamilto-
nian matrix and overlap matrix very sparse. In addition
to being convenient for linear algebraic diagonalization
algorithms, these matrices can become block diagonal,
e.g.

H1 =

(
A 0
0 B

)
The eigenvalues of H1 are the solutions to the character-
istic polynomial

det(H1 − EiiI) = 0

In the block-diagonal case this is - by definition of the
determinant - identical to

det(H1 − EiiI) = det(A− EiiI) det(B− EiiI)
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This polynomial equation is solved if

⇒ det(A− EiiI) = 0 or det(B− EiiI) = 0

The eigenvalues of the combined system are simply those
of A and B, and the eigenvectors are also completely
unperturbed by the mutual presence. So, the wave func-
tions are orthogonal, the states do not mix, and the eigen-
values and -vectors are simply those of A and B. The
subsystems are ”invisible” to each other! In the partic-
ular case of graphene, the one-electron Hamiltonian ma-
trix can be written as a block-diagonal matrix containing
σ-framework and π-system Hamiltonian submatrices.

H1 =

(
Σ 0
0 Π

)
where Σ is the Hamiltonian of the σ-framework and Π the
Hamiltonian of the π-system. Since we concluded that
these subsystems are ”invisible” to each other, they are
solved by simply putting the subsystems into the secular
equations, one by one.

ΣCσ = SσCσEσ, ΠCπ = SπCπEπ

Now we can invoke the Hückel approximation and claim
that the interesting physics of aromatic molecules is in
the π-system[25]. The approach would then be to not
care about the equations of the σ-framework and only
solve the π-SE. In comparison with the total secular equa-
tions for all AO’s, a significant reduction in basis orbitals
is made (only the p⊥-orbitals are left), and the Hamil-
tonian is drastically reduced in size. The computational
effort of solving the secular equations has become a much
smaller and a much quicker one. In summary, orthogonal-
ity causes the π-system, which is composed of p⊥-orbitals
to be entirely decoupled from the σ framework.

Unfortunately, the multi-electron Hamiltonian does
not benefit from symmetry because of the fact that
the energy is proportional to the squared wave func-
tions. Squared AO’s are always positive and can never be
anisymmetric with respect to an inversion or with respect
to each other. Although H1 and S may be block-diagonal,
H2 is not block-diagonal. Hence, H is not block-diagonal,
ruining the σ− π-separability. Electron-electron interac-
tions cause a coupling between the σ-framework and π-
system, increasing the computational effort in atomistic
methods tremendously.

However, this annoying feature does not have to damp
all hopes to benefit from symmetry. Might it be possi-
ble to tweak the π-framework Hamiltonian (Π) in such a
way that the effect of σ-interaction is accurately repre-
sented, even when disregarding the σ-lattice itself? The
answer is: yes, but at a slight decrease of computational
accuracy. In the framework of graphene tight-binding, it
is normally assumed that the σ − π-subsystem coupling
is weak and translationally invariant, and it is implicitly

taken into account in assigning the values of the Hamil-
tonian matrix for the π-system. The translational invari-
ance at edges can be fixed in an empirical way, as will be
shown later.

It will be clear from this discussion that for the effi-
cient evaluation of quantum mechanical systems, sparsity
is our friend. The computer needs to find the characteris-
tic polynomial for the Hamiltonian matrix by calculating
the determinant, the cost of which scales with the number
of off-diagonal elements. The same goes for the overlap
matrix, as will be shown later. A final point to be made is
that the input orbitals (generally the basis set projected
on the atoms) are not constrained to be atomic orbitals,
and may be LCAO expansions themselves. It is even pos-
sible to solve the eigensystem for a set of molecular or-
bitals and have them mix to form other molecular orbitals
(as long as the input set is linearly independent, other-
wise, degrees of freedom are lost). A popular method to
achieve even sparser Hamiltonian matrices is to employ
the symmetry of a system, by first forming symmetry-
adapted linear combinations (SALCs) of atomic orbitals
and then performing the calculation on this basis. SALCs
work when they respect certain symmetry elements of
the system, for example (anti)symmetry with respect to
inversion. In addition, the formation of SALCS puts con-
straints on expansion coefficient for each type, so that the
number of “degrees of freedom” is reduced. Symmetry is
commonly implemented in quantum chemical software,
like ADF and ORCA, which were used in this research.

The tight binding method

Tight binding, or Hückel theory, is a relatively simple
method for finding the electronic structure of molecules,
by empirical parametrization of molecular integrals in
the secular equations and invoking symmetry arguments
to minimize the computational cost. Despite the sever-
ity of the assumptions used, surprisingly accurate re-
sults have been achieved, and nowadays it has become
a very popular tool in electronic structure calculations
of graphene and graphene nanosystems[26][27][28][29].
π−σ-separability is employed and only the π-system has
to be taken into account. Another helpful aspect is that
these materials tend to be weakly correlated[30]. The
weak correlation of graphenes arises from the fact that
the relative electron-electron separation is quite large, es-
pecially in the π system. Since the electron density of dif-
ferent molecular orbitals is also very evenly distributed,
it deviates only very slightly for electrons in different or-
bitals.

Another assumption is that the potential energy land-
scape on each carbon atom is relatively invariant from
one atom to the next. Of course, this is true for the
bulk, and the potential energy wells only deviate near the
edges. The problem is solving the secular equations for

26



the π system exclusively based on empirical values of the
Hamiltonian and overlap matrix elements. By choosing
them correctly, for example by fitting it to other atom-
istic methods, interaction effects with the lattice can be
slightly recreated within the π-Hamiltonian. TB - al-
though arguably somewhat less sophisticated than DFT
or HF methods - is much more efficient because of the
following factors

• Single parametrization of integrals in the Hamilto-
nian matrix without specifying a basis set

• Lack of four-electron integrals (HF) or exchange
correlation interaction (DFT) integrals

• No need for SCF iterations

• Disregard of orbitals of a certain symmetry and de-
coupling from interesting orbitals, in this case the
entire σ-framework

As a simple system that is easily extrapolated
to graphene and graphene nanoribbons, the ethylene
molecule is taken as an example. The Hamiltonian ma-
trix for ethylene within the tight-binding framework is
constructed by only treating the p⊥-orbitals on both car-
bon atoms. These are referred to as |1〉 and |2〉. By the
hermiticity of the Hamiltonian operator〈

χi

∣∣∣Ĥ∣∣∣χj〉 =
〈
χj

∣∣∣Ĥ∣∣∣χi〉 ∀ χi, χj
the Hamiltonian matrix should be symmetric and the
interaction integral between the two p⊥-orbitals is equiv-
alent (called β = Hij). By symmetry, the carbon atom
self energies, (called α = Hii) should also be equal. The
matrix is

H =

(
α β
β α

)
H is separated as

H =

(
α 0
0 α

)
+

(
0 β
β 0

)
= αI + Hβ

Ignoring overlap, so that S = I, the secular equations are
written as a simple eigenvalue equation

E = C−1HC = C−1(αI + Hβ)C

= αIC−1C + C−1HβC = αI + C−1HβC

which has a trivial solution

C =

√
2

2

(
1 1
1 −1

)
E = αI +

(
β 0
0 −β

)
The two row vectors that make up C denote the bonding
and antibonding combinations, respectively

φg =

√
2

2
(|1〉+ |2〉) φu =

√
2

2
(|1〉 − |2〉)

the subscripts denote gerade (bonding) and ungerade
(antibonding), by concensus. Their respective energies
are the diagonal elements in the eigenenergy matrix

Eg = α+ β Eu = α− β

By symmetry, there should be no other combinations
than a symmetric and antisymmetric one.

The aim of the decomposition of the Hamiltonian ma-
trix into two matrices is to show that if all diagonal terms
are the same (Hii = α ∀ i), the effect on the energy lev-
els is a uniform displacement of all energy levels by this
amount (by virtue of the factor αI in the eigenenergy
matrix). So tuning α shifts the MO diagram or band
structure as a whole. For a system with one electron per
carbon atom, this self-energy parameter also happens to
coincide with the Fermi level of the molecule (EF = α).
In most calculations, the Hamiltonian matrix diagonal is
simply set to zero so that automatically the Fermi level
is set to the reference value of 0. It is also easily ob-
served that the off-diagonal interaction strength β scales
the energy spacing between successive energy levels. It
is seen empirically that, even in large calculations, the
parameter β can be tuned to uniformly increase energy
level spacings.

At this point it is instructive to compare our matrix
tight-binding approach to another conventional form of
tight-binding, since latter notation is commonly used in
physics literature. Although its appearance is completely
different, a completely equivalent form of writing down
the tight-binding Hamiltonian is

Ĥij =
∑
ij

tijc
†
i cj + h.c.

with tij the interaction, or “hopping” integral, h.c. stand-
ing for Hermitian conjugate, c† the creation operator and
c the annihilation operator, which operate on an implicit
minimal basis set. The sum runs over all atom pairs ij.
The key thought of this formulation of tight binding is
that the interaction integral of different atomic orbitals
is equivalent to the energy needed to have an electron
”hop” from site i to site j, or vice versa. This hopping is
described by the simultaneous annihilation of an electron
from state j and creation of it in state i. The hopping
parameter t is equivalent to the value β or Hij that we
would like to put into the Hamiltonian matrix. Mini-
mization of wave function energies as requested by the
variational principle now comes down to minimization of
the total energy expectation value of the TB operator on
all electron pairs.

In the ethylene problem, there is only a single nearest
neighbour interaction constant t, and for simplicity, we
can neglect overlap. The Hamiltonian can be written as

Ĥ = t
∑
ij

|i〉〈j|+ h.c.
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We apply this Hamiltonian on a yet undetermined ethy-
lene orbital φ, defined as

|φ〉 = c1|1〉+ c2|2〉

This results in

Ĥ|φ〉 = t(c1|1〉〈2|1〉+ c2|1〉〈2|2〉

+c1|2〉〈1|1〉+ c2|2〉〈1|2〉)

= tc2|1〉+ tc1|2〉

= E|φ〉 = E(c1|1〉+ c2|2〉)

This requires tc2 − Ec1 = 0 and tc1 − Ec2 = 0. So(
−E t
t −E

)(
c1
c2

)
=

(
0
0

)
This is again the same eigenvalue equation (H− IEii)c =
0, with β disguised as t! So this description leads to the
same matrix equations. For practical calculations, how-
ever, it is sufficient to start off by formulating a matrix
Hamiltonian.

In absence of overlap (s = 0), all energy levels are
symmetric with respect to the Fermi energy. Now we set
〈1|2〉 = h.c. = s so that

S =

(
1 s
s 1

)
We can calculate HC

HC = HβC =

√
2

2

(
β −β
β β

)
and SCE

SCE =

√
2

2

(
1 s
s 1

)(
1 1
1 −1

)(
Eg 0
0 Eu

)

=

√
2

2

(
Eg(1 + s) Eu(1− s)
Eg(1 + s) −Eu(1− s)

)
The secular equations are solved in terms of energies by
termwise comparison of matrix components of HC and
SCE.

Eg(1 + s) = β ⇒ Eg =
β

1 + s

Eu(1 + s) = −β ⇒ Eu = − β

1− s
Equivalently, in the single electron basis, only one vector
is taken from the matrix C, and it was shown that the
secular equations are solved when

(H− EiiS)c = 0

(
−E β − sE

β − sE −E

)
c = 0

The characteristic quadratic equation again lead to the
same two eigenvalues

(β − sE)2 = E2 ⇒ E(1± s) = ±β

and the eigenvectors are again the symmetric and an-
tisymmetric superposition. Overlap effectively antisym-
metrizes, or skews the energy levels. Energy levels above
the Fermi level move away from the Fermi level and en-
ergy levels below move closer towards it. This is a result
that will carry over into larger calculations, as will be
seen in the next chapter.

THE STRUCTURE OF GRAPHENE

The electronic magic of graphene comes from its flat
honeycomb structure. The formation of this structure
can be explained from examining the atomic orbitals of
carbon. A carbon atom contains a pair of electrons in
its core shell, and four electrons in its valence shell. If
carbon were a free atom, these electrons would doubly
occupy the 2s orbital and singly occupy both the per-
pendicular 2px and 2py orbitals by the Aufbau principle.
This leaves an empty pz orbital. Inside a crystal lattice,
the energies of these orbitals are displaced and it may
become more energetically favourable for electrons to oc-
cupy orbitals which are mixtures of 2s and 2p orbitals.
The orbitals hybridize depending on their chemical envi-
ronment, or ligand field. This causes carbon to exist in
different allotropes, e.g. sp2-hybridized carbon will form
graphene or graphite lattices and sp3-hybridized carbon
will form diamond lattices.

The wavefunction for the 2s orbital is, to a good ap-
proximation

φ2s =

[
Z3/2

2
√

2π

]
(2− Zr)e−Zr

2

where the term in brackets is a normalization constant
and Z is the effective nuclear charge, which is lower than

FIG. 10. Hybridization of the carbon 2s atomic orbital with
the 2px and 2py orbitals gives sp2 hybrids.
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FIG. 11. sp2 hybrid orbitals (shown on adjacent atomic sites)
can be seen as the basic building blocks of the graphene hon-
eycomb σ lattice. They will mix to form the molecular orbitals
in the plane. The remaining, singly occupied p⊥ orbital mix
to form the π-system.

6 because of the shielding effect of the 1s orbital electron
pair. The wavefunction for the 2px orbital is

φ2px =

[
Z5/2

4
√

2π

]
xe−Zr

and similarly for 2py and 2pz. The sp2 hybrid orbitals
are then the orthonormal linear combinations

φsp2,1 =
φ2s −

√
2φ2px√

3

φsp2,2 =
1√
3

(
φ2s +

φ2px√
2

+

√
3

2
φ2py

)

φsp2,3 =
1√
3

(
φ2s +

φ2px√
2
−
√

3

2
φ2py

)
The hybridized orbitals protrude at 120 degree angles

relative to each other, perpendicular to the the remain-
ing unhybridized pz orbital. A cross section is shown in
figure 10. In the framework of valence bond theory, one
can now say that carbon atom in graphene form σ-type
bonds between its sp2 orbital and a sp2 orbital of a neigh-
bour atom, leaving the bonding carbon-carbon bond dou-
bly occupied. When surrounded by carbon atoms, each
carbon-carbon bond is thus doubly occupied. The 120
degree angle between σ bonds results in the honeycomb
lattice. The singly occupied 2pz orbital, which from now
on is called the p⊥ orbital, protrudes perpendicularly on
every carbon atom of the lattice. Two graphene lattice
positions with sp3-hybridized basis functions are shown
in figure 11. The honeycomb framework of σ-type bonds
arising from sp2 orbitals are now referred to as the σ lat-
tice, and the p⊥ orbitals span the π system on both sides
of the graphene plane11.

FIG. 12. a: The reciprocal lattice, with vectors Q1 and Q2.
b: the graphene lattice. The lattice vectors T1 and T2 are
shown. Atoms in the hexagonal A-sublattice are white, those
in the B-sublatice are black (and their numbers overlined).
The unit cell, spanned by the lattice vectors, is shown in gray.
Nearest neigbour vectors span from 1 to 1, to 2, and to 3.
The circles have radii r0 = 1.42Å and

√
3 r0 = 2.46Å. (Image

taken from D. L. Nika and A. A. Balandin, J. Phys. Cond.
Matter 24233203 (2012)

The honeycomb lattice can be seen as two interpen-
etrating hexagonal sublattices A and B (the black and
white atoms in figure 12). The unit cell is a rhombus
containing a basis of one carbon atom from both the A
and B sublattice. The crystal is obtained by translation
of this basis by any translation vector T in the twodi-
mensional set

{T} = {kT1 + lT2|k, l ∈ N}

where the translation basis vectors are

T1 =
√

3 r0

(√
3

2
x̂ +

1

2
ŷ

)
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T2 =
√

3 r0

(√
3

2
x̂− 1

2
ŷ

)
with

||T1|| = ||T2|| =
√

3 r0 = 2r0 cos 30o

r0 ≈ 1.42Å is the graphene carbon-carbon bond length,
and
√

3 r0 ≈ 2.46Å is the lattice constant. The area of
the unit cell is

A = ||T1 ×T2|| =
3
√

3 r20
2

The translation vectors from a carbon atom in the A-
sublattice to a nearest neighbour atom in theB sublattice
is

{TAB/r0} =

{
x̂,− x̂

2
+

√
3

2
ŷ,− x̂

2
−
√

3

2
ŷ

}
The graphene lattice, with lattice vectors and coordinates
of interest is displayed in figure 12 b.

In order to be able to analyse waves - be it electronic,
photonic or phononic - running through the graphene
lattice, the reciprocal lattice of graphene will have to be
defined. Wavevector space (also called reciprocal space,
k-space or Fourier space) contains two particular regions
of interest

• Lattice vectors in the reciprocal lattice, de-
scribed by the set of vectors {Q}, describe short-
wavelength waves with an integer number of wave-
lengths between atomic planes in the real lattice.
Vectors from {Q} will become useful in Fourier
problems, like the nearly free electron model.

• Wavevectors corresponding to waves of wavelength
(much) longer than the lattice distance are also im-
portant. The set of these long-wavelength waves
{k} defines the first Brillouin zone.

The reciprocal lattice vectors are defined so that

Ti ·Qj = 2πδij

They reciprocal lattice vectors can be calculated as

Q1 = 2π
T2 × ẑ

A
= − 2π

3r0

(
x̂ +
√

3ŷ
)

Q2 = 2π
T1 × ẑ

V
=

2π

3r0

(
x̂−
√

3ŷ
)

The entire reciprocal lattice is then defined - analogous
to the real space lattice - as

{Q} = {kQ1 + lQ2|k, l ∈ N}

FIG. 13. The dispersion relation E(k) for the entire twodi-
mensional Brillouin zone of graphene, as calculated with a
nearest-neighbour periodic tight binding model. The band
gap is maximum for electron waves with zero wave vector,
and reduces to zero for electrons at the Fermi level, at the
Dirac cones.

All points of interest in the reciprocal lattice are dis-
played in figure 12.

We can now use the tight binding model to derive the
band structure of graphene, in the lines of the pioneering
work by Wallace[31]. In graphene, a basis of two p⊥-
orbitals on the carbon atoms is repeated in a hexagonal
lattice - essentially the periodic variant of the ethylene
molecule. The basis functions are Bloch waves originat-
ing from the atomic positions, that contain a localized
part on either sublattice.

χA = cA|A〉eik·(r−rA), χB = cB |B〉eik·(r−rB)

In the nearest neighbour-approximation, the coupling

FIG. 14. A zoom-in on Dirac cones of the graphene disper-
sion. The occupation probability of holes (gray) and electrons
(green) is given by the FD-distribution FD(E) and the car-
rier concentration by the integrals over FD(E)DOS(E). Close
to absolute zero, this is a sharp cut-off (left) and the carrier
concentration is close to zero. At higher temperatures, some
electrons reside in the CB and holes in the VB (right).
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and overlap is given by contributions from all three neigh-
bours on the other sublattice, the magnitude of which is
determined by the Bloch phase difference. The overlap
matrix is

S =

(
1 s

√
f

s
√
f 1

)
where s = 〈A|B〉 and

√
f is the sum of phase factors from

all neighbours√
f = e−ik(·r−rA)

∑
B

eik·r−rB =
∑
B

eik·TAB

This phase arises in the same way in the Hamiltonian
matrix. The nearest-neighbour vectors were shown in
chapter 1. The sum becomes√

f = eik·r0x̂ + eik·r0(−x̂+
√
3ŷ)/2 + eik·r0(−x̂−

√
3ŷ)/2

and can be written in terms of the translation vectors as

f = 3 + 2 cosk ·T1 + 2 cosk ·T2 + 2 cosk · (T2 −T1)

The secular equations in single-electron form are

(H− SEii)c =

(
−E (β − sE)

√
f

(β − sE)
√
f −E

)
c = 0

The determinant gives the characteristic parabolic equa-
tion E2 = (β − sE)2f , which is solved to give

E ∓ sE = ∓β
√
f ⇒ E =

∓β
√
f

1∓ s
√
f

and the eigenvectors are

cg =
1√
2

(
1
1

)
cu =

1√
2

(
1
−1

)
which are the same eigenenergies and orbital coefficient
expansions as ethene, except for the function

√
f(k),

which introduces a band structure. The full band struc-
ture is plotted in figure 13. It is shown in appendix D that
this dispersion relation is indeed linear in the K-points
at the Fermi level.

Figure 14 shows a zoom on the Dirac cones, which are
the regions in the band structure where electron trans-
port takes place. As described in appendix A, the con-
ductivity is a function of charge carrier mobility and
charge carrier concentration. The density of states can
formally be calculated by integrating the number of k-
vectors for each energy value interval and subsequently
taking the derivative with respect to energy

E(k)⇔ k(E) N(E) =

∫∫
k(E)dE

DOS(E) =
∂N

∂E

Around the Fermi level, the density of states - like the
dispersion - turns out to be linear. The charge carrier
concentration can now be found (analytically) by inte-
grating the density of states over the thermal occupancy
probability (given by the Fermi-Dirac distribution). The
occupations are shown schematically for 0 K and for el-
evated temperature in figure 14, and the procedure for
evaluating the conductivity integral is shown in appendix
A. Using these tools, it can now be appreciated that the
vanishing density of states at the Fermi level gives a con-
ductivity that approaches zero at zero temperature.

THE MOLECULAR MECHANICS METHOD

Molecular dynamics (MD) is a computational method
to evaluate the dynamical properties of molecules and
between molecules by numerically integrating the forces
they experience in time[32]. These forces are approx-
imated by some predefined interactions, like quadratic
bond potentials and inverse quadratic Coulomb interac-
tions. Molecular mechanics (MM) can be seen as a subset
of molecular dynamics, focused on computing or obtain-
ing molecular geometries by running a molecular dynam-
ics simulation using mainly intramolecular forces. There
is no real distinction between the two terms, but in gen-
eral, the term MD is used more often for intermolecular
problems and MM more for intramolecular problems.

Although MD methods are inherently approximations
of the real dynamic nature of molecules - because they
simply don’t capture the quantum nature of molecules -
they are known to work well for large systems[33]. The
use of MM has been particularly popular in calculating
equilibrium geometries of macromolecules like proteins,
and numerous successes have been achieved using this
method[34][35]. Using an inherently classical method
on molecular systems seems rather crude, but quantum
chemical simulations may actually give potential energy
landscapes which often turn out to be very similar to
those used in MM. Alternatively, molecular mechanics
force field can also be calibrated with quantum chemical
simulations[36].

A classical parametrization of intramolecular interac-
tion energies consists of contributions from bond lengths,
bond angles, dihedral angles and electrostatic interac-
tions. Given an equilibrium bond length r0, the energy
of a covalent bond between atoms i and j is given by

E =
1

2
kb(rij − r0)2

If atom i and atom k are both covalently bonded to atom
j, they will experience an interaction energy when the
angle θijk deviates from the equilibrium bond angle. The
quadratic potential for bond angle variations takes the
form of
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E =
1

2
kφ(θijk − θ0)2

If the MM model is extended further, dihedral angles
should also be taken into account. The dihedral angle
φijkl is the angle between the plane spanned by atoms
i, j and k and the atoms j, k and l. Additionally, elec-
trostatic terms and van der Waals terms for non-bonded
atoms are taken into account. As the subscripts sug-
gest, the number of atoms to take into account increases
strongly by taking into account dihedral contributions.
However, for this research, we only considered in-plane
bending, conveniently rendering all dihedral angles zero.

It will be shown in the next chapter how a molecu-
lar mechanics “force field” - basically the set of forces
resulting from the aforementioned interaction energies -
can be implemented computationally. Then, this method
is used to create bent nanoribbon geometries. By com-
bining the two methods - performing tight binding calcu-
lations on geometries prepared using the molecular me-
chanics method - we will be able to make predictions
on the changes in the electronic structure of graphene
nanoribbons when they are bent.
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MOLECULAR MECHANICS ON GRAPHENE
NANORIBBONS

The molecular mechanics interaction energies shown
in the previous chapter - parabolic wells for the bending
angle and bond length - look trivial, but knowing the
energies is not sufficient to implement a MM simulation.
Rather, they need to be transformed to vectorial forces on
all atoms. A molecular mechanics force field was written
to prepare bent and strained geometries for AGNRs.

The vector from atom i to atom j is

rij = rj − ri

and its corresponding unit vector is

eij =
rij
||rij ||

The bond length (spring) force on atom i due to atom j
is in the direction from i to j and can be calculated as

Fi(j) = kb(||rij || − r0)eij

Due to momentum conservation, the same force is expe-
rienced by atom j due to atom i

Fj(i) = −Fi(j) = −kb(||rij || − r0)eij

For bond angles, the force field is slightly more in-
volved. θ is taken to be the bond angle between eji and
ejk, centered on atom j. It is calculated according to

cos(θ) =
rij · rkj
||rij ||||rkj ||

= eij · ekj

So the magnitude of the force is given by

||Fi/k|| = −||∇E|| = −kθ||∇(θ − θ0)2||

=
kθ
r

∂(θ − θ0)2

∂θ
=

2kθ(arccos[eij · ekj ]− θ0)

rij/kj

Atom i rotates around atom j in a direction perpendicu-
lar to eji. The rotation of atom i and k is in the direction
defined by a unit vectors tangent to the “circle” on which
the atoms rotate. The unit vectors for two rotational di-
rections (clockwise and couterclockwise) are given by

e′i = ±[(eji · x̂)ŷ − (eji · ŷ)x̂]

and similarly for ejk. Whether the rotational direction
should be clockwise or counterclockwise for i (and vice
versa for k) is now accounted for by taking the sign of the
cross product between eij and ekj , that is, the orientation
of its normal vector

sijk =
eij × ekj
||eij × ekj ||

The forces on i and k are now calculated by combining
latter three equations

Fi = ||Fi,k||sijke′i, Fk = −||Fi,k||sijke′k

To conserve momentum, the force experienced by j by
the bending of i and k should be

Fj = −Fi − Fk

This ensures that, if atom i and k rotate towards each
other, atom j rocks back slightly, keeping the center of
mass of the three atoms at the same position.

After loading an initial geometry, the forces on all
atoms are calculated. A small timestep δt is chosen, after
which the forces, velocity changes and coordinate changes
are calculated. Numerical time integrations are subject
to numerical noise, caused by the finite timestep size and
rounding errors. The leapfrog algorithm was devised to
numerically integrate MD/MM problems in time, with an
increased stability with respect to the Euler algorithm[1].
After setting an initial geometry r0 and setting v0 = 0,
the order in which the forces, velocities and positions are
updated is

• The velocities are updated a half time step using
the previous accelerations (which at time zero are
0, but in general, at time t0 are given by a(t0)).

v(t0 +
1

2
δt) = v(t0 −

1

2
δt) + a(t0)δt

• The positions are updated to time t0 + δt using the
velocities.

r(t0 + δt) = r(t0) + v(t0 +
1

2
δt)δt

• The accelerations are computed at a time t0 + δt
(j are the force components due to all strains and
bends of all atoms around atom i).

ai(t0 + δt) =
∑
j

Fij(ri(t0 + δt))

m

This algorithm effectively ensures that the velocities
are always determined by the average force between time
t0 and time t0+δt, so they are approximately determined
by a(t0 + 1

2δt).

⇒ v(t0 + δt) = v(t0) +
a(t0) + a(t0 + δt)

2
δt

The input geometry in the nanoribbon problems is the
straight, relaxed hexamer ribbon. The position of the
center carbon atoms on both termini are constrained:
forced to move slowly towards each other. During this
process of “pinching”, the ribbon will wiggle and bounce.
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FIG. 1. Stills from a molecular mechanics simulation. Two
atoms on either side of the ribbon are constrained and pinched
towards each other. The ribbon is stressed, then it bends,
wiggles, and relaxes.

Pinching introduces a steady increase in potential energy,
which is quickly absorbed as kinetic energy of the atoms.
In a proper MM simulation, a molecule will keep wiggling
and bouncing forever. Therefore, the ribbon is forced to
relax by perturbing the position update with a damping
term

r(t0 + δt) = r(t0) + v(t0 +
1

2
δt)δt+ 0.1a(t0)δtdt

where dt is the time corresponding to a step of unity in
atomistic unit. Also, every number of cycles, the atomic
velocity vectors are scaled by a factor between 0.95 and
0.99. Using these damping mechanisms, pinching and
waiting for long enough, bent geometries have been ob-
tained for tight binding simulations. A pinching simula-
tion is shown in figure 1.

For molecular mechanics on graphene, it is gen-
erally found that bonds are much stiffer than bond
angles[2][3][4]. Good values of kb and kθ appear to be
around

kb = 60 nN Å
−1

kθ = 8 nN Å rad−2

where only the ratio of the parameters matters for the
equilibrium result. Figure 2 shows how bending can in
general be compensated in different ways, proving the
importance of a correct geometrical description. The fol-
lowing parameter ratios were used in the generation of

these geometries, respectively: kb/kθ = 100 Å
−2

rad−2

and kb/kθ = 0.01 Å
−2

rad−2. In the angle-preserving
regime, bonds are severely shortened on the inside of the

FIG. 2. Bending can be compensated by angles, bonds or
a combination of the two. These rather extreme examples
show the limiting scenarios, generated by performing a MM

simulation with parameter ratios of 0.01 and 100 Å
−2

rad−2

respectively.

bend, and elongated on the outside. In the bond length-
preserving regime, the angles are deformed in such a way
that the benzene rings on the inside are almost pushed
into rectangles, whereas the outer benzene rings stretch
out. According to the parameters obtained from molec-
ular mechanics on bulk graphene, latter scenario might
be more realistic.
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TIGHT BINDING ON GRAPHENE NANOSYS-
TEMS

Parametrization

The first issue to address is how to account for the
bending-induced distortions in the nanoribbon in tight-
binding. Obviously, assigning fixed parameters for the
nearest and next-nearest neigbour interaction integrals
cannot capture any electronic structure changes in bend-
ing. The parameters themselves should somehow be a
function of the interatomic separation.

Since the interaction parameter is related to the inter-
action integral between two p⊥-orbitals (explicitly so in
Hartree Fock and Density Functional Theory), it should
have a similar distance dependence as the actual inte-
gral. The same goes for the overlap integral. At large
distances, the values should for example approach zero.
A natural choice to model this function is to use the ex-
ponential decay[6][7]. An additional feature of such a
function is that it should also be able to give reasonable
values for the next- and second next-nearest neighbour
parameters. For his work on strained graphene sheets,
Pereira used the function

Hij = H0e
−κ
( rij

r0
−1
)

with κ = 3.37, an “interaction range parameter”[7]. In
stead of defining parameters for multiple neighbour dis-
tances, there are now only two parameters. Subsequent
work by Ribeiro et al. was performed to look at κ in more
detail. They carried out DFT calculations on strained
graphene sheets, where the strain was applied in multiple
directions, and tried to find the correct tight-binding pa-
rameters to replicate the distortions[8]. The interaction
parameter was then fitted to the exponentially decaying
function, giving a value of κ in the range 2.6−4 for multi-
ple directions. Although neither Pereira nor Ribeiro took
overlap into account, it is assumed here that the overlap
scales in the same way.

Sij = S0e
−κ
( rij

r0
−1
)

For S0 around 0.1, this appears to be in relatively good
agreement with one of the parameter sets used by Han-
cock et al.[9] and Kundu et al.[10]. The parameters were
first chosen to be in relatively good agreement with ear-
lier works, meaning for example that the value H0 should
not differ too much from −2.7 meV to −3.1 meV. Tuning
the parameters within this range was found to have only
minor effects on the DOS around the band gap, although
the antisymmetrizing effect of the overlap is accompanied
by a small increase in band gap. The effect in H0 is linear
in the band gap (the band gap is roughly H0/2) and the
interaction range parameter κ does not affect the band
gap too much.

Implementation

The tight-binding machinery as described in the pre-
vious chapter, has been implemented in a tight-binding
program, which was written in Mathematica. As input,
both a molecular geometry or a molecular dynamics file
containing geometry “frames” can be read. First the
program detects which atoms constitute a frame, distin-
guishes carbon atoms from hydrogen, finds and enforces
the molecular plane and centers the molecule at the ori-
gin. Then the program loops over all carbon atom pairs,
while assigning the correct values of H and S as a function
of distance. The orthogonal transformation is performed
to give H’, and the secular equations are solved by diag-
onalization of H’. The result is the matrix C’, which is
backtransformed to C, and E, the diagonal eigenenergy
matrix. A check ensures whether the secular equations
are indeed solved, by looking at the residual matrix HC-
SCE[11]. The program outputs the list of energy eigen-
values ~ε and writes the coefficient matrix to a file. The
clean geometry and energies are written to a file as well.

For molecular orbital visualization purposes, a minimal
single-Gaussian basis set is used. The orbital number i
and a grid size are requested, after which the program
calculates |φi(r)|2 over all grid positions r in 3D space.
The details of this process will be discussed in the sec-
tion on AFM/STM experiment simulations later in this
chapter. The values |φi(r)|2 can be written to a Gaus-
sian cube file, after which it can be imported into orbital
visualization programs, like Avogadro or Molekel.

Before carrying out a tight binding simulation,
a DFT calculation was performed on a hexamer
nanoribbon[12]1. The Perdew Becke Ernzerhof exchange
correlation functional (PBE) was used within the gen-
eralized gradient approach (GGA-PBE), and the basis
set was double zeta valence (DZV) set. A geometry op-
timization was performed in D2h symmetry, with the
molecule in the yz-plane.

DFT finds a band gap of 2.06 eV between a doubly
occupied state and a doubly unoccupied state. Halfway,
two almost degenerate states are found: the HOMO and
the LUMO. An orbital plot of the HOMO and LUMO
shows a symmetric and an antisymmetric state with re-
spect to the mirror plane halfway the ribbon, respec-
tively, localized on both sides of the nanoribbon. Obvi-
ously, these will never be visible in periodic calculations -
an infinite nanoribbon has no ends. All states belonging
to the π-system were extracted from the molecular or-
bital energy levels by choosing the levels with the correct
antisymmetry with respect to the yz-plane. These are the
Au, B1g, B2g and B3u irreducible representations respec-
tively. The resulting eigenenergies are broadened into
a pDOS (density of states spanned by the p⊥-orbitals).
The pDOS and the orbital plots of the “gap states” are
shown in figure . Notice that the gap states are not re-
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FIG. 3. The density of states and the frontier orbitals of a
hexamer nanoribbon, calculated with tight binding and den-
sity functional theory

n-mer 1 2 3 6 12
band gap (eV) 3.70 2.58 2.01 1.47 1.37

end state gap (eV) 0.876 0.203 0.059 0.002 ≈ 10−5

TABLE I. Energy gaps in graphene nanoribbons as a function
if length, calculated with tight binding

ferred to as HOMO and LUMO. The reason for doing so
is explained later.

Now a tight bindind calculation is carried out on the
same hexamer ribbon. It was found that the orbitals of
the states around the band gap are visually in extremely
good agreement with DFT. The same near-degenerate
symmetric and antisymmetric end-localized states are en-
countered, and the orbitals of the first states on either
side of the gap also compare very well. For this cal-
culation, the DOS was also generated by broadening the
energy levels, and a fair agreement was found to the DFT
pDOS. The tight binding parameters were now calibrated
with the DFT results by comparing the overlap of the two
plots of the DOS. The best agreement was obtained by
setting H0 = −2.95 eV, S0 = 0.085 and κ = 3.9. The
orbitals and DOS from both tight binding and DFT are
displayed in figure .

More tight binding calculations were performed on rib-
bons with different lengths. The band gap is defined as
the energy difference between the eigenstates on either

side of the energy gap, not counting the end-localized
states. Table I shows the band gap, as well as the energy
gap between the two end states, as function of length.
The band gap converges to a value around 1.3 eV as the
ribbon size increases. The gap between the end states
quickly becomes negligible. The Fermi-Dirac distribu-
tion tells us that if the energy difference of the gap states
is small compared to the thermal energy, they may well
both be singly occupied. In fact, this may actually be
favored by spin interaction, as is well-known from the
Aufbau principle (and for example high-spin inorganic
systems).

It was noted in the previous chapter that a pair of de-
generate eigenstates can be rotationally mixed to a new
pair of orthonormal eigenstates. Such a rotational trans-
formation makes sense when the theory that fails to ac-
count for effects that would benefit from such a mixing.
In the tight binding model, no explicit electron-electron
repulsion term was present (in fact, no two-electron ma-
trix at all). Assuming that the degeneracy of the end
states is good enough for ribbons of sufficient length, a
rotation by 45 degrees can be performed. The rotational
transformation then gives

|gap1〉′ =
1√
2

(|gap1〉+ |gap2〉)

|gap2〉′ =
1√
2

(|gap1〉 − |gap2〉)

It turns out that |gap1〉′ and |gap2〉′ are localized on one
side of the ribbon only (the left and right side respec-
tively). These states therefore leave the electrons on ei-
ther side of the ribbon - far away from each other, which
is favourable with respect to electron-electron interac-
tion.

The symmetric and antisymmetric combinations were
found in DFT calculations as well. However, this is

FIG. 4. Left: The 3rd, 4th and 5th lowest energy eigenfunc-
tions on a 3-mer AGNR, as calculated with the TB method.
The nodal patterns compare extremely well to the 3rd, 4th
and 5th lowest standing waves in a ”particle-in-a rectangular
2D box” model, as shown on the right
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an artefact of the applied symmetry - states localized
on either side of a nanoribbon simply are not symmet-
ric with respect to a reflection to the ribbon’s other
end. Upon performing the calculation with symmetry
turned off and a singlet ground state, physical sepa-
ration of the end states was achieved. In later tight
binding simulations on longer systems, the single end-
localized states were sometimes encountered automati-
cally. The energy difference is probably lower than the
numerical precision of the calculation, returning either
the symmetric and antisymmetric gap states or the end-
localized states. The presence of end-localized states on
the zigzag termini of nanoribbons is well established in
literature[13][14][15][16][17].

Figure 4 shows the 3rd, 4th and 5th eigenstate of
π-electrons on a graphene nanoribbon. Interestingly
enough, there is an extremely good comparison to the
3rd, 4th and 5th lowest standing waves in a ”particle-
in-a rectangular 2D box” model. This should come as
no surprise. Remember that the Bloch waves in the solid
state are u(r)eik·r, where the spatial component u(r) was
found to correspond to (a combination of) atomic or-
bitals. In the atomistic approach, the atomic ~χ orbitals
were put into the model (either explicitly or implicitly).
Now the expansion coefficients c should fulfill the role of
a standing waves across the molecule.

Benchmarking

To gain more confidence in the tight binding model, a
few calculations were performed to see whether the model
accurately describes well-known results from experiment
and theory. The focus has for the most part been on size
effects. These calculations are shown in this paragraph.

The smallest “graphene nanosystem” is arguably ben-
zene. A tight binding calculation yields six π states,
two pairs of which are degenerate. Upon extending the
nanosystem towards a graphene nanoflake, an increasing
amount of energy levels is obtained, and by broadening
them into a density of states, plot is obtained where a
“valley” is flanked by two peaks at the positions of the
degenerate states. If the system is increased sufficiently
enough, the valley turns out to get a linear shape, as seen
in figure 5. The appearance of the DOS quickly begins to
resemble the DOS of periodic graphene[8]. This suggests
that the finite tight-binding model extrapolates well to
periodic systems.

As explained in the previous chapter, the band gap en-
ergy for a parabolic dispersion material is inversely pro-
portional to its dimensions

∆E ∝ x−10

For an isotropic twodimensional material, the confine-
ment in a perpendicular direction must have the same

FIG. 5. The calculated density of states for a benzene
molecule, and a graphene nanoflake. Upon increasing the
system size, the density of states automatically obtains the
characteristic linear dispersion regime.

proportionality and

∆E ∝ A−1

where A is the area. Any fingerprint for a linear disper-
sion would then surely show up as a deviation in this pro-
portionality. Tight binding calculations were performed
As seen in figure 6, the power dependence was fitted from

FIG. 6. The band gap of nanoflakes as a function of their
area.
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the tight binding results as

∆E = cAn ⇒ d log ∆E

d logA
= n

It was found that the band gap scales roughly with the
square root of the area: n = 0.555. This result com-
pares well with scanning tunneling microscopy experi-
ments on graphene nanoflakes, showing the applicability
of the Klein-Gordon equation[18].

It was stated in the introduction that the electronic
structure of graphene nanoribbons is tightly linked to
its atomic structure. The width and “cutting direction”
have a large influence on the band gap. To appreci-
ate this effect, we should once again have a look at the
twodimensional dispersion relation of graphene. Quan-
tum confining graphene to one dimension means singling
out a single direction of the band structure, while dis-
cretizing the perpendicular direction. This creates a
discrete set of bands, that are mapped onto the one-
dimensional band structure[16][19]. Quantum confining
graphene into armchair edge nanoribbons often discards
all K- points in the discretization of the first Brillouin
zone, whereas the zigzag edge nanoribbons do maintain
the characteristic touching of the valence band and con-
ductance band. This peculiar result means that the
zigzag graphene nanoribbons are metallic, and armchair
nanoribbons can be either semiconducting or metallic.

In GNR, lateral confinement alters the electronic struc-
ture in a non-uniform way. The band gap of n atom-wide
ribbons exist in three families. The 3n and 3n+ 1 atom
ribbons have a finite band gap, that uniformly decreases
to zero as n becomes larger. But 3n + 2 atom wide rib-
bons have a vanishingly small band gap[20][16][21][13].
This result is not unique to tight binding calculations: it

FIG. 7. The density of states as obtained by TB calculations
on finite nanoribbons of various widths. The DOS is nonzero
at the Fermi level (which is set to -5 eV) in the N=5 and N=8
AGNRs, meaning that the band gap is zero or close to zero.
Furthermore, it is seen that the in-gap states do not exist on
N=6 AGNRs.

FIG. 8. The band gap of graphene nanoribbons as function of
width and length. For short ribbons, the extra longitudinal
confinement increases the band gap. As the length increases,
the band gaps quickly approach the periodic result.

has been reproduced with DFT as well[22][15]. They are
effectively metallic! This strange behaviour was repro-
duced in the calculations, as shown for example in the
density of states plots for ribbons of different widths in
figure 7. For the 5- and 8-atom wide GNR, the density
of states does not vanish in the middle of the band. In
addition, longitudinal confinement can increase the gap
even further, but it does so in a uniform way. A plot of
calculated band gap versus length and width is shown in
figure 8. The longitudinal confinement is lost relatively
quickly, and the pattern semiconducing - semiconducting
- metallic remains for the “quasi-infinite” case.

Simulating AFM and STM experiments

It was explained in the previous chapter how differen-
tial conductance mapping can generate images of molecu-
lar orbitals in real space, as long as a correct bias voltage
and oscillation voltage is chosen that singles out a state.
The tight-binding theory allows the molecular orbitals to
be calculated, and can therefore also provide a simulation
of STM experiments. After a calculation, the molecular
geometry is ammended with the eigenenergy matrix E
and the coefficient matrix C. These are the three ingredi-
ents to simulate the STM maps, using the Tersoff-Haman
approach[23][13].

Every wave function was described by an eigenvector
in C as ψi = ci · ~χ. As basis functions, the minimal
Gaussian basis set is again employed, with

χ(x, y, z) = Nz exp

(
−x

2 + y2 + z2

2σ2

)
with N a normalization factor and σ the orbital size. The
wave function is

ψi =
∑
j

cij

[
Nz exp

(
− z2

2σ2

)]
×

exp

(
− (x− xj)2 + (y − yj)2

2σ2

)
where the z-dependence can be split out of the Gaussian
by its cartesian separability. The summation runs over
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FIG. 9. STM simulations of nanoribbon eigenstates with a sharp metallic tip (s-type) and a carbon monoxide terminated tip
(p-type). Parameters: H0 = -2.8 eV, S0 = 0.2, κ = 3, σ = 0.8 nm.

all atomic orbitals j, and their corresponding zj-values
are 0 since the molecule lies in the xy plane. This means
that the resulting factor Nz exp(−z2/2σ2) can be taken

outside of the summation.

ψ =

[
Nz exp− z2

2σ2

]
×
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FIG. 10. An overview of characterizations on graphene nanoribbons, where the differential conductance maps have been
amended with predictions from theory. Experiments by van der Lit et al. [24]

∑
j

cij exp

(
− (x− xj)2 + (y − yj)2

2σ2

)
Now in order to calculate the orbitals, ψ(x, y, z0) is cal-
culated on a grid (x, y), where z0 is conveniently chosen
such that N2z20 = exp z20/σ

2. This choice renders the
z-dependent prefactor equal to 1, so that

ψ(x, y, z0) =

∑
j

cij exp

(
− (x− xj)2 + (y − yj)2

2σ2

)
The three-dimensional wave function is then constructed
by setting

ψ(x, y, z) = ψ(x, y, z0)

[
Nz exp− z2

2σ2

]
The electron density of this wave function is found by

ρ(x, y, z)i = |ψ(x, y, z)i|2 = ψ(x, y, z0)2×

[
N2z2 exp

(
− z

2

σ2

)]
The phase of the orbitals is respected by explicitly taking
the sign of ψ and z into account. Some constant height-
STM simulations for the individual eigenstates on a short
ribbon are shown in figure 9, where the height is simply
z0.

When tunneling proceeds through a p−orbital of the
carbon monoxide, the overlap is given by the maxi-
mum overlap of this antisymmetric wavefunction with the
molecular wavefunction, and as a consequence, effectively
probes the gradient of the orbitals on the molecules, as
shown by Gross et al.[25]

|MAB |2 ∝
(
∂ψ

∂x

)2

+

(
∂ψ

∂y

)2

This formula is used to calculate STM images for p-
terminated tips, again by first calculating

ψ(x, y, z0) =

∑
j

cij exp

(
− (x− xj)2 + (y − yj)2

2σ2

)
on a grid. Then the numerical derivatives with respect
to x and y are calculated, squared and added. The re-
sults are shown in figure 9. The predictions can already
be compared with earlier work. Figure 10 shows differ-
ential conductance map on the HOMO, end state and
another occupied state at -1 V. The measurements were
performed by van der Lit and coworkers, and the calcu-
lated STM maps have been produced by Ijäs et al.[24][13].
The calculated eigenstates seem to be in perfect agree-
ment with the theoretical and experimental results. The
orbital pattern at -1 V is no directly obtained as an eigen-
state, but it is explained as a superposition of multiple
valence band states with patterns like molecular orbital
80 and 81 in figure 9.

The AFM contrast in the repulsive regime mainly
comes from the Pauli repulsion, and as such it should
be rougly proportional to the total electron density[26].
Using the coefficient matrix C, we can now try to cal-
culate the electron density, and start to compare theory
with an AFM experiment.

Every wave function was described by an eigenvector
in C as ψi = ci · ~χ. As basis functions, the minimal
Gaussian basis set is again employed, with

χ(x, y, z) = Nz exp

(
−x

2 + y2 + z2

2σ2

)
with N a normalization factor and σ the orbital size. The
electron density of this wave function is found by

ρi = |ψ2
i | =

∑
j

cijχi

2
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FIG. 11. Left: A simulated AFM image, using the sum of
single electron densities in the pi-system only. Right: An
AFM image recorded with a passivating carbon monoxide tip.

where j runs over all occupied states. Again, χi is de-
composed using the cartesian separability of Gaussian
functions, so that only the in-plane contribution has to
be calculated. It is approximated that

ρtotal =
∑
i

ρi =
∑
i

∑
j

cijχi

2

ignoring any cross terms between different orbitals. So
basically, all orbital images of filled orbitals are superim-
posed to generate the total electron density. Going from
the twodimensional cross section to the threedimensional
plot is again just a matter of multiplying the cross sec-
tion with the height-dependent term. The resulting den-
sity cross sections are first-order models for AFM images.
Such a calculated AFM image is shown in figure 11, to-
gether with a constant height AFM experiment with car-
bon monoxide tip on a graphene nanoribbon, carried out
by Joost van der Lit[24]. Interestingly enough, although
all molecular orbitals seem to have quite random pat-
terns, they happen to add up to a total electron density
in the π system that perfectly shows the molecular struc-
ture. Better models can be generated from the electron
density by a few mathematical operations[27][28].
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COMBINING TIGHT BINDING AND MOLEC-
ULAR MECHANICS

Now we would like to see what happens to the band
gap when a nanoribbon is bent. To do this, a series of
nanoribbon geometries is prepared in various curvatures,
and the tight binding calculation is carried out with the
exponential parametrization of overlap and Hamiltonian
elements. As a first calculation, we decided to take a
hexamer nanoribbon and bend it to over 100 degrees.
For theses calculations, the following spring constant was

used erroneously: kb = 600 nN Å
−1

. According to tight
binding, the band gap increases slightly up to around
90 degrees, after which the band gap decreases again.
It seems that the HOMO on the ribbon overtakes the
HOMO-1, resulting in a change in the HOMO identity.
The result is backed up by DFT single-point calculations
on a few geometries in the series. The results are shown in
figure 14, where the vertical red arrows in the tight bind-
ing plot indicate the magnitude of the band gap at two
angle values. Even though the quantitative features differ
slightly for the methods, there seems to be an agreement
in the trend, and DFT also predicts a transition from
increasing to decreasing band gap. Although these opti-
mistic calculations give some confidence as both theories

FIG. 12. The calculated density of states for a straight and
bent graphene nanoribbon. Molecular mechanics parameter

ratio: 100 Å
−2

rad−2. Tight binding parameters: H0 = -2.8
eV. S0 = 0.15. κ = 3.

again seem to give similar results, the extreme curvatures
are not really attainable in experiments.

To obtain a better model of a nanoribbon, we deter-
mined to recreate a model of a nanoribbon that was ac-
tually bent in an STM experiment (this ribbon will again
be encountered in the next chapter). Starting from this
geometry, the ribbon was relaxed. The DOS was again
obtained by a Lorentzian expansion of the eigenenergies.
A geometry was prepared that emulated the experimen-
tal STM image of a bent nanoribbon. This required the
restraint of two atoms in the end and one in the mid-
dle. Since STS was also performed on this ribbon when
it was still straight, another geometry was made in which
all atoms were relaxed and the “digital ribbon” was al-
lowed to straighten out. This ribbon had a length of 28

FIG. 13. Influence of the molecular mechanics parameters on
the trend in the band gap versus curvature. MM parameter

ratios are 0.01, 1 and 100 Å
−2

rad−2, respectively.
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FIG. 14. The energy eigenvalues of a few frontier orbitals of graphene nanoribbons as a function of their bending angle, for
DFT and tight binding. The images are orbital plots of the HOMO and HOMO-1 from the tight binding calculations.

FIG. 15. An STM scan of a bent nanoribbon, with a model from molecular mechanics overlayed.

nm, much longer than what was looked at earlier.

First, let’s look at the density of states. The multitude
of eigenstate is seen to create a spectrum that looks much
more like the periodic result than the density of states
for the short ribbon in figure . Many “spikes”, or van
Hove-singularities can be observed in the DOS, reflecting
the quasi-onedimensionality of the system - see figure 12.
The calculated band gap of a graphene nanoribbon is of
the order of 1.5 eV. It turns out that this is a lot less
than the experimental band gap, measured with STS,
which is around 2.4 eV. Also, a peculiar result that was
seen earlier in STS was the fact that the conductance

band peak is always twice as high as the valence band
peak, but the theory suggests that there should be no
difference. Although we did not look into these effects,
we think that these might be due to the nanoribbon being
charged.

Now upon comparing the DOS between the curved rib-
bon and the straight ribbon - see for example figure 12
- no differences could be seen whatsoever! When com-
paring the band gap for a bent ribbon with respect to a
straight ribbon, an increase of only 3 meV could be seen
in the bent case on a total calculated gap of 1.4 V, a dif-
ference of hardly 0.2%! This is ascribed to the stiffness of
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FIG. 16. The nanoribbon orbitals are found to be anthracene orbitals modulated with one-dimensional standing wave envelopes.

the bonds in the molecular mechanics simulations. Using
the literature parameters, any curvature is almost com-
pletely directed by bond angle deformation, leaving the
nearest-neighbour distances almost unperturbed. The
most important contributions in the Hamiltonian matrix
are however nearest-neighbour interactions. The next-
nearest neighbour interactions do change considerably,
but the effect on the eigenenergies is of course much less
pronounced.

This appears to be in contradiction with the results
by Koskinen, who found a decrease in band gap upon
bending[5]. It turns out that the discrepancy arises
from the anharmonic spring constants that were used in
his calculations. These effectively elongate the average
carbon-carbon distance upon bending. The change in
band gap then turns out to be dictated mainly by the ef-
fective stretching in the same way as uniaxial stretching.

As a simple experiment, I decided to desert the bulk
graphene parameters and prepare the bent and straight
geometry again with stiff angles and weak bonds. Sur-
prisingly, when comparing the band gaps again, a slight
decrease was found in the bent case! So the mere act of
shifting the rigidness between bonds and angles in the
MM simulation has a large impact on the trend in the
band gap as a function of curvature! This is shown in fig-
ure 13, where a series of geometries was prepared based
on the long model ribbon before, ranging from completely
straight to the experimental curvature where the model
was based on. This was done for three molecular mechan-
ics parameter ratios: kb/kθ = 0.01, 1 and 100 Å

−2
rad−2,

respectively. Then for these sets of geometries the band
gap was calculated. Now the real power of tight binding
is experienced: althought there are 896 carbon atoms in
this ribbon, and therefore 802816 entries in the Hamil-
tonian and overlap matrices (almost 1 MB each in terms
of computer memory), the calculation for each conforma-
tion is completed within 5 seconds, completing an entire
band gap versus curvature graph in just over a minute.
The bottleneck is actually the molecular mechanics sim-
ulation. 4 lines are plotted, for different values of the
overlap S0, and interaction range parameter κ, showing
that these parameters do not really affect the trend as
much as the molecular mechanics.

Last, we determined to look at the orbitals again, and
found something that went completely unnoticed in cal-

culations on smaller ribbons. The HOMO-1 state was
found to be completely identical in nodal pattern to the
HOMO, except for an additional nodal plane in the mid-
dle of the nanoribbon, as shown in figure 16. The HOMO-
2 features an additional node, etc. The same was true
for the LUMO, LUMO+1, etc. Then when orbitals with
energies within the next peak in the DOS were mapped,
it was found that they had a completely different nodal
pattern, but again, the HOMO-1 had one more nodal
plane than the HOMO, and so forth. So each orbital pat-
tern casts a pseudoband of states with an integer number
of nodes. Effectively, this means that every state in a
band can be described as a one-dimensional particle-in-
a-box state. So every molecular state on the monomer -
antracene - creates a band of states of the form

|ψ〉 = |n〉|ψanthr〉

where |n〉 is the nth one-dimensional particle-in-a-box
state and |ψanthr〉 is the anthracene molecular orbital.
Of course, this must be the case, since the model must
somehow extrapolate to the Bloch waves in the periodic
case. The Hamiltonian can be split linearly as Ĥ = Ĥ0 +
Ĥlatt, where Ĥ0 is the constant potential Hamiltonian,
of which the particle-in-a-box waves are eigenfunctions,
and Ĥlatt is the lattice perturbation, to which - to a first
approximation - the anthracene molecular orbitals are
eigenfunctions. Then

Ĥ|ψ〉 =
(

Ĥ0 + Ĥlatt

)
|n〉|ψanthr〉

≈
(
c1
h̄2k2

2m
+ c2Eanthr

)
|ψ〉

where c1 and c2 are coupling terms. We know that
the quadratic dispersion for a one-dimensional system
gives a density of states proportional to E−1/2, so our
nanoribbon system will have a density of states charac-
terized with these peaked one-dimensional particle-in-a-
box states derived from anthracene orbitals with a certain
offset given by c2Eanthr and a certain band width (and
direction) given by c1.

We can use the standing wave envelopes to calculate
the local density of states on several points of the ribbon
semianalytically. After setting En = n2 and |ψn|2(x) =
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FIG. 17. Model calculation of the LDOS halfway and near
the end of a quasi-one-dimensional box.

sin2 nπx/x0, the LDOS was calculated in the usual way,
by Lorentzian broadening the substituent eigenenergies.
For x = 1

2x0, there are equal contributions from states
with odd n - since they have an antinode in the middle
- and no contributions from states with even n - since
they have a node in the middle. Closer to the end, the
differential conductance is blind to the low wave vector
states, since they have most density on the middle, but
really catch on for higher values as the wave spreads more
evenly over the nanoribbon. These scenarios are shown
in figure 17. These predictions are in excellent agreement
with experimental work on short, conjugated molecules.
It was found by Repp and coworkers that the band onset
in oligothiophenes (small, conjugated molecules) could
be described well with this particle-in-a-box theory[29].

If the tight-binding theory is appropriate for the de-
cription of nanoribbons, we should be able to find the
modulations in the band onsets by measuring the LDOS
at various points over the length of the nanoribbon. The
band onsets should be the sharpest on the middle of the
ribbon, and become flat when going further towards the
end. Additionally, the variations in the LDOS means
that we have to be careful with positioning the tip if we
want to extract proper values of valence band and con-
ductance band onset. In addition to the fact that varia-
tions in height offset can give variations in the broadening
through electronic coupling and possibly a nonnegligible
capacitative effect, the peak position is also dependent on
the position of the tip on the ribbon. Therefore, the VB
and CB onset values can best be obtained by positioning
the tip exactly halfway the ribbon, at the same feedback
setpoint every time. Of course, positioning the tip in
a node of a certain orbital makes it blind to the corre-
sponding pseudoband, so by positioning the tip carefully
on the armchair edge we want to counteract this as much
as possible. Here there is as little cancellation of orbitals
with different signs as possible with an s-type tip[30].

Now that we have a good understanding of the elec-
tronic structure of graphene nanoribbons and formulated
a theoretical framework, it is time to carry out the ex-
periments.
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J. Repp, Physical Review Letters 110, 136101 (2013).

47



48



 



We have performed electronic structure calcu-
lations on graphene nanoribbons to obtain a rea-
sonable hypothesis for the effects that we expect
to see in bending nanoribbons. It was shown how
scanning probe will be the work horse in manipu-
lation and characterization of graphene nanorib-
bons, and how it can be used to prove - or de-
bunk - the theoretical efforts. Now we are finally
in the position to bring everything together and
perform the experiments.

A multitude of experiments was carried out during this
research. During the course of the experiments, our un-
derstanding of the situation kept improving. The pro-
gressive understanding led to better theories and better
experiments, which eventually led to many useful results.

SCANNING

The GNR sample was prepared by sputter-
ing/annealing an Au(111) crystal twice, before de-
positing precursor molecules on the surface. The sample
was kept at a constant temperature of approximately
200 oC through resistive heating, while preheating the
precursor molecule evaporator resistively for 10 minutes
behind a shutter. Now the shutter was opened for
60 seconds. Afterwards, the sample was annealed at
approximately 400 oC for 10 minutes.

The sample is brought to the low temperature STM
(Omicron LT AFM/STM with qPlus tip). An overview
scan of the ribbons on the gold surface is shown in figure
3. Feedback settings vary, but they are all in-gap (50-
100 mV) with a feedback setpoint of around 5 to 50 pA.
In all scans, the Au(111) herringbone reconstruction is
easily identified[1]. A regional scan is shown in figure 4,
where a line profile shows the apparent height of the re-
constuction, nanoribbons and step edges. The fact that
the herringbone is unaffected by the presence of graphene
nanoribbons is strong evidence for weak electronic cou-
pling to the ribbon. Any coupling would surely perturb

FIG. 1. Measured and simulates frontier orbitals. The end
states are measured at 100 mV. The HOMO is measured at
-800 mV. Measurements are performed in STM feedback.

FIG. 2. A model of the nanoribbon bending scheme.

the weak surface energies associated with surface recon-
structions. We found that our synthesis did not succeed
in generating free ribbons, but all ribbons seem inter-
connected into networks. It is not known yet why free
ribbons were not obtained, but presumably the reaction
conditions were not ideal (maybe a too high/low syn-
thesis temperature). Nevertheless, the free ends of the
ribbons appear atomically defect-free.

We can be sure that the ribbon structures are actually
graphene nanoribbons. Although the apparent width is
influenced by the sharpness of the STM tip, we find it to
be just under 1.5 nm. Together with an apparent height
of 0.2 nm at in-gap bias voltage, this corresponds well
with literature[2][3]. Scans also reveals “cat-paw” like
structures at the termini of the ribbons, in agreement
with the expected end states[4][2][5][3]. The tip is condi-
tioned on the gold surface to give a relatively flat density
of states within the regions where the characteristic peaks
of the GNR DOS are expected. Then a GNR free end
is characterized in STS. An oscillation voltage of 20 mV
rms at a frequency of 2999 Hz is used, with an integra-
tion time of 50 ms per point. Most scans are made from
a tip position corresponding to a feedback setpoint of 800
pA at 2.0 V or, for the valence band spectra, 500 pA at
-0.5 V. As can be seen in figure 5, differential conduc-
tance spectroscopy with a clean metal tip (flat density
of states on the substrate) reveals a density of states on
the ribbon with a valence band onset at roughly -700 mV
and a conductance band onset of +1600 mV, in perfect
agreement with Ruffieux et al.[6].

We performed STM with an atomically sharp tip and
with a carbon monoxide tip. Scans are made at low
bias voltage (100 mV), and in resonance with the HOMO
(-800 mV). The results are compared to the calculated
STM images in figure 1. Although the images were mea-
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FIG. 3. A typical STM overview scan in a threedimensional representation, and with artificial lighting, giving an impression of
the relative corrugations of the nanoribbons, step edges and herringbone reconstruction. Recorded at 100 mV 20 pA feedback.

FIG. 4. A typical regional STM feedback scan. The inset is
the height profile of the white line trace. The trace crosses
the herringbone, nanoribbons and a step edge.

sured in feedback and calculated at constant height, this
does not make a significant differance for the nodal pat-
tern.

FIG. 5. A typical STS differential conductance spectrum
recorded on a graphene nanoribbon and the Au(111) surface.
The states between V = −0.5 V and V = 0.2 V are charac-
teristic of the Au(111). The states that are visible on either
side of the spectrum, in the nanoribbon only, define the onset
of the valence band and the conductance band.

BENDING

Bending is achieved using the following steps

• From an intermediate STM current feedback set-
point at 0.1 V of 1.0 nA, the feedback is discon-
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FIG. 6. An experiment, in which three ribbon ends were bent.

nected to go to constant height mode.

• The tip is lowered to the surface by 3 to 4 Å.

• The tip is moved slowly across the surface with a
speed of 5 to 10 nm/s. Note that when the feed-
back is disabled, the tip should still follow the gold
surface without crashing into it or losing its prox-
imity. For this reason, an empty gold terrace is
selected as the reference for defining a z-plane for
constant-height mode.

• The tip is retracted by approximately 1 nm and the
STM current feedback is reinitiated.

this scheme is shown in figure 2. Figure 6 shows an ex-
periment where this scheme was applied to three different
nanoribbon ends in close proximity.

FIG. 7. A: An experiment, in which bending (from A1 to
A2) was followed by pinning (A3). B: Scans on the ribbons
terminus before (B1) pinning, after a single pinning step (B2)
and after two pinning steps (B3). C: The molecular models
of the termini in their pinned and unpinned state, with C1
corresponding to B1, C2 to B2 and C3 to B3.

FIG. 8. A bent and pinned ribbon, which was severely dehy-
drogenated by a voltage pulse

To investigate the mechanism of manipulation, a few
attempts have been done to pull, rather than push a
graphene nanoribbon. This was performed by physically
approaching the tip adjacent to the ribbon end and mov-
ing it in the direction opposite of the nanoribbons. These
attempts have all been unsuccessful, indicating that it is
more likely that the actual mechanism is pushing. Fur-
ther evidence is given by the fact that a nanoribbon can
be bent further - by one nanoribbon width - than ex-
pected by a pulling mechanism.

The succes rate of nanoribbon bending depends on
the distance over which the ribbon is attempted to be
curved. For relatively small angles, bending is almost
always succesful. For larger angles, the nanoribbons pre-
sumably “whip back”. It turned out that nanoribbons
are most easily bent around defects, where the number
of C-C bonds is lower. This is for example the case in re-
gions where the ribbon is attached to another ribbon by
one or two covalent bonds. Well-defined nanoribbons are
somewhat stiffer, but they can still be bent easily with an
STM tip. Empirically, it was found that for defect-free
ribbons, the maximum obtainable curvature was around
2 o nm−1.

To achieve more control over the nanoribbons, the ma-
nipulation “toolbox” was amended with the contacting
method, or pinning, which was developed by Repp and
coworkers[7], and later applied to GNR by van der Lit et
al.[3]. In this method, a carbon-hydrogen bond is broken
by an inelastic tunneling proces, and a carbon-gold bond
is formed subsequently. To prepare for pinning, first a
zoom on the nanoribbon free end is made. The termi-
nus in the in-gap image most often happens to have the
resemblence of a cat’s paw, as can be seen in the figure
7:B2. The tip is positioned on the “middle finger”, and a
voltage pulse is applied. To controllably give the pulse, a
voltage sweep is set up to rapidly go to 3 to 4 V and back
again to the feedback voltage. While ramping the bias,
the current is recorded, and any jump in the spectrum
is an indication for a change. When imaging the “paw”
again, it is observed that the middle finger is lost and
the ribbon slightly lifts off from the surface on either side
(figure 7:B3). This is ascribed to breaking of the carbon-
hydrogen bond and formation of a covalent carbon-gold
bond (as in the model in figure 7:C3), with subsequent
geometric relaxation. Therefore, pinning is really spot-
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FIG. 9. A molecular model of a ribbon, where buckling starts to appear on the inside

welding of nanoribbons on the atomic scale! Sometimes,
a “blunt” nanoribbon end is encountered, as in figure
7:B1. Here, the initial voltage pulse turns the blunt end
into the cat paw. Presumably, the terminus has two hy-
drogens on top of each other, meaning that the middle
carbon atom is sp3 hybridized[4]. An example of bending,
followed by pinning is given in figure 7:A1-3. It should
be noted, that voltage pulse-induced dehydrogenation is
not specific for the terminus of a ribbon. In one case, tip
conditioning utilising voltage pulses of around 8 V was
performed too close to a previously bent ribbon. The re-
sult was a ribbon that was severely dehydrogenated and
attached to the gold at all these points (figure 8). The
fact that ribbons are found to chemically bind to the
substrate after STM-induced carbon-hydrogen bond dis-
sociation seems in good agreement with predictions by
Yuan et al.[8].

It was hypothesized that the elastic “whip-back” of
nanoribbons could be counteracted by firmly securing
them to the gold surface, using the pinning method. The
question that remained was how to get these ribbons into
place before applying the pulse in the first place. This
was resolved in the course of the experiment by giving an
additional ∆z-step (approximately 800 pm down coming
from a setpoint of 100 mV and 20 pA) in the manipula-
tion, crashing the tip into the surface and leaving behind
an atom or a small cluster of atoms. The cluster or atom
could be moved relatively easily over the surface. Ma-
nipulation was then performed by sweeping the cluster
against the nanoribbon and bending it. The humps of
atoms prevent whip-back, and the ribbon can be bent
further than previously.

FIG. 10. Three-dimensional plots of three STM feedback
scans of the experiment shown in figure 12.

BUCKLING

In this new range of obtainable ribbon curvatures, a
strange effect was found to occur. After sufficient bend-
ing, a hump started to appear around which the nanorib-
bon “buckles”. This hump increased in apparent height
to around 0.7 nm. This is explained as the ribbon start-
ing to lift off the substrate to slightly relieve the in-plane
stress. This results in a situation where the bending is
out-of-plane in stead of in-plane[9]. Figure 10 gives an
impression of the relative heights of the buckling point
with respect to the flat ribbon. These images are part
of the experiment shown in figure 12. Figure 9 displays a
model of a ribbon, where the threshold for buckling has
just been crossed.

In some early experiments a small “pivot point” was
sometimes used in addition to the anchor point (a simi-
lar atom or cluster of atoms). The nanoribbon was bent
around this and the pivot point appeared to grow in
size. Assuming that this hump was still due to the pivot
point, it was attempted a couple of times to wipe the
presumed cluster of atoms away. In one case, the buck-
ling point itself was shifted over the ribbon (see figure
11). In another case, where it was attempted to wipe the
supposed “atoms” over the ribbon, the ribbon actually
snapped in two pieces - see figure 13. We have man-
aged to break strong covalent bonds within a graphene
nanoribbon simpy by pushing against it with a biased tip
of an STM!

FIG. 11. An experiment, in which the buckling point was
moved over the ribbon. The circle indicates the initial position
of the buckling point. The arrow shows the manipulation.
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FIG. 12. An experiment, in which a ribbon was bent in two directions, and buckling was observed in either way. A: regional
scan. B: the ribbon in its initial state. C: Bent upwards. D: Bent further. E: Bent even further - buckling is observed. F:
Maximally buckled. G: Anchor point removed. H: Straightened. I: Straightened further. J: Bent downwards. K. Bent further
down - buckling is observed. L: Straightened again.
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FIG. 13. An experiment, in which excessive pushing against
the buckling point of a pinned ribbon resulted in its complete
destruction

In some experiments buckling was followed by pinning.
Then, the anchor point could be wiped away from next
to the ribbon with some minor effort, and the ribbon was
kept into place in a buckled way through its contact point
with the surface. Attempts to bend the ribbon back were
now unsuccesful, indicating that the ribbon is completely
locked into place by the pinning procedure.

The onset of buckling has been carefully resolved. As
seen in figure 14, the inside edge of a ribbon strained to
just below the buckling onset shows some extremely sub-
tle variation in observed height. This patern is only seen
in resonance with the valence band, but does not differ
for different bias voltages, indicating that this is a geo-
metric rather than electronic effect. Now an in-gap scan
was made at low bias (100 mV) and high feedback (3 nA)
and the tip was found to “bounce” up and down exactly
on these points. The tip itself remained stable. The ex-
planation is that the ribbon already starts to “ripple”
on the inside, partially releaving strain. The attraction
to the gold surface of the higher points is compromised
and its position is now determined by a trade-off between
surface attraction energy and partial strain relieve. At
high current feedback and low gap voltage, the tip may
approach closely enough to disturb this balance. The

FIG. 14. A ribbon that shows “rippling” on its inside edge.
All scans were recorded at a feedback setpoint of 3 nA.

FIG. 15. The “base pinned” ribbon experiment, where a rib-
bon was bent to a large bending angle while suppressing buck-
ling through pinning.

van der Waals attraction pulls the ripple slightly off the
surface, and as a result the tip starts bouncing on the
rippled inside.

In one experiment (seen in figure 12), a ribbon was bent
and buckled using the anchor point method. A bend-
ing angle of 100 degrees was obtained. Then, without
pinning, the anchor point was removed. Surprisingly, no
elastic whip-back was observed. This suggests that buck-
ling generates a partial relieve of stress. An attempt to
bend the ribbon back resulted in straightening of the rib-
bon, and no signs of damage were observed. Then the
ribbon was bent the other way, up to the point that buck-
ling started to appear again. Straightening for a second
time showed once more that the structure was not dam-
aged, indicating that buckling is a reversible geometric
feature.

We wanted to find a way to bend a nanoribbon to large
angles without having it buckle. We therefore devised
a procedure where buckling was inhibited by additional
pinning at the side of the ribbon. In the experiment of fig-
ure 15, a ribbon was found to be relatively free to rotate
around its attachment point to the nanoribbon network,
at the left side of its base. Initial bending attempts only
resulted in the rotation of the complete ribbon around
this point. To force bending in stead of rotating, the rib-
bon was contacted at a single point near the base. Now
bending was succesful. When buckling was observed, the
ribbon was slightly bent back, and the ribbon was pinned
at two more points near the bottom. Subsequently the
ribbon was bent to a more extreme angle, pinned down,
and the anchor point was removed. This also happened to
be one of the first experiments where electronic structure
characterizations have been performed. This experiment
will from now on be referred to as the “base pinned”
ribbon experiment.

In general, when performing STS both on buckling
points and on contact points, it was observed that peaks
in the spectrum were much sharper and much broader,
respectively. This makes sense, since the lifetime broad-
ening is determined by the coupling to the substrate. In
attached ribbons, this coupling is much larger, and in
protruding points, this coupling is smaller. Furthermore,
background tunneling is suppressed for larger values for
the tip height.
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ELECTRONIC STRUCTURE

Differential conductance mapping

Before analyzing the differential conductance spectra,
some work on differential conductance mapping will be
described here. Differential conductance maps have been
produced in constant-height mode for the base-pinned
ribbon (figure 16). Unfortunately, no clear orbital struc-
ture is seen, which is ascribed to the tip not begin atomi-
cally sharp. The two “bumps” on the left side of the rib-
bon that are indicated with lines arise from the Au(111)
herringbone reconstruction. It is clear from the inten-
sity that at −0.6 V and 1.7 V the tip really comes into
resonance with states on the ribbon. As will be shown
later, the spectrum showed a characteristic shoulder at -
0.6 V in the bent case, as opposed to a sharp onset at -0.7
V in the straight case. As far as the spatial differential
conductance is concerned, however, there is no clear dis-
tinction between −0.6 V and −0.7 V. On the other hand,
going to −0.8 V exposes a resonance with a new orbital
pattern. In line with the predictions from the previous
chapter, we expect this to be the onset of another band
with a new orbital pattern. In fact, a tight binding cal-
culation (using parameters H0 = −2.8 eV,S0 = 0.1 and
κ = 3) on a 27-mer (corresponding to the observed length
of 12 nm of the ribbon) yields an energy difference be-
tween HOMO and HOMO-1 of 40 meV, and subsequently
between HOMO-1 and HOMO-2 of 60 meV. According
to the model, the second band should start at 330 meV
below the HOMO level. This explains why the bias dif-
ferences in the experiment were too large to probe the
individual particle-in-a-box eigenstates.

We have the best shot at finding the individual states
for a short nanoribbon, since the number of states in
each band is then low, and the states have a relatively
large energy spacing. Therefore, we searched for a very
short ribbon, and a differential conductance map series
was initiated from -610 mV to -1170 mV in 10 mV in-

FIG. 16. Differential conductance maps on the base pinned
nanoribbon

FIG. 17. Differential conductance maps on a short nanorib-
bon, with 10 meV intervals (left to right, top to bottom; the
values denote the first bias values in each row).

tervals, with a oscillation amplitude of 5 mV rms. The
tip was not atomically sharp nor CO terminated, but
the fingerprints that are looked for are merely the nodal
planes in the longitudinal direction of the ribbon. How-
ever, as can be seen in figure 17, these states could still
not be resolved well. A tight-binding calculation was
performed on a model nanoribbon of the same length to
find the energy spacings between the eigenstates and cal-
culate the differential conductance maps. To simulate
the effect of tip-broadening, the calculated grid of values
for ψ(x, y, z0) was convolved with a Gaussian function of
width 5 Å, and ρ(x, y, z0) was also convolved with this

FIG. 18. Calculated wide s-tip differential conductance maps
for a 7-mer nanoribbon, with energy spacings between the
eigenstates. The maps on the right show (equal) superposi-
tions of successive states.
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FIG. 19. Determination of the bending angle.

function. The calculated eigenstates with corresponding
energy differentials are shown in figure 18. The measured
differential conductance maps in figure 17 do not really
correspond well with these predictions, although the ob-
served shift from towards a two-lobed orbital structure at
higher negative bias has some resemblance to the calcu-
lated superposition eigenstates on the right side of figure
18. This leads us to believe that the individual levels are
broadened to such an extent that, even with a short rib-
bon with relatively large energy spacings, the individual
levels can not be resolved.

This energy broadening of course has a lower limit by
the weak coupling to the gold, and might be increased
due to the tip being positioned in very close proximity for
the measurement. This last aspect is necessary to create
enough signal in the differential conductance for such a
small voltage oscillation. Another theory might be that
all eigenstates cast their own series of electron-phonon
peaks onto the energetic positions of other states, result-
ing in a convoluted spectrum where a multiple of eigen-
states contributes to the total signal. Electron-phonon
coupling was indeed briefly considered to be an impor-
tant factor in the experiments (some aspects of it are
described in appendix F), but no effort was made to de-
vise experiments that could really resolve the phononic
fine-structure, if any.

Data Analysis

We have also performed many scanning tunneling spec-
troscopy experiments. Peak-fitting of differential conduc-
tance spectra was performed using the peak-o-mat soft-
ware. It was found quickly that the Gaussian lineshape
fit the curves more properly than Lorentzian fits, so on-
lly Gaussians are used. These curves are related to an
ensemble of states, rather than individual states. The fit-

ting procedure was done by optimizing the least-squares
fit of a few Gaussian functions on top of a constant back-
ground for the negative bias region (-1.5 V to -0.5 V) and
for the positive bias region (1 to 2 V).

The bending angle of the GNRs was inferred straight-
forwardly from image analysis. Tangent lines to the rib-
bons left and right side were drawn from both termini.
The coordinates of the line ends and their intersection
were used to calculate the angle with the vector product
rule

cos θ =
a · b
||a||||b||

This construction is shown in figure 19. The angles found
for the left and right side were averaged. The curvature is
determined by dividing the total bending angle through
the ribbon length.

Care needs to be taken to keep the tip clean during the
experiments. Most manipulation steps are accompanied
with changes in the tip, and generally, this means that
the tip needs to be conditioned after manipulation before
it is clean enough for spectroscopy again. Tip position-
ing is crucial in the experiments - the distance determines
broadening and possibly capacitative coupling. Position-
ing on a nodal plane of a molecular orbital compromises
the ability to observe the corresponding energy level in
the recorded density of states. In addition, it was noted
that the presence of metal humps (for example, pivot
points) increases the number of peaks in the VB region,
obscuring fingerprints of the nanoribbon.

Scanning tunneling spectroscopy

Consider the base pinned ribbon experiment of figure
15, the spectra of which are shown in figure 20. Spectra
on gold showed that the tip had a flat density of states
at the regions where the valence band and conductance
band of the ribbon reside, both at the start and at the
end of the experiment. One striking feature is that the
onset in the bent case contains a small peak, whereas the
onset in the straight case is really sharp. The series of
peaks have shifted towards the Fermi energy.

The general structure of the peaks - a strong onset and
a decay towards higher values - can be understood as the
shape of a band of standing wave states. Surprisingly, the
bands contain some small regularly-spaced bumps. Fit-
ting with a four-Gaussian model gives a model with uni-
form widths and a uniform spacing of 90 meV. This led
us to believe that the peak-structure contained electron-
phonon peaks, corresponding to extra transport chan-
nels. Within this framework, the fact that the peak series
show an initial increase in the bent case would signify
a change towards a phonon-assisted tunneling regime.
These considerations are described in appendix F. Al-
though there may indeed be some phononic fine structure
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FIG. 20. Four-Gaussian fits to the valence band onsets of the STS spectra of the base pinned ribbon

hidden in the bands, later experiments showed that the
general shape of the bands can be described satisfactorily
with the tight binding model.

The rest of the experiments showed similar results. In
most cases, the band gap was found to decrease slightly.
Furthermore, in a couple of experiments, spectra were
recorded before and after pinning, and it appears as if
pinning slightly increased the band gap. The most no-
table case was an increase of exactly 100 mV in the
band gap of the dehydrogenated ribbon shown in figure
8. Since the experiments were carried out by combining
bending and pinning, this means that opposing effects
are induced. Pinning, although a nice effect from the
point of view of geometric manipulation, should there-
fore be avoided when trying to measure the effect of pure
bending.

Local density of states variations

To see whether the particle-in-a-box behaviour is
present in graphene nanoribbons, we looked at varia-
tions in the LDOS as a function of position on a straight
nanoribbon. We performed measurements on the 28 nm
long ribbon that was emulated for calculations in the
previous chapter. The results of these measurements are
shown in figure 21. The LDOS was recorded on three dif-
ferent spots - halfway, quarter way and at the end - and
at the same time calculated at these positions with tight
binding. Although the quantitative values are off (the ex-
perimental valence band onset is at higher negative bias),
the shape of the valence band onset is nicely reproduced.
At the ribbon terminus, the end state shows up and the

valence band onset is hardly visible anymore. These vari-
ations in the LDOS are in close agreement with the the-
ory and earlier work on particle-in-a-box states on similar
π-conjugated systems[10]. Now the second peak in the
valence band should be the onset of a new band of states,
derived from a different anthracene orbital. This is in
agreement with the differential conductance maps shown
before (figure 16), where this new band onset marks the
point where the contrast changed.

The ribbon was now bent without pinning, anchoring
or buckling. Differential conductance spectra halfway the
ribbon before and after the manipulation are displayed
in figure 27, where also the three-Gaussian fit models
are displayed, and the Au(111)-background spectrum to
show that the density of states of the tip does not inter-
fere with the observed ribbon DOS. The absolute value

FIG. 21. The local density of states on three positions on a
nanoribbon. Left: STS spectra. Right: simulated spectra.

58



FIG. 22. The shape of the valence band onset in a bent
nanoribbon. The sharpest peak, shifted most towards the
Fermi level, is seen halfway. Nearer the ends the intensity
decreases and shifts, and at the very end, no onset can be
identified anymore. Like the straight case, the variations in
the LDOS can be ascribed to the probing of one-dimensional
particle-in-a-box states with quadratic dispersion.

of the band gap was found to decrease.

Again, spectra were recorded over the length of the rib-
bon to find the particle-in-a-box behaviour. The varia-
tions in valence band onset sharpness and position match
perfectly with the standing wave theory, as seen in fig-
ure 22. Arguably, this is conclusive evidence that the
electronic structure of nanoribbons consists of standing
wave-envelope states, which remain unaltered in the bent
case. However, we do not know yet what the featureless
state at the conductance band onset in the differential
conductance at 1.6 V of figure 16. This state gives a
strong onset for the conductance band at the end, hiding
the slow onset predicted by theory, as seen in figure 23.

FIG. 23. A differential conductance spectrum on the end
of the 28 nm long nanoribbon (position indicated in inset),
showing the expected slow increase of the valence band and
an unexpected high LDOS at the conductance band side.

FIG. 24. An experiment, where STS was performed on point
A before and after bending.

Band gap variations

For the 28 nm long nanoribbon of figure 21 and 22,
we managed to push it into two slightly less curved con-
formations. Again, STS measurements were performed,
and although there was no monotonic trend, the band
gap was always lower in the bent conformation than ini-
tially in the straight situation.

This ribbon is one of the five ribbons on which
good quality spectroscopic measurements have been per-
formed. Figures 26 and 24 show two more experiments.
In the last experiment, the change was significant enough
to be noticable by eye in the full range spectra (that cover
both the valence and conductance band). The results
from peak fitting showed a decreasing band gap as a re-

FIG. 25. The experiment, where the change in the band gap
upon bending was positive.
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FIG. 26. One total experiment, in which STS was performed before and after manipulation. The curves could all be fitted,
and the band gap values for left and right are averaged to obtain the best estimate for the band gap. The error in the peak
fitting procedure turns out to be much less than the error left in the STS itself.
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FIG. 27. Fitted spectra to a nanoribbon both in its straight and bent conformation

sult of bending in 4 out of 5 cases. An exception of this
is the experiment the spectra in figure 25. This might
be due to the coupling to the nanoribbon network near
the halfway point. Indeed, in the experiment displayed
in figure 26 a similar situation is encountered, where the
coupling to an the proximity of parts of the graphene
nanoribbon network bring about humps in the differen-
tial conductance that are not otherwise expected. In that
experiment, fortunately, the change is further down the
occupied states, and the valence band onset can still al-
ways be identified and fitted properly.

In summary, we were finally able to find a small effect

FIG. 28. Measured absolute values of the valence band and
conductance band from all experiments that could be fitted
well.

in the band gap. Although the tight binding theory de-
scribes the electronic structure of graphene nanoribbons
really well, the trend in the band gap as predicted by
MM/TB does not correspond well, apart from the fact
that the band gap is indeed found to be relatively unre-
sponsive to changes in conformation.

There is a slight variation in valence band position and
conductance band position in different experiments. This
might be due to different chemical environments due to
different attachments to the nanoribbon network. Due to
these subtle variations, a trend does not show up nicely in
a graph of band gap versus curvature. Therefore, a plot is
made where percentage change is shown as a function of
curvature. The 0 % value at zero curvature is obtained by
extrapolating the data linearly. This representation for
the 5 experiments is shown in figure 29. It is seen quickly
that the band gap decreases in 4 out of 5 cases, but the

FIG. 29. The percentage change in band gap as a function
of curvature for the 5 experiments. The thick, dashed, black
line gives the average slope. The gray lines give the average
plus and minus the standard deviation.
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spread in the data is still quite large. Although the num-
ber of experiments is quite low to perform a statistical
analysis, we can obtain a value of the average percent-
age band gap decrease and standard deviation for these
5 experiments. This gives a band gap decrease with in-
creasing curvature of 1.5±1.5 % nm/o. These results are
also displayed in figure 29. Even though the standard de-
viation in these data is as large as the trend, the measure-
ments convinced us that the band gap is still decreasing
with increasing curvature, albeit extremely slightly.
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Conclusion and outlook

We have succesfully bent and characterized nanoribbons with a scanning tunneling microscope. We
managed to develop ribbon manipulation schemes that give a large amount of control over the ribbon
conformational geometry. The largest curvatures that were obtained by bending alone was approximately
2 o nm−1. We can also pin ribbons, and we can combine these tricks to bring ribbons in extremely strained
positions. While doing so, the buckling effect was discovered, which was resolved in detail. First the inside
of the ribbon becomes “rippled”, then it starts to lift up and stands on its side. Buckling is reversible and
was performed in both directions. Lack of “whip back” from the buckled geometry shows that there is a
partial strain relieve in having the curvature out-of-plane in stead of in-plane.

We find that the electronic structure of GNR can be described by a (nonperiodic) TB model. This
model was calibrated and benchmarked using existing theories and experiments on graphene and graphene
nanosystems. General features, like the appearance of GNR in AFM and STM show a good comparison.
Upon increasing the simulated ribbon length, the DOS approaches the peaked structure of 1D systems,
where every atom introduces a band, and the wave functions within each band can be described by the one-
dimensional particle-in-a-box model. The theory predicts a shallower onset of VB and CB near the ribbon
ends. These calculated features of the LDOS compare very well with differential conductance spectra,
indicating that the standing wave theory is satisfactory for ribbons in practice. By combining the tight
binding theory with a molecular mechanics model, some predictions for changes in the electronic structure
were formulated. Importantly, the band gap was calculated to remain almost unperturbed, only shifting up
with 0.2 % for a curvature of 2 o nm−1.

Upon bending, it is found in scanning tunneling spectroscopy that the band gap of a ribbon decreases
by a slight amount of 1.5 % nm/o. Although the spread in the data is large, a significant decrease was
observed in 4 out of 5 experiments. The discrepancy in the predicted trend of the band gap appears to be
due to the negligence of anharmonicity in the molecular mechanics model, which would result in an average
elongation of the ribbon upon bending. Nevertheless, this shift in the band gap is so small that we conclude
that nanoribbons seem to be electronically relatively robust against deformations. For electronics this might
often be a good thing, but this also means that conformational engineering is not a way to taylor electronic
properties.

If the electronic structure of graphene nanoribbons should be engineered, it would be better to apply a
larger perturbation to the lattice, for example by doping it or engineering the edges. As conformational
engineering appears to be slightly too mild to bring about significant changes, the next step would be to go
to structural engineering. Surely, future research in this direction will benefit from a combined theoretical
and practical approach like the approach in this research.

But the bending of nanoribbons still has a lot of interesting aspects that require further research. The
buckling effect is one of these. An in-plane molecular mechanics model can obviously not account for out-
of-plane distortions. Similarly, a tight binding calculation is difficult to implement for buckled nanoribbons
because of the fact that the wave function orthogonality is broken. Refined theories might elucidate inter-
esting new physics for these kinds of geometries. And maybe, the scanning probe engineering “toolbox” can
be extended so much in the future that ribbons (or other molecules) can be manipulated into knots and all
kinds of exotic shapes, some of which might even display more interesting new physics.
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Review of the project

I have worked for one and a half year on this re-
search - mostly at a part time basis, to be able to
follow classes - and it has been a thoroughly enjoy-
able time. One of the aspects of this research that I
particularly liked was the freedom that I got to de-
fine my own project - rather than choosing a project
from the shelve. I started with little knowledge on the
field of scanning probe microscopy and no knowledge
of graphene nanoribbons whatsoever. But I quickly
managed to turn this around and put both the mi-
croscope and the computer to good work.

Not only my understanding was improved, but also
my handling of (expensive) equipment. Subtle im-
provements in the handling of the scanning probe
microscope and related machinery were commonly
referred to in our group as Fingerspitzegefühl. It is
difficult to quantize how much Fingerspitzegefühl was
used or obtained in my time as a Master student in
the basement at CMI, but its importance should not
be underestimated.

When I started with reading literature on graphene
nanoribbons, I already knew some things about quan-
tum chemistry, but I became fascinated with the ex-
tent to which graphene and graphene nanostystems
have become a playground for theoreticians. Trans-
port properties, massless Fermions, spin coherence
length, half-integer quantum Hall effect, spin-orbit
coupling, ferromagnetism, pseudomagnetic field, re-
hybridization strain, Schottky rectification, gas sens-
ing and spin valves are some of the key concepts in
the vast world of physical phenomena that show up
in graphene and graphene nanosystems. I thought
that I could maybe put some theory in my research
as well, and began by performing some DFT calcula-
tions.

I grew tired with the “black-boxyness” of quan-
tum chemistry software and started to solve a simple
empirical, nearest-neighbour Hamiltonian matrix in
Mathematica. Knowing that this was a crude model,
I did not expect too much of my first calculation.
However, upon finding the band gap, gap states and
a near-perfect match between orbitals predicted with
this Hückel, or finite tight-binding model, and DFT, I

was pleasantly surprised. This was the starting point
of a trip into computational chemistry of nanosys-
tems, and upon improving the model (and my un-
derstanding of ab initio methods) I was able to per-
form calculations on quantum-confined systems like
nanoflakes and ribbons of various widths and relate
them to established results. At first I was skeptical
about my own model, but slowly I convinced myself
to believe it.

At this point I started to make plans on what mea-
surements to do on the STM - while cooperating
on projects on quantum dots and epitaxial graphene
to get used to operating the STM/AFM. I thought
that I would have a chance at predicting something
from my own model and backing it up if I could
bend nanoribbons in the microscope and model them.
There was absolutely no guarantee that this would
work and whether there would be any effect. So
I propose to do something on deformed ribbons -
something that might be achieved with STM. The
first step was making physically reliable models of
nanoribbons, which I took as an opportunity to get
some practice in Molecular Dynamics programming.
Then the tight binding model was used and predic-
tions on the band gap and level shifting were pro-
posed.

The measurements were performed in 4 sets, while
gradually increasing the Fingerspitzegefühl for STM
manipulation, tip conditioning and obtaining clear,
analysable differential conductance spectra. It was
quite rewarding to controllably manipulate nanorib-
bons and observe the change by rescanning. After
significant bending, we found the buckling effect -
something I had not even thought about before.

It took some time before differential conductance
spectra could be obtained clearly and reproducibly.
No clear, consistent trend in band gap was estab-
lished in the experiments, and level shifting was also
not clear. The structure of the best spectra puzzled
us at first, and we began brainstorming about what
we were actually seeing. Clearly it had nothing to do
with the - in retrospect rather naive - models that
were made in the beginning. Electron-vibron cou-
pling was a mechanism that was taken for granted in
establishing the peak structure of single states, but
the suggestion that various peaks in the spectra could
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be higher-energy mode phonon replicas was a thought
that I never considered and took some time to sink
in. It makes a huge difference with what ideas and
what mindset data is analysed (or re-analysed). At
the same time, I did my best to analyse in an unbi-
ased way.

In the end I can say that the calculations were in-
strumental in the understanding of what was going
on in ribbons. Even though the effect that we even-
tually found is not really ground breaking, the fact
that I was able to actually perform the difficult ex-
periments in the STM ánd relate it to theory was
very rewarding.
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APPENDIX A. ELECTRON TRANSPORT

Diffusive transport

Charge tansport through metals takes place through
all electrons, especially those near the Fermi energy.
Charge transport through (intrinsic) semiconductors
takes place through electrons promoted to the conduc-
tance band and holes remaining in the valence band. This
can happen by applying a bias voltage, or through ther-
malization.

Diffusive transport is described by Drude theory[1].
Electrons and holes travelling through a lattice may be
scattered through either phonons (distortions of the lat-
tice itself) or through impurities. Scattering mechanisms
act on a transient current by damping it in time

I(t) = I(0)e−ktott

Both processes have a characteristic scattering rate and
they combine to give a total scattering rate (ktot =
kph + kimp). The reciprocal of the scattering rate is the
characteristic scattering time τ . Although an electron in
an electric field is accelerated according to

v̇ =
F

m
=
eE

m

Drude assumed that scattered electrons start off with a
random velocity vector after each scattering event. Ef-
fectively, this makes the drift velocity - rather than the
acceleration - proportional to the field strength.

v(t) = vrand +
eEt

m
⇒ 〈v〉 =

eEτ

m

The mobility µ is defined as µ = eτ/m, so that it becomes
the proportionality constant between the drift velocity
and the field. For the general case, in which the electrons
and holes have differing mobilities, one can write

ve = µeE, vh = µhE

The current is related to the drift velocity through J =
ne 〈v〉 so that

J = e(neµe + nhµh)E = σE

with σ = e(neµe+nhµh) = ne2τ/m the conductivity. So
when a high conductivity is desired, one should increase
both the mobilities and carrier concentrations as much
as possible. The mobility is strongly dependent on the
concentration and nature of impurities in a solid.

The reciprocal of conductivity is the resistivity ρ.

J = σE ⇔ E = ρJ

For electric components with specific dimensions, it is
in general not feasible to analyze the electric field and

current density. The extrinsic form of the formula above
(called Ohm’s law) is then used, with conductance G or
resistance R.

I = GV ⇔ V = RI

Nonlinear (non-Ohmic) behaviour may arise in systems,
particularly under high bias conditions. In this case, the
conductance is a function of bias voltage

I = G(V )V

An important material property is the differential con-
ductance dI/dV , which is a key factor in characterization
of materials through scanning tunnelling spectroscopy
(STS). These parameters are particularly important in
ballistic transport, rather than diffusive transport, where
the Drude model breaks down.

Both the mobility and charge carrier concentration
are material specific. For narrow-gap semiconductors,
at non-zero temperatures, charge carriers are always
present, as thermal excitations may continuously pro-
mote electrons in the conductance band (leaving behind
holes in the valence band). Hence, the charge carrier oc-
cupation is not a single cut-off at the Fermi level, but fol-
lows Fermi-Dirac statistics arising from the steady state
thermal energy collection and dissipation by electrons.
The Fermi-Dirac (FD) distribution gives the chance to
find an electron at a certain energy

FD(E) =
1

1 + e(E−EF )/kT

The electron occupation is found by multiplying this
probability distribution by the density of states DOS(E)

N(E) = DOS(E)FD(E)

The density of states can be obtained by solving the SE
for the system. The total number of free charge carriers
in thermal equilibrium is then found by integrating over
the total number of holes in the conductance band and
the total number of electrons in the valence band

ne =

∫ ∞
EF

DOS(E)FD(E)dE

nh =

∫ EF

−∞
DOS(E)(1− FD(E))dE
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Diffusive conductivity of graphene

The Drude model can be used to write the conductance
in terms of the mobility

σ = nµe = (nhµh + neµe)e

where the subscripts h and e denote holes and electrons.
For intrinsic graphene nh = ne, and, to a good approxi-
mation µh = µe, so that σ ≈ 2neµe. The density of states
is approximately linear within a reasonable thermal re-
gion (26 meV at room temperature) from the Fermi level
(DOS(E−EF ) = cE, with c a proportionality constant),
and after setting EF = 0, one can write

σ = 2µec

∫ ∞
0

EdE

1 + e−E/(kT )

= 2µeck2T 2

∫ ∞
0

xdx

1 + e−x
= 2

cπ2k2µe

12
T 2 ∝ µeT 2

In this way, it is easily seen that the conductance is tem-
perature dependent, and vanishes for zero temperature.

Ballistic transport

By definition, a ballistic conductor is a conductor
whose length scale is smaller than the mean free path
of an electron, so that there is no such thing as drift ve-
locity. Näıvely one would be tempted to think that an
electron could then be accelerated indefinitely, and that
resistivity would drop to zero. This is not the case, and
interestingly enough, it is established that resistance for
the smallest metallic point contacts obtains a mysterious
value of around 26 kΩ. This value - the so-called conduc-
tance quantum G0 - happens to be dictated by the Pauli
exclusion principle.

A model for ballistic conduction is a twodimensional
transport channel between two leads in thermal equilib-
rium, with chemical potential µL and µR for the left
and right electrode respectively. These potentials are ob-
tained by applying a bias voltage, so that µL = EF+eV/2
and µL = EF − eV/2. The channel has length L and
width W , and has a constant potential which is set to
the reference value V = 0. The outside potential is set
to infinity, so that the eigenstates in the channel become
Bloch waves of the form

ψ(x, y) = sin
nπy

W
eikx, n ∈ N

(a detailed explanation why this happens to be the case is
given in the theory chapter). The energy of each wave is
found by solving the time-independent Schrödinger equa-
tion

Ĥψ =

(
V (x, y)− ~2

2m
∇2

)
ψ = Eψ

⇒ E =
n2h2

8mW 2
+

~2k2

2m

This means that, under the assumption of a homogeneous
potential, for every transverse wave profile - characterised
by n - there is a parabolic band in the dispersion relation
E(k).

Now since the chemical potential in the left lead is
higher than on the right lead, electrons want to travel
from left to right, and in doing so, they can occupy all
positive wave numbers k for which µR < E(k) < µL. Ev-
ery electron takes a time τ(k) = L/v(k) to cross from the
left lead to the right lead, and in doing so, it contributes
a current δI = e/τ = ev(k)/L. The total current is

I = 2
∑
k

δI(k) =
2e

L∆k

∫
v(k)dk

where the factor 2 accounts for spin and ∆k = 2π/L is
the spacing between wave numbers in the conductor in
reciprocal space. The integral over k is mapped onto an
energy integral, for which we know the boundaries to be
µl and µR

I =
2eL

2πL

∫
v(k)

(
dE

dk

)−1
dE

and using dE/dk = ~v(k), the expression evaluates to

I =
e

π~
(µR − µL) =

2e2

h
V

G0 =
dI

dV
=

2e2

h
≈ (26 kΩ)−1

The crux is that every electron with its own wave vector
occupies the conduction channel, and in doing so, blocks
the channel for other candidates with the same value of
k because of the Pauli principle. This explains how the
conductance quantum dictates the maximum achievable
current in ballistic conduction per transport channel.
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APPENDIX B. PRINCIPLES OF QUANTUM
PHYSICS

Time-separability

The general electronic SE for a single electron in a
potential energy landscape is written as

Ĥψ =

(
V (r, t)− ~2∇2

2m

)
ψ = i~

∂ψ

∂t

If the Hamiltonian is time-independent, it can do no
work, and its operation on an eigenstate yields the
eigenenergy of that state.

Ĥ(r)ψ = Enψ

with n a quantum number or a set of quantum numbers
describing the specific state. As long as the Hamiltonian
is Hermitian, the set of eigenfunctions of Ĥ is orthogonal
and its span is defined as the Hilbert space. We will look
at time-independent Hamiltonians. In general, a wave
function is separable in a space-dependent term and a
time-evolving term.

ψ = T (t)ψ(r)

i~
∂ψ

∂t
= i~ψ(r)

∂T (t)

∂t
= T (t)Ĥ(r)ψ(r)

⇒ T (t) = e−iĤt/~

By absorbing the time-independent Hamiltonian, T be-
comes an operator. Its operation on ψ(r) yields the full
wave function, because if ψ(r) is an eigenfunction of Ĥ,
then

ψ = T (t)ψ(r) = e−iĤt/~ψ(r) = ψ(r)e−iωt

with ω = E/~. As long as the Hamiltonian is time-
independent, we can solve the SE in two steps:

Ĥ(r)ψ(r) = Enψ(r)

T (t)ψ(r) = ψ(r)e−iωt = ψ

It is noted, that for eigenstates, the operation by T comes
down to the multiplication with a time-dependent phase
factor e−iωt.

Plane and standing electron waves

An electron in a large region with constant poten-
tial V is described by the following form of the time-
independent SE and the following solution

∇2ψ(r) = −2me(E − V )

~2
ψ(r) = −k2ψ(r)

ψ(r) = c1e
ik·r + c2e

−ik·r

with c1 and c2 constants and k2 = k2x+k2y+k2z the squared
magnitude of the wavevector k. The eigenenergy of this
wave is quadratic in the wave vector

E = V +
~2k2

2m

a result known as quadratic dispersion. We will consider
the ”right-going wave” solution c1 = c and c2 = 0. c
itself is a constant that may contain an initial phase if
appropriate

c = c′eiφ0 , c′, φ0 ∈ <

The time-dependant wavefunction is obtained by simply
multiplying this result with the time-evolution factor

ψ = cei(k·r−ωt)

It will prove useful to point out that this plane wave is
an eigenfunction of differential operators with respect to
time and space, with the following eigenvalues

∇ψ = ikψ, ∇2ψ = −k2ψ

∂

∂t
ψ = −iωψ, ∂2

∂t2
ψ = −ω2ψ

Also, the electron wave has (directional) momentum p =
~k. The velocity of the electron is the group velocity of
the wave.

vx =
∂ω

∂kx
=

1

~
∂E

∂kx
⇒ v(k) =

1

~
∇kE

The case of an electron whose energy is lower than the
background potential is important. From now on, the
explicit space dependence is dropped.

∇2ψ = −2me(E − V )

~2
ψ = k′2ψ

where the negative wavevector constant k2 is replaced by
the positive constant k′2 = −k2. Solutions are exponen-
tials, rather than waves

ψ = c1e
k′·r + c2e

−k′·r

The nearly-free electron model

In the nearly-free electron model, the constant poten-
tial background V of the free-electron model is replaced
by a perturbed potential V (r) that varies across the unit
cell. It is set up by the nuclei, which are periodic in the
lattice, so V must also respect this periodicity, so that

V (r + T) = V (r) ∀ T ∈ {T}

68



⇒ V (r) =
∑
Q

VQe
−iQ·r

The Bloch criterion states that plane electron waves in a
non-constant potential also have a localized spatial part,
which is periodic with the lattice

ψ = u(r)ei(k·r−ωt), u(r + T) = u(r) ∀ T ∈ {T}

⇒ u(r) =
∑
Q

uQe
−iQ·r

The Bloch waves themselves, as defined by the wave vec-
tor k within the Brillouin zone, are mixed linearly to
arrive at energy minimization. This method is known as
the variation principle, and it will come back more often.
So every electron is described by a Fourier expansion

ψ(r) =

∫
ψ(k)eik·r

∑
Q

uQe
−iQ·rdr

The time-independent SE becomes∑
Q

VQe
−iQ·r − ~2∇2

2m

∫ eik·r
∑
Q′

u′Qe
−iQ′·rdr

=

∫ ∑
Q

VQe
−i(k−Q)·rdr

+

∫
~2(k−Q′)2

2m

∑
Q′

u′Qe
i(k−Q′)·rdr

= E

∫ ∑
Q′

uQ′ei(k−Q
′)·rdr

⇒

E − ~2(k−Q′)2

2m

∑
Q′

u′Qe
i(k−Q′)·r

After plugging all expansions into the SE, it is effectively
solved in k-space to give a set of coupled equations.(

Ei −
~2k2

2me

)
ψ(k) =

∑
Q

VQψ(k−Q)

These equations are the central equations. When a dis-
crete set of wave vectors {k} in the first Brillouin zone is
chosen, one arrives at a set of equations, that can be cast
in matrix form. They become then the periodic variant
of the secular equations.

The relativistic Klein-Gordon free-electron model

The extrapolation of the SE to make it relativistically
correct is quite straightforward, but might not always be
easy in its use. The kinetic energy operator in the SE

T =
p2

2me
⇒ T̂ψ = − ~2

2me
∇2ψ

is replaced by the relativistic kinetic energy operator

T =
√

(pc)2 + (mec2)2

⇒ T̂ψ =
√
−~2c2∇2 + (mec2)2ψ

Upon ignoring the potential energy, the kinetic energy
becomes the total energy, so that the time-dependent SE
becomes √

−~2c2∇2 + (mec2)2ψ = i~
∂

∂t
ψ

Now the procedure is to take the square of both operators

(−~2c2∇2 + (mec
2)2)ψ = −~2 ∂

2ψ

∂t2

Upon rearranging terms, this is an inhomogeneous wave
equation

(� + µ2)ψ = 0

with

� =
1

c2
∂2ψ

∂t2
−∇2, µ =

mec

~

Substituting ψ = cei(k·r−ωt) gives

(� + µ2)ψ =

(
−ω

2

c2
+ k2 + µ2

)
ψ = 0

which is solved for
ω

c
= ±

√
k2 + µ2

E(k) = ±µ~c

√
1 +

k2

µ2

where the negative frequency solution is discarded. Now
when the square root is expanded (

√
1 + x ≈ 1 + x

2 ), we
retrieve the relativistic rest mass and the free electron
dispersion.

E(k) = µ~c
(

1 +
k2

2µ2

)
= mc2 +

~2k2

2m

However, in the limit that the mass goes to zero, we have

E(k) = lim
µ→0

~c
√
k2 + µ2 = ±~c|k|

So once the problem of graphene is treated as a rela-
tivistic free electron gas, it is indeed possible to arrive at
linear dispersion - in addition to parabolic dispersion.
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APPENDIX C. LINEARITY OF THE
GRAPHENE DISPERSION RELATION

Within the tight-binding model, the dispersion relation
of graphene is

E±(k) = ∓
β
√
f(k)

1∓ s
√
f(k)

with

f(k) = 3 + 2 cosk ·T1 + 2 cosk ·T2

+2 cosk · (T2 −T1)

The points K in reciprocal space are defined as the six
points where the two bands touch (at the Fermi level).
In terms of the reciprocal lattice vectors defined before,
one of these points is at kK = (Q1 −Q2)/3. The inner
product of this K-point vector with the lattice vectors is

kK ·T1 =
Q1 ·T1

3
− Q2 ·T1

3
=

2π

3
− 0

kK ·T2 = 0− 2π

3

kK · (T2 −T1) = kK ·T2 − kK ·T1 = −4π

3

We want to expand around the K-point. For small
values of E (close to the Fermi level), so small values of
f(k), 1+s

√
f(k) ≈ 1 so that E ≈ ±β

√
f(k). We choose

k close to kK : k = kK + δk, with δk close to zero. The
vector products become

k ·T1 = δk ·T1 +
2π

3
= θ1 +

2π

3

k ·T2 = θ2 −
2π

3

k · (T2 −T1) = θ2 − θ1 −
4π

3

with

θi = δk ·Ti =

√
3

2
r0

(√
3δkx ± δky

)
Now

f(k) = 3 + 2 cos

(
θ1 +

2π

3

)
+ 2 cos

(
θ2 −

2π

3

)

+2 cos

(
θ2 − θ1 −

4π

3

)

For small values of θ, the harmonic functions can be ex-
panded

2 cos

(
θ − 2π

3

)
=
√

3 sin θ − cos θ ≈ θ2

2
+
√

3 θ − 1

2 cos

(
θ +

2π

3

)
= −
√

3 sin θ − cos θ ≈ θ2

2
−
√

3 θ − 1

After substituting these results into f , together with the
identity cos(θ − 4π/3) = cos(θ + 2π/3), all constant and
linear terms vanish

f(k) = 3 +

(
θ21
2

+
√

3 θ1 − 1

)
+

(
θ22
2
−
√

3 θ2 − 1

)

+

(
(θ2 − θ1)2

2
+
√

3 (θ2 − θ1)− 1

)

= θ21 + θ22 − θ1θ2

Calculating the squares gives

f(k) =
9

4

(
δk2x + δk2x

)
so

E(k) ≈ ±β
√
f(k) = ±3

2
β
√
δk2x + δk2x

f has the formula of a circular paraboloid. The square
root of f is a circular cone, so E is conical around the
Fermi wave vector.
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APPENDIX D. THE DRIVEN DAMPED HAR-
MONIC OSCILLATOR

In a quadratic potential, a mass m on a spring with
stiffness k will experience a restoring force F = mẍ =
−kx as a result of a deflection, causing the mass to os-
cillate. Aditionally, there will always be some damping
present, which is proportional to the velocity of the mass
(with constant c). The equation of motion is

ẍ +
c

m
ẋ + ω2

0x = 0 = ẍ + 2ζω0ẋ + ω2
0x

with ω0 =
√
k0/m and ζ = c/(2

√
mk). The solutions are

found by substituting the exponential Ansatz x = x0e
rt

(r2 + 2ζω0r + ω2
0)x0e

rt = 0

⇒ r = ω0(−ζ ± i
√

1− ζ2) = −ω0ζ ± iω1

ω0ζ represents the amplitude decay rate and ω1 =
ω0

√
1− ζ2 the new eigenfrequency, which is slightly di-

minished from the undamped case. 1/ζω0 is the time
after which the oscillation amplitude decays to e−1 of its
original value and 2π/ζ is the associated number of oscil-
lations. The functional solution to the damped oscillator
problem is

xT (t) = x0e
(±iω1−ζω0)t

The subscript T denotes that this solution is transient.
The damping rate is related to the quality factor as

Q =
1

2ζ

The Q-factor is proportional to the number of oscillations
before a certain amplitude decay is achieved.

An AFM-tip is dynamically driven. Consider an ex-
ternal harmonic force Fde

iωt parallel to x with a driving
frequency ω (without subscript). The new equation of
motion becomes

ẍ + 2ζω0ẋ + ω2
0x =

Fd
m
eiωt

The transient term is again the solution to the homoge-
neous equation, as derived above, but the steady state
response of the oscillator has the same frequency as the
driving force and is undamped. This is the term that
eventually remains.

x = x0e
iωt

⇒ (−ω2 + 2ζω0ωi+ ω2
0)x0e

iωt =
Fd
m
eiωt

This is harmonic oscillation with a complex amplitude of

x0 =
Fd

m(2ζω0ωi+ ω2
0 − ω2)

This variable is readily decomposed into a amplitude
magnitude and a phase

|x0| =
|Fd|

m
√

(2ωω0ζ)2 + (ω2 − ω2
0)2

argx0 = arctan
2ωω0ζ

ω2 − ω2
0

The maximum amplitude response is achieved by driv-
ing the oscillator at its eigenfrequency (ω = ω0). When
this condition is satisfied, the oscillator position lags the
driving force by a phase shift of π/2.

|x0|max = |x0|ω=ω1
=
|Fd|

2mω2
0ζ

argx0(ω = ω0) =
π

2
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APPENDIX E. MECHANISM OF GRAPHENE
NANORIBBON SYNTHESIS

It is interesting to look a little bit into the chemistry
of nanoribbons as they are prepared in ultrahigh vacuum
following the method of Cai and coworkers[2]. UHV sur-
face synthesis is really different kind of chemistry than
the more usual “wet” synthetic chemistry, but also obeys
some simple kinetic and thermodynamic principles that
can be understood very well. Grasping the important
points in the formation is important for the optimization
of the growth process and for the design of new synthetic
routes towards similar compounds.

Intuitively, one can single out the following steps in the
reaction mechanism:

• 10,10’-dibromo-9,9’-bianthryl (DBBA) molecules
are evaporated onto the surface. As long as the
temperature is high enough, they will constantly
diffuse over the surface.

• The molecules remain unreactive, until the carbon-
bromine bond is thermally broken. This heterolytic
reaction results in a free precursor radical and a
bromine radical. When bromine radicals encounter
precursor radicals, they are likely to recombine.
This would mean that there is an equilibrium be-
tween radicals and intact molecules.

• The precursors will diffuse over the surface, the dy-
namics of which are governed by the energetic bar-
riers of moving from one site to the next[3].

• When bromine radical encounter each other, they
will form Br2. When precursor radicals en-
counter each other, they will terminate by dimer-
ization. This dimerization is an Ullmann coupling
reaction[4]. Initiation can again proceed thermally
in the dimer to allow the polymerization to propa-
gate.

• Br2 will very easily detach from the surface at the
synthesis temperature, effectively driving the equi-
librium mentioned before towards radical forma-
tion. Its desorption temperature was found to be
about 240 o C[5].

• Of course, the remaining bromine atoms can also
detach from the dimer, and the same steps as men-
tioned above will result in the formation of a trimer,
and higher polymers.

• After the polymerization, the temperature is in-
creased and the cyclodehydrogenation step can
commence. Cyclodehydrogenation discards of hy-
drogen atoms in the longitudinal direction of the
ribbon while forming carbon-carbon bonds between
adjacent monomer units. The resulting ribbon is

planar, as opposed to the eclipsed DBBA monomer.
It is pulled down to the surface by its interaction
with the gold, and in doing so, facilitates the dehy-
rogenation at the next site[6].

• The hydrogen atoms that are released on the sur-
face in the cyclodehydrogenation can recombine at
the nanoribbon radical end. Such a recombination
event effectively terminates nanoribbon growth al-
together.

The different mechanistic steps have been treated
experimentally[5] and in computer models, and much in-
sight has come from calculations[3][6]. The dimer forma-
tion can be seen as nucleation, and one can claim that
key to the formation of long polymers is to suppress the
rate of this step with respect to the polymerization rate.
But the optimization of nanoribbon formation - finding
the best synthetic parameters to grow long, free nanorib-
bons - is still research that needs to be carried out.
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APPENDIX F. ELECTRON-VIBRON COU-
PLING

In general, electron-phonon coupling or electron-vibron
coupling plays an important role in transport of electrons
through molecules. If electrons can couple to a single
molecular normal mode upon being transported through
the double-barrier junction, then the conductivity can
increase with a certain factor each time the bias window
is increased by an amount ~ω, where ω is the normal
mode frequency.

Electron-phonon and electron-vibron coupling arise in
electronic transistions as well as charging transitions,
since the geometric ground state of the initial and final
electronic situation is different. The addition of an elec-
tron to a nanoribbon will on average cause the carbon-
carbon equilibrium bond distances to change due to the
new electronic potential that the nuclei reside in. The
probability of a so-called vibronic (vibrational electronic)
transition is given by the Franck-Condon factor: the over-
lap of the nuclear ground state wave function in the elec-
tronic ground state with the nuclear nth excited state
wave function of the charged state. So if the bias win-
dow is such that the electron can only enter the nuclear
ground state of the charged state, it can do so with the
Franck-Condon factor F00. If the bias window is opened
further by ~ω, there is an additional tunneling pathway
with probability proportional to F01. In the differential
conductance spectrum, therefore, all these vibronic path-
ways give rise to vibronic peaks, spaced by ~ω. Since the
spacing between the last peaks presented in the previous
experiment set was so uniform, phonon replicas seems in-
tuitively a fair explanation for the observed effects. How-
ever, it is difficult to rationalize which modes play a role
in graphene nanoribbons. Also, as molecular systems be-
come larger, multiple vibrons that may contribute to the
differential conductance condense together into a contin-
uous phononic density of states.

Classically, the forces in the nanoribbon framework can
be approximated with a molecular mechanics method,
where a spring exists between all atoms. Consider an
atom with mass m, connected by stretched springs with
constant k to its neighbours. The force on and resultant
acceleration of the mass is

F = k
∑
i

(ri − r), r̈ = ω2
∑
i

(ri − r)

with ω2 = k/m and where i runs over all nearest neigh-
bours. Eigenmodes are vibrations for which all atoms un-
dergo harmonic oscillation with the same eigenfrequency
ω0, so that

r̈ = r0
∂2

∂t
e−iω0t = −ω2

0 r

Therefore

ω2
0 r + ω2

∑
i

(ri − r) = 0

This last equation can be written in matrix form for all
atoms as

ω2
0



...
rnn1
r

rnn2
...

+ H



...
rnn1
r

rnn2
...

 = 0

with H the off-diagonal matrix coupling the displace-
ments of the nearest neighbours.

H =



. . .
...

...
...

· · · 0 ω2 0 · · ·
· · · ω2 0 ω2 · · ·
· · · 0 ω2 0 · · ·

...
...

...
. . .


This set of equations can be solved by writing

(
H + ω2

0 I
)


...
rnn1
r

rnn2
...

 = 0

which is exactly the same matrix eigendecomposition as
in the tight-binding problems. Since H only contains
nearest neighbour elements, the set of squared eigenfre-
quencies ω2

0 corresponds very well to the eigenenergies of
the tight-binding problem, which will be calculated in the
next chapter. Although this is a really crude model of the
phononic structure of GNR, it can be expected that the
phononic DOS has some characteristics of the electronic
DOS. Indeed, this is seen to be the case in graphene[7]. A
harmonic nearest-neighbour model was used for graphene
nanoribbons in work by Sanders et al., showing that
the lowest eigenfrequency modes in the 7-AGNR phonon
DOS are radial breathing-like modes[8][9]. He went on to
show that electrons can couple to this oscillation. There-
fore, it can be expected that the electronic structure of
nanoribbons, as measured with scanning tunneling spec-
troscopy, may contain characteristic phonon peaks.
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APPENDIX G. ATOMIC FORCE MICROSCOPY

FIG. 1. A qPlus AFM/STM cantilever. A: tip. B: cantilever.

Atomic force microscopy (AFM) - like STM - uses a
very small, sharp tip to image surfaces with possible
atomic resolution. The difference is that in AFM - rather
than the tunneling current - the mechanical response of
the tip cantilever due to interaction forces with the sub-
strate is measured. In the earliest (contact mode) AFM
experiments, a tip was physically dragged across a sur-
face, and the cantilever deflection could be recorded with
great precision[10]. Later, non-contact techniques were
developed.

The particular AFM method used in this research
is non-contact frequency modulated AFM (nc FM-
AFM)[11]. This technique involves setting up an oscilla-
tion in the tip at its resonance frequency. The oscillation
is initially harmonic, meaning that the restoring force
is linear with the cantilever displacement. However, in
proximity with the surface, interactions give additional
forces on the AFM tip, either adding to the restoring
force or diminishing it. This results in a shift in reso-
nance frequency (∆f).

The most important forces on the AFM tip are

• van der Waals attraction: This is an attractive force
close to the surface, which lowers the resonance fre-

FIG. 2. Measured response curves (amplitude and phase
shift) for a qPlus tip in a frequency sweep.

quency of the tip

• Pauli repulsion: This is a repulsive force at much
shorter range than the vdW force. The combined
effect of vdW attraction and Pauli repulsion is the
Lennard-Jones potential

• In some cases, electrostatic or magnetostatic effects
may come into play[12][13].

The AFM tip can be thought of as an driven harmonic
oscillator, the dynamics of which are shown in appendix
D and figure 2. The van der Waals and Pauli forces can
be added as additional spring constants in the oscilla-
tor model, as long as they are approximately linear with
displacement.

k = k0 + kvdW + kPauli

ω = ωeff (1− ζ2) =

√
k0 + kvdW + kP

m
(1− ζ2)

The qPlus sensor is a specific AFM cantilever design (fig-
ure 1) allowing for an oscillation with extremely small
amplitude - of the order of tens of pm. This makes the
qPlus sensor suited for AFM measurements on organic
and aromatic systems with atomic precision[14][? ][15].
The quality factor - a measure for the sharpness of the
resonance peak - can be as high as 200000, so that the
damping factor ζ is negligible[16]. The fractional change
in resonance frequency is

∆ω

ω0
= (ωeff − ω0)ω−10

≈

(√
k0 + kvdW + kP

m
−
√
k0
m

)√
m

k0

=

√
k0 + kvdW + kP

k0
− 1 =

√
1 +

kvdW + kP
k0

− 1

Expanding the square root up to first order then gives

∆f

f0
=

∆ω

ω0
≈ kvdW + kP

2k0

The effective spring constant model is justified for the
qPlus, but in general this model breaks down as a re-
sult of significant nonlinearity in the forces over the os-
cillation amplitude[17]. For larger oscillation amplitudes,
the resonance frequency shift is found by integrating the
interaction forces over the complete distance that the
tip travels in an oscillation[18]. Since for large oscilla-
tion amplitudes the cycle averaged force constant only
contains small contributions from the repulsive and at-
tractive regimes, the imaging capability is compromised.
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For atomic resolution the use of the qPlus force sensor is
preferred[17][16].

The main difference between AFM and STM is that
STM only probes states within the bias window - close
to the Fermi energy - whereas the contrast in AFM is
implicitly dependent - through the van der Waals and
Pauli contributions - on the entire electron density. This
means that, in a sense, STM really looks at the electronic
structure whereas AFM looks at the geometric structure
of a molecule.

Tip passivation

Although STM is sensitive to the electronic structure
of the molecule, it might sometimes be difficult to get a
good quality atomically sharp tip. For AFM, the prox-
imity of the tip to the sample may induce large attractive
interactions, and imaging in the repulsive regime might
be difficult due to the reactivity of the metal atom on the
end. The spatial resolution of STM and AFM images can
be increased by passivating the tip, by picking up small
molecules, for example carbon monoxide (CO)[19][20].
CO molecules may adsorb very well on metal surfaces
- especially at extremely low temperatures - and they
are relatively difficult to pump away in UHV conditions.
The setup in the AFM-STM used in the group of Con-
densed Matter and Interfaces also allows for the gentle
administering of a small amount of CO-gas to the cold
sample. The contrast in AFM now contains mostly the
repulsive Pauli repulsion, and for STM, sharp images are
almost guaranteed as the tip terminates at a single point
- the molecule. Now when one looks at the tunnel equa-
tion, there is a contribution of the electronic structure
of the tip, and this significantly alters the appearance of
features in STM.

Feedback and control

The setup used in this research (Omicron LT-
AFM/STM with qPlus) allows AFM and STM to be per-
formed at the same time. In microscopy mode, the three
key parameters are current I, height z and frequency shift
∆f , and feedback or control can be exerted on any of the
three while measuring the other two. It is thus possible
to perform crossover experiments like STM feedback ∆f
mapping, or AFM feedback I mapping.

The ability to perform AFM and STM calls for various
feedback mechanisms. To be able to measure a frequency
shift in AFM, it is necessary to have a stable oscillation
in the first place. To achieve this, the qPlus sensor is
driven by a harmonic oscillation voltage on the tip can-
tilever at the correct frequency. Here the driving voltage
is converted to physical oscillations of the tip, which may
drive the cantilever into resonance. Before measuring,

the resonance frequency needs to be determined, which
is done by applying a frequency sweep on the z piezo
and reading out the response of the qPlus in terms of
its phase and amplitude response. The response curves
are displayed in figure 2. The eigenfrequency contains
contributions of the interaction forces, and approaches
the damped resonance value ω1 when the tip is not in
contact.

When approaching the surface, the eigenfrequency
changes from ω1 to ω2, where now the van der Waals
and Pauli (and electrostatic) contributions add to the
effective spring constant. Would the tip still be driven
at ω1, then the resonance condition is not fulfilled any-
more, and the oscillation decays quickly. Therefore, the
AFM feedback circuit works by reading out the tip sig-
nal which contains the actual phase. The phase signal is
amplified and shifted by 90 degrees, and is subsequently
fed back to the tip, so that the oscillation remains stable
at its dynamic eigenfrequency. The amplification factor
in between is very precarious - slightly too low and the
oscillation will decay, slightly too high and the oscilla-
tion will get out of hand. Also, the surface may induce
additional damping, which needs to be compensated for.
Therefore, the amplification factor itself - the gain - is
determined by an amplitude feedback loop, that takes
the magnitude of the actual oscillation as an input.

These feedback circuits ensure that a stable oscilla-
tion can occur at dynamically changing frequencies. The
next thing is to either record this frequency - in con-
stant height mode or STM feedback - or to use the fre-
quency shift again as a feedback parameter to regulate
the height of the tip (called frequency-modulated AFM
feedback). A drawback is that a small change in eigen-
frequency takes some time - of the order of ms to be
determined correctly, so it is even better to look at the
phase. The derivative of the phase response is maximal

FIG. 3. The resonance frequency shift as a function of the
tip height. Point A is a feedback setpoint on the repulsive
branch, and point B is a feedback setpoint corresponding to
the same frequency shift on the attractive branch.

75



at the resonance frequency, so that any change in the
eigenfrequency shows up even more clearly in the phase
shift, and hence feedback can be enhanced in the phase-
locked loop (PLL) technique.

So what value of the frequency shift should be
used when performing AFM in feedback? This is a
slightly more difficult procedure than in STM, since the
Lennards-Jones or Morse potential (the interaction curve
that is the sum of the attractive van der Waals energy
and the repulsive Pauli energy) is neither uniformly in-
creasing nor decreasing. The resonance frequecy shift is
proportional to the effective spring constant, which is the
second derivative of the interaction curve an has again a
similar shape, as shown in figure 3. Now when the feed-
back setpoint is in the well, the lock may in some cases
jump from the repulsive branch (point A in figure 3)
to the attractive branch (point B), where the feedback
set point for the resonance frequency shift is identical
for the two points. This should obviously be avoided.
But since the well depth and distance are generally spe-
cific of the molecule or metal, scanning across both may
induce flipping between attractive contrast to repulsive
contrast. Of course, when going further away in the at-
tractive regime, this is not a big issue, but at the same
time one loses all atomic contrast[15]. Therefore, AFM
in feedback is almost never used in our lab. Neverthe-
less, when preparing for AFM in feedback, one starts
with a spectroscopy experiment. ∆f can be measured
by changing the tip-sample distance z. Having performed
a ∆f(z) spectroscopy experiment, a frequency setpoint
in the Lennard-Jones curve can be selected to allow for
AFM feedback microscopy.

Using the qPlus sensor, AFM and STM can be com-
bined in various experiments. An AFM excitation can be
set up without significantly disturbing STM experiments,
and both current and frequency shift can be monitored.
Knowing that both variables can be used as feedback
parameters, this allows the following crossover imaging
experiments to be performed

• Simultaneous mapping of the current and the fre-
quency shift at a constant height

• Performing AFM frequency-shift measurements on
the height profile defined by STM feedback

• Performing STM current measurements on the
height profile defined by AFM feedback

• Mapping the force (by integrating the frequency
shift at different heights) as a function of bias

A cooperation where I have used AFM is the exper-
imental work on the graphene moiré corrugation as de-
scribed in appendix H.
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APPENDIX H. COOPERATIONS

During my research, I have also been involved in
projects with colleagues, which are related to my main
research. These have provided me with more experience
with scanning probe and simulations.

Analysis of the Moiré corrugation

We have synthesized graphene by chemical vapor de-
position (CVD). In CVD, ethylene gas is passed over a
metal at elevated temperature, allowing it to decompose.
Hydrogen atoms will then dissociate from the surface af-
ter combining to dihydrogen. Upon gentle cooling, the
carbon atoms will form flakes of monolayer graphene[21].
In this research, the Ir(111) surface was used for graphene
CVD.

The hexagonal Ir(111) lattice has a slightly larger lat-
tice constant than graphene, causing a lattice mismatch.
The lattices are said to be incommensurate. The posi-
tion of the honeycombs on the iridium is periodic with
10 iridium lattice constants and 10 graphene lattice con-
stants, so that the mismatch can be written as Ir(111)-
(9× 9)-graphene-(10×10)[22]. This causes the attraction
between the graphene sheet and the metal to depend on
the position in this mismatch pattern. Like a blanket, the
graphene sheet bulges between these positions. This is
called the Moiré corrugation. Both the Ir(111) lattice and
any graphene sublattice are hexagonal, causing the Moiré
pattern to be hexagonal as well. We have looked at this
Moiré corrugation in detail using non-contact AFM[23],
some results of which are shown in figure 4.

A nice way to look at graphene and its corrugation is
by means of image Fourier analysis. The twodimensional
fast Fourier transform (FFT) basically calculates the am-
plitudes of discrete waves that make up the image in two
dimensions. The apparent height of the graphene is a
convolution of the atomic graphene lattice and the Moiré
corrugation. As both effects feature a well-defined peri-
odicity they are easily identified in the 2D image FFT.
The Moiré pattern has a much larger wavelength than the
atomic lattice, so it will be seen in the Fourier transform
as a series of peaks at much lower wavevector. Applying
a high-pass filter basically filters out the components of
the Moiré corrugation. The periodic component that is
maintained is simply the uncorrugated honeycomb lattice
of graphene. Applying a low pass filter does the exact op-
posite. The honeycomb lattice is now disregarded, and
the remaining image is the Moiré corrugation only. This
Fourier filtering is shown in figure 4.

Periodic density functional theory calculations and
LEED-I(V) measurements have been performed on the
iridium-graphene Moiré system. We have supplemented
these data by performing atomic force microscopy mea-
surements (AFM) to determine the height of the Moiré

corrugation. As explained in the theory, AFM measure-
ments are capable of giving an atomically precise topolog-
ical images, yielding an apparent height as a function of
tip position. Noise in AFM measurements can be as low
as a few pm[23]. From AFM image analysis it was con-
cluded that the corrugation height was between 47±5pm.
Furthermore, the local corrugation height was found to
be uncorrelated to the graphene island size and orienta-
tion. The “second order Moiré corrugation”, that would
arise because of a slight remaining lattice mismatch in the
first Moiré pattern, was not found to be preserved accu-
rately over its range. The local corrugation was measured
over a relatively large area (see figure 4). Apart from
most peaks fallign in the range of 47± 5 pm, a few out-
liers were observed in a relatively narrow range between
58 and 62 pm. These might exist because of defects in the
iridium, reflecting local strain relief rather than a second
order Moiré. These findings have been the subject of a
publication[23].

A striking feature that clearly shows up in the
graphene atomic lattice after applying a high-pass filter
(figure 4) is the apparent lateral distortion of the lat-
tice. This distortion is not predicted by periodic density
functional theory calculations, so it was thought in our
group that the origin is a tip relaxation effect. So the
next question was: What are the bond lengths through-
out the Moiré supercell, and how do tip relaxation effects
affect the apparent bond length? The tip relaxation ef-
fects throughout the graphene were nicely quantized in
the subsequent paper by Mark Boneschanscher and Ing-
mar Swart[24].

Artificial graphene and silicene

Quantum dots are tiny pieces or clusters of metal or
semiconductor containing a number of electrons. The
accessible region for electrons can be defined electrostat-
ically, or by simply making the material into nanometer-
sized particles. Rather than residing in continuous en-
ergy bands, the electrons in a quantum dot can really be
observed to reside at discrete energy levels due to their
quantum confinement (which is explained in chapter 2).
In many respects, quantum dots should be viewed as “ar-
tificial atoms”. Since the properties of graphene arise
mainly from its honeycomb lattice, substitution of quan-
tum dots as artificial atoms in stead of carbon atoms
can open up a new world of tunable “designer Dirac
materials”[25].

Effort has been done in the group of Condensed Matter
and Interfaces to build artificial graphene lattices from
CdSe quantum dots. Tight-binding calculations show
that the band structure of artificial graphene are indeed
similar to those of normal, carbon-based graphene. How-
ever, because of the different (quasi)atomic system, the
Fermi level is not at the Dirac point. After synthesis,
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FIG. 4. Constant frequeny shift atomic force microscopy image on graphene, grown epitaxially on Ir(111). Both the hexagonal
Moiré pattern and the graphene lattice are clearly visible. The 2D image Fourier transform features characteristic Moiré peaks
at small wavevector and graphene lattice peaks at higher wavevector. Low-pass FFT filtering removes the atomic lattice,
yielding the pure Moiré pattern (left). High pass filtering removes the Moiré corrugation and gives an image of the pure lattice
(right).

characterisation of the macrostructure with various tech-
niques - TEM and STM - has shown the presence of a
honeycomb lattice, which turned ou to be of silicene type.
Silicene is the silicon equivalent of graphene, where the
two sublattices are at a slightly different height.

The author - despite not generating the data that was

used for the publications - has been involved in the STM
measurements on the quantum dot superlattices. Nev-
ertheless, he was glad to see this project culminate to a
publication in Science and see it grow to become a large
interuniversity program[26].
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FIG. 5. Quantum dots, self-assembled into a silicene-type
lattice

Self-assembly of organic networks

Another promising road ahead for artificial graphenes
is the construction of twodimensional organic and metal-
organic frameworks. The idea is similar to quantum dot
graphene. The organic moieties should have delocalized
orbitals, and upon interconnecting them on a surface into
a honeycomb geometry, these molecular orbitals should
again serve as a basis of the graphene bands. The ul-
timate goal is again to find the relativistic conduction
properties - the Dirac cones. Like quantum dot graphene,
the choice of multiple precursors and reaction conditions
make these kinds of artificial graphenes much more flex-
ible than the “boring” carbon graphene.

Apart from the usual considerations in electronic struc-
ture, one should look into the mechanism of oriented at-
tachment to be able to understand and predict how or-
ganic superlattices, and what kind of metal-organic su-
perlattices are formed. Experimental research was con-

FIG. 6. The three molecules on which the Monte Carlo sim-
ulations were performed.

ducted in the group of Condensed Matter and Interfaces
into evaporating molecular precursors onto metal sur-
faces, allowing them to self-assemble. The resulting su-
perstructures were probed with STM and AFM, both
with and without metal atoms. The molecules that have
been investigated so far were bi-parapyridine acetylene
(BPPA), bi-paracyano phenyl acetylene (BPCA) and bi-
parabenzoic acid acetylene (BPBA) (see figure 6) .

The binding interaction between these molecules is - to
first order - van der Waals attraction. Van der Waals at-
traction can roughly be explained as a correlation effect,
in which the momentary dipole of one molecule induces
a dipole in the other, causing intermolecular attraction.
Empirical models exist in which the van der Waals at-
traction strength is parametrized in terms of an atomic
van der Waals radius R. The intermolecular interaction
is found by summing over 6:12 potentials of the form

E = 4εij

(
ΣR

∆r

)6
[(

ΣR

∆r

)6

− 1

]
with ΣR = Ri + Rj . However, these dispersive forces
alone cannot account for all the structures that are seen.
For example, pyridines are sometimes observed to form
ribbons, and acids can bind with their carbonyl groups
to form linear, square, or triangular intersections. Ob-
viously, there is some electrostatic origin to these ef-
fects. Indeed, it was found that the mutual interactions
between molecules can be described by an electrostatic
model based on the atomic charges and the average po-
sitions of electrons in their p⊥-orbitals, above and be-
low the molecular plane of these flat molecules. This
model, put forward by Hunter and Sanders, treats every
atom in the molecule as a quadrupole, containing a posi-
tive nucleus monopole and two negative valence electron
monopoles on either side of the molecular plane[27]. The
Coulomb energy is calculated simply by summing over
all point charges

E =
∑
ij

qiqj
4πε0∆rij

where i is in molecule 1 and j is in molecule 2.
To first order, a carbon atom is treated as a +1 nu-

clear charge with two −0.5 electrons above and below
the plane. Hydrogen simply doesn’t have any out-of-
plane charge. Nitrogen has a higher nuclear charge, and
it is assigned +1.5 and −0.75, for the in-plane and out-
of-plane contributions respectively. Oxygen is then +2
and −1 respectively. The polarization on heteroatoms
and hydrogens can be accounted for by manipulating the
charge distribution of the electron cloud. This charge dis-
tribution was adjusted according to first-principles calcu-
lations.

Also, since the molecules are evaporated on a con-
ducting metal surface, the electric field lines from the
molecules should be perpendicular to the metal surface.
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FIG. 7. An artistically rendered still from the molecular
monte Carlo simulations on biacid molecules on gold

This is accounted for by generating a mirror image of
the molecule, with inverse point charges. The effect in-
troduces an interaction between one molecule with the
mirror image of the other molecule, and vice versa. Us-
ing this collection of point charges, it is possible to find
energetic minima as a function of the coordinates (x, y, θ)
of each molecule in an ensemble of molecules. Multiple
methods were used to find the energetic minima. The
first approach - devised by Joost van der Lit - uses a New-
ton minimization method to displace a set of molecules,
placed at random, towards their energetic minima. This
method is very costly for multiple molecules, as this is
basically a 3N -dimensional problem. Therefore, I have
implemented a Monte Carlo simulation, which works as
follows

• Start with an ensemble of molecules, either ran-
domized or in a crystal structure.

• Pick a molecule i. Calculate the electrostatic en-
ergy Ei with respect to its environment by sum-
ming over all electrostatic and van der Waals con-
tributions of all atoms of all other molecules. The
van der Waals contribution is found using a slightly
different Lennard-Jones formula, used in molecular
mechanics force fields. The van der Waals parame-
ters were taken from the AMBER force field. The
resulting energy is called Eold.

Eold =
∑
ij

√
εiεj

(
ΣR∗
∆r

)6
[(

ΣR∗
∆r

)6

− 2

]

+
∑
ij

∑
kl

qikqj l

4πε0∆rik,jl

The last term not only sums over atom pairs ij,
but over all monopole charges in the quadrupole
expansion kl and their mirror image contributions.

• Propose a displacement (dx, dy, dθ) and update
the molecular coordinates (x, y, θ). Displace the
molecule across the surface to this new position.
The implementation initially performs a rotation
matrix operation on the coordinates of the molecule
in the origin, and then places its center at (x, y).

• Calculate the energy of molecule i again. This en-
ergy is called Enew.

• Calculate the normalized Boltzmann weight of this
displacement. This is

W = exp
Enew − Eold

kT

• Pick a random real number x from the interval
[0, 1]. If W < x: reject the step by moving the
molecule back, using a displacement −(dx, dy, dθ).
If W > x: accept the step.

• Pick a new molecule and repeat.

The molecules are read out from .xyz input files. The
Monte Carlo model was created using periodic boundary
conditions, using the method of nearest images.

It took us a while to get to the point where the sim-
ulation runs gave good results - the self-assembly of the

FIG. 8. Self-assembly of bicyano molecules into a hexagonal
packed structure, as found with Monte Carlo
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surface structures towards the experimental results. Ex-
amples are shown in figure 7 for the acids, which primar-
ily form chains and later stick together side-by-side, and
in figure 8, where the cyanide molecules form a hexagonal
close-packed structure. The first implementation used an
average van der Waals well depth. Mixing up calories and
Joules, it turned out to be a factor 4.18 too deep. But
after correcting this, strange behaviour was seen - arising
from a bug in the cut-off radius. Then still, the behaviour
of the molecules was not as we hoped for, and searches
through parameter space were performed - varying δ, the
van der Waals depth and the absorption height. It turned
out to be good practice to energetically compare multi-
ple observed crystal structures - also the wrong ones -
while doing so. Eventually, we found that the absorp-
tion height had only a minor effect over the permissible
range between roughly 2.5 to 4 Å. I eventually decided to
look up the AMBER parameters to end the simulations
where the “effective average van der Waals depth” had
to be refined. Still, this left δ to be varied.

Every time we had some promising parameters, a melt-
ing simulation was carried out for each molecule to de-
termine the temperature at which the molecules have a
twodimensional fluid or gas phase in equilibrium with
the solid phase. After this, we performed constant tem-
perature experiments at this melting transition - some-
times combined with slow simulated annealing through
the melting point. It is important to give these simu-
lations the time, as carrying out an annealing step too
fast results in a quenched amorphic structure. This re-
sults from molecules not having enough time to find their
global minimum positions and becoming trapped in a lo-
cal minimum.

We have a good hope in using this model in the fu-
ture to improve our understanding of the self-assembly
mechanism of organic molecules on surfaces and use it to
predict or design twodimensional frameworks that host
advantageous electronic properties.
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