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A model for peak height distribution using the bivariate normal distribu-
tion is proposed to deal with some flaws of the already established model
using the gamma distribution. This new model is compared to the ”Gamma
model” via artificially generated test data using a model that simulates the
PCR process. In addition the performance of these models is compared using
data from an actual case. To efficiently execute the computations necessary,
techniques using bayesian networks are utilized.
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1 Introduction

When multiple individuals contribute DNA to a sample the interpretation of the resulting
DNA profile is not a straightforward matter. In addition to unknown contributors and
uncertainty regarding proportions of DNA contributions between individuals, the process
of obtaining a DNA profile from a sample is of a stochastic nature and hence subject to
uncertainty.

In a recent paper, [6, Cowell et al. (2013)] presented a statistical model for the peak
height distribution using the gamma distribution. This makes it possible to evaluate a
likelihood function subject to certain parameters. For efficient computation of this like-
lihood function a technique using bayesian networks is utilized. This peak height model,
termed the Gamma model, is presented in section 4.1. The computational methods
utilized in this paper are reported in section 5.

This thesis will start with an overview of forensic DNA typing in section 2. Next a
simulation model from [3, Gill et al.(2005)] with which realistic test data can be generated
will be presented in section 3. Section 4 will then describe the Gamma model, as well as
a competing model using the bivariate normal distribution termed the Bivariate Normal
model. In section 5 the computational methods of [6, Cowell et al. (2013)] are discussed,
as well as how these need to be adapted to the Bivariate Normal model. A method for
including some marker dependence is introduced as well. The results, in section 6, are
split into two parts. The first attempts to compare the performance of the Gamma- and
Bivariate Normal model through simulated test data. The second utilizes both methods
on an example case. Finally this thesis closes with some points of discussion in section 7.

2 Overview forensic DNA typing

Variation in human DNA is a result of variation in the nucleobases of the DNA molecule.
The DNA alphabet is composed of four characters that represent the four different
nucleobases: A (adenine), T(thymine),C (cytosine) and G (guanine). Human DNA can
be read in order just like written language is read from left to right. The combinations
of these four letters, known as nucleotides or bases, make up the biological differences
among humans. We all have approximately three billion nucleotide positions, which
gives a lot of potential sequences.

A marker is a small portion of this sequence used in DNA typing. The position of a
DNA marker is referred to as a locus. The markers are chosen because they exhibit a
great amount of variation among the human population, as well as being greatly removed
from each other. Either they are on different chromosomes, or a large sequence of
nucleotides separate the two markers. This last fact is then used to make the assumption
that DNA frequencies between these markers are independent. Variation in the forensic
markers used for DNA analysis is measured in ’repeat numbers’. As the name suggests,
a repeat number is the number of times a specific sequence of nucleobases is repeated.
The precise composition of this sequence differs between markers. These sequences can
include a partial repeat, which corresponds to a partial repeat number. This is written

4



as a decimal number, with the decimal being equal to the number of nucleobases in the
partial repeat. To illustrate:

Repeat number=4 · · · (AATG)(AATG)(AATG)(AATG)· · ·

Repeat number=4.2 · · · (AATG)(AATG)(AATG)(AATG)(AA)· · ·

The possibilities in variation at a genetic locus are termed alleles. For forensic DNA
markers the alleles correspond to a (partial) repeat number. At each locus a person has
a maternal and a paternal allele. If they are different they are called heterozygous and
homozygous if identical. The characterization of the alleles present at a locus is called a
genotype.

Before anything is measured the DNA sample in question is subjected to a process
called PCR (polymerase chain reaction) amplification. This is a process in which a
specific region of DNA is replicated over and over again. During each cycle, a copy of
the target DNA sequence is generated for every molecule containing the target sequence.
Two important parts of the DNA sequence are the short DNA sequences that flank the
region to be copied. These sequences are called primers. Primers need to be added to
the sample for the PCR to work and will ”select” the right part to copy. These primer
sequences should be short and unique to ensure good results. After approximately 30
cycles of PCR amplification sufficient copies have been created to be easily measured.
Unfortunately this copying process is not always successful, which leads to variability in
the amount of DNA molecules after PCR aplification. To measure the amounts of DNA
after amplification a fluorescent dye is attached to a PCR primer that is incorporated
into the amplified target region of DNA. Fluorescence measurements involve exciting
this dye molecule and then detecting the light that is emitted from the excited dye.
These measurements are then converted to an electropherogram (EPG), in which the
horizontal axis gives the base pair measurement and the vertical axis the light intensity.
Thus each allele of a marker corresponds to a peak size, which is a measure for the light
intensity emitted. This in turn is a measure for the amount of DNA molecules of this
allele type after PCR amplification. Peak size can be measured in peak height, or peak
area. These are highly correlated [2, Tvedebrink et al. (2010)]. Throughout this text
peak heights will be used as the standard of measurement. The collection of peak heights
for all the markers used and for all the possible alleles from the EPG will be termed a
DNA profile.

The PCR process is subject to several artefacts which can make analyzing DNA profiles
difficult. Peak heights are commonly subject to low level noise which result in small
peaks. Usually a threshold is placed below which peaks are reported as non-existent.
Thus, an allele present in the DNA sample will not be recorded if the resulting peak
falls below this threshold. This is called dropout. Dropout can also occur due to a
complete failure to amplify. In addition to dropout, another common artefact is called
stutter. These stutter products arise from the PCR process by the occasional imperfect
copy. Errors in which the DNA molecule loses one repeat number is the most common,
but gaining a repeat number is also possible. This usually results in a small peak (or a
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contribution to an already existing peak) one repeat number below an allele peak. Other
artefacts that can occur are dropin due to contamination of the sample by very small
amounts of DNA, and an allele is called silent if a mutation occurs that results in the
allele not being picked up at all by the PCR process.

3 A simulation method for DNA peak distributions

In [3, Gill et al.(2005)] a simulation method that closely follows the PCR process was
presented. The process follows the path: DNA sample→Extraction→Aliquot into pre-
PCR reaction mixture→PCR amplification for t cycles→Visualization of alleles after
electrophoresis. The combination of these steps is responsible for the stochastic nature
of the PCR process:

� DNA sample: N will denote the number of cells in the DNA sample.

� Extraction: During the process of extraction, the cells are disrupted and the
DNA liberated into solution. During extraction, there is a probability πextraction
(the extraction efficiency) that an individual DNA molecule will survive the pro-
cess, independent of the other molecules in the sample. Thus the number of
DNA molecules extracted (Nextracted) follows a binomial distribution: Nextracted =
Bin(N, πextraction).

� Aliquot into pre-PCR reaction mixture: A portion of the extracted sample is sub-
mitted for PCR. Therefore, there is a probability πaliquot that a given molecule will
be selected. The number of DNA molecules in the aliquot (Naliquot) also follows a
binomial distribution: Naliquot = Bin(Nextracted, πaliquot).

� PCR amplification for t cycles: PCR is not 100% efficient. Thus, during each round
there will be a probability πPCReff < 1 that a DNA fragment will be amplified.
Each fragment will also have a small probability πstutter of losing a repeat number.
After stuttering the DNA fragment will be amplified during future cycles with the
same efficiency as it was when it had its original repeat number, and will also have
the same chance of losing another repeat number.

� Visualization of alleles after electrophoresis: The number of DNA fragments will
be converted to a peak height. This step will be considered deterministic.

Each of these steps and each cycle of the PCR amplification is mutually indepen-
dent. Then by the properties of the binomial distribution we can make the following
simplification:

Naliquot = Bin(N, πextraction ∗ πaliquot) = Bin(N, πextraction,aliquot). (1)

Hereby reducing the parameter set to N , πextraction,aliquot, πPCReff , and πstutter.
By using Monte Carlo simulation following these steps a great amount of artificial, yet

realistic, test data can be generated. Note that it is possible for stutter peaks to arise
at alleles two or more repeat numbers lower than the allele type of the DNA molecules
of the sample.
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4 Modeling DNA peak distributions

Let I be the number of (potential) contributors to the DNA mixture and M the number
of markers used in the analysis of the mixture. Am will denote the number of allelic
types of marker m, with m ∈ {1, . . . ,M}. φi will be defined as the fraction of DNA
contributed to the mixture by individual i ∈ {1, . . . , I} to the DNA mixture prior to
PCR amplification. Then φi ≥ 0 and

∑I
i=1 φi = 1. Pre-amplification DNA contributions

by individuals are considered constant across markers.
Both models presented in this section incorporate the possibility of stutter and

dropout. Stutter whereby the DNA molecule gains a repeat number, or loses more
than one repeat number is ignored.

4.1 Gamma model for DNA peak distributions

The distribution of DNA peaks was modeled using the gamma distribution by [4, Cowell
et al. (2007a)] and later refined to include artefacts in [5, Cowell et al. (2011)]. Finally
some small changes were made to ease computations and to deal with artefacts more
realistically in [6, Cowell et al. (2013)]. The model from the final paper will be presented
here.

4.1.1 Model without artefacts

The model describes the observed peak height Ha, where a denotes the allelic type
(or equivalently the repeat number). Let ρ and η be parameters, and nia denotes the
number of alleles of type a carried by individual i. Then it is assumed that Hia, the
contribution of individual i to the observed peak height at allele a is Gamma distributed:
Hia ∼ Γ(ρφinia, η) where Γ(α, β) denotes the distribution with density

f(x) =
xα−1

Γ(α)βα
e−x/β (for x > 0). (2)

Furthermore ρ is assumed to be proportional to the total amount of DNA in the mixture
prior to amplification. η determines the scale.

Using the property that the set of independent Gamma distributions with equal scale
parameters η is closed under summation, we write,

Ha ∼
∑
i

Hia ∼
∑
i

Γ(ρφinia, η) ∼ Γ(ρ
∑
i

φinia, η). (3)

4.1.2 Stutter

Stutter is a frequent result of PCR amplification and has to be taken into account when
modeling this process. An additional parameter will be introduced for this purpose, ξ,
defined as the mean stutter fraction. The contribution of individual i to the observed
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peak height at allele a, Hia is then decomposed into two independent Gamma distributed
random variable as follows:

Hia = Hs
ia +H0

ia. (4)

Here Hs
ia is the fraction that stutters to allele a−1 and H0

ia is the remaining contribution.
The components are assumed to be distributed as

Hs
ia ∼ Γ(ρξφinia, η), H0

ia ∼ Γ(ρ(1− ξ)φinia, η). (5)

The total peak height observed at allele a is then

Ha =
∑
i

H0
ia +

∑
i

Hs
i,a+1 = H0

a +Hs
a+1, (6)

which is Gamma distributed as well

Ha ∼
∑
i

Γ(ρξφinia, η)+
∑
i

Γ(ρ(1−ξ)φini,a+1, η) ∼ Γ(ρ(1−ξ)
∑
i

φinia+ρξ
∑
i

φini,a+1, η).

(7)

4.1.3 Dropout

Another common artefact due to PCR amplification is dropout. A peak is considered
”dropped out” if it falls below a predetermined threshold C. This can be due to a
complete failure to amplify, or the peak can simply fail to amplify sufficiently to cross
the threshold C. If we ignore the case where there is a complete lack of amplification
we can simply account for dropout by defining

Za =

{
Ha if Ha ≥ C
0 otherwise,

(8)

and then equating dropout with Za being equal to 0. With G denoting the cumulative
distribution function of the Gamma distribution:

P(Dropout) = P(Za = 0) = G(C; ρ(1− ξ)
∑
i

φinia + ρξ
∑
i

φini,a+1, η). (9)

4.2 Bivariate Normal model for DNA peak distributions

Quite similar to the Gamma model a bivariate normal distribution can be used to de-
scribe variability in peak heights. In this case the stutter peak of allele a − 1 (the
contribution to the peak height at allele a − 1 due to stutter) and the allelic peak at
allele a (the contribution to the peak height at allele a with stutter contributions from
allele a+ 1 omitted) will not be independent in general. Specifically it is assumed that
(Hs

ia, H
0
ia), the contribution of individual i to the stutter peak height at allele a − 1

and the allelic peak height at allele a is bivariate normally distributed. Let nia again
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denote the number of alleles of type a carried by individual i and additionally let r, ξ, m,
sdstutter and sdallelic be parameters. With (X1, X1) ∼ N(r,m1,m2, sd1, sd2) denoting

a bivariate normal distribution of random variables X1 and X2 with r = Cov(X1,X2)
sd1sd2

,

mi = E(Xi) and sd2i = Var(Xi) for i ∈ {1, 2}:

(Hs
ia, H

0
ia) ∼ N(r, ξmφinia, (1− ξ)mφinia, sdstutter

√
φinia, sdallelic

√
φinia). (10)

Thus the parameters r, ξ, m, sdstutter and sdallelic control the correlation between Hs
ia

and H0
ia, the stutter percentage, mean peak heights, variability of stutter peaks and

variability of allelic peaks respectively. m, like ρ in the gamma model, is assumed to be
proportional to the total amount of DNA in the mixture prior to amplification.

Sums of independent bivariate normal distributions remain bivariate normal. Then
(Hs

a, H
0
a) = (

∑
iH

s
ia,
∑

iH
0
ia) is bivariate normal with:

E(Hs
a) =

∑
i

E(Hs
ia) =

∑
i

ξmφinia = ξm
∑
i

φinia, (11a)

E(H0
a) =

∑
i

E(H0
ia) =

∑
i

(1− ξ)mφinia = (1− ξ)m
∑
i

φinia, (11b)

Var(Hs
a) =

∑
i

Var(H0
ia) =

∑
i

sd2stutterφinia = sd2stutter
∑
i

φinia, (11c)

Var(H0
a) =

∑
i

Var(Hs
ia) =

∑
i

sd2allelicφinia = sd2allelic
∑
i

φinia, (11d)

Cov(H0
a , H

s
a) = Cov(

∑
i

H0
ia,
∑
j

Hs
ja) =

∑
i,j

Cov(H0
ia, H

s
ja)

=
∑
i

Cov(H0
ia, H

s
ia) +

∑
i 6=j

Cov(H0
ia, H

s
ja)

=
∑
i

Cov(H0
ia, H

s
ia) = sdstuttersdallelicr

∑
i

φinia.

(11e)

Conveniently the correlation coefficient reduces to r:

Cov(H0
a , H

s
a)√

Var(H0
a)Var(Hs

a)
=

sdstuttersdallelicr
∑

i φinia

sdstutter
√∑

i φiniasdallelic
√∑

i φinia
= r. (12)

In short:

(Hs
a, H

0
a) ∼ N(r, ξm

∑
i

φinia, (1−ξ)m
∑
i

φinia, sdstutter

√∑
i

φinia, sdallelic

√∑
i

φinia).

(13)

It is assumed that Hs
a or H0

a being smaller than zero results in a peak height of zero.
Let θ be the parameter set {r, ξ,m, sdstutter, sdallele, {φi : i ∈ {1, . . . , I}}} and
{xa : a ∈ {1, . . . , Am}} a collection of peak heights obtained from a DNA profile. Using
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the fact that the random variables {Hs
i +H0

i+1 : 1 ≤ i ≤ a−1} are conditionally indepen-
dent of H0

a +Hs
a+1 (or H0

a if a = Am) given Hs
a, the overall likelihood of a set of observed

DNA heights will be iteratively decomposed (with marker dependence repressed in the
notation):

L(θ|x) ∝ fH0
A,H

s
A+H0

A−1,...,H
s
2+H

0
1
(xA, xA−1, . . . , x1)

= fHs
A+H0

A−1,...,H
s
2+H

0
1 |H0

A=xA
(xA−1, . . . , x1) · fH0

A
(xA)

= fHs∗
A +H0

A−1,...,H
s
2+H

0
1
(xA−1, . . . , x1) · fH0

A
(xA)

= fHs∗
A−1+H

0
A−2,...,H

s
2+H

0
1
(xA−2, . . . , x1) · fHs∗

A +H0
A−1

(xA−1) · fH0
A

(xA) . . .

. . . = fH0
A

(xA) · fHs∗
A +H0

A−1
(xA−1) · . . . · fHs∗

2 +H0
1
(x1).

(14)

Here Hs∗
a represents the updated random variable defined as follows:

Hs∗
a =

{
Hs
a−1|(H0

a +Hs∗
a+1) = xa if a ≤ A− 1,

Hs
a|(H0

a = xa) if a = A.
(15)

Notice that this definition is of an iterative nature.
Different cases have to be considered when updating the distribution of the stutter

peak Hs
a considering the peak height information of higher alleles.

The case of the peak at allele a not dropping out (xa ≥ C)

If there is no dropout at allele a the updating process is straightforward. If Hs∗
a+1 is

normally distributed,which is assumed to be true, (Hs
a, H

0
a +Hs∗

a+1) is also multivariate
normal, with:

E(Hs
a) = ξm

∑
i

φinia, (16a)

E(H0
a +Hs∗

a+1) = (1− ξ)m
∑
i

φinia + E(Hs∗
a+1), (16b)

Var(Hs
a) = sd2stutter

∑
i

φinia, (16c)

Var(H0
a +Hs∗

a+1) = sd2allelic
∑
i

φinia + Var(Hs∗
a+1), (16d)

Cov(Hs
a, H

0
a +Hs∗

a+1) = Cov(Hs
a, H

0
a) + Cov(Hs

a, H
s∗
a+1)

= sdstuttersdallelicr
∑
i

φinia + 0. (16e)

For a bivariate normal random variable (X1, X1) ∼ N(r,m1,m2, sd1, sd2), the condi-
tional distribution X1|X2 = x2 is a normal distribution with:

E(X1) = m1 + r
sd1
sd2

(x2 −m2), (17a)
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Var(X1) = sd21(1− r2). (17b)

Combining equations 16 and 17:

Hs∗
a ∼ N

(
ξm
∑
i

φinia +
sdstuttersdallelicr

∑
i φinia

sd2allelic
∑

i φinia + Var(Hs∗
a+1)
·

·

[
xa+1 − (1− ξ)m

∑
i

φinia − E(Hs∗
a+1)

]
,

sd2stutter
∑
i

φinia −
sdstutter

√∑
i φinia√

sd2allelic
∑

i φinia + Var(Hs∗
a+1)
·

·

[
sdstuttersdallelicr

∑
i

φinia

]2 ,

(if a ≤ Am − 1)

(18a)

Hs∗
a ∼ N

(
ξm
∑
i

φinia + r
sdstutter
sdallelic

·

[
xa+1 − (1− ξ)m

∑
i

φinia

]
,

sd2stutter
∑
i

φinia −
sdstutter
sdallelic

·

[
sdstuttersdallelicr

∑
i

φinia

]2 .

(if a = Am)

(18b)

The case of the peak at allele a dropping out (xa < C)

Unfortunately if dropout occurs at allele a things become a little more complicated.
Dropout is defined in the same way as with the Gamma model:

P(Dropout) = P(Za = 0), (19)

with Za defined as in equation 8. If (X1, X1) ∼ N(r,m1,m2, sd1, sd2), the conditional
distribution X1|X2 < x2 is not normally distributed. Nonetheless, this distribution is
assumed to be normally distributed, which will make computations significantly easier
to perform. In most cases such a conditional distribution should be close enough to a
normal distribution to suit our purposes, keeping in mind that if the allelic peak has
dropped out, one cannot expect a large contribution from its stutter peak. Specifically
we will assume:

Hs∗
a =

N
(
E(Hs

a|H0
a +Hs∗

a+1 < C),
√

Var(Hs
a|H0

a +Hs∗
a+1 < C)

)
if a ≤ Am − 1,

N
(
E(Hs

a|H0
a < C),

√
Var(Hs

a|H0
a < C)

)
if a = Am.

(20)
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If (X1, X1) ∼ N(r,m1,m2, sd1, sd2):

E [g(X1)|X2 < C] =

∫ ∞
−∞

fX1|X2<C(x1) · g(x1)dx1 =

∫ ∞
−∞

fX1,X2<C(x1)

P(X2 < C)
· g(x1)dx1

=

∫ ∞
−∞

g(x1)

P(X2 < C)
·
(∫ C

−∞
fX1,X2(x1, x2)dx2

)
dx1

=

∫ ∞
−∞

∫ C

−∞

g(x1)

P(X2 < C)
· fX1,X2(x1, x2)dx2dx1

(1)
=

∫ C

−∞

1

P(X2 < C)

(∫ ∞
−∞

g(x1) · fX1,X2(x1, x2)dx1

)
dx2

=

∫ C

−∞

fX2(x2)

P(X2 < C)

(∫ ∞
−∞

g(x1) ·
fX1,X2(x1, x2)

fX2(x2)
dx1

)
dx2

=

∫ C

−∞

fX2(x2)

P(X2 < C)

(∫ ∞
−∞

g(x1) · fX1|X2(x1)dx1

)
dx2

=

∫ C

−∞

fX2(x2)

P(X2 < C)
E [g(X1)|X2] (x2)dx2.

(21)

Using this the following can be easily evaluated:

E [X1|X2 < C] =

∫ C

−∞
E [X1|X2 = x2]

fX2(x2)

P(X2 < C)
dx2

=
1

P(X2 < C)

∫ C

−∞

(
m1 + r

sd1
sd2

(x2 −m2)

)
·

· 1

sd2
√

2π
e−(x2−m2)2/(2sd22)dx2

=
1

P(X2 < C)
·m1 · P(X2 < C)

+
1

P(X2 < C)
r
sd1
sd2

∫ C−m2

−∞
x2

1

sd2
√

2π
e−x

2
2/(2sd

2
2)dx2

= m1 +
1

P(X2 < C)
r
sd1
sd2

[
−2sd22

2

1

sd2
√

2π
e−x

2
2/(2sd

2
2)

]C−m2

−∞

= m1 −
1

P(X2 < C)
rsd1

1√
2π
e−(C−m2)2/(2sd22).

(22)

To calculate Var [g(X1)|X2 < C] some legwork is required:

E
[
X2

1 |X2 = x2
]

= Var [X1|X2 = x2] + E [X1|X2 = x2]
2

= sd21(1− r2) +m2
1 + 2m1r

sd1
sd2

(x2 −m2) + r2
sd21
sd22

(x2 −m2)
2,

(23)

(1) If
∫∞
−∞

∫∞
−∞ |fX1,X2(x1, x2)| dx1dx2 < ∞.
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E
[
X2

1 |X2 < C
]

=

∫ C

−∞

fX2(x2)

P(X2 < C)
E
[
X2

1 |X2 = x2
]
dx2

=

∫ C

−∞

fX2(x2)

P(X2 < C)
(sd21(1− r2) +m2

1)dx2

+

∫ C

−∞

fX2(x2)

P(X2 < C)
2m1r

sd1
sd2

(x2 −m2)dx2

+

∫ C

−∞

fX2(x2)

P(X2 < C)
r2
sd21
sd22

(x2 −m2)
2dx2

= I1 + I2 + I3.

(24)

With:

I1 =

∫ C

−∞

fX2(x2)

P(X2 < C)
(sd21(1− r2) +m2

1)dx2

=
1

P(X2 < C)
· (sd21(1− r2) +m2

1) · P(X2 < C) = sd21(1− r2) +m2
1,

(25a)

I2 =

∫ C

−∞

fX2(x2)

P(X2 < C)
2m1r

sd1
sd2

(x2 −m2)dx2

=

∫ C

−∞

1

sd2
√

2π
e−(x2−m2)2/(2sd22) · 1

P(X2 < C)
· 2m1r

sd1
sd2

(x2 −m2)dx2

= 2m1r
sd1
sd22

1√
2π
· 1

P(X2 < C)
·
∫ C−m2

−∞
x2e
−x22/(2sd22)dx2

= 2m1r
sd1
sd22

1√
2π
· 1

P(X2 < C)
·
[
−sd22e−x

2
2/(2sd

2
2)
]C−m2

−∞

= −2m1rsd1
1√
2π
· 1

P(X2 < C)
· e−(C−m2)2/(2sd22),

(25b)
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I3 =

∫ C

−∞

fX2(x2)

P(X2 < C)
r2
sd21
sd22

(x2 −m2)
2dx2

= r2
sd21
sd22

1

P(X2 < C)
·
∫ C

−∞
(x2 −m2)

2 1

sd2
√

2π
e−(x2−m2)2/(2sd22)dx2

= r2
sd21
sd22

1

P(X2 < C)
·
∫ C−m2

−∞
x22

1

sd2
√

2π
e−x

2
2/(2sd

2
2)dx2

= r2
sd21
sd22

1

P(X2 < C)

1

sd2
√

2π
·
(∫ C−m2

−∞
(x22 − sd22)e−x

2
2/(2sd

2
2)dx2

+

∫ C−m2

−∞
sd22e

−x22/(2sd22)dx2

)
= r2

sd21
sd22

1

P(X2 < C)

1

sd2
√

2π
·
([
−x2sd22e−x

2
2/(2sd

2
2)
]C−m2

−∞

+

∫ C−m2

−∞
sd22e

−x22/(2sd22)dx2

)
= −r2 sd21

sd2
√

2π

1

P(X2 < C)
(C −m2)e

−(C−m2)2/(2sd22)

+ r2sd21
1

P(X2 < C)

∫ C

−∞

1

sd2
√

2π
e−(x2−m2)2/(2sd22)dx2

= −r2 sd21
sd2
√

2π

1

P(X2 < C)
(C −m2)e

−(C−m2)2/(2sd22) + r2sd21.

(25c)

This finally leads us to the expression:

Var [X1|X2 < C] = E
[
X2

1 |X2 < C
]
− E [X1|X2 < C]2

= I1 + I2 + I3 − E [X1|X2 < C]2

= sd21 − r2
sd21

sd2
√

2π

1

P(X2 < C)
(C −m2)e

−(C−m2)2/(2sd22)

− r2sd21
1

2π

1

P(X2 < C)2
e−(C−m2)2/sd22 .

(26)

Combining equation 16 with equations 22 and 26 gives a suitable expression (which is
omitted for sake of brevity) for calculating Hs∗

a in the case of xa dropping out.

5 Computation

5.1 Likelihood ratio

Of interest in forensic cases is the likelihood ratio (LR):

LRθ =
L(H0, θ|E)

L(H1, θ|E)
=

P(E|θ,H0)

P(E|θ,H1)
(27)
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with H0 and H1 the competing hypotheses under consideration (usually the prosecution
versus the defense), E the evidence and θ a set of parameters. In this case the evidence
under consideration would be the DNA samples collected from the crime scene. We will
also define:

H0 Suspect has contributed to the collected DNA sample.

H1 An unknown person has contributed to the collected DNA sample. This person is
assumed to be randomly drawn from the population.

Thus we will concern ourselves with calculating the likelihood function L(Hj , θ|E), j ∈
{0, 1}. Likelihood ratios for multiple samples S will be considered separately.

In addition to the known contributors of the sample the possibility of DNA contribu-
tions from unknown sources will be accounted for by allowing one or multiple unknown
contributors. These contributors will be assumed to be randomly drawn from the pop-
ulation. Consider the likelihood obtained by either the Gamma or Bivariate Normal
model described in section 4. The likelihood is dependent on:

� n = (niam)i∈{1,...,I},a∈{1,...,Am},m∈{1,...,M}. An object with component niam being
the number of alleles of type a carried by individual i for marker m.

� φs = (φi)i∈{1,...,I}. The vector of fractions of DNA contributed to the mixture by
individual i.

� θ. The set of parameter inherent to the model used (either the Gamma or Bivariate
Normal model).

For given θ and φ peak heights across different markers m are independent. Let N be
the random variable of allele counts, which is considered independent across markers.
Then the total likelihood function can be decomposed as:

Ls(Hj ,N,φs,θ|E) =
∏

m∈{1,...,M}

Lms(Hj ,Nm,φs,θm|Ems). (28)

With Lms representing the likelihood function for marker m and sample s, Ems the evi-
dence (peak heights) for the same marker and sample and θm the parameters specific to
marker m. Although the parameters of the model are expected to differ between markers
and even between alleles, there is no practical way to incorporate this in computations
as this would involve maximizing the likelihood over an additional M − 1 variables for
each parameter that is considered to be marker specific.

Then given θm and φs, the likelihood Lm is only dependent on Nm. Contributors
randomly drawn from the population are assumed to have a known distribution. All
other contributors have a deterministic distribution. Thus the likelihood for a given
marker can be calculated by a weighted sum over all possible nm:

Lms(Hj ,Nm,φs,θm|Ems) =
∑
nm

Lms(Hj ,nm,φs,θm|Ems) · P(nm)

= ENm [Lms(Hj ,Nm,φs,θm|Ems)] .
(29)
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In addition it is assumed an additional factorization is possible:

Lms(Hj ,Nm,φs,θm|Ems) =

Am∏
a=1

Lmsa(Hj ,Nma,φs,θm|Emsa), (30)

with nma some subset of nm and similarly Emsa a subset of Ems. The subsets nma
and Emsa can differ depending on the model used. We will assume the population to
be in Hardy-Weinberg equilibrium. This means that two alleles of an individual are
chosen at random with allele-frequencies (q1, . . . , qAm). Thus nm follows an independent
multinomial distribution with allele frequencies (q1, . . . , qAm) and

∑
a niam = 2.

To deal with the unknown parameters θ and φ maximum likelihood estimation is
performed for the competing hypotheses H0 and H1 separately. Thus the likelihood
ratio for sample s can be expressed as:

LRθ,s =

sup
θ,φ

Ls(H0,n,φs,θ|Es)

sup
θ,φ

Ls(H1,n,φs,θ|Es)
. (31)

5.2 Bayesian network

Si1 Si2 Si3 Si4 Si5 Si6

ni1 ni2 ni3 ni4 ni5 ni6

O1 O2 O3 O4 O5 O6

nj1 nj2 nj3 nj4 nj5 nj6

Si1 Sj2 Sj3 Sj4 Sj5 Sj6

Partial sums of allele
counts

Partial sums of allele
counts

Genotype for unknown
contributor i

Genotype for unknown
contributor j

Figure 1: Bayesian network with nia-variables representing allele counts of random con-
tributor i at allele a, S-variables a counter ensuring the allele counts are appro-
priately distribute and the O-variables are defined to incorporate peak height
information.

To calculate the likelihood (equation 29) one quickly has to deal with a very large sum.
This problem gets bigger the more random contributors there are in the calculation. To
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deal with this more efficiently the method described in [6, Cowell et al. (2013)] will be
utilized.

Using the properties of the multinomial distribution we can deduce the following.
Without any information about allele counts (ni2m, . . . , niAmm), ni1m follows a binomial
distribution Bin(2, q1). Introducing the counter Siam =

∑
k≤a nikm, it follows that given

Si(a−1)m, niam is distributed as:

niam ∼


Bin

(
2, qa∑

k≥a qk

)
if Si(a−1)m = 0,

Bin
(

1, qa∑
k≥a qk

)
if Si(a−1)m = 1,

0 if Si(a−1)m = 2.

(32)

Adding these counters S allows the representation of allele counts in figure 1. Disre-
garding the O-variables for the moment, we will focus on the variables representing the
genotypes; the n-variables. With the vector of variables Si and Sj being the counter
introduced above, the variables (ni1, . . . , ni6) and (nj1, . . . , nj6) follow an independent
multinomial distribution with allele frequencies (q1, . . . , q6) and

∑6
k=1 ni/jk = 2. This

Markov representation of the genotypes allows for lower computation time than more
straightforward representations. For a formal proof of the validity of this representation
for the allele count distribution see [8, Graversen, T. (2013b)].

Peak height information can be incorporated by appropriately specifying the con-
ditional distribution of the O-variables. We will define these variables as having two
possible states, 0 and 1. Let km be a constant such that the equation below defines a
probability distribution, then we will define:

P(Oma = 1|Nma = nma) = Lmsa(Hj ,nma,φs,θ|Emsa)/km. (33)

Then this distribution is dependent on the occurrence or non-occurrence of dropout,
as well as the model used (the Gamma model or the Bivariate normal model). The
structure of the bayesian network is dependent on the model used as well. In both
cases the O-variables will be conditionally independent of the S-variables given the n-
variables. This is reflected in the network by the fact that for any i, j and k, the set
of all n-variables d-separates Sij from Ok. This is apparent since the set of n-variables
separates the set of O-variables from the set of S-variables in the moralized graph. In
addition it is important to note the mutual conditional independence of the O-variables
given the rest of the network (the n- and S-variables), which agrees with the distribution
defined in equation 33.
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Then we can rewrite the likelihood function (equation 29):

E

[
Am∏
a=1

Lms(Hj ,Nma,φs,θm|Emsa)

]
= E

[
Am∏
a=1

P(Oma = 1|Nma)km

]

= E

[
Am∏
a=1

P(Oma = 1|Nm)

]
Am∏
a=1

km

2
= E

P
 ⋂
a∈{1,...,Am}

{Oma = 1}

∣∣∣∣∣∣Nm

 Am∏
a=1

km

= P

 ⋂
a∈{1,...,Am}

{Oma = 1}

 Am∏
a=1

km.

(34)

Thus we can compute the likelihood function by setting all the O-variables in the network
to 1 and then propagating this evidence.

Gamma Model

The stutter peak and allelic peak are assumed independent given the allele counts in this
model. Thus the likelihood can be decomposed as in equation 30 and figure 1 gives the
appropriate structure for the network. Due to stutter, the peak height distribution for
peak a is dependent on the allele counts at allele a and a+ 1. Each O-variable has two
states: 0 or 1, as described in equation 33. With Σ = ρ(1− ξ)

∑
i φinia + ρξ

∑
i φini,a+1,

Ha the peak height at allele a and G and g the cumulative distribution function and the
probability distribution function of the gamma distribution respectively, the conditional
distribution of the O-variables is defined as:

P(Oa = 1) =

{
km ·G(C; Σ, η) if Ha < C,

km · g(Ha,Σ, η) if Ha ≥ C,
(35a)

P(Oa = 0) =

{
1− km ·G(C; Σ, η) if Ha < C,

1− km · g(Ha,Σ, η) if Ha ≥ C.
(35b)

Σ of course being dependent on the states of the n-variables a and a+1. km is a constant
small enough that insures equation 35 defines a probability distribution.

One can then evaluate the likelihood function (equation 29) by setting the evidence
to ”1” to all the O-variables, and evaluating the ”probability” of this evidence. Keeping
in mind the the likelihood has been multiplied by factor km for each variable one has to
correct this likelihood by multiplying with 1

kAm
m

.

(2) The auxiliary variables {Oma : a ∈ {1, . . . , Am}} being conditionally independent of each other
given the allele counts Nm.
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Bivariate normal model

Si1 Si2 Si3 Si4 Si5 Si6

ni1 ni2 ni3 ni4 ni5 ni6

O1 O2 O3 O4 O5 O6

nj1 nj2 nj3 nj4 nj5 nj6

Si1 Sj2 Sj3 Sj4 Sj5 Sj6

Partial sums of allele
counts

Partial sums of allele
counts

Genotype for unknown
contributor i

Genotype for unknown
contributor j

Figure 2: Bayesian network used for the Bivariate Normal model with nia-variables rep-
resenting allele counts of random contributor i at allele a, S-variables a counter
ensuring the allele counts are appropriately distribute and the O-variables are
defined to incorporate peak height information. Black arrows are sufficient for
the 0th-order approximation while green arrows need to be added to be able
to compute a 1st order approximation.

For the bivariate normal model a network more complex then the example in figure 1
has to be used. Using the decomposition of the likelihood function defined in equations 14
and 15 we could define the O-variables as having the conditional probability:

P(Oa = 1) =



km · FNormal

(
C; (2− ε)m

∑
i φinia + E(Hs∗

a+1) ,√
sd2allelic

∑
i φinia + Var(Hs∗

a+1)
)

if Ha < C,

km · fNormal

(
Ha; (2− ε)m

∑
i φinia + E(Hs∗

a+1) ,√
sd2allelic

∑
i φinia + Var(Hs∗

a+1)
)

if Ha ≥ C,

(36a)

P(Oa = 0) =



1− km · FNormal

(
C; (2− ε)m

∑
i φinia + E(Hs∗

a+1) ,√
sd2allelic

∑
i φinia + Var(Hs∗

a+1)
)

if Ha < C,

1− km · fNormal

(
Ha; (2− ε)m

∑
i φinia + E(Hs∗

a+1) ,√
sd2allelic

∑
i φinia + Var(Hs∗

a+1)
)

if Ha ≥ C.

(36b)
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With FNormal(x,m, sd) and fNormal(x,m, sd) being the cumulative distribution func-
tion and the probability distribution function respectively of a normal random vari-
able with mean m and standard deviation sd. However, due to the iterative defi-
nition of Hs∗

a+1 the variable Oa would be directly dependent on the set of variables
{nik : k ≥ a, i ∈ {1, . . . , I}}. Generally this would lead to highly complex bayesian net-
works with large cliques and thus large computation times. To combat this we introduce
the following approximation:

mth order approximation H0∗
a+1+m is assumed to be equal to H0

a+1+m.

Thus the order of the approximation controls how many step there are in the iterative
calculation like in equation 15. With order 0 defining an uncorrelated version of the
normal random variables, the structure of the bayesian network used for the Gamma
model (figure 1) would suffice. Using equation 36 with the approximation made above
we find that the network for the mth order approximation would need ”arrows” from the
set {nik : a ≤ k ≤ a+ 1 +m, i ∈ {1, . . . , I}} to the variable Oa.

5.3 Marker dependence

In general the parameters of the model will differ between markers and even between al-
leles. However,it would be impractical to maximize the likelihood function over different
parameters for all markers. It will be assumed that the parameters are constant across
alleles. From section 3 we see that differences in parameters of the Gamma/Bivariate
Normal model between markers arise from differences between the parameters πextraction,
πaliquot, πstutter, πPCReff and the conversion factor arising from the visualization of the
alleles after electrophoresis. Since any estimation of stutter percentage directly from the
data is directly dependent on additional assumptions of the contributors to the sample
we will assume the stutter parameter to be equal across all markers (and alleles) for both
the Gamma and Bivariate Normal model. Luckily the mean peak height can reasonably
be estimated from the data across markers. This is proportional to the parameter ρ and
m for the Gamma model and the Bivariate Normal model respectively. For each marker
this parameter will be scaled by a factor (xscalem ) as follows:

xscalem =
M ·

∑S
s=1

∑Am
a=1Hams∑S

s=1

∑M
m=1

∑Am
a=1Hams

, (37)

with Hams the observed peak height at allele a of marker m and sample s. Note that
only observed peaks will be used in the sum, there may be peaks below the threshold C
that will not be counted. However, these contributions should be small enough to make
little difference. Next should be considered how the variance of the peaks scale with
xscalem . Looking at the simulation method for DNA peak distributions (section 3) we
find that differences in peak height can arise in multiple ways. Variations in πextraction,
πaliquot, πPCReff and the conversion factor arising from the visualization of the alleles
after electrophoresis all effect the mean peak height. In particular πPCReff can greatly
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vary the mean peak height even for small changes in its value. It is assumed the standard
deviation of the peak height distribution scales with the mean peak height. To be precise:

Gamma model


ρm = ρ

ηm = η · xscalem

ξm = ξ,

(38a)

Bivariate Normal model



mm = m · xscalem

sdallele,m = sdallele · xscalem

sdstutter,m = sdstutter · xscalem

ξm = ξ

rm = r.

(38b)

Figure 27 shows relatively constant shape parameter (proportional to ρ) with vary-
ing scale parameter (proportional to η) in the case of variable amplification parameter
(πPCReff ). It also shows a more than linear increase in the scale parameter as a function
of πPCReff . Note that this is not the case with varying the pre-amplification parameter
(πextraction,aliquot) as seen in figure 25.

The parameters of the fitted bivariate normal distribution as a function of the amplifi-
cation parameter are shown in figure 30. The fraction of the mean and standard deviation
for both the stutter and allelic peak is shown to be roughly constant in the bottom right
graph. Also note the constant correlation coefficient in the upper right graph. Again a
variable pre-amplification parameters shows a different picture (figure 28).

Luckily the conversion factor arising from the visualization of the alleles after elec-
trophoresis is a deterministic step. If the peak heights are scaled by a factor k then
obviously parameters m and ρ are scaled by this factor but also the standard deviation
of the peak heights are scaled by this factor and the correlation coefficient remains the
same. Thus equation 38 is valid for this step as well.

5.4 Posterior distribution of genotypes

For various reasons it can be desirable to know the posterior distribution of genotypes
given the observed peak heights or a subset of observed peak heights. Let this (sub)set
be denoted by E’ms. If the likelihood associated with this (sub)set of peak heights can
be factorized as follows:

P(E′ms|Nm = nm) = L′ms(nm|E′ms) =
∏
a∈A′

Lmsa(nma|Emsa), (39)
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then conditioning on the auxiliary variables being equal to 1 is equivalent to conditioning
on the observed peak heights E’ms:

P

(
Nm = nm

∣∣∣∣∣ ⋂
a∈A′
{Oma = 1}

)
=

1

P
(⋂

a∈A′{Oma = 1}
)P(Nm = nm,

⋂
a∈A′
{Oma = 1}

)

=
P(Nm = nm)

P
(⋂

a∈A′{Oma = 1}
) · P( ⋂

a∈A′
{Oma = 1}

∣∣∣∣∣Nm = nm

)

=
P(Nm = nm)

P
(⋂

a∈A′{Oma = 1}
) · ∏

a∈A′
P (Oma = 1|Nm = nm)

=
P(Nm = nm)

P
(⋂

a∈A′{Oma = 1}
) · ∏

a∈A′
Lmsa(nma|Emsa)/km

=
P(Nm = nm)

P
(⋂

a∈A′{Oma = 1}
) · L′ms(nm|E′ms) ∏

a∈A′

1

km

=
P(Nm = nm)

P
(⋂

a∈A′{Oma = 1}
) · P(E′ms|Nm = nm) ·

∏
a∈A′

1

km

=
1

P
(⋂

a∈A′{Oma = 1}
) · P(E′ms,Nm = nm) ·

∏
a∈A′

1

km

=
P(E′ms)

P
(⋂

a∈A′{Oma = 1}
) · P(Nm = nm|E′ms) ·

∏
a∈A′

1

km

= P(Nm = nm|E′ms).
(40)

Dependence on Hj , φs and θ was suppressed in the above notation.
As previously discussed equation 39 is valid in the case that E’ms is equal to Ems. In

addition a factorization is possible for both the Gamma and Bivariate Normal model for
arbitrary E’ms.

6 Results

6.1 Validation

Validation of the Gamma model without artefacts was previously discussed in [7, Cow-
ell(2009)]. The following assumptions made by the Gamma model were investigated:

� The peak areas follow gamma distributions.

� The scale parameter is independent of the amount of DNA in the sample.

� The mean peak height (or equivalently the shape parameter when taking into ac-
count the above assumption) is proportional to the amount of DNA in the sample.
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To this effect the simulation model described in section 3 was used to validate these
assumptions (section 4.1.1). The Gamma model with artefacts makes some additional
assumptions that need to be validated:

� Both allelic peak heights (arising from contributions to that allelic type) and stutter
peak heights follow gamma distributions.

� The scale parameter is independent of the amount of DNA in the sample for both
the stutter and allelic peak heights.

� The mean peak height is proportional to the amount of DNA in the sample for
both the stutter and allelic peak heights.

� The allelic peak height and stutter peak height distribution have the same value
for the scale parameter.

� Stutter and allelic peak heights are independent.

Furthermore the dropout rates of the Gamma model should coincide with those of the
simulation model. The bivariate normal model makes the following assumptions that
need to be validated:

� Stutter and allelic peak (H0
a , H

s
a) follow a bivariate normal distribution.

� The correlation coefficient of this distribution is independent of the starting amount
of DNA.

� The mean parameters of both H0
a and Hs

a increases linearly with the starting
amount of DNA.

� The variance of both H0
a and Hs

a increases linearly with the starting amount of
DNA.

� The conditional distribution Hs
a|H0

a +Hs
a+1 < C closely resembles a normal distri-

bution with parameters
(
E(Hs

a|H0
a +Hs

a+1 < C),
√

Var(Hs
a|H0

a +Hs
a+1 < C)

)
.

This in addition to correct dropout rates.
For all simulations in this section simulation model (section 3) was used with values

for πextraction, πaliquot, πstutter and πPCReff being those reported in [3, Gill et al.(2005)].

6.1.1 Gamma model

Goodness of Fit

To test if the gamma distribution is a good fit for DNA peak heights a set of Q-
Q (Quantile-Quantile) plots were made. For three different starting values of DNA
molecules of a certain allelic type 10, 000 simulations were run, using the method de-
scribed in section 3. DNA was amplified over 28 cycles. Maximum likelihood estimation
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Figure 3: Quantile-quantile plots using simulations of peak height for three different
starting values N of the number of an alleles. Red shows the simulation vs
the fitted gamma distribution with different scale parameters, blue with equal
scale parameters.

was used to estimate the parameters of the Gamma distribution. Figure 3 shows the Q-Q
plots of the simulated data vs the quantiles of the fitted Gamma distribution. The red
dots show the Q-Q plot when the scale parameters of the stutter and allelic peak are not
assumed to be equal. The blue dots represent the assumption of equal scale parameters
of the stutter and allelic peak. This clearly illustrates a significant deterioration of the
fit under these more restrictive assumptions. In general the allelic peak closely resembles
a gamma distribution. The same can be said of the stutter peak though to a smaller
degree. This should come as no surprise as the stutter peak is generated differently
from a peak without stutter. The fit also appears to improve with increasing amount
of starting values of DNA molecules. Figure 4 show the histograms of the simulation as
well as the estimated gamma distributions used in figure 3.

Parameters as a function of N

It is not hard to verify analytically that for the simulation model the mean peak height
is proportional to the initial number of DNA molecules N . Similarly the parameters
of the Gamma distribution were estimated for different values of N and the shape and
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Figure 4: Histograms using simulations of peak height for three different starting values
N of the number of an alleles. Red shows the the fitted gamma distribution
with different scale parameters, blue with equal scale parameters.
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Figure 5: Estimated shape (blue) and scale (red) parameters vs the starting amount of
DNA molecules N for the the stutter and allelic peak.
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scale parameters are shown as a function of N in figure 5 for both the stutter and allelic
peak. The assumption that the scale parameter is independent of the amount of DNA
in the sample appears roughly valid for N > 25, with a slight slope visible for both the
stutter and allelic peak. It is important to note that the parameters for the allelic peak
and the stutter peak were fitted independently. A large difference in scale parameter
between the stutter and allelic peaks for equal values of N is clearly visible.

Stutter and allelic peak dependence
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Figure 6: A sample of 500 simulations of the stutter peak height and allelic peak height.

To test the assumption that the stutter and allelic peak heights are independent an
obvious first step is to see what a two-dimensional plot of the stutter peak height versus
the allelic peak height looks like. This is shown in figure 6. Already it is apparent that
the allelic and stutter peak heights cannot be considered independent. Low/high allelic
peak height seems to correlate with low/high stutter peak height respectively. To further
test the independence assumption a sample of 10.000 simulations was divided into bins
(see table 1). By doing this some information is lost, but the option to use Pearson’s
Chi-squared test for independence is gained. Using the R function chisq.test() a p-value
lower than 2.2e − 16 was found. Thus is seems safe to conclude the stutter and allelic
peak height are not independent.
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[91, 149] (149, 206] (206, 264] (264, 321] (321, 379] (379, 437] (437, 494] (494, 552] (552, 609] (609, 667]

[2.18, 5.95] 25 202 318 13 0 0 0 0 0 0
(5.95, 9.72] 3 63 768 1857 1366 233 0 0 0 0
(9.72, 13.5] 0 18 112 463 1150 1225 441 69 3 0
(13.5, 17.3] 0 6 45 128 246 286 233 101 27 2

(17.3, 21] 0 0 17 60 91 80 73 32 15 2
(21, 24.8] 0 1 7 25 43 41 31 9 1 1

(24.8, 28.6] 0 1 1 3 14 17 9 5 1 0
(28.6, 32.3] 0 0 0 0 3 7 2 0 0 0
(32.3, 36.1] 0 0 0 0 1 0 0 0 0 0
(36.1, 39.9] 0 0 0 0 1 0 1 2 0 0

Table 1: A sample of 10000 simulations of the stutter peak height and allelic peak height
distributed into bins.
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Figure 7: Dropout rates of the stutter peak as a function of the starting amount of
DNA N . Black are the dropout estimates from the data, red and blue from
maximum likelihood estimation of the Gamma model with red having ρ ·η and
ξ estimated directly from the data.

Dropout rates were tested in three different situations:

� No additional contributor A contributor with an initial number of DNA
molecules of a single allele varying over 0− 200 with no other contributors.

� Minor additional contributor A contributor with an initial number of DNA
molecules of a single allele varying over 0− 200 and a small contributor one repeat
number lower of 12 DNA molecules.

� Major additional contributor A contributor with an initial number of DNA
molecules of a single allele varying over 0− 200 and a large contributor one repeat
number lower of 50 DNA molecules.
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These correspond to situations with very high probability of dropout, varying probability
of dropout and very low probability of dropout for the stutter peak. 10, 000 simulations
were run for all all initial number of DNA molecules N of the variable contributor in the
set N ∈ {2, 4, . . . , 198, 200}. The threshold C was set to 50. From this dropout rates
were estimated for the allelic and stutter peak. These were compared to the theoretical
dropout rates of the Gamma model. Parameters for the Gamma model were estimated
by maximum likelihood, only taking dropout rates into account. Information like peak
heights was not included in the maximum likelihood estimation. Let G be the cumulative
distribution function of the Gamma distribution, n the number of DNA molecules of the
additional contributor (either 0,12, or 50), Dallele(N) the number of times the allelic
peak dropped out during simulation out of a possible 10, 000 times and Dstutter(N) the
same for the stutter peak. Then the following is maximized over ρ, ξ and η:∏

N∈{2,4,...,198,200}

L(N), (41)

with

L(N) =G(50; ρξN + ρ(1− ξ)n), η)10,000−Dstutter(N) ·G(50; ρ(1− ξ)N, η)10,000−Dallele(N)·
· (1−G(50; ρξN + ρ(1− ξ)n), η))Dstutter(N) · (1−G(50; ρ(1− ξ)N, η))Dallele(N).

(42)

For comparison the likelihood was maximized with the mean peak height contribution of
a single DNA molecule (ρ · η) and stutter (ξ) directly estimated from the data. Figure 7
shows estimated dropout rates from the data (black) compared to the dropout rates
from maximum likelihood estimation of the Gamma model. Estimation with variable ξ,
ρ and η (blue) shows dropout rates closely resembling those estimated from the data.
However, the stutter parameter varies widely for the three different situation. In a
DNA profile a wide range of scenario’s likely occurs. Estimating ρ · η and ξ from the
data thus represents a more realistic approach, as this forces some uniformity across
the three different situations described above. Unfortunately since the scale parameters
are assumed equal for the stutter and allelic peak it is not clear how to estimate the
remaining parameter. Thus there is one remaining degree of freedom to optimize over.
This situation (red) is also plotted. Clearly the dropout rates are less similar to the
estimated dropout rates. Allelic dropout rates are very close to each other for all three
situations such that they are hard to distinguish graphically and are not plotted here,
but can be found in the section Additional Figures.

Estimated parameter values are shown in table 2. In the case of three degrees of free-
dom the stutter percentage varies widely, while in the case of one degree of freedom the
remaining parameter that controls the variance of the peak heights varies significantly.
Realistically this should be constant for these different scenarios and would result in
worse fits for the dropout rates.
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Maximum likelihood estimation Direct estimation

Parameter No contributor Minor contributor Major contributor No contributor Minor contributor Major contributor

ρ 0.15 .15 .14 .36 .21 .15
η 23.4 24.5 25.8 9.7 16.3 23.1
ξ 6.0e− 05 3.6e− 02 2.5e− 02 3.1e− 02 3.1e− 02 3.1e− 02

Table 2: Estimated parameters of the gamma model from dropout rates with ”Maximum
likelihood estimation” denoting the situation in which all 3 parameters are
estimated by maximizing the likelihood, whereas ”Direct estimation” denotes
the situation in which two parameters are estimated directly from the data.

6.1.2 Bivariate Normal model

Goodness of Fit
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Figure 8: Quantile-quantile plots of simulation data of peak height for three different
starting values N of the number of an alleles vs the fitted normal distribution

Similarly to section 6.1.1, Q-Q plots were made for different starting values of N
using samples of 10, 000 simulations to evaluate the goodness of fit of the bivariate
normal distribution for the stutter and allelic peak individually. Again the DNA was
amplified over 28 cycles. This is shown in figure 8. The normal distribution appears
to fit excellently with the allelic peak height distribution, especially for higher starting
amounts of DNA N . A slight curve is evident in the QQ-plot of the stutter peaks, more
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Figure 9: Histograms using simulations of peak height for three different starting values

N of the number of an alleles with the fitted normal distribution plotted in
blue.
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Figure 10: Combined plot of stutter and allelic peak height with simulations using three
different starting values N of the number of an alleles with confidence ellipses
of the fitted bivariate normal distribution.

so for lower values of N . The same simulations with accompanying estimates are plotted
in figure 9 in the form of histograms with the appropriately scaled density function of
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the estimate.
Two dimensional plots are shown in figure 10. Each black dot represents 1 simulation

outcome, i.e. the allelic and stutter peak height. Confidence ellipses of the estimated
bivariate normal distribution are plotted in red for values of 10% to 90% with steps
of 10%. Visually it is clearly not an exact fit, though it does tend to improve with
increasing number of starting DNA N .
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Figure 11: Q-Q plots of simulation data of stutter peak height conditional on the al-
lelic peak dropping out for two different starting values N of the number
of an alleles vs the (fitted) normal distribution. Blue corresponds to a nor-
mal distribution with estimated parameters by maximum likelihood, while
red corresponds to a normal distribution with parameters as defined in equa-
tion 20.
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Figure 12: Histograms using simulation data of stutter peak height conditional on the
allelic peak dropping out for two different starting values N of the number
of an alleles with the (fitted) normal distribution plotted. Blue corresponds
to a normal distribution with estimated parameters by maximum likelihood,
while red corresponds to a normal distribution with parameters as defined in
equation 20.
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In addition it is assumed the stutter peak height given the allelic peak dropping
out follows a normal distribution as in equation 20. Figure 11 shows Q-Q plots for
the quantiles from the simulation vs the quantiles of the normal distribution. Blue
corresponds to a normal distribution with estimated parameters by maximum likelihood,
while red corresponds to a normal distribution with parameters as defined in equation 20.
Given the fact that these stutter peaks are only responsible for very small contributions,
the goodness of fit should be sufficient. Figure 12 shows the accompanying histograms
with probability density functions.

Parameters as a function of N
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Figure 13: Estimated mean and variance of the bivariate normal distribution for both
the stutter and allelic peak as a function of the starting amount of DNA N .

The mean and variance of the bivariate normal distribution for both the stutter and
allelic peak have been assumed to be proportional to the starting amount of DNA N .
Figure 13 shows as nice a linear relationship for mean and variance of both the stutter and
allelic peak heights as could be hoped for. In addition figure 14 shows a roughly constant
correlation parameter for N > 25. Figure 15 shows estimates of the mean and standard
deviation parameter of the normal distribution for the stutter peak when the allelic peak
has dropped out as a function of N . Direct maximum likelihood estimates from the data
(blue) are compared to estimates from data using the parameters in equation 20 (red).
For larger N there is an increased probability of lower dropout frequencies. If there is
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Figure 14: Estimated correlation parameter of the bivariate normal distribution as a
function of the starting amount of DNA N .
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Figure 15: Estimated mean and standard deviation parameters of the normal distribu-
tion of the stutter peak conditional on the allelic peak dropping out. Points
in red show estimates from data using the parameters in equation 20, while
blue show maximum likelihood estimations using data directly.

no dropout the parameters are set to 0, which can be seen in the figure for N > 40.

Dropout

As in section 6.1.1 dropout rates were tested in three different situations:

� No additional contributor A contributor with an initial number of DNA
molecules of a single allele varying over 0− 200 with no other contributors.
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Figure 16: Dropout rates of the stutter peak as a function of the starting amount of
DNA N . Black are the dropout estimates from the data, blue from maximum
likelihood estimation of the Bivariate Normal model and red with parameters
estimated from the data.

� Minor additional contributor A contributor with an initial number of DNA
molecules of a single allele varying over 0− 200 and a small contributor one repeat
number lower of 12 DNA molecules.

� Major additional contributor A contributor with an initial number of DNA
molecules of a single allele varying over 0− 200 and a large contributor one repeat
number lower of 50 DNA molecules.

10, 000 simulations were run for all all initial number of DNA molecules N of the variable
contributor in the set N ∈ {2, 4, . . . , 198, 200}. The threshold C was set to 50. From
this dropout rates were estimated for the allelic and stutter peak. These were compared
to the theoretical dropout rates of the Bivariate Normal model. Parameters were es-
timated by maximum likelihood, only taking dropout rates into account. Peak height
information was not incorporated into the estimation except to calculate the conditional
distribution of the stutter peak given the allelic peak height. Let N be the cumulative
distribution function of the Normal distribution, (H0

i , H
s
i ) the bivariate normal random

variable associated with simulation i ∈ {1, . . . , 10000} and (Hs
i |H0

i ) be as defined in
section 4.2. As before (equation 41) maximum likelihood estimation was performed now
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over variables r, m, ξ, sdstutter and sdallele, and:

L(N) =
∏

{H0
i ≤50}∪{Hs

i≤50}

N
(

50;m(1− ξ)N,
√
Nsdallele

)
· P
(
Hs
i ≤ 50|H0

i ≤ 50
)
·

∏
{H0

i ≤50}∪{Hs
i>50}

N
(

50;m(1− ξ)N,
√
Nsdallele

)
·
(
1− P

(
Hs
i ≤ 50|H0

i ≤ 50
))
·

∏
{H0

i >50}∪{Hs
i≤50}

(
1−N

(
50;m(1− ξ)N,

√
Nsdallele

))
· P
(
H i
a ≤ 50|H0

i = h0i
)
·

∏
{H0

i >50}∪{Hs
i>50}

(
1−N

(
50;m(1− ξ)N,

√
Nsdallele

))
·
(
1− P

(
Hs
i ≤ 50|H0

i = h0i
))

,

(43)

In calculating (Hs
i |H0

i ) care must be taken to incorporate the number of initial DNA
molecules of the stutter peak n. For comparison the likelihood was maximized with
all parameters directly estimated from the data. Figure 16 shows estimated dropout
rates from the data (black) compared to the dropout rates from maximum likelihood
estimation of the Bivariate Normal model (blue) and dropout rates from the Bivariate
Normal model with parameters estimated directly (red) for the stutter peak. As expected
the MLE Bivariate Normal model appears to fit better than the Bivariate Normal model
with parameters estimated directly. Even so both models fit reasonably well with large
differences in likelihood only occurring if the generated data was unlikely in the first
place. E.g. if in the case of no additional contributors dropout occurs there is a large
difference in likelihood noticeable between the red and blue ”lines”. Dropout rates for
the allelic peak fit very well, just like with the gamma model, and can be found in the
section Additional Figures.

Maximum likelihood estimation Estimated parameters

Parameter No contributor Minor contributor Major contributor

r .30 8.0e− 02 4.2e− 02 .59
m 3.49 3.48 3.50 3.50
ξ 2.8e− 02 2.6e− 02 2.8e− 02 3.1e− 02

sdstutter .67 1.30 1.40 .38
sdallele 7.69 7.56 7.21 7.63

Table 3: Estimated parameters of the bivariate normal model from dropout rates with
”Maximum likelihood estimation” denoting the situation in which all parame-
ters are estimated by maximizing the likelihood, whereas ”Direct estimation”
denotes the situation in which the parameters are estimated directly from the
data.

Estimated parameter values are shown in table 3. Maximum likelihood estimation
return relatively constant values m, ξ and sdallele while r and sdstutter show more varia-
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tion. Perhaps unsurprisingly direct estimation of these first 3 parameters closely resemble
those estimated by maximum likelihood, in contrast to the latter two.

6.2 Example Case

To examine the performance of the models in practice we will test the above methodology
on a case introduced in [9, Gill et al.(2008)] and also analyzed in [9, Cowell et al.(2011)]
and [9, Cowell et al.(2013)]. The case concerns an incident in which the deceased had
spent the evening with a group of friends. An altercation in the car park between the
deceased and several others resulted in the death of the victim. The alleged offenders
were then observed going into a public house to clean themselves in the lavatory. Sub-
sequently two blood stains, MC18 and MC15, were found and were subjected to DNA
analysis. This resulted in two DNA profiles indicating multiple contributors of at least
three persons. The genotype of the victim, a suspect and an additional individual who
likely contributed to one or more of the blood stains is known.

6.2.1 Estimated likelihoods

Both blood samples will be considered separately testing both the Gamma model and
the Bivariate Normal model with 0th, 1st and 2nd order approximation. For compari-
son the situation in which the suspect is present will be compared to the presence of
a random individual from the population. In both cases there will be an additional
random individual to account for any unknown sources of DNA. For ease of com-
parison between the Gamma and Bivariate Normal model the parameters m = ρη,
sdallele =

√
ρ(1− ξ)η and sdstutter =

√
ρξη will be reported in stead of ρ and η. Then

E(Hs
a) = ξm

∑
i φinia, E(H0

a) = (1 − ξ)m
∑

i φinia, Var(Hs
a) = sd2stutter

∑
i φinia and

Var(H0
a) = sd2allele

∑
i φinia similar to the Bivariate Normal model (equation 11). In

addition φvic, φK , φRi and φsus will be the fraction of DNA contributed by the victim,
the additional known contributor, the ith random contributor and the suspect respec-
tively. Let θ be the vector of parameters the likelihood L(θ, E) is to be maximized over,
with θ′ the values found by maximization. Then standard errors σi for parameter θi are
estimated as follows:

σi =
1√

∂2L(θ,E)
∂θ2i

(θ′)

. (44)

The parameter φsus is defined as the remainder contribution 1 −
∑

φi\φsus φi and as
such the likelihood is not a function of φsus. Thus there is no standard error calculated
for this parameter. This is also true for the parameter sdstutter in case of the Gamma
model, which is defined as a function of m, ξ and sdallele. The second partial derivatives
are found by numerical estimation using the R-package numDeriv [11, Gilbert, P. and
Varadhan, R. (2012)]. For numerical maximization the R-package Rsolnp [10, Alexios
Ghalanos and Stefan Theussl (2012)] was used.
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Sample MC18 with the suspect assumed to have contributed (H0)

Gamma model Bivariate Normal model

Order= 0 Order= 1 Order= 2

r - - 0.84± 0.12 0.95± 0.02
m 1064± 19 1062± 20 1063± 21 1064± 19
ξ 0.079± 0.008 0.077± 0.007 0.071± 0.004 0.071± 0.003

sdallele 82.7± 8.5 87.1± 10.1 86.4± 9.1 88.5± 8.5
sdstutter 24.3 18.0± 5.4 16.7± 3.9 17.5± 2.6
φvic 0.705 0.706 0.704 0.704
φK 0.085± 0.008 0.085± 0.008 0.083± 0.008 0.084± 0.008
φR1 0.023± 0.010 0.020± 0.009 0.024± 0.007 0.024± 0.006
φsus 0.187± 0.009 0.189± 0.009 0.189± 0.009 0.187± 0.008

likelihood (log) −1.178e02 −1.146e02 −1.137e02 −1.140e02

Table 4: Parameters of the Gamma model and the Bivariate Normal model obtained by
maximum likelihood estimation for the DNA profile obtained from MC18 with
the suspect assumed to have contributed.

Table 4 shows the estimated parameters with accompanying likelihoods for the differ-
ent models. The different models agree roughly on all the parameters. Greatest variation
between the models appears to be between the parameter sdstutter. However, standard
errors for this parameter are also relatively large. The correlation is estimated to be
very significant, especially for the second order approximation. Additionally, whereas
the standard error for this parameter is fairly large for the first order approximation,
the parameter value shows little uncertainty for the second order approximation. Using
the uncorrelated Bivariate Normal model seems to offer a better fit then the Gamma
model going by the difference in the likelihood. A smaller improvement can be made
by using higher order approximations, although this difference is fairly small. The first
order approximation results in the highest likelihood.

Sample MC15 with the suspect assumed to have contributed (H0)

Table 5 shows the estimated parameters with accompanying likelihoods for the different
models. Again the models are mostly in agreement on all the parameters. Greatest
variation between the models appears to be between the parameter sdstutter and also in
r between the Bivariate Normal models with order= 1, 2. The parameter sdstutter shows
high standard errors across the board. This is even moreso the case for r. The correlation
is estimated to be fairly insignificant, especially for the first order approximation. There
is very little difference in the maximized likelihood between all the different models.
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Gamma model Bivariate Normal model

Order= 0 Order= 1 Order= 2

r - - 0.02± 0.33 0.46± 0.22
m 919± 19 920± 21 920± 21 914± 22
ξ 0.069± 0.008 0.071± 0.006 0.071± 0.006 0.070± 0.006

sdallele 83.9± 8.9 91.9± 10.9 91.9± 10.9 91.2± 10.5
sdstutter 22.8 13.2± 4.6 13.3± 4.7 17.9± 4.7
φvic 0.822 0.823 0.826 0.827
φK 0.043± 0.008 0.042± 0.008 0.042± 0.008 0.047± 0.008
φR1 0.018± 0.011 0.021± 0.009 0.020± 0.009 0.014± 0.009
φsus 0.117± 0.008 0.111± 0.009 0.111± 0.009 0.112± 0.009

likelihood (log) −1.060e02 −1.058e02 −1.058e02 −1.054e02

Table 5: Parameters of the Gamma model and the Bivariate Normal model obtained by
maximum likelihood estimation for the DNA profile obtained from MC15 with
the suspect assumed to have contributed.

Sample MC18 with a random person assumed to have contributed (H1)

Estimated parameters with accompanying likelihoods for the different models are shown
in table 6. There is more variation between parameters than in the previous situations.
The parameter sdstutter shows even greater variability between models than before, so
much so that it cannot reasonably be explained by variance looking at the estimated
standard errors. The same is true for the stutter parameters ξ and φR1 . The correlation
is estimated to be very significant, similarly to hypothesis H0 for the same sample. Using
the uncorrelated Bivariate Normal model seems to offer a better fit then the Gamma
model going by the difference in the likelihood. A smaller improvement can bet made
by using higher order approximations, although this difference is smaller. The second
order approximation results in the highest likelihood.

Sample MC15 with a random person assumed to have contributed (H1)

Table 7 shows the estimated parameters with accompanying likelihoods for the different
models. As before, the models are mostly in agreement on all the parameters. The
parameter sdstutter differs significantly between the Gamma and the Bivariate Normal
model. Correlation is estimated to be practically non-existent, though the standard
errors show large uncertainty for the parameter r. Likelihoods are very similar between
the different models.

Likelihood ratios

The likelihood ratios obtained from the maximized likelihood functions above are shown
in table 8. The different models result in very similar likelihood ratios with the second
order approximated Bivariate Normal model for sample MC18 being the only large
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Gamma model Bivariate Normal model

Order= 0 Order= 1 Order= 2

r - - 0.84± 0.12 0.98± 0.10
m 1063± 17 1061± 17 1059± 19 1045± 13
ξ 0.074± 0.008 0.068± 0.007 0.077± 0.005 0.085± 0.003

sdallele 74.6± 8.4 75.0± 9.1 78.8± 9.1 85.2± 7.9
sdstutter 21.2 14.8± 5.6 26.9± 7.2 34.9± 3.9
φvic 0.694 0.690 0.702 0.717
φK 0.085± 0.009 0.089± 0.007 0.085± 0.008 0.083± 0.007
φR1 0.032± 0.008 0.032± 0.008 0.021± 0.011 0.005± 0.006
φR2 0.188± 0.009 0.188± 0.009 0.192± 0.012 0.195± 0.007

likelihood (log) −1.306e02 −1.275e02 −1.267e02 −1.253e02

Table 6: Parameters of the Gamma model and the Bivariate Normal model obtained by
maximum likelihood estimation for the DNA profile obtained from MC18 with
an additional random person assumed to have contributed.

outlier.

Implications

The two samples MC18 and MC15 have shown mixed results. The Bivariate Normal
model to be for the different order approximations has been shown to have a very similar
goodness of fit (similar likelihoods) to the Gamma model. This was accompanied by very
low estimated values of the correlation coefficient r. The parameter sdstutter did differ
between the Gamma and Bivariate Normal model, although standard errors indicate
significant uncertainty. In contrast, estimates from sample MC18 show a general increase
in likelihood from the Gamma model to the Bivariate Normal model. Increasing the
order approximation further improves the goodness of fit. Only in the case of hypothesis
matrmH0 does the first order approximation have a slightly higher likelihood than the
second order approximation. The correlation between the stutter and allelic peak is
estimated to be very significant. In addition to variation between the Gamma and
Bivariate Normal model, sdstutter also shows a lot of variation between the different
order approximations for hypothesis mathrmH0.

The two extra degrees of freedom the Bivariate Normal model has over the Gamma
model can be expressed by the parameters sdstutter and r. Unfortunately these are
exactly the parameters that show difficulty in being estimated with any consistency.
One sample shows high correlation with a relatively high degree of certainty, whereas
the other estimates low correlation but with a great deal of uncertainty. Although in
the latter case a very high correlation coefficient does seem unlikely. The parameter
sdstutter seems to be generally lower for the Bivariate Normal model, if not for some
drastically higher values found for the second order approximation. Standard errors
also seem to be relatively large for this parameter. One has to question the validity of
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Gamma model Bivariate Normal model

Order= 0 Order= 1 Order= 2

r - - 3.46e− 15± 0.37 2.90e− 07± 0.49
m 921± 20 918± 21 918± 21 920± 23
ξ 0.070± 0.010 0.072± 0.006 0.072± 0.006 0.072± 0.005

sdallele 84.4± 10.8 91.4± 13.4 91.4± 13.4 104.5± 14.5
sdstutter 23.1 13.9± 5.6 13.9± 5.6 12.2± 4.2
φvic 0.810 0.806 0.806 0.791
φK 0.033± 0.017 0.031± 0.011 0.031± 0.011 0.024± 0.011
φR1 0.041± 0.010 0.055± 0.011 0.055± 0.011 0.092± 0.018
φR2 0.116± 0.017 0.108± 0.032 0.108± 0.032 0.092± 0.018

likelihood (log) −1.197e02 −1.192e02 −1.192e02 −1.192e02

Table 7: Parameters of the Gamma model and the Bivariate Normal model obtained by
maximum likelihood estimation for the DNA profile obtained from MC15 with
an additional random person assumed to have contributed.

MC18 MC15

Gamma model 12.82 13.74
Bivariate Normal model, order=0 12.88 13.41
Bivariate Normal model, order=1 13.01 13.41
Bivariate Normal model, order=2 11.26 13.74

Table 8: Log-Likelihood ratios of the Gamma model and the Bivariate Normal model
obtained by maximum likelihood estimation.

adding additional parameters to a model when these parameters cannot be estimated
consistently from actual data. The fact that the Bivariate Normal model shows no better
fit for one sample is especially disappointing considering considering the fact that the
likelihood is maximized over an additional number of parameters (either one or two).
Furthermore, the likelihood ratios are very similar for all models except for the second
order approximated Bivariate Normal model with sample MC18. Since calculating the
likelihood ratio was the primary goal, using any of these models, with one exception,
would have resulted in the same conclusion.

6.2.2 Assessing absence/presence of peak distribution

To further examine the validity of the different models it is useful to examine whether
the data represents a plausible outcome given the model in question. Before examining
the peak height distribution in this context we will only take the absence or presence of
peaks into consideration. Given a sample s and marker m this can be considered as a
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sequence of independent binomial experiments Ba as follows:

P (Ba = 1) = P (Ha ≥ C| {Hi : i ∈ {a+ 1, . . . , Am}})
P (Ba = 0) = P (Ha < C| {Hi : i ∈ {a+ 1, . . . , Am}}) = 1− P (Ba = 1) .

(45)

The distribution of the observed peak height Hma of course being determined by the
model (and its parameters) in question. To determine these probabilities additional
auxiliary variables Dma are introduced with the same parents as the variables Oma and
states 0 and 1 with:

P(Da = 1|Na = na) = P (Hma ≥ C|Hj ,na,φs,θ) . (46)

Specifically for the Gamma model this is equal to:

P(Da = 1) = 1−G(C; Σ, η), (47)

with Σ = ρ(1− ξ)
∑

i φinia + ρξ
∑

i φini,a+1 and G the cumulative distribution function
of the gamma distribution. And in the case of the Bivariate Normal model they are
defined as:

P(Da = 1) = 1− FNormal

C; (2− ε)m
∑
i

φinia + E(Hs∗
a+1) ,

√
sd2allelic

∑
i

φinia + Var(Hs∗
a+1)

 ,

(48)

with FNormal(x,m, sd) being the cumulative distribution function of a normal random
variable with mean m and standard deviation sd. The mth order approximation de-
scribed in section 5.2 also applies here.

Setting evidence for the variables {Oi : i ∈ {a+ 1, . . . , Am}} is effectively equal to con-
ditioning on the peak heights {Hi : i ∈ {a+ 1, . . . , Am}} (section 5.4). Since no evidence
will be entered for the D-variables these auxiliary variables will have no influence on the
rest of the model. After propagating the evidence, P(Ba = 1) can readily be obtained
from the corresponding D-variable.

Let pma be the probability of the outcome of the binomial experiment for allele a and
marker m as described above. We will define the partial sum:

PartialSum(m, a) =

m−1∏
i=1

Am∏
j=1

−log(pij)

 ·
 a∏
j=1

−log(pmj)

 . (49)

The progression of this partial sum through markers and alleles is plotted in figures 17
through 20 for both hypotheses (Hi : i ∈ {0, 1}) and for both samples MC18 and MC15.
Via Monte Carlo simulation of the binomial sequence with sample size 10, 000, .95 and
.99 quantiles were estimated. These are plotted in blue and red respectively. All partial
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sums end up below the .95 quantile although some are further removed than others. The
2th-order approximated bivariate normal model appears to be an outlier with respect to
the other models for sample MC18 and hypothesis H0. The partial sum appears to flirt
with crossing the over the .95 quantile. As such, one could suspect the data be somewhat
unlikely given this model. Perhaps unsurprisingly, this corresponds to the one outlier
among the likelihood ratios (table 8). Disregarding this case the partial sums all look
very similar for equal sample and hypothesis.
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Figure 17: Progression of the partial sum (equation 49) for sample MC18 and hypothesis
H0 with estimated .95 and .99 quantiles in blue and red resp.

●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●

●●●
●●●●●●●●●●●●●

●●●●

0 20 40 60 80 120

0
5

10
15

20

●●●●

●●●●●●●●●●
●●●●

●●●●●
●●●●●●●●

●●●●●
●●●●●

●
●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●
●●●●●●●●●●●

●●
●
●●●

●

●●●●●●●●●●●●●
●
●●●
●●●●●

●●●●●●●●
●●●●●

●●●●●
●
●●●
●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●
●●●●●●●●●●●●

●●
●●●

Gamma

−
lo

g(
pa

rit
al

 s
um

)

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●
●●●●●●●●●●●●●

●●●●

0 20 40 60 80 120

0
5

10
15

20

●

●●●●●●●●●●●
●●●
●●●
●●●●●

●●●●●●●●
●●●●●

●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●

●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●
●●●

●

●●●●●

●●●●●●
●●
●
●●●
●●
●●●●

●●●●●●●
●●●●●

●●●●●
●
●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●

●●
●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●
●●●●●●●●●●●●

●●
●●●

Bivariate Normal, Order=0

−
lo

g(
pa

rit
al

 s
um

)

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●
●●●●●●●●●●●●●

●●●●

0 20 40 60 80 120

0
5

10
15

20

●

●●●●●●●●●●●
●●●
●●●
●●●●●

●●●●●●●●
●●●●●●

●●●●●
●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●

●●●
●●●●●●●

●●●
●●●●●●●●●●●●

●●
●●●

●

●●●●●

●●●●●●
●●
●●
●●
●●●●●

●●●●●●●●
●●●●●

●●●●●
●
●●●
●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●

●●●
●●●●●●●

●●●
●●●●●●●●●●●

●●
●
●●●

Bivariate Normal, Order=1

−
lo

g(
pa

rit
al

 s
um

)

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●

●●●
●●●●●●●●●●●●●

●●●●

0 20 40 60 80 120

0
5

10
15

20

●

●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●

●●●●●●
●●●●●

●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●
●●●●●●●●●●●●

●●
●●●

●

●●●●●●●●●●●
●●

●
●●●
●●
●●●●●●●●●●●

●●●●●●
●●●●●

●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●

●●
●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●
●●●●●●●●●●●●

●●
●●●

Bivariate Normal, Order=2
−

lo
g(

pa
rit

al
 s

um
)

Figure 18: Progression of the partial sum (equation 49) for sample MC15 and hypothesis
H0 with estimated .95 and .99 quantiles in blue and red resp.

6.2.3 Assessing peak height distribution

Consider the peak height distribution given this peak not dropping out, (Ha|Ha ≥ C).
Then this is a continuous distribution for x ≥ C and as a result the random variable
P(Ha ≤ xa|Ha ≥ C is uniformly distributed on (0, 1). Let Drm be the set of alleles
in which no peak is observed for marker m and xma the peak height at allele a and
marker m. Then under the null hypothesis of the peak heights following the distribution
obtained by maximum likelihood estimation of the model in question we can consider
the following random variables a results of random draws from independent uniformly
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Figure 19: Progression of the partial sum (equation 49) for sample MC18 and hypothesis
H1 with estimated .95 and .99 quantiles in blue and red resp.
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Figure 20: Progression of the partial sum (equation 49) for sample MC15 and hypothesis

H1 with estimated .95 and .99 quantiles in blue and red resp.

distributed random variables:

Bma ∼ P (Ham ≤ xma|Hma ≥ C,Him = xmi ∀ i ∈ {a+ 1, . . . , Am} \Drm, Hmj < C ∀ j ∈ Drm) .

(50)

Conditioning on Hmi ∀ i ∈ {a+ 1, . . . , Am} \Drm and Hmj∀ j ∈ Drm is equivalent to
entering evidence into the corresponding O-variables. Finally the additional auxiliary
variables Qma are introduced:

P(Qma = 1|Nma = nma) = P (Hma ≤ xma|Hj ,nma,φs,θm) . (51)

For specificity regarding the model used the D-variables in section 6.2.2 can be taken as a
template. Note that no evidence is entered for either the Q-variables or the D-variables.
Then the outcome of Bma; bma, is easily evaluated by propagating the evidence and
evaluating:

bma =
P(Q′ma = 1)− P(D′ma = 0)

1− P(D′ma = 0)
, (52)

with Q′ and D′ the updated distributions after propagation.

43



Q-Q plots of the quantiles of these bma versus the theoretic quantiles of a uniform
distribution are plotted in figures 21 through 24 for both hypotheses (Hi : i ∈ {0, 1})
and for both samples MC18 and MC15. No great difference is evident between the
models. The Q-Q plots of the prosecutions hypothesis H1 do show more deviation from
the expected quantiles when compared to the defense’s hypothesis H0.
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Figure 21: Q-Q plots of the quantiles of {bam : m ∈ {1, . . . ,M}, a ∈ {1, . . . , Am}} ver-
sus the theoretic quantiles of a uniform distribution for sample MC18 and
hypothesis H0.
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Figure 22: Q-Q plots of the quantiles of {bam : m ∈ {1, . . . ,M}, a ∈ {1, . . . , Am}} ver-
sus the theoretic quantiles of a uniform distribution for sample MC15 and
hypothesis H0.
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Figure 23: Q-Q plots of the quantiles of {bam : m ∈ {1, . . . ,M}, a ∈ {1, . . . , Am}} ver-
sus the theoretic quantiles of a uniform distribution for sample MC18 and
hypothesis H1.
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Figure 24: Q-Q plots of the quantiles of {bam : m ∈ {1, . . . ,M}, a ∈ {1, . . . , Am}} ver-
sus the theoretic quantiles of a uniform distribution for sample MC15 and
hypothesis H1.

7 Discussion

Validation of the Bivariate Gamma model using the simulation model of section 3 gives
promising results. Problems inherent to using a gamma distribution in modeling the peak
height distribution could be resolved by using a bivariate normal model. Firstly there is
no restriction to one parameter to control both the mean and standard deviation of the
stutter peak. Independent gamma distributions with equal scale parameters sum to be
gamma distributed. For normal distributions both the mean and standard deviation can
be different. In addition the normal distribution has an obvious extension to a bivariate
distribution, whereas bivariate gamma distributions are more complex and prone to more
restrictions. As a result the Bivariate Normal model appears to perform better when
tested in this manner (section 6.1).

To see how the Bivariate Normal model compares to the Gamma model in practise
both models were applied to an actual case (section 6.2). Results differed between the
two samples. One showed practically no difference between the models over a range
of different order approximations. In addition maximum likelihood estimation returned
a correlation coefficient close to zero in many of those cases. Thus there appeared
to be no benefit to using the Bivariate Normal model over the Gamma model. The
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other sample did show significant improvement to using the Bivariate Normal model.
Even the uncorrelated version of this model produced a higher maximized likelihood
than the Gamma model. Using higher order approximations only further heightened the
likelihood. Thus we are left with mixed results. The cause of this can only be speculated
on. Perhaps the numerous flaws in the method relating to marker and allele specific
parameters, the absence of consideration for certain artefacts such as silent alleles, as
well as small flaws in the model, causes there to be significant variation as to which
model better fits the data of a specific case. It could be that many of these problems
would need to be resolved before the proposed change of model yields consistent results.

One has to consider whether the cost of using the Bivariate Normal model are out-
weighed by the benefits. Switching to the uncorrelated Bivariate Model only comes at
the cost of needing the maximize over an extra parameter, whereas upping the order
of approximation increases computation time of the likelihood function significantly. In
the case of two random contributors, when reaching the point where this computation
time is mostly determined by the time it takes to propagate the network, the computa-
tion times roughly increases ninefold when upping the order of approximation by one.
When adding extra random contributors or considering a particular random contribu-
tor for multiple samples, the complexity of the network quickly increases and using the
Bivariate Normal model with any order approximation other than zero soon becomes
infeasible.
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8 Additional Figures
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Figure 25: Parameters of the gamma distribution fitted by maximum likelihood estima-
tion for the stutter and allelic peak with variable pre-amplification parameter
(πextraction,aliquot).
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Figure 26: Parameters of the gamma distribution fitted by maximum likelihood estima-
tion for the stutter and allelic peak with variable stutter parameter (πstutter).
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Figure 27: Parameters of the gamma distribution fitted by maximum likelihood estima-
tion for the stutter and allelic peak with variable amplification parameter
(πPCReff ).
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Figure 28: Parameters of the bivariate normal distribution fitted by maximum likelihood
estimation for the stutter and allelic peak with variable pre-amplification
parameter (πextraction,aliquot).
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Figure 29: Parameters of the bivariate normal distribution fitted by maximum likelihood
estimation for the stutter and allelic peak with variable stutter parameter
(πstutter).
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Figure 30: Parameters of the bivariate normal distribution fitted by maximum likeli-
hood estimation for the stutter and allelic peak with variable amplification
parameter (πPCReff ).
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Figure 31: Dropout rates of the allelic peak as a function of the starting amount of
DNA N . Black are the dropout estimates from the data, red and blue from
maximum likelihood estimation of the Gamma model with red having ρ · η
and ξ estimated directly from the data.
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Figure 32: Dropout rates of the allelic peak as a function of the starting amount of DNA
N . Black are the dropout estimates from the data, blue from maximum
likelihood estimation of the Bivariate Normal model and red with parameters
estimated from the data.
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