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Abstract

Delay Differential Equations (DDEs) appear in many applications, including neu-
roscience, ecology, and engineering. The analysis of one- and two-parameter
families of bifurcations is based on computing normal forms of ODEs without
delays describing the dynamics on center manifolds. We give an overview of
so-called sun-star calculus of dual semigroups necessary to derive symbolic for-
mulas for the critical normal form coefficients for the Hopf, Generalized Hopf,
Zero-Hopf and Double Hopf bifurcations. We then discuss their implementation
in the Matlab package DDE-BIFTOOL. Additionally, detection of these bifurcations
was implemented. We demonstrate the new features by detecting bifurcations
and computing their normal form coefficients in several DDE models.
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Chapter 1

Introduction

1.1 Bifurcations and Delay Differential Equations

In science, many phenomena can be modelled by Ordinary Differential Equations (ODEs).
An ODE is given by

ẋ(t) = f (t, x(t),α),

where x is a function R → Rn, f is a function R ×Rn ×Rm → Rn, α is a parameter in
Rm, and the dot represents the derivative with respect to t. In many applications, the ODE
is autonomous:

ẋ(t) = f (x(t),α), (1.1)

i.e. it doesn’t depend explicitly on time. (This is the case when the system that is being
modelled is free of external forcing.)

As a quick recap, we provide a short description of the analysis of bifurcations for ODEs,
using the Hopf bifurcation as an example.

When continuously changing the parameter, the phase portrait of the ODE may undergo a
qualitative change. This is called a bifurcation. The type of bifurcation is determined by
the spectrum of the derivative D f of f . A Hopf bifurcation takes place if an eigenvalue pair
crosses the imaginary axis, see Figure 1.1. If a system of the form (1.1) undergoes a Hopf

α < 0 α= 0

−iω0

+iω0

α > 0
FIGURE 1.1: At a Hopf bifurcation, a complex eigenvalue pair crosses the imaginary axis.

bifurcation, then near the origin, it’s locally topologically equivalent to the system

ρ̇ = ρ
�

β(α) + L1(α)ρ
2
�

,

ϕ̇ = 1.

1
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Its complex form is

ż = z
�

β(α) + i + L1(α)|z|2
�

.

The parameter L1(α) is the First Lyapunov Coefficient. The critical normal form coefficient
L1(0) determines the direction of the bifurcation.

Example 1.1. We consider the system

ẍ + ẋ3 − 2α ẋ + x = 0.

Setting y = − ẋ , we get a system of two differential equations, namely

¨

ẋ = −y,

ẏ = x − 2αy − y3,

The system undergoes a Hopf bifurcation at α = 0. For the above system, we have
L1(0) = −

3
8 , so at criticality, the system is equivalent to

ż = z
�

β(0) + i −
3
8
|z|2

�

.

Figure 1.2 shows the change of the phase portrait as function of the parameter in the two
cases. If L1 < 0, a stable focus changes into a stable cycle and if L1 > 0, an unstable focus
changes into an unstable cycle.

L1 > 0

ℑ(z)

β

ℜ(z)

β

L1 < 0

ℑ(z)

ℜ(z)

FIGURE 1.2: A supercritical Hopf bifurcation for L1 < 0 (left) and a subcritical Hopf bifurcation for
L1 > 0 (right).

It is well-known that “simple” bifurcations can already occur in low-dimensional systems of
ODEs: one dimension suffices for fold and two dimensions suffice for Hopf bifurcations. Of
course, these bifurcations also occur in higher dimensional settings. It’s a remarkable fact
that in this case, these bifurcations occur in “essentially” the same way as in the lower di-
mensional case. For a generic n-dimensional system exhibiting a fold or Hopf bifurcation,
there exist certain parameter-dependent invariant manifolds, respectively one- and two-
dimensional, called center manifolds. On these manifolds, the bifurcation takes place, while
the behaviour off the manifolds is somehow “trivial”. (See [11], Chapter 5.)
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For instance, the center manifold for the Hopf bifurcation is twodimensional. What it looks
like for a threedimensional system can be seen in Figure 1.3. We see that the bifurcation
“happens” on the twodimensional surface; all other orbits simply converge to the center
manifold.

W c
0

β < 0 β = 0 β > 0

W c
β W c

β

Cβ

FIGURE 1.3: The Hopf bifurcation in a threedimensional system takes place on a twodimensional
center manifold.

If a system has more than one parameter, then starting at a Hopf bifurcation point, it is
possible to vary a second parameter to obtain an entire branch of Hopf bifurcations. As both
parameters vary, so-called codimension 2 bifurcations can occur. If L1 becomes exactly 0, we
have a Generalized Hopf or Bautin bifurcation; if in addition to the imaginary pair, a real
eigenvalue crosses the imaginary axis, we have a Zero-Hopf or Fold-Hopf bifurcation; and
if a second complex pair of eigenvalues crosses the imaginary axis, we have a Double Hopf
or Hopf-Hopf bifurcation. These bifurcations also take place on center manifolds and have
normal forms.

In this thesis, we investigate a broader class of differential equations, namely Delayed Dif-
ferential Equations (DDEs). These can be used to model a broader spectrum of phenomena.
In a DDE, this derivative may depend on the entire “history” of x . A non-rigorous definition
of an (autonomous) DDE might therefore read as follows: a DDE is an equation of the form

ẋ(t) = f (x t ,α),

where x t represents the trajectory of the solution in the past.

Example 1.2. Suppose that our DDE reads

ẋ(t) = ax(t − 1).

In other words, the derivative depends only on the value of x one second ago (if that’s
the unit of t). Now suppose x(t) ∈ R. Then if an initial condition φ : [−h, 0] → R is
given, we can solve the DDE explicitly by integration for t < 1:

x(t) = a

∫ t

ϑ=0

φ(ϑ− 1) ds+ C .

Now, in DDEs depending on a parameter, there are bifurcations as well. They also take place
on center manifolds and they have normal forms, of which the critical normal form coeffi-
cients can be computed. The difference with the ODE case is that it takes more advanced
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mathematical machinery to describe the bifurcations and compute the coefficients. There-
fore, the first aim of this thesis is to present an overview of the relevant theory.

1.2 Numerical bifurcation analysis of DDEs

The second, and main aim of this thesis lies in the automatic computation of the critical
normal form coefficients. For ODEs, there is standard software available to plot orbits, make
bifurcation diagrams and compute the normal form coefficients (e.g. MATCONT). The soft-
ware for DDEs is in a less polished state. It can be roughly divided into two types: some focus
on plotting orbits (otherwise known as integration or simulation) and others focus on bifur-
cation analysis, i.e. computing bifurcation curves. We are primarily interested in the second
type; simulation of DDEs is robustly done by Matlab’s internal dde23 routine. We provide a
short overview of existing bifurcation analysis software here. A compilation of many DDE
software packages can be found in [12].

XPP (X-window PhasePlane, see [6], [5]) by Bard Ermentrout is a software package that
can analyze ODEs, DDEs and other dynamical problems. It is primarily intended to run sim-
ulations, but it can also be used to compute equilibria, their stability, and their invariant
manifolds. It can handle DDEs with several discrete delays. The author has combined its
functionality with AUTO, which is a bifurcation analysis tool for ODEs and maps.

TRACE-DDE (Tool for Robust Analysis and Characteristic Equations of Delay Differential Equa-
tions, see [1] and [2]), by D. Breda, S. Maset and R. Vermiglio, is a Matlab GUI package
for numerical stability analysis of linear autonomous systems of DDEs with several discrete
and/or distributed delays. It allows for the numerical computation of the characteristic roots
and it can perform two-parameter robust stability analysis, producing so-called stability
charts, i.e. sets of asymptotically stable/unstable regions in the parameters plane.

KNUT (see [13]) is a program that can continue periodic orbits in DDEs with time-dependent
discrete delays. It can detect codimension 1 bifurcations (branching points, Neimark-Sacker,
period doubling and fold) and continue bifurcation curves emanating from them. Equilibria
of autonomous systems can also be continued as constant periodic orbits with a small, fixed
period. In this case the Hopf bifurcation is detected as Neimark-Sacker bifurcation, and the
periodic solution, emanating from the Hopf point, can be continued by switching to the
periodic solution branch. The software uses orthogonal collocation to discretize periodic
orbits. For continuation, the pseudo arclength method is used. Codimension-one bifurcations
are computed using test functionals and the arising bordered sparse linear systems are solved
using the BEMW method developed by Govaerts and Pryce [9].

Lastly, we have a Matlab package called DDE-BIFTOOL (see [4]). Version 2.00 of this program
is able to produce bifurcation diagrams of DDEs, including the continuation of steady state,
fold and Hopf points, as well as periodic and homoclinic orbits. However, it is not able to
detect these bifurcations.

As one can see, KNUT and DDE-BIFTOOL are the programs of choice for bifurcation analysis in
the spirit of MATCONT. Both have drawbacks: KNUT can only artificially continue equilibria
and DDE-BIFTOOL can’t detect bifurcations. What both can’t do is detect codimension 2 bi-
furcations and compute normal form coefficients associated with any bifurcation. They also
don’t have the built-in ability to run simulations.

For this thesis, we have expanded DDE-BIFTOOL. We have added the functionality mentioned
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above for the detection of Hopf bifurcations and its corresponding codimension 2 bifurca-
tions. We have not added the same functionality for the fold and cusp bifurcations, because
all relevant bifurcation can be obtained from analyzing the system without delays as a stan-
dard ODE.

1.3 Structure of this thesis

In the first three chapters, we will focus on the theory of DDEs. We start out with the func-
tional analytic background of DDEs in Chapter 2. We then turn our attention to the analysis
of bifurcations in DDEs in Chapter 3. In Chapter 4, we describe what the normal form of a
DDE looks like and how to obtain its coefficients, and present a concrete derivation of the
Hopf critical normal form coefficients. This chapter ends formulas that are nearly concrete
enough to implement into a software package.

In the last two chapters, we focus on the numerics and DDE-BIFTOOL. In Chapter 5, we de-
scribe the new features of DDE-BIFTOOL and how they were implemented. In closing, Chapter
6 contains some example systems and the code that was used to analyze them. These chap-
ters are intended as an addition to the already available DDE-BIFTOOL manual (so a nodding
acquaintance with the use of DDE-BIFTOOL is presumed).



6 CHAPTER 1. INTRODUCTION



Chapter 2

Delay Differential Equations and
Sun-Star calculus

In this chapter, we present the functional analytic background needed to understand the
analysis of Delay Differential Equations. Proofs of the Theorems and Propositions can be
found in Appendix II of [3].

2.1 Definition of a DDE

Naturally, we begin with a definition of a Delay Differential Equation (DDE). We start with
a precise definition of “the past”:

Definition 2.1. The history of a function x :R→Rn at time t is the function x t given by

x t : [−h, 0]→Rn, x t(ϑ)≡ x(t + ϑ),

for h ∈R.

As you can see, the parameter h is in general not specified, but for a given discussion, it is
assumed to be fixed.

We can now formally define a DDE.

Definition 2.2. An (autonomous) Delay Differential Equation (DDE) is an equation of the
form

ẋ(t) = f (x t ,α) (t ¾ 0), (2.1)

where x : [−h,∞) → R, f : C ([−h, 0],Rn) × Rm → Rn, α ∈ Rm, the dot represents
the derivative with respect to t, and x t is the history of x . Given an initial condition φ ∈
C([−h, 0],Rn), a function x : [−h, t0) → Rn is a solution of the DDE if x ∈ C([−h, t0)) ∩
C1([0, t0)), it satisfies (2.1) on [0, t0), and

x0 = φ.

7
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Note that in Definition 2.2, we assume x t to be continuous. Other conditions on the conti-
nuity and differentiability could be imposed as well (e.g. C1).

Intuitively, the general procedure of solving a DDE now works as follows. Given an initial
condition φ : [−h, 0]→Rn, we use the DDE (2.1) to extend this function along the real axis
for t > 0. However, we do not need to do this all at once; it suffices to know how to extend
the solution a little bit, say until t0 > 0. If this extension is successful, we can shift the part
of the solution on [−h+ t0, t0] back to [−h, 0] and repeat the extension process. See Figure
2.1 for a visualization of the procedure.

This way, we get an orbit in a space of functions, namely C([−h, 0]): for every t ¾ 0, there is
a point in the function space, representing the shifted-back function at time t. This is why
we turn to the functional analysis of infinite-dimensional Banach spaces to analyze DDEs.

FIGURE 2.1: The extension procedure of solving a DDE.

2.2 Semigroups and generators

We analyze the existence and uniqueness of solutions to DDEs in the framework of functional
analysis, more specifically the theory of strongly continuous semigroups and their generators.
It will turn out that the spectrum of the generator of the semigroup corresponding to the DDE
determines the nature of the bifurcations.1

Definition 2.3. Let X be a complex Banach space and let, for each t ¾ 0, T (t) : X → X
be a bounded linear operator. Then the family {T (t)}t¾0 is called a strongly continuous
semigroup, or a C0-semigroup, if the following three properties hold:

(1) T (0) = I ;

(2) T (t)T (s) = T (t + s), for t, s ¾ 0;

(3) for all x ∈ X , lim
t↓0
‖T (t)x − x‖= 0.

The interpretation of these operators is that a specific T (t) maps an initial condition to the
solution at time t. This is why it’s also commonly called a semiflow. Properties (1) and (2)

1In fact, the derivative matrix in an ODE setting is just a specific instance of a generator.
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are what makes {T (t)}t¾0 into a semigroup. Property (3), the strong continuity, is of another
category: this ensures that orbits {T (t)x : t ¾ 0} are continuous with respect to the (norm)
topology on X .

Definition 2.4. The infinitesimal generator A of {T (t)}t¾0 is defined by

D(A) =
§

x : lim
h↓0

1
h
(T (h)x − x) exists

ª

,

Ax = lim
h↓0

1
h
(T (h)x − x).

So A is simply the derivative of T (t) at t = 0. In general, A is an unbounded operator, which
is why we have to specify its domain so awkwardly.

The idea is that A captures the differential problem (the DDE, in our case) and that the
corresponding semigroup T (t) supplies solutions to the problem. In systems of ODEs, A is
simply a matrix and the semigroup is the matrix exponential T (t) = etA. When working with
the abstract objects, this intuition comes in handy.

Proposition 2.5 lists a few properties of a semigroup and its generator. Note that the integrals
here are Riemann integrals (generalized to obtain values in a Banach space).

Proposition 2.5 ([3], Appendix II, Propositions 1.1, 1.4, 1.5, 1.6). Let {T (t)}t¾0 be a
strongly continuous semigroup and A its infinitesimal generator. Then the following proper-
ties hold.

(1) t 7→ T (t)x is continuous from R+ into X ;

(2) for any x ∈ X and arbitrary t > 0,

∫ t

0

T (s)x ds ∈ D(A) and A

�∫ t

0

T (s)x ds

�

= T (t)x − x;

(3) for arbitrary t > 0, D(A) is T (t)-invariant and for x ∈ D(A),

lim
h↓0

d
d t

∫ t+h

t
T (s)x ds = AT (t)x = T (t)Ax;

(4) D(A) is dense in X ;

(5) A is closed.

2.3 Dual spaces and adjoint semigroups

Recall that, given a Banach space X , the dual space X ∗ is the set of all continuous linear
functionals X :→R. We use a special notation for the application of a functional x∗ ∈ X ∗ to
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an element x ∈ X , namely the pairing

〈x∗, x〉 ≡ x∗(x).

X ∗ is itself a Banach space, equipped with the norm

‖x∗‖= sup
‖x‖¶1

|〈x∗, x〉| .

The dual space gives rise to the notion of an adjoint operator.

Definition 2.6. If A is a densely defined operator X → X , then the adjoint operator A∗ :
X ∗→ X ∗ is defined as follows: the domain is given by

D (A∗) = {x∗ ∈ X ∗ : ∃ y∗ ∈ X ∗ such that 〈x∗, Ax〉= 〈y∗, x〉 , for all x ∈ D(A)}

and the action by

A∗x∗ = y∗.

The notation should remind the reader of a Hilbert space H, where we have H∗ = H, the
pairing is the inner product, and the adjoint is simply defined by 〈A∗x , y〉 = 〈x , Ay〉. As in a
Hilbert space, it also holds that ‖A‖= ‖A∗‖.

When X is a function space, working with the pairing directly is often very inconvenient,
and thinking about X ∗ may become confusing because its members are functions working
on functions. It would be more convenient if we could think of the elements of X ∗ as functions
as well and of the pairing 〈·, ·〉 as an operation combining a function from X and a “function”
from X ∗ (reinforcing the inner product intuition). In fact, this is possible: if X = C([−h, 0],C)
(as will be the case in our applications), then we can identify X ∗ with a space of normalized
bounded variation functions on R:

NBV=

�

f :R→R : supP(t)
∑N

j=1

�

� f (σ j)− f (σ j−1)
�

� is bounded in t,
f (ϑ) = 0 for ϑ ¶ 0, f (ϑ) = f (h) for ϑ ¾ h

�

,

where P(t) denotes a partition 0 = σ0 < σ1 < · · · < σN = t of [0, t]. Note that f needs to
be defined only on [0, h]: it is 0 on (−∞, 0] and equal to f (h) on [h,∞). (This is simply a
technical trick.)

If we adopt this convention, the pairing between f ∈ X ∗ and φ ∈ X can also be written as

〈 f ,φ〉=
∫ ∞

0

df (ϑ)φ(−ϑ),

where the integral is a Riemann-Stieltjes integral. For more information about Riemann-
Stieltjes integrals, one can have a look at Appendix I of [3]. Luckily, in the same work it is
shown that one can also evaluate these integrals as Lebesgue integrals, interpreting df (ϑ)
as a measure corresponding to the function f . We will show an example later.

Generally, φ will only be defined on [−h, 0], which renders the limit ∞ occurring in the
integral potentially dangerous, but since f is constant outside of [0, h], this does not influence
the value of the integral. (Another technical trick.)
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For other spaces X , other representations for X ∗ and the pairing are possible. We reproduce
the very nice compilation Sebastiaan Janssens has made in [10] here as Table 2.1.

The pairing between the original and the dual space also leads to a new form of convergence,
namely weak convergence and weak∗ convergence. Actually, to do things thoroughly, we
should start with the weak topology on X and the weak∗ topology on X ∗. To avoid an abstract
discussion on this topic, we simply make the following definition.

Definition 2.7. A function f : X → X is said to converge weakly to y ∈ X , or to have the
weak limit y , as x → x0 if

lim
x→x0

〈x∗, f (x)〉= y for all x∗ ∈ X ∗.

This is also denoted by weak- lim
x→x0

f (x) = y or f (x)+ y as x → x0.

A function f : X ∗→ X ∗ is said to have the weak∗ limit y∗ ∈ X ∗ as x∗→ x∗0 if

lim
x∗→x∗0

〈 f (x∗), x〉= y∗ for all x ∈ X .

This is also denoted by weak∗- lim
x∗→x∗0

f (x∗) = y∗ or f (x∗)
∗
+ y∗ as x∗→ x∗0.

Whenever we refer to properties such as weak-dense, weak∗-closed et cetera, you can take
the normal definition of the property and replace the normal limit by the appropriate weak
limit.

Returning to semigroups, we can ask the question whether a given strongly continuous semi-
group {T (t)}t¾0 on X gives rise to an adjoint strongly continuous semigroup {T ∗(t)}t¾0 on
X ∗, where T ∗(t)≡ [T (t)]∗.2 The answer, unfortunately, is a partial no.

Theorem 2.8 ([3], Appendix II, Theorem 3.5). Suppose {T (t)}t¾0 is a strongly continuous
semigroup on X and let {T ∗(t)}t¾0 be its adjoint group on X ∗. Then the following is true:

(1) {T ∗(t)}t¾0 is a weak∗ continuous semigroup, i.e.

(a) T ∗(0) = I ,

(b) T ∗(t + s) = T ∗(t) + T ∗(s),

(c) t 7→ T ∗(t)x∗ is weak∗ continuous from R+ into X ∗.

(2) A∗ is the weak∗ generator of {T ∗(t)}t¾0, i.e.

weak∗- lim
h↓0

1
h
(T ∗(h)x∗ − x∗) = y∗

if and only if x∗D (A∗) and y∗ = A∗x∗.

(3) D (A∗) is T ∗(t) invariant and A∗T ∗(t) = T ∗(t)A∗ on D (A∗).

2It will turn out that we need this property to analyze DDEs and their bifurcations, although at this point in
time, it seems unclear why anyone should care.
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In order to get a good theory of DDEs, we would like the adjoint semigroup to be strongly
continuous as well. We can achieve something of the kind by restricting the domain.

2.4 The sun subspace and the sun-star dual

In general, the adjoint semigroup of a strongly continuous semigroup on X is not strongly
continuous on the dual space X ∗. However, there might be a subspace of X ∗ on which it is
strongly continuous. This leads to the following definition:

Definition 2.9 ([3], Appendix II, Definition 3.7). Suppose {T (t)}t¾0 is a strongly continuous
semigroup on a Banach space X and let {T ∗(t)}t¾0 be its adjoint group on X ∗. We define the
sun dual X� ⊂ X ∗ (with respect to {T (t)}t¾0) by

X� :=
§

x∗ ∈ X ∗ : lim
h↓0
‖T ∗(h)x∗ − x∗‖= 0

ª

and call the semigroup given by the restricted operators

T�(t) := T ∗(t)|X� , t ¾ 0

the sun dual semigroup.

The next logical question is: is this a useful definition? Isn’t X� very small or even emtpy,
and what about the generator of the sun dual semigroup? The following theorem shows that
X� is in fact well-behaved, quite large, and leads to a “nice” generator A�.

Theorem 2.10 ([3], Appendix II, Proposition 3.8 and Theorem 3.10). Suppose X� is the
sun dual space for a strongly continuous semigroup {T (t)}t¾0 on X . Then the following
properties hold:

(1) X� is a norm-closed, T ∗(t)-invariant subspace of X ∗;

(2) X� = D (A∗) (the closure of the domain of A∗);

(3) The generator of
�

T�(t)
	

t¾0, denoted by A�, is the part of A∗ in X�, i.e.

D
�

A�
�

=
�

x∗ ∈ D (A∗) : A∗x∗ ∈ X�
	

, and A�x∗ = A∗x∗ for x∗ ∈ D
�

A�
�

.

Now we’re going to perform a trick of which the significance (and usefulness) will become
apparent later. The reasoning goes like this: if we have

�

T�(t)
	

t¾0 on X�, we have a strongly
continuous semigroup on a Banach space. So we can take the adjoint semigroup again, lead-
ing to a semigroup

�

T�∗(t)
	

t¾0 on X�∗. However, as we have seen, this semigroup isn’t
necessarily strongly continuous. But we know the solution to this problem already: we take
the sun dual again! This leads to a strongly continuous semigroup

�

T��(t)
	

t¾0 on a corre-
sponding double sun dual space X��.
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Space Representation Pairing
X φ ∈ C ([−h, 0],Rn)

〈 f ,φ〉=
∫ h

0 df (ϑ)φ(−ϑ)X ∗ f ∈ NBV
�

[0, h],Rn
�

X� (c, g) ∈Rn × L1
�

[0, h],Rn
�

〈(α,φ), (c, g)〉= cα+
∫ h

0 g(ϑ)φ(−ϑ) dϑX�∗ (a,φ) ∈Rn × L∞ ([−h, 0],Rn)
X φ ∈ C ([−h, 0],Rn)

〈(c, g),φ〉= cφ(0) +
∫ h

0 g(ϑ)φ(−ϑ) dϑX� (c, g) ∈Rn × L1
�

[0, h],Rn
�

TABLE 2.1: Representations for the abstract spaces X , X ∗, X� and X�∗ for the case of the semigroup
{T (t)}t¾0 associated with the linear equation (2.4). If a space is underlined, its components should
be thought of as row vectors. Also indicated are the dual pairings used in the computation of normal
form coefficients. (This is Table 2.1 in [10].)

Of course, one would expect to get back in the original space after taking the dual twice. In
general, this is not the case; spaces for which we do have X ∗∗ = X are called reflexive. In this
case, after taking the dual for the second time, we end up in the (potentially) smaller space
X�∗. There is a natural embedding j : X → X�∗ and we certainly have j(X ) ⊂ X��, but in
general this need not be an equality. If it is, we reserve a special name for it:

Definition 2.11 ([3], Appendix II, Definition 3.20). Suppose X�� is the double sun dual of X ,
with respect to some strongly continuous semigroup {T (t)}t¾0. Then X is called �-reflexive
(i.e. sun-reflexive) with respect to {T (t)}t¾0 if j(X ) = X��, where j is the embedding of X
into X�∗.

Now we have defined all relevant spaces in the sun-star calculus, we can list their represen-
tations as spaces of functions. See Table 2.1 (due to [10]).

2.5 The shift semigroup

Up till now, our discussion on the various adjoint semigroups was rather abstract. We’re
going to see them in action now, resulting from the analysis of a simple system. To reiterate:
solving a DDE amounts to extending the initial value a tiny bit, shifting the result back to
[−h, 0], and repeat the process. The formalism of the sun and sun-star dual groups will help
us do this in an elegant fashion, allowing us to treat the shifting and the extension seperately,
their properties being captured in different operators. In fact, the problem below will be all
that’s needed to understand the shifting part.

We choose X = C([−h, 0],C) and we study the trivial DDE
¨

ẋ(t) = 0 for t ¾ 0,

x(ϑ) = φ(ϑ) for − h¶ ϑ ¶ 0,
(2.2)

where φ ∈ X is some initial condition. We can explicitly determine the solution of this equa-
tion: it is

x(t) =

¨

φ(t) for − h¶ t ¶ 0,

φ(0) for t ¾ 0,



14 CHAPTER 2. DELAY DIFFERENTIAL EQUATIONS AND SUN-STAR CALCULUS

i.e. it extends φ in a continuous way to the whole of [−h,∞) with a constant function.

Now, this equation gives rise to a strongly continuous semigroup {T0(t)}t¾0, which can also
be given an explicit formula:

x t = (T0(t)φ)(ϑ) =

¨

φ(t + ϑ) if − h¶ t + ϑ ¶ 0,

φ(0) if t + ϑ ¾ 0.

So the operator T0(t)maps the initial state φ at t = 0 onto the state x t at time t. This group
is called the shift semigroup.

Of course, we can now explicitly determine the generator A0 as well.

Lemma 2.12 ([3], Chapter II, Lemma 2.1). The generator of {T0(t)}t¾0 is given by

D(A0) =
�

φ : φ̇ ∈ C([−h, 0],C), φ̇(0) = 0
	

, and A0φ = φ̇. (2.3)

Equation (2.3) poses a fundamental problem: the rule for extending the initial condition be-
yond [−h, 0] is incorporated into the domain of A0 instead of into its action, the rule being that
φ̇(0) = 0. In fact, we will see that for a general DDE problem (i.e. (2.1)), all information
about the extension is contained in the domain, and the actual action of the generator is
simply Aφ = φ̇.

This is not very nice to work with, of course. Fortunately, it turns out that on X�∗, we can
capture both the extension and the shifting part in the action of the generator! This is why
we need the whole sun-star machinery.

So our next aim is to find A�∗, and see what it looks like for the shift semigroup. We start
with determining A∗ explicitly. Using the pairing from Table 2.1, we see that

〈 f , T0(t)φ〉=
∫ ∞

0

df (ϑ) (T0(t)φ) (−ϑ) =
∫ t

0

df (ϑ)φ(0) +

∫ ∞

t
df (ϑ)φ(t − ϑ)

= f (t)φ(0) +

∫ ∞

0

f (t +σ)φ(−σ) dσ.

This leads to the following conclusion.

Lemma 2.13. The adjoint shift semigroup
�

T ∗0 (t)
	

t¾0 is given by

�

T ∗0 (t) f
�

(ϑ) = f (t + ϑ) for ϑ > 0.

The domain and action of A∗0 can be explicitly computed as well. This calculation is rather
involved, so we only state the result. In a sense, A∗0 returns the derivative of its operand.
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Theorem 2.14 ([3], Chapter II, Theorem 5.1). The domain D
�

A∗0
�

of the generator of the
adjoint shift semigroup

�

T ∗0 (t)
	

t¾0 consists of those functions f for which

f (ϑ) = f
�

0+
�

+

∫ ϑ

0

g(σ) dσ,

where g ∈ NBV with g(h) = 0 and f
�

0+
�

≡ lim
ϑ↓0

f (ϑ). For f ∈ D
�

A∗0
�

, we have

A∗0 f = g.

The sun dual X� is now simply the closure of D
�

A∗0
�

(see Proposition 2.10). This leads to
the following result.

Theorem 2.15 ([3], Chapter II, Theorem 5.2). The sun dual of X = C([−h, 0],C) with
respect to the shift semigroup is given by

X� =







f ∈ NBV : f (t) = c +

∫ t

0

g(ϑ) dϑ for t > 0,

where c ∈ C and g ∈ L1 with g(ϑ) = 0 a.e. for ϑ ¾ h







As was already visible in Table 2.1, in light of Theorem 2.15, elements of the space X� are
completely specified by giving a c ∈ C and a g ∈ L1 satisfying g(ϑ) = 0 almost everywhere
for ϑ ¾ h. In other words:

Proposition 2.16. The space X� (with respect to the shift semigroup) is isometrically iso-
morphic to C× L1([0, h],C), if we equip this space with the norm

‖(c, g)‖= |c|+ ‖g‖L1 .

Again, to make sense of various integrals, we adopt the convention that L1 functions on
[0, h] are extended to (h,∞) by zero.

Knowing X�, it is possible to determine a concrete formula for the sun dual shift semigroup
�

T�0 (t)
	

t¾0 and its generator A�0 . Recall that AC, appearing in the description of the domain
of A�0 , is the space of absolutely continuous functions.

Theorem 2.17 ([3], Chapter II, Theorem 5.3). Using the representation of Proposition 2.16,
the action of the sun dual shift semigroup

�

T�0 (t)
	

t¾0 is given by

T�0 (t)(c, g) =

�

c +

∫ t

0

g(σ) dσ, G

�

, where G(ϑ) = g(t + ϑ).
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The domain of the generator can be explicitly written as

D
�

A�0
�

=

�

f : f (t) = c +

∫ t

0

g(ϑ) dϑ for c ∈ C and g ∈ AC(0, h), g(ϑ) = 0 for ϑ ¾ h

�

,

and in this representation, we have

A�0 f = g.

In the alternative representation, we have

D
�

A�0
�

= {(c, g) : c ∈ C and g ∈ AC(0, h), g(ϑ) = 0 for ϑ ¾ h} and

A�0 (c, g) =
�

g
�

0+
�

, ġ
�

.

This concludes the analysis of the relevant sun dual objects; we can now turn our attention
to the sun-star dual objects, on the space X�∗. For this, it is necessary to have an alternative
representation of X�∗ as well.

Proposition 2.18. The space X�∗ (with respect to the shift semigroup) is isometrically iso-
morphic to C× L∞([0, h],C), if we equip this space with the norm

‖(α,φ)‖= sup
�

|α|,‖φ‖∞
	

.

Theorem 2.19 ([3], Chapter II, Theorem 5.5). Using the representation of Proposition 2.18,
the action of the sun-star dual shift semigroup

�

T�∗0 (t)
	

t¾0 is given by

T�∗0 (t)(α,φ) =
�

α,φαt
�

,

where

φαt (ϑ)≡

¨

φ(t + ϑ) if t + ϑ ¶ 0,

α t + ϑ > 0.

The generator is given by

D
�

A�∗0

�

= {(α,φ) : φ is Lipschitz-continuous with Lipschitz constant α} , and

A�∗0 (α,φ) =
�

0, φ̇
�

.

In words, T�∗0 (t) first extends φ by the constant value α for ϑ > 0 and then shifts it over a
time t. As you can see, we have solved the big problem that was present on X : the domain
of A�∗0 no longer refers to any specifics of the DDE, only its action does.

We’re almost there now. Having all the objects on the sun-star dual space, we now turn our
attention to the double sun objects.
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Theorem 2.20. The double sun dual X�� with respect to the shift semigroup {T0(t)}t¾0 is
given by

X�� = D
�

A�∗0

�

= {(a,φ) : φ ∈ L∞([−h, 0],C)∩ C([−h, 0],C),φ(0) = α} .

Note that X is sun-reflexive: a function φ ∈ X = C([−h, 0],C) is represented by the couple
(φ(0),φ) in X�∗, and therefore it is in X�� as well. We could write j(φ) = (φ(0),φ) and
X�� = j(X ), but it is more convenient to drop the j altogether. Therefore, in the remainder
of this thesis, we will mix and match the two representations.

In this section, we have merely taken the shift semigroup {T0(t)}t¾0, corresponding to the
trivial DDE (2.2), defined on X , and by a long-winded functional analytic process turned it
into a copy of itself,

�

T��0 (t)
	

t¾0 defined on X�� = X . But we have gained something new:
we can think of X�� as being embedded in a larger space X�∗, on which we have a more
general semigroup

�

T�∗0 (t)
	

t¾0. In the next section, we will show that it is worthwhile to
have X�∗ when working with a general DDE.

2.6 Sun-star calculus for linear DDEs

We now turn our attention to more general DDEs, namely linear ones. If a DDE is given by

ẋ(t) = Lx t ,

with L a linear function C([−h, 0])→Rn, it’s possible to rewrite this as

ẋ(t) =

∫ h

0

dζ(ϑ) x(t − ϑ). (2.4)

This is also called a retarded functional delay equation (or RFDE). Here, ζ is an n × n
matrix valued function whose entries belong to NBV. Using Table 2.1, we can also write

ẋ(t) = 〈ζ, x t〉n .

We now wish to cast this equation into our sun-star framework. As we have stressed before,
we should regard the process of finding a global solution as an alternation of extending the
current solution and shifting it back to [−h, 0]. In the previous section, we have seen that
the shifting is done by the shift semigroup. Therefore, it’s natural to do the following:

d
d t

x t = A�∗0 x t + Bx t =
�

A�∗0 + B
�

x t , (2.5)

where B : X → X�∗ is defined by

Bφ =
�

〈ζ,φ〉n , 0
�

.

This gives us a differential equation for elements of X�∗, but we can still think of them as
being elements of X .

It remains to be proven that A�∗0 + B is indeed the generator of a strongly continuous semi-
group which solves (2.4). We do this by introducing a so-called variation of constants for-
mula (2.6).
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Theorem 2.21 ([3], Chapter III, Theorem 2.4). Let X be a sun-reflexive Banach space with
respect to a strongly continuous semigroup {T0(t)}t¾0. Let B : X → X�∗ be a bounded
operator. There exists a unique strongly continuous semigroup {T (t)}t¾0 such that

T (t)φ = T0(t)φ +

∫ t

0

T�∗0 (t −τ)B T (τ)φ dτ=: T0(t)φ + U(t)φ. (2.6)

It holds that lim
t↓0
‖U(t)‖= 0 and hence lim

t↓0
‖U∗(t)‖= 0.

Of course, we think of {T0(t)}t¾0 as the shift semigroup, but the theorem holds for general
semigroups. The integral in Theorem 2.21 can be thought of as a perturbation of the action
of the original semigroup. This perturbation is given the name U .

We now want to determine the generator of {T (t)}t¾0, called A, in terms of A0 and B. From
the behaviour of U∗ as t ↓ 0, we can see that the map t 7→ T ∗(t)x∗ is norm continuous at
t = 0 if and only if t 7→ T ∗0 (t)x

∗ is norm continuous at t = 0. And hence:

Lemma 2.22 ([3], Chapter III, Lemma 2.6). The subspace X�, defined as the sun dual with
respect to the unperturbed semigroup

�

T ∗0 (t)
	

t¾0, is also the subspace of strong continu-
ity for the perturbed semigroup {T ∗(t)}t¾0, i.e. it is also the sun dual with respect to the
perturbed semigroup. In particular, X� is invariant under T ∗.

So the perturbation leading us from T0 to T doesn’t change the underlying spaces. This is
good to know!

Now, note that since B : X → X�∗, we have B∗ : X�∗∗ → X ∗. Of course, the space X�∗∗

doesn’t seem very nice to work with. Luckily, X� ⊂ X�∗∗ (as in general, we can think of a
space as being embedded in its second dual), so we can also consider a restricted version of
B∗, namely B∗|X� : X�→ X ∗. In the following, we will use this restricted version and simply
denote it by B∗.

In Theorem 2.23, we collect all results we need to know.

Theorem 2.23 ([3], Chapter III, Corollaries 2.8, 2.9, 2.12 and 2.13, Theorem 2.10 ). If A is
the generator of the perturbed semigroup {T (t)}t¾0, the following hold:

(1) D (A∗) = D
�

A∗0
�

and A∗ = A∗0 + B∗.

(2) The strongly continuous semigroup
�

T�(t)
	

t¾0 is generated by the operator A� de-
fined by

D
�

A�
�

=
�

x� ∈ D (A∗) :
�

A∗0 + B∗
�

x� ∈ X�
	

, with A� = A∗0 + B∗.

(3) The space X is sun-reflexive with respect to the perturbed semigroup.
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(4) D
�

A�∗
�

= D
�

A�∗0

�

and A�∗ = A�∗0 + B, i.e. A�∗(α,φ) =
�

〈ζ,φ〉n , φ̇
�

.

(5) The strongly continuous semigroup {T (t)}t¾0 is generated by the operator A defined
by

D (A) =
�

x ∈ D
�

A�∗0

�

:
�

A�∗0 + B
�

x ∈ X
	

, with A= A�∗0 + B.

So, this theorem tells us that indeed, if we have an operator B defining an RFDE as in (2.5),
there is a strongly continuous semigroup {T (t)}t¾0 solving the equation, having a generator
A= A�∗0 + B.

Let’s go back to the more concrete setting in which {T0(t)}t¾0 is the shift semigroup, X =
C([−h, 0],Cn), X ∗ = NBV([0, h],Cn), and X�∗ = Cn× L∞([−h, 0],Cn). We take B as in 2.6,
i.e. Bφ = (〈ζ,φ〉n , 0), where ζ is a matrix valued NBV function.

Theorem 2.24 ([3], Chapter III, Theorem 4.1). Let, with {T0(t)}t¾0 and B as defined above,
{T (t)}t¾0 be the semigroup defined by the abstract integral equation (2.6). Let x(·;φ) be
the solution of the RFDE

ẋ(t) =

∫ h

0

dζ(ϑ) x(t − ϑ), t ¾ 0, (2.7)

with initial condition

x(ϑ) = φ(ϑ), −h¶ ϑ ¶ 0.

Then,

T (t)φ = x t(·;φ).

In other words, if we have (2.7) instead of ẋ(t) = 0, we should put ζ in an operator B and
get the semigroup {T (t)}t¾0 corresponding to equation (2.6). This will give us the solution
to our original DDE 2.7.



20 CHAPTER 2. DELAY DIFFERENTIAL EQUATIONS AND SUN-STAR CALCULUS



Chapter 3

Bifurcations of DDEs

3.1 Linearization near an equilibrium

As we have recalled in the Introduction, when studying an ordinary nonlinear differential
equation ẋ(t) = f (x ,α), we can deduce most relevant properties of the phase portrait by
looking at the spectrum of the linearization D f (x ,α).

For a DDE, it is possible to use similar techniques. We already mentioned that we need to
look at the spectrum of the generator, but this is in general a rather complex object. We will
therefore work towards a more straightforward way to obtaining the spectrum. We start by
describing what a linearization looks like for DDEs. (For more information, see [10], Chapter
2.)

Suppose we have a general DDE of the form

ẋ(t) = f (x t ,α). (3.1)

We will split it into a linear and a non-linear part in the following way. Suppose we have
a stationary solution x0(t,α0) ≡ C of (3.1) for a certain parameter value α0 (this where a
bifurcation takes place), so that f (x0

t ,α0) = 0.1 By a change of coordinates it can always be
arranged that x0

t ≡ 0. We now employ a simple rewriting trick to get

ẋ(t) = D1 f (0,α) x t + ( f (x t ,α)− D1 f (0,α) x t)

=

∫ h

0

dζ(ϑ,α) x t(−ϑ) + ( f (x t ,α)− D1 f (0,α) x t) ,

=

∫ h

0

dζ(ϑ,α) x t(−ϑ) + g f (x t ,α), (3.2)

i.e. we define

g f (φ,α) = f (φ,α)− D1 f (0,α)φ.

Here, ζ(·,α) denotes the NBV([0, h],Rn) representation of the partial derivative D1 f (0,α).

So now we have reduced the problem to the DDE

ẋ(t) =

∫ h

0

dζ(ϑ,α) x t(−ϑ) + g(x t ,α) (t ¾ 0), (3.3)

1So, x0 is constant on its entire domain [−h,∞), meaning that its history x0
t is constant on [−h, 0]. The

function f only operates on the history.

21
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i.e. (2.4) with an extra general perturbation g. Here, g : X ×Rm → Rn is assumed to be of
class Ck for sufficiently high k and is supposed to satisfy

g(0,α0) = 0, D1 g(0,α0) = 0 (3.4)

for a fixed α0 ∈Rm.

To describe the solutions to this equation, we need some additional machinery. First, we need
the standard basis vectors e j of Rn ( j = 1, . . . , n). Second, we introduce vectors r�∗j ∈ X�∗

by putting

r�∗j ≡ (e j , 0) ( j = 1, . . . , n)

(remember that we use the representation in Table 2.1). Using this notation, we can define
a Ck-smooth mapping R : X ×Rm→ X�∗, called the nonlinearity, by

R(φ,α)≡
n
∑

j=1

�

g(φ,α) +

∫ h

0

(dζ(ϑ,α)− dζ(ϑ,α0))φ(−ϑ)

�

j

r�∗j , (3.5)

where the subscript j refers to the j-th component of the vector between the large parenthe-
sis. Because r�∗j = (e j , 0), the (finite-dimensional) range of R is contained in the linear span
of the Rn-compontent of X�∗. Also note that our assumptions (3.4) entail that

R(0,α0) = 0, D1R(0,α0) = 0.

The kernel ζ(·,α0) ∈ NBV([0, h],Rn) defines a linear DDE (of the form (3.3) with g = 0). Let
{T (t)}t¾0 be the corresponding semigroup of solution operators. We consider the parameter-
dependent nonlinear abstract integral equation

u(t) = T (t)φ +

∫ t

0

T�∗(t −τ)R(u(τ),α) dτ, (3.6)

where φ ∈ X is given and the integral must be interpreted as a weak∗-integral (with values
in X ). Solutions of (3.6) are continuous functions u : [0, t+)→ X , where we can take t+ =
∞. They have a one-to-one correspondence to solutions of (3.3) in the following way: if
x(·,α,φ) : [−h,∞) → Rn solves (3.3) with initial condition x0 = φ, then the function
defined by

u(t,α,φ) = x t(·,α,φ) (t ¾ 0)

uniquely solves (3.6). Conversely, if u(·,α,φ) is a solution of (3.6) then the function x(·,α,φ) :
[−h,∞)→Rn defined by

x0 ≡ φ, x(t,α,φ)≡ u(t,α,φ)(0) for all t ¾ 0

uniquely solves (3.3) with initial condition φ.

3.2 The spectrum of the generator

As we have seen, there is a strongly continuous semigroup {T (t)}t¾0 yielding solutions to
the linear part of (3.2), with generator A. As promised, the spectrum σ(A) of this generator
determines the phase portrait of the DDE. In this section, we present a method to extract the
spectrum without having direct access to A.

First, we recap some terminology about spectra of linear operators on Banach spaces (due
to Chapter IV.2 in [3]).



3.2. THE SPECTRUM OF THE GENERATOR 23

Definition 3.1. Let L : D(L) → X be a linear operator with domain D(L) in a complex
Banach space X . A complex number λ belongs to the resolvent set ρ(L) of L if and only if
the resolvent operator (zI − L)−1 exists and is bounded, i.e.

(1) λI − L is injective,

(2) R(λI − L) = X ,

(3) (λI − L)−1 is bounded.

The spectrum σ(L) is by definition the complement C \ρ(L).

The point spectrum σp(L) is the set of those λ ∈ C for which λI − L is not one-to-one,
i.e. Lφ = λφ for some φ 6= 0. One then calls λ an eigenvalue and φ an eigenvector
corresponding to λ.

The null space N (λI − L) is called the eigenspace corresponding to λ and its dimension
the geometric multiplicity of λ. The generalized eigenspace Mλ(L) is the smallest closed
linear subspace that contains all N

�

(λI − L) j
�

for j = 1,2, . . . and its dimension M(L;λ)
is called the algebraic multiplicity of λ. If, in addition, λ is an isolated point in σ(L) and
M(L;λ) is finite, then λ is called an eigenvalue of finite type. When M(L;λ) = 1 we say
that λ is a simple eigenvalue.

Note that closed operators automatically fulfil the third condition in Definition 3.1 (by the
Closed Graph Theorem). The spectrum of compact operators consists of eigenvalues of finite
type only.

Working with A directly is not very convenient, but fortunately, there is a much simpler object
that can give us all necessary information about σ(A).

Definition 3.2. The matrix-valued function ∆ : C→ Cn×n defined by

∆(z) = zI −
∫ h

0

e−zϑ dζ(ϑ) (3.7)

is called the characteristic matrix of equation 3.3.

In concrete cases (the ones we will be applying DDE-BIFTOOL to), the integral usually becomes
a finite sum, as Example 3.3 shows us.

Example 3.3. Suppose we have the DDE

ẋ(t) = x(t)− x(t − 1
2).

We can write this as

ẋ(t) =

∫ h

0

dζ(ϑ) x(t − ϑ)
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if we treat dζ as a combination of Dirac measures:

dζ(ϑ) = δ(ϑ)−δ(ϑ− 1
2).

This means that (with I = I1 = 1)

∆(z) = z −
∫ h

0

e−zϑ dζ(ϑ) = z −
∫ h

0

e−zϑδ(ϑ) +

∫ h

0

e−zϑδ(ϑ− 1
2) = z − 1+ e−

1
2 z .

In the next theorem, we summarize the main results about the spectrum of A and its relation
to ∆.

Theorem 3.4 ([10], Theorem 2.3). Let (A,D(A)) be the generator of the semigroup
{T (t)}t¾0 corresponding to the linear part of (3.2), with α= α0.

(1) σ(A) = σ (A∗) = σ
�

A�
�

= σ
�

A�∗
�

, and these spectra consist solely of eigenvalues of
finite type.

(2) The characteristic matrix ∆(z) is holomorphic, and λ ∈ σ(A) if and only if det∆(λ) =
0. In this case, the order of λ as a root of det∆ equals the algebraic multiplicity of λ as
an eigenvalue and the dimension of the nullspace N (∆(λ)) is equal to the geometric
multiplicity of λ as an eigenvalue.

(3) The generalized eigenspaces corresponding to λ are given by the nullspaces

N
�

(λI − A)kλ
�

=N
�

(λI − A�∗)kλ
�

,

N
�

(λI − A∗)kλ
�

=N
�

(λI − A�)kλ
�

,

where kλ is the order of λ as a pole of the map z 7→∆(z)−1.

The transcendental equation det∆(z) = 0 is called the characteristic equation. The eigen-
vectors of A can be obtained from the characteristic matrix as well. We will only need eigen-
vectors for the special cases when λ ∈ σ(A) is simple or when λ is a double eigenvalue. First,
we treat the simple case.

Lemma 3.5 ([3], Chapter IV, Theorems 5.5 and 5.9 and Corollary 5.12.). Let λ be a simple
eigenvalue of A. If the non-zero column vector q is a right null vector of ∆(λ) (i.e. ∆(λ)q =
0), then

φ = ϑ 7→ eλϑq

is an eigenvector of A corresponding to λ. Furthermore, if the non-zero row vector p is a left
null vector of ∆(λ) (i.e. p∆(λ) = 0, then φ� ∈ X ∗ given by the NBV-representation

φ�(ϑ) = p

�

I +

∫ ϑ

0

∫ h

σ

eλ(σ−s)dζ(s) dσ

�
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is an eigenvector of A∗ corresponding to λ. Finally,




φ�,φ
�

= p∆′(λ)q 6= 0,

where ∆′(λ) denotes the derivative of z 7→∆(z) at z = λ.

If λ is a double eigenvalue, we will need the notion of a Jordan chain, which is a general-
ization of the concept of an eigenvector.

Definition 3.6 ([10], Definition 2.6). A sequence of column vectors q0, q1, . . . , qk−1 in Rn is
called a right Jordan chain for ∆(z) at z = λ if q0 6= 0 and

∆(z)
�

q0 + (z −λ)q1 + · · ·+ (z −λ)k−1qk−1

�

=O
�

(z −λ)k
�

as z→ λ.

The number k is called the rank of the chain. Similarly, a sequence of row vector p0, . . . , pk−1

in Rn is called a left Jordan chain of rank k for ∆(z) at z = λ if p0 6= 0 and

�

pk−1 + (z −λ)pk−2 + · · ·+ (z −λ)k−1p0

�

∆(z) =O
�

(z −λ)k
�

as z→ λ.

In the special case that λ is a double eigenvalue of A of geometric multiplicity one (i.e.
the dimension of N (λI − A) is 1), there exists an eigenvector φ0 ∈ D(A) and a generalized
eigenvector φ1 ∈ D(A) such that

Aφ0 = λφ0, Aφ1 = λφ1 +φ0.

There also exists an eigenvectorφ�1 ∈ D (A∗) and a generalized eigenvectorφ�0 ∈ D (A∗) such
that

A∗φ�1 = λφ
�
1 , A∗φ�0 = λφ

�
0 +φ

�
1 .

Using the characteristic matrix, we can find explicit eigenfunctions.

Lemma 3.7 ([10], Lemma 2.7). Let λ be an eigenvalue of A with geometric multiplicity one
and algebraic multiplicity two. Let

{q0, q1} ∈Rn, {p1, p0} ∈Rn

be right and left Jordan chains of ∆(z) of rank two at z = λ. Then the column vector valued
functions

φ0 = (ϑ 7→ eλϑq0), φ1 =
�

ϑ 7→ eλϑ(ϑq0 + q1)
�

are an eigenvector and a generalized eigenvector for A corresponding to λ and the row vector
valued functions

φ�1 = (0, g1) where g1(ϑ) = p1

�

I +

∫ ϑ

0

∫ h

σ

eλ(σ−s)dζ(s) dσ

�

,
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φ�0 = (0, g0) where g0(ϑ) = p0

�

I +

∫ ϑ

0

∫ h

σ

eλ(σ−s)dζ(s) dσ

�

+ p1

�

I +

∫ ϑ

0

∫ h

σ

eλ(σ−s)(σ− s)dζ(s) dσ

�

are an eigenvector and a generalized eigenvector for A∗ corresponding to λ. Moreover, the
following identities hold:




φ�0 ,φ0

�

= p0∆
′(λ)q0 +

1
2!

p1∆
′′(λ)q0,




φ�1 ,φ1

�

= p1∆
′(λ)q1 +

1
2!

p1∆
′′(λ)q0,




φ�1 ,φ0

�

= p1∆
′(λ)q0,




φ�0 ,φ1

�

= p0∆
′(λ)q1 +

1
2!

p0∆
′′(λ)q0 +

1
2!

p1∆
′′(λ)q1 +

1
3!

p1∆
′′′(λ)q0.

3.3 The center manifold

We now know where to look to detect bifurcations (i.e. the spectrum of the generator via
the characteristic matrix). We now turn our attention to the center manifold on which the
bifurcations occur.

In the case of DDEs, the proofs of the properties of the center manifold are harder than in
the case of ODEs, and some details are different, but the general idea remains true. As in
the ODE case, the center manifold can be described as a graph of a function on a certain
subspace of X , and we start by describing this subspace.

Definition 3.8 ([10], Section 2.3). Let (A,D(A)) be the generator of the semigroup {T (t)}t¾0

corresponding to the linear part of (3.2), with α = α0. Then the center subspace X0 is
defined as the direct sum

X0 =
⊕

{Mλ : λ ∈ σ(A)∩ iR} .

Here Mλ is the generalized eigenspace corresponding to λ and iR is the imaginary axis.

So in words, X0 consists of the generalized eigenspaces of all eigenvalues of A on the imagi-
nary axis. We can see that X0 is finite-dimensional by the first statement of Theorem 3.4.

Theorem 3.9 ([3], Theorem IX.5.3, Corollary IX.7.10, Section IX.8). Let P0 ∈ L(X ) be the
spectral projection of X onto X0 and denote its extension to X�∗ with range X0 by P�∗0 ∈
L(X�∗, X ).

For δ > 0 sufficiently small, there exists a Ck-smooth injection Cδ : X0 → X such that its
image W c

δ
= Cδ(X0), called the (local) center manifold, has the following properties:
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(1) W c
δ

is conditionally locally forward-invariant, in the following sense. If φ ∈ X0 and
sup {‖u(t, Cδ(φ)) : t ∈ [0, T]‖} ¶ δ, then u(t,Cδ(φ)) = Cδ(P0u(t,Cδ(φ))) for all t ∈
[0, T].

(2) W c
δ

contains all solutions of (3.6) (with α= α0 that are defined for all time and satisfy
sup {‖u(t,ψ) : t ∈R‖}¶ δ.

(3) W c
δ

contains the origin, since Cδ(0) = 0 and it is tangent to X0 there, i.e. DCδ(0)φ = φ
for all φ ∈ X0.

(4) If ψ ∈ W c
δ

and uδ(·,ψ) exists for all time, then y(t) ≡ P0u(t,ψ) ∈ X0 satisfies the
ordinary differential equation

ẏδ(t) = Ayδ(t) + P�∗0 R(yδ(t)) (t ∈R).

If we study only the local dynamics, i.e. inside a small ball Bδ(0) centered around the origin,
we may drop the subscript and write W c and C instead of W c

δ
and Cδ. If σ(A) does not

contain points in the open right half-plane (with real part > 0), then W c is conditionally
locally exponentially stable, implying that if a solution that lies in Bδ(0) for all time is locally
exponentially stable within W c , then it is locally exponentially stable in X .

We saw in statement (4) of Theorem 3.9 that the projection of a solution onto X0 satisfies a
certain ODE on X0. Near the origin, a solution also satisfies an ODE on the center manifold
C.

Proposition 3.10 ([10], Proposition 2.11). Let ψ ∈W c and suppose that the solution t 7→
u(t,ψ) of (3.6) with α= α0 exists as a map fromR to X and lies in Bδ(0) for all t ∈R. Then
u(t,ψ) ∈W c for all t ∈R and u(t,ψ) is differentiable with respect to t and satisfies

du(t,ψ)
dt

= A�∗u(t,ψ) + R(u(t,ψ)) for all t ∈R. (3.8)

We now have covered enough theory to start describing normal forms of DDEs.
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Chapter 4

Normal forms of DDEs

Just as for ODEs, we can find normal forms for bifurcations in DDEs and compute their critical
coefficients. We first sketch the general procedure and then present a concrete derivation for
the Hopf case. Finally, we list the formulas for the critical normal form coefficients for the
codimension 2 bifurcations.

4.1 The generic critical normal form

There exist several ways to arrive at the normal form coefficients. We follow a method that
was first used by Kuznetsov ([11], Chapter 8) for ODEs and then applied to DDEs in [10]. Do
note that this method yields only the critical normal form coefficients, i.e. the value of the
normal form coefficient at criticality, when the bifurcation occurs. We first explain, following
[10], what is actually meant by a normal form coefficient in a DDE context.

We continue in the setting of Chapter 3 and consider the general DDE

ẋ(t) = f (x t ,α) (4.1)

and its rewritten form

ẋ(t) =

∫ h

0

dζ(ϑ,α) x t(−ϑ) + g f (x t ,α).

Suppose that at the critical parameter value α = α0 = 0 the zero function is a stationary
solution of (4.1), i.e.

f (0, 0) = 0.

Let (A,D(A)) be the generator of the semigroup {T (t)}t¾0 solving the linear DDE associated
with the linearized equation

ẋ(t) = D1 f (0,α0)x t

and suppose that one of the bifurcation conditions in Tables 4.1 or 4.2 is satisfied and A has
no other eigenvalues on the imaginary axis.

If the above conditions are met, there exists a non-trivial center subspace X0 of finite dimen-
sion nc , spanned by some basis Φ consisting of eigenvectors and (in the case of Bogdanov-
Takens) generalized eigenvectors corresponding to the eigenvalues of A that lie on the imag-
inary axis. (These eigenvectors are actually eigenfunctions, of course.) Tangent to X0 there

29
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Bifurcation Condition
Hopf λ1,2 = ±iω0, ω0 > 0
Fold λ1 = 0

TABLE 4.1: Bifurcation conditions for codimension-one bifurcations.

Bifurcation Condition
Cusp λ1 = 0, b = 0
Bogdanov-Takens λ1 = λ2 = 0
Bautin (generalized Hopf) λ1,2 = ±iω0, ω0 > 0, l1(0) = 0
Fold-Hopf λ1 = 0, λ2,3 = ±iω0, ω0 > 0
Double Hopf λ1,4 = ±iω1, λ2,3 = ±iω2, ω1,2 > 0

TABLE 4.2: Bifurcation conditions for codimension-two bifurcations.

exists a local center manifold W c
δ
. We now look at equation (3.6) for α= α0, replicated here

for convenience as (4.2).

u(t) = T (t)φ +

∫ t

0

T�∗(t −τ)R(u(τ),α0) dτ. (4.2)

We consider solutions u : [0, t+) → X that are defined and lie on W c
δ

for all (positive and
negative) time. Let y(t) be the projection of u(t) onto X0, i.e. y is a function [0, t+)→ X0.
Then y(t) can be expressed uniquely relatively to the basis of eigenfunctions Φ. Denote
y(t)’s coordinates with respect to Φ by the coordinate vector z(t). Then z(t) satisfies an
ODE admitting an expansion of the form

ż(t) =
N
∑

|ν|=1

1
ν!

gνz
ν(t) +O

�

‖z(t)‖N+1� for all t ∈R. (4.3)

(See Figure 4.1 for a visualization of the situation.)

Center subspace X0

Center manifold W c
loc

X

l
u=H(z)

z = z(y)

y = P0u

FIGURE 4.1: The vector z is the coordinate vector of the center manifold with respect to the basis on
X0.

This is then our generic critical normal form, with unknown critical normal form coefficients
gν. The symbol ν denotes a multi-index1 of length nc and the series is supposed to be trun-
cated after some sufficiently high order N .

1A multi-index of length n is a vector ν ∈Nn
0. When summing over a multi-index at a step |ν| := ν1+· · ·+νn =

k, one adds one term for every multi-index satisfying |ν| = k, following the convention ν! := ν1 · · ·νn and
zν = zν1

1 · · · z
νn
n , where z ∈Rn. So, assuming n= 2, the first few terms of (4.3) read: ż(t) = g01z2(t)+ g10z1(t)+

1
2 g02z2(t)2 + g11z1(t)z2(t) + g20z1(t)2 + · · ·
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4.2 A general method to derive specific normal forms

We now present a way to actually determine the critical normal forms and their coefficients
for a given bifurcation, based on [10] and [14].

First, we return to the linearity give in (3.5). At the critical parameter value α = α0 (= 0),
the linear part vanishes, and we simply have

R(φ) =
n
∑

j=1

g j(φ)r
�∗
j with r�∗j = (e j , 0) ∈ X�∗.

Notice that we have suppressed the dependence on α altogether. Now suppose f is suffi-
ciently smooth. Then we can expand the nonlinearity as

R(φ) =
1
2!

B(φ,φ) +
1
3!

C(φ,φ,φ) +O
�

‖φ‖4
�

, (4.4)

where

B ∈ L2

�

X , X�∗
�

, B(φ1,φ2) := D2R(0)(φ1,φ2),

C ∈ L3

�

X , X�∗
�

, C(φ1,φ2,φ3) := D3R(0)(φ1,φ2,φ3),

i.e. B and C are symmetric bounded multilinear forms from X to X�∗.

These multilinear forms are given by derivatives of f . For two arbitrary elements ξ1,ξ2 ∈ X ,
we have

B(ξ1,ξ2) =
n
∑

j=1

�

D2 g(0)(ξ1,ξ2)
�

j r�∗j ,

=
n
∑

j=1

�

D2 f (0)(ξ1,ξ2)
�

j r�∗j

=
�

D2 f (0)(ξ1,ξ2)
�

r�∗. (4.5)

This is because we still have g(φ) = f (φ) − D1 f (0)φ. The last line should be interpreted
as an ‘inner-like’ product of D2 f (0)(ξ1,ξ2) ∈ Rn with r�∗ ≡ (r�∗1 , . . . , r�∗n ). Analogously,
C(ξ1,ξ2,ξ3) = D3 f (0)(ξ1,ξ2,ξ3)r�∗ and so forth. So in general, we have

R(φ) =
N
∑

j>1

1
j!

D j f (0)(

j times
︷ ︸︸ ︷

φ, . . . ,φ)r�∗ +O
�

‖φ‖N+1� . (4.6)

Recall from Theorem 3.9 that the local center manifold W c
δ

is given as the image of a Ck-
smooth injection Cδ : U ⊂ X0 → X , where U is some open ball around the origin of X0 and
W c
δ

is tangent to X0 there. This mapping can be expanded as well.

Definition 4.1. Let W c
δ
= Cδ(U) be the local center manifold with dimension nc . Let ξ be a

point in X0 with coordinate z =



φ�,ξ
�

∈ Rnc . Now the coordinate mapping ξ 7→ z(ξ) is a
Ck-smooth injection onto V , a neighbourhood of the origin of Rnc . We define the mapping
H : V → X by

H(z) := Cδ(ξ(z)).
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This mapping can now be expanded as

H(z) =
∑

1¶|ν|¶3

1
ν!

zν +O
�

‖z‖4
�

. (4.7)

We recall equation (3.8) and rewrite it here succinctly as

du(t)
d t

= A�∗u(t) + R(u(t)) for all t ∈R. (4.8)

As before, let y(t) be the projection of a small solution u(t) onto X0 and z(t) its coordinate
vector with respect to a basis of eigenfunctions (of A) Φ. Then, because of the invariance of
the center manifold,

u(t) =H(z(t)) for all t ∈R.

Differentiating both sides of this relation with respect to time and using (4.8), we get

du(t)
d t

= DH(z)ż,

A�∗H(z) + R(H(z)) = DH(z)ż. (4.9)

Equation (4.9) is called the homological equation. The idea is now to substitute (4.3), (4.6)
and (4.7) into the homological equation and solve for the unknown coefficients gν and hν
by equating like powers of z.

In order to solve the homological equation, it is necessary to solve linear operator equations
of the form

�

λ− A�∗
�

φ�∗ =ψ�∗ or
�

λ− A�∗
�

(v0, v) = (w0, w),
(4.10)

where λ ∈ C and ψ�∗ ∈ X�∗ is given. Note that we can use the representations in Table 2.1
to arrive at the second form of the equation. This type of equation can be solved using a
version of the Fredholm alternative.

Theorem 4.2 (Fredholm alternative; [10] Lemma 3.2; [14] Lemma 33). Let λ be arbitrary.
Then (4.10) has a solution φ�∗ = (v0, v) ∈ D

�

A�∗
�

if and only if ψ�∗ = (w0, w) annihilates
N (λ− A∗), i.e.




φ�,ψ�∗
�

= 0 for all φ� ∈ N (λ− A∗) .

If λ is not an eigenvalue, there are explicit formulas for the solution.

Theorem 4.3 ([10] Lemma 3.3). Suppose λ is not an eigenvalue. Then the unique solution
(v0, v) ∈ D

�

A�∗
�

of (4.10) is given by

v(ϑ) = eλϑv0 +

∫ 0

ϑ

eλ(ϑ−σ)w(σ) dσ (ϑ ∈ [−h, 0]),
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v0 =∆(λ)
−1

�

w0 +

∫ h

0

dζ(τ)

∫ τ

0

e−λσw(σ−τ) dσ

�

,

where ∆(λ) is the characteristic matrix.

Corollary 4.4 ([10] Corollary 3.4). The following two special cases are useful for our cal-
culations.
Let (w0, w) = (w0, 0). Then the solution (v0, v) of (4.10) is given by

(v0, v) =

�

∆(λ)−1w0

ϑ 7→ eλϑ∆(λ)−1w0

�

.

Let (w0, w) = (w0,ϑ 7→ eλϑ∆(λ)−1ζ) for some fixed vector ζ in Rn. Then

(v0, v) =

�

∆(λ)−1
�

∆′(λ)− I
�

∆(λ)−1ζ

ϑ 7→∆(λ)−1
�

∆′(λ)− I − ϑ∆(λ)
�

w(ϑ)

�

.

If λ does happen to be an eigenvalue, (4.10) does not have a unique solution, if one even
exists. However, it’s possible to select a convenient choice among all available solutions, as
the next theorem shows.

Theorem 4.5 ([10] Lemma 3.5). Let L : D(L) ⊂ E → E be a closed, densely defined op-
erator on a Banach space E. Suppose that zero is a simple eigenvalue of L and L∗ with
corresponding eigenvectors ψ and ψ∗. Let P be the spectral projection operator of E onto
the zero-eigenspace. Assume that for given y∗ ∈ E∗ there exists a particular solution x∗0 in
D (L∗) of the equation

L∗x∗ = y∗. (4.11)

Then the augmented system

¨

L∗x∗ + sψ∗ = y∗

〈x∗,ψ〉 = 0
(4.12)

has a unique solution x∗ = (I − P∗) x∗0 and s = 0, and x∗ is the unique solution of (4.11) that
annihilates ψ.

If λ is a simple eigenvalue of A and (4.10) has a solution, then we can apply Theorem 4.5 to
the operator L = λ− A� on X� with domain D

�

A�
�

to obtain the unique solution of (4.10)
that vanishes on the eigenspace corresponding to λ.

The system (4.12) visually looks like a matrix equation of operators:
�

L∗ ψ∗

ψ 0

��

x∗

s

�

=

�

y∗

0

�

.
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This type of system, containing auxiliary equations and unknowns, is called a bordered
system.

Definition 4.6. The unique solution x∗ mentioned in Theorem 4.5 is denoted by

x∗ = (L∗)INV y∗.

We can given an explicit expression for
�

λI − A�∗
�INV

when λ is a simple eigenvalue, just as
we did in Theorem 4.3 for the non-singular case.

Theorem 4.7 ([10], Proposition 3.6). Suppose λ is a simple eigenvalue of A and as-
sume that (4.10) is consistent for a given (w0, w) ∈ X�∗ with bordered inverse (v0, v) =
�

λI − A�∗
�INV
(w0, w) in X�∗. Let q, p ∈Rn, φ ∈ X , φ� ∈ X� be as in Lemma 3.5, normalized

to



φ�,φ
�

= 1. Then

v(ϑ) = eλϑv0 +

∫ 0

ϑ

eλ(ϑ−σ)w(σ) dσ (ϑ ∈ [−h, 0]),

with

v0 = ξ+ γq, ξ :=∆(λ)INV

�

w0 +

∫ h

0

dζ(τ)

∫ τ

0

e−λσw(σ−τ) dσ

�

.

The constant γ is given by

γ= −p∆′(λ)ξ− p

∫ h

0

∫ h

τ

e−λs dζ(s)

∫ 0

−τ
e−λσw(σ) dσ dτ.

A special case that can be used is the following.

Corollary 4.8 ([10], Corollary 3.7). Suppose that in (4.10) we have (w0, w) = (η, 0) +
κ(q,φ), where η ∈Rn is an arbitrary vector and κ is a scalar. Then

v0 = ξ+ γq, v(ϑ) = eλϑ(ξ+ γq−κϑq), (ϑ ∈ [−h, 0])

with

ξ=∆(λ)INV
�

η+ κ∆′(λ)q
�

and γ= −p∆′(λ)ξ+
1
2
κp∆′′(λ)q.

In this case, we employ the notation v = BINV
λ
(ζ,κ).

This concludes our description of the general method to find the normal form coefficients.
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4.3 Derivation of the Hopf critical normal form

For the different types bifurcations, (4.3) can be reduced to different specific normal forms.
We will derive the Hopf critical normal form and its coefficients here in detail; the other
normal forms will be simply listed in the next section. For their derivation, we refer the
reader to [10] or [14].

A Hopf bifurcation is a codimension-one bifurcation where σ(A) contains a simple purely
imaginary pair λ1,2 = ±iω0 with ω0 > 0 and no other purely imaginary eigenvalues.

Let φ and φ� be complex eigenvectors of A and A∗ corresponding to λ1 = +iω0, satisfying



φ,φ�
�

= 1 and let p and q be as in Lemma 3.5. The generic normal form equation (4.3)
can be reduced to the Poincaré normal form

ż = iω0z + c1(0)z|z|2 +O
�

‖z‖4
�

, (4.13)

where z is complex and the critical normal form coefficient c1(0) is unknown. Any point y
in the real two-dimensional center subspace X0 corresponding to λ1,2 may be uniquely ex-

pressed with respect to the set
¦

φ,φ
©

by means of the smooth complex coordinate mapping

y 7→ (z, z̄) , z :=



φ�, y
�

.

The homological equation (4.9) becomes

A�∗H (z, z̄) + R (H (z, z̄)) = DzH (z, z̄) ż + Dz̄H (z, z̄) ˙̄z

with center manifold expansion

H (z, z̄) = zφ + z̄φ +
∑

2¶ j+k¶3

1
j!k!

h jkz j z̄k +O
�

‖z‖4
�

. (4.14)

Note that since the image of H lies in the real space X , it follows that its coefficients satisfy
hk j = h jk. The derivatives ż and ˙̄z are given by (4.13) and its complex conjugate.

We will now expand the homological equation in some detail. After combining (4.13) and
(4.14), the right hand side of the homological equation becomes

RHS= (φ + h11z̄ + h20z) ż +
�

φ + h02z̄ + h11z
�

˙̄z

= iω0zφ + iω0h20z2 + c1(0)z
2z̄φ +−iω0z̄φ − iω0h02z̄2 + c1(0)z̄

2zφ +O
�

‖z‖4
�

.

Likewise, we can expand the left hand side, using (4.14) and (4.4).

LHS= A�∗zφ + A�∗z̄φ +
1
2

A�∗h02z̄2 + A�∗h11zz̄ +
1
2

A�∗h20z2

+
1
2

z2B(φ,φ) + zz̄B(φ,φ) +
1
2

z̄2B(φ,φ) +
1
2

zz̄2B(φ, h02) + z2z̄B(φ, h11)

+
1
2

z3B(φ, h20) +
1
2

z̄3B(φ, h02) + zz̄2B(φ, h11) +
1
2

z̄z2B(φ, h20)

+
1
6

z3C(φ,φ,φ) +
1
2

z2z̄C(φ,φ,φ) +
1
2

zz̄2C(φ,φ,φ) +
1
6

z̄3C(φ,φ,φ)

+O
�

‖z‖4
�

.
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Here, we have used the multilinearity and the symmetry of B and C . Comparing coefficients
of the quadratic terms z2 and zz̄ leads to two non-singular linear equations for h20 and h11,
namely

1
2

A�∗h20 + B(φ,φ) = iω0h20,

A�∗h11 + B(φ,φ) = 0.

Using our expression for B, we can transform our system into the form required by (4.10):
�

2iω0 I − A�∗
�

h20 = D2 f (0)(φ,φ)r�∗,

A�∗h11 = −D2 f (0)(φ,φ)r�∗.

Now, both 0 and 2iω0 are hypothesized to be non-eigenvalues. Furthermore, r�∗j = (e j , 0).
Therefore, we can apply Corollary 4.4 to these systems, finding the explicit solutions

h20 = e2iω0ϑ∆(2iω0)
−1D2 f (0)(φ,φ)

h11 =∆(0)
−1D2 f (0)(φ,φ),

We can obtain c1(0) from the system corresponding to the cubic term z2z̄. It reads
�

iω0 I − A�∗
�

h21 = C(φ,φ,φ) + B(φ, h20) + 2B(φ, h11)− 2c1(0)φ ≡ψ�∗.

We now use the Fredholm Alternative (Theorem 4.2) and pair the above expression with our
φ� ∈ N (iω0 I − A∗). We now know that




φ�,ψ�∗
�

= 0. Since



φ�,φ
�

= 1 by assumption,
this leads to

c1(0) =
1
2

¬

φ�, C(φ,φ,φ) + B(φ, h20) + 2B(φ, h11)
¶

. (4.15)

Now, let’s have a look at Table 2.1 again. Note that the right operand of the pairing is an
element of X�∗. If we write it in the representation (α,η) ∈ Rn × L∞([−h, 0],Rn), we see
that it only has a component in Rn, because of the definition of B and C (see (4.5)). As we
saw in Lemma 3.5, we can assume φ� has the NBV-representation

φ�(ϑ) = p

�

I +

∫ ϑ

0

∫ h

σ

eλ(σ−s)dζ(s) dσ

�

;

however, to evaluate the pairing in (4.15), we need to have a Rn × L1([0, h],Rn) represen-
tation (c, g). This can be achieved by setting

c = lim
ϑ↓0
φ�∗(ϑ) = p, g = φ̇�∗.

The pairing is now given by

〈(c, g), (α,η)〉= cα+

∫ h

0

g(ϑ)η(−ϑ) dϑ.

Substituting our expressions, we see that the integral will vanish because η≡ 0, and (4.15)
becomes

c1(0) =
1
2

¬

�

p, φ̇�∗
�

, C(φ,φ,φ) + B(φ, h20) + 2B(φ, h11)
¶

=
1
2

¬

(p, φ̇�∗),
�

D3 f (0)(φ,φ,φ) + D2 f (0)(φ, h20) + 2D2 f (0)(φ, h11)
�

r�∗
¶
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=
1
2

p
�

D3 f (0)(φ,φ,φ) + D2 f (0)(φ, h20) + 2D2 f (0)(φ, h11)
�

.

Substituting our expressions for h20 and h11, we finally get

c1(0) =
1
2

p ·
�

D2 f (0)
�

φ, e2iω0ϑ∆(2iω0)
−1D2 f (0)(φ,φ)

�

+ 2D2 f (0)
�

φ,∆(0)−1D2 f (0)(φ,φ)
�

+ D3 f (0)(φ,φ,φ)
�

,

We now have the full derivation of the Hopf critical normal form. All other normal forms
and their coefficients will be listed without derivation in the next section (see [10] for more
details).
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4.4 List of critical normal forms

4.4.1 Codimension 1

Hopf

As we have seen, the (critical) normal form is given by

ż = iω0z + c1(0)z
2z̄ + · · · .

The critical normal form coefficient in this expression is c1(0), but traditionally we use the
First Lyapunov Coefficient given by

l1(0) =
1

2ω0

�

c1(0) + c1(0)
�

=
1
ω0

Re c1(0).

As derived in the previous section, the coefficient c1(0) is given by

c1(0) =
1
2

p ·
�

D2 f (0)
�

φ, e2iω0ϑ∆(2iω0)
−1D2 f (0)(φ,φ)

�

+ 2D2 f (0)
�

φ,∆(0)−1D2 f (0)(φ,φ)
�

+ D3 f (0)(φ,φ,φ)
�

, (4.16)

4.4.2 Codimension 2

Bautin (Generalized Hopf)

If the First Lyapunov Coefficient of a Hopf bifurcation point crosses zero, we say that a
Generalized Hopf bifurcation takes place. The standard normal form is given by

ż = (β1(α) + iω0)z + β2(α)z|z|2 + l2(0)z|z|4 + · · · .

Here, ł2(0) is the Second Lyapunov Coefficient. For numerical computations, we use the
Poincaré smooth normal form given by

ż(t) = iω0z + c1(0)z
2z̄ + c2(0)z

3z̄2 + · · · .

Of course, we assume that c1(0) = 0. The Second Lyapunov Coefficient can be recovered
from

l2(0) =
1
ω0

Re c2(0).

In order to compute it, we again need vectors such that

Aφ = 0, A∗φ� = 0,



φ�,φ
�

= 1.

We reuse some coefficients from the standard Hopf bifurcation:

h20 = e2iω0ϑ∆(2iω0)
−1D2 f (0)(φ,φ),

h11 =∆(0)
−1D2 f (0)(φ,φ).

The extra coefficients we need are:

h30 = e3iω0ϑ∆(3iω0)
−1
�

3D2 f (0)(φ, h20) + D3 f (0)(φ,φ,φ)
�

,
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h21 = BINV
iω0

�

D3 f (0)(φ,φ,φ) + D2 f (0)(φ, h20) + 2D2 f (0)(φ, h11),−2c1(0)
�

,

h31 = e2iω0ϑ∆(2iω0)
−1
�

D2 f (0)(φ, h30) + 3D2 f (0)(h20, h11) + 3D2 f (0)(φ, h21)

+ 3D3 f (0)(φ,φ, h20) + 3D3 f (0)(φ,φ, h11) + D4 f (0)(φ,φ,φ,φ)
�

− 6c1(0)∆(2iω0)
−1
�

∆′(2iω0)− I − θ∆(2iω0)
�

h20,

h22 =∆(0)
−1
�

2D2 f (0)(φ, h21) + 2D2 f (0)(h11, h11) + 2D2 f (0)(φ, h21)

+ D2 f (0)(h20, h20) + D3 f (0)(φ,φ, h20) + D3 f (0)(φ,φ, h20)

+ 4D3 f (0)(φ,φ, h11) + D4 f (0)(φ,φ,φ,φ)
�

.

where we employed the notation for the bordered inverse introduced in Corollary 4.8. The
critical coefficient is now given by

c2 =
1

12
p ·
�

6D2 f (0)(h11, h21) + 3D2 f (0)(h21, h20) + 3D2 f (0)(h20, h30)

+ 3D2 f (0)(φ, h22) + 2D2 f (0)(φ, h31) + 6D3 f (0)(φ, h20, h11)

+ 6D3 f (0)(φ, h11, h11) + 3D3 f (0)(φ, h20, h20) + 6D3 f (0)(φ,φ, h21)

+ 3D3 f (0)(φ,φh21) + D3 f (0)(φ,φ, h30) + 6D4 f (0)(φ,φ,φ, h11)

+ 3D4 f (0)(φ,φ,φ, h20) + D4 f (0)(φ,φ,φ, h20) + D5 f (0)(φ,φ,φ,φ,φ).

Fold-Hopf

Again, we have a “standard” normal form and a smooth normal form. The standard one is
called the Gavrilov normal form and is given by

¨

ż0 = δ(α) + b(α)z2
0 + c(α)|z1|2 + · · · ,

ż1 = σ(α)z1 + d(α)z0z1 + e(α)z2
0z1 + · · · ,

z0 ∈R, z1 ∈ C.

We use the Poincaré smooth normal form, given by

¨

ż0 = g200z2
0 + g011|z1|2 + g300z3

0 + g111z0|z1|2 + · · · ,
ż1 = iω0z1 + g110z0z1 + g210z2

0z1 + g021z1|z1|2 + · · · ,
z0 ∈R, z1 ∈ C.

The coefficients g jkl are real in the first and complex in the second equation. The relation-
ships between the coefficients of the first and the second normal form are:

b(0) = g200, c(0) = g011, d(0) = g110 − iω0
g300

g200
,

e(0) = Re
�

g210 + g110

�

Re g021

g011
−

3g300

2g200
+

g111

2g011

�

−
g021 g200

g011

�

.

Two quantities that characterize the bifurcation are

s ≡ g200 g011, θ ≡
Re g110

g200
.

In this case, we need two pairs of eigenvectors:

Aφ0 = 0, Aφ1 = iω0φ1, A∗φ�0 = 0, A∗φ�1 = iω0φ
�
1 ,




φ�i ,φ j

�

= δi j .
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These can be used to compute some center manifold coefficients:

h200 = BINV
0

�

D2 f (0)(φ0,φ0),−p0 · D2 f (0)(φ0,φ0)
�

,

h020 = e2iω0ϑ∆(2iω0)
−1D2 f (0)(φ1,φ1),

h110 = BINV
iω0

�

D2 f (0)(φ0,φ1),−p1 · D2 f (0)(φ0,φ1)
�

,

h011 = BINV
0

�

D2 f (0)(φ1,φ1),−p0 · D2 f (0)(φ1,φ1)
�

.

This leads to expressions for the critical normal form coefficients:

g200 =
1
2

p0 · D2 f (0)(φ0,φ0),

g110 = p1 · D2 f (0)(φ0,φ1),

g011 = p0 · D2 f (0)(φ1,φ1),

g300 =
1
6

p0 ·
�

3D2 f (0)(φ0, h200) + D3 f (0)(φ0,φ0,φ0)
�

,

g111 = p0 ·
�

D2 f (0)(φ0, h011) + D2 f (0)(φ1, h110) + D2 f (0)(φ1, h110) + D3 f (0)(φ0,φ0,φ1)
�

,

g210 =
1
2

p1 ·
�

D2 f (0)(φ1, h200) + 2D2 f (0)(φ0, h110) + D3 f (0)(φ0,φ0,φ1)
�

,

g021 =
1
2

p1 ·
�

D2 f (0)(φ1, h020) + 2D2 f (0)(φ1, h011) + D3 f (0)(φ1,φ1,φ1)
�

.

Double Hopf

The Poincaré smooth normal form is given by



















ż1 = iω1z1 + g2100z1|z1|2 + g1011z1|z2|2 + g3200z1|z1|4

+g2111z1|z1|2|z2|2 + g1022z1|z2|4 + · · · ,
ż2 = iω2z2 + g1110z2|z1|2 + g0021z2|z2|2 + g2210z2|z1|4

+g1121z2|z1|2|z2|2 + g0032z2|z2|4 + · · ·

z1 ∈ C, z2 ∈ C.

Here, the coefficients g jklm are all complex. Two quantities that characterize the bifurcation
are

θ (0)≡
Re g1011

Re g0021
, δ(0)≡

Re g1110

Re g2100
.

The center manifold coefficients are given by

h1100 =∆(0)
−1D2 f (0)(φ1,φ1),

h2000 = e2iω1ϑ∆(2iω1)
−1D2 f (0)(φ1,φ1),

h1010 = ei(ω1+ω2)ϑ∆(i(ω1 +ω2))
−1D2 f (0)(φ1,φ2),

h1001 = ei(ω1−ω2)ϑ∆(i(ω1 −ω2))
−1D2 f (0)(φ1,φ2),

h0020 = e2iω2ϑ∆(2iω2)
−1D2 f (0)(φ2,φ2),

h0011 =∆(0)
−1D2 f (0)(φ2,φ2),

h3000 = e3iω1ϑ∆(3iω1)
−1
�

3D2 f (0)(h2000,φ1) + D3 f (0)(φ1,φ1,φ1)
�

,

h2010 = ei(2ω1+ω2)ϑ∆(i(2ω1 +ω2))
−1
�

2D2 f (0)(h1010,φ1)
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+ D2 f (0)(h2000,φ2) + D3 f (0)(φ1,φ1,φ2)
�

,

h2001 = ei(2ω1−ω2)ϑ∆(i(2ω1 −ω2))
−1
�

2D2 f (0)(h1001,φ1)

+ D2 f (0)(h2000,φ2) + D3 f (0)(φ1,φ1,φ2)
�

,

h1020 = ei(ω1+2ω2)ϑ∆(i(ω1 + 2ω2))
−1
�

2D2 f (0)(h1010,φ2)

+ D2 f (0)(h0020,φ1) + D3 f (0)(φ1,φ2,φ2)
�

,

h1002 = ei(ω1−2ω2)ϑ∆(i(ω1 − 2ω2))
−1
�

2D2 f (0)(h1001,φ2)

+ D2 f (0)(h0020,φ1) + D3 f (0)(φ1,φ2,φ2)
�

,

h0030 = e3iω2ϑ∆(3iω2)
−1
�

3D2 f (0)(h0020,φ2) + D3 f (0)(φ2,φ2,φ2)
�

.

This leads to the following critical normal form coefficients:

g2100 =
1
2

p1 ·
�

2D2 f (0)(h1100,φ1) + D2 f (0)(h2000,φ1) + D3 f (0)(φ1,φ1,φ1)
�

,

g1011 = p1 ·
�

D2 f (0)(h0011,φ1) + D2 f (0)(h1001,φ2) + D2 f (0)(h1010,φ2) + D3 f (0)(φ1,φ2,φ2)
�

,

g1110 = p2 ·
�

D2 f (0)(h1001,φ1) + D2 f (0)(h1010,φ1) + D2 f (0)(h1100,φ2) + D3 f (0)(φ1,φ1,φ2)
�

,

g0021 =
1
2

p2 ·
�

2D2 f (0)(h0011,φ2) + D2 f (0)(h0020,φ2) + D3 f (0)(φ2,φ2,φ2)
�

.
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Chapter 5

Additions to DDE-BIFTOOL

DDE-BIFTOOL is a Matlab tool for bifurcation analysis of DDEs, designed by Koen Engelborghs.
It is able to analyze DDEs with discrete, fixed delays and discrete delays depending on the
state varables and the parameters. Both the package and its manual are freely available
(see [4]). The main objective of this thesis is of course to extend DDE-BIFTOOL with ways to
compute normal forms. In this chapter, we will describe how this was done and what other
functionality has been added. Among its intended audience are current users of DDE-BIFTOOL

who want to know what has changed in existing subroutines and how the new subroutines
should be used. Chapter 6 contains concrete examples.

5.1 Bifurcation detection

5.1.1 Global setup

Our first aim was to be able to detect various bifurcations. To do this, it was necessary to
slightly modify the br_contn-routine.

The call to the detection routine is as follows:

[newbranch, success] = br_bifdet(branch)

Here, branch is the current branch (the last point of which is the newly detected point).
The output parameter newbranch is the original branch augmented with a newly found
bifurcation point (if one was found), and success tells us whether a bifurcation was
found and successfully added to the branch.

The detection routine needs a few configuration parameters. These have been collected in
the new substructure method.bifurcation. An overview can be found in Table 5.1.

If the detection flag is set, the detection routine is called after a new point has been found
during the continuation process. DDE-BIFTOOL in its original form already can compute the
stability of a point; br_bifdet simply uses this existing functionality (p_stabil) to compute
the eigenvalues at the newly found point. It only keeps the eigenvalues of which the real part
is greater or equal than the parameter method.bifurcation.minimal_real_part; tweak-
ing this minimum may be necessary because of memory overflow in the detection routines.
After computing the roots, the detection algorithm then applies certain test functions to

43



44 CHAPTER 5. ADDITIONS TO DDE-BIFTOOL

Parameter Default Description
detect 1 Toggle detection on/off
minimal_real_part −0.1 Minimal real part of the characteristic

roots used during detection
correction_tolerance 10−7 Custom value for

method.point.minimal_accuracy

during codimension 1 (Hopf) bifur-
cation correction

radial_tolerance_factor 0.25 The maximum distance to the branch
the bifurcation point may have rela-
tive to the distance between the last
two points

secant_iterations 30 The maximum number of iterations
for the secant method used to correct
codimension 2 points

secant_tolerance 10−9 The minimal accuracy for the secant
method

TABLE 5.1: Fields of the structure method.bifurcation, which is a substructure of a branch struc-
ture.

check whether a bifurcation is happening. If the sign of one of these test functions changes,
a bifurcation is happening. (See below.)

If, according to one of the test functions, the roots indicate a bifurcation, we construct a
new point halfway between the last and the second to last branch point. Now there are
two options: for codim 1 bifurcations (i.e. Hopf), we simply use the existing functionality of
p_correc to correct the midpoint to a true bifurcation point. For codim 2 bifurcations, we
use a secant method to arrive at a point where the test function is close enough to zero. The
maximum number of iterations and the minimal accuracy can be set using the parameters
method.bifurcation.secant_iterations and method.bifurcation.secant_tolerance,
respectively.

There is a possibility that the correction fails. The reason for this is probably a false positive
from the specific test function. In this case, the detection algorithm issues a warning and
continues to check for other bifurcations (if there are any left on its list). Do note that it may
happen that p_correc is too strict; in this case, modifying its tolerance is possible via the
parameter method.bifurcation.correction_tolerance.

If the correction succeeds, a second possibility for errors is that the newly found point does
not lie on the branch. By default, the point is considered “away from the branch” if its dis-
tance to the line connecting the last and second to last points on the branch is more than
25% of the length of this line. If this is the case, the detection algorithm again issues a
warning and stops. This radial tolerance factor can be modified by specifying the parame-
ter method.bifurcation.radial_tolerance_factor. In order to compute the distances
between points, we added an inner product function:

ip = p_inprod(p1, p2)

Computes the inner product between the two points p1 and p2. It was based on the
p_norm function and constructed in such a way that p_inprod(p1,p1) = p_norm(p1)2.
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Field Content
kind 'genh'

flag �

parameter R1×p

x Rn×1

omega R

stability empty or struct
nvec.p Rn×1

nvec.q Rn×1

nmfm empty or struct

Field Content
kind 'zeho'

flag �

parameter R1×p

x Rn×1

omega R

stability empty or struct
nvec.p Rn×1

nvec.q Rn×1

nmfm empty or struct

Field Content
kind 'hoho'

flag �

parameter R1×p

x Rn×1

omega1 R

omega2 R

stability empty or struct
nvec.p Rn×1

nvec.q Rn×1

nmfm empty or struct

TABLE 5.2: New point structure types for bifurcation points.

If all is well, the bifurcation point is added to the branch. (Not without difficulty, see Section
5.4.) The point is placed between the last and second to last points of the branch.

Note: in the current implementation, if the correction as a bifurcation point fails, detection is
resumed, i.e. the remaining test functions are evaluated until another bifurcation is detected
or until the list of test functions is exhausted. On the other hand, if a corrected bifurcation
point is not on the branch, detection is not resumed.

5.1.2 Bifurcation point types

If a Hopf bifurcation is detected on a steady state branch, the bifurcation candidate is con-
verted into a hopf point and corrected. In the same spirit, if a bifurcation is detected on a
hopf branch, the point is converted to one of the following new point types: genh, zeho and
hoho, containing Generalized Hopf, Zero-Hopf and Double Hopf points respectively.

At present, genh points and zeho points only differ from hopf points by their kind label.
Only hoho has a clear difference: instead of one field omega, it features two fields omega1 and
omega2. For completeness, Table 5.2 shows the full structure specifications (also including
the new fields that have been added to all point structures).

Of course, new point types need new conversion functions:

[genh, success] = p_togenh(hopf)

Converts a point of hopf type to a point of genh type. Currently, this only copies the
point and makes sure that the flag and nmfm fields are set. If point.kind is not equal
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to hopf, success is set to 0, otherwise 1.

[hoho, success] = p_tohoho(hopf)

Converts a point of hopf type to a point of hoho type. It copies the point and removes
the omega field, but sets its value as hoho.omega1. It then looks for the second imag-
inary pair and sets its frequency as hoho.omega2. If point.kind is not equal to hopf

or no other imaginary pair is found, success is set to 0, otherwise 1.

[zeho, success] = p_tozeho(hopf)

Converts a point of hopf type to a point of zeho type. Currently, this only copies the
point and makes sure that the flag and nmfm fields are set. If point.kind is not equal
to hopf, success is set to 0, otherwise 1.

5.1.3 Test functions

Here we list the test functions used to detect bifurcations.

Hopf

Given a set of roots
�

λ j

	n
j=1, we compute the product of sums

Λ=
∏

i< j

(λi +λ j).

A sign change in this quantity signifies a bifurcation.

We have encapsulated this function in the nmfm_hopfdet routine:

sign = nmfm_hopfdet(roots)

This function computes the quantity Λ as a function of the eigenvalues in roots and
normalizes the sign to +1 or −1.

It can happen that, due to memory overflow, the product becomes infinite. In this case, a
warning is issued. The solution is to lower the minimal real part of the roots.

Generalized Hopf

The test function for the Generalized Hopf bifurcation is simply the First Lyapunov Coefficient
of the Hopf bifurcation. See below for more information on this subject.

Zero-Hopf

For the Zero-Hopf bifurcation, we look at the sign of the smallest real eigenvalue. To select
this eigenvalue, there is an auxiliary function:

[smallest_real_part, fullroots] = nmfm_smlrp(point, method, remove_pair)

This function selects the smallest real eigenvalue of point, which must be of hopf type.
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If no stability information is present, the eigenvalues are computed using method. If
remove_pair is set to 1, then the eigenvalue pair ±iω is removed from the roots
before the selection is made. The field point.omega is used for this. If wanted, the
newly computed roots are returned as fullroots.

Double Hopf

For the Double Hopf bifurcation, we look at the sign of the smallest real part of the complex
eigenvalue pairs. To this end, there is an auxiliary function:

[smallest_real_part, fullroots] = nmfm_smlrpip(point, method, remove_pair)

This function selects the smallest real part of the complex eigenvalue pairs of point,
which must be of hopf type. If no stability information is present, the eigenvalues are
computed using method. If remove_pair is set to 1, then the eigenvalue pair ±iω is
removed from the roots before the selection is made. The field point.omega is used
for this. If wanted, the newly computed roots are returned as fullroots.

5.2 Computation of normal form coefficients

We have implemented computation of the normal form coefficients of Hopf, Generalized
Hopf, Double Hopf and Zero-Hopf. The implementation works fairly similar, so in this section,
we focus on the First Lyapunov Coefficient (which is the normal form coefficient for Hopf
bifurcations).

5.2.1 The abstract expression

When a Hopf bifurcation is detected, the First Lyapunov Coefficient is computed. To do this,
we had to convert the expression

c1(0) =
1
2

p ·
�

D2 f (0)
�

φ, e2iω0ϑ∆(2iω0)
−1D2 f (0)(φ,φ)

�

+ 2D2 f (0)
�

φ,∆(0)−1D2 f (0)(φ,φ)
�

+ D3 f (0)(φ,φ,φ)
�

, (5.1)

into a form that allows us to evaluate it numerically. If we have this number, the First Lya-
punov Coefficient is given by

l1(0) =
1

2ω0

�

c1(0) + c1(0)
�

. (5.2)

Equation (4.16) contains the following elements:

(1) The characteristic matrix ∆(λ);

(2) The critical eigenvalue λ0 = iω0 (characteristic of the Hopf bifurcation);

(3) Vectors p and q such that ∆(λ0)q = 0= p∆(λ0) and pq = 1;

(4) The function f , used in ẋ(t) = f (x t ,α);
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(5) Derivatives D j f of this function;

(6) Eigenfunctions φ and φ of A such that
¬

φ,φ
¶

= 1.

Some of these quantities are still too abstract to use in a numerical implementation. One
of the big problems is: our f here is still defined as a function C ([−h, 0],Rn)×Rm → Rn.
Below, we present a framework to solve this problem.

5.2.2 The numerical framework

In this section, we present a framework to convert theoretical, abstract expressions from
sun-star calculus into workable DDE-BIFTOOL equivalents. It is based on [10], Section 4.2.3.
As was mentioned earlier, we assume that we have discrete delays.

Consider the DDE

ẋ(t) = f (x t),

where f : C ([−h, 0],Rn)→Rn is at least five times continuously differentiable. Let n be the
dimension of the system. Suppose that we only have r discrete delays, i.e. we have

0= τ0 < τ1 < τ2 < · · ·< τr = h.

(This means that we formally have r + 1 delays, including the zero delay.)

Now, given a function ϕ ∈ C ([−h, 0],Rn) (i.e. a candidate to apply f to), introduce n·(r+1)
continuous functions ϕk

j : [−h, 0]→R, with

ϕk
j = ϕ j(−τk)

(i.e. ϕk
j denotes the j-th coordinate function of ϕ applied to −τk). We group them together

in the n× (r + 1) matrix

Φ≡
¦

ϕk
j

©
r
n
j=1
k=0
≡











ϕ1(−τ0) · · · ϕ1(−τr)
ϕ2(−τ0) · · · ϕ2(−τr)

...
...

ϕn(−τ0) · · · ϕn(−τr)











.

Now, recall that we only use DDE-BIFTOOL for systems with discrete delays. This means that
there exists a function G ∈ C5(Rn(r+1),Rn), i.e. a function operating on numbers instead of
functions, such that

f (ϕ) = G(Φ).

This is actually the way DDE-BIFTOOL already treats its right hand side functions. For an
illustration of this fact, see Example 5.1.

Example 5.1. Suppose we have the following system of DDEs:

ẋ1(t) = x1(t)
2 − x2(t −τ1) + 3x1(t −τ2)

2

ẋ2(t) = x2(t)
2 + x1(t −τ1)− 3x2(t −τ2)

2
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This means n= 2 and r = 2. Then our function G is given by the coordinate functions

G1(Φ) = (ϕ
0
1)

2 −ϕ1
2 + 3

�

ϕ2
1

�2

G2(Φ) = (ϕ
0
2)

2 +ϕ1
1 − 3

�

ϕ2
2

�2

and in fact, we enter the following in the sys_rhs file (but note that we start numbering
the delays at 1):

f(1,1) = xx(1,1)2 − xx(2,2) + 3 ∗ xx(1,3)2

f(2,1) = xx(2,1)2 + xx(1,2)− 3 ∗ xx(2,3)2

5.2.3 The numerical expression

Using the framework outlined above, we can rewrite all abstract quantities involving f to
real-valued quantities involving G. As it happens, only the critical eigenvalue λ0 = iω0 is
available from the start without any conversion.

The first rewrite is simple: we replace f (ϕ) by G(Φ). The derivatives of f require more
care. For ` ∈ N, the `-th order derivative D` f (0) of f at zero is a bounded `-linear form
from C([−h, 0],Rn) to Rn. We denote the derivative at zero of the i-th component of G
with respect to its ( j, k)-th variable (i.e. to ϕk

j ) by Dk
j Gi(0) ∈ R. The second derivative at

zero with respect to ϕk1
j1

and ϕk2
j2

is denoted by Dk1k2
j1 j2

Gi(0) ∈ R, and so on for all higher-
order derivatives. So these derivatives take a certain number of functions C([−h, 0],Rn)
and produce a vector in Rn.

For instance, when `= 1, we have, for ϕ ∈ C([−h, 0]),

D1 fi(0)ϕ =
n
∑

j1=1

r
∑

k1=0

Dk1
j1

Gi(0)ϕ
k1
j1
≡ Dk1

j1
Gi(0)ϕ

k1
j1

,

where we have temporarily introduced the convention that repeated indices imply sum-
mation. It will prove convenient to condense n of these coordinate expressions into one
n-dimensional vector equation (i.e. dropping the i):

D1 f (0)ϕ = Dk1
j1

G(0)ϕk1
j1

. (5.3)

This form will be implemented in DDE-BIFTOOL.

The shorthand notation allows us to express all higher order derivatives rather efficiently.
We list them here up to order five, as this is the highest number of derivatives required for
normal form computations.

D2 f (0)(ϕ,ψ) = Dk1k2
j1 j2

G(0)ϕk1
j1
ψ

k2
j2

, (5.4)

D3 f (0)(ϕ,ψ,χ) = Dk1k2k3
j1 j2 j3

G(0)ϕk1
j1
ψ

k2
j2
χ

k3
j3

, (5.5)

D4 f (0)(ϕ,ψ,χ,ζ) = Dk1k2k3k4
j1 j2 j3 j4

G(0)ϕk1
j1
ψ

k2
j2
χ

k3
j3
ζ

k4
j4

, (5.6)

D5 f (0)(ϕ,ψ,χ,ζ,η) = Dk1k2k3k4k5
j1 j2 j3 j4 j5

G(0)ϕk1
j1
ψ

k2
j2
χ

k3
j3
ζ

k4
j4
η

k5
j5

. (5.7)
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We now turn our attention to the characteristic matrix ∆(λ), which will be evaluated at
different values of λ. For discrete delays, formula (3.7) becomes a finite sum of matrices:

∆(λ) = λI −
r
∑

k=0

Ake−λτk ,

where r is the number of delays, τk is the k-th delay and

Ak =
�

Dk
1 G(0) · · · Dk

n G(0)
�

=







Dk
1 G1(0) · · · Dk

n G1(0)
...

...
Dk

1 Gn(0) · · · Dk
n Gn(0)






, (5.8)

i.e. the derivative matrix with respect to all variables corresponding to the k-th delay.

Now we have the characteristic matrix, the vectors p and q can simply be constructed out of
the nullspaces of ∆(λ0) and ∆(λ0)T . If q0 and p0 are arbitrary vectors satisfying ∆(λ0)q0 =
0= p0∆(λ0), we can normalize them by putting

β =
1

p

p0∆′(λ0)q0

, q = βq0, p = βp0.

This will automatically lead to normalized eigenfunctions, because of Lemma 3.5. However,
this means that we need to numerically have the derivative of the characteristic matrix, i.e.

∆′(λ) = I +
r
∑

k=0

τkAke−λτk . (5.9)

Other normal form coefficients will need the second derivative as well, i.e.

∆′′(λ) = I −
r
∑

k=0

τ2
kAke−λτk . (5.10)

The eigenfunction φ is given by

φ(ϑ) = eλ0ϑq = eiω0ϑq, (5.11)

and hence

φ(ϑ) = e−iω0ϑq.

Evaluated at ϑ = τ0, . . . ,τr , these can then be used as input for the various derivatives.

5.2.4 DDE-BIFTOOL implementation

In order to compute the multilinear forms, an extra system specification was developed. In
the new version of DDE-BIFTOOL, a derivative file should implement the following function:

function y = sys_mfderi(xx,par,varargin)

This function should implement the equations (5.3), (5.4), (5.5), (5.6) and (5.7) all
at once. The variable arguments here are the vectors φ,ψ,χ,ζ,η appearing in these
equations. The number of variable arguments determines which derivative is returned.
The result is an n-dimensional vector.
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A Maple script is available to automatically generate the Matlab file if the right hand side is
specified.

The original function sys_deri is still called by all “old” subroutines. This file, as well as the
sys_rhs file, can also be generated by the Maple script.

In order to facilitate the normal form computations, several auxiliary subroutines have been
added. They are prefixed by nmfm.

Delta = nmfm_charmat(xx,par,lambda)

This function computes the characteristic matrix∆(lambda) as described in Equations
(3.7) and (5.8).

DDelta = nmfm_charmatderi(xx,par,lambda)

This function computes the derivative of the characteristic matrix ∆(lambda) as de-
scribed in Equations (5.9) and (5.8).

D2Delta = nmfm_charmatderi2(xx,par,lambda)

This function computes the second derivative of the characteristic matrix ∆(lambda)
as described in Equations (5.10) and (5.8).

PHI = nmfm_handletomatrix(fn, arg)

This function takes a n-dimensional vector-valued function handle fn and an r-dimensional
vector arg and produces an n× r-matrix

�

fn(arg(1)) · · · fn(arg(r))
�

.

It is used to convert a function such as φ, given in Equation (5.11), to a matrix on
which the derivative can operate (as in Equation (5.3)). For this it is necessary to put
the list of r delays in arg.

BINV = nmfm_binv(xx, par, lambda, q, p, zeta, kappa)

This function is used in the computation of codimension 2 bifurcations. It computes
the bordered inverse as computed in Corollary 4.8.

And last but not least, the subroutines which actually compute the normal form coefficients.

point = nmfm_hopf(newpoint, oldpoint)

This function computes the First Lyapunov Coefficient for the Hopf bifurcation occur-
ring at newpoint (which should be of type hopf) and stores it in point.nmfm.L1. It
simply evaluates Equations (5.2) and (5.1) using the machinery explained above. If
the optional argument is provided, oldpoint is used in the computation of the null
vectors (see below).

point = nmfm_genh(newpoint, oldpoint)

This function computes the Second Lyapunov Coefficient for the Generalized Hopf
bifurcation occurring at newpoint (which should be of type genh) and stores it in
point.nmfm.L2. If the optional argument is provided, oldpoint is used in the com-
putation of the null vectors (see below).

point = nmfm_zeho(newpoint, oldpoint)

This function computes the various normal form coefficients for the Zero-Hopf bifur-
cation occurring at newpoint (which should be of type zeho). They are stored in
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Type Fields
hopf L1

genh L2

zeho g200, g110, g011, g300, g111, g210, g021, a, b, c, d, e, s, theta
hoho g2100, g1011, g1110, g0021, theta, delta

TABLE 5.3: Normal form coefficients as stored in the point.nmfm structure.

point.nmfm. If the optional argument is provided, oldpoint is used in the compu-
tation of the null vectors (see below).

point = nmfm_hoho(newpoint, oldpoint)

This function computes the various normal form coefficients for the Double Hopf bi-
furcation occurring at newpoint (which should be of type hoho). They are stored in
point.nmfm. If the optional argument is provided, oldpoint is used in the computa-
tion of the null vectors (see below).

Note: the function br_bifdet will automatically call these subroutines.

5.2.5 Storage of the normal form coefficients

As was already indicated above, the critical normal form coefficients are stored in the new
point field structure nmfm. This fields contains all normal form coefficients as elements. For
the specifics, see Table 5.3.

All point manipulation routines have been updated to ensure that the nmfm field is always
present in all point types. Note, however, that not all point manipulation routines actually
compute the normal form coefficients when creating a new point: they leave the field empty.
We chose to do this in order to reduce overhead in contexts where the normal form coeffi-
cients are not specifically wanted. The only place where the normal form coefficients are set
is in br_contn if bifurcation detection is enabled.

5.2.6 Bordering technique for null vectors

All normal form computations require a number of null vectors, satisfying p∆(λ) = 0 and
∆(λ)q = 0. When continuing a Hopf branch, it is necessary to have these vectors at every
step, because we have to compute L1. In order to compute the null vectors robustly and
efficiently, we have implemented a bordering technique. We assume that some approximate
null vectors p0 and q0 are given. To get our new vector q, we solve the system

�

∆(λ) p0

q0
T 0

��

q
s

�

=

�

0n

1

�

and for p we solve

�

p s
�

�

∆(λ) p0

q0
T 0

��

q
s

�

=
�

0n 1
�

.

At the first point of the branch, we compute the null vectors of ∆(iω) directly by Matlab’s
null function and use them as input for the bordering technique. It might happen that the
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null function fails; in that case, we compute all eigenvectors and eigenvalues with the built-
in eig function (using QZ-decomposition) and select the eigenvector corresponding to the
zero eigenvalue.

For all subsequent points in the branch, we use the old null vectors as input (p→ p0, q→ q0).
To facilitate this, another new field has been added to the hopf structure: we now have access
to hopf.nvec.p and hopf.nvec.q. If an old point is provided to the normal form routine,
these vectors are used in the bordering technique. If no such point is provided, the null

result is used as input. The br_contn routine has been updated to always use the bordering
technique.

5.3 Correction of codim 2 bifurcations

If a codim 2 bifurcation is detected, we want to zoom in to the actual bifurcation point.
This is straightforwardly done by a secant method. For completeness, we briefly describe the
process:

(1) Start with one point at which a test function is negative and one point at which the
test function is positive

(2) Construct the point halfway between the positive and the negative point

(3) Compute the test function at this point

(4) If the test function is negative, make this point the new negative point; otherwise, the
new positive point

(5) Repeat until the absolute value of the test function is smaller than some predefined
tolerance

This secant method has been incorporated into the routine br_bifdet. For Generalized Hopf,
the test function is the First Lyapunov Coefficient, for Zero-Hopf, the test function is the
smallest real eigenvalue, and for Double Hopf, the test function is the smallest real part of
the complex eigenvalue pairs. By default, the tolerance mentioned above is the same as that
for hopf, namely 10−9.

5.4 Flagging bifurcation points

When one has a branch of steady states on which a Hopf bifurcation occurs, one typically
wants to plot the branch as a line and give the Hopf point a special marker (e.g. a big dot).
Ideally, one simply passes an entire branch to a plot routine, along with an instruction how
to display the various bifurcations occurring along a branch.

Within the architecture of Matlab, this task provided a challenge. As DDE-BIFTOOL branches
are stored as simple arrays of point-structures, it was not possible to have a branch of stst
points containing a hopf point as well, because different types of structures cannot occur
in the same array. Therefore, we chose to introduce an extra field to all point structures,
called flag, to store information on what kind of bifurcation occurs at this point. For exam-
ple, a stst can have stst.flag = 'hopf' or a hopf can have hopf.flag = 'genh' (for
Generalized Hopf).
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To make this work, two changes had to be made throughout all DDE-BIFTOOL source files.
First, all subroutines creating new point structures have been modified to also set point.flag
= � (so that all points in a branch have precisely the same structure). Second, all subrou-
tines adding points to branches had to be modified at the lines where the concatenation takes
place.

Given a branch with bifurcations, one also wants to extract all points flagged as a particular
bifurcation. This is possible using the new function br_getflags:

FPI = br_getflags(branch)

This function extracts a list of flagged point indices out of branch. FPI(1,:) holds the
indices of all points marked as hopf, FPI(2,:) those of fold, etc.

To streamline this process, we set up an indexing scheme to uniquely identify a type of
bifurcation by a number. Two new functions are available to simplify this process.

num = bif2num(bifstring)

Converts the bifurcation type contained in bifstring to its bifurcation index.

bifstring = num2bif(num)

Converts the bifurcation index num to its bifurcation type.

So, for instance, we have num2bif(1) = 'hopf' and bif2num('fold') = 2. See Table 5.4
for the full specification.

Index Flag Point type
0 stst Steady State
1 hopf Hopf
2 fold Fold
3 psol Periodic Solution
4 hcli Homoclinic
5 genh Generalized Hopf
6 hoho Double Hopf
7 zeho Zero-Hopf

TABLE 5.4: Bifurcation type numbering scheme.

5.5 Orbit simulation

Matlab has several standard functions to simulate DDEs: dde23 handles standard DDEs (with
constant delays) and ddesd handles DDEs with state-dependent delays (SDD DDEs). The
format in which the DDE should be passed to these functions is compatible with the DDE-
BIFTOOL format. However, while DDE-BIFTOOL is capable of handling general state-dependent
delays, ddesd can only handle delays that are functions of t and x(t). This limitation carries
over into the new features.

To facilitate simulating orbits, three new functions have been written. One of them is a wrap-
per for the Matlab routines, one of them is a helper function for the case of SDD equations,
and one allows for a quick simulation with only a point structure as input.
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sol = p_integ(point, t0, tf, doplot, history, h, plotpoints)

Integrates the system with point as constant history from time t0 to tf. The last four
arguments are optional. If doplot is set to 1, the result will be plotted. A non-constant
history function handle can be given in history. If h is nonempty and doplot is 1, the
history function will be plotted on the interval [−h, 0]. The number of plotpoints to
be used for the plot is set in plotpoints. For custom computations, one can use the
solution structure sol provided by Matlab (see the dde23 documentation).

sol = px_integ(x, par, t0, tf, doplot, history, h, plotpoints)

Integrates the system at parameter value par with constant history given by x from
time t0 to tf. The last four arguments are optional; see p_integ.

tauvec = px_integ_sddhelp(t,y,par,r)

If an SDD equation is used, this function computes the vector of delays as function of
the time and the state variables. r is the number of delays. Only works if the delays are
dependent on t and x(t) only.
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Chapter 6

Example systems

6.1 The Ikeda equation

We first analyze a simple DDE, providing all system definition files and Matlab commands
necessary to get the bifurcation results.

The DDE was inspired by the field of nonlinear optics and laser physics (see [7] for more
information). It models the light intensity of a laser with a delayed optical feedback and it
was formulated in 1979 by Kazuhiro Ikeda. The exact DDE reads

ε ẏ = −y +λ [1− sin(y(t − 1))] ,

where ε≡ τ/T is the ratio of the linear decay time and the delay T . Expanding the bifurca-
tion parameter as λ= ε−2Λ leads to the so-called leading order problem

ẏ = −
1
2
π+

1
2
Λy(t − 1)2 ≡ f (y(t), y(t − 1),Λ,τ),

We see that the relevant quantities are the values ~y = (y(t), y(t − 1)) = (y1, y2) and the
parameters (Λ,τ) = (p1, p2).

Our aim is to reproduce Figure 2 in [7], to compute the First Lyapunov Coefficient of the
Hopf bifurcation, and to verify its sign by simulation.

As input for sys_deri, we need a lot of derivatives of f . We will group them by order:

1 2

y ∂ f
∂ y1
= 0 ∂ f

∂ y2
= Λy2

p ∂ f
∂ p1
= 1

2 y2
2

∂ f
∂ p2
= 0.

y\p,y 1 2 1 2

1 ∂ 2 f
∂ y1 ∂Λ

= 0 ∂ 2 f
∂ y1 ∂ τ

= 0 ∂ 2 f
∂ y2

1
= 0 ∂ 2 f

∂ y1 ∂ y2
= 0

2 ∂ 2 f
∂ y2 ∂Λ

= y2
∂ 2 f
∂ y2 ∂ τ

= 0 ∂ 2 f
∂ y1 ∂ y2

= 0 ∂ 2 f
∂ y2

2
= Λ

Below, we list the system definition files. Note that the sys_deri and sys_mfderi files have
been generated by the Maple script.

57
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sys_init.m
function [name ,dim]= sys_init ()

name='ikeda ';

dim =1;

path(path , '../../ ddebiftool /');

return;

sys_tau.m
function tau=sys_tau ()

% par: Lambda tau

tau =[2];

return;

sys_rhs.m
function f=sys_rhs(y,par)

% y: y(t), y(t-1)

% par: Lambda , tau

f = -pi/2 + par (1)/2*y(2)^2;

return;

sys_deri.m
function J = sys_deri(xx,par ,nx ,np,v)

J = [];

if length(nx) == 1 && isempty(np) && isempty(v)

switch nx

case 0

J = [0];

case 1

J = [par (1)*xx(1 ,2)];

end

elseif isempty(nx) && length(np) == 1 && isempty(v)

switch np

case 1

J = [1/2*xx(1 ,2)^2];

case 2

J = [0];

end

elseif length(nx) == 1 && length(np) == 1 && isempty(v)

switch nx

case 0

switch np

case 1

J = [0];

case 2

J = [0];

end

case 1

switch np

case 1

J = [xx(1 ,2)];

case 2

J = [0];

end

end

elseif length(nx) == 2 && isempty(np) && ~isempty(v)

nx1 = nx(1); nx2 = nx(2);

switch nx1

case 0

switch nx2
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case 0

J = [0];

case 1

J = [0];

end

case 1

switch nx2

case 0

J = [0];

case 1

J = [par (1)*v(1)];

end

end

end

if isempty(J)

display ([nx np size(v)]);

error('SYS_DERI: requested derivative could not be computed !');

end

sys_mfderi.m
function y = sys_mfderi(xx ,par ,varargin)

if nargin == 2

error('SYS_MFDERI: no arguments .');

elseif nargin > 7

error('SYS_MFDERI: too many arguments .');

end

y = 0;

numarg = nargin - 2;

switch numarg

case 1

u1 = varargin {1};

y = [par (1)*xx(1,2)*u1(1 ,2)];

case 2

u1 = varargin {1}; u2 = varargin {2};

y = [par (1)*u1(1,2)*u2(1 ,2)];

otherwise

y = 0;

end

We start by generating the upper branch. In order to do this, we construct a steady state
point.

stst.kind='stst';

stst.parameter=[1 1];

stst.x=2;

stst.flag = '';

method=df_mthod('stst');

[stst,success]=p_correc(stst,[],[],method.point);

We now generate a branch with free parameter Λ (which has index 1) and set the limits for
continuation. We set stepsize = 0.05.

branch2=df_brnch(1,'stst');

branch2.parameter.min_bound=[1 0.5];

branch2.parameter.max_bound=[1 2];

branch2.parameter.max_step=[1 stepsize];

We add our first point to the branch and add a second point that is slightly perturbed in Λ.
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branch2.point=stst;

stst.parameter(1)=stst.parameter(1)+0.1;

[stst,success]=p_correc(stst,[],[],method.point);

branch2.point(2)=stst;

We continue the branch, turning on bifurcation detection, but turning off plotting for now.

branch2.method.continuation.plot = 0;

[branch2,s,f,r]=br_contn(branch2,100,1);

branch2=br_rvers(branch2);

[branch2,s,f,r]=br_contn(branch2,100,1);

This branch does not contain a bifurcation and DDE-BIFTOOL correctly discovers this fact: the
output for the upper branch is

BR_CONTN warning: boundary hit.

BR_CONTN: no bifurcations detected.

P_CORREC warning: use of nonsquare Jacobian.

P_CORREC warning: use of nonsquare Jacobian.

P_CORREC warning: use of nonsquare Jacobian.

DETECT_BIF: There was no bifurcation found near par(1) = 0.9040.

BR_CONTN warning: boundary hit.

BR_CONTN: no bifurcations detected.

The routine br_bifdet notifies us of a false positive: there was a sign change, but the
p_correc function was not able to find a Hopf point within the desired tolerance (here
the default tolerance).

We repeat the above steps to generate the lower branch of steady states; we only need to
change the line

stst.x=-2;

This produces the following output:

BR_CONTN warning: boundary hit.

BR_CONTN: no bifurcations detected.

P_CORREC warning: use of nonsquare Jacobian.

P_CORREC warning: use of nonsquare Jacobian.

DETECT_BIF: hopf point found at par(1) = 0.7854.

DETECT_BIF: l1 = -0.0591623057, omega = 1.5707963268, par(1) = 0.7854383082.

BR_CONTN warning: boundary hit.

BR_CONTN: 1 bifurcation(s) detected.

We see that one Hopf bifurcation is detected at Λ≈ 0.7854, with First Lyapunov Coefficient
l1 ≈ −0.0592.

There is now one point flagged as hopf, which happens to be point 25. We extract this
number automatically using br_getflats and we use it to get a periodic solution:

FPI = br_getflags(branch1);

hopfcand = branch1.point(FPI(bif2num('hopf'),1));

[hopf,success]=p_correc(hopf,1,[],method.point);

intervals = 18;

degree = 3;

[psol, stepcond] = p_topsol(hopf,1e-2,degree,intervals);

method=df_mthod('psol');

[psol, success] = p_correc(psol,1,stepcond,method.point);
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We create and continue a branch of periodic solutions, using a degenerate periodic solu-
tion with amplitude zero as second point. We turn bifurcation detection off (as there is no
detection for cycles):

branch3 = df_brnch(1,'psol');

branch3.parameter.min_bound=[1 0.5];

branch3.parameter.max_bound=[1 2];

branch3.parameter.max_step=[1 0.05];

deg_psol = p_topsol(hopf,0,degree,intervals);

deg_psol.mesh=[];

branch3.point = deg_psol;

psol.mesh = [];

branch3.point(2)=psol;

branch3.method.bifurcation.detect = 0;

[branch3,s,f,r] = br_contn(branch3,50);

We now plot the steady state branches, specifying that points flagged as hopf should be
marked with a circle.

figure;

[xm,ym] = df_measr(0,branch1,'stst');

br_plot(branch1, xm, ym, '--', 'hopf','o');

[xm,ym] = df_measr(0,branch2,'stst');

br_plot(branch2, xm, ym, '--', 'hopf','o');

We also plot the minima and maxima of the periodic branch (in the same figure) and the
period (in a new figure).

[xm,ym] = df_measr(0,branch3,'psol');

ym.col='max';

br_plot(branch3,xm,ym);

ym.col = 'min';

br_plot(branch3,xm,ym);

figure;

ym.field = 'period';

br_plot(branch3,xm,ym);

The resulting plots are shown in Figure 6.1. As you can see, they are identical to the ones
shown in [7].

To verify the sign of the computed First Lyapunov Coefficient, we have to run actual sim-
ulations of the DDE, i.e. time integrations. As was explained in Section 5.5, this can now
be done through DDE-BIFTOOL. It can be done in two ways: starting from a specific point

structure, or starting from a given point in the state space. We are interested in how points
that are not on our branches evolve, so we choose the second option.

For each simulation, we chose a certain parameter value Λ (which remained fixed during the
simulation) and a certain initial value y0. In Figure 6.1a, we have marked these initial values.
They are treated as a constant history. (In general, the specific history chosen doesn’t impact
the long-term behavior of the solution, so we just use a constant history for simplicity.)

The code below results in Figure 6.2.

plist = [0.6, 0.9, 1.2, 1.5];

xlist = [1.5, 1.5, -1.5, 1.8];

tlist = [50, 50, 50, 5];

hlist = [10, 10, 10, 1];

mlist = [500, 500, 500, 500];



62 CHAPTER 6. EXAMPLE SYSTEMS

no = length(plist);

start = [];

for i = 1:no

h = figure;

set(gca,'LooseInset',get(gca,'TightInset'))

mypar = plist(i);

myx = xlist(i);

px_integ(myx, [mypar, 1], 0, tlist(i), 1, start, hlist(i), mlist(i));

xlabel('t');

ylabel('y');

title(sprintf('dde23 solution for \\Lambda = %g starting at y = %g', mypar, myx));

end

Some further remarks: for each plot, we have additionally selected an integration interval
(the endpoint being contained in tlist), a history parameter h (in hlist) and a discretiza-
tion number for the time axis (in mlist). Only the last plot needs different integration pa-
rameters, because the orbit quickly explodes.

From the plots, we may conclude that the bifurcation is supercritical. Before the bifurcation,
at Λ= 0.6 (Figure 6.2a), the orbit is clearly attracted to the lower steady state. After the bi-
furcation (Figure 6.2b), we see that an orbit starting outside of the periodic orbit is attracted
to the periodic orbit. An orbit starting near the equilibrium but inside the periodic orbit (Fig-
ure 6.2c) is also attracted by the periodic orbit. Lastly, we see that a solution starting on the
other side of the second equilibrium is repelled (Figure 6.2d).

This means that our numerically computed First Lyapunov Coefficient has the correct sign,
i.e. negative.
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(A) The steady state branches and the periodic branch. The steady state
branches are plots of y versus Λ, the periodic branch shows the minima and
maxima of the periodic solution versus Λ.

(B) The periodic branch visualized in a period versus Λ plot.

FIGURE 6.1: Plots of the analysis of the Ikeda equation. Hopf bifurcations are labelled with a circle.
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(A) 1: Λ= 0.6, y0 = 1.5 (B) 2: Λ= 0.9, y0 = 1.5

(C) 3: Λ= 1.2, y0 = −1.5 (D) 4: Λ= 1.5, y0 = 1.8

FIGURE 6.2: Simulations of the Ikeda equation for different parameter values and initial values.
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6.2 A neural mass model

We look at a non-dimensionalized model of two interacting layers of neurons that was con-
sidered in [8] and [10]:

¨

ẋ1(t) = −x1(t)− ag(bx1(t −τ1)) + cg(d x2(t −τ2)),

ẋ2(t) = −x2(t)− ag(bx2(t −τ1)) + cg(d x1(t −τ2)),
(6.1)

where g :R→R is of the sigmoidal form

g(z) = [tanh(z − 1) + tanh(1)] cosh(1)2.

The variables x1(t) and x2(t) represent the population-averaged neural activity at time t
in layers one and two, respectively. The parameter a > 0 is a measure of the strength of
inhibitory feedback, while c > 0 measures the strength of the excitatory effect of one layer on
the other. The parameters b > 0 and d > 0 are saturation rates and the delays τ1,2 represent
time lags in the inhibitory feedback loop and excitatory inter-layer connection. Note that
the system is symmetric with respect to interchanging the labels 1 and 2, so equilibria are
necessarily of the form (x0, x0).

In accordance with [8] and [10] we fix the numerical values

b = 2.0, d = 1.2, τ1 = 12.7, τ2 = 20.2

and consider the feedback strengths a and c as free control parameters.

The system was intensively studied numerically in [10]. However, no use of DDE-BIFTOOL

was made. We have converted the system into the DDE-BIFTOOL format and our aim is to
reproduce Figure 4.4a from [10].

We begin our routine in the standard way. We set up a starting steady state point and define
a steady state branch:

% construct a first, approximate steady state point:

stst.kind = 'stst';

stst.parameter = [0.2, 2, 15/29, 1.2, 12.7, 20.2];

stst.x = [0; 0];

method = df_mthod('stst');

[stst,success] = p_correc(stst,[],[],method.point);

branch1 = df_brnch(1,'stst');

branch1.parameter.min_bound = [1 0];

branch1.parameter.max_bound = [1 0.55];

branch1.parameter.max_step = [1 0.0005];

branch1.point = stst;

stst.parameter(1) = stst.parameter(1) + 0.0005;

[stst,success] = p_correc(stst,[],[],method.point);

branch1.point(2) = stst;

branch1.method.continuation.plot = 0;

branch1.method.bifurcation.minimal_real_part = -0.03;

[branch1,s,f,r] = br_contn(branch1,200);

branch1 = br_rvers(branch1);

[branch1,s,f,r] = br_contn(branch1,200);

Two things are worth of note here: first, we choose a small step size in a. The reason for this is
that there is a region where the equilibrium becomes unstable. Secondly, we set the minimal
real part for the detection algorithm to −0.03, because lower bounds cause overflow.
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Execution of the above code finds three Hopf bifurcations. There’s also a false positive.

BR_BIFDET: hopf point found at par(1) = 0.2988605971.

BR_BIFDET: the detected hopf point does not fall within the branch.

BR_BIFDET: hopf point found at par(1) = 0.2988605971.

BR_BIFDET: L1 = -0.0054576675, omega = 0.2710841446, par(1) = 0.2988605971.

BR_BIFDET: hopf point found at par(1) = 0.3453112603.

BR_BIFDET: L1 = -0.0133009607, omega = 0.1826428346, par(1) = 0.3453112603.

BR_BIFDET: hopf point found at par(1) = 0.3676281680.

BR_BIFDET: L1 = -0.0028635604, omega = 0.7234938546, par(1) = 0.3676281680.

Apparently, all Hopf bifurcations are subcritical. We now use the standard facility to plot this
branch, setting hopf points to 'o':

figure;

[xm,ym] = df_measr(0,branch1,1);

br_plot(branch1,xm,ym,'-','hopf','o');

xlabel('a');

ylabel('x_1');

This yields Figure 6.3. We see that the algorithm produces tiny deviations from 0, suggesting
that the equilibria are unstable there.

FIGURE 6.3: A branch of steady states for system (6.1) in the free parameter a.

As we want to reproduce Figure 4.4a from [10], we focus on the first two Hopf bifurcations.
As before, we select them using the flagged point indices. We start a branch of Hopf points
in the parameters a and c from the middle point:

FPI = br_getflags(branch1);

stst_hopf = branch1.point(FPI(bif2num('hopf'),2));

hopf = p_tohopf(stst_hopf);

method=df_mthod('hopf');

[hopf,success] = p_correc(hopf,1,[],method.point);

method.stability.minimal_real_part=-3;
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hopf.stability=p_stabil(hopf,method.stability);

first_hopf = normal_form(hopf);

branch2 = df_brnch([1 3],'hopf');

branch2.parameter.min_bound=[5 0; 6 0; 3 0; 1 0];

branch2.parameter.max_bound=[1 0.55; 3 1];

branch2.parameter.max_step=[1 0.002; 3 0.005];

branch2.point=first_hopf;

hopf.parameter(3) = hopf.parameter(3)+0.005;

[hopf,success]=p_correc(hopf,1,[],method.point);

hopf = normal_form(hopf, first_hopf);

branch2.point(2)=hopf;

branch2.method.continuation.plot = 0;

branch2.method.bifurcation.minimal_real_part = -0.03;

branch2.method.stability.minimal_time_step = 0.005; % default 0.01

[branch2,s,f,r]=br_contn(branch2,300);

branch2 = br_rvers(branch2);

[branch2,s,f,r]=br_contn(branch2,300);

A few comments. First, we need to ensure that the L1 field of the hopf points we create is
actually set (because not all point manipulation routines do this automatically, to reduce
overhead). Secondly, in the computation of L1 of the second point of the branch, we use
the null space information of first point, in order to get a smooth transition. Lastly, it proves
necessary to change the minimal time step of the continuation.

We do the same for the second Hopf branch. The only difference is that we use FPI(bif2num('hopf'),3).

Execution of the code above yields a lot of detections and a few false positives. The pro-
gram outputs the parameter values of the bifurcation points, as well as the (most important)
normal form coefficients. For the first Hopf branch:

BR_BIFDET: Unable to correct as hoho point near par(1) = 0.2793.

BR_BIFDET: Unable to correct as zeho point near par(1) = 0.2713.

BR_BIFDET: genh point found at par(1) = 0.2566151592, par(3) = 0.6210710570.

BR_BIFDET: L2 = 0.0018108418, omega = 0.1722173038, par(1) = 0.2566151592, par(3) = 0.6210710570.

BR_BIFDET: hoho point found at par(1) = 0.0903758971, par(3) = 0.7732080925.

BR_BIFDET: omega1 = 0.1560400861, omega2 = 0.2899790044, par(1) = 0.0903758971, par(3) = 0.7732080925.

theta(0) = 1.5262842865, delta(0) = 1.6991967926.

BR_BIFDET: Unable to correct as genh point near par(1) = 0.0028.

BR_BIFDET: zeho point found at par(1) = 0.0038000136, par(3) = 0.8396666836.

BR_BIFDET: omega = 0.1485575098, par(1) = 0.0038000136, par(3) = 0.8396666836.

s = 0.0000855577, theta = 2.0243160718.

For the second Hopf branch:

BR_BIFDET: genh point found at par(1) = 0.2518646976, par(3) = 0.5812003799.

BR_BIFDET: L2 = 0.0011032789, omega = 0.2759092846, par(1) = 0.2518646976, par(3) = 0.5812003799.

BR_BIFDET: Unable to correct as zeho point near par(1) = 0.2503.

BR_BIFDET: hoho point found at par(1) = 0.0903759166, par(3) = 0.7732080731.

BR_BIFDET: omega1 = 0.2899790029, omega2 = 0.1560400878, par(1) = 0.0903759166, par(3) = 0.7732080731.

theta(0) = 1.6991968331, delta(0) = 1.5262843306.

BR_BIFDET: Unable to correct as genh point near par(1) = 0.0109.

BR_BIFDET: zeho point found at par(1) = 0.0132891719, par(3) = 0.8554819555.

BR_BIFDET: omega = 0.2958045676, par(1) = 0.0132891719, par(3) = 0.8554819555.

s = 0.0000803557, theta = 2.0966106567.



68 CHAPTER 6. EXAMPLE SYSTEMS

As you can see, in the case of the Zero-Hopf and Hopf-Hopf bifurcations, only some key
coefficients are displayed. We can get the entire set of coefficients by accessing the nmfm
structure. For instance, those appearing in the (mostly) upper branch can be obtained in the
following way:

FPI = br_getflags(branch3);

zeho = branch3.point(FPI(bif2num('zeho'),1));

hoho = branch3.point(FPI(bif2num('hoho'),1));

zeho.nmfm

hoho.nmfm

This yields:

g200: -0.0064

g110: -0.0134 + 0.0001i

g011: -0.0125 - 0.0000i

g300: -5.2284e-04

g111: -0.0033 - 0.0000i

g210: -0.0015 - 0.0000i

g021: 0.0068 + 0.0082i

b: -0.0064

c: -0.0125 - 0.0000i

d: -0.0134 - 0.0240i

e: 0.0021

s: 8.0356e-05 + 2.1254e-22i

theta: 2.0966

g2100: 0.0121 + 0.0026i

g1011: 0.0185 + 0.0058i

g1110: 0.0184 - 0.0079i

g0021: 0.0109 - 0.0031i

theta: 1.6992

delta: 1.5263

We now plot the branches (along with branch1 for reference) with the codim 2 bifurcations
marked.

figure;

[xm,ym] = df_measr(0,branch2,1);

br_plot(branch2,xm,ym,'-', 'genh', 'o', 'zeho', 'o', 'hoho', '*');

[xm,ym] = df_measr(0,branch3,1);

br_plot(branch3,xm,ym,'-', 'genh', 'o', 'zeho', 'o', 'hoho', '*');

br_plot(branch1,xm,ym,'--');

xlabel('a');

ylabel('c');

This yields Figure 6.4. This picture matches Figure 4.4a from [10] (save from the fact that
in the latter, a rescaling of the parameters is used).
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FIGURE 6.4: The two Hopf branches in (a, c) for system (6.1) emanating from the two found Hopf
bifurcations, with indicated codim 2 bifurcations. For reference, the equilibrium branch is drawn as
well (– –).
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6.3 Two coupled neurons

Using our new functionality, we can further analyze one of the demo systems that comes
packaged with DDE-BIFTOOL. It reads

¨

ẋ1(t) = −κx1(t) = β tanh(x1(t −τs)) + a12 tanh(x2(t −τ2)),

ẋ2(t) = −κx2(t) = β tanh(x2(t −τs)) + a21 tanh(x1(t −τ1)).
(6.2)

In the manual of DDE-BIFTOOL v2, this system is quite extensively analyzed. We repeat part
of the analysis.

We set κ = 0.5, β = −1, a12 = 1, a21 = 2.34, τ1 = τ2 = 0.2 and τs = 1.5. The origin is an
equilibrium. We correct it (just to be sure) and add it to a new branch with free parameter
a21. We then perform the standard routine: we perturb the point a bit in the free parameter,
correct it, and use the result as a second branch point. We then set some boundaries and
continue the branch.

stst.kind='stst';

stst.parameter=[1/2 -1 1 2.34 0.2 0.2 1.5];

stst.x=[0 0]';

method=df_mthod('stst',1);

method.stability.minimal_real_part=-2;

[stst,success]=p_correc(stst,[],[],method.point);

branch1=df_brnch(4,'stst');

branch1.point=stst;

stst.parameter(4)=stst.parameter(4)+0.1;

[stst,success]=p_correc(stst,[],[],method.point);

branch1.point(2)=stst;

branch1.parameter.min_bound(4,:)=[4 0];

branch1.parameter.max_bound(1,:)=[4 5];

branch1.parameter.max_step(1,:)=[4 0.2];

branch1.method.continuation.plot=0;

[branch1,s,f,r]=br_contn(branch1,100);

branch1=br_rvers(branch1);

[branch1,s,f,r]=br_contn(branch1,100);

The continuation detects a Hopf bifurcation at a21 ≈ 0.8071 with First Lyapunov Coefficient
L1 ≈ −0.0601.

We store a list of flagged points indices in FPI. This allows us to quickly extract the Hopf
point, eliminating the need to do this visually.

FPI = br_getflags(branch1);

hopfno = FPI(bif2num('hopf'),1);

hopf=p_tohopf(branch1.point(hopfno));

We now correct the Hopf point and use it to start a branch in the free parameters a21 and
τs. We continue it without detection.

branch2=df_brnch([4 7],'hopf');

branch2.parameter.min_bound(4,:)=[4 0];
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branch2.parameter.max_bound(1:2,:)=[[4 2]' [7 10]']';

branch2.parameter.max_step(1:2,:)=[[4 0.1]' [7 0.1]']';

method=df_mthod('hopf',1);

method.stability.minimal_real_part=-1;

[hopf,success]=p_correc(hopf,4,[],method.point);

first_hopf=hopf;

hopf.parameter(7)=hopf.parameter(7)+0.1;

[hopf,success]=p_correc(hopf,4,[],method.point);

branch2.point=first_hopf;

branch2.point(2)=hopf;

branch2.method.continuation.plot = 0;

[branch2,s,f,r]=br_contn(branch2,300);

branch2=br_rvers(branch2);

[branch2,s,f,r]=br_contn(branch2,50);

This code detects a Double Hopf bifurcation at a21 ≈ 0.2073, τs ≈ 8.6341:

BR_BIFDET: omega1 = 0.3287154056, omega2 = 0.9157115847, par(4) = 0.2072962663, par(7) = 8.6340742491.

theta(0) = 292.5003948528, delta(0) = 0.0136751952.

[branch3,s,f,r]=br_contn(branch3,100);

We can now use this point to switch to the second Hopf branch. (Note that we do the initial
correction in τs.)

branch3=df_brnch([4 7],'hopf');

branch3.parameter=branch2.parameter;

branch3.parameter.max_step(1:2,:)=[[4 0.1]' [7 0.03]']';

FPI = br_getflags(branch2);

pointno = FPI(bif2num('hoho'),1);

hopf = p_tohopf(branch2.point(pointno));

[hopf,success]=p_correc(hopf,7,[],method.point);

branch3.point=hopf;

hopf.parameter(4)=hopf.parameter(4)-0.05;

[hopf,success]=p_correc(hopf,7,[],method.point);

branch3.point(2)=hopf;

branch1.method.continuation.plot=0;

branch3.method.continuation.plot_progress=0;

branch3.method.bifurcation.detect = 0;

branch3.method.stability.minimal_time_step = 0.005; % default 0.01

[branch3,s,f,r]=br_contn(branch3,100);

branch3=br_rvers(branch3);

[branch3,s,f,r]=br_contn(branch3,100);

Plotting the resulting branches yields the bifurcation diagram in Figure 6.5.

During continuation of a Hopf branch, DDE-BIFTOOL computes the First Lyapunov Coefficient
at each point. Plotting them yields the two pictures in Figure 6.6.
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FIGURE 6.5: The two Hopf branches of system (6.2) in the (a21,τs)-plane.

(A) Lower branch (B) Upper branch

FIGURE 6.6: First Lyapunov Coefficient along the two Hopf branches.
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6.4 A neural field model

As a final example, we look at a neural field model with transmission delays which was
studied in [14]. We aim to find a Hopf bifurcation, compute its First Lyapunov coefficient,
and check whether it matches the simulations. The novelty of this example lies in the higher
number of variables and the large number of delays.

The model treats a neural network as a continuum in which individual spikes are replaced
by a spiking rate and space is continuous. However, in order to study it numerically, the
equation needs to be discretized again. The non-discretized equation reads

∂ V
∂ t
(t, r) = −αV (t, r) +

∫

Ω

J(r, r′)S(V (t −τ(r, r′), r′) dr′,

where Ω ⊂Rn is bounded, simply connected and open, V (t, r) is the pre-synaptic membrane
potential at time t of neurons at position r ∈ Ω, and α > 0 is an exponential decay rate. The
propagation delay τ(r, r′) ∈ C(Ω×Ω)measures the time it takes for a signal sent by a neuron
at point r′ to reach a neuron at point r. In a similar fashion, J(r, r′) represents the strength
of this connection. Lastly, the function S ∈ C∞(R) is the firing rate function.

We choose the spatial domain Ω= [−1, 1] which can now be discretized into m subintervals
of equal length h = 2

m . This leads to a system of equations with m+ 1 discrete delays and
m+ 1 variables:

∂ Vi

∂ t
(t) = −αVi(t) + h

m+1
∑

j=1

a j Ĵ(|i − j|h)S(Vj(t −τ0 − |i − j|h)) (i = 1, . . . , m+ 1), (6.3)

with

a j =

¨

1
2 if j ∈ {1, m+ 1} ,
1 otherwise

and

Ĵ(x) = A1e−ξ1 x + A2e−ξ2 x ,

where A1,2 and ξ1,2 are positive parameters. The firing rate function S is given by an odd
sigmoid with steepness r > 0:

S(V ) =
1

1+ e−rV
−

1
2

.

In order to be able to feed this system into DDE-BIFTOOL, we slightly rewrite the equation
into a vector form. This yields

∂ V
∂ t
(t) = −αV (t) + h

m+1
∑

j=1

Ĵ( jh)(E j
u + E j

d)E0 S(V (t −τ j)),

where E0, Eu and Ed are (m+ 1)× (m+ 1) matrices given by

E0 =















1
2

1
...

1
1
2















, Eu =











0 1
... . . .

. . . 1
0











, Ed = (Eu)
T .
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In this context, the firing rate function produces a vector:

S(V ) =











1
1+ e−rV1

−
1
2

...
1

1+ e−rVn
−

1
2











.

The delays are given by

τ j = a+ ( j − 1)h ( j = 1, . . . , m+ 1),

where a is a positive parameter.1

To summarize, given a discretization number m, we have m+ 1 variables, m+ 1 delays and
7 non-delay parameters: α, r, A1, A2,ξ1,ξ2, a.

We fix α = 1, A1 = 12, A2 = −10, ξ1 = 3, ξ2 = 1 and a = 0.31, and use r as a continuation
parameter with initial value r = 2.6. In the standard way, we set up a stst branch and
continue the trivial equilibrium in r. Note that we also have to set the delays and that we
treat m as a global variable, so that other files (such as sys_tau) can automatically adapt.

global m;

m = 10;

h = 2/m;

lags = zeros(1,m+1);

for i = 1:m+1

lags(i) = 0.31 + (i-1)*h;

end

stst.kind='stst';

stst.parameter=[1 2.6 12 -10 3 1 0.31 lags];

stst.x=[0 0]';

method = df_mthod('stst',1);

method.stability.minimal_real_part = -1;

[stst,success] = p_correc(stst,[],[],method.point);

stst_branch = df_brnch(2,'stst');

stst_branch.parameter.min_bound=[2 2];

stst_branch.parameter.max_bound=[2 3];

stst_branch.parameter.max_step=[2 0.01];

stst_branch.point = stst;

stst.parameter(2)=stst.parameter(2) - 0.01;

[stst,success] = p_correc(stst,2,[],method.point);

stst_branch.point(2)=stst;

stst_branch.method.continuation.plot = 0;

stst_branch.method.stability.minimal_real_part = -3;

stst_branch.method.bifurcation.minimal_real_part = -1;

stst_branch = br_contn(stst_branch,100);

stst_branch=br_rvers(stst_branch);

stst_branch = br_contn(stst_branch,100);

A Hopf bifurcation is found at r ≈ 2.35, and it’s First Lyapunov Coefficient is negative:

1In (6.3), this parameter is called τ0. However, in DDE-BIFTOOL, the delays are numbered starting from 1. We
will keep denoting the value of the first delay by a to avoid confusion of the type “tau(1) = τ0”.
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BR_BIFDET: hopf point found at par(2) = 2.3473099182.

BR_BIFDET: L1 = -0.0196309567, omega = 1.8492260135, par(2) = 2.3473099182.

We run some simulations using dde23 to get the results in Figure 6.7. We see that a periodic
solution emerges from the Hopf bifurcation to the right, just as the sign of the First Lyapunov
Coefficient predicts!

(A) r = 2.1 (B) r = 2.8

FIGURE 6.7: Simulations left and right of the Hopf bifurcation, starting from the constant history
x = 1

10 (1, . . . , 1)T . The different colored lines represent the 11 co-ordinates of the state vector.

There are two logical next steps now: increasing m and/or continuing a Hopf branch in the
parameter a. However, both come with some problems.

For small m (< 10), the necessary derivative files can be generated by the standard Maple
script. However, for larger m, the computations become very time-consuming. On first thought,
an alternative could be to use the default files that approximate derivatives by a finite ele-
ments method. However, for large m, even this approach makes the computations within
DDE-BIFTOOL very slow, because of the repeated calls to sys_rhs. Furthermore, an approx-
imate multilinear form file is not yet available. Therefore, we refrain from analyzing the
system for higher m.

We would also like to be able to continue the Hopf point in the parameter a. However, the
m+1 delays all depend on the single parameter a. Therefore, it would be necessary to treat
the system as a state-dependent delay (SSD) equation. In principle, this is possible, but we
have no guarantee that the expressions for the normal form coefficients will still be correct, as
the theory for SDD equations is far more complex than for the standard DDEs. Nevertheless,
we have tried the procedure, and the resulting picture can be found in Figure 6.8. During
continuation, three Zero Hopf points are found.
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FIGURE 6.8: The Hopf branch of the neural field system treated as an SDD equation in the (r, a)-
plane. The Hopf bifurcation of the steady state branch is denoted by a circle; the stars are Zero Hopf
detections on the Hopf branch.



Chapter 7

Conclusion

We have seen that the use of sun-star calculus allows us to obtain expressions for the criti-
cal normal form coefficients of bifurcations in DDEs. In the case of discrete delays, we have
shown that the numerical framework used by DDE-BIFTOOL is compatible with these expres-
sions.

Given a system of DDEs featuring discrete delays, it is now possible to use DDE-BIFTOOL to de-
tect the Hopf, Generalized Hopf, Zero-Hopf and Double Hopf bifurcations, to compute their
normal form coefficients and to plot the bifurcation points easily in a branch. In addition, a
Maple script is available to generate most necessary Matlab files from scratch, starting with
the DDE only. Hopefully, these features can help researchers who use DDEs in applications.

There is still a lot of room for improvement, of course. Though not strictly necessary, it would
be nice to have fold and cusp detection and normal form computation as well. The lack of
these in the case of bifurcations that have to do with cycles and homoclinic orbits is more
pressing. Perhaps it will one day be possible to numerically analyze DDEs with continuous
delays as well. Lastly, there is still no interactive GUI for DDE-BIFTOOL. However, feeling like
I have done my share, I happily leave these challenges for someone else to face.
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Appendix A

List of DDE-BIFTOOL changes

In this appendix, we list the changes made to the original DDE-BIFTOOL v2.01. We used
Matlab’s internal change comparison tool. For the new files, we refer to the section in the
main thesis where its functionality is described.

A.1 New files

bif2num.m

See Section 5.4.

br_bifdet.m

See Section 5.1.

br_flag.m

See Section 5.4.

br_getflags.m

See Section 5.4.

nmfm_binv.m

See Section 5.2.4.

nmfm_border.m

See Section 5.2.6.
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nmfm_charmat.m

See Section 5.2.4.

nmfm_charmatderi.m

See Section 5.2.4.

nmfm_charmatderi2.m

See Section 5.2.4.

nmfm_genh.m

See Section 5.2.4.

nmfm_handletomatrix.m

See Section 5.2.4.

nmfm_hoho.m

See Section 5.2.4.

nmfm_hopf.m

See Section 5.2.4.

nmfm_hopfdet.m

See Section 5.1.3.

nmfm_smlrp.m

See Section 5.1.3.

nmfm_smlrpip.m

See Section 5.1.3.

nmfm_zeho.m

See Section 5.2.4.
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num2bif.m

See Section 5.4.

p_inprod.m

See Section 5.1.1.

p_integ.m

See Section 5.5.

p_togenh.m

See Section 5.1.2.

p_tohoho.m

See Section 5.1.2.

p_tozeho.m

See Section 5.1.2.

px_integ.m

See Section 5.5.

px_integ_sddhelp.m

See Section 5.5.

A.2 Changed files

biftool.m

Updated contributors.
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br_contn.m

Lines Change
All Renamed variable l to ll (to avoid confusion with numeral 1)
1 Extra output (list of flagged points)
35-58 Setup bifurcation detection
270-300 Change to prevent concatenation errors
302-312 Compute L1 in case of a Hopf branch
314-355 Call of br_bifdet, registration of flagged points, plot bifurcation points
363-371 Report detections

br_plot.m

Lines Change
1 Added variable input
22 Now accepts branches of length 1 as well
27-52 Calls br_plot iteratively to produce different markers for bifurcation points

df_method.m

Lines Change
26-33 Added default values for method.bifurcation

p_axpy.m

Lines Change
20-22 Initialize flag and nmfm properties
124-127 Initialize nvec and nmfm.L1 properties for Hopf

p_correc.m

Lines Change
53-61 Add flag and nmfm fields if not present
613-618 Compute and store normal form information in case of Hopf

p_tofold.m

Lines Change
13-16 Set flag and nmfm fields

p_tohcli.m

Lines Change
23-26 Set flag and nmfm fields
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p_tofold.m

Lines Change
13-16 Set flag and nmfm fields

p_tohopf.m

Lines Change
1 Added success output
18-21 Set flag field and initialize success

57-60 If no pair of roots is found, return success = 0 instead of error
65-82 Support for codimension 2 bifurcations
92-100 Ensure nmfm and nvec are present

p_topsol.m

Lines Change
25-28 Set flag and nmfm fields

p_tostst.m

Lines Change
26-29 Set flag and nmfm fields
54 Support for codimension 2 bifurcations

stst_stabil_nwt_corr.m

Lines Change
20 Initialize l1

63-68 Issue warning if l1 is empty
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