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Introduction

Consider a scheme X of finite type over Z. For a rational prime p, denote by
NX(p) the number of its Fp-points, that is, the cardinality of X(Fp). More
generally, if q = pe, denote by NX(q) the number of its Fq-points.

The goal of this thesis is to understand and prove in the case of elliptic
curves the following

Theorem (see part III theorem 8.1) Let X,Y be two schemes of finite type
over Z. Assume that NX(p) = NY (p) for a set of primes of density 1. Then
there exists a prime number p0 such that NX(pe) = NY (pe) for all p ≥ p0 and
all e ≥ 1.

from Serre [12, chap. 1, thm 1.3].
This theorem applies to elliptic curves, and one would expect that in proving

the theorem only for the case of elliptic curves things would get eassier. This
is indeed the case. The proof as given by Serre has two ingredients. Firstly the
Lefschetz fixed point formula for cohomology, applied to the Frobenius acting
on a variety of finite type over Z. Secondly the Chebotarev density theorem. In
this thesis a proof of theorem 8.1 in the case of elliptic curves is given in part III
chapter 8, replacing the first ingredient by the trace of the Frobenius formula
for the number of points on an elliptic curve, and leaving the second ingredient
as it is.

In part II section 7.3 the trace formula for elliptic curves over finite fields is
illustrated with two explicit examples, constructed using SAGE. The example
illustrates that for a prime `, different from the characteristic of the finite field
under consideration, the `m-torsion group E[`m] is two dimensional Z/`mZ-
module. What is more, a basis of this module can be lifted to a basis of the
`m+1-torsion subgroup E[`m+1], and this in turn gives a lift of the matrix of
the Frobenius involved. Taking the inverse limit, we see that we indeed get the
number of points on E in terms of the trace of the Frobenius acting on the Tate
module T`(E) of E.

In part I the Chebotarev density theorem is treated using L-series and repre-
sentation theory of Galois groups, which are developed starting from definitions.
Also used is the Artin reciprocity law from Class Field Theory, which is stated
without a proof.

Part II contains the relevant definitions and propositions on elliptic curves.
For proofs of the latter we refer to Silverman [14], as well as for a thorough
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iv INTRODUCTION

treatment of the subject.
Part III contains my proof of Serre’s NX(p) theorem in the case of elliptic

curves. We also deduce a corollary about weight-two newforms.
This thesis has two main parts: the proof of theorem 8.1 in the case of

elliptic curves and a proof of Chebotarev’s density theorem. The first can be
found in part III chapter 8 and the second in part I chapter 5. Both chapters
should be accessible to readers with the right background. In case of the proof of
theorem 8.1 in the case of elliptic curves this background consists of properties
of elliptic curves and Chebotarev’s density theorem. In case of Chebotarev’s
density theorem this background consists of some representation theory of finite
groups and properties of L-series defined on characters of Galois groups.



Part I

Preliminaries from
algebraic number theory
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Introduction

We wish to say something about the number of points of two elliptic curves over
all finite fields Fp, for every rational prime p. To do so, we need the Chebotarev
density theorem. The goal of this chapter is to state and prove that.

Theorem (Chebotarev, see theorem 5.4) Let K be a number field, E a fi-
nite Galois extension of K with Galois group G. For a place v of K that is
unramified in E let σv be the conjugacy class of the generator of the decompo-
sition group Dw for any w lying over v (this is independent of w because v is
unramified). Let C be a subset of G stable under inner automorphisms (a union
of conjugacy classes). Let

VK,C = {v ∈ VK : v is unramified and σv ⊂ C},

then VK,C has a Dirichlet density (to be defined), and that density is equal to
#C/#G.

To prove this theorem we will follow the approach in Dokchitser [3].
To get an idea how the proof works before diving in all the preliminaries,

it is useful to first read chapter 5, but skip the proof of proposition 5.3. Quite
some terminology in the proof of theorem 5.4 may be unknown, but nonetheless
it should be possible to get an idea how the proof works by reading it. Two
things that might help to understand it at this stage are the following. The
indicator function CC is a class function on the Galois group, which means that
it is constant on conjugacy classes and has values in C. The C-space of class
functions has as an orthonormal basis (with respect to some scalar product (see
remark 3.20)) the so called irreducible characters χρ. Given a character, we can
define a function on the complex half plane Re(s) > 1 by some series known
as an L-series. With some work it can be shown that these L-series can be
extended meromorphically to the half plane Re(s) > 1 − ε for some suitable ε,
such that the resulting function is analytic everywhere except for a possible pole
at s = 1. Moreover, only if the character was the so called trivial character the
L-series will have a pole at s = 1, otherwise the L-series will be zero nor have a
pole at s = 1.

Using the fact that the irreducible characters form an orthonormal basis, we
decompose a certain series in that is defined in terms of C as a sum over all
the characters, and consider the trivial character separately, because its L-series
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4

has different asymptotic behaviour for s → 1 than the other characters. Then
we show that the two parts in fact behave as L series times some constant.
We divide by log(1/(s − 1)) which behaves asymptotically as the L-series for
the trival character. Hence the part of f(s) which corresponds to the non-
trivial characters goes to zero in the limit of the quotient. What remains is the
coefficient of the part corresponding to the trivial character, which is the sought
density.

We made use of the asymptotic behaviour of the L-series of characters. They
are obtained as follows. First we study the asymptotic behaviour of the number
of prime ideals below a given norm of a number field when that norm goes to
infinity. We apply this to show that we can extend the Riemann ζ-function,
which is a special case of an L-series. This is then applied to show that we
can extend the L-series of characters of the ideal class group. After developing
representation theory of Galois groups, the L-series for representations of Galois
groups and the Artin formalism for these L-series, we apply Artin’s reciprocity
law to link the ideal class group to the Galois group and obtain that the L-series
of the Galois representations can also be extended. This is then applied to the
L-series of characters of the Galois group, because characters are in particular
irreducible representations.



Chapter 1

Lattice Points in
Homogeneously Expanding
Domains

The material in this section comes from Lang [9, Chapter VI, §2]. To derive the
asymptotic expression j(R, t) discussed in part I, we will use the geometry of
numbers approach of associating to fractional ideals lattices in Euclidean space.
We will then apply an asymptotic formula for the number of lattice points lying
in certain domains, which will be derived in this section. Domain will just mean
a certain well-behaved subset of Euclidean space.

Throughout the section, one can keep in mind the following special case.
Let L be the lattice (this notion is to be defined) in R2 generated as a Z-

module by the standard basis vectors: L = Z

(
1
0

)
+ Z

(
0
1

)
. Let D be a subset

of R2 with a sufficiently regular boundary (made precise later). For example:
D = D2 = {(x, y) | ‖(x, y)‖ ≤ 1}, the unit 2-disk. Let t ∈ R>0 and scale D
by a factor t. Count the number of lattice points in tD, that is, the number
of points of tD ∩ L. We will develop an asymptotic formula for this number of
points as t→∞.

Definition 1.1 A lattice in RN is a discrete subgroup L ⊂ RN of rank N .
Since it is an abelian group it is a Z-module, and by the rank we mean the rank
as a Z-module, that is, the number of elements of a Z-basis of L. The next
proposition shows that this number is well defined.

The following is from Lang [8, Chapter XV, §2]

Proposition 1.2 Let M be a free module over a principal ideal domain A.
Then the cardinality of an A-basis is uniquely determined.

5
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Proof Suppose A has no irreducibles. Then by unique factorization, A is a
field. Hence M is a vector space. The A-rank is then equal to the A-dimension,
which is uniquely detrmined.

Suppose A has an irreducible, p say. Then (p) is a maximal ideal. Then
M/pM is an A/pA vector space whose dimension is the rank of M , which is
therefore uniquely determined. �

We now show that a Z-basis of a lattice is always an R-linearly independent
set. This, and a little more, is the content of the next proposition, which is from
Knapp [7, Chapter 5, section 5].

Proposition 1.3 Let L ⊂ RN be a discrete subgroup in the induced topology
(not necessarily of rank N). Then L is a free group of rank ≤ N . Furthermore,
L is of the form

L = Zω1 + · · ·+ Zωm,

with the ω1, . . . , ωm R-independent. The number m is the dimension of the
R-span of L. The sum is in fact direct, hence L ∼= Zω1 ⊕ · · · ⊕ Zωm.

Proof We first show that L is a closed set. Since L is discrete, there is an
ε > 0 such that B(0; ε) ∩ L = {0}. Suppose x0 is a limit point of L that is not
in L. Then x0 − B(0; ε/2) (the sphere with radius ε/2 around x0) contains a
point of L, l say. Write b = x0 − l ∈ B(0; ε/2). Then b 6∈ L, for else x0 ∈ L.
Furthermore, b is a limit point of L. Otherwise, there would be an open U
around b with U ∩ L = ∅. This would give U + l ∩ L = ∅, but U + l is an
open containing x0, so this cannot happen since x0 is a limit point of L. Hence
b + B(0; min(ε/2, ‖b‖)) ∩ L 6= ∅, hence it contains an element, l′ say. Then
l′ 6= 0. Furthermore,

d(l′, 0) ≤ d(l′, b) + d(b, 0)

< ε/2 + ε/2

= ε.

Hence 0 6= l′ ∈ B(0; ε), a contradiction. Hence L is closed.
Since L is closed, every bounded subset of L is compact, hence finite since

L is discrete.
Let m be the dimension of the R-linear span of L. We use induction on m.

First consider the case m = 1. The set B(0; 1)∩L is finite. Let ω be an element
of smallest norm in this set. Suppose there is a v ∈ L that is not an integral
multiple of ω. Then there exists a j ∈ Z such that v − jω is of norm smaller
than ω, a contradiction. Hence every v ∈ L is an integral multiple of ω, and the
base case is established.

Now assume that the proposition holds if the dimension is m− 1. Let L be
such that the dimension of its R-span is m. Let {x1, . . . , xm} be an R-basis for

this R-span. Then L0 := L ∩ (
∑m−1
j=1 Rxj) is a discrete subgroup of RN , and
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its R-span is m − 1 dimensional. By induction L0 is generated as a Z-module
by some ω1, . . . , ωm−1 which are R-linearly independent. Consider the set

S = L ∩ {c1ω1 + . . . cm−1ωm−1 + cmxm | 0 ≤ ci ≤ 1}.

Then S is a bounded subset of L, hence finite. Note that ω1, . . . , ωm−1, xm
are linearly independent, hence the coefficients ci of elements in S are uniquely
determined. Also note that S contains the element xm which has a non-zero
xm-coefficient. Hence by finiteness of S, there is a ωm ∈ S with smallest non-
zero xm coefficient, am say. Let v ∈ S. Suppose its xm-coefficient is not an
integral multiple of am. Then v− jωm for a suitable j ∈ Z has an xm-coefficient
smaller than am, and after subtracting suitable Z-multiples of the ω1, . . . , ωm−1

we get an element of S with xm coefficient smaller than am, a contradiction.
Let l ∈ L. Then l is a linear combination of the ω1, . . . , ωm−1, xm. After

subtracting suitable integral multiples of these elements we get an element in S,
l′ say. As we just saw, for a suitable j ∈ Z we have l′− jωm ∈ L∩ (

∑m−1
j=1 Rxj).

Hence

L = L ∩ (

m−1∑
j=1

Rxj) + Zωm

= (Zω1 + · · ·+ Zωm−1) + Zωm
∼= (Zω1 ⊕ · · · ⊕ Zωm−1) + Zωm

The elements ω1, . . . , ωm−1, ωm are linearly independent because by assumption
the first m − 1 are and the last is the only one with non-zero xm-coefficient.
Hence the intersection of the two summands is empty and the sum is direct:

L ∼= Zω1 ⊕ · · · ⊕ Zωm−1 ⊕ Zωm

This completes the induction. �

Corollary 1.4 A lattice in RN is generated by N linearly independent elements
as a Z-module. A lattice is maximal in the sense that there are no discrete sub-
groups of higher rank strictly containing it. Every Z-basis of a discrete subgroup
of RN consists of R-linearly independent elements, in particular any Z-basis of
a lattice consists of such elements.

Proof The first two statements follow immediately from proposition 1.3.
For the third statement, let L ⊂ RN be a discrete subgroup. From the

proof op proposition 1.3, the rank of L is the dimension of the R-linear span
of L, m say. By proposition 1.3, we can find an R-independent set ω1, . . . , ωm
that Z-generates L. Every other Z-basis of L has the same cardinality by
proposition 1.2. Let µ1, . . . , µm be such a Z-basis. Let A be the m×m matrix
with respect to the basis ω1, . . . , ωm in the domain and the codomain that
describes the Z-linear map that sends ωi to µi. Since both {ωi}i and {µi}i
are Z-bases, also the inverse matrix A−1 exists and has coefficients in Z. But
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this implies that R-linear map that A also represents, going from Rω1 + · · ·+
Rωm to Rµ1 + · · ·+ Rµm is a linear isomorphism, hence the {µi}i are linearly
independent.

The last statement follows immediately from the third. �

We will study lattice points in expanding sets, whence the following definition.

Definition 1.5 Let D ⊂ RN . By ∂D we denote the boundary of D. For t ∈ R,
tD is the set of points tx with x ∈ D.

Proposition 1.6 Situation as in definition 1.5. Then ∂(tD) = t(∂D).

Proof In the case t 6= 0 multiplication by t is a homeomorphism, which gives
the desired equality. If t = 0 both sides become {0} so that’s also alright. �

To get to an asymptotic estimation we will need a regularity condition on the
boundary of the expanding set under consideration. That condition is given by
the following two definitions.

Definition 1.7 Let S be a subset of some Euclidean space. A map

ϕ : S → RN

is said to satisfy a Lipschitz condition if there exists a C > 0 such that for
all x, y ∈ S we have

‖ϕ(x)− ϕ(y)‖ ≤ C‖x− y‖

Definition 1.8 Let Ik denote the unit cube in Euclidean k-space. A subset
T ⊂ RN is said to be k-Lipschitz parametrizable if there exists a finite
number of Lipschitz maps ϕj : Ik → T where the images of the ϕj cover T . .

Definition 1.9 Let L be a lattice in RN , and let ω1, . . . , ωN be a basis of L.
Then the set F all all points

t1ω1 + · · ·+ tNωN (0 ≤ ti < 1),

will be called a fundamental domain of L.

Proposition 1.10 Situation as in definition 1.9. The translations Fl := l + F
with l ∈ L cover RN and are disjoint. Every element in RN has a unique
representative in F modulo L. Let Vol denote the volume in N -space. Then
Vol(F ) only depends on the lattice L, hence is independent of the choice of
fundamental domain F .

Proof Let v ∈ RN . There is a unique lattice point l ∈ L such that v − l ∈ F ,
since all the ti satisfy 0 ≤ ti < 1. Then v ∈ l+F = Fl. Hence the Fl cover RN ,
and since the Fl covering v was unique the Fl are pairwise disjoint.

As in the proof of corollary 1.4 we let {µi}i be another Z-basis of L, and let
F ′ be the corresponding fundamental domain. The N×N matrix A with respect
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to the basis {ωi}i in the domain and the codomain representing the Z-linear
map that sends ωi to µi is invertible. Hence det(A) det(A−1) = det(AA−1) =
det(I) = 1. But note that A and A−1 are matrices with entries in Z. Hence
both determinants are integers with product 1, hence they are ±1. Therefore

Vol(F ′) = Vol(AF )

= |det(A)|Vol(F )

= Vol(F ). �

Proposition 1.11 Let L ⊂ RN be a lattice, R > 0. There is a K > 0 such
that for every set S of diameter ≤ R the number of l ∈ L∩S is bounded by K.

Proof Let {ωi}i be a Z-basis for L. Let ‖·‖ω denote the sup-norm with respect
to this basis:

‖λ1ω1 · · ·+ λNωN‖ω = sup
i
|λi|.

Since all norms on RN are equivalent, there exists a C > 0 such that ‖x‖ω ≤
C‖x‖ for all ∈ RN , where the second norm is the euclidean one. Let S be of
diameter ≤ R. Let l ∈ S ∩ L. For every l′ ∈ S ∩ L we have

‖l − l′‖ω ≤ C‖l − l′‖
≤ CR,

hence the ωi-coordinates of l′ are bounded, hence the number of points l′ is
bounded by (2CR)N . �

Proposition 1.12 Let L ⊂ RN be a lattice, F a fundamental domain of L,
R > 0. There is a K > 0 such that for every set S of diameter ≤ R the number
of l ∈ L such that Fl ∩ S 6= ∅ is bounded by K.

Proof Let ‖ · ‖ω be as in the proof of proposition 1.11. Since F has a finite
diameter with respect to the ‖ · ‖ω-norm, it also has a finite diameter with
respect to the Euclidean norm. Let l ∈ L be such that Fl ∩ S 6= ∅. Let l′ ∈ L
also be such that Fl′ ∩ S 6= ∅. Then d(l, l′) ≤ Diam(F ) + Diam(S) + Diam(F ),
hence the number of such l′ is bounded by a constant that depends only on L
and Diam(S). �

Definition 1.13 A translated lattice T is a set in RN of the form x+L with
x ∈ RN and L ⊂ RN a lattice. If F is a fundamental domain of L then x+ F
will also be called a fundamental domain of T .

Proposition 1.14 Let T = x + L ⊂ RN be a translated lattice, x + F a fun-
damental domain of T , R > 0. There is a K > 0 such that for every set S of
diameter ≤ R the number of l ∈ L such that (x+F )l ∩S 6= ∅ is bounded by K.
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Proof The proof is the same as that of proposition 1.12. Notice that in that
proof the important thing was that Diam(F ) was bounded, but Diam(x+F ) =
Diam(F ) so that still works. �

We are now ready to prove the asymptotic formula we need for the number of
lattice points in expanding domains. Keep in mind the example at the beginning
of this subsection for intuition.

Theorem 1.15 Let L ⊂ RN be a lattice, D ⊂ RN such that ∂D is (N − 1)-
Lipschitz parametrizable and Vol(D) is finite. Let F be a fundamental domain
of L. Let λ(t,D, L) = λ(t) = #(L ∩ tD). Then

λ(t) =
Vol(D)

Vol(F )
tN +O(tN−1)

where the constant in O depends on L,N and the Lipschitz constants.

Remark 1.16 The intuition is that the first term corresponds to the points in
the interior of D, which grows like tN , and the second term corresponds to the
number of points on the boundary, which is of one “dimension” lower and hence
grows like tN−1.

Remark 1.17 The Lipschitzparametrizability of the boundary is really neces-
sary, as the following non-example shows.

Take L = Z ⊂ R, D = (−1, 1) \ Q. If Theorem 1.15 would hold for λ(t)
in this case, then λ(t) would grow linearly: we have Vol(D) = 1, Vol(F ) = 1.
Hence in that case we would get

λ(t) = t+O(t0).

But note that
∂D = [−1, 1] \∅ = [−1, 1],

and [−1, 1] is not 0-Lipschitz Parametrizable, since I0 is just a point an [−1, 1]
contains an infinite number of points.

If theorem 1.15 would hold then there would be some C > 0 such that

|λ(t)− t| < C

for all t large enough. But note that for all rational t, λ(t) = 0. Take t > C
rational to see that theorem 1.15 does not hold.

Proof (of theorem 1.15) Define

m(t) = #{l ∈ L | Fl ⊂ Int(tD)},
b(t) = #{l ∈ L | Fl ∩ ∂tD 6= ∅}.

Then

{l ∈ L | Fl ⊂ Int(tD)} ⊂ L ∩ tD ⊂ (L ∩ tD) ∪ {l ∈ L | Fl ∩ ∂tD 6= ∅},
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hence

m(t) ≤ λ(t) ≤ m(t) + b(t).

Regarding Vol(tD), we can make the following two observations. First, we can
estimate Vol(tD) from below by counting how many of the Fl are completely
contained in Int(tD) ⊂ tD, and then multiply this number by Vol(F ) (since
Vol(Fl) = Vol(F ) for every l and all the Fl are pairwise disjoint). This gives:

m(t) Vol(F ) ≤ Vol(tD).

The second observation is that for every l ∈ L exactly one of the following three
holds:

• Fl ⊂ Int(tD),

• Fl ⊂ RN \ tD,

• Fl ∩ ∂(tD) 6= ∅.

To see this, note that the first two are mutually exclusive. Suppose that the first
two do not hold. Then Fl is not contained in (tD)c (here the c superscript de-
notes complement in RN ), hence it has points in (tD)c. Also Fl is not contained
in Int(tD), hence it has also points in there. Suppose Fl has no points on the
boundary ∂(tD). Then Fl would be equal to the disjoint union of non-empty
opens (Fl ∩ Int(tD)) ∪ (Fl ∩ (tD)c), contradicting the connectedness of Fl.

Now the Fl satisfying the first and last condition cover tD, hence we get the
inequality

Vol(tD) ≤ (m(t) + b(t)) Vol(F )

Combining these two inequalities gives

m(t) Vol(F ) ≤ Vol(tD) ≤ (m(t) + b(t)) Vol(F ),

hence

m(t) ≤ Vol(D)

Vol(F )
tN ≤ m(t) + b(t),

therefore |λ(t) − Vol(D)
Vol(F ) t

N | ≤ b(t). Hence a good enough estimation of b(t), of

order O(tN−1) that is, would give the desired result.
Consider a finite set of Lipschitz maps parametrizing ∂D, and let C be

the maximum of their Lipschitz constants. Let ϕ : IN−1 → RN be one of the
parametrizing maps for a piece of ∂D. Then tϕ parametrizes a corresponding
piece of ∂tD. Cut up each side of the unit IN−1 cube into sides of length 1/dte
(since we want an asymptotic formula for t → ∞ we can asume that t > 0).
We then get dteN−1 small cubes. The image of each small cube under ϕ has a
diameter ≤ C/dte. Hence the image of each small cube under tϕ has diameter
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≤ C. By proposition 1.12 there is a K > 0 such that for every set S of diameter
≤ C there are ≤ K lattice points such that Fl ∩ S 6= ∅. Hence the number
of lattice points l such that Fl intersects the image tϕ[IN−1] is ≤ KdteN−1,
as we divided IN−1 into dteN−1 small cubes. There are a finite number of
parametrizing maps, M say. Hence the total number of points intersecting any
one of the images is bounded by MKdteN−1. This gives an upper bound for
b(t):

b(t) ≤MKdteN−1

≤MK(t+ 1)N−1

≤ 2MKtN−1

. �

This result can be extended to translated lattices.

Theorem 1.18 Let T = x+L ⊂ RN be a translated lattice, D ⊂ RN such that
∂D is (N − 1)-Lipschitz parametrizable. Let x+F be a fundamental domain of
L. Let λ(t,D, T ) = λ(t) = #(T ∩ tD). Then

λ(t) =
Vol(D)

Vol(F )
tN +O(tN−1)

where the constant in O depends on T,N and the Lipschitz constants.

Proof All our formulas in the proof of theorem 1.15 still work. To estimate
b(t) we used proposition 1.12. Use in this case proposition 1.14 instead. �



Chapter 2

Asymptotic Behaviour of
the Number of Integral
Ideals of Bounded Norm
going to Infinity

2.1 Generalized ideal classes

The material in this section comes from Lang [9, Chapter VI, §1].

A special case of the asymptotic formula that we need is given by the fol-
lowing. Let K be a number field, O its ring of integers, I its group of fractional
ideals of O, P � I the subgroup of principal fractional ideals, ClK = I/P the
ideal class group of K. For a fractional ideal a denote by Na its norm. That is,
for prime ideals p we have Np = #O/p. This is then extended multiplicatively
to all of I, which is a free group on the prime ideals. Let R be an element of
ClK . Denote by j(R, t) the number of integral ideals a in the class R of norm
Na ≤ t. Then, as we shall see in section 2.3, j(R, t) exhibits the following
asymptotic behaviour in t:

j(R, t) = pt+O(t1−[K:Q]), t→∞, (2.1)

where p is some constant depending on K but not on R.

We will need such a statement in section 4.1 to show that we can extend
certain functions considered there, by analytic continuation. For that goal,
eq. (2.1) is not sufficient, for we will consider extensions of number fields. When
we do that, we need to exclude ramifying primes. Therefore we need a version
of eq. (2.1) which allows us to do this. We need a way to specify primes that
we wish to exclude. That is accomplished by the following concept.

13
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Definition 2.1 Let K be a number field. By a cycle (of K) we mean a formal
product

c =
∏

v∈MK

vm(v),

where v ranges over MK , the normalized absolute values of K (which means
for the finite ones that they restrict to a p-adic absolute value on Q), with
m(v) ∈ Z≥0 and m(v) = 0 for all but finitely many v. We do not care about
the complex v, and when v is real we only care whether m(v) = 0 or m(v) > 0,
hence we can take m(v) ∈ {0, 1} for real v. If m(v) > 0 we say that v divides
c. We call m(v) the multiplicity of v in c. We denote by

cv = vm(v)

the local v-component, and if v corresponds to a prime p also denote

cp = pm(v).

We denote by

c0 =
∏

v finite

vm(v)

the finite part of c.

We wish to be able to exclude a finite set of prime ideals from consideration.
Hence the following definition.

Definition 2.2 Let K be a number field, c a cycle, I the group of ideals. Then
I(c), I(K, c) and IK(c) all denote the subgroup of the group of ideals generated
by the finite primes p that do not divide c. Hence it consists of all fractional
ideals a

b with a and b integral such that for every finite prime p|c we have p - a
and p - b. We call this group the c-class group.

In definition 2.2 we have generalized the notion of the ideal group so that we
can exclude a finite set of primes. We wish to also generalize the notion of the
ideal class group. For that it is not enough to look simply at the principal prime
ideals that are in I(c), we need a little more.

Definition 2.3 Let K be an number field, c a cycle, α ∈ K. Define α ≡ 1
(mod∗ c) to mean the following:

(i) If p divides c with multiplicity m(p) > 0, then α lies in the local ring Op,
and

α ≡ 1 (mod mp),

where mp is the maximal ideal of Op. We also write for this

α ≡ 1 (mod∗ cp).
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(ii) If v is a real absolute value dividing c, and σv is the corresponding embed-
ding in R, then

σvα > 0.

Definition 2.3 allows us to define the group of principal ideals that we need.

Proposition 2.4 Let K be a number field, c be a non-empty cycle (hence di-
visible by some prime of K). Then the set of elements of K∗ that satisfy (i)
and (ii) of definition 2.3 form a multiplicative subgroup of K. We denote this
group by Kc. The elements of this group Kc are p-units for p|c.

Proof We first show that 0 6∈ Kc. Suppose c is divisible by some finite prime
p. Then by (i) we would have for α = 0 that 0 ≡ 1 (mod mm(p)), hence that
1 ∈ mm(p), hence that mm(p) = Op, a contradiction. Suppose that c is divisible
by some real prime v. Then σv0 > 0 cannot hold. Since c is non-empty, one of
the two previous cases holds. Hence 0 6∈ Kc.

We now verify that Kc is closed under products and inverses. Let p and v be
finite and real primes respectively dividing c. Let α, β ∈ Kc. Then α, β ∈ Op,
hence α = a/s, β = b/t, with a, b ∈ O and s, t 6∈ p. Then αβ = ab/(ts), and
ab ∈ O and ts 6∈ p since p is prime. Of course we also have αβ ≡ 1 · 1 = 1
(mod mm(p)) Concerning the real primes we have σvα > 0 and σvβ > 0, hence
σvαβ = σvασvβ > 0. Hence Kc is closed under multiplication.

We also need to check that Kc contains the inverses of its elements. Let
α ∈ Kc. Then α = a/s with some a ∈ O and s 6∈ p. Then we must verify
that α−1 = s/a also satisfies (i) and (ii). To this end, we will show that α 6∈ p.
Suppose that α ∈ p. Then sα ∈ mp. Hence s ∈ mp or α ∈ mp, but the second
option is impossible since α ≡ 1 (mod mm(p)). Now, mp = pOp. Hence this
implies that there is a λ ∈ p and a µ 6∈ p such that s = λ/mu, hence that
sµ = λ ∈ p. Since p is prime this implies that s ∈ p or µ ∈ p, but as the second
option does not hold the first option must hold. But the second option also does
not hold. Hence a 6∈ p, and α−1 lies in the local ring Op at p.

Of course, for a real embedding we have σvα
−1 = 1/σvα > 0. Hence Kc is

closed under inverses.
Hence Kc is indeed a group. In the proof we saw that if α = a/s ∈ Kc with

a ∈ O and s 6∈ p that then also a 6∈ p, hence α is indeed a p-unit. �

Definition 2.5 Let K be a number field, c a cycle. Then Pc is the set of
principal ideals (α) with α ∈ Kc.

Proposition 2.6 The set Pc from definition 2.5 is a group. It is a subgroup of
I(c).

Proof That Pc is a group follows immediately from the fact that Kc is a group,
which was shown in proposition 2.4.

Let α ∈ Kc. We wish to show that (α) = αO ∈ I(c). Let p|c. Since α is a
p-unit, the localization of this ideal is (αO) = Op. Note that by localizing at
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p, every prime ideal distinct from p gets mapped to Op, and the ideal p gets
mapped to pOp. Consider the factorization with numerator and denominator
relatively prime:

αO =
p
e(p1)
1 · · · pe(pi)

i · · · pe(ps)
s

q
e(q1)
1 · · · qe(qj)

j · · · qe(qr)
r

with all exponents e(pi), e(qj) non-zero. Localization at a prime p is a group
homomorphism from the fractional ideals of O onto the fractional ideals of the
local ring Op . The kernel consists of the ideals that meet O− p. Suppose p|pi.
This would imply p = pj and hence (αO)p = pe(pi)Op, a contradiction. Suppose
p|qj . This would imply p = qj and hence (αO)p = p−e(qj)Op, a contradiction.
Hence αO ∈ I(c). �

Definition 2.7 Let X be a set, c a cycle. Whenever it makes sense we denote
by X(c) the subset of elements of X prime to c and by Xc the subset of X of
elements satisfying (i) and (ii) of definition 2.3.

Proposition 2.8 Every class in I/P has a representative in I(c)/P (c).

Proof Let a (mod P ) ∈ I/P . For a prime p let πp denote an element of order
1 at p. Use the Chinese Remainder Theorem to find an α ∈ Ok such that

α ≡ πordp a
p (mod pordp(a)+1)

for all p|c. Then aα−1 is prime to c. By the proof of proposition 2.17 we can
multiply aα−1 by an integer to make it an integral ideal. �

Thus

I(c) I

P ∩ I(c) P

induces an isomorphism

I(c)/P (c) ∼= I/P,

where P (c) = P ∩ I(c).
Note that we have a tower

I(c) ⊃ P (c) ⊃ Pc.

Therefore we have a surjective homomorphism

I(c)/Pc � I(c)/P (c) ∼= I/P

with kernel P (c)/Pc. We will now analyse this kernel.
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Consider the map

k∗ � P,

α 7→ (α).

The kernel of this map is the group of units U . The inverse image of Pc ⊂ P is
Ukc (Recall: Pc is by defnition {(α) : α ∈ kc}.) Hence we have

k(c) P (c)

Ukc Pc

,

and therefore we have an isomorphism

k(c)/Ukc
∼−→ P (c)/Pc.

Let R+ denote the multiplicative group of reals > 0. If v is real, then k+
v
∼= R+,

and k∗v/k
+
v
∼= {1,−1}. Consider the map

k∗(c)→
∏
p|c0

(Op/m
m(p)
p )×

∏
v|c
v real

k∗v/k
+
v ,

where as usual m(p) denotes the order of p in c. Using the approximation
theorem (theorem 2.22), we see that this map is surjective. By definition, its
kernel is kc.

Definition 2.9 Let c0 be a cycle containing finite primes only. For every p|c
let

ϕp(c0) = #(Op/m
m(p)
p )∗.

Define the Euler ϕ-function by

ϕ(c0) =
∏
p|c0

ϕp(c0).

Note that we have the tower of groups

k(c) ⊃ UKc ⊃ kc,

hence

Ukc/kc ∼= U/(U ∩ kc) = U/Uc.
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Putting everything together gives the diagram

I(c) I

k(c) P (c) P

U Ukc Pc

Uc kc

.

Using this we can show, if we let hc denote the cardinality of I(c)/Pc and h the
class number of k (i.e. the cardinality of the ordinary class group I/P ):

Theorem 2.10

hc =
hϕ(c0)2s(c)

(U : Uc)

where s(c) is the number of real v|c.

Proof By the diagram above,

hc = #I(c)/Pc

= #I(c)/P (c) ·#P (c)/Pc

= #(I/P ) ·#k(c)/Ukc

= h · #k(c)/kc
#Ukc/kc

=
hϕ(c0)2s(c)

(U : Uc)
. �

Corollary 2.11
(U : Uc) <∞.

Proof Otherwise we would have hc = 0. �

Corollary 2.12 Let V be the group of units modulo roots of unity, and let
Vc = V ∩ kc. Then V and Vc have the same rank as a Z-module.

Proof If the ranks were not equal, then (V : Vc) would not be finite, hence (U :
Uc) would not be finite (the roots of unity have no influence on the finiteness).�

Corollary 2.13 Let {η1, . . . , ηr} be independent roots generating Uc modulo
roots of unity (here r = r1 + r2 − 1, where r1 is the number of real embeddings,
r2 the number of conjugate pairs of complex embeddings). Then the log-vectors
{(log |σjηi|Nj )j}i (with Nj = 1 if σj is real and Nj = 2 if σj is complex) generate
a lattice in Rr.
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Proof By the previous corollary, the log-vectors generate a subgroup of the
lattice generated by U (the last one is a lattice by the Unit Theorem, cf. Lang
[9, section V.§1]) of the same rank as a Z-module. Hence this subgroup is also
a lattice. �

Definition 2.14 We define the c-regulator Rc by

Rc = |det(log |σjηi|Nj )|.

Corollary 2.15 The regulator Rc is non-zero.

Proof Immediate by the previous corollary. �

2.2 Ideals as lattices

We want to view fractional ideals as lattices in Euclidean space. For that we
need a few prelimenaries, which will be developed next.

The following proposition is from Cohen [1, chapter 2, section 3].

Proposition 2.16 Let L be a Z-submodule of RN . Consider the following three
conditions:

(1) L generates RN as an R-vector space.

(2) L is discrete.

(3) L is a free Z-module of rank N .

Then any two of these conditions implies the third.

Proof Assume (1) and (2). Then (3) follows from proposition 1.3.
Assume (1) and (3). Let b1, . . . , bN be a Z-basis of L. Then b1, . . . , bN is

an R-basis of RN . Consider the open neighborhoud Ω of 0 consisting of the
x =

∑n
i=1 xibi with |xi| < 1. Then the only element of L in Ω is 0. Hence 0 is

an isolated point of L, hence by translation of Ω, every point of L is. Hence L
is discrete.

Assume (2) and (3). Let W be the R-vector space generated by L. Then
(1) and (2) hold with V replaced by W . Hence by what we have proved, L
is a free Z-module on dim(W ) generators. Hence dim(W ) = N by (3) and
proposition 1.2. Hence W = RN . �

The following propositions are from Sheppard and Osserman [13].

Proposition 2.17 Let K be a number field, OK its ring of integers, α ∈ K.
Then there is a non-zero d ∈ Z such that dα ∈ OK .

Proof There is an equation

anα
n + an−1α

n−1 + · · ·+ a0 = 0
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with ai ∈ Z and an 6= 0. Multiply it by an−1
n to get:

(anα)n + an−1(anα)n−1 + · · ·+ an−1
n a0 = 0.

Hence anα is integral over Z, hence anα ∈ OK . �

Proposition 2.18 Let K be a number field, OK the ring of integers. Then
K = Frac(OK), the field of fractions of OK .

Proof Note that OK ⊂ K, and since Frac(OK) is the smallest field containing
OK , we have Frac(OK) ⊂ K. Conversely, let α ∈ K. Then by proposition 2.17
there is a non-zero d ∈ Z such that dα ∈ OK . Thus α ∈ Frac(OK). Hence
K = Frac(OK). �

Proposition 2.19 Let K be a number field of degree N over Q. Then the ring
of integers OK is a Z-module of rank N .

Proof It is well known that the ring of integers of a number field is finitely
generated as a Z-module. (See for instance Lang [9, chapter 1, §2, proposition
6].) We get an inclusion

Q⊗Z OK ↪→ K.

As rings however, Q⊗ZOK = Q[OK ]. The ring on the right is the smallest field
containing OK . But this is equal to K. Hence Q⊗ZOK = K. Hence Q⊗ZOK
is a vector space of dimension N over Q, hence the rank of OK as a Z-module
is N . �

Proposition 2.20 Let K be a number field of degree N over Q, a an ideal of
K. Then a is a free Z-module of rank N .

Proof Let d ∈ OK be non-zero such that da ⊂ OK . Then a ∼= da as Z-modules,
and as OK is free of rank N , a must be free of rank ≤ N .

On the other hand, let a ∈ a \ {0}. Then aOK ⊂ a and aOK ∼= OK as
Z-modules. Hence the rank of a is also ≥ N . �

Let K be a number field of degree N over Q. To apply our result of theorem 1.15
we need to be able to view an ideal a of K as a lattice in some Euclidean space.
This Euclidean space will be the product of the completions of K with respect
to its Archimedean absolute values.

Proposition 2.21 Let K be a number field, | · |1, | · |2 be two Archimedean
absolute values, corresponding to embeddings σ, τ respectively. Then | · |1 and
| · |2 are equivalent (induce the same topology on K) if and only if σ and τ are
conjugate embeddings: σ ∈ {τ, τ}.

Proof If σ and τ are conjugate embeddings than clearly they induce the same
topology on K.
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Conversely, assume that | · |1 and | · |2 induce the same topology. Then one
can show (see for instance Lang [9, page 32]) that one must be a power of the
other: there is a λ > 0 such that | · |1 = | · |λ2 . Applying both norms to 2
shows that 2 = 2λ, hence that λ = 1. This shows that for every x ∈ K we
have |σ(x)| = |τ(x)|. If σ is real then for every x we have that σ(x) is uniquely
determined by |σ(x)| and |σ(x) − 1|. This then implies that τ is also real and
equal to σ.

If both σ and τ are complex, let y ∈ K be such that σ(y) ∈ C. There are
precisely two points in C with distance |σ(y)| to 0 and |σ(y)− 1| to 1 and they
are σ(y) and σ(y). Either possibility determines τ completely, and we have that
τ(y) = σ(y) implies τ = σ, and τ(y) = σ(y) implies τ = σ. �

Theorem 2.22 (Approximation Theorem) Let K be a field, and |·|1, . . . , |·
|s non-trivial pairwise independent absolute values on K. Let x1, . . . , xs be ele-
ments of K, and ε > 0. Then there exists an x ∈ K such that

|x− xi|i < ε

for all i.

Proof See Lang [9, theorem II.§1.1]. �

Definition 2.23 For a number field K, denote by S∞ the Archimedean abso-
lute values.

From the general theory of separable extensions we know that K has N embed-
dings in C. We know that the complex embeddings come in conjugate pairs.
Hence, if we write r1 for the number of real embeddings and 2r2 for the number
of complex embeddings we have r1 + 2r2 = N .

Proposition 2.24 Let K be a number field, S∞ its Archimedean absolute val-
ues, r1 the number of real embeddings and 2r2 the number of complex embed-
dings. Then #S∞ = r1 + r2.

Proof This is almost immediate by proposition 2.21. Two absolute values are
equivalent if and only if they come from a pair of conjugate embeddings. �

When v is an Archimedean absolute value of K we can form the completion of
K with respect to v. We denote this by Kv. If v is real then Kv = R, if v is
complex then Kv = C. The Euclidean space we will embed our ideals in will be
the following

AK(∞) =
∏
v∈S∞

Kv = RN .

Let σv denote an embedding in C for every Archimedean v (fix one if v is
complex). We have the inclusion

K ↪→
∏
v∈S∞

Kv

x 7→ (σv(x))v.
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We will show that under this inclusion, every fractional ideal a of K gets mapped
to a lattice in AK(∞). We will also consider the subset of AK(∞) defined as

JK(∞) =
∏
v∈S∞

K∗v

Proposition 2.25 Let K be a number field, a a fractional ideal of K. Then
the image of a under the above inclusion is a lattice in AK(∞).

Proof Note that the inclusion is a morphism of Z-modules. Hence the image
of a is a Z-module of rank N by proposition 2.20.

We have the following equality (see for instance Lang [9, chapter III, §3,
prop 13])

DK/Q(a) = (NK
Q (a))2DK/Q(Z)

= (NK
Q (a))2∆K .

The right hand side is a non-zero ideal. The left hand side is the ideal generated
by all discriminants DK/Q(W ) where W ranges over the bases of K over Q with
W ⊂ a. In particular, there exists such a basis W = {wi}i.

This implies that

DK/Q(W ) = Det(σiwj)
2 6= 0,

where σi ranges over the embeddings of K in C. Hence {(σiwj)j}i is a basis of
CN . We will show that this implies that {(σv(wi))v}i forms a basis of RN .

Let σ1, . . . , σr1 be the real embeddings of K. Let τ1, . . . , τr2 and their con-
jugates be the complex ones. Write τjwν = xjν +

√
−1yjν with xjν , yjν ∈ R.

We need to show that the following determinant is non-zero:

Det1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ1w1 · · · σ1wN
...

...
σr1w1 · · · σr1wN
x11 · · · x1N

y11 · · · y1N

...
...

xN1 · · · xNN
xN1 · · · xNN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

To do so, we use that DL/Q(W ) 6= 0. This means written out that the following
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determinant is non-zero:

Det2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ1w1 · · · σ1wN
...

...
σr1w1 · · · σr1wN

x11 + iy11 · · · x1N + iy1N

...
...

xN1 + iyN1 · · · xNN + iyNN
x11 − iy11 · · · x1N − iy1N

...
...

xN1 − iyN1 · · · xNN − iyNN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The determinant is of a matrix which first has r1 rows corresponding to the real
embeddings and then twice r2 rows corresponding to the complex embeddings.
After adding the last set of r2 rows to the first, and then subtracting again, we
see that up to sign Det2 = 2r2 Det1. In particular, Det1 6= 0.

Hence the image of the lattice a is a Z-module of rank N and R-linearly
spans all of RN . This implies by proposition 2.16 that the image of a under the
inclusion is a lattice. �

2.3 Asymptotic Behaviour of the Number of In-
tegral Ideals of Bounded Norm going to In-
finity

We will need the volume of a fundamental domain of a viewed as a lattice in RN .
We can continue where we left off in our previous proof to show the following.

Proposition 2.26 Let a be an ideal of K, and let F be a fundamental domain
of a, as a lattice in RN . Then

Vol(F ) = 2−r2
√
|DK/Q(a)| = 2−r2Na

√
|∆K |

Proof Let W be the basis of a from the proof of proposition 2.25. We then have
DK/Q(a) = (Det1)2 = (2r2 Det2)2. But Det2 is the determinant for a set of basis

vectors of the lattice a. Hence Det2 = Vol(F ) and we obtain
√
|DK/Q(a)| =

2r2 Vol(F ).
The second equality in the proposition is a direct consequence of the formula

DK/Q(a) = (NK
Q (a))2∆K . (Note that Na = NK

Q a for every ideal a of K.) �

Let K be a number field, U ⊂ OK be the group of units. Then U acts on K by
multiplication. But U also acts on AK(∞) as follows:

u · (ξv)v = (σvu · ξv)v
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for all u ∈ U, (ξv)v ∈ AK(∞).
Let ξ ∈ K. We then have the following identity (see for instance Lang [9,

chapter I, §7, proposition 22] ):

N(ξ) = |NK
Q (ξ)|.

On the left hand side we have the norm of the principal ideal (ξ). On the right
hand side we have the norm of field extensions

∏
σ σ(ξ) where σ ranges over

the elements of the Galois group. The right hand side satisfies (see for instance
Lang [9, chapter II, §1, corollary 2]):

|NK
Q (ξ)| =

∣∣∣∣∣ ∏
v Archimedean

|ξv|v

∣∣∣∣∣
=

∏
v Archimedean

|ξv|v

where ξv = σvξ where σv is a fixed embedding corresponding to v. This identity
allows us to define the following function N which on AK(∞) restricts to the
usual norm on K:

N((ξv)v) =
∏

v Archimedean

|ξv|v.

Note that for u ∈ U we have NK
Q (u) = ±1 . Hence the function N is constant

on orbits of U and therefore factors through AK(∞)/U .
We will now extend the definition of AK(∞) to be able to exclude primes.

Definition 2.27 Let K be a number field and c a cycle. Then AK(∞, c) is the
subset AK(∞) consisting of those (ξv)v such that ξv > 0 if v real, v|c. Likewise
we define JK(∞, c) as the subset of JK(∞) of thise (ξv)v such that ξv > 0 if v
real, v|c.

Proposition 2.28 Let K be a number field, U ⊂ OK the group of units, Uc =
U ∩Kc (as usual). Then JK(∞, c) is stable under the action of Uc.

Proof Let u ∈ Uc, ξ = (ξv)v ∈ JK(∞, c). We will show that u · ξ ∈ JK(∞, c).
Clearly σvu 6= 0 for every v real, v|c. Hence σvu · ξv 6= 0 for all such v.

Furthermore σvu > 0 and ξv > 0 hence σvuξv > 0. Hence indeed u · ξ ∈
JK(∞, c). �

Definition 2.29 If a groupG acts on a setX then a subsetD ⊂ X will be called
a fundamental domain for the action if it contains a unique representative of
every orbit of the action.

Let V be the free part of the group Uc (the torsion part being the roots of
unity in Uc). Then the action of Uc on JK(∞, c) restricts to an action of V
on JK(∞, c). For this action there is a fundamental domain with some nice
properties.
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Proposition 2.30 There exists a fundamental domain D for the action of V
on JK(∞, c) such that tD = D for all t > 0 and such that D(1) (the subset of D
of those ξ such that Nξ ≤ 1) has a (N − 1)-Lipschitz parametrizable boundary.

Proof We will postpone the proof. The proof of this proposition will be given
in the proof of theorem 2.33. First we will show some of the implications. �

Let R be a class of I(c)/Pc. Let t > 0 We wish to count the number of integral
ideals a ∈ R such that Na ≤ t. Denote this number by j(R, t).

Let b ∈ R−1. Then b has a factorization:

b =
p1 · · · ps
q1 · · · qr

,

and all ideals in this factorization are prime to c. The c-class group is finite, say
of order hc. Then (q1 · · · qr)hc = (α) for some α ∈ Kc. Hence

(α)b = p1 · · · ps(q1 · · · qr)hc−1.

Hence we have found an element of R−1 that is an integral ideal. Hence we can
assume without loss of generality that b is integral.

Consider the map

a 7→ ab = (ξ) 7→ ξ (mod Uc) ∈ Kc/Uc

from integral ideals of I(c) to Uc-equivalence classes of elements ξ satisfying

ξ ≡ 1 (mod∗c),

ξ ≡ 0 (mod b).

This is well defined because certainly these ξ ∈ Kc (i.e. ξ ≡ 1 (mod∗c)). Fur-
thermore if (ξ) = (ξ′) then there is a u ∈ U such that ξ = uξ′. But this shows
that u = ξ/ξ′, hence that u ∈ Kc, hence that u ∈ Uc. And lastly a and b are
integral ideals hence ab = (ξ) implies ξ ≡ 0 (mod b).

We will show that this map is in fact a bijection.
Suppose a and b get mapped to the same element of Kc/Uc. That implies

that ab = a′b. Multiplying by b−1 shows that a = a′. Hence the map is injective.
Lastly let ξ ≡ 1 (mod∗c), ξ ≡ 0 (mod b) represent an Uc-equivalence class.

Then (ξ) is an integral ideal in Pc. Hence a(ξ) ∈ R, and this gets mapped to
ba(ξ) = (ξ). Hence the map is surjective. Note that Na ≤ t if and only if
Nab = N(ξ) ≤ Nb · t.

Proposition 2.31 Let K be a number field, Uc the group of c-units, V the free
subgroup. Let D be a fundamental domain for the action of V on JK(∞, c).
Let wc be the the number of roots of unity in Kc, that is the cardinality of the
torsion part of Uc.

Then every Uc-class has exactly wc representatives in D.
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Proof Note that Uc acts transitively on JK(∞, c). Write Uc = µc × Vc where
µc are the roots of unity in Uc and Vc is the free part. Let C be a Uc-class. Let
ξ ∈ C.

C =
⋃
r∈µ

⋃
v∈V
{rvξ}

=
⋃
r∈µ

(⋃
v∈V
{v(rξ)}

)
︸ ︷︷ ︸

V -class

Hence C is the disjoint union of V -classes, one for every r ∈ µ. Every one
contains precisely one element of D, hence we get wc representatives in D in
total. �

Hence we see that if we count the number of elements of D satisfying section 2.3
and N(ξ) ≤ t we get wcj(R, t). That is, wcj(R, t) is equal to the number of
elements ξ satisfying

ξ ∈ b,
ξ ≡ 1 (mod c0),
ξ ∈ D(Nb · t) = (Nb · t)1/ND(1).

We actually need ξ ≡ 1 (mod∗c), but ξ ≡ 1 (mod c0) is enough, since the third
condition implies ξ ∈ D, hence ξ ∈ Jk(∞, c), hence σvξ > 0 if v is real, v|c.

The two congruences

ξ ≡ 0 (mod b) and ξ ≡ 1 (mod c0)

define a translation of the lattice given by the ideal bc0 in RN = Ak(c), by the
Chinese Remainder Theorem. To be precise, if ξ0 is a solution to the system
above, then

ξ 7→ ξ − ξ0
gives a bijection between these congruences and bc0 (note that the Chinese
Remainder Theorem applies since b and c0 are relatively prime). Thus we see:

Lemma 2.32 Let L be the lattice obtained by translating the lattice of bc0 by
the solution ξ0. Then wcj(R, t) is equal to the number of elements in

(Nb · t)1/ND(1).

Hence we can apply theorem 1.18. Hence we have, save for the construction of
the fundamental domain D of the action of V on Jk(∞, c) and the computation
of its volume,

Theorem 2.33 Let c be a cycle of k, R a class of I(c) modulo Pc. Then

j(R, t) = ρct+O(t1−1/N ),
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where

ρc =
2r1(2π)r2Rc

wc

√
|∆k|Nc

and:

• Rc is the c-regulator,

• Nc = 2s(c)Nc0,

• s(c) is the number of real v|c,

• wc is the number of roots of unity in Uc,

• ∆k is the discriminant of k.

Proof By lemma lemma 2.32, the only thing that remains is to construct a
fundamental domain D of the action of V on Jk(∞, c), such that tD = D, ∂D
is (N − 1)-Lipschitz parametrizable, and

VolD(1) = 2r1−s(c)πr2Rc.

First we shall construct D. Let g be the map

g : Jk(∞, c)→
∏
v∈S∞

Rv,

(ξv)v 7→
(

log
‖ξv‖

NξNv/N

)
v

.

Then the image of g is contained in the hyperplane of those z such that∑
v∈S∞

zv = z1 + · · · zr1+r2 = 0.

Let {η1, . . . , ηr} be generators for V , the group generated by Uc without the
roots of unity. Set yi = g(ηi). Then by the corollary 2.13, {y1, . . . , yr} is a basis
for a lattice H (note that Nηi = 1). Let F be the fundamental domain of H
given by the linear combinations

c1y1 + · · ·+ cryr 0 ≤ cq < 1.

Set D = g−1(F ). Then D is a fundamental domain for the action of V on
Jk(∞, c), for for (ξv)v ∈ Jk(∞, c),

g((ηk11 · · · ηkrr )(ξv)v) = g(ξ) + k1y1 + · · · kryr.

Let t > 0. Then (
‖tξv‖

N(tξ)Nv/N

)
v

=

(
‖ξv‖
Nξ

)
v

,

hence (ξv)v ∈ D if and only if g((ξv)v) ∈ F if and only if g((tξv)v) ∈ F if and
only if t(ξv)v ∈ D. Hence tD = D.
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For ξ ∈ D we have

log
‖ξv‖Nv

NξNv/N
≤ Br

where B is the maximum of the |yq|. Hence we get

|ξv| ≤ max(1, |ξv|Nv ) ≤ max(1,Nξ1/NeBr)

Hence D(1) is bounded, and for ξ ∈ D(1) we get, if we let B > 1:

|ξv| ≤ eBr.

What is left to do is to show that ∂(D(1)) is (N−1)-Lipschitz parametrizable,
and to compute VolD(1). We use polar coordinates (ρ, ϑi) (i = 1, . . . , r1 + r2)
to do this. We let 0 ≤ ρi for all i and ϑi = ±1 if i = 1, . . . , r1, but ϑi = 1
if vi|c. If i = r1 + 1, . . . , r1 + r2 we let 0 ≤ ϑi ≤ 2π. Map ((ρi, ϑi))i to
(ρie

iϑi)i. The inverse image of D(1) in polar coordinate space is given by those
(ξvj )j = (ξj)j = (ρje

iϑj )j such that{
0 <

∏r1+r2
i=1 ρNi

i ≤ 1,

log ρj − 1
N log

∏r1+r2
i=1 ρNi

i =
∑r
q=1 cq log |σjηq| j = 1, . . . , r1 + r2.

(2.2)

The first condition is equivalent to Nξ ≤ 1, the second condition (or actually,
the next r1 + r2 conditions) is (are) equivalent to ξ ∈ D. Hence both conditions
together are equivalent to ξ ∈ D(1). Note that none of the equations from
eq. (2.2) involve any of the angles ϑi. Let P denote the set of (ρ1, . . . , ρr1+r2)
that satisfy eq. (2.2). then

VolD(1) =

∫
D(1)

1 dξ1 · · · dξr1+r2

=

∫
· · ·
∫

P

∫ 2π

0

· · ·
∫ 2π

0

∫
{±1}

· · ·
∫
{±1}

∫
{1}
· · ·
∫
{1}

ρr1+1 · · · ρr1+r2

dϑ1 · · · dϑs(c) dϑs(c)+1 · · · dϑr1 dϑr1+1 · · · dϑr1+r2 dρ1 · · · dρr1+r2

= 2r1−s(c)(2π)r2
∫
· · ·
∫

P

ρr1 · · · ρr1+r2 dρ1 · · · dρr1+2
.

We change variables again. Consider the cube S in (r1+r2)-space with variables
(u, c1, . . . , cr) such that{

0 < u ≤ 1,
0 ≤ cq < 1 (q = 1, . . . , r)

We have a bijection f : S → P between this cube S and P , given in one direction
by

ρj = u1/N exp

(
r∑
q=1

cq log |σjηq|

)
.
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That the image of f is indeed contained in P follows from first considering the
product

r1+r2∏
j=1

ρ
Nj

j = u exp

 r∑
q=1

cq log

r1+r2∏
j=1

|σjηq|Nj


= u exp

(
r∑
q=1

cq log |Nk
Q(ηq)|

)
= u,

since Nk
Q(ηq) = ±1, since ηq is a unit. Since 0 < u ≤ 1, the first condition of

2.2 is satisfied. As a direct consequence, the second condition is also satisfied.
(Apply log to the expression of ρj and use the identity above for u.) Hence the
image of f is indeed contained in P .

To show that it is a bijection, we show the existence of an inverse. We
already saw that

r1+r2∏
j=1

ρ
Nj

j = u.

The numbers cq are uniquely determined by (ρ1, . . . , ρr1+r2) because

det(log |σjηq|Nj )jq = Rc

does not vannish (corollary 2.15)

We compute the Jacobian determinant. First compute the partial deriva-
tives:

∂ρj
∂u

=
1

N

ρj
u

and
∂ρj
∂cq

= ρj log |σjηq|.

Hence the Jacobian determinant of f is∣∣∣∣∣∣∣
1
N
ρ1
u ρ1 log |σ1η1| · · · ρ1 log |σ1ηr1+r2 |

...
...

...
1
N

ρr1+r2

u ρr1+r2 log |σr1+r2η1| · · · ρr1+r2 log |σr1+r2ηr1+r2

∣∣∣∣∣∣∣
=

∏r1+r2
j=1 ρj

uN

∣∣∣∣∣∣∣
1 log |σ1η1| · · · log |σ1ηr1+r2 |
...

...
...

1 log |σr1+r2η1| · · · log |σr1+r2ηr1+r2 |

∣∣∣∣∣∣∣ .

Adding the first r = r1 + r2 − 1 rows to the last after multiplying the j-th row
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by Nj shows that this is equal to

1

Nρr1+1 · · · ρr1+r2

2−r2

∣∣∣∣∣∣∣∣∣
1 log |σ1η1| · · · log |σ1ηr|
...

...
...

1 log |σrηr| · · · log |σrηr|
N 0 · · · 0

∣∣∣∣∣∣∣∣∣
=

1

Nρr1+1 · · · ρr1+r2

2−r2Rc.

Hence:

VolD(1) = 2r1−s(c)(2π)r2
∫
S

2−r2Rc dµ

= 2r1−s(c)πr2Rc

where µ is the Lebesgue measure.
As to Lipschitz parametrizability, a continuously differentiable map from the

cube S to P would suffice, since the closed cube S is Lipschitz parametrizable.
The only non-continuously differentiable aspect we encountered along the way
of our reparametrizations was the exponent 1/N of u. But we can remedy this
by doing one more reparametrization: reparametrize the unit cube S by a copy
of itself S′ with variables (u′, c′1, . . . , c

′
r) and mapping this to (u′N , c′1, . . . , c

′
r).�



Chapter 3

Representation theory of
finite groups

We will use some representation theory of finite groups, which will be developed
here. G will always be a finite group. Our vector spaces will be over C and
finite dimensional. The references for this section are Serre [11] and Lang [8].

Definition 3.1 Let G be a finite group and V a C-vector space. A represen-
tation of G in V is a homomorphism

G→ Aut(V ).

We call dimV the degree of the representation.

Example 3.2 Let G be a group. Let R be the free C-vector space generated
by basis elements eσ with σ ∈ G. Define the regular representation of G by
ρσ(eτ ) = eστ for all σ, τ ∈ G.

Definition 3.3 Let ρ : G→ Aut(V ) be a representation. We also denote ρ(g)v
by gv. The map ρ(g) will also be denoted by ρg. We define C[G] to be the set
of expressions of the form ∑

σ∈G
aσσ.

with aσ ∈ C and all but finitely many aσ = 0. With the natural addition and
multiplication and multiplication with C this is a C-algebra.

Proposition 3.4 There is a 1-1 correspondence between C-algebra homomor-
phisms

C[G]→ End(V )

and representations

G→ AutC(V ).

31
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Proof Restricting a C-algebra homomorphism C[G] → End(V ) to G gives a
representation and extending a representation G → Aut(V ) gives a C-algebra
homomorphism, and these operations are inverse to each other. �

We will also call C-algebra homomorphisms C[G]→ End(V ) representations of
G. This is justified by proposition 3.4.

Notation 3.5 We will sometimes abuse notation and for a representation

ρ : G→ Aut(V )

write ρ for the vector space V and V for the map ρ. This will cause no confusion.

Theorem 3.6 (Maschke’s Theorem) Let ρ : G → Aut(V ) be a representa-
tion. Let W ⊂ V be a G-stable linear subspace. Then there exists a complement
W 0 of W (i.e. W ⊕W 0 = V ) which is also G-stable.

Proof Let W ′ be an arbitrary complement of W in V . Let π : W ⊕W ′ = V →
W be the projection. Define π0 by averaging this projection:

π0 =
1

#G

∑
σ∈G

ρσπρ
−1
σ .

Since π maps V into W , and π0 preserves W , we see that π0 maps V into W0.
We have π−1

σ x ∈W for x ∈W , hence

πρ−1
σ x = ρ−1

σ x, hence

ρσπρ
−1
σ x = x,

hence π0x = x. Hence π0 is a projection of V onto W , corresponding to some
complement W 0 of W . One readily verifies that ρσπ

0 = π0ρσ for all σ ∈ G. If
x ∈ W 0 and σ ∈ G then π0x = 0, hence π0ρσx = ρσπ

0x = 0, i.e. ρσx ∈ W 0,
i.e. W 0 is stable under G. �

Definition 3.7 Suppose ρ : G→ Aut(V ) is a representation. Suppose W ⊂ V
is a G-stable subspace. We then have a representation ρW : G→ Aut(W ) by re-
stricting each ρ(σ) to W . The representation ρW is called a subrepresentation
of ρ.

Definition 3.8 A representation ρ : G → Aut(V ) is said to be simple or ir-
reducible if V ahas no invariant subspaces other than 0 and V itself. By
theorem 3.6 this is equivalent to saying that ρ is not the direct sum of two
representations.

Theorem 3.9 Every representation is a direct sum of irreducible representa-
tions.
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Proof Induction on dimV . If dimV = 0 then ρ is the empty direct sum of
irreducible representations. Suppose dimV ≥ 1. If ρ is irreducible, then we
are done. Otherwise, V can be decomposed by theorem 3.6 as V ⊕ V ′, both
G-stable and of dimension smaller than dimV . By induction both summands
are the direct sum of irreducible representation, hence the total direct sum is.�

Definition 3.10 Two representations ρ : G → Aut(V ) and ρ′ : G → Aut(V ′)
are called isomorphic if there is a linear isomorphism τ : V → V ′ such that for
all σ ∈ G:

V V ′

V V ′

τ

ρ(s) ρ′(s)

τ

commutes.

Definition 3.11 Let ρ1 : G → Aut(V 1) and ρ2 : G → Aut(V 2) be two repre-
sentations. We then define the following.

(1) The direct sum representation ρ1 ⊕ ρ2 : G→ Aut(V 1 ⊕ V 2) by

(ρ1 ⊕ ρ2)σ = ρ1
σ ⊕ ρ2

σ

for all σ ∈ G.

(2) The tensor product representation ρ1 ⊗ ρ2 : G→ Aut(V 1 ⊗ V 2) by

(ρ1 ⊗ ρ2)σ = ρ1
σ ⊗ ρ2

σ

for all σ ∈ G.

Proposition 3.12 (Schur’s Lemma) Let ρ1 : G → Aut(V 1) and ρ2 : G →
Aut(V 2) be two irreducible representations of G. Let f : V 1 → V 2 be a linear
map such that

V V ′

V V ′

f

ρ1(s) ρ2(s)

f

commutes. Then

(1) If ρ1 and ρ2 are not isomorphic, then f = 0.

(2) If V 1 = V 2 and ρ1 = ρ2, f is a homothety (i.e. a scalar multiple of the
identity).

Proof (1) The case f = 0 is trivial. Suppose f 6= 0. For x ∈ ker f , we have
fρ1

sx = ρ2
sfx = 0, hence ρ1

sx ∈ ker f . Hence ker f is G-stable. Since V1 is
irreducible, this implies ker f = 0 or V 1, but the second case is excluded by
f 6= 0.

A similar argument shows that Im f = V 2.

Hence f is an isomorphism.
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(2) Suppose V 1 = V 2, ρ1 = ρ2. Let λ be an eigenvalue of f (this exists because
we work over C.) Put f ′ = f − λ. Since λ is an eigenvalue of f , ker f ′ 6= 0.
On the other hand, by linearity of the ρσ, we have ρ2

σ ◦f ′ = f ′ ◦ρ1
s. By part

(1) this implies that f ′ = 0, that is, f = λ. �

Corollary 3.13 Let h : V 1 → V 2 be linear. Put

h0 =
1

#G

∑
σ∈G

(ρ2
σ)−1hρ1

σ.

Then:

(1) If ρ1 and ρ2 are not isomorphic, h0 = 0.

(2) If V 1 = V 2 = V , ρ1 = ρ2 = ρ, then h0 is a homothety of ratio 1
n Trh, with

n = dimV .

Proof We have ρ2
σh

0 = h0ρ1
σ, because

(ρ2
σ)−1h0ρ1

σ =
1

#G

∑
τ∈G

(ρ2
σ)−1(ρ2

τ )hρ1
τρ

1
σ

=
1

#G

∑
τ∈G

(ρ2
τσ)−1hρ1

τσ

= h0.

Apply Schur’s lemma to f = h0. We see in case (1) that h0 = 0, and in case (2)
that h0 is equal to some scalar λ. In the second case we have

Trh0 =
1

#G

∑
τ∈G

Tr((ρτ )−1hρτ )

= Trh

and since Trλ = nλ, we get λ = 1
n Trh. �

Remark 3.14 Computations with matrix coefficients can lead to enormous
amounts of indices. We give a short description of what happens when one
computes with matrix coefficients so that in what follows the focus can be on
the conceptual things. We write the coefficients of a matrix A as Aji, where the
j indicates the row and the i the column. If Bkj is then another matrix we have

(BA)ki =
∑
j

BkjAji

If Clk is another matrix still we have

(CBA)li =
∑
k,j

ClkBkjAji.

This should make the pattern clear.
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Fix bases of V 1 and V 2 and write all matrices with respect to these bases. Then

ρ1
τ = (ri1j1(τ)),

ρ2
τ = (ri2j2(τ)),

h = (xi2i1),

h0 = (x0
i2i1).

By definition of h0 we have

x0
i2i1 =

1

#G

∑
τ,j2,j2

ri2j2(τ−1)xj2j1rj1i1(τ).

The right hand side is a linear form with respect to xj2j1 . In case (1), this form
is trivial, whence all its coefficients are zero. Therefore:

Corollary 3.15 In case (1) we have

1

#G

∑
τ∈G

ri1j2(τ−1)rj1i1(τ) = 0

for arbitrary i1, i2, j1, j2.

In case (2) we have h0 = λ, i.e. x0
i2i1

= λδi2i1 (where δ is the Kronecker delta

symbol), with λ = 1
n Tr(h). That is

λ =
1

n

∑
j2,j1

δj2j1xj2j1 .

Hence

1

#G

∑
τ,j1,j2

ri2j2(τ−1)xj2j1rj1i1(τ) =
1

n

∑
j1,j2

δi1i2δj2j1xj2j1 .

Equating coefficients of xj2j1 we obtain:

Corollary 3.16 In case (2) we have

1

#G

∑
τ∈G

ri2j2(τ−1)rj1i1(τ) =
1

n
δi2i1δj2j1

=

{
1
n if i1 = i2 and j1 = j2,
0 otherwise.

Definition 3.17 Let ρ : G → Aut(V ) be a representation. Pick a basis of V
and write ρσ as a matrix with respect to this basis. Define the character χρ
of the representation ρ as the map

χρ(σ) = Tr(ρσ)

This is independent of choice of basis of V . It is the sum of eigenvalues of ρσ,
counted with multiplicities.
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Proposition 3.18 If χρ is the character of a representation ρ of degree n then

(1) χ(1) = n,

(2) χ(σ−1) = χ(σ) for all σ ∈ G,

(3) χ(τστ−1) = χ(σ) for σ, τ ∈ G.

Proof (1) The sum of the diagonal elements of the n×n identity matrix is n.

(2) Since ρσ has finite order, its eigenvalues λ1, . . . , λn have finite order as well.
Hence they have absolute value 1. Hence

χ(σ) = Tr(ρσ)

=
∑

λi

=
∑

λ−1
i

=
∑

Tr(ρ−1
σ )

=
∑

Tr(ρσ−1)

= χ(σ−1).

(3) We can also write this as χ(vu) = χ(uv) with u = τσ and v = τ−1. It then
follows from

Tr(ab) = Tr(ba). �

Proposition 3.19 Let ρ1 : G → Aut(V 1) and ρ2 : G → Aut(V 2) be two repre-
sentations of G and let χ1 and χ2 be their respective characters. Then:

(1) The character χ of the direct sum representation V 1 ⊕ V 2 is χ1 + χ2.

(2) The character ψ of the tensor product representation V 1 ⊗ V 2 is χ1 · χ2.

Proof Write ρ1, ρ2 in matrix form: R1
σ, R

2
σ. The representation V1⊕V2 is then

given by the matrix

Rσ =

(
R1
σ 0

0 R2
σ

)
.

Hence Tr(Rσ) = Tr(R1
σ) + Tr(R2

σ), that is χ(σ) = χ1(σ) + χ2(σ).
For (ii) we do a similar thing. Let (ei1) be a basis for V 1 and (ei2) be a basis

for V 2. Let (ri1j1(σ)), (ri2j2(σ)) be the matrices of ρ1 and ρ2 with respect to
these bases respectively. We then have

ρ1
σ(ej1) =

∑
i1

ri1j1(s)ei1 ,

ρ2
σ(ej2) =

∑
i2

ri2j2(s)ei2 ,
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which implies

ρ1
σ ⊗ ρ2

σ(ej1 ⊗ ej2) =
∑
i1,i2

ri1j1(s)ri2j2(s)ei1 ⊗ ei2

Hence

Tr(ρ1
σ ⊗ ρ2

σ) =
∑
i1,i2

ri1i2(σ)ri2i2(σ)

= χ1(σ)χ2(σ). �

Remark 3.20 If ϕ and ψ are complex-valued functions on G, we set

〈ϕ,ψ〉 =
1

#G

∑
τ∈G

ϕ(τ−1)ψ(τ) =
1

#G

∑
τ∈G

ϕ(τ)ψ(τ−1).

We have 〈ϕ,ψ〉 = 〈ψ,ϕ〉. Moreover, 〈ϕ,ψ〉 is linear in ϕ and ψ. With this
notation, corollary 3.15 and corollary 3.16 become, respectively,

〈ri2j2 , rj1i1〉 = 0 and 〈ri2j2 , rj1i1〉 =
1

n
δi2i1δj2j1 .

Definition 3.21 Let ϕ, ψ be complex-valued functions on G. Define

(ϕ|ψ) =
1

#G

∑
τ∈G

ϕ(τ)ψ(τ).

This is a scalar product : it is is linear in ϕ, semi-linear in ψ, and (ϕ|ϕ) > 0 for
all ϕ 6= 0.

Definition 3.22 For a complex valued function ψ on G define ψ∨(τ) = ψ(τ−1).

Remark 3.23 We then have (ϕ|ψ) = 〈ϕ,ψ∨〉. If χ is the character of a repre-
sentation, we have χ = χ∨ by proposition 3.18 (2). Hence (ϕ|χ) = 〈ϕ, χ〉 for all
ϕ on G.

Theorem 3.24 (1) If χ is the character of an irreducible representation then
(χ|χ) = 1 (χ has “norm 1”).

(2) If χ and χ′ are characters of non-isomorphic irreducible representations
then (χ|χ′) = 0 (χ and χ′ are “orthogonal”).

Proof (1) Let ρ be an irreducible representation with character χ and matrix
representation ρτ = (rij(τ)). We have χ(τ) =

∑
rii(τ). Hence

(χ|χ) = 〈χ|χ〉 =
∑
i,j

〈rii, rjj〉.

But by corollary 3.16 we have 〈rii, rjj〉 = δij/n. Hence

(χ|χ) =

∑
i,j

δij

 /n = n/n = 1.
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(2) Proved in the same way as (i), but by applying corollary 3.15 instead of
corollary 3.16. �

Theorem 3.25 Let V be a linear representation of G, with character ϕ, and
suppose V decomposes into a direct sum of irreducible representations:

V = W1 ⊕ · · · ⊕Wk.

Then, if W is an irreducible representation with character χ, the number of Wi

isomorphic to W is equal to (ϕ|χ) = 〈ϕ|χ〉.

Proof Let χi be the character of Wi. By proposition 3.19, we have

ϕ = χ1 + · · ·+ χk.

Hence (ψ|χ) = (χ1|χ) + · · ·+ (χk|χ). But by theorem 3.24 (χi|χ) is equal to 1
or 0, depending on whether Wi is or is not isomorphic to W . �

Corollary 3.26 The number of Wi isomorphic to W is independent of the de-
composition.

Proof (ϕ|χ) is independent of the decomposition. �

Corollary 3.27 Two representations with the same character are isomorphic.

Proof Corollary 3.26 shows that they contain every irreducible representation
the same number of times �

Hence if χ1, . . . , χh are the distinct irreducible characters of G and W1, . . . ,Wh

denote corresponding irreducible representations then each representation V is
isomorphic to a direct sum

V = m1W1 ⊕ · · · ⊕mkWk with mi integers ≥ 0.

The character ϕ of V is equal to

m1χ1 + · · ·+mkχk

and

mi = (ϕ|χi)

By orthogonality:

(ϕ|ϕ) =

k∑
i=1

m2
i .

Hence
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Theorem 3.28 If ϕ is the character of a representation V , then (ϕ|ϕ) is a
positive integer, and (ϕ|ϕ) = 1 if and only if ϕ is irreducible.

Proof
∑
m2
i is equal to 1 if and only if one of the mi’s is 1 and the rest is 0.�

Let

χ1, . . . , χh

be the irreducible representations of a group G, of degrees

n1, . . . , nk.

. (Then ni = χi(1).) Let ρ : G → Aut(R) be the regular representation. Then
ρσ(eτ ) = eστ , hence the diagonal of the matrix representation of ρσ consists of
zeroes if σ 6= 1 and it consists of 1’s if σ = 1. Hence Tr(ρσ) = 0 if σ 6= 1 and
Tr(ρ1) = dimR = #G. Hence we have

Proposition 3.29 The character rG of the regular representation is given by

rG(1) = #G,

rG(σ) = 0 if σ 6= 1.

Corollary 3.30 Every iredducible representation Wi is contained in the regular
representation with multiplicity equal to ni.

Proof By theorem 3.25 this is equal to

〈rG, χi〉 =
1

#G

∑
σ∈G

rG(σ−1)χi(σ)

=
1

#G
#Gχi(1)

= ni. �

Corollary 3.31 A group has a finite number of non-isomorphic irreducible rep-
resentations. Consequently it has also a finite number of irreducible characters.

Corollary 3.32 (a) The degrees satisfy

k∑
i=1

n2
i = #G.

(b) If σ 6= 1 then

k∑
i=1

niχi(σ) = 0
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Proof By corollary 3.30:

rG(σ) =
∑

niχi(σ).

Taking σ = 1 we get (a), taking σ 6= 1 we get (b). �

Definition 3.33 A function f : G→ C is called a class function if it is con-
stant on conjugacy classes. Equivalently it factors through G/ClG, where ClG
denotes the set of conjugacy classes of G.

Proposition 3.34 Let f be a class function, ρ a representation. Put ρf =∑
τ∈G f(τ)ρτ . If ρ is irreducible, of degree n and with character χ, then ρf is

a homothety of ratio

λ =
1

n

∑
τ∈G

f(τ)χ(τ)

=
#G

n
(f |χ∗).

Proof We have

ρ−1
σ ρfρσ =

∑
τ∈G

f(τ)ρ−1
σ ρτρσ

=
∑
τ∈G

f(τ)ρσ−1τσ.

Putting u = σ−1τσ, this becomes:

ρ−1
σ ρfρσ =

∑
u∈G

f(σuσ−1)ρu

=
∑
u∈G

f(u)ρu

= ρf .

So we have ρfρσ = ρσρf . By Schur’s Lemma, this shows that ρf is a homothety
λ. We have Trλ = nλ and

Tr ρf =
∑
τ∈G

f(τ) Tr(ρτ )

=
∑
τ∈G

f(τ)χ(τ).

Hence

λ =
1

n

∑
τ∈G

f(τ)χ(τ)

=
#G

n
(f |χ) �
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Definition 3.35 H is the set of class functions. It is a vector space over C.

Theorem 3.36 The irreducible characters χ1, . . . , χh form an orthonormal ba-
sis of H.

Proof Theorem 3.24 shows that the χi form an orthonormal set. It remains
to show that they generate H. It is straightforward to verify that the χi are
also the irreducible characters . Hence it is enough to show that every f ∈ H
that is orthogonal to all the χi is zero.

For ρ a representation of G, put

ρf =
∑
τ∈G

f(τ)ρτ .

as in the proof of proposition 3.34. Since f is orthogonal to all χi proposi-
tion 3.34 shows that ρf = 0 if ρ is irreducible. Every representation is the sum
of irreducible representations, hence ρf = 0 for every representation. Apply this
to the regular representation R. Compute

ρfe1 =
∑
τ∈G

f(τ)ρτe1

=
∑
τ∈G

f(τ)eτ .

Since ρf = 0, we have ρfe1 = 0, hence f(τ) = 0 for all τ ∈ G. Hence f = 0. �

Theorem 3.37 The number of irreducible representations of G is equal to the
number of conjugacy classes of G.

Proof Every class function is determined by its values on the conjugacy classes,
and for those values there is a free choice. Hence the number of conjugacy classes
is equal to the C-dimension of the space of class-functions.

But theorem 3.36 shows that the C-dimension of the space of class functions
is also equal to the number of irreducible characters. This is equal to the number
of irreducible representations. Hence the number of conjugacy classes is equal
to the number of irreducible representations. �

Proposition 3.38 Let s ∈ G, c(s) the cardinality of the conjugacy class of s,
χ1, . . . , χh the irreducible characters of G. Then

(a)
∑h
i=1 χi(s)

∗χ(s) = #G
c(s) .

(b) For t not conjugate to s, we have
∑h
i=1 χi(s)

∗χi(t) = 0.

Proof Let 1s be the indicator function of the class of s. This is a class function.
By theorem 3.36 it can be written

1s =

h∑
i=1

λiχi,
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with λi = (1s|χi) = c(s)/#Gχ∗(s). For each t ∈ G we then have

1s(t) =
c(s)

#G

h∑
i=1

χi(s)
∗χi(t).

This gives (a) if t = s and (b) if t is not conjugate to s. �

Theorem 3.39 Let G be a group. The following are equivalent:

(i) G is abelian.

(ii) All irreducible representations of G have degree 1.

Proof Let n1, . . . , nh be the degrees of the irreducible representations. We
know that h is the number of conjugacy classes by theorem 3.37, and that
#G = n2

1 + · · ·n2
h by corollary 3.32. Hence #G is equal to h if and only if all

ni = 1, hence G is abelian if and only if every representation is of degree 1. �

Let ρ : G → Aut(V ) be a representation, H < G, ρH the restriction of ρ to H.
Let W be a subrepresentation of ρH (i.e. W is a subpace of V and ρtW = W
for all t ∈ H). Denote this representation by ϑ : H → Aut(W ). Let s ∈ G.
Then ρsW only depends on the coset sH. Thus for a coset σ can define Wσ as
ρsW with any s ∈ σ. The Wσ are mapped to one another by the ρs, s ∈ G.
Hence their sum

∑
σ∈G/HWσ is a subrepresentation of V .

Definition 3.40 We say that the representation ρ of G in V is induced by ϑ
from H in W if V is equal to the sum of the Wσ (σ ∈ G/H) and if this sum is
direct.

Remark 3.41 This means in particular that dimV = (G : H) dimW .

Recall that G-representations correspond to C[G]-moduls. Let V be a C[G]-
module, W a sub-C[H]-module. Then V is induced by W if and only if

V =
⊕

σ∈G/H

σW.

(Where σW = sW for some s ∈ σ, which is independent of the choice made.)

Proposition 3.42 V is induced by W if and only if the homomorphism

C[G]⊗C[H] W → V

is an isomorphism.

Proof Let R be a system of representatives of G/H. Then

C[G] =
⊕
s∈R

sC[H],
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hence

C[G]⊗C[H] W =
⊕
s∈R

sC[H]W

=
⊕
s∈R

sW. �

Remark 3.43 This makes it obvious that the induced representation always
exists and is unique: it is

C[G]⊗C[H] W.

We will denote it by IndGH(W ) or Ind(W ).

Remark 3.44 If E is a C[G]-module we have a canonical isomorphism

HomC[H](W,E) ∼= HomC[G](IndW,E)

where both Hom-sets are considered as C-vector spaces, and E on the left hand
side is considered as a C[H]-module.

Remark 3.45 By associativity of the tensor product this also shows that in-
duction is transitive: if H < G < K and W is a sub-C[H]-module then

IndKG (IndGH(W )) = C[K]⊗C[H]

(
C[G]⊗C[H] W

)
∼=
(
C[K]⊗C[H] C[G]

)
⊗C[H] W

∼= C[K]⊗C[H] W

= IndKH(W ).

Proposition 3.46 Let V be a C[G]-module, and suppose V decomposes as V =⊕
i∈IWi. Suppose furthermore that the Wi are transitively permuted by G. Let

i0 ∈ I, W = Wi0 . Let H be the stabilizer of W in G.
Then W is stable under H and the C[G]-module V is induced by the C[H]-

module W .

Proof Let R be a system of representatives of G/H. W is stable under H by
definition of the stabilizer. By the orbit-stabilizer theorem we have #(G/H) =
#I. Hence for every i ∈ I there is a unique s ∈ R such that sW = Wi. This
shows that V =

⊕
i∈IWi =

⊕
s∈R sW . �

Remark 3.47 In order to apply proposition 3.46 to an irreducible represen-
tation V it is enough to check that the Wi are permuted among themselves:
transitivity follows since each orbit defines a subrepresentation.

Theorem 3.48 Let H < G, (W,ϑ) a H-representation, (V, ρ) the G-represen-
tation induced by W , χϑ and χρ their respective characters. Let R be a system
of representatives of G/H. Then for each u ∈ G:

χρ(u) =
∑
r∈R

r−1ur∈H

χϑ(r−1ur) =
1

#H

∑
s∈G

s−1us∈H

χϑ(s−1us).
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We have

V =
⊕
r∈R

ρrW.

ρu permutes the ρrW among themselves: if we write ur = rut with ru ∈ R and
t ∈ H we see that ρuρrW = ρruW . To determine χρ(u) = TrV (ρU ), use a basis
of V which is the union of bases of the ρrW . The indices such that ru 6= r give
zero diagonal terms. The others give the trace of ρu on ρrW .

Denoting by Ru the r ∈ R such that ru = r we obtain

χρ(u) =
∑
r∈Ru

TrρrW (ρu,r)

where ρu,r denotes the restriction of ρu to ρrW . Observe that

r ∈ Ru ⇐⇒ ur = rt with t ∈ H
⇐⇒ r−1ur ∈ H.

We have, with t = r−1ur,

ρu,r = ρ−1
r ◦ ρtρr

= ρ−1
r ϑtρr,

hence TrρrW (ρu,r) = TrW (ϑt) = χϑ(t) = χϑ(r−1ur). Hence:

χρ(u) =
∑
r∈Ru

χϑ(r−1ur).

The second formula follows from the first.

Definition 3.49 Let H < G, f a class function on H. Define f ′ on G by

f ′(s) =
1

#H

∑
t∈G

t−1st∈H

f(t−1st).

We say that f ′ is induced by f and denote it by IndGH(f) or Ind(f).

Proposition 3.50 (i) Ind(f) is a class function on G.

(ii) If f = χϑ where (W,ϑ) is a representation of H then Ind(χϑ) is the char-
acter of Ind(W ).

Proof (ii) was the content of theorem 3.48. (i) follows from direct calculation
or from (ii) and the observation that every class function is a linear combination
of characters. �

Definition 3.51 If V1 and V2 are C[G]-modules, we set

〈V1, V2〉G = dimC HomC[G](V1, V2).
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Lemma 3.52 If ϕ1 and ϕ2 are the characters of V1 and V2 we have

〈ϕ1, ϕ2〉G = 〈V1, V2〉G.

Proof Decomposing V1 and V2 into direct sums, we may assume that V1 and V2

are irreducible, in which case the lemma follows from theorem 3.24 and Schur’s
lemma. �

If ϕ (resp. V ) is a function on G (resp. a representation of G), we denote by
Resϕ (resp. ResV ) its restriction to the subgroup H.

Theorem 3.53 (Frobenius Reciprocity) Let ψ be a class function on H, ϕ
a class function on G. Then

〈ψ,Resϕ〉H = 〈Indψ,ϕ〉G.

Proof Every class function is a linear combination of characters, hence we can
assume ψ is the character of some C[H]-module W and ϕ is the character of
some C[G]-module E. Because of lemma 3.52 and proposition 3.50 it is enough
to show that

〈W,ResE〉H = 〈IndW,E〉G,

i.e.

dimC HomC[H](W,ResE) = dimC HomC[G](IndW,E),

which follows from remark 3.44. �

Remark 3.54 Theorem 3.53 expresses that Res and Ind are adjoints.

Remark 3.55 Instead of 〈 , 〉 we can use ( | ) to get the same formula:

(ψ|Resϕ)H = (Indψ|ϕ)G.

Let H,K < G, and consider a representation ρ : H → Aut(W ). Let V =
IndGH(W ). We shall determine ResK(V ). Note that K × H acts on G by
(k, h) · g = kgh−1. Choose a set S of representatives of the orbits KgH, g ∈ G:
G is then the disjoint union ⋃

s∈S
KsH.

For s ∈ S, let Hs = sHs−1 ∩K, which is a subgroup of K. Set

ρs(x) = ρ(s−1xs), for x ∈ H.

We thus obtain a homomorphism ρs : Hs → Aut(W ), hence a representation of
Hs, denoted Ws. Since Hs < K, IndKHs

(Ws) is defined.
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Proposition 3.56 (Mackey’s Formula) Let S be a system of representatives
of K\G/H. Then

ResK IndGH(W ) ∼=
⊕
s∈S

IndKHs
(Ws).

Proof Let S be a system of representatives of K\G/H. Then V = ⊕x∈RxW .
Let V (s) be the subspace generated by the xW , for x ∈ KsH. Then every V (s)
is spanned by some of the xW , and these spanning sets are mutually disjoint
for different s. Hence

V =
⊕
s∈S

V (s).

The V (s) are stable under K. It remains to show that V (s) is C[K]-isomorphic
to IndKHs

(Ws). But the subgroup of K consisting of those x such that x(sW ) =
sw is equal to those x ∈ K such that

s−1xsW = W

⇐⇒
s−1xs ∈ H
⇐⇒

x ∈ sHs−1.

Hence this subgroup is equal to sHs−1 ∩K = Hs. Hence we have

V (s) ∼=
⊕

x∈K/Hs

x(sW ),

hence V (s) = IndKHs
(sW ). It remains to show that sW is C[Hs]-ismorphic to

Ws. But this is true: an isomorphism is given by s : Ws → sW : w 7→ sw. �

Theorem 3.57 (Artin’s Induction Theorem) Let G be a finite group, ρ a
G-representation. Then:

For some n ≥ 1, there exists cyclic subgroups Hi, H
′
j < G and 1-dimensional

representations ψi, ψ
′
i of Hi, H

′
j respectively such that

ρ⊕n ⊕
⊕
i

IndGHi
ψi ∼=

⊕
J

IndGH′j ψ
′
j .

If 〈ρ,1〉 = 0, then all ψi, ψ
′
j can be chosen to be non-trivial.

Proof If τ is a G-representation write χτ for its character.
Let V be the Q-vector space spanned by the characters of G. Let W be

the subspace spanned by χIndG
H τ for all cyclic H < G and 1-dimensional H-

representations τ (= all irreducible H-representations as H is abelian). It suf-
fices to show V = W for then

χρ =
∑
m

λmχIndG
H τm λm ∈ Q,
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hence for some n > 0

nχρ =
∑
m

kmχIndG
H τm km ∈ Z,

hence

nχρ +
∑
i

ki<0

kiχIndG
H τi =

∑
j

kj>0

kjχIndG
H τj ,

and as the character of a representation determines the representation and char-
acter of direct sums is the sum of characters, we are done.

Hence suppose that ψ ∈W⊥, i.e. 〈ψ, χIndG
H τ〉〉 = 0 for all cyclic H < G and

1-dimensional H-representations τ . By Frobenius reciprocity:

〈ResGH ψ, χτ 〉 = 0

for all irreducible representations τ of H. Hence: ResGH ψ = 0. In particular,
taking H = 〈g〉 shows that ψ(g) = 0. This holds for all g ∈ G, hence ψ = 0,
hence W⊥ = 0, hence V = W .

For the second claim, take W to be generated by the χIndG
H τ with H cyclic

and τ 6= 1 1-dimensional. It suffices to check that every ψ ∈ W⊥ is a multiple
of the trivial character, for the trivial character does not occur in the decompo-
sition of χρ by 〈ρ,1〉 = 0. By Frobenius reciprocity:

〈ResGH ψ, τ〉H = 0

for all H cyclic, τ 6= 1 1-dimensional, hence ResGH ψ is a multiple of 1H . Taking
H = 〈g〉 shows that ψ(g) = ψ(e) (where e is the identity of G). This is true for
all g ∈ G, hence ψ is a multiple of 1G. �
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Chapter 4

L-Series

4.1 Dirichlet L-series

In this section we define zeta functions and L functions and derive properties
that we will need later, namely that L functions can be extended analytically to
a complex right-half plane including 1 to a function which is regular everywhere
except possibly in 1 if it is the L-function of the trivial character. In that case,
the extension has a simple pole in 1. The material is from Lang [9, chapter
VIII].

Proposition 4.1 (Summation by Parts, Abel’s Lemma) Let

(an)n, (bn)n

be sequences of complex numbers. Let

An = a1 + · · ·+ an,

Bn = b1 + · · ·+ bn

be their partial sums. Then

N−1∑
n=1

anbn = ANbN +

N−1∑
n=1

An(bn − bn+1)

49
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Proof

N−1∑
n=1

An(bn − bn+1) =

N−1∑
n=1

n∑
j=1

aj(bn − bn+1)

=

N−1∑
j=1

N−1∑
n=j

aj(bn − bn+1)

=

N−1∑
j=1

aj(bj − bN )

=

N∑
n=1

anbn − aNbN −AN−1bN

=

N∑
n=1

anbn −ANbN . �

Definition 4.2 A Dirichlet series is a series of the form

∞∑
n=1

an
ns

where (an)n is a sequence of complex numbers and s is a complex variable. We
write s = σ + it with σ, t ∈ R.

Theorem 4.3 If a Dirichlet series
∑
n an/n

s converges for some s = s0, then
it converges for any s with Re(s) > σ0 = Re(s0), uniformly on any compact
subset of this region.

Proof Convergence follows by comparison with
∑
n an/n

s0 . (Note that for all
complex s we have |ns| = nσ.)

To see why the convergence is uniform on compact subsets, write n =
ns0ns−s0 , Pn(s0) =

∑n
m=1 am/m

s0 . We will give a uniform bound for the tail.
Let m < n. Consider the m-th and n-th partial sums of the series∑ an

ns0
1

ns−s0
,

sum these by parts, and subtract the n-th partial sum from the m-th, to get

n∑
k=m+1

ak
ks0

1

ks−s0
=
Pn(s0)

ns−s0
+

n−1∑
k=m+1

Pk(s0)

(
1

ks−s0
− 1

(k + 1)s−s0

)
− Pm(s0)

(m+ 1)s−s0
.
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Letting n→∞ we obtain the tail:

∞∑
k=m+1

ak
ks0

1

ks−s0
=

∞∑
k=m+1

Pk(s0)

(
1

ks−s0
− 1

(k + 1)s−s0

)
− Pm(s0)

(m+ 1)s−s0
.

Letting m be large enough we can make the second term smaller than ε, uni-
formly in s (since it does not depend on s). Also, by letting m be large enough,
we can bound Pk(s0) by ε (since the partial sums converge at s = s0). Denote
s = Re(σ) and recall that s0 = Re(σ0). We can estimate∣∣∣∣∣
∞∑

k=m+1

Pk(s0)

(
1

ks−s0
− 1

(k + 1)s−s0

)∣∣∣∣∣ ≤ ε
∞∑

k=m+1

∣∣∣∣ 1

ks−s0
− 1

(k + 1)s−s0

∣∣∣∣
= ε

∞∑
k=m+1

∣∣∣∣∣(s− s0)

∫ k+1

k

1

xs−s0+1
dx

∣∣∣∣∣
≤ ε|s− s0|

∫ ∞
1

1

xσ−σ0+1
dx

= ε
|s− s0|
|σ − σ0|

,

and the factor after the ε is bounded on compact subsets. �

Definition 4.4 Assuming that a Dirichlet series converges for some s, if σ0 is
the smallest real number such that the series converges for Re(s) > σ0, then we
call σ0 the abscissa of convergence.

Theorem 4.5 Assume there exists numbers C and σ1 > 0 such that

|An| = |a1 + . . .+ an| ≤ Cnσ1

for all n. Then the abscissa of convergence of
∑
an/n

s is ≤ σ1.

Proof Let δ > 0 and let Re(s) ≥ σ1 + δ. Sum by parts to obtain for the
difference of the partial sums:

Pn(s)− Pm(s) = An
1

ns
+

n−1∑
k=m+1

Ak

[
1

ks
− 1

(k + 1)s

]
−Am

1

ms

= An
1

ns
+

n−1∑
k=m+1

Aks

∫ k+1

k

1

xs+1
dx−Am

1

ms
.

The left and right term can be bounded by C/nδ and C/mδ respectively. For
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the middle term we have: ∣∣∣∣∣Aks
∫ k+1

k

1

xs+1
dx

∣∣∣∣∣
=

∣∣∣∣∣C
∫ k+1

k

kσ1

xσ+1
dx

∣∣∣∣∣
=

∣∣∣∣∣C
∫ k+1

k

xσ1

xσ+1
dx

∣∣∣∣∣
=

∣∣∣∣∣C
∫ k+1

k

1

xσ−σ1+1
dx

∣∣∣∣∣ .

Summing this from k = m+ 1 to ∞ yields

C
1

σ − σ1

1

(m+ 1)σ−σ1
.

Hence:

|Pn(s)− Pm(s)| ≤ C/nδ + C
|s|

δ(m+ 1)δ
+ C/mδ.

This is small if we let m go to ∞. �

Let

ζ(s) =
∑
n

1

ns
.

This is the Riemann zeta function. Theorem 4.5 shows that ζ is analytic in
s for Re(s) > 1 (with σ1 = 1). For real s > 1 we have

1

s− 1
=

∫ ∞
1

1

xs
dx ≤ ζ(s) ≤ 1 +

1

s− 1
.

The first inequality follows from comparing the integral with Riemann sums, the
second inequality follows from drawing a picture. It is based on the principle
that for a positive strictly monotonic decreasing integrable function f we have

∞∑
k=1

f(k) ≤
∫ ∞

1

f(x) dx+ f(1).

Hence for real s > 1 we have

1 ≤ (s− 1)ζ(s) ≤ s.
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We shall show that ζ can be extended analytically to all s with Re(s) > 1,
and that it is analytic every except possibly at s = 1. The preceeding estimate
implies it has a simple pole there, with residue 1.

Consider the alternating ζ-function:

ζ2(s) = 1− 1

2s
+

1

3s
− · · · .

The partial sums of the coefficients are 0 and 1, hence bounded. Theorem 4.5
shows that ζ2(s) is analytic for Re(s) > 0. But

2 · 1

2s
ζ(s)︸ ︷︷ ︸

even terms
of ζ

+ ζ2(s)︸ ︷︷ ︸
+ odd terms
- even terms

= ζ(s),

and therefore

ζ2(s) =

(
1− 1

2s−1

)
ζ(s).

This gives an analytic continuation of ζ to the line σ = 0.
We must still investigate the poles. Consider the functions

ζr(s) =
1

1s
+

1

2s
+ · · · 1

(r − 1)s
− (r − 1)

rs
+

1

(r + 1)s
+ · · ·

with r = 2, 3, . . .. Just as with r = 2, we see that the partial sums are bounded
by r, hence ζr(s) is analytic for Re(s) > 0. Again, we have

r
1

rs
ζ(s) + ζr(s) = ζ(s),

hence

ζ(s) =
ζr(s)

1− 1
rs−1

.

From r = 2 we see that the only possible poles occur when 2s−1 = 1, or,
equivalently, when

s =
2πin

log 2
+ 1.

From the expression with ζ3 we see that for a pole

s =
2πim

log 3
+ 1,

hence 2m = 3n, which implies n = m = 0, hence s = 1. Hence we have shown:

Theorem 4.6 ζ(s) defines an analytic function for Re(s) > 0, except for a
simple pole at s = 1. If δ > 0, then series

∑
1/ns for ζ(s) converges absolutely

and uniformly on compact sets in the region Re(s) ≥ 1 + δ.
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Theorem 4.7 Let (an)n be a sequence of complex numbers, with partial sums
An. Let 0 ≤ σ1 < 1, and assume that there is a complex number ρ, and C > 0
such that for all n we have

|An − nρ| ≤ Cnσ1 ,

or in other words An = nρ+O(nσ1). Then the function

f(s) =
∑

an/n
s

defined by these series for Re(s) > 1 has an analytic continuation to Re(s) > σ1

where it is analytic except for a simple pole with resiude ρ at s = 1.

For the definition of characters and the c-ideal class group, see chapter 3 and
section 2.1 respectively.

Proof Apply theorem 4.6 and theorem 4.5 to the function f(s)− ρζ(s). �

Definition 4.8 Let K be a number field of degree N . Let I(c)/Pc be its c-class
group. Let χ be a character of I(c)/Pc. Then χ also induces a character on I(c)
via the quotient map I(c) → I(c)/Pc. Denote this character also by χ. Define
the Lc-series of χ by

Lc(χ, s) =
∑

(a,c)=1

χ(a)

Nas

with s a complex variable and the sum is over the integral ideals a ∈ I.

Proposition 4.9 The Lc-series converge on the half plane Re(s) > 1.

Proof Note that the Lc-series are a Dirichlet series with

an =
∑

(a,c)=1
Na=n

χ(a),

Let An denote the partial sum. We have

#{a : a integral ideal in I(c) of norm ≤ n}

=
∑

R∈I(c)/Pc

{integral a ∈ R of norm ≤ n}

=
∑

R∈I(c)/Pc

j(R, n)

2.33
=

∑
R∈I(c)/Pc

(
ρcn+OR(t1−1/N )

)
= hcρcn+O(t1−1/N ),
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where the subscript R of the O denotes that the constant there in principle
could depend on R. In the last line this R is gone, because we can just take the
maximum of all the constants for all R. Hence we get

|An| =

∣∣∣∣∣∣∣∣
∑

(a,c)=1
Na≤n

χ(a)

∣∣∣∣∣∣∣∣
=

∑
(a,c)=1
Na≤n

|χ(a)|

=
∑

(a,c)=1
Na≤n

|1| (4.1)

= hcρcn+O(n1−1/N )

≤ Cn

for suitable C > 0, because the sum on line (4.1) is equal to the number of
ideals prime to c and of norm smaller then n, which is hcj(R, n). Hence by
theorem 4.5 the abscissa of convergence is ≤ 1. �

Remark 4.10 For every s such that Lc(χ, s) converges we have the follow-
ing identity, due to the multiplicativity of χ and the well-known formula for
geometric series:

Lc(χ, s) =
∑

(a,c)=1

χ(a)

Nas
=
∏
p-c

1

1− χ(p)
Nps

.

The following is lemma Fried and Jarden [4, 5.5.19]:

Theorem 4.11 The function Lc(χ, s) has analytic continuation to the half-
plane Re(s) > 1 − 1/N , where N is the degree of the number field K of which
Lc is the Lc-series. If χ = 1, then it has a simple pole at s = 1 with residue

hcρc =
hc2

r1(2π)r2Rc

wc

√
|∆K |Nc

.
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Proof We have

An =
∑

R∈I(c)/Pc

∑
a∈R
Na≤n

χ(a)

=
∑

R∈I(c)/Pc

χ(R)(ρcn+O(n1−1/N )

=
∑

R∈I(c)/Pc

χ(R)1(R−1)(ρcn+O(n1−1/N )

3.20
= 〈χ,1〉I(c)/Pc

(ρcn+O(n1−1/N ))

3.23, 3.24
=

{
hcρcn+O(n1−1/N ) if χ = 1,

O(n1−1/N ) if χ 6= 1.

Hence by theorem 4.7, Lc(s, χ) has an analytic continuation to Re(s) > 1−1/N .
If χ = 1, it has a simple pole with residue

hcρc =
hc2

r1(2π)r2Rc

wc

√
|∆K |Nc

.

If χ 6= 1 apply theorem 4.7 with ρ = 0 to conclude that Lc(χ, s) is analytic on
the half-plane. �

4.2 Artin L-functions

Most of the material in this section is from Dokchitser [3]. Representations are
over C. We will introduce Artin L-functions, and also cover some representation
theory of Galois groups which will allow us to develop the Artin Formalism for
Artin L-functions.

Throughout, we have the following:

• F/K is a Galois extension of number fields.

• p is a prime of K, q lies above p.

• D = Dq/p, I = Iq/p, Frob = Frobq/p ∈ D/I, G = Gal(F/K).

If V is a representation of D, write V I for the subspace of I-invariant vectors.
As I / D this is a subrepresentation (if v ∈ V I then for g ∈ G and h ∈ I we
have hgv = gh′v = gv (h′ ∈ I)).

Definition 4.12 Let I ⊂ D be finite groups (think: inertia respectively de-
composition group), ρ a D-representation. Then ρI are the I-invariant vectors
of ρ:

ρI = {v ∈ ρ : g(v) = v for all g ∈ I}.

Proposition 4.13 If I /D (as in the case inertia group / decomposition group)
then ρI is a subrepresentation.
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Proof Easy verification. �

Definition 4.14 If λi ∈ C, gi ∈ D, write

Det(
∑
i

λigi|ρ) = Det(
∑
i

λiρ(gi))

Example 4.15 The characteristic polynomial of g ∈ D on ρ with variable T is
Det(T − g|ρ).

Definition 4.16 Let F/K be a Galois extenion of number fields. Let

ρ : Gal(F/K)→ AutC(Cn)

be a representation. Let p be a prime of K, q|p be a prime of F above p. Choose
an element Frobp ∈ Dq/p that maps to Frobq/p ∈ Dq/p/Iq/p. Then the local
polynomial of ρ at p is (we will show that this is independent of the choices
made):

Pp(F/K, ρ, T ) = Pp(ρ, T )

= Det(1− Frobp T |ρIp),

where Ip = Iq/p.

Remark 4.17 This is essentially the characteristic polynomial Φq/p(ρ, T ) of
Frobp on ρ. If

Pp(ρ, T ) = 1 + a1T + · · ·+ an−1T
n−1 + anT

n

then

Φq/p(ρ, T ) = Tn + a1T
n−1 + · · ·+ an−1T + an.

Remark 4.18 If dim ρ = 1 then

Pp(ρ, T ) =

{
1− ρ(Frobp)T if ρI = ρ,

1 if ρI = 0.

Lemma 4.19 Pp(ρ, T ) is independent of the choice of q|p and of the choice of
Frobp.

Proof For fixed q, the independence is clear: two choices of Frobp differ by an
i ∈ I, which acts trivially on ρI . If q′ is a different prime over p, write q′ = g(q)
with g ∈ Gal(F/K) and observe that Frob′p = g Frobp g

−1 is a lift the Frobenius

for q′. This shows that if λ is an eigenvalue of Frobp with eigenvector v ∈ ρI then
λ is also an eigenvalue of Frob′p with eigenvector gv. The converse reasining also

works, hence we see that the eigenvalues with multiplicity of Frobp and Frob′p
coincide, hence that their characteristic polynomials agree, hence that Pp(ρ, T )
is independent of the choice of q. �
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Definition 4.20 Let F/K be a Galois extension of number fields an ρ a repre-
sentation of Gal(F/K), c a cycle of K. The Artin Lc-function of ρ is defined
by the Euler product

Lc(F/K, ρ, s) = Lc(ρ, s) =
∏

p-c prime
of K

1

Pp(ρ,N(p)−s)
.

The polynomial Pp(ρ, T ) has the form (see remark 4.18) 1 − (aT + bT 2 + · · · )
hence we can write (ignoring convergence):

1

Pp(ρ, T )
= 1 + (aT + bT 2 + · · · ) + (aT + bT 2 + · · · )2 + · · ·

= 1 + apT + ap2T 2 + · · ·

Formally substituting this into the Euler product gives the expression (Artin
Lc-series):

Lc(ρ, s) =
∏
p-c

(1 + apN(p)−s + ap2N(p)−2s + · · · )

=
∑

(a,c)=1

aaN(a)−s

where if a decomposes as pe11 · · · perr we have aa = ape1 · · · aper . Note that group-
ing the ideals with equal norm yields an expression for Lc(ρ, s) as an ordinary
Dirichlet series.

Lemma 4.21 The Lc-series expression for Lc(ρ, s) agrees with the Euler prod-
uct on Re(s) > 1, where they converge absolutely to an analytic function.

Proof It suffices to show that∏
p-c

(1 + apN(p)−s + ap2N(p)−2s + · · · )

converges absolutely on Re(s) > 1. This justifies rearrangement of terms and
the Dirichlet series expression then proves analyticity.

Pp(ρ, T ) factorizes over C as

Pp(ρ, T ) = (1− λ1T )(1− λ2T ) · · · (1− λkT )

for some k ≤ dim ρ, |λi| = 1. Hence the coefficients of

1

Pp(ρ, T )
=

1∏
i(1− λiT )

=
∏
i

(1 + λiT + λ2
iT + · · · )

= 1 + apT + ap2T + · · ·
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are bounded by those of

1

(1− T )dim ρ
= (1 + T + T 2 + · · · )dim ρ.

Hence ∏
p-c

∑
n

|apn ||Np−ns| ≤
∏
p-c

1

(1− |Np−s|)dim ρ

≤
∏

p rational prime

(
1

1− |p−s|

)dim ρ·[K:Q]

= ζ(σ)dim ρ·[K:Q]

<∞

where ζ is the Riemann ζ-function of Q and σ = Re(s). �

Lemma 4.22

(i) Primes of K are in bijection with Gal(F/K)-orbits of primes of F via

p↔ primes of F above p,

i.e. Gal(F/K) acts transitively on these primes.

(ii) If q is a prime of F above p, then

gDq 7→ g(q)

is a Gal(F/K)-set isomorphism from G/Dq to {primes above p}.

(iii) Dg(q) = gDqg
−1, Ig(q) = gIqg

−1, Frobg(q)/p = g Frobq/p g
−1.

Proof (i) follows directly from the transititity of the action. (ii) and (iii) are
elementary to check. �

Corollary 4.23 Let F/L/K be an intermediate field. Let H = Gal(F/L, G =
Gal(F/K), q a prime of F over p. Then we have bijections

{primes of L above p} ↔ {Gal(F/L)-orbits of primes of F above p}
↔ {double cosets HgDq}

Proof The bijection between the first and second set is clear.
A bijection between the first and third set is the following. Map s (a prime

of L above p) to the set of elements of G that map q to some prime above s, Xs

say. If g ∈ Xs then the entire double coset HgDq is contained in Xs. Suppose
g, g′ ∈ Xs. Then g(q)|s, g′(q)|s, hence there is an h ∈ H such that hg(q) = g′(q).
This implies that g′−1hg ∈ Dq, hence that g ∈ HgDq. Hence every Xs is equal
to precisely one double coset HgDq. �
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Lemma 4.24 If V is an irreducible representation of D, then either

• V I = 0.

• V is 1-dimensional, lifted from D/I (i.e. D → D/I → C∗) (these kill I
and are determined by the action of Frob).

Proof V I is a subrepresentation, hence V I = 0 or V I = V . If V I = V
then the action of D factors through D/I. The latter is abelian hence V is
1-dimensional. �

Remark 4.25 So representations of D look like V = A ⊕ B with AI = 0 and
B = V I =

⊕
1-d reps of D/I.

Notation 4.26 Let (V, ρ) be a representation of D.

Φq/p(V, t) = DetV I (t · Id−ρ(Frobq/p))

= characteristic polynomial of Frob on V I .

Lemma 4.27 Let ψ : D → D/I → C∗ be a 1-dimensional representation of D
with ψ(Frob) = ζ. Then

〈ψ, V 〉 = 〈ψ, V I〉
= multiplicity of (t− ζ) in Φq/p(V, t).

Proof We have

〈ψ, V 〉 = dimC HomC[D](C, V )

= dimC HomC[D](C, V
I)

= dimC HomC[D](C,
⊕

1-d reps of D/I).

1 ∈ C can be send to a 1-dimensional summand if and only if Frob acts as
multiplication by ζ on that summand, hence

dimC HomC[D](C,
⊕

1-d reps of D/I) = multiplicity of (t− ζ) in Φq/p(V, t).

�

Remark 4.28 Hence Φ(V, t) encodes the multiplicities of the 1-dimensional
representations of D/I in V .

IfG is a group (V, ρ) a representation and x ∈ G denote by V x the representation
of G which is V “after conjugating by x”:

ρx(g) = ρ(x−1gx).
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Proposition 4.29 Let F/L/K be an intermediate field, (V, ρ) a representation
of Gal(F/L) with character χρ. Then

Φq/p(ResD IndGH V, t) =
∏
s

Φqi/s

(
ResHDqi/s

V, tfs/p
)

where s runs over the primes of L above p and qi lies above s.

Proof We will show that the left hand side and the right hand side have the
same roots, with the same multiplicities. Note that the roots are fq/p-th roots
of unity. Let ζ be such a root and take

ψ : D → D/I → C∗

with ψ(Frob) = ζ.

Then by remark 4.28:

multiplicity of t− ζ in LHS = 〈ψ,ResD IndGH V 〉D.

Note that for x ∈ G the character of (Wx, ρ
x) (remember: first conjugating by

x) is χxρ (also first conjugate by x before applying χρ). Let X be a system of
representatives of H\G/D. Then by Mackey’s formula:

〈ψ,ResD IndGH V 〉D =
∑
x∈X
〈ψ, IndDx−1Hx∩D Resx

−1Hx
x−1Hx∩D Vx〉D.

Since ψ is one dimensional, χψ = ψ. By lemma 3.52, we have

∑
x∈X
〈ψ, IndDx−1Hx∩D Resx

−1Hx
x−1Hx∩D Vx〉D =

∑
x∈X
〈ψ, IndDx−1Hx∩D Resx

−1Hx
x−1Hx∩D ρ

x〉D.

(4.2)

The next step is rather involved. Let g = #G and h = #x−1Hx∩D. Note that
h is also equal to #H ∩ x−1Dx. We have by definition of the inner product, of
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Ind and of Res:∑
x∈X
〈ψ, IndDx−1Hx∩D Resx

−1Hx
x−1Hx∩D ρ

x〉D

=
∑
d∈D

ψ(d)
1

h

∑
s∈D

s−1ds∈x−1Hx∩D

χρx(s−1ds)∗

=
∑
d∈D

ψ(d)
1

h

∑
s∈x−1Dx

(xsx−1)−1d(xsx−1)
∈

x−1Hx∩D

χρx((xsx−1)−1d(xsx−1))∗

=
∑
d∈D

ψ(d)
1

h

∑
s∈x−1Dx
s−1x−1dxs

∈
H∩x−1Dx

χρx((xsx−1)−1d(xsx−1))∗

=
∑
d∈D

ψ(d)
1

h

∑
s∈x−1Dx
s−1x−1dxs

∈
H∩x−1Dx

χρ((s
−1x−1dxs))∗

=
∑

d∈x−1Dx

ψ(xdx−1)
1

h

∑
s∈x−1Dx

s−1ds∈H∩x−1Dx

χρ(s
−1ds).

The bijection from corollary 4.23 gives a bijection between primes s of L over p
and double cosets HgD, mapping a coset represented by x to x(q). Also note
that x−1Dx = x−1Dq/px = Dx−1(q)/p. Hence H ∩ x−1Dx ∩ H = Dx−1(q)/s

where s is the prime of L over which x−1(q) is lying. Denote x−1(q) = qi. We
see that

∑
d∈x−1Dx

ψ(xdx−1)
1

h

∑
s∈x−1Dx

s−1ds∈H∩x−1Dx

χρ(s
−1ds)

= 〈ψx
−1

, Ind
Dqi/p

Dqi/s
ResHDqi/s

χρ〉Dqi/p
.

Using this in eq. (4.2) we see that (in the second sum s is the prime of L over p
corresponding to the coset represented by x−1 (i.e. Hx−1D), and qi = x−1q):

∑
x∈X
〈ψ, IndDx−1Hx∩D Resx

−1Hx
x−1Hx∩D ρ

x〉D

=
∑
s|p

s prime of L

〈ψx
−1

, Ind
Dqi/p

Dqi/s
ResHDqi/s

χρ〉Dqi/p
.
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By Frobenius reciprocity:∑
s|p

s prime of L

〈ψx
−1

, Ind
Dqi/p

Dqi/s
ResHDqi/s

χρ〉Dqi/p

=
∑
s|p

s prime of L

〈Res
Dqi/p

Dqi/s
ψx
−1

,ResHDqi/s
χρ〉Dqi/s

We have Frob
fs/p
q/p = Frobq/s. Hence ψ(Frobq/s) = ζfs/p , ψ(Frobqi/s) = ζfs/p .

Hence by applying 4.28 to F/L we see that∑
s|p

s prime of L

〈Res
Dqi/p

Dqi/s
ψx
−1

,ResHDqi/s
χρ〉Dqi/s

=
∑
s|p

s prime of L

mult. of (t− ζfs/p) in Φqi/s(ResHDqi/s
V, t)

=
∑
s|p

s prime of L

mult. of (t− ζ) in Φqi/s(ResHDqi/s
V, tfs/p). �

Lemma 4.30 Let F/K be a Galois extension of number fields,

G = Gal(F/K),

N /G, q above s above p primes of F resp. FN resp. K. We have Gal(FN/K) ∼=
G/N . Let π : G→ G/N . Then:

(i) Ds/p = Dq/pN/N ,

(ii) Is/p = Iq/pN/N ,

(iii) and if Frobp ∈ Dq/p acts as the Frobenius automorphism on OF /q then
π(Frobp) ∈ Ds/p is a Frobenius element for s/p.

Proof (i) Dq/p and N both preserve s, hence Ds/p ⊃ Dq/pN . But also

#Ds/q = es/pfs/p

=
eq/pfq/p

eq/sfq/s

=
#Dq/p

#Dq/s

=
#Dq/p

#Dq/p ∩N

=
#Dq/pN

#N
.
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(ii) Smiliar with e instead of ef .

(iii) OFN /s is a subfield of OF /q and both fields are over OK/p. The Frobenius
raises elements to the Np-th power, and is characterized by this. �

Proposition 4.31
Let F/K be a Galois extension of number fields, ρ a Gal(F/K)-representation.

(i) If ρ′ is another Gal(F/K)-representation, then

Lc(ρ⊕ ρ′, s) = Lc(ρ, s)Lc(ρ
′, s)

(ii) If N /Gal(F/K) lies in ker ρ, or, equivalently, if ρ factors as ρ′′ ◦ π in

Gal(F/K)
π−→ Gal(F/K)/N ∼= Gal(FN/K)

ρ′′−→ AutC(Cn)

then
Lc(F/K, ρ, s) = Lc(F

N/K, ρ′′, s).

(iii) (Artin Formalism) If ρ = Ind
Gal(F/K)
H ρ′′′ for a representation ρ′′′ of H <

Gal(F/K) then

Lc(F/K, ρ, s) = Lc(F/F
H , ρ′′′, s).

(even though c is not a cycle of FH but of K we make sense of this by
simply summing over those ideals of FH that are relatively prime to c (this
still makes sense)).

Proof It suffices to check each statement prime-by-prime for the local polyno-
mials.

(i) We have

Pp(ρ⊕ ρ′, T ) = det(1− Frobp T |(ρ⊕ ρ′)Ip)

= det(1− Frobp T |ρIp ⊕ ρ′Ip)

= det(1− Frobp T |ρIp) det(1− Frobp T |ρ′Ip)

= Pp(ρ, T )Pp(ρ′, T ).

(ii) Apply lemma 4.30:

Pp(ρ, T ) = det(1− Frobp T |ρIq/p)

= det(1− ρ(Frobq/p)T |ρIq/p)

= det(1− ρ(Frobq/p)T |ρIq/pN/N )

= det(1− ρ′′(π(Frobq/p))T |ρIq/pN/N )

= det(1− ρ′′(Frobs/p)T |ρIs/p)

= L(FN/K, ρ′′, s).
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(iii) This follows from Artin’s Induction Theorem and the fact that the local
polynomials are essentially the characteristic polynomials of Frobeniusses.
Note that on the one hand we have (p denotes primes of K, s denotes
primes of FH , q denotes primes of F ):

Lc(F/K, ρ, s) =
∏
p-c

1

Pp(ρ, s)
.

On the other hand we have

Lc(F/F
H , ρ′′′, s) =

∏
s-c

1

Ps(ρ′′′, s)

=
∏
p-c

∏
s|p

1

det(1− Frobs/p Ns−s

=
∏
p-c

∏
s|p

1

det(1− Frobs/p Np−fs/ps
.

Hence we are done if we can show that

Pp(ρ, T ) =
∏
s|p

Ps(ρ
′′′, T fs/p).

The local polynomial Pp corresponds to the characteristic function Φq/p

by reversing the coefficients: the highest coefficient becomes the lowest
and vice versa. If f = a0 +a1T + · · ·+anT

n then call frev = an+an−1T +
· · · + a0T

n. We then have Pp,rev = Φq/p. Note that rev commutes with
multiplication of polynomials: if f =

∑n
i=0 aiX

i and g =
∑m
j=0 bjX

j then
both (fg)rev and frevgrev are equal to

m+n∑
k=0

∑
u+v=
m+n−k

aubvX
k.

Applying rev we see that what we want is equivalent to

Φq/p(ResDq/p
ρ, T ) =

∏
s

Φqi/s(ResDqi/s
ρ′′′, T fs/q),

which is proposition 4.29. �

Theorem 4.32 Let F/K be a Galois extension of number fields and ρ a 1-
dimensional Gal(F/K)-representation. Then

(i) L(F/K, ρ, s) has an analytic continuation to Re(s) > 1−1/[K : Q], except
for a simple pole at s = 1 if ρ = 1.

(ii) If ρ 6= 1 then L(ρ, 1) 6= 0.
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Proof Note that ker ρ /Gal(F/K). Apply proposition 4.31 (ii) to see that

Lc(F/K, ρ, s) = Lc(F
ker ρ/K, ρ′′, s)

where ρ′′ = ρ◦π as in proposition 4.31 (ii). In particular, ρ′′ is one-dimensional.
Hence we can assume without loss of generality that F = F ker ρ. But note that

F = F ker ρ ⇐⇒ ker ρ = {1} /Gal(F/K) (Galois correspondence)

⇐⇒ ρ : Gal(F/K)→ C∗ is an injective group homomorphism

=⇒ Gal(F/K) is abelian

(i) Is exactly the statement of theorem 4.38, since ρ is a one-dimensional
representation, that is, a character.

(ii) This follows from proposition 4.31: first apply (iii) and then (i). If G is
a group denote by regG its regular representation. Then {1} < G, Ce1 is
invariant under {1} and

C#G ∼=
⊕

g∈G/{1}

gCe1.

Hence IndG{1} 1 = regG.

By theorem 3.39 the irreducible representations of G are all one-dimen-
sional (that is, characters). By corollary 3.30 we have

regG =
∑

χ irred.
char. of G

χ.

Hence we get

ζF (s) = L(F/F,1, s)

= L(F/F {Id},1, s)

= L(F/K, IndG{Id} 1, s)

= L(F/K, regG, s)

= L(F/K,
∑

χ irred.
char. of G

χ, s)

=
∏

χ irred.
char. of G

L(F/K,χ, s) (proposition 4.31 (i))

= ζK(s)
∏

χ 6=1 irred.
char. of G

L(F/K,χ, s).

As both ζ-functions ahve a simple pole at 1 and each L(F/K,χ, s) is
analytic at s = 1, it follows that no L(F/K,χ, s) can have a zero at s = 1,
for else it would cancel the pole of ζK(s) there. �
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Proposition 4.33 Let F/K be a Galois extension of number fields and ρ a
Gal(F/K)-representation.

(i) For some n ≥ 1, L(ρ⊕n, s) has a meromorphic continuation to 1− 1/[K :
Q]. If 〈ρ,1〉 = 0 it is analytic and non-zero at s = 1.

(ii) If ρ 6= 1 is irreducible, then L(ρ, s) has an analytic continuation to s = 1,
where the function does not vanish.

Proof (i) Write

ρ⊕n ⊕
⊕
i

IndGHi
ψi ∼=

⊕
j

IndGH′j ψ
′

where G = Gal(F/K), as in Artin’s Induction Theorem. By proposi-
tion 4.31 we have on Re(s) > 1

L(ρ, s)n =

∏
j L(F/K, Indψ′j , s)∏
i L(F/K, Indψi, s)

=

∏
j L(F/FH

′
j , ψ′j , s)∏

i L(F/FHi , ψi, s)
.

By theorem 4.32 the right hand side has a meromorphic continuation to
Re(s) > 1 − 1/[K : Q]. If 〈ρ,1〉 = 0 the ψi, ψ

′
j can be taken to be non-

trivial, in which case the right hand side is also analytic and non-zero at
s = 1.

(ii) L(ρ, s)n is analytic and non-zero at s = 1 for some n. On Re(s) > 1,
L(ρ, s) is an analytic branch of the n-th root of L(ρ, s)n, and hence as an
analytic continuation to s = 1. �

4.3 The Artin Reciprocity Law

Later we will see in theorem 4.38 that L-series of characters of Galois groups
(also defined in theorem 4.38) admit an analytic continuation. We showed this
for L-series of characters of the ideal class group in theorem 4.11. We can use
this last result to prove the first, using the relation between these two groups
provided by Artin’s Reciprocity Law from Class Field Theory. This law will be
stated here, but not proven.

Definition 4.34 Let K/k be Galois, c a cycle of k divisible by all ramified
primes of k. Set

N (c) = {NK
k (a)|a ∈ IK , (a, c) = 1}.

Note that N (c) ⊂ I(c) as none of the prime ideals of a lie above any of the ideals
in c, hence (NK

k (a), c) = 1, hence NK
k (a) ∈ I(c).

Definition 4.35 Let K/k be an abelian extension of number fields. Let c be a
cycle of k divisible by the ramifying primes of k. The group homomorphism

ω : I(c)→ Gal(K/k)

p 7→ Frobp
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defined on prime ideals and extended multiplicatively is called the reciprocity
law map, or the Artin map. It is well defined since all p ∈ I(c) are unramified
and since Gal(K/k) is abelian.

Theorem 4.36 For every cycle c divisible by the ramifying primes, the reci-
procity map

ω : I(c)→ Gal(K/k)

is surjective.

Proof This requires the global norm index inequality, which will not be treated
in this thesis. We refer to Lang [9, XV.§1]. �

Theorem 4.37 (Artin Reciprocity Law) There exists a cycle c such that
Pc is contained in the kernel of the reciprocity map. Such a cycle will be called
admissable. For such a cycle, the kernel of the reciprocity map is precisely
PcN (c). Hence we get an isomorphism

ω : I(c)/PcN (c)→ Gal(K/k)

from the Artin map. This is the Artin reciprocity law.

Proof This is the fundamental theorem of class field theory, and we will not
prove it here. We refer to Lang [9, X.§3]. �

Theorem 4.38 Let F/K be a Galois extension of number fields with

Gal(F/K)

abelian, and ψ : Gal(F/K)→ C∗ a homomorphism (hence a character). Then

L∗(ψ, s) :=
∏

p prime of K
unram. in K

1

1− ψ(Frobp)Np−s

has an analytic continuation to Re(s) > 1− 1/[K : Q], except for a simple pole
at s = 1 when ψ = 1.

Proof Let c be an admissable cycle of K/k. Then

I(c)/Pc → I(c)/PcN (c)
∼−→ Gal(F/K)

Frobp−−−−→ C∗

is a character χ on I(c)/Pc, and composed with the map I(c)→ I(c)/Pc it gives
p 7→ ψ(Frobp). Hence we can apply theorem 4.11 to deduce that Lc(χ, s) has
an analytic continuation to Re(s) > 1 − 1/[K : Q] with only a simple pole at
s = 1 if χ = 1, that is if ψ = 1. Since L∗(ψ, s) and Lc(χ, s) only differ in a finite
number of factors, this does not alter analytic aspects. �



Chapter 5

Chebotarev’s density
theorem

We now give a proof of Chebotarev’s Density Theorem.

Theorem 5.1 The equivalence ∼ denoting the property of differing by a func-
tion analytic at s = 1, we have:

log
1

s− 1
∼
∑
p

1

Nps
.

Proof See Lang [9, theorem VIII.§3.6]. �

Definition 5.2 Let M be a set primes of a number field K. The Dirichlet
density of M is the limit

lim
s→1+

∑
p∈M

1
Nps

log 1
s−1

if it exists. The s → 1+ means that the limit is taken for real s > 1. The
natural density of M is the limit

lim
n→∞

#{p ∈M : Np ≤ n}
#{p prime of K : Np ≤ n}

if it exists.

Proposition 5.3 If a set primes M of a number field K has a natural density
d then M also has a Dirichlet density, and the Dirichlet density of M is then
also equal to d.

Proof Adapted from Descombes [2, chapter 8] where the caseK = Q is proven,
we do the general case. For an alternative proof see Goldstein [5, theorem 14-
1-2].
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Let Π ⊂ IK denote the subset of prime ideals of K.
Let ϑ and η be the indicator functions of M resp. Π. For n ∈ N define

Θ(n) =
∑
a∈IK
Na≤n

ϑ(a),

H(n) =
∑
a∈IK
Na≤n

η(a). �

Then
Θ(n)

H(n)

n→∞−−−−→ d.

For real σ, ζ(σ) =
∑

a∈IK Na−σ majorizes∑
a∈IK

ϑ(a)
1

Naσ
and

∑
a∈IK

η(a)
1

Naσ
,

hence these two sums are convergent for σ > 1. Denote their sums by S(σ)
resp. T (σ).

We have

S(σ) =
∑
a

ϑ(a)Na−σ =
∑
p∈Π

Np−σ

T (σ) =
∑
a

η(a)Na−σ =
∑
p∈Π

Np−σ.

The limit we are interested in is equal to the limit of S(σ)/T (σ) as σ → 1+

by theorem 5.1. Note that the number of ideals in Π with norm precisely k is
Θ(k)−Θ(k − 1). Hence

∑
aNa≤n

ϑ(a)Na−σ = Θ(1) +

n∑
k=2

[Θ(k)−Θ(k − 1)] k−σ

Collecting the terms with a factor Θ(k) we get

=

n−1∑
k=1

Θ(k)
[
k−σ − (k + 1)−σ

]
+ Θ(n)n−σ

which converges to
∑∞
n=1 Θ(n) [n−σ − (n+ 1)−σ] for Re(σ) > 1. Hence for real

σ > 1

S(σ) =

∞∑
n=1

Θ(n)
[
n−σ − (n+ 1)−σ

]
and likewise

T (σ) =

∞∑
n=1

H(n)
[
n−σ − (n+ 1)−σ

]
.
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For a given ε > 0, let n0 be such that for all n > n0∣∣∣∣Θ(n)

H(n)
− d
∣∣∣∣ < ε.

We then get for σ > 1 that∣∣∣∣S(σ)

T (σ)
− d
∣∣∣∣ =

1

T (σ)

∣∣∣∣S(σ)− dT (σ)

T (σ)

∣∣∣∣
=

1

T (σ)

∣∣∣∣∣
∞∑
n=1

[Θ(n)− dH(n)]
[
n−σ − (n+ 1)−σ

]∣∣∣∣∣
≤ 1

T (σ)

(∣∣∣∣∣
n0∑
n=1

[Θ(n)− dH(n)]
[
n−σ − (n+ 1)−σ

]∣∣∣∣∣
+

∣∣∣∣∣
∞∑

n=n0+1

[Θ(n)− dH(n)]
[
n−σ − (n+ 1)−σ

]∣∣∣∣∣
)

≤ 1

T (σ)

(
n0∑
n=1

|Θ(n)− dH(n)|
[
n−σ − (n+ 1)−σ

]
+

∞∑
n=n0+1

|Θ(n)− dH(n)|
[
n−σ − (n+ 1)−σ

])

≤ 1

T (σ)

(
n0∑
n=1

|Θ(n)− dH(n)|
[
n−σ − (n+ 1)−σ

]
+ε

∞∑
n=n0+1

H(n)
[
n−σ − (n+ 1)−σ

])

=
1

T (σ)

n0∑
n=1

|Θ(n)− dH(n)|
[
n−σ − (n+ 1)−σ

]
+

1

T (σ)
ε

∞∑
n=n0+1

H(n)
[
n−σ − (n+ 1)−σ

]
The first term goes to zero as σ → 1, since it is a finite sum for every σ divided
by T (σ), which behaves in the limit to 1 as log((σ − 1)−1) by theorem 5.1.
Hence σ close enough to one the first term is smaller than ε. The second term
is bounded by ε, since the sum consists of positive terms all of which occur in
the series of positive terms T (σ). Hence we get

≤ 2ε.

Hence M has Dirichlet density equal to d.

Theorem 5.4 (Chebotarev’s Density Theorem) Let F/K be a finite Ga-
lois extension of number fields. Let C be a conjugacy class of Gal(F/K). Then

SC = {p unramified in F/K such that Frobp ∈ C}
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has Dirichlet density

#C
# Gal(F/K)

.

Proof We wish to compute the Dirichlet density of SC , which is by definition

lim
s→1+

∑
p∈SC Np−s

log(1/(s− 1))

Set
f(s) =

∑
p∈SC

Np−s.

Set CC : Gal(F/K)→ C as

CC(g) =

{
1 if g ∈ C,
0 otherwise.

Then CC is a class function, and

f(s) =
∑
p∈SC

Np−s

=
∑

p unramified

CC(Frobp)Np−s

3.36
=

∑
p unramified

ρ

〈χρ, CC〉χρ(Frobp)Np−s

Define

fρ(s) =
∑

p unramified

χρ(Frobp)Np−s.

We then see that f(s) is equal to

=
∑
ρ

〈χρ, CC〉fρ(s)

=
#C

# Gal(F/K)
f1(s) +

∑
ρ 6=1

〈χρ, CC〉fρ(s).

We will now show that the second term is bounded. The factor in the first term
is the density that we wanted. We see that the limit we are interested in is equal
to

lim
s→1

∑
p∈SC Np−s

log 1/(s− 1)
= lim
s→1

(
#C

# Gal(F/K)f1(s) +
∑
ρ6=1〈χρ, CC〉fρ(s)

)
log(1/(s− 1))

(5.1)
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We will compute the limit on the right hand side by showing that the asymptotic
behaviour of the fρ(s) is the same as Lc(ρ, s) for a suitable cycle c. Let ρ be
a representation of Gal(F/K). Let c be the product of all primes of K which
ramify in F . Then by theorem 4.38 (here Lc = L∗) we know that

Lc(ρ, s) 6= 0,∞ at s = 1 if ρ 6= 1 irreducible,

Lc(1, s) has a simple pole at s = 1.

Since p is unramified in F/K, we have Ip = {e} , hence ρIp = ρ. Let the
eigenvalues of Frobp acting on the representation space via ρ be λ1, . . . , λd (with
multiplicity). Recall that Pp is the local polynomial (see definition 4.16). Then

log
1

Pp(ρ,Np−s)
= log

1∏
i 1− λiNp−s

=
∑
i

log
1

1− λiNp−s

=

(∑
i

λi

)
Np−s +

(∑
i λ

2
i

)
2

Np−2s + · · ·

=
∑
n≥1

χρ(Frobnp )

n
Np−ns

Consider

∑
p unramified

∑
n≥1

χρ(Frobnp )

n
Np−ns.

As a Dirichlet series, its coefficients are sums of the various χρ(Frobnp )/n. These
are bounded, since χ is a character. Moreover, as a Dirichlet series

∑
an/n

s,
every n is equal to some pµ, since Npn = pfn where f is the residue degree of p.
There are at most [K : Q] primes p over p. Hence at most [K : Q] contribute to
each coefficient. We see that the coefficients are bounded, and hence that this
Dirichlet series defines an analytic branch of log(Lc(ρ, s)) on Re(s) > 1. Denote
this analytic branch also by log(Lc(ρ, s)).

Note that

fρ(s) = log(Lc(ρ, s))−
∑

p unramified

∑
n≥2

χ(Frobnp )

n
Np−ns

We wish to show that the asymptotic behaviour of fρ(s) and log(Lc(ρ, s)) for
s→ 1 is the same, and we do this by showing that the second term in the above
expression for fρ(s) is bounded. Note that for a prime p ∈ Z there are at most
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[K : Q] primes p of K over p. Hence for Re(s) > 1

| log(Lc(ρ, s))− fρ(s)| =

∣∣∣∣∣∣
∑

p unramified

∑
n≥2

χ(Frobnp )

n
Np−ns

∣∣∣∣∣∣
≤

∑
p unramified

∑
n≥2

∣∣∣∣χ(Frobnp )

n
Np−ns

∣∣∣∣
≤ dim ρ ·

∑
p unramified

∑
n≥2

∣∣∣∣ 1nNp−ns
∣∣∣∣

≤ dim ρ ·
∑

p unramified

∑
n≥2

∣∣∣∣ 1

Npns

∣∣∣∣
≤ dim ρ · [K : Q] ·

∑
p∈Z

prime

∑
n≥2

1

|ps|n

= dim ρ · [K : Q] ·
∑
p∈Z

prime

1

|ps|2
1

1− |1/ps|

= dim ρ · [K : Q] ·
∑
p∈Z

prime

1

|ps|(|ps| − 1)

≤ dim ρ · [K : Q] ·
∑
p∈Z

prime

1

|p|Re(s)(|p|Re(s) − 1)

≤ dim ρ · [K : Q] ·
∑
p∈Z

prime

1

|p|(|p| − 1)
(as Re(s) > 1)

≤ dim ρ · [K : Q] ·
∑
p∈Z

prime

1

(|p| − 1)2
(as Re(s) > 1)

≤ dim ρ · [K : Q] ·
∞∑
k=1

1

k2

<∞.

So

fρ(s) =
∑

p unramified

χρ(Frobp)Np−s

is bounded as s→ 1 on Re(s) > 1 if ρ 6= 1 irreducible and

f1(s) =
∑

p unramified

Np−s ∼ log
1

s− 1
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as s→ 1.
Using these two asymptotic results in eq. (5.1) gives the desired result. �

Remark 5.5 Once can show that the set of primes has in fact a natural density.
Then proposition 5.3 and theorem 5.4 combined show that this natural density
is then equal to #C/#G. The interested reader is referred to Serre [10, I-26.A.3].
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Part II

Preliminaries on elliptic
curves
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Introduction

In this chapter we will state what we will need from the theory of elliptic curves.
For an extensive treatment of elliptic curves we refer to Silverman and Tate [15]
and Silverman [14]. Most of the references are to the second book. Basic
terminology and concepts from algebraic geometry as covered in chapter I and
II from Silverman [14] are also freely used.

The field over which we work is denoted by K (and typically is Q, a number
field, a local field Kp, or a finite field).

Consider the general cubic equation in two variables x and y:

E : ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j = 0. (5.2)

Such an equation defines a projective curve. If the curve is smooth the genus
turns out to be one. What is more, every curve of genus one is isomorphic to a
cubic curve as above (Silverman [14, proposition III.3.1]).

Definition 5.6 A pair (E,O) with E a smooth projective curve of genus one
over a field K and O ∈ E(K) is called an elliptic curve. To express the fact
that E is defined over K we also write E/K. Equivalently, an elliptic curve is
the zero locus of a cubic equation as in eq. (5.2) with a so called base point O
which is a solution to eq. (5.2). Often we suppress the O and just write E for
an elliptic curve.

There is a geometric way to define a group law on any elliptic curve. Using the
resulting group structure one can learn a lot about an elliptic curve, for example
formulas for the number of points on an elliptic curve.
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Chapter 6

Elliptic curves

6.1 Weierstrass equations

As shown in Silverman and Tate [15, I.3], by choosing suitable axes in projective
space, eq. (5.2) can be transformed into the following form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

such that the base point O is the projective point [0, 1, 0] at infinity. This is
called a Weierstrass equation for E. If char(K) 6= 2 then we can, as in
Silverman [14, III.1], use the substitution

y 7→ 1

2
(y − a1x− a3)

and completing the square then gives an equation of the form

E : y2 = 4x3 + b2x
3 + 2b4x+ b6,

where

b2 = a4
1 + 4a4, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6.

This is also called a Weierstrass equation for E. We define the quantities

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

c4 = b22 − 24b4,

c6 = −b32 + 36b2b4 − 216b6,

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

If char(K) 6= 2, 3 then the substitution

(x, y) 7→ (
x− 3b2

36
,
y

108
)

81
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eliminates the x2 term, yielding the simpler equation

E : y2 = x3 − 27c4x− 54c6.

Definition 6.1 The quantity ∆ is called the discriminant of the Weierstrass
equation.

Proposition 6.2 The curve given by a Weierstrass equation is nonsingular if
and only if ∆ 6= 0.

Proof See Silverman [14, proposition III.1.4.(a).(i)]. �

6.2 Group law

Definition 6.3 Let E be an elliptic curve. Let P,Q ∈ E, and let L be the
line through these two points (the line through two points on E that coincide
is taken to be the tangent at E at that one point). Let R′ be the third point of
intersection of L with E. Let L′ be the line through R′ and O and let R be the
third point of intersection of L′ with E. Then the operation + on E is defined
by P +Q = R, and this notation is justified by the following proposition.

Proposition 6.4 The operation + turns E into an abelian group.

Proof See Silverman [14, proposition III.2.2]. �

Remark 6.5 When a curve is given by a Weierstrass equation we will always
take for O the point at infinity [0, 1, 0] on E.

Proposition 6.6 If E is the elliptic curve defined by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

over a field K, then for every algebraic extension L/K the set

E(K) = {(x, y) ∈ L2 : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ {O}

is a subgroup of E = E(K), where K denotes the algebraic closure of K.

Proof See Silverman [14, proposition III.2.2.(f)]. �

Notation 6.7 For m ∈ Z we write

[m]P =



P + · · ·+ P︸ ︷︷ ︸
m times

if m > 0,

−P − · · · − P︸ ︷︷ ︸
|m| times

if m < 0,

[0]P = O if m = 0.

Remark 6.8 When E is given by a Weierstrass equation there are explicit
formulas for the coordinates of P +Q in terms of the coordinates of P and Q,
see Silverman [14, section III.2].
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6.3 Points of finite order

When A is an abelian group and m an integer, we denote by A[m] the m-torsion
of A, that is, the subgroup of elements a of A such that ma = 0. Equivalently,
A[m] is the kernel of the multiplication by m map A → A : a 7→ ma. In the
case of elliptic curves, there is a structure theorem for the torsion group E[m].
The proof of this structure theorem uses, among other things, the notions of
differentials, separable morphisms, isogenies, dual isogenies and the degree of a
map. We refer to Silverman [14] for a coverage of these notions, in particular
sections III.3 to III.6. The conclusion is

Corollary 6.9 Let E be an elliptic curve and let m ∈ Z with m 6= 0.

(a) If m 6= 0 in K, i.e. if either char(K) 6= 0 or char(K) > 0 and

char(K) - m,

then
E[m] ∼= Z/mZ× Z/mZ.

(b) If char(K) = p > 0, then one of the following is true:

(i) E[pe] ∼= {O} for all e = 1, 2, 3, . . .,

(ii) E[pe] ∼= Z/peZ for all e = 1, 2, 3, . . ..

Given two points P and Q on an elliptic curve E there is an algebraic
expression for the coordinates of P + Q. In particular, this is true for P = Q.
Hence the coordinates of P +P are expressible algebraically in terms of those of
P . One can iterate this and express the coordinates of P +(P +P ) algebraically
in terms of those of P and P +P , but the coordinates of P +P were expressible
algebraically in terms of the coordinates of P . Continuing in this fashion we see
that the coordinates of [m]P for m ∈ Z are expressible algebraically in terms
of the coordinates of P . The exact expression is derived in exercise III.3.7 of
Silverman [14]. This shows that if we have an elliptic curve E over a field K and
an integer m and we add to K all the x-coordinates of the m-torsion points on
E then this gives a finite algebraic extension of K. Because of the Weierstrass
equation, adding all the y-coordinates, which amounts to adding some square
roots, again gives a finite algebraic extension. We denote this extension by
K(E[m])/K.

6.4 Reducing elliptic curves

We treat parts of Silverman [14, section VII.1 and section VII.2]. We use the
following notation, as in Silverman [14, chapter VII]:

• K is a local field, complete with respect to a discrete valuation v.

• R = {x ∈ K : v(x) ≥ 0}, the ring of integers of K.
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• R∗ = {x ∈ K : v(x) = 0}, the unit group of R.

• m = {x ∈ K : v(x) > 0}, the maximal ideal of R.

• π a uniformizer for R, i.e., m = πR.

• k = R/m, the residue field of R.

Assume that v is normalized so that v(π) = 1.
Let E/K be an elliptic curve satisfying a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

The substitution (x, y) 7→ (u−2x, u−3y) leads to a new Weierstrass equation
in which ai is replaced by uiai, so by choosing u divisible by a high enough
power of π we get an equation with all coefficients ai lying in R. Then the
discriminant of this equation satisfies v(∆) > 0. The valuation, being discrete,
attains a minimal value over all such equations with coefficients in R.

Definition 6.10 Let E/K be an elliptic curve. A Weierstrass equation for E
is called a minimal (Weierstrass) equation for E at v if v(∆) is minimized
subject to the condition that the ai are in R. This minimal value of v(∆) is
called the valuation of the minimal discriminant of E at v.

Proposition 6.11 (a) Every elliptic curve E/K has a minimal Weierstrass
equation.

(b) A minimal Weierstrass equation is unique up to a change of coordinates

x = u2x′ + r, y = x3y′ + u2sx′ + t

with u ∈ R∗ and r, s, t ∈ R.

Proof See Silverman [14, VII.2.1.3]. �

Denote the map R → R/πR = k by a tilde: t 7→ t̃. After choosing a minimal
Weierstrass equation for E/K, we can reduce its coefficients modulo π to obtain
a possibly singular elliptic curve over k, namely

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6.

The curve Ẽ/k is called the reduction of E modulo π.
Let P = [x0, y0, z0] ∈ E(K). By multiplying the coordinates with a suitable

power of π, we can assume that all the coefficients of P are in R and at least
one is in R∗. Then the reduced point

P̃ = [x̃0, ỹ0, z̃0]

is in Ẽ(k). This defines the reduction map

E(K)→ Ẽ(k), P 7→ P̃ .
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Note that if ∆ is the discriminant of the minimal Weierstrass equation for
E, then ∆̃ = 0 if and only if v(∆) > 0. In case Ẽ is non-singular we say that E
has good reduction at v.

The case of so called bad reduction can also be of interest. For more on
this we refer to Silverman [14, VII.5].

Suppose E is an elliptic curve over a number field K, and v is a prime of
K. We then say that E has good reduction at v if it has good reduction at
v when considered as an elliptic curve over the local field Kv.

6.5 Neron-Ogg-Shafarevich criterion

We have the following criterion by Néron, Ogg and Shafarevich regarding the
ramification of K(E[m])/K in the case K is a local field.

Theorem 6.12 (Néron-Ogg-Shafarevich)
Let E/K be an elliptic curve with K a local field, v its valuation, k its residue

field, m an integer prime to char(k). Then K(E[m])/K is unramified if and
only if E has good reduction at v.

Proof See Silverman [14, exercise VII.7.9.(b)] �

Corollary 6.13 Let E/Q be an elliptic curve, with discriminant ∆E. Let m be
an integer, p a prime of Q with p-adic valuation vp such that vp(m) = vp(∆E) =
0. Then Q(E[m])/Q is unramified at p.

Proof Localize at p and apply theorem 6.12. �

6.6 The Tate module

Definition 6.14 Let E/K be an elliptic curve, let ` ∈ Z be a prime such that
` 6= char(K). The (`-adic) Tate module of E is the profinite group

T`(E) = lim←−
n

E[`n],

the inverse limit being taken with respect to the natural maps

E[`n+1]
[`]−→ E[`n].

Since each E[`n] is a Z/`nZ-module, the Tate module has a natural structure
as a Z`-module. Furthermore, since the multiplication-by-` maps are surjective,
every basis {Pn, Qn} of E[`n] can be lifted to a basis {Pn+1, Qn+1} of E[`n+1],
where the fact that it’s lifted means that [l]Pn+1 = Pn and [l]Qn+1 = Qn. (Use
induction to see this.) Using this, we see that as topological groups

T`(E) ∼= lim←−
n

(Z/`nZ× Z/`nZ)

∼= lim←−
n

Z/`nZ× lim←−
n

Z/`nZ

∼= Z` × Z`.
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Hence we have proved:

Proposition 6.15 As a Z`-module, the Tate-module has the following struc-
ture, if ` 6= char(K),

T`(E) ∼= Z` × Z`.

The action of GK/K on each E[`n] commutes with the multiplication-by-` map

used to form the inverse limit, so GK/K also acts on T`(E). Since the profinite

groupGK/K acts continuously on each finite (discrete) group E[`n], the resulting

action on T`(E) is also continuous.

Definition 6.16 The `-adic representation (of GK/K) associated to E is
the homomorphism

ρ` : GK/K → Aut(T`(E))

induced by the action of GK/K on E[`n].



Chapter 7

Elliptic curves over finite
fields

7.1 The action of the Frobenius map on an el-
liptic curve

Definition 7.1 Let V ⊂ Pn be a variety defined over a finite field Fq. The
q-th power map

ϕq = [Xq
0 : . . . : Xq

n]

is a morphism ϕ : V → V called the Frobenius morphism.

7.2 The zeta function of an elliptic curve

Definition 7.2 Let E/Fq be an elliptic curve. The zeta function of E/Fq is
defined by the power series

Z(E/Fq;T ) = exp

( ∞∑
n=1

(#E(Fq))
Tn

n

)
.

Note that if we know the zeta function of an elliptic curve we can determine all
the #E(Fq) by differentiating n times and plugging in T = 0. We have the Weil
conjectures for these zeta functions of elliptic curves (Silverman [14, V.2.4]):

Theorem 7.3 (Weil Conjectures for elliptic curves) Let E/Fq be an el-
liptic curve. Then there is an a ∈ Z such that

Z(E/Fq;T ) =
1− aT + qT 2

(1− T )(1− qT )
.

87
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Furthermore,

Z(E/Fq; 1/qT ) = Z(E/Fq;T ),

and

1− aT + qT 2 = (1− αT )(1− βT ) with |α| = |β| = √q.

Remark 7.4 Note that the above rational form for the zeta function only de-
pends on a. Differentiating once and plugging in T = 0 shows that #E(Fq) =
−a+1+q, hence the zeta function is completely determined by #E(Fq). Hence
#E(Fq) determines all E(Fqn) for all n ∈ N.

Does the converse also hold? That is, does #E(Fqn) for some n ≥ 2 also
always determine #E(Fq)? The answer is no, as the following counterexample
shows.

Example 7.5 Consider the elliptic curves over F3 given by

E1 : y2 = x3 + 2x+ 1

E2 : y2 = x3 + 2x+ 2

Then #E1(F9) = #E2(F9) = 7, but #E1(F3) = 1 and #E2(F3) = 7.

7.3 The number of points as traces

We need the following point counting formula for elliptic curves.

Remark 7.6 (Silverman [14], Remark V.2.6)
Let E/Fq be an elliptic curve. The quantity

a = q + 1−#E(Fq)

is called the trace of Frobenius, because by Silverman and Tate [15, V.2.6]
it is equal to the trace of the q-power Frobenius map considered as a linear
transformation of T`(E). This linear transformation is denoted ϕ`. Thus if ϕ
denotes the q-power Frobenius map, then

a = 1 + q −#E(Fq) = Tr(ϕ`)

To get a better feeling for the formula

Tr(ϕ`) = 1 + q −#E(Fq)

we calculate an explicit example. The computations were done with the help of
SAGE. Consider the curve

E : y2 = x3 + 2x+ 1
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over F5. Represent the field F524 by F5(t) with t satisfying the reducible equa-
tion

t24 + 2t16 + 4t15 + 4t13 + 2t12 + t11

+ 3t10 + 4t8 + 2t7 + 4t6 + 2t4 + 3t3 + 3t2 + t+ 2 = 0.

As an abelian group, E(F524) is isomorphic to Z/2016Z⊕Z/29565795863520Z,
with generators

P = (2t23 + 4t22 + 4t21 + 4t19 + 4t17 + t15 + 4t14 + 4t13 + t12 + 2t11

+ t10 + t9 + 2t7

+ 3t6 + 2t4 + 4t3 + 4t+ 2,

3t23 + 2t22 + 3t21 + 3t20 + 2t19 + 3t18 + 4t17 + 4t16 + 4t15 + 4t14

+ 2t13 + 3t11

+ 3t10 + t8 + t7 + 2t6 + t5 + 2t3 + t2 + 4t+ 2)

Q = (t23 + 4t22 + 3t21 + 3t20 + 2t19 + 4t17 + t16 + t15 + 4t14 + t13

+ 3t12 + 4t9 + t8

+ 3t7 + 3t6 + 4t5 + 4t4 + 2t3 + 4t2 + t+ 3

2t23 + 2t22 + t21 + 3t20 + t19 + 4t18

+ 4t17 + 2t16 + 2t14 + t13 + t12 + 4t11 + 2t10 + 4t9 + 4t7 + t6 + t5 + t4 + t3

+ 4t2 + 2t+ 3)

of order 2016 and 29565795863520 respectively. These orders have prime fac-
torization

2016 = 25 · 32 · 7,
29565795863520 = 25 · 32 · 5 · 7 · 17 · 73 · 229 · 10321,

hence

e1 = [32 · 7]P,

e2 = [32 · 5 · 7 · 17 · 73 · 229 · 10321]Q,

are two distinct elements of order 25 = 32, hence they generate

E[32] = 〈e1, e2〉

as a Z/32Z-module. A calculation shows that applying the Frobenius automor-
phism ϕ : E[32]→ E[32] to these generators yields

ϕ(e1) = 17e1 + 3e2,

ϕ(e2) = 3e1 + 14e2,
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hence ϕ has matrix

Mϕ,32 =

(
17 3
3 14

)

with respect to the basis e1, e2. This matrix has trace 31 (mod 32). According
to our formula, this implies that

#E(F5) = 1 + 5− Tr(ϕ2)

≡ −25 (mod 32)

≡ 7 (mod 32).

But since 0 ≤ #E(F5) ≤ 52 + 1 = 26, we see that in fact #E(F5) = 7. One
easily verifies that E(F5) has indeed this number of points:

E(F5) = {(0 : 1 : 0), (0 : 1 : 1), (0 : 4 : 1), (1 : 2 : 1),

(1 : 3 : 1), (3 : 2 : 1), (3 : 3 : 1)}.

We do it again, but this time by computing a matrix representation of the
action of the Frobenius on E[64] with respect to a basis that lifts the basis
{e1, e2} of E[32]. To this end, we let SAGE compute that considered over F548

the elliptic curve E is isomorphic to

Z/2124864Z⊕ Z/1671972266837078019879428160Z,

as an abelian group, and that

2124864 = 26 · 32 · 7 · 17 · 31 and

1671972266837078019879428160 = 26 · 32 · 5 · 7 · 17 · 31 · 73 · 229 · 5953

· 6673 · 10321 · 22961,

Over F548 we find all the 64-torsion of E. We represent the field F548 by F5(s)
with

s48 + 2 · s47 + 2 · s46 + 2 · s45 + 2 · s44 + 3 · s43 + s42 + 2 · s41+

4 · s40 + 3 · s39 + 2 · s38 + 3 · s37 + 2 · s36 + 4 · s35 + s34 + s33 + s32

+4 · s30 + s29 + 3 · s28 + 3 · s27 + 3 · s26 + s25 + 2 · s22 + 4 · s21+

2 · s19 + 4 · s18 + 2 · s17 + 3 · s15 + 4 · s14 + 3 · s13 + 4 · s12 + 4 · s11+

s10 + 2 · s9 + 2 · s8 + 4 · s7 + 3 · s6 + 2 · s5 + s3 + 3 = 0
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We embed our representation of F524 in our representation of F548 by sending t
to one of the zeroes of the minimal polynomial f tF5

in F5(s), namely

−(s46 + 2 · s45 + 2 · s44 + 3 · s43 + 2 · s42 + 3 · s41 + 2 · s39 + 3 · s38

+4 · s37 + 4 · s36 + 3 · s35 + 3 · s34 + 4 · s33 + s32 + 2 · s29 + 4 · s28+

s27 + 3 · s26 + 2 · s25 + s24 + 4 · s22 + 3 · s20 + s18 + 3 · s16 + 4 · s15

+2 · s14 + 4 · s12 + s11 + s10 + 3 · s9 + s8 + 2 · s7 + s6 + 3 · s5+

3 · s4 + 2 · s3 + 2 · s2 + 4 · s)

This yields a lift of P and Q to E/F548 , and also of e1 and e2 to E/F548 . We will
denote the lifts of e1 and e2 to E/F548 also by e1 and e2 respectively. Generators
of E/F548 of order 2124864 and 1671972266837078019879428160 respectively are
given by

R = (3 · s47 + 3 · s46 + 2 · s45 + 2 · s44 + 2 · s43 + 4 · s40 + 3 · s39 + s38+

3 · s37 + s36 + 4 · s35 + s34 + 3 · s33 + 3 · s31 + 3 · s30 + 4 · s29+

3 · s25 + 4 · s24 + 4 · s23 + 4 · s22 + 4 · s20 + 2 · s19 + 3 · s18 + 2 · s17+

3 · s16 + 3 · s15 + 4 · s13 + 2 · s11 + 3 · s10 + s9 + 3 · s8 + s6 + s5+

4 · s4 + s3 + 4 · s2 + 4 · s+ 4, 3 · s47 + s46 + s44 + 4 · s43 + s41+

s40 + 2 · s39 + 2 · s37 + 2 · s35 + s34 + 2 · s33 + 3 · s32 + s31 + 3 · s30

+ 3 · s29 + 3 · s26 + s25 + 2 · s24 + 3 · s23 + s22 + 2 · s21 + 3 · s20+

2 · s19 + 4 · s18 + 3 · s17 + 3 · s16 + 2 · s15 + 3 · s13 + 2 · s12 + 4 · s11+

s10 + 4 · s9 + s8 + 2 · s7 + s6 + 4 · s5 + 3 · s4 + 4 · s3 + 2 · s+ 3)

S = (2 · s46 + 4 · s45 + 4 · s44 + 4 · s43 + 4 · s42 + 2 · s41 + 2 · s40 + 4 · s39+

s38 + 4 · s37 + 4 · s36 + 4 · s33 + s32 + 3 · s31 + 4 · s30 + 4 · s29 + s28

+ s26 + 4 · s23 + 4 · s22 + 3 · s18 + s17 + 3 · s16 + 4 · s15 + 4 · s13+

3 · s12 + 4 · s10 + s9 + 3 · s7 + s6 + s5 + 4 · s4 + 3 · s3 + 4 · s2 + 2 · s
+ 1 : s47 + 3 · s46 + 2 · s45 + 4 · s44 + s43 + 4 · s42 + 3 · s41 + 4 · s40

+ 4 · s39 + s38 + 4 · s37 + 4 · s36 + 2 · s35 + s34 + s33 + s32 + 4 · s31

+ 3 · s30 + s28 + s27 + 4 · s25 + 3 · s24 + 3 · s23 + 2 · s22 + 4 · s20+

3 · s19 + s18 + 3 · s17 + 3 · s16 + 2 · s15 + s14 + 4 · s13 + 3 · s12+

4 · s11 + s10 + 3 · s9 + 4 · s8 + 2 · s7 + 4 · s6 + 2 · s5 + 4 · s4 + 2 · s3+

2 · s2 + s+ 4)
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Multiplying R and S by all the prime factors of their respective orders not equal
to 2 will then give two generators of E[64]:

f1 = [32 · 7 · 17 · 31]R

f2 = [5 · 7 · 17 · 31 · 73 · 229 · 5953 · 6673 · 10321 · 22961]S

However, we do not necessarily have that these get mapped to (the lifts of) the
generators e1, e2 of E[32]. Indeed they don’t. Therefore we apply the change of
coordinates

f ′1 = 12 · f ′1 + 15 · f ′2
f ′2 = 11 · f ′1 + 6 · f ′2

These are still points of order 64, they are independent, and moreover:

[2]f ′1 = e1

[2]f ′2 = e2

A calculation shows that the Frobenius automorphism ϕ : E[64] → E[64] has
the following effect on these generators:

ϕ(f ′1) = 17f ′1 + 3f ′2,

ϕ(f ′2) = 3f ′1 + 46′f ′2,

hence ϕ has matrix

Mϕ,64 =

(
17 3
3 46

)
.

Note that the trace is 63 ≡ 7 (mod 64) and furthermore that

Mϕ,64 ≡Mϕ,32 (mod 32)

where the modulus is taken entry-wise. Hence everything works out rather
nicely.

We compute one more example, but this time by computing E[191] in the
curve E/F519 . Represent F519 as F5(s) with

s19 + s3 + 2s+ 3 = 0.
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As an abelian group, E/F519 is isomorphic to Z/191Z⊕Z/99861226577Z, with
generators

R = (3s17 + 3s16 + 2s15 + 4s14 + 2s13 + 4s10

+ 2s8 + 3s6 + s5 + s4 + s3 + 4s+ 3,

4s18 + 2s17 + 3s15 + 2s14 + 2s13 + 4s12 + 4s11

+ 2s10 + 3s8 + 3s7 + s6 + 4s5 + 4s4 + 4s2),

S = (4s16 + 4s15 + 2s12 + s11 + 4s10 + s9 + 2s8 + 2s7 + s6

+ 4s5 + 3s4 + s3 + 4s2 + 2s,

3s18 + 4s17 + 2s16 + 4s15

+ 2s14 + 4s13 + 2s10 + 3s9

+ 3s8 + s6 + 2s5 + 3s4 + 3s3

+ 4s2 + 2)

of order 191 = 191 and 99861226577 = 7 · 191 · 419 · 178259 respectively. Hence

f1 = R

f2 = [7 · 419 · 178259]S

are two distinct elements of order 191, hence they generate E[191] = 〈f1, f2〉 as
Z/191Z-modules. Applying the Frobenius map ϕ : E[191]→ E[191] yields

ϕ(f1) = 189f1 + 188f2,

ϕ(f2) = 66f1 + 1f2.

Therefore ϕ : E[191]→ E[191] has matrix(
189 66
188 1

)
with respect to the basis f1, f2. This matrix has trace 190 (mod 191). Accord-
ing to our formula, this implies

#E(F5) = 1 + 5− Tr(ϕ191)

≡ −184 (mod 191)

≡ 7 (mod 191),

and since 0 ≤ #E(F5) ≤ 25, we have again #E(F5) = 7.
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Part III

Serre’s NX(p) theorem for
elliptic curves
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Chapter 8

Proof of Serre’s NX(p)
theorem for elliptic curves

We state and give the proof of theorem 8.1 from Serre [12] in the case of elliptic
curves.

Theorem 8.1 Let E, E′ be two elliptic curves over Q, such that NE(p) =
NE′(p) for a set primes of (Dirichlet or natural) density 1. Then NE(pe) =
NE′(p

e) for all p where both E and E′ have good reduction, and all e ≥ 1.

Remark 8.2 The theorem holds both for the Dirichlet density and the natural
density because in the proof Chebotarev’s density theorem is invoked. Cheb-
otarev’s density theorem also holds for both densities.

Remark 8.3 It suffices to show that NE(p) = NE′(p) for all primes where
E and E′ have good reduction, because the remainder of the theorem then
immediately follows from remark 7.4.

For a number field K we denote the set of places of K by VK .
For a prime p of K we denote the local field of K at p by Kp.
For a local field K we denote its ring of integers by OK , and a uniformiser

for its unique prime ideal by π.
We will now prove theorem 8.1. To do so we need to extend Q to a field K so

that E(K) contains all the `m-torsion, where ` is prime. We wish to eventually
apply Chebotarev’s density theorem, hence we must know something about the
splitting behaviour of the rational primes of Q in this extension K.

Proposition 8.4 Let E/Q be an elliptic curve, ` a rational prime, m a positive
integer, ∆ the discriminant of E, S` the set of rational primes consisting of `
and the primes that divide ∆. Let K = Q(E[`m]). Then K is unramified outside
S`.

Proof This is a direct consequence of part II corollary 6.13. �

97
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Remark 8.5 Note that S` depends on ` but not on the power m.

Definition 8.6 Let S be a finite subset of VK , and let Ω be a set with the
discrete topology. Consider a map f : VK − S → Ω. We say that f is S-
frobenian if there exists a finite Galois extension L/K, unramified outside S,
and a map ϕ : G 7→ Ω, where G = Gal(L/K), such that:

a) ϕ is invariant under conjugation (i.e. ϕ factors through G 7→ ClG, where
ClG denotes the set of conjugacy classes of G),

b) f(v) = ϕ(σv) for all v ∈ VK − S.

Definition 8.7 A subset Σ of VK −S is said to be S-frobenian if its character-
istic function is S-frobenian. This means that there exists a Galois extension
L/K as above, and a subset C of its Galois group G, stable under conjugation,
such that v ∈ Σ ⇐⇒ σv ∈ C.

The coincidence on a set of primes of density 1 implying the coincidence ev-
erywhere is based on the Chebotarev density theorem. The main step is the
following theorem, which will allow us to apply Chebotarev’s density theorem.

Theorem 8.8 Let E/Q be an elliptic curve, ` a prime and m ∈ Z>0. Then

VQ → Z/`mZ : p 7→ NE(p) (mod `m)

is S`-Frobenian.

Proof Recall that K/Q is a Galois extension such that E(K) contains all
the `m-torsion. Recall furthermore that S` is the finite set of rational primes
consisting of

• `;

• All the rational primes for which E has bad reduction, that is those primes
that divide the discriminant ∆ of E.

Let p ∈ VQ − S and let p be an ideal of K lying over (p). Then E(Kp) is an
elliptic curve that also contains all the `m torsion, as K ⊂ Kp. By Silverman
and Tate [15] proposition VII.3.1 (b), the map

E(K)[`m]→ Ẽ(OKp
/pOKp

)

is injective. Here the tilde means reduction modulo p.
To show that NE(p) (mod `m) is S-Frobenian we need to find a map

ϕ : Gal(K/Q)→ Z/`mZ

such that

• ϕ is invariant under conjugation (i.e. constant on conjugacy classes of
Gal(K/Q));
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• NE(p) (mod `m) = ϕ(σp) for all p ∈ VQ − S, where σp is the conjugacy
class of the Frobenius element of the decomposition group Dp. This is well
defined since (p) is unramified, and ϕ is constant on conjugacy classes.

We define the map ϕ as follows:

ϕ : Gal(K/Q)→ Z/`mZ

τ 7→ 1− Tr(τ |E(K)[`m]) + Det(τ |E(K)[`m]) (mod `m),

Note that ϕ is indeed constant on conjugacy classes, since the trace and deter-
minant are similarity invariant.

What is left to show is that NE(p) (mod `m) is equal to the composition
p 7→ σp 7→ ϕ(σp). For this, note that Kp/Qp is a Galois extension with Galois
group Dp, which is generated by any element of the conjugacy class σp. This
means that any element of σp in fact also acts on E(Kp). Hence we can also
compute Tr(σp |E(Kp)[`m]). But since K ⊂ Kp and in fact all the `m-torsion
is already in K, we have

Tr(σp |E(Kp)[`m]) = Tr(σp |E(K)[`m]) (mod `m),

Det(σp |E(Kp)[`m]) = Det(σp |E(K)[`m]) (mod `m).

We can take this one step further, by using that the reduction modulo p
induces an injection

E(Kp)[`m] ↪→ Ẽ(OKp
/pOKp

).

This implies that the reduction map gives an isomorphism

E(Kp)[`m]
∼−→ Ẽ(OKp

/pOKp
)[`m]

of Z/`mZ-modules. Now the reduction map consists of multiplying a point
on E(Kp) with projective coordinates [x0, y0, z0], with a suitable power of π
such that all the coordinates become elements of OKp

and at least one becomes
an element of O∗Kp

, and then taking everything (mod p). Note that under

the above isomorphism, the action of σp on E(Kp)[`m] becomes an action on

Ẽ(OKp
/pOKp

)[`m] which on coordinates of points is given by x 7→ xp (mod p).
Hence we see that

Tr(σp |E(Kp)[`m]) = Tr(x 7→ xp | Ẽ(OKp
/pOKp

)[`m]) (mod `m),

Det(σp |E(Kp)[`m]) = Det(x 7→ xp | Ẽ(OKp
/pOKp

)[`m]) (mod `m).

In the proof of Silverman [14, theorem V.2.3.1] we see that the above determi-
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nant is equal to p and the trace is equal to 1 + p−#E(Fp). Hence

ϕ(σp) = 1− Tr(x 7→ xp | Ẽ(OKp
/pOKp

)[`m])

+ Det(x 7→ xp | Ẽ(OKp
/pOKp

)[`m]) (mod `m)

= 1− Tr(x 7→ xp | Ẽ(OKp
/pOKp

)[`m]) + p (mod `m)

= #Ẽ(Fp) (mod `m)

= NE(p) (mod `m) �

Note that if a function f : VK − S → Ω is S-frobenian and S ⊂ T ⊂ VK , then
f : VK − T → Ω is also T -frobenian. Hence we have the following corollary.

Corollary 8.9 Let E,E′ be two elliptic curves over Q. Let ` be a rational
prime, m a positive integer. Let S` and S′` be as in the previous lemma corre-
sponding to E and E′ respectively. Then NE(p) : VQ − S` ∪ S′` → Z/`mZ and
NE′(p) : VQ − S` ∪ S′` → Z/`mZ are S` ∪ S′`-frobenian.

Proof Note that S`, S
′
` ⊂ S` ∪ S′`. �

Remark 8.10 Consider the setting of definition 8.7 of S-frobenian sets. Cheb-
otarev’s density theorem shows that Σ has a density, which is equal to #C/#G.

We wish to apply this to fibers of frobenian functions. We have the following

Lemma 8.11 Let f : VK − S → Ω be an S-frobenian function, L/K be a cor-
responding finite Galois extension unramified outside S. Let W ⊂ Ω. Then the
pre-image f−1(W ) is a S-frobenian set.

Proof Note that

f−1(W ) = {v ∈ VK − S : ϕ(σv) ∈W}
= {v ∈ VK − S : σv ∈ ϕ−1(W )},

and note that ϕ−1(W ) is a union of conjugacy classes, since ϕ is constant on
conjugacy classes. Hence v ∈ f−1(W ) if and only if σv ∈ ϕ−1(W ), hence
f−1(W ) is S-frobenian. �

Lemma 8.12 Let f, f ′ : VK − S → Ω, be two S-frobenian functions. Then
(f, f ′) : VK − S → Ω× Ω is S-frobenian.

Proof Let finite Galois extensions L,L′/K, Galois groups G,G′ and maps
ϕ,ϕ′ : G → Ω correspond to f, f ′ respectively. Then the compositum LL′ is
Galois over K, and LL′ is unramified outside S. Furthermore, we have the
embedding Gal(LL′/K) ↪→ Gal(L/K)×Gal(L′/K). We can compose this with
the map Gal(L/K) × Gal(L′/K) → Ω × Ω: (σ, σ′) 7→ (ϕ(σ), ϕ′(σ′)). Let v be
a place of K, w|v be a place of L and u|w a place of LL′. Note that the map
Gal(LL′/K)→ Gal(L/K) sends a generator of D(u,v) to a generator of D(w,v),
for the generators are characterised by x 7→ xNpv on the residue field. Hence
σ(u,v) gets mapped to σ(w,v). This shows that the previous composition is equal
to (f, f ′), hence that (f, f ′) is frobenian. �
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We are now ready to prove theorem 8.1.

Theorem (see theorem 8.1) Let E and E′ be elliptic curves over Q. Suppose
that NE(p) = NE′(p) for a set of primes of density 1. Then in fact NE(pe) =
NE′(p

e) for all e ≥ 1 and all primes p where both E and E′ have good reduction.

Proof Let ` be a prime, m be a positive integer. Let S`, S
′
` be the sets cor-

responding to E,E′ from theorem 8.8. Let S = S` ∪ S′`. That is, S con-
sists of the rational primes that divide `∆∆′ with ∆,∆′ the discriminants
of E,E′ respectively. By theorem 8.8 and corollary 8.9 NE (mod `m) and
NE′ (mod `m) are S-frobenian. By lemma 8.12 the map (NE (mod `m), NE′

(mod `m)) : VQ − S → Z/`mZ× Z/`mZ is S-frobenian. Let D be the diagonal
in Ω× Ω By lemma 8.11 the inverse image of the complement of the diagonal

(NE , NE′)
−1(Ω× Ω−D) = {p ∈ VQ − S : NE(p) 6= NE′(p) (mod `m)}

is a frobenian set. But since its density is zero it must be empty, by Chebotarev’s
density theorem. Hence NE(p) = NE′(p) (mod `m) for all p ∈ VQ − S and
positive integersm. Note that S did not depend onm. By takingm large enough
we conclude that NE(p) = NE′(p) for all p ∈ VQ − S. We can repeat the entire
argument with a prime different from ` to conclude that also NE(`) = NE′(`),
except if E or E′ has bad reduction at `. To obtain the equality NE(pe) =
NE′(p

e) apply remark 7.4. This finishes the proof. �

Remark 8.13 The result (for elliptic curves) is also stated in the first propo-
sition of section 2.3 in Serre [10].

8.1 Application to modular forms

We will not explain what modular forms are, but we will state a corollary of
theorem 8.1 about modular forms.

Corollary 8.14 Let f and f ′ denote two newforms of weight two for Γ0(N).
Assume that f and f ′ are normalized so that their first order Fourier coefficients
are one, and suppose that all coefficients are in Z. If for a set of primes p of
density 1 the Fourier coefficients ap(f) = ap(f

′) are equal, then they are equal
for all primes not dividing N .

Proof By Eichler-Shimura theory (see, e.g., Knapp [6, theorem 11.74 and the-
orem 12.8]), there exists two elliptic curves E and E′ of conductor N such that
ap(f) = ap(E) and ap(f

′) = ap(E
′), where ap(E) = NE(p). Now the result

follows from theorem 8.1.
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