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Abstract

In medical research, the progress of a disease can be described with a multistate model. By esti-
mating state occupation probabilities and transition probabilities, static and dynamic predictions
can be made, based on individual patient covariates. The probabilities are estimated by the Aalen-
Johansen estimator and a proportional hazards model is used to include time-fixed covariates. The
thesis focuses on the study of the accuracy of the predictions. Measures for the prediction error,
based on the Brier score and the Kullback-Leibler score, are introduced. We prove that these mea-
sures have the quality of properness. In order to estimate the prediction error with right-censored
data, we propose two estimators: one using the method of inverse probability of censoring weights
(IPCW) and one using pseudo-values. For both estimators we prove consistency. Finally, the esti-
mation of the prediction error is implemented in the statistical software R, using data from bone
marrow transplantation.
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Chapter 1

Introduction

In the area of medical research, it is often desirable to give a prognosis about the development of
a disease. Not only for the patients to have an idea about what to expect, but also for the doctors
to determine which actions they should take.

Suppose a person is diagnosed with cancer. He wishes to know what his chances are to survive
and if treatment will significantly improve the prognosis. Once the patient has received treatment,
it would be nice to give an estimate of how likely the cancer will return, given his current health
status. This estimation can be repeated, for example every year, using the most recent information
about the patient. After being cancer-free for a couple of years, the expected chances of recurring
cancer or dying from cancer will possibly have become negligible.

Another example is the transplantation of an organ. After a transplant, it is possible that a
relapse occurs, or that the patient recovers, experiences complications or dies. We want to estimate
the probability of the occurrence of each of these events, at various moments in time.
In both cases, it would not be reasonable to give the same predictions to an elderly man with a
weak constitution as to a fit young woman. Therefore, predictive models based on the individual
characteristics of the patient are needed. Moreover, it is necessary to have a measure of the ac-
curacy of the predictions derived in these models, so that we can assess how reliable our prognosis is.

This thesis will start with a review of how such predictive models can be obtained. It is done
by modelling the different stages of the disease or recovery as a multistate model. Predictions can
be derived from the survival data, collected from other patients who received the same treatment.
The predictions are actually estimated probabilities. This is known as probabilistic forecasting,
used for weather and climate forecasts as well. Techniques to asses the goodness of the predictions
can therefore also be borrowed from the field of climatology, for example from [14].

Multistate models

The history of a patient can be described as a multistate model. This model contains a state for
each event a patient can experience, and possible transitions between the states. To make the
model less complicated, several events are sometimes combined into one state.
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The simplest multistate model is a survival model, consisting of two states: one where the pa-
tient is alive and one where he is dead. The only possible transition is, naturally, from alive to
dead. A survival model can be used to give the life expectancy of a patient, depending on its
characteristics, when no other events are of interest. This is done by estimating the distribution
of the survival time: the time until a transition takes place. A survival model does not always
describe an actual survival; it can also be used to model the recovery from a disease, for example.
Then the states represent diseased instead of alive and recovered instead of dead, and the survival
time is the time until recovery.

Figure 1.1: Survival, competing risks and illness-death models.

A more complex model is the competing risks model, with one starting state (e.g. alive or treatment)
and several ending states, representing for example different causes of death. Transitions from the
starting state to all ending states are present. A competing risks model applies to a situation where
the occurrence of one of the events, described by the ending states, precludes the occurrence of one
of the others. In other words, the ending states are competing risks. A competing risks model is not
only applicable to the study of different causes of death, but can also be used to investigate which
one of some events happens first. Suppose we start with treatment in state 0 and events of interest
are cancer recurrence and death. These events cannot be modelled as competing risks, because
death can occur before or after cancer recurrence. A more complex model is needed. However, if
we let state 1 be cancer recurrence and state 2 death before cancer recurrence, then the two states
are competing risks.

General multistate models can have multiple starting, intermediate and ending states, with all
kinds of possible transitions between them. A simple example is the illness-death model in Figure
1.1. It consists of a starting state (healthy), an intermediate state (ill) and an ending state (dead).
The model in Figure 1.2 applies to leukaemia patients having undergone bone marrow transplan-
tation, and can be found in [27]. The events that can occur after the transplantation and the
corresponding transitions are given in the table below. The order in which the patient experiences
the events, determines which transitions he makes.

Event Transitions

Recovery 1→ 2, 3→ 4
Adverse event 1→ 3, 2→ 4
Relapse 1→ 5, 2→ 5, 3→ 5, 4→ 5
Death 1→ 6, 2→ 6, 3→ 6, 4→ 6
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In general multistate models, the quantities of interest are state occupation probabilities, giving
the probability to be in a certain state at a certain time, and transition probabilities, giving the
probability to be in one state at first and in another state at a later time point. For example, in the
situation of Figure 1.2, we can estimate the probability of relapse within a year, for a patient that
just underwent the transplantation. This is actually the estimation of the occupation probability of
state 5 (relapse), and is called static prediction. It is often more informative to wait a while before
doing predictions. Suppose that we wait a few months and that the patient has recovered, so he is
in state 2. We can again estimate the probability of relapse within a year, using that information.
This time, we are estimating the transition probability for the transition from state 2 to state 5,
possibly via state 4. This is dynamic prediction.

Figure 1.2: A multistate model for bone marrow transplantation.

Survival data

The predictions we will consider are probabilistic predictions: for every desired time point, we give
the estimated probability to be in the state of interest. Another type of prediction is the estima-
tion of event times, but these predictions are most of the time not very accurate, as pointed out
by Henderson et al. [17]. So we will restrict ourselves to the first kind. Hence, we have to derive
estimates for the probabilities discussed above. This is done by analysing survival data.

For each patient the times until certain events occur are recorded, and the characteristics of the
patient, called covariates. Covariates can be known at the beginning of the study and stay fixed,
but they can also vary over the course of time. Examples of covariates are age and weight, but
they can also contain specifics about the treatment. For a transplantation, it sometimes matters if
the gender of the donor was the same as that of the recipient of the organ, for instance. We will,
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in this thesis, not include time-varying, but only time-fixed covariates.

There can be several issues causing the survival data to be incomplete [18]. The first is right
censoring. This is the case if we do not observe an event, because the study ended before it hap-
pened, or because the patient has left the study earlier. As a result of this, we only have complete
data from patients diagnosed long ago.
Secondly, it is possible that patients are not observed from the starting point. They may have
already experienced events before entering the study or they have been in the starting state for a
long time. We do not have complete information about whether and when the events occurred or
how long the patients have been in the initial state. This is known as left censoring and we speak
of interval censoring if a patient is both left- and right-censored.

Figure 1.3: A Lexis diagram.

Figure 1.3 is a Lexis diagram for survival data with only one event of interest. The lines represent
the periods during which the patients were under observation. Patients 2 and 4 are possibly left-
censored, if they were already in the starting state before the beginning of the study. Patients 2
and 3 were right-censored, because they left the study before experiencing the event. Patient 6 is
also right-censored, because she had not experienced the event yet at the end of the study.

The incompleteness of the data can add difficulties to our analysis, so we have to find a way
to handle this. Most of the time, censoring is assumed to be noninformative, meaning that there
is no relationship between the censoring time and the event times. This is the case when censoring
only occurs if events happen outside the fixed observation time window. Another case is, when
patients can enter or leave the study randomly, not depending on, for example, the progress of their
disease. This independence assumption simplifies the analysis, but is not always realistic. When
the time at which a patient enters or leaves the study does depend on the event times, censoring is
informative. An example of this is when, in a study of a new treatment, a patient decides not to
participate any longer because he has only experienced negative effects of the treatment.
In this thesis, we will assume that there is only noninformative right censoring. The survival
data then contain, for each event, the minimum of the event time and the censoring time, and an
indicator for the occurrence of the event, which is zero if the patient was censored.
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Probability estimation

In survival models, the interest usually lies in estimating the survival function. For each time, the
survival function gives the probability to still be alive at that time, or, more generally, that the
event time is larger than that time. One of the possible estimators for this function was constructed
by Kaplan and Meier in 1958 [19]. It is a nonparametric estimator that can be derived from in-
complete observations. Because the estimator is nonparametric, it is not assumed that the survival
function has a particular form. The estimator, currently known as the Kaplan-Meier estimator,
was called product limit estimator by Kaplan and Meier themselves. It is obtained by multiplying
the estimated probabilities to survive subintervals of the study period. In the absence of censoring,
the estimator reduces to the proportion of the sample that has not experienced the event yet.

In competing risks models, the Kaplan-Meier estimator has been used to estimate survival func-
tions for one of the causes of death, treating deaths from the other causes as censored observations.
However, this should be avoided, because it can lead to a biased estimator. The bias is caused
by the fact that different causes of death can be dependent whereas censoring was assumed to be
independent in the derivation of the Kaplan-Meier estimator. It is better to estimate the cumulative
incidence functions for each cause, because they take the competing risks into account.

Aalen and Johansen [1] have derived an estimator for the transition probabilities in multistate
models. It is given by a product integral, which is discussed in Chapter 3. This Aalen-Johansen
estimator for transition probabilities is only valid in multistate models that satisfy the Markov
property. But an estimator for occupation probabilities can be derived from it, that is valid in
non-Markov models as well, as shown by Datta and Satten [10]. An important ingredient of the
Aalen-Johansen estimator is a counting process. The book by Andersen et al. [3] gives a detailed
explanation of statistical models based on counting processes, including the Aalen-Johansen esti-
mator. A competing risks model is actually a special multistate model, so the probability to die
from a specific cause can also be estimated with this estimator.

Often, some characteristics of the patient have an effect on the progression of the disease. There-
fore, predictions will be more accurate when we include the covariates. The survival function and
the transition probabilities are functions of the hazards, also called death rates in a survival model
and transition intensities in the case of a multistate model. These hazards give the instantaneous
risk for a transition, as a function of time. The influence of the covariates can be modelled through
these hazards, usually with a Cox proportional hazards model [9], but another regression model is
possible too. The article by Cox assumes a survival model, but the theory can be applied to the
transition intensities in multistate models directly. The Cox model treats the hazards for different
patients as being proportional. They have the same baseline hazard which is multiplied by a factor
including the covariates and regression coefficients. The focus in [9] is on the estimation of these
regression coefficients, by maximizing a conditional likelihood. The baseline hazards are estimated
by discretizing them and performing maximum likelihood estimation.
A more extensive explanation of all the estimators is given in Chapter 2 and Chapter 3.
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Predictive accuracy

Once we have an estimated probability model, derived by the procedures discussed above, we can
use this to do predictions. For a patient that just had surgery, the doctor can predict the probabil-
ity that the cancer will return in five years, by looking at the corresponding estimated occupation
probability, for patients with the same covariates as this one. As mentioned earlier, it is more
insightful to do dynamic prediction. One way of doing this, is to give, for example two times a
year, a prognosis for the next year, for instance. This is dynamic prediction with a window of fixed
width [18]. Of course, predictions are never perfect. We want to give an idea of how accurate the
predictions are.

There are several ways to asses the goodness of our predictive model. Some measures only judge
the discriminative ability of the model, as discussed in the PhD thesis of Schoop [24]. The squared
correlation coefficient R2 compares the regression models, to evaluate how strongly the incorpora-
tion of covariates in the model influences the predictions. Another measure is the ROC-curve.

ROC stands for receiver operating characteristics and is used to evaluate positive/negative-predictions.
These predictions are the answers to questions like: will this person be in state k at time t? The
answer is chosen to be positive if the predicted probability is larger than some threshold and neg-
ative if it is smaller. Comparing the actual observations with the predictions, the true positive
fraction, called sensitivity, and the false positive fraction, equal to 1−specificity, can be measured.
The ROC-curve is a plot of the sensitivity against 1−specificity, where the value of the threshold is
varied. The curve evaluates the ability of the model to discriminate between positive and negative
values. Summary measures of the ROC-curve are the area under the curve (AUC) and the C-index.
The discriminative ability of the model is better when these are larger.
However, the ROC-curve is the same for the true probability model and any other model giving cor-
rect positives and negatives, while the predicted probabilities are worse. Furthermore, the accuracy
of the predictions also depends on the composition of the population. Another problem with the
ROC method is that it is not clear how to define the sensitivity and specificity in multistate models.

The measures mentioned above do not really measure the predictive accuracy of the model, be-
cause they focus on discrimination and ignore calibration. The predictive accuracy is assessed by
evaluating both at the same time [25].
The prediction error, a measure for the difference between the predicted probability and the ob-
served event, does this. There exist different types of prediction error, the two most important
being the expected Brier score (or quadratic loss function) and the Kullback-Leibler score (or log-
arithmic loss function), both mentioned by Graf et al. [15]. These scoring rules are used as well
in meteorology, where the assessment of the predictions is referred to as forecast verification. The
Brier and Kullback-Leibler scores have the quality that they are strictly proper, meaning that the
best score is given to perfect predictions only [14].
Gerds and Schumacher [11] discuss the estimation of the Brier score for survival models in the
presence of right censoring, and Schoop et al. [25] extend this to the competing risks situation.

To handle the incompleteness of the data due to right censoring, different techniques can be used.
The last-mentioned articles both use Inverse Probability of Censoring Weighting (IPCW ). With
this technique, only the observations that have not been censored yet contribute to the score and
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this contribution is reweighted with the inverse probability of not being censored. But after some
time, a big part of the observations has been censored, and the estimation is then only based on
very little data. This is not the case when using pseudo-observations or pseudo-values, another way
to deal with censoring. This technique replaces all observations, censored or not, with estimated
pseudo-values. It has been applied to multistate models by Andersen et al. [5]. An advantage of
using this technique is that we do not estimate with very little data. But the observations that are
not censored are also replaced, which can be seen as a disadvantage.

In this thesis, we are interested in the estimation of the prediction error in multistate models
with right censoring. The estimators of the Brier score, proposed in [11] and [25], can be extended
for static and dynamic predictions in multistate models. We will also investigate the Kullback-
Leibler score, that has not been studied extensively. To handle the censored data, we will apply
both IPCW and pseudo-values, and compare the two approaches.

Outline of the thesis

First, the necessary background information about survival analysis and the mathematics behind
it are given in Chapter 2. We explain what simple survival data look like and how to estimate the
survival probability with the Kaplan-Meier estimator. We discuss the consequences of independent
right censoring and include covariates with a Cox model. In the last section of Chapter 2, we
discuss cumulative incidence functions in competing risks models. Chapter 3 is about multistate
data. We introduce the necessary mathematical tools: the product integral and counting processes.
Then we give a formal definition of the multistate model as a stochastic process and investigate the
Aalen-Johansen estimator for the occupation and transition probabilities. At the end of Chapter
3, a result about the asymptotics of the Aalen-Johansen estimator for occupation probabilities is
given, which is needed in the next chapter. In Chapter 4, we propose measures for the prediction
error based on the Brier score and on the Kullback-Leibler score and show that these are strictly
proper. We derive consistent estimators for the measures, for both static and dynamic prediction,
using IPCW. We give another estimator where we use pseudo-values instead of IPCW, and prove
the consistency of all the estimators. To finish, we apply the theory to two data sets from bone
marrow transplantation, and study the behaviour of our estimators in R [23].
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Chapter 2

Predictive models for survival data

In this chapter, we discuss the basic concepts of survival analysis, in the presence of independent
right censoring. We will see how the quantities of interest are estimated and how to include
covariates in the model. The basis of the analysis lies in the hazards, also called intensities. At the
end of the chapter, a short review of competing risks models is given.

2.1 Survival data

For a survival model with right censoring, we introduce the following random variables: the survival
time T and the censoring time C. We do not observe realizations of both of these times, but of
T̃ = min(T,C) and ∆ = I{T ≤ C}. The covariates are represented by a vector Z. We have a
sample of n independent observations of these quantities: (t̃1, δ1, z1), ... , (t̃n, δn, zn).

2.1.1 Survival function

We assume that the survival times of the n individuals under observation are independently and
identically distributed. The distribution is defined via the hazard rate α(t), which gives the rate of
dying at time t, conditional on being alive:

α(t) := lim
∆t↓0

P(t ≤ T < t+ ∆t|T ≥ t)
∆t

.

And A(t) :=
∫ t

0 α(s)ds is called the cumulative hazard. The probability that the event has not
occurred yet at time t is given by the survival function S(t) := P(T > t). The hazard rate can be
written in terms of the survival function:

α(t) = lim
∆t↓0

P(t ≤ T < t+ ∆t)

∆t

1

P(T ≥ t)
= −dS(t)

dt

1

S(t)
= −d logS(t)

dt
.

So when the hazard rate is known, the survival function can be derived from it:

S(t) = exp

(
−
∫ t

0
α(s)ds

)
= exp(−A(t)).

The relation between the survival function and the hazard can be written alternatively as a product
limit.
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Assume that the survival time can take all values in an interval [0, τ ]. For t ∈ (0, τ ], partition the
interval [0, t] into subintervals [0, s1], (s1, s2],...,(sp, t]. For small subintervals, we can approximate
the survival probability as:

P(T > t) ≈ P(T ≥ 0)P(T > s1|T ≥ 0)P(T > s2|T > s1) · ... · P(T > t|T > sp)

≈ 1 · (1− P(0 ≤ T ≤ s1)) (1− P(s1 < T ≤ s2)) · ... · (1− P(sp < T ≤ t)) .

Define ∆A(sl) = A(sl) − A(sl−1) for l = 1, ..., p + 1, where s0 = 0 and sp+1 = t. Then ∆A(sl) ≈
P(sl−1 < T ≤ sl), so that the above can be written as:

S(t) ≈
∏
l

(1−∆A(sl)) (2.1)

When we take the limit, decreasing the size of the subintervals, the approximation becomes exact:

S(t) = lim
max |sl−sl−1|→0

∏
l

(1−∆A(sl))

This relation is useful for estimation. The ∆A(sl) can be estimated from the data and an estimator
for the survival function can then be found by substituting these in Formula (2.1).

2.1.2 Censoring and covariates

The censoring times of the n individuals are independent and identically distributed random vari-
ables with censoring function G(t) := P(C > t). The censoring time is assumed to be independent
of the survival time, so that the observed times have distribution

P(T̃ > t) = P(T > t,C > t) = S(t)G(t).

In the above, the covariates were ignored. We can include them in the functions by conditioning.
Define

α(t|Z) := lim
∆t↓0

P(t ≤ T < t+ ∆t|T ≥ t,Z)

∆t
,

S(t|Z) := P(T > t|Z) and G(t|Z) := P(C > t|Z). Different assumptions can now be made about
the independence of the censoring time. The one we use later with the IPCW technique, is that
the censoring time is independent of the event time, given the covariates, so that

P(T̃ > t|Z) = P(T > t,C > t|Z) = S(t|Z)G(t|Z).

When applying the technique of pseudo-observations, we make the assumption that censoring is
independent of the event times ànd the covariates, resulting in

P(T̃ > t|Z) = S(t|Z)G(t).

2.2 Estimation

2.2.1 Nonparametric estimation

We consider a uniform population, by ruling out the effect of covariates. In this case, the estimation
of the cumulative hazard and the survival function is nonparametric, meaning that we do not make

11



any assumptions about the form of the functions. Denote the observed distinct event times as
t1 < t2 < ... < tm. Let nl be the number of individuals experiencing an event at time tl, and let yl
be the number of individuals at risk just before time tl, for l = 1, ...,m. yl is called the size of the
risk set at time tl. When there are no ties in the event times, nl = 1 for each l. We can estimate
the cumulative hazard with the Nelson-Aalen estimator

Â(t) =
∑
l:tl≤t

nl
yl

(2.2)

Define s0 = 0 and sm = t and let [s0, s1], (s1, s2],...,(sm−1, sm] be a partition of the interval [0, t],
such that tl ∈ (sl−1, sl], for l = 1, ...,m. Then ∆A(sl) = nl/yl, for l = 1, ...,m. Substituting these
into Equation (2.1) we find an estimator for S(t), known as the Kaplan-Meier [19] estimator:

Ŝ(t) =
∏
l:tl≤t

(
1− nl

yl

)
(2.3)

The censoring function G(t) can be estimated in the same way, replacing the event times by the
censoring times and the number of individuals experiencing an event by the number of individuals
being censored at these times.

Example
Consider a small data set of size n = 10. The time is the observed value of T̃ and the status gives
the observed values of ∆.

Patient 1 2 3 4 5 6 7 8 9 10

Time 1.3 2.1 4.6 3.2 1.7 5.2 2.9 4.1 6.0 5.8

Status 1 1 1 0 1 0 1 1 0 1

For every observed time, nl and yl are derived from the data, and the term (1 − nl/yl) of the
Kaplan-Meier estimator can be computed. The Kaplan-Meier estimate of the survival probability
at some time t is then the product of the elements in the last column where time is smaller than
or equal to t.

Time n y 1− n/y Ŝ

0.0 0 10 1 1
1.3 1 10 9/10 0.9
1.7 1 9 8/9 0.8
2.1 1 8 7/8 0.7
2.9 1 7 6/7 0.6
3.2 0 6 1 0.6
4.1 1 5 4/5 0.48
4.6 1 4 3/4 0.36
5.2 0 3 1 0.36
5.8 1 2 1/2 0.18
6.0 0 1 1 0.18

In Figure 2.1, the estimated survival curve is plotted. We see that the Kaplan-Meier curve makes
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a step at every event time. The censorings, marked with vertical bars, do not cause a change in
the estimated value of the survival probability, because (1− n/y) = 1 at a censoring time.

Figure 2.1: A Kaplan-Meier curve.

Asymptotic properties

Nelson-Aalen estimator
The Nelson-Aalen estimator is uniformly consistent on compact intervals [3]. This means that the
estimator converges in probability to the real cumulative hazard as we increase the sample size n.
If Â(n)(s) is the Nelson-Aalen estimator, derived in a sample of size n, then:

sup
s∈[0,t]

|Â(n)(s)−A(s)| P→ 0, as n→∞.

Furthermore, the limiting distribution of Â(t) is a normal distribution with mean A(t) and variance
σ2

NA(t). Different estimators for this variance are available. In [3] two estimators are given. The
first one assumes that there are no tied observations and is known as the Aalen estimator. It can
be translated to our setting as:

σ̂2
NA,A(t) =

∑
l:tl≤t

1

y2
l

.

The second one, the Greenwood estimator, can be used in the presence of ties and is given by:

σ̂2
NA,G(t) =

∑
l:tl≤t

(yl − nl)nl
y3
l

.
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The difference between the two estimators is negligible when the sizes yl of the risk sets are not too
small.

Kaplan-Meier estimator
The consistency of Ŝ(t) follows from the consistency of Â(t), because the Kaplan-Meier estimator
is a nice function of the Nelson-Aalen estimator. The estimator Ŝ(t) is also asymptotically normal
distributed, with mean S(t) and variance σ2

KM(t), which can be estimated with the Aalen estimator:

σ̂2
KM,A(t) = Ŝ(t)2σ̂2

NA,A(t),

or with Greenwood’s formula:

σ̂2
KM,G(t) = Ŝ(t)2

∑
l:tl≤t

nl
yl(yl − nl)

.

2.2.2 Semi-parametric estimation

The influence of covariates is usually included in the hazards via a Cox proportional hazards model.
In this model, the conditional hazards are assumed to be of the form

α(t|Z) = α0(t) exp(Z>β).

The covariates are contained in the vector Z, α0(t) is the baseline hazard and β is the vector of
regression coefficients. The predictive value of the covariates is represented by the term Z>β, called
the prognostic index [18].
The regression coefficients are estimated by maximizing the partial likelihood, as in [9]. The par-
tial likelihood is obtained by conditioning on the observed event times and the number of events
observed at each of these times. This leads to a sum, with a term for every event time. The l-th
term represents the probability that the observed nl patients experience the event at tl, given which
individuals are at risk just before that time. The estimated regression coefficients, derived by this
procedure, are denoted by β̂.

What remains is the estimation of the baseline hazards. Let t1, t2, ... be the event times, nl the
number of events at time tl and let Rl be the set of individuals that are at risk just before time tl.
Then A0(t) =

∫ t
0 α0(s)ds is estimated as:

Â0(t) =
∑
l:tl≤t

nl∑
i∈Rl

exp((zi)>β̂)
,

where zi is the observed covariate vector of individual i. This estimator was obtained by Breslow,
and can be seen as the Nelson-Aalen estimator from Equation (2.2) with a reweighted risk set.
The survival function for a patient with covariates Z = z, can then be estimated by:

Ŝ1(t|z) = exp
(
−Â0(t) exp(z>β̂)

)
,
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or by

Ŝ2(t|z) =
∏
l:tl≤t

(
1− dÂ0(tl) exp(z>β̂)

)

=
∏
l:tl≤t

(
1− nl exp(z>β̂)∑

i∈Rl
exp((zi)>β̂)

)
.

For further detail on this topic, see [18].

Asymptotic properties

The estimators Ŝ1 and Ŝ2 have the same asymptotic properties. For z a fixed value of Z, they both
converge to a normal distribution with mean S(t|z). An estimator for the asymptotic variance of
− log Ŝ(t|z) = Â0(t) exp(z>β̂) is given in [18]:

v̂ar(− log Ŝ(t|z)) =
∑
l:tl≤t

(
exp(z>β̂)∑

i∈Rl
exp((zi)>β̂)

)2

+ q̂(t|z)>IF (β̂)−1q̂(t|z).

Here IF is the Fisher information matrix from the estimation of the regression coefficients, given
by:

IF (β̂) =
∑
l

∑
i∈Rl

(zi − z̄l)(z
i − z̄l)

> exp((zi)>β̂)∑
i∈Rl

exp((zi)>β̂)
,

where

z̄l =

∑
i∈Rl

zi exp((zi)>β̂)∑
i∈Rl

exp((zi)>β̂)
.

And

q̂(t|z) =
∑
l:tl≤t

(z− z̄l)
exp(z>β̂)∑

i∈Rl
exp((zi)>β̂)

.

2.3 Competing risks

In a competing risks model, there is not just one hazard, but there is a cause-specific hazard for
each cause of death or competing risk. Suppose state 0 is the starting state and states 1, ...,K are
the ending states. The cause-specific hazard for cause D = k ∈ {1, ...,K} is:

αk(t) := lim
∆t↓0

P(t ≤ T < t+ ∆t,D = k|T ≥ t)
∆t

,

with cumulative hazard Ak(t) :=
∫ t

0 αk(s)ds. To estimate the probability of having died from a
specific cause before some time, a naive approach was often followed [21]. This approach treats
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observations of the competing events as censorings and uses the observations of the event of interest
in the Kaplan-Meier estimator. This leads to a good estimator only if the competing events are
independent of each other, because the Kaplan-Meier estimator is based on the assumption that the
distribution of the censoring time is independent of that of the event time. However, the occurrence
of a competing event precludes the occurrence of the event of interest, so competing risks are in
general not independent of each other. Therefore, the naive Kaplan-Meier estimator will be biased
for competing risks models. The probability to die from the cause of interest will be overestimated.

A better approach, described in [21], is to estimate the cumulative incidence functions Ik(t) :=

P(T ≤ t,D = k), k = 1, ...,K. With S(t) = P(T > t) = exp
(
−
∑K

k=1Ak(t)
)

the overall survival

function, the cumulative incidence function for cause k is given by:

Ik(t) =

∫ t

0
αk(s)S(s−)ds.

The cause-specific hazards can be estimated with the Nelson-Aalen estimator. With nk,l the number
of deaths of cause k at time tl, and yl the size of the risk set at time tl, this estimator is given by:

α̂k(tl) =
nk,l
yl
,

for event times tl, and α̂k is zero at other time points. The overall survival function can still be
estimated with the Kaplan-Meier estimator, which can now also be written as:

Ŝ(t) =
∏
l:tl≤t

(
1−

K∑
k=1

nk,l
yl

)
.

The estimator for the cumulative incidence function is then:

Îk(t) =

∫ t

0
α̂k(s)Ŝ(s−)ds =

∑
l:tl≤t

nk,l
yl

∏
j:tj≤tl−1

(
1−

K∑
k=1

nk,j
yj

)
.

The two methods are compared in Figure 2.2, for a small data set with two competing events. At
the top, the survival probabilities are estimated by the naive Kaplan-Meier estimator. For cause
1, this estimated survival curve is plotted and for cause 2, one minus the survival curve. We see
that the lines cross, meaning that, after some time, the probability to experience cause 1 or cause
2 exceeds one. This is not possible, so the naive Kaplan-Meier estimator is not a good one.
In the plot at the bottom of Figure 2.2, the estimated cumulative incidence Î2(t) is plotted for cause
2 and 1 − Î1(t) for cause 1. At the end of the study, the lines meet, meaning that the probability
that cause 1 or cause 2 occurs is equal to one.

A competing risks model can also be seen as a special case of a multistate model. The deaths
from different causes are now treated as transitions from state 0 to the states 1, ...,K, and we do
not speak of cause-specific hazards, but of transition intensities. The theory of multistate models
is discussed in the next chapter, and can be used for competing risks models as well.
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Figure 2.2: Naive Kaplan-Meier curves (top) and estimated cumulative incidences (bottom).
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Chapter 3

Predictive models for multistate data

This chapter explains how predictions for multistate data are derived. After describing what this
kind of data looks like, we give the necessary mathematical background information about the
product integral and counting processes. In the second part of this chapter, the formal definition
and notation of multistate models are introduced. We will focus on models that satisfy the Markov
assumption, but some results are applicable to non-Markov models as well.

3.1 Multistate data

Multistate data contain, for each individual, observation times and indicators for the occurrence
of various events. We model the events into a multistate model. A state can represent one of the
observed events, but it is also possible to combine two events into one state, for example. The
observed times can be seen as transition times between the states.
Suppose that at most M transitions can be made by one person. Denote the transition times by
0 = T0 < T1 < T2 < ... < TM .

First consider the case of complete observation. If individual i makes M(i) < M transitions,
its observed transition times are T i0 = ti0 = 0, T i1 = ti1, ..., T

i
M(i) = tiM(i), and we define T iM(i)+1 =

... = T iM =∞. The last transition is special, because it is a transition into an absorbing (=ending)
state. We therefore give the last transition time a new name

T := sup
m
{Tm : Tm <∞},

with observed value ti := tiM(i) for individual i. Let X(Tm) represent the state occupied at time

Tm, observed as xi(tim) for i = 1, ..., n.

Next, we look at right-censored data. A patient is right-censored if its censoring time is smaller
than its last transition time ti. If C is the censoring time, we define ∆ = I{T ≤ C}, the indicator
for not being censored, T̃ = min(T,C), and for m = 0, ...,M ,

T̃m =

{
min(Tm, C) if Tm <∞;
∞ if Tm =∞.
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Instead of X(Tm), we now observe realizations of X̃(T̃m), m = 0, ...,M , where we define

X̃(s) =

{
X(s) if s < T̃ ;

∆ ·X(T̃ ) if s ≥ T̃ .

Furthermore, let Z be the vector of covariates. Then the observable quantities are {(T̃m, X̃(T̃m))}Mm=1

(T̃ , X̃(T̃ )), ∆ and Z, and we assume to have a sample of size n of independent realizations of these,
given by {(t̃im, x̃i(t̃im))}Mm=1, (t̃i, x̃i(t̃im)), δi and zi, for i = 1, ..., n.

3.2 Auxiliary tools

3.2.1 Product integration

An important tool in survival analysis is the product integral, discussed by Gill and Johansen [12].
Just as the ordinary integral can be seen as the limit of a sum, the product integral can be thought
of as the limit of a product. The product integral arises naturally in survival analysis and allows
us to give nice representations of the quantities.
Let X be the distribution function of a finite real matrix-valued measure, defined on the Borel
subsets of an interval [0, τ ]. Then X is an additive interval function. This means that, for s ≤
u ≤ t, X((s, t]) = X((s, u]) + X((u, t]), and if we write X(t) = X([0, t]) for all t ∈ [0, τ ], then
X((s, t]) = X(t) −X(s). Furthermore, X is right-continuous with left-hand limits. The product
integral of X is written as

Y =
∏

(I + dX),

where I is the identity matrix of the same dimensions as X. Because X is additive, dX(u) =
X((u + du)−) −X(u−) = X([u, u + du)) := X(du). The product integral over the interval [0, t]
can be defined as the limit of a product, refining the partition 0 = s0 < s1 < ... < sp+1 = t of [0, t]:

Definition 3.1 (Product integral).

Y(t) =
∏
u∈[0,t]

(I + X(du)) = lim
max |sl−sl−1|→0

∏
l

(I + X((sl−1, sl])) .

The product integral Y of X is right-continuous with left-hand limits. It is a multiplicative inter-
val function, meaning that, for s ≤ u ≤ t, Y((s, t]) = Y((s, u])Y((u, t]). Or, with the notation
Y(t) = Y([0, t]) for all t ≥ 0, Y((s, t]) = Y(t)/Y(s).

Andersen et al. [3] give some theorems about the product integral. Some of them are needed
later on in this thesis. The first one is the Volterra integral equation in Theorem II.6.1.

Theorem 3.2.1 (Volterra’s equation). Y =
∏

(I + dX) is the unique solution to the equation

Y(t) = I +

∫
u∈[0,t]

Y(u−)X(du).

The second one is Duhamel’s equation, given as Theorem II.6.2.

Theorem 3.2.2 (Duhamel’s equation). For two product integrals Y =
∏

(I + dX) and Y′ =∏
(I + dX′), the following relationship holds:

Y(t)−Y′(t) =

∫
u∈[0,t]

∏
[0,u)

(I + dX)
(
X(du)−X′(du)

) ∏
(u,t]

(I + dX′).
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3.2.2 Counting processes

Andersen et al. [3] have developed a theory of statistical models based on counting processes. This
theory applies to our multistate models as well, so we will first give some background information
about counting processes.
Let T = [0, τ ] be a time interval. A counting process (N(t) : t ∈ T ) is a stochastic process taking
values in {0, 1, 2, ...}. It counts how many times some event has occurred and is right-continuous
with left-hand limits. For example, if at time s1 the event takes place for the first time and at time
s2 for the second time and then never again, then N(t) = 0 for t < s1, N(t) = 1 for s1 ≤ t < s2

and N(t) = 2 for t ≥ s2.

A counting process has a compensator Λ. Denote with Ft the history of N up to and includ-
ing time t. Then M = N − Λ is a martingale with respect to (Ft, t ∈ T ), meaning that for
s < t ∈ T :

E [M(t)|Fs] = M(s).

If the counting process has intensity process (λ(t) : t ∈ T ), its compensator is given by:

Λ(t) =

∫ t

0
λ(u)du.

We can then also write for dN(t) = N(t+ dt)−N(t):

dN(t) = dΛ(t) + dM(t) = λ(t)dt+ dM(t).

Because M is a martingale, dM(t) has expectation 0:

E [dM(t)] =E [E [M(t+ dt)−M(t)|Ft]] ,

by the tower property for conditional expectations, and

E [M(t+ dt)−M(t)|Ft] =E [M(t+ dt)|Ft]−M(t) = 0,

because M(t) is known, given the history up to and including time t. From this, it follows that
E [dN(t)] = E [dΛ(t)].

3.3 Multistate model as a stochastic process

To describe where we are in the multistate model at every time point, we use a stochastic process.
The following theory is adapted from [4] and [3].

Let (Ω,F ,P) be a probability space and T = [0, τ ] a time interval with 0 < τ ≤ ∞. Define
on this space random variables X(t) representing the state occupied at time t. The stochastic
process (X(t), t ∈ T ), describes the whole path through the multistate model from time 0 until
the time horizon τ . For a model with K states, the process can take values in the state space
S = {1, ...,K}. So X jumps from one state to another. If there is a jump from state h to state
j at time s, we define X(s) = j, so that X(t+) = X(t) for all t ∈ T . In other words, X has
right-continous sample paths.
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To further define the process, we have to give for each state the probability to start in that state.
This is the initial distribution, which can be written as a vector

π(0) = (P(X(0) = 1), ...,P(X(0) = K)).

Often, state 1 is the only starting state and then π(0) = (1, 0, ..., 0), but in general the above
expression holds.

For every time t ∈ T , let Ft ⊆ F be the σ-algebra generated by the process up to time t. This is
the smallest σ-algebra containing the history of the process until time t: Ft = σ(X(u) : 0 ≤ u ≤ t).
These σ-algebras are right-continuous and increasing.
Define the transition intensities as

αhj(t) := lim
∆t→0

P(X(t+ ∆t) = j|X(t) = h,Ft−)

∆t
, h, j ∈ S.

Equivalently to the cumulative hazard in the survival model, we now have integrated transition
intensities Ahj(t) =

∫ t
0 αhj(s)ds.

For time points s ≤ t ∈ T , the transition probabilities are defined as

Phj(s, t) := P(X(t) = j|X(s) = h,Fs−), h, j ∈ S,

and collected in the matrix P(s, t). The transition intensities are related to the transition proba-
bilities as

αhj(t) = lim
∆t→0

Phj(t, t+ ∆t)

∆t
.

The state occupation probabilities π(t) := (P(X(t) = 1), ...,P(X(t) = K)) satisfy the relationship

π(t) = π(0)P(0, t).

We are also interested in the effect of time-fixed covariates Z, known at time 0. For this we define
the conditional analogues of the above:

π(0|Z) = (P(X(0) = 1|Z), ...,P(X(0) = K|Z)),

αhj(t|Z) = lim
∆t→0

P(X(t+ ∆t) = j|X(t) = h,Ft−,Z)

∆t
, h, j ∈ S,

Phj(s, t|Z) = P(X(t) = j|X(s) = h,Fs−,Z), h, j ∈ S,
π(t|Z) = π(0|Z)P(0, t|Z).

Markov process

In the case where the process is Markov, X(t) depends on Fs, the history up to time s, for s ≤ t,
only through X(s). Hence, we can leave the history Fs− out in the definition of the transition
intensities and probabilities. So the transition probabilities simplify to

Phj(s, t) = P(X(t) = j|X(s) = h) and Phj(s, t|Z) = P(X(t) = j|X(s) = h,Z),
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for h, j ∈ S.
Suppose that the matrix α of transition intensities is known. The transition probability matrix P
can, for a Markov process, be recovered from the Kolmogorov forward equations:

P(s, s) = I,
∂

∂t
P(s, t) = P(s, t)α(t).

This can also be written as:

P(s, t) = P(s, s) +

∫
u∈(s,t]

∂

∂u
P(s, u)du

= I +

∫
u∈(s,t]

P(s, u)α(u)du.

And α(u)du = A(du) so it follows from Volterra’s equation in Theorem 3.2.1 that

P(s, t) =
∏
(s,t]

(I + dA). (3.1)

3.3.1 Nonparametric estimation

To derive an estimator for the integrated intensities Ahj , it is useful to introduce counting processes.
Suppose we have multistate data from n individuals. Every individual has its own multistate
process, given by (Xi(t), t ∈ T ) for individual i, i ∈ {1, ..., n}. Define, for h, j ∈ S, the counting
processes

N i
hj(t) = number of direct h→ j transitions individual i makes in the time interval [0, t].

The multistate process is described entirely by the starting state Xi(0) and the counting processes
({N i

hj(t) : h, j ∈ S}, t ∈ T ). Therefore, F it , the σ-algebra generated by the process of individual i
up to time t is equal to

σ(Xi(0)) ∨ σ({N i
hj(u) : h, j ∈ S} : 0 ≤ u ≤ t).

Additionally, define Y i
h(t) = I{Xi(t−) = h} and let Nhj(t) =

∑n
i=1N

i
hj(t) and Yh(t) =

∑n
i=1 Y

i
h(t).

Theorem II.6.8 in [3], gives the compensator of Nhj at time t:

Λhj(t) =

∫ t

0
Yh(u)Ahj(du).

From the theory of counting processes in Section 3.2.2, we know that we can write

dNhj(u) = Yh(u)Ahj(du) + dM(u),

where dM(u) has expectation 0. Then

E [Ahj(du)] = E

[
dNhj(u)

Yh(u)

]
,

22



suggesting an estimator for Ahj(t) =
∫ t

0 Ahj(du): the Nelson-Aalen estimator. Suppose t1, t2, ... are
the observation times in our sample. The Nelson-Aalen estimator is then

Âhj(t) =

∫ t

0
I{Yh(u) > 0}

dNhj(u)

Yh(u)
=
∑
l:tl≤t

dNhj(tl)

Yh(tl)
,

where I{Yh(u) > 0} can be left out, because dNhj(u) if Yh(u) = 0. If Â is the matrix of Nelson-

Aalen estimators and diagonal elements Âhh(t) = −
∑

j 6=h Âhj(t), h = 1, ...,K, we obtain the

Aalen-Johansen estimator for the transition probabilities by replacing A by Â in the product
integral of Equation (3.1):

P̂(s, t) =
∏
(s,t]

(I + dÂ) =
∏

l:tl∈(s,t]

(I + dÂ(tl)).

Asymptotic properties

Nelson-Aalen estimator
The Nelson-Aalen estimator is a consistent estimator for the integrated transition intensities. This
is stated in Theorem IV.1.1 of [3]. If Â(n) is the Nelson-Aalen estimator, derived in a sample of
size n, then

sup
s∈[0,t]

|Â(n)(s)−A(s)| P→ 0, as n→∞.

By Theorem IV.1.2 of [3],
√
n(Â−A)

D→ U, as n→∞,

where, for every h 6= j ∈ {1, ...,K}, Uhj is a Gaussian martingale with mean 0 and covariance
cov(Uhj(s), Uhj(t)) = σ2

hj(s ∧ t), and Uhh = −
∑

j 6=h Uhj , h = 1, ...K. The covariance σ2
hj(t) can be

estimated with the Aalen estimator:

σ̂2
hj,A(t) =

∫ t

0
I{Yh(u) > 0}Yh(u)−2dNhj(u),

or with the Greenwood estimator:

σ̂2
hj,G(t) =

∫ t

0
I{Yh(u) > 0}(Yh(u)−∆Nhj(u))Yh(u)−3dNhj(u).

Aalen-Johansen estimator
The product integral is continuous in supremum norm (Theorem 7 of [12]). Therefore, the consis-
tency of the Aalen-Johansen estimator follows from the consistency of the Nelson-Aalen estimator.
The limiting distribution can be derived by applying Duhamel’s equation (Theorem 3.2.2):

P̂(s, t)−P(s, t) =

∫
u∈(s,t]

∏
(s,u)

(I + dÂ)
(
Â−A

)
(du)

∏
(u,t]

(I + dA).

Then, for P̂(n) =
∏

(I + dÂ(n)), the Aalen-Johansen estimator derived in a sample of size n,

√
n
(
P̂(n)(s, t)−P(s, t)

)
=

∫
u∈(s,t)

∏
(s,u)

(I + dÂ(n))
√
n
(
Â(n) −A

)
(du)

∏
(u,t]

(I + dA),
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with
√
n
(
Â(n) −A

)
(du)

D→ U(du), and dÂ(n) D→ dA as n → ∞, because the Nelson-Aalen

estimator is consistent. Hence

√
n(P̂(s, t)−P(s, t))

D→
∫ t

s
P(s, u−)U(du)P(u, t), as n→∞.

Estimators for the covariance matrix of the Aalen-Johansen estimator are derived in section IV.4.1.3
of [3]. The Aalen-type estimator for the covariance matrix of the Aalen-Johansen estimator contains
elements of the form:

ĉovA(P̂hj(s, t), P̂mr(s, t)) =
K∑
l=1

∑
g 6=l

∫ t

s
I{Yg(u) > 0}Yg(u)−2P̂hg(s, u)P̂mg(s, u)

×
[
P̂lj(u, t)− P̂gj(u, t)

] [
P̂lr(u, t)− P̂gr(u, t)

]
dNgl(u).

The Greenwood-type estimator for the covariance between the (h, j)-th and the (m, r)-th element
of P̂(s, t) is given by:

ĉovG(P̂hj(s, t), P̂mr(s, t)) =
K∑
l=1

∑
g 6=l

∫ t

s
I{Yg(u) > 0} (Yg(u)− 1)Yg(u)−3P̂hg(s, u−)P̂mg(s, u−)

×
[
P̂lj(u, t)− P̂gj(u, t)

] [
P̂lr(u, t)− P̂gr(u, t)

]
dNgl(u).

3.3.2 Semi-parametric estimation

Similar to the survival model, the influence of covariates Z can be included in the transition
intensities via regression models. This is often a Cox proportional hazards model. In [26], a couple
of possible models are given. Covariates can have a different effect on different transitions. One
way is to fit separate models for each transition:

αhj(t|Z) = αhj,0(t) exp(β>hjZ), (3.2)

where αhj,0(t) is the baseline intensity and βhj contains the regression coefficients.
With some extra knowledge about the influence of the covariates, the complexity of the Cox model
can be reduced. A common simplification is to make some of the baseline intensities proportional,
e.g. αhj,0(t) = c · αhk,0(t), for some constant c. Sometimes, it is noticed that the covariates have
(almost) the same effect on some transitions. Then the regression coefficients βhj are assumed to
be the same for these transitions.

The regression model (3.2) is equivalent to the model where the covariates are modified to transition-
specific ones and the regression coefficients are the same for each transition [2]:

αhj(t|Z) = αhj,0(t) exp(β>Zhj), (3.3)

Suppose we have modelled the transition intensities as above. The estimation of the regression
coefficients goes in the same way as in the case of a survival model, by maximizing the partial
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likelihood. The integrated baseline intensities Ahj,0(t) =
∫ t

0 αhj,0(s)ds, with h 6= j, can be estimated
from the data as [2]

Âhj,0(t) =
∑
l:tl≤t

I{Yh(tl) > 0}dNhj(tl)∑n
i=1 Y

i
h(tl) exp(β̂

>
zihj)

,

and

Âhj(t|Z) = Âhj,0(t) exp(β̂
>

Zhj).

These are collected in the matrix Â(t|Z), with Âhh(t|Z) = −
∑

j 6=h Âhj(t|Z). The matrix of esti-
mated transition probabilities for an individual with covariate vector z is now given by:

P̂(s, t|z) =
∏

l:tl∈(s,t]

(I + dÂ(tl|z)).

Asymptotic properties

The asymptotics of the estimated integrated intensities are discussed in [26]. For our model (3.3),
define for every possible transition h→ j:

S
(0)
hj (β, t) =

n∑
i=1

Y i
h(t) exp(β̂

>
zihj),

S
(1)
hj (β, t) =

n∑
i=1

Y i
h(t)zihj exp(β̂

>
zihj),

S
(2)
hj (β, t) =

n∑
i=1

Y i
h(t)zihj(z

i
hj)
> exp(β̂

>
zihj).

And

Ehj(β, t) =
S

(1)
hj (β, t)

S
(0)
hj (β, t)

,

Vhj(β, t) =
S

(2)
hj (β, t)

S
(0)
hj (β, t)

−Ehj(β, t)(Ehj(β, t))
>.

The Fisher information from the estimation of the regression coefficients is given by:

IF (β) =
∑
h,j

∫ τ

0
Vhj(β, t)dNhj(t).

Under some assumptions,
√
n(Âhj(t|z)−Ahj(t|z)) converges in distribution to a Gaussian process

with mean 0. A uniformly consistent estimator for the variance is given in Corollary VII.2.6 of [3]:

v̂ar(Âhj(t|z)) = n(exp(β̂
>

zhj))
2

[∫ t

0
S

(0)
hj (β̂, u)−2dNhj(u)

+

∫ t

0
(Ehj(β̂, u)− zhj)

>dÂhj,0(u) · IF (β̂)−1 ·
∫ t

0
(Ehj(β̂, u)− zhj)dÂhj,0(u)

]
.
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The estimator for the covariance matrix for
√
n(P̂(s, t|z) − P(s, t|z)) is derived in section VII.2.3

of [3]:

ĉovA(P̂hj(s, t|z), P̂mr(s, t|z)) =
K∑
l=1

∑
g 6=l

∫ t

s
I{Yg(u) > 0}(exp(β̂

>
zgl))

2S
(0)
gl (β̂, u)−2

× P̂hg(s, u|z)P̂mg(s, u|z)
[
P̂lj(u, t|z)− P̂gj(u, t|z)

] [
P̂lr(u, t|z)− P̂gr(u, t|z)

]
dNgl(u)

+

∫ t

s

∑
g,l

P̂hg(s, u|z)dWgl(u)P̂lj(u, t|z) · IF (β̂)−1 ·
∫ t

s

∑
g,l

P̂mg(s, u|z)dWgl(u)P̂lr(u, t|z),

where, for g 6= l,

Wgl(t) = exp(β̂
>

zgl)

∫ t

0
(zgl −Egl(β, u))I{Yg(u) > 0}S(0)

gl (β, u)−1dNgl(u),

and Wgg = −
∑

l 6=g Wgl.

3.3.3 Non-Markov process

If the multistate process does not satisfy the Markov property, the expressions for transition proba-
bilities are no longer valid. The current state X(t) does not only depend on the history Fs through
X(s), but on more information in this history. However, the occupation probabilities do not depend
on any history and they still satisfy the relationship π(t) = π(0)P(0, t). Datta and Satten [10] have
shown that the Aalen-Johansen estimator for occupation probabilities is also a good estimator in
non-Markov processes.

3.3.4 Asymptotics for occupation probabilities

For later use, we investigate in this section the asymptotics of the estimator for occupation proba-
bilities

π̂(t) = π(0)P̂(0, t) = π(0)
∏
(0,t]

(I + dÂ).

The hazards are estimated from the data with the Nelson-Aalen estimator dÂ and we can derive
the asymptotic properties of this estimator. The estimator for occupation probabilities is a function
of dÂ. We want to use our knowledge about the asymptotics of the Nelson-Aalen estimator, to find
the asymptotic properties of π̂. This can be done by making use of the functional delta method,
stated as Theorem II.8.1 in [3].

Theorem 3.3.1 (Functional delta-method). Let Tn be a sequence of random elements of B and
an a real sequence with an →∞ and

an(Tn − θ)
D→ Z,

where θ is a fixed point in B and Z a random element of B. If the function φ : B → B′ is compactly
(Hadamard) differentiable at θ, with derivative dφ(θ), then

an(φ(Tn)− φ(θ))
D→ dφ(θ) · Z

and an(φ(Tn)− φ(θ)) ∼ dφ(θ) · an(Tn − θ), where ∼ denotes asymptotic equivalence.
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In the case of the Aalen-Johansen estimator for occupation probabilities π̂(t), the function φ is a
composition of three mappings:

φ1(x, y) = (x, y−1) = (x, u)

φ2(x, u) =

∫
u dx = v

φ3(v) = π(0)
∏

(I + dv)

φ(x, y) = φ3 ◦ φ2 ◦ φ1(x, y)

The function φ is applied to (x, y) = (N̄, ȲD), where N̄(t) = 1
n

∑n
i=1 Ni(t) = 1

nN(t) and ȲD(t) =
1
nYD(t) = 1

n

∑n
i=1 Yi

D(t), with Yi
D(t) the matrix with diagonal elements Y i

h(t), h = 1, ...,K and
zeroes elsewhere.

The derivative of φ will also be a composition. The Hadamard derivative for a product integral
ψ(X) =

∏
(I + dX) is given in Proposition II.8.7 in [3]:

(dψ(X) ·H)(t) =

∫
s∈[0,t]

∏
[0,s)

(I + dX)H(ds)
∏
(s,t]

(I + dX).

The Hadamard derivative of the estimator for occupation probabilities is derived in [13] and will
be needed later on, when we explore the properties of pseudo-values.

Proposition 1. The Hadamard derivative of π̂(t) is

(dφ(N ,Y) · (ZN,ZY)) (t) =

π(0)

∫
s∈(0,t]

∏
(0,s)

(I + dA)
[
Y−1(s)ZN(ds)− Y−2(s)ZY(s)N (ds)

]∏
(s,t]

(I + dA).

And, by Theorem 3.3.1,

√
n (π̂(t)− π(t)) ∼
√
nπ(0)

∫
s∈(0,t]

∏
(0,s)

(I + dA)
[
Y−1(s)

(
N̄−N

)
(ds)− Y−2(s)

(
ȲD − Y

)
(s)N (ds)

]∏
(s,t]

(I + dA),

where N (s) := limn→∞ N̄(s) = E[N̄(s)] and Y(s) := limn→∞ ȲD(s) = E[ȲD(s)].

27



Chapter 4

Estimation of prediction error

Now that it is clear how predictive models are constructed, we want to measure how well these
models perform. In the current chapter, we propose measures for the prediction error based on the
Brier score and the Kullback-Leibler score. Scoring rules are used to verify forecasts in meteorology.
They compare the predicted probabilities with the observed events and do not depend on the form of
the predictive model. We take a look at the prediction error for static prediction and for dynamic
prediction, where we will use inverse probability of censoring weighting (IPCW) to handle the
presence of independent right censoring. A disadvantage of this technique is that after some time,
when a big part of the observations has been censored, the estimation is only based on very little
data. This can lead to unexpected behaviour of the estimator. Therefore, we additionally apply,
instead of IPCW, the technique of pseudo-values in the case of static prediction.

4.1 Proper prediction errors

We are looking at predictions for the multistate process (X(t), t ∈ T = [0, τ ]) on (Ω,F ,P) with
state space S = {1, ...,K}.
Let Y(s+) be the vector with components Yk(s+) = I{X(s) = k}, k = 1, ...,K and π̂(s|Z) the K-
vector of estimated occupation probabilities, conditional on the covariates Z: π̂k(s|Z) = P(X(s) =
k|Z), k = 1, ...,K.
We define two measures for the accuracy of the predictive model π̂, discussed in [15] for survival
models. The first one is a function of the differences between the predictions and the observations
and can be seen as the mean squared error of the predictions. It is also equal to the expected value
of the negative of the Brier score so we will call it the Brier prediction error PEB:

PEB(s; π̂) := EX,Z

[
‖Y(s+)− π̂(s|Z)‖2

]
=

K∑
k=1

PEkB(s; π̂),

where PEkB(s; π̂) = EX,Z
[
|Yk(s+)− π̂k(s|Z)|2

]
, the prediction error of state k alone.

A second measure is based on maximum likelihood estimation [18]. The predictions are good
if they maximize the likelihood or the log-likelihood of the observations. The expected value of the
negative log-likelihood is therefore a measure for the prediction error, because it is smaller when
the predictions are better. This measure is a function of the Kullback-Leibler score so we will call
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it the Kullback-Leibler prediction error PEKL.

PEKL(s; π̂) := −EX,Z [〈Y(s+), log π̂(s|Z)〉] = −
K∑
k=1

EX,Z [Yk(s+) log π̂k(s|Z)] =

K∑
k=1

PEkKL(s; π̂),

where 〈·, ·〉 denotes the inner product.

4.1.1 Properness

A measure for the predictive inaccuracy of a model must have the property that it takes smaller
values for better predictive models. This property is called properness. The measure has to at-
tain its minimum when the predicted probabilities are equal to the true probabilities. Both our
prediction errors are strictly proper. This means that their minimum is unique. To show that the
prediction errors are strictly proper, we write them in terms of the corresponding scoring rules.
With the help of [14], we show the properness of the scoring rules. The properness of the prediction
errors follows from this.

Let SB be the Brier scoring rule. Suppose that the probabilities P(X(s) = k), possibly condi-
tional on covariates, are predicted by pk for k = 1, ...,K, which are collected in the vector p. When
we observe x(s), the score given to this prediction is

SB(p, x(s)) = −
K∑
k=1

(I{x(s) = k} − pk)2 .

Then we can write
PEB(s; π̂) = −EX,Z [SB(π̂(s|Z), X(s))] .

A scoring rule S gives higher scores to better predictions. A scoring rule is therefore strictly proper
if it is maximal only when the predicted distribution is equal to the one that is believed to be the
true distribution [14]. If we believe that q is the true distribution of X(s), we write Eq[·] instead
of EX [·], and define

S(p,q) := Eq [S(p, X(s))] .

Definition 4.1. A scoring rule S is strictly proper if

S(p,q) ≤ S(q,q),

for all p,q ∈ PK , the class of all K-dimensional probability distributions, and equality holds if and
only if p = q.
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Lemma 4.1.1. The Brier score is strictly proper.

Proof. Note that I{X(s) = k}2 = I{X(s) = k} and Eq [I{X(s) = k}] = qk.

SB(q,q) = −
K∑
k=1

Eq

[
(I{X(s) = k} − qk)2

]
= −

K∑
k=1

Eq

[
I{X(s) = k} − 2qkI{X(s) = k}+ q2

k

]
= −

K∑
k=1

qk − q2
k.

And for p 6= q,

SB(p,q) = −
K∑
k=1

Eq

[
(I{X(s) = k} − pk)2

]
= −

K∑
k=1

qk (1− 2pk) + p2
k

= −
K∑
k=1

qk − q2
k + (qk − pk)2

= SB(q,q)−
K∑
k=1

(qk − pk)2

< SB(q,q).

Hence, the Brier score is strictly proper by Definition 4.1.

In contrast to scoring rules, prediction errors are strictly proper if they are minimal for perfect
predictions only.

Theorem 4.1.2. If π denotes the actual probability distribution of X(s), then

PEB(s; π̂) ≥ PEB(s;π),

where equality holds if and only if π̂ = π.

Proof. Using the tower property for conditional expectations, we can write, with π(s|Z) the true
distribution of X(s) conditional on Z,

PEB(s; π̂) = −EZ

[
EX|Z [SB(π̂(s|Z), X(s))|Z]

]
= −EZ [SB(π̂(s|Z),π(s|Z))] .

For π̂ 6= π, we then have by Lemma 4.1.1

PEB(s; π̂) = −EZ [SB(π̂(s|Z),π(s|Z))]

> −EZ [SB(π(s|Z),π(s|Z))] = PEB(s;π).
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Hence the Brier prediction error is strictly proper.

Next, we will look at the Kullback-Leibler score SKL. When p is the vector of predicted prob-
abilities at time s and we observe x(s) = j, the score given is

SKL(p, j) = log pj .

The Kullback-Leibler prediction error can be written as:

PEKL(s; π̂) = −EX,Z [SKL(π̂(s|Z), X(s))]

= −EZ [SKL(π̂(s|Z),π(s|Z))] .

For the Kullback-Leibler score, it is not possible to show the inequality in Definition 4.1 directly.
The Kullback-Leibler score is regular according to Definition 2 in [14]:
SKL(·, j) is real-valued for j = 1, ...,K, except that SKL(p, j) = −∞ if pj = 0.
Then we can use Theorem 2 in [14], adapted here into Proposition 2, to show that SKL is a strictly
proper scoring rule.

Proposition 2. A regular scoring rule S is strictly proper if and only if

S(p, j) = G(p)−
〈
G′(p),p

〉
+G′j(p) for j = 1, ...,K,

where G(p) is a strictly convex function and G′(p) is a subgradient of G at the point p, for all
p ∈ PK , the class of all K-dimensional probability distributions.

Lemma 4.1.3. The Kullback-Leibler score is strictly proper.

Proof. Take G(q) =
∑K

h=1 qh log ph. Then G(p) is a strictly convex function. A subgradient of G
at the point p is G′(p) = (log p1, ..., log pK), because it is actually the gradient:

G(p) +
〈
G′(p),p− q

〉
=

K∑
h=1

ph log ph +
K∑
h=1

(qh − ph) log ph =
K∑
h=1

qh log ph = G(q).

Then the equality in Proposition 2 holds:

G(p)−
〈
G′(p),p

〉
+G′j(p) =

K∑
h=1

ph log ph −
K∑
h=1

ph log ph + log pj = log pj = SKL(p, j).

It follows that the Kullback-Leibler score is strictly proper.

Now it can be shown that the Kullback-Leibler prediction error is strictly proper as well.

Theorem 4.1.4. If π denotes the actual probability distribution of X(s), then

PEKL(s; π̂) ≥ PEKL(s;π),

where equality holds if and only if π̂ = π.
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Proof. By Lemma 4.1.3 and Definition 4.1

SKL(π̂(s|Z),π(s|Z)) < SKL(π(s|Z),π(s|Z)),

for π̂ 6= π. Then we have for π̂ 6= π

PEKL(s; π̂) = −EZ [SKL(π̂(s|Z),π(s|Z))]

> −EZ [SKL(π(s|Z),π(s|Z))] = PEKL(s;π).

So the Kullback-Leibler prediction error is strictly proper.

4.2 Consistent estimation with IPCW

In this section, we investigate how to consistently estimate the prediction error from a sample with
independent right censoring. Because some observations are censored, we reweight the ones that
are not censored with the inverse of the probability of not being censored. First, we focus on static
prediction and later we will discuss dynamic prediction.

4.2.1 Static prediction

Static prediction is the estimation of occupation probabilities. At time zero, the probabilty to be in
a certain state at a later time is predicted. The prediction error for state k and time s is a function
of the observation X(s) and the prediction π̂k(s|Z).

Brier prediction error

The Brier prediction error for state k is given by:

PEkB(s) = E
[
(I{X(s) = k} − π̂k(s|Z))2

]
.

We will propose an estimator for this, which is similar to the one suggested by Schoop et al. for
competing risks [25], and prove that it is consistent.
First we make some assumptions. It is possible that the predictive model is dependent on the

sample used to estimate the prediction error. Such a model is denoted by {π̂(n)
k (s|z)}Kk=1, where n

is the sample size. We assume that this model converges to a limit when the sample size increases.

Assumption 1. There exists a probability model {π̂k(s|z)}Kk=1, such that:

sup
s∈T

∣∣∣EZ

[
π̂

(n)
k (s|Z)− π̂k(s|Z)

]∣∣∣ a.s.→ 0

for all k, as n→∞.

Censoring is assumed to be independent of the multistate process, for example because it is admin-
istrative censoring. We assume here that the independence is conditional on the covariates.

Assumption 2. The random variable C, representing the censoring time, is independent of the
process (X(s), s ∈ T ) and its transition times T0, T1, ..., TM , conditionally on the covariates Z.
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By this assumption, we have for instance that P(X(t) = k,C > t|Z) = P(X(t) = k|Z)P(C > t|Z).

The weights we are going to use contain the censoring function G(t|z) = P(C > t|z). We as-
sume that a consistent estimator for this function can be derived from the sample.

Assumption 3. The estimator Ĝ(n)(s|z), derived in the sample of size n, is a consistent estimator
for G(s|z), for all s ∈ T :

sup
s∈T

∣∣∣EZ

[
Ĝ(n)(s|Z)−G(s|Z)

]∣∣∣ a.s.→ 0

as n→∞.

In the case of complete observation, the sample contains for each individual the transition times
ti0 = 0, ti1, ...t

i
M and the state occupied at these times xi(tim), m = 0, ...,M . From this, we can derive

xi(s) for every time point s, by xi(s) =
∑M−1

m=0 I{tim ≤ s < tim+1}xi(tim). The Brier prediction error
can then be estimated as:

P̂E
k

B(s) =
1

n

n∑
i=1

(
I{xi(s) = k} − π̂(n)

k (s|zi)
)2

However, in the presence of right censoring, we do not observe all transitions and can therefore not
determine I{xi(s) = k} for all individuals at every time.

Recall from Section 3.1 that T = supm{Tm : Tm < ∞}, ∆ = I{T ≤ C}, T̃ = min(T,C), and
for m = 0, ...,M ,

T̃m =

{
min(Tm, C) if Tm <∞;
∞ if Tm =∞.

Furthermore,

X̃(s) =

{
X(s) if s < T̃ ;

X(s) ·∆ if s ≥ T̃ .

The sample with right censoring contains {(t̃im, x̃i(t̃im))}Mm=1, (t̃i, x̃i(t̃im)), δi and zi, for i = 1, ..., n.
From this, we can derive the ingredients needed for our estimator: t̃i, (x̃i(s), s ∈ T ) and zi,
i = 1, ..., n.

At time s, we have all the necessary information to determine I{xi(s) = k} if t̃i ≤ s and δi = 1
or if t̃i > s. In the first case individual i is never censored, and in the second case, the censoring
occurs after time s. In both cases, we have xi(s) = x̃i(s), which can be determined from the data.

Suppose individual j has been censored before or at time s. Then we do not have the infor-
mation to determine I{xj(s) = k}, because x̃j(s) = 0. Therefore, we remove the terms of such
individuals from the estimator for the prediction error. In other words, we give those terms a
weight of zero. Then we have to reweight the other terms too. We give them inverse probability of
censoring weights (IPCW).

The idea behind IPCW is, that an individual with covariate vector zi that has not been cen-
sored before or at time s, represents 1/P(C > s|zi) individuals with the same covariates. When
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t̃i ≤ s and δi = 1, we only know that C > t̃i−. Let Ĝ(n)(s|zi) be an estimator for P(C > s|zi). The
weights are then as follows:

w(s, t̃i, x̃i(s), Ĝ(n), zi) =
I{t̃i ≤ s, x̃i(s) 6= 0}
Ĝ(n)(t̃i − |zi)

+
I{t̃i > s}
Ĝ(n)(s|zi)

, (4.1)

and our estimator becomes:

P̂E
k

B(s) =
1

n

n∑
i=1

w(s, t̃i, x̃i(s), Ĝ(n), zi)
(
I{x̃i(s) = k} − π̂(n)

k (s|zi)
)2
.

This estimator is consistent.

Theorem 4.2.1. Let τ0 be a time point in T such that G(τ0|z) > ε > 0. Under Assumptions 1, 2

and 3, P̂E
k

B(s) is a uniformly strong consistent estimator for PEkB(s), for all s ∈ T with s ≤ τ0:

sup
s≤τ0

∣∣∣P̂E
k

B(s)− PEkB(s)
∣∣∣ a.s.→ 0, as n→∞.

By the Continuous Mapping Theorem, a consistent estimator for the total prediction error PEB(s) =∑K
k=1 PEkB(s) will then be

P̂EB(s) =
K∑
k=1

P̂E
k

B(s) =
1

n

n∑
i=1

w(s, t̃i, x̃i(s), Ĝ(n), zi)
∥∥∥ỹi(s+)− π̂(n)(s|zi)

∥∥∥2
,

where ỹi(s+) is the vector with components ỹik(s+) = I{x̃i(s) = k}, k = 1, ...,K and π̂(n)(s|zi) is

the vector of estimated occupation probabilities π̂
(n)
k (s|zi), k = 1, ...,K.

To prove Theorem 4.2.1 we need two lemmas, where we use the notation dPT̃ ,X̃(s),Z(t, x(s), z)
for the joint probability density function of T̃ , X̃(s) and Z, and dPT,X(s),Z(t, x(s), z) for the joint
probability density function of T , X(s) and Z, in the point (t, x(s), z).

Lemma 4.2.2. Suppose that the covariates take values in Z. Under Assumption 2, for some
function f : S × Z → R,

(i) ∫
f(x(s), z)I{t ≤ s, x(s) 6= 0}dPT̃ ,X̃(s),Z(t, x(s), z)

=

∫
f(x(s), z)I{t ≤ s}G(t− |z)dPT,X(s),Z(t, x(s), z).

(ii) ∫
f(x(s), z)I{t > s}dPT̃ ,X̃(s),Z(t, x(s), z)

=

∫
f(x(s), z)I{t > s}G(s|z)dPT,X(s),Z(t, x(s), z).
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Proof. (i) ∫
f(x(s), z)I{t ≤ s, x(s) 6= 0}dPT̃ ,X̃(s),Z(t, x(s), z)

=

∫
f(x(s), z)I{t ≤ s, c ≥ t}dPC|Z(c|z)dPT,X(s),Z(t, x(s), z)

=

∫
f(x(s), z)I{t ≤ s}G(t− |z)dPT,X(s),Z(t, x(s), z),

(ii) ∫
f(x(s), z)I{t > s}dPT̃ ,X̃(s),Z(t, x(s), z)

=

∫
f(x(s), z)I{t > s, c > s}dPC|Z(c|z)dPT,X(s),Z(t, x(s), z)

=

∫
f(x(s), z)I{t > s}G(s|z)dPT,X(s),Z(t, x(s), z).

Lemma 4.2.3. Under Assumption 2

PEkB(s) :=E
[
(I{X(s) = k} − π̂k(s|Z))2

]
=

∫
(I{x(s) = k} − π̂k(s|z))2

{
I{t ≤ s, x(s) 6= 0}

G(t− |z)
+

I{t > s}
G(s|z)

}
dPT̃ ,X̃(s),Z(t, x(s), z).

Proof.

E
[
(I{X(s) = k} − π̂k(s|Z))2

]
=

∫
(I{x(s) = k} − π̂k(s|z))2 {I{t ≤ s}+ I{t > s}}dPT,X(s),Z(t, x(s), z)

=

∫
(I{x(s) = k} − π̂k(s|z))2

{
I{t ≤ s, x(s) 6= 0}

G(t− |z)
+

I{t > s}
G(s|z)

}
dPT̃ ,X̃(s),Z(t, x(s), z),

where the last step follows from Lemma 4.2.2.

For the proof of Theorem 4.2.1, we use the following notation:

PT̃ ,X̃(s),Z
n (t, x(s), z) denotes the empirical distribution of the sample values {t̃i, (x̃i(s), s ∈ T ), zi}ni=1

in the point (t, x(s), z).

ŵ(n) = w(s, t, x(s), Ĝ(n), z) and w = w(s, t, x(s), G, z), π̂
(n)
k = π̂

(n)
k (s|z) and π̂k = π̂k(s|z).
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Proof of Theorem 4.2.1. By Lemma 4.2.3

sup
s≤τ0

∣∣∣P̂E
k

B(s)− PEkB(s)
∣∣∣ =

sup
s≤τ0

∣∣∣∣∫ (I{x(s) = k} − π̂(n)
k

)2
ŵ(n)dPT̃ ,X̃(s),Z

n (t, x(s), z)−
∫

(I{x(s) = k} − π̂k)2wdPT̃ ,X̃(s),Z(t, x(s), z)

∣∣∣∣
≤ sup

s≤τ0

∣∣∣∣∫ [(I{x(s) = k} − π̂(n)
k

)2
− (I{x(s) = k} − π̂k)2

]
wdPT̃ ,X̃(s),Z(t, x(s), z)

∣∣∣∣
+ sup
s≤τ0

∣∣∣∣∫ (I{x(s) = k} − π̂(n)
k

)2 [
ŵ(n)dPT̃ ,X̃(s),Z

n (t, x(s), z)− wdPT̃ ,X̃(s),Z(t, x(s), z)
]∣∣∣∣

= A+B.

By Lemma 4.2.3, wdPT̃ ,X̃(s),Z(t, x(s), z) = dPT,X(s),Z(t, x(s), z), so

A = sup
s≤τ0

∣∣∣∣∫ −2I{x(s) = k}[π̂(n)
k − π̂k] + [π̂

(n)
k − π̂k][π̂

(n)
k + π̂k]dPT,X(s),Z(t, x(s), z)

∣∣∣∣
≤ sup

s≤τ0

∣∣∣∣∫ −2P(X(s) = k|z)[π̂
(n)
k − π̂k]dPZ(z)

∣∣∣∣+ sup
s≤τ0

∣∣∣∣∫ [π̂
(n)
k − π̂k][π̂

(n)
k + π̂k]dPZ(z)

∣∣∣∣
where P(X(s) = k|z) ≤ 1 and π̂

(n)
k + π̂k ≤ 2, so

A ≤ 4 sup
s≤τ0

∣∣∣∣∫ [π̂
(n)
k − π̂k]dPZ(z)

∣∣∣∣ a.s.→ 0

by Assumption 1.
The rest of the proof is as in [25].

B ≤ sup
s≤τ0

∣∣∣∣∫ [ŵ(n)dPT̃ ,X̃(s),Z
n (t, x(s), z)− wdPT̃ ,X̃(s),Z(t, x(s), z)

]∣∣∣∣
≤ sup

s≤τ0

∣∣∣∣∣
∫

I{t ≤ s, x(s) 6= 0}

[
dPT̃ ,X̃(s),Z

n (t, x(s), z)

Ĝ(n)(t− |z)
− dPT̃ ,X̃(s),Z(t, x(s), z)

G(t− |z)

]∣∣∣∣∣
+ sup
s≤τ0

∣∣∣∣∣
∫

I{t > s}

[
dPT̃ ,X̃(s),Z

n (t, x(s), z)

Ĝ(n)(s|z)
− dPT̃ ,X̃(s),Z(t, x(s), z)

G(s|z)

]∣∣∣∣∣
= C +D.

Now,

C ≤ sup
s≤τ0

∣∣∣∣∣
∫

1

Ĝ(n)(t− |z)

[
dPT̃ ,X̃(s),Z

n (t, x(s), z)− dPT̃ ,X̃(s),Z(t, x(s), z)
]∣∣∣∣∣

+ sup
s≤τ0

∣∣∣∣∣
∫

I{t ≤ s, x(s) 6= 0}[G(t− |z)− Ĝ(n)(t− |z)]
dPT̃ ,X̃(s),Z(t, x(s), z)

G(t− |z)Ĝ(n)(t− |z)

∣∣∣∣∣
= E + F.
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In E, 1
Ĝ(n)(t−|z)

≤ 1
Ĝ(n)(τ0|z)

< ∞, because by Assumption 3, Ĝ(n)(τ0|z) is a strongly consistent

estimator for G(τ0|z) = ε > 0. And dPT̃ ,X̃(s),Z
n − dPT̃ ,X̃(s),Z converges to zero by the Glivenko-

Cantelli Theorem. Hence, E
a.s.→ 0.

And

F ≤ sup
s≤τ0

∣∣∣∣∣
∫

1

Ĝ(n)(τ0|z)ε
[G(s− |z)− Ĝ(n)(s− |z)]dPZ(z)

∣∣∣∣∣ a.s.→ 0

by Assumption 3.
Analogously to C,

D ≤ sup
s≤τ0

∣∣∣∣∣
∫

1

Ĝ(n)(τ0|z)

[
dPT̃ ,X̃(s),Z

n (t, x(s), z)− dPT̃ ,X̃(s),Z(t, x(s), z)
]∣∣∣∣∣

+ sup
s≤τ0

∣∣∣∣∣
∫

I{t > s}[G(s|z)− Ĝ(n)(s|z)]
dPT̃ ,X̃(s),Z(t, x(s), z)

Ĝ(n)(τ0|z)ε

∣∣∣∣∣
a.s.→ 0.

Kullback-Leibler prediction error

The Kullback-Leibler prediction error in state k is given by:

PEkKL(s) = −E [I{X(s) = k} log π̂k(s|Z)] .

We define the following estimator for this prediction error:

P̂E
k

KL(s) = − 1

n

n∑
i=1

w(s, t̃i, x̃i(s), Ĝ(n), zi)I{x̃i(s) = k} log π̂
(n)
k (s|zi),

where again

w(s, t̃i, x̃i(s), Ĝ(n), zi) =
I{t̃i ≤ s, x̃i(s) 6= 0}
Ĝ(n)(t̃i − |zi)

+
I{t̃i > s}
Ĝ(n)(s|zi)

.

Theorem 4.2.4. Let τ0 be a time point in T with G(τ0|z) > 0 and let S ⊆ [0, τ0] be a set of time

points where π̂k(s|z) > 0, such that log π̂k(s|z) ≤ H <∞. Under Assumptions 1, 2 and 3, P̂E
k

KL(s)
is a uniformly strong consistent estimator for PEkKL(s), for all s ∈ S:

sup
s∈S

∣∣∣P̂E
k

KL(s)− PEkKL(s)
∣∣∣ a.s.→ 0.

Proof. We use the same notation as before.

sup
s∈S

∣∣∣P̂E
k

KL(s)− PEkKL(s)
∣∣∣

≤ sup
s∈S

∣∣∣∣∫ −I{x(s) = k}
[
log π̂

(n)
k − log π̂k

]
ŵ(n)dPT̃ ,X̃(s),Z

n (t, x(s), z)

∣∣∣∣
+ sup

s∈S

∣∣∣∣∫ −I{x(s) = k} log π̂k

[
ŵ(n)dPT̃ ,X̃(s),Z

n (t, x(s), z)− wdPT̃ ,X̃(s),Z(t, x(s), z)
]∣∣∣∣

= A′ +B′.
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By the Glivenko-Cantelli Theorem, dPT̃ ,X̃(s),Z
n

a.s.→ dPT̃ ,X̃(s),Z, so

A′
a.s.→ sup

s∈S

∣∣∣∣∫ −I{x(s) = k}
[
log π̂

(n)
k − log π̂k

]
ŵ(n)dPT̃ ,X̃(s),Z(t, x(s), z)

∣∣∣∣
By Assumption 3 and the Continuous Mapping Theorem, this converges to

sup
s∈S

∣∣∣∣∫ −I{x(s) = k}
[
log π̂

(n)
k − log π̂k

]
wdPT̃ ,X̃(s),Z(t, x(s), z)

∣∣∣∣
And wdPT̃ ,X̃(s),Z(t, x(s), z) = dPT,X(s),Z(t, x(s), z) by Lemma 4.2.3, so

A′
a.s.→ sup

s∈S

∣∣∣∣∫ −P(X(s) = k|z)[log π̂
(n)
k − log π̂k]dPZ(z)

∣∣∣∣
≤ sup

s∈S

∣∣∣∣∫ [log π̂
(n)
k − log π̂k]dPZ(z)

∣∣∣∣ a.s.→ 0

by Assumption 1 and the Continuous Mapping Theorem.

B′ = sup
s∈S

∣∣∣∣∫ −I{x(s) = k} log πk

[
ŵ(n)dP̂T̃ ,X̃(s),Z

n (t, x(s), z)− wdPT̃ ,X̃(s),Z(t, x(s), z)
]∣∣∣∣

≤ H sup
s∈S

∣∣∣∣∫ [ŵ(n)dP̂T̃ ,X̃(s),Z
n (t, x(s), z)− wdPT̃ ,X̃(s),Z(t, x(s), z)

]∣∣∣∣ a.s.→ 0

where the convergence is shown as in the proof of Theorem 4.2.1.

4.2.2 Dynamic prediction

For dynamic prediction, we use the information at time r to predict the state at time s ≥ r.
Suppose we have observed x(r). Then we estimate the transition probabilities Px(r)k(r, s|Z) by

P̂x(r)k(r, s|Z), for k ∈ S and r ≤ s ∈ T . In this case, the Brier prediction error can be defined as

PEB(r, s) =
∑K

k=1 PEkB(r, s), where

PEkB(r, s) = E

[(
I{X(s) = k} − P̂X(r)k(r, s|Z)

)2
∣∣∣∣T ≥ r]

= E

I{X(s) = k} −
K∑
j=1

I{X(r) = j}P̂jk(r, s|Z)

2∣∣∣∣∣∣T ≥ r


=

∫ I{x(s) = k} −
K∑
j=1

I{x(r) = j}P̂jk(r, s|z)

2

I{t ≥ r}dPT,X(r),X(s),Z(t, x(r), x(s), z).

For predictive models P̂
(n)
jk that depend on the sample where the prediction error is estimated, we

assume convergence to a limit.
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Assumption 4. For each r ∈ T , there exists a probability model {P̂jk(r, s|Z)}Kj,k=1 such that

{P̂ (n)
jk (r, s|Z)}Kk=1 is consistent for it:

sup
s∈[r,τ ]

∣∣∣EZ

[
P̂

(n)
jk (r, s|Z)− P̂jk(r, s|Z)

]∣∣∣ a.s.→ 0

for all j, k ∈ S, as n→∞.

Let R(r) be the risk set at time r, containing the patients with t̃i ≥ r. An estimator for the
prediction error at time s ≥ r is then

P̂E
k

B(r, s) =
1

|R(r)|
∑
i∈R(r)

w(r, s, t̃i, x̃i(s), Ĝ(n), zi)

I{x̃i(s) = k} −
K∑
j=1

I{x̃i(r) = j}P̂ (n)
jk (r, s|zi)

2

.

The weights are now as follows. The censored observations are given zero weight and the uncensored
observations are divided by an estimate of P(C > s|C ≥ r, z) = P(C > s|z)/P(C ≥ r|z). An
estimator for this probability is Ĝ(R(r))(s|z), obtained by estimating only with the individuals in
R(r), the risk set at time r. Another way is to calculate Ĝ(n)(s|z)/Ĝ(n)(r−|z), which gives exactly
the same result. So

w(r, s, t̃i, x̃i(s), Ĝ(n), zi) =
I{r ≤ t̃i ≤ s, x̃i(s) 6= 0}

Ĝ(R(r))(t̃i − |zi)
+

I{t̃i > s ≥ r}
Ĝ(R(r))(s|zi)

=
I{t̃i ≤ s, x̃i(s) 6= 0}

Ĝ(n)(t̃i − |zi)/Ĝ(n)(r − |zi)
+

I{t̃i > s}
Ĝ(n)(s|zi)/Ĝ(n)(r − |zi)

. (4.2)

We will show that P̂E
k

B(r, s) is a consistent estimator for PEkB(r, s). By the Continuous Map-

ping Theorem, P̂EB(r, s) =
∑K

k=1 P̂E
k

B(r, s) will then be a consistent estimator for PEB(r, s) =∑K
k=1 PEkB(r, s). First we state two Lemmas.

Lemma 4.2.5. Suppose that the covariates take values in Z. Under Assumption 2, for some
function f : S × S × Z → R,

(i) ∫
f(x(r), x(s), z)I{t ≥ r}I{t ≤ s, x(s) 6= 0}dPT̃ ,X̃(r),X̃(s),Z(t, x(r), x(s), z)

=

∫
f(x(r), x(s), z)I{t ≥ r}I{t ≤ s}G(t− |z)

G(r − |z)
dPT,X(r),X(s),Z(t, x(r), x(s), z).

(ii) ∫
f(x(r), x(s), z)I{t ≥ r}I{t > s}dPT̃ ,X̃(r),X̃(s),Z(t, x(r), x(s), z)

=

∫
f(x(r), x(s), z)I{t ≥ r}I{t > s} G(s|z)

G(r − |z)
dPT,X(r),X(s),Z(t, x(r), x(s), z).
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Proof. (i)∫
f(x(r), x(s), z)I{t ≥ r}I{t ≤ s, x(s) 6= 0}dPT̃ ,X̃(r),X̃(s),Z(t, x(r), x(s), z)

=

∫
f(x(r), x(s), z)I{t ≥ r, c ≥ r}I{t ≤ s, c ≥ t}dPC|Z(c|z)dPT,X(r),X(s),Z(t, x(r), x(s), z)

=

∫
f(x(r), x(s), z)I{t ≥ r}I{t ≤ s}P(C ≥ t|C ≥ r, z)dPT,X(r),X(s),Z(t, x(s), z)

=

∫
f(x(r), x(s), z)I{t ≥ r}I{t ≤ s}G(t− |z)

G(r − |z)
dPT,X(r),X(s),Z(t, x(r), x(s), z).

(ii) ∫
f(x(r), x(s), z)I{t ≥ r}I{t > s}dPT̃ ,X̃(r),X̃(s),Z(t, x(r), x(s), z)

=

∫
f(x(r), x(s), z)I{t ≥ r, c ≥ r}I{t > s, c > s}dPC|Z(c|z)dPT,X(r),X(s),Z(t, x(r), x(s), z)

=

∫
f(x(r), x(s), z)I{t ≥ r}I{t > s}P(C > s|C ≥ r, z)dPT,X(r),X(s),Z(t, x(r), x(s), z)

=

∫
f(x(r), x(s), z)I{t ≥ r}I{t > s} G(s|z)

G(r − |z)
dPT,X(r),X(s),Z(t, x(r), x(s), z).

Lemma 4.2.6. Under Assumption 2

PEkB(r, s) :=E

[(
I{X(s) = k} − P̂X(r)k(r, s|Z)

)2
∣∣∣∣T ≥ r]

=

∫ I{x(s) = k} −
K∑
j=1

I{x(r) = j}P̂jk(r, s|z)

2

I{t ≥ r}

× w(r, s, t, x(s), G, z)dPT̃ ,X̃(r),X̃(s),Z(t, x(r), x(s), z),

with w(r, s, t, x(s), G, z) as in Equation (4.2).
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Proof.

E

[(
I{X(s) = k} − P̂X(r)k(r, s|Z)

)2
∣∣∣∣T ≥ r]

=

∫ I{x(s) = k} −
K∑
j=1

I{x(r) = j}P̂jk(r, s|z)

2

I{t ≥ r}

× {I{t ≤ s}+ I{t > s}} dPT,X(r),X(s),Z(t, x(r), x(s), z)

=

∫ I{x(s) = k} −
K∑
j=1

I{x(r) = j}P̂jk(r, s|z)

2

I{t ≥ r}

×
{

I{t ≤ s, x(s) 6= 0}
G(t− |z)/G(r − |z)

+
I{t > s}

G(s|z)/G(r − |z)

}
dPT̃ ,X̃(r),X̃(s),Z(t, x(r), x(s), z)

=

∫ I{x(s) = k} −
K∑
j=1

I{x(r) = j}P̂jk(r, s|z)

2

I{t ≥ r}

× w(r, s, t, x(s), G, z)dPT̃ ,X̃(r),X̃(s),Z(t, x(r), x(s), z),

where the second step follows from Lemma 4.2.5.

Theorem 4.2.7. Under Assumptions 4, 2 and 3, and with τ0 such that G(τ0|z) > ε > 0,

sup
s∈[r,τ0]

∣∣∣P̂E
k

B(r, s)− PEkB(r, s)
∣∣∣ a.s.→ 0, ∀r ∈ [0, τ0].

In other words, P̂E
k

B(r, s) is a consistent estimator for PEkB(r, s).

We will use the following notation:

dPT̃ ,X̃(s),Z
R(r) is the empirical distribution of the observations (t̃i, x̃i(s), zi), i ∈ R(r),

ŵ(n) = w(r, s, t, x(s), Ĝ(n), z) and w = w(r, s, t, x(s), G, z),

P̂
(n)
jk = P̂

(n)
jk (r, s|z) and P̂jk = P̂jk(r, s|z).
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Proof. Note that P̂E
k

B(r, s) does not change if we multiply the i-th term in
∑

i∈R(r) with I{t̃i ≥ r},
for all i ∈ R(r), because I{t̃i ≥ r} = 1 for all individuals in the risk set.

sup
s∈[r,τ0]

∣∣∣P̂E
k

B(r, s)− PEkB(r, s)
∣∣∣

= sup
s∈[r,τ0]

∣∣∣∣∣∣
∫ I{x(s) = k} −

K∑
j=1

I{x(r) = j}P̂ (n)
jk

2

I{t ≥ r}ŵ(n)dPT̃ ,X̃(r),X̃(s),Z
R(r) (t, x(r), x(s), z)

−
∫ I{x(s) = k} −

K∑
j=1

I{x(r) = j}P̂jk

2

I{t ≥ r}wdPT̃ ,X̃(r),X̃(r),Z(t, x(r), x(s), z)

∣∣∣∣∣∣
≤ sup
s∈[r,τ0]

∣∣∣∣∣∣
∫ I{x(s) = k} −

K∑
j=1

I{x(r) = j}P̂ (n)
jk

2

−

I{x(s) = k} −
K∑
j=1

I{x(r) = j}P̂jk

2
× I{t ≥ r}wdPT̃ ,X̃(r),X̃(s),Z(t, x(s), x(r), z)

∣∣∣∣∣∣
+ sup
s∈[r,τ0]

∣∣∣∣∣∣
∫ I{x(s) = k} −

K∑
j=1

I{x(r) = j}P̂ (n)
jk

2

I{t ≥ r}

×
[
ŵ(n)dPT̃ ,X̃(r),X̃(s),Z

R(r) (t, x(r), x(s), z)− wdPT̃ ,X̃(r),X̃(s),Z(t, x(r), x(s), z)
]∣∣∣∣∣∣

=A+B.

A ≤ sup
s∈[r,τ0]

∣∣∣∣∣∣
∫
−2I{x(s) = k}

K∑
j=1

I{x(r) = j}[P̂ (n)
jk − P̂jk]I{t ≥ r}dPT,X(r),X(s),Z(t, x(r), x(s), z)

∣∣∣∣∣∣
+ sup
s∈[r,τ0]

∣∣∣∣∣∣
∫ K∑

j=1

I{x(r) = j}[P̂ (n)
jk + P̂jk][P̂

(n)
jk − P̂jk]I{t ≥ r}dPT,X(r),X(s),Z(t, x(r), x(s), z)

∣∣∣∣∣∣ ,
because I{t ≥ r}wdPT̃ ,X̃(r),X̃(s),Z = I{t ≥ r}dPT,X(r),X(s),Z (Lemma 4.2.6). By Assumption 4,

A ≤ 4 sup
s∈[r,τ0]

sup
j

∣∣∣∣∫ [P̂
(n)
jk − P̂jk]dPZ(z)

∣∣∣∣ a.s.→ 0.

B ≤ sup
s∈[r,τ0]

∣∣∣∣∫ I{t ≥ r}
[
ŵ(n)dPT̃ ,X̃(r),X̃(s),Z

R(r) (t, x(r), x(s), z)− wdPT̃ ,X̃(r),X̃(s),Z(t, x(r), x(s), z)
]∣∣∣∣ .

By the Glivenko-Cantelli Theorem,

sup
s∈[r,τ0]

∣∣∣I{t ≥ r}dPT̃ ,X̃(r),X̃(s),Z
R(r) (t, x(r), x(s), z)− I{t ≥ r}dPT̃ ,X̃(r),X̃(s),Z(t, x(r), x(s), z)

∣∣∣ a.s.→ 0,
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and by Assumption 3 and the Continuous Mapping Theorem,

sup
s∈[r,τ0]

∣∣∣∣∣
∫

Ĝ(n)(s|z)

Ĝ(n)(r − |z)
− G(s|z)

G(r − |z)
dPZ(z)

∣∣∣∣∣ a.s.→ 0,

as n→∞. That B
a.s.→ 0 is then shown in the same way as in the proof of Theorem 4.2.1.

4.3 Consistent estimation with pseudo-values

A drawback of IPCW is that the amount of data we use decreases as time elapses. To avoid this,
we will now use pseudo-values to handle the right-censored data, in the case of static prediction.
In [8], a consistent estimator based on pseudo-values is given for the prediction error in competing
risks models. We will adjust this estimator so that it can be applied to multistate models, and
prove the consistency of this estimator.

Pseudo-values
Suppose that we have a prediction model (π̂(s|Z), s ∈ T ). The sample from which this model
is derived is called the training sample. We will assess the accuracy of the predictions of this
model, by comparing them to observations xi(t) in a testing sample of size n. The problem
is, that there is independent right censoring in this sample, so we do not know xi(t) for all
individuals at every desired time point. But we do have estimators for the expected values
E(I{X(t) = k}) = P(X(t) = k) = πk(t), k = 1, ...,K. These are the occupation probabilities
πk(t) =

∑K
j=1 πj(0)Pjk(0, t), where the πj(0) give the initial distribution over the states. The

transition probabilities Pjk(0, t) are estimated by the Aalen-Johansen estimator P̂jk(0, t), and the
occupation probabilities are then estimated as:

π̂k(t) =
K∑
j=1

πj(0)P̂jk(0, t), k = 1, ...,K.

We write π̂
(n)
k (t) for the estimator of πk(t), derived in the entire testing sample of size n and π̂

(−i)
k (t)

for the estimator derived in the testing sample with individual i removed. Now we replace all the
observations I{xi(t) = k}, by the pseudo-values Ĵ ik(t), defined as:

Ĵ ik(t) = nπ̂
(n)
k (t)− (n− 1)π̂

(−i)
k (t).

The Brier prediction error PEB can be written as

PEB(t) = EX,Z

[
‖Y(t+)− π̂(t|Z)‖2

]
=

K∑
k=1

EX,Z
[
I{X(t) = k} (1− 2π̂k(t|Z)) + π̂k(t|Z)2

]
=

K∑
k=1

PEkB(t),

and estimated by PEB(t) =
∑K

k=1 PE
k
B(t), where

PE
k
B(t) =

1

n

n∑
i=1

Ĵ ik(t)
(
1− 2π̂k(t|zi)

)
+ π̂k(t|zi)2.
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The Kullback-Leibler prediction error was given by

PEKL(t) = −
K∑
k=1

E [I{X(t) = k} log π̂k(t|Z)] =

K∑
k=1

PEkKL(t).

An estimator for PEkKL(t) is

PE
k
KL(t) = − 1

n

n∑
i=1

Ĵ ik(t) log π̂k(t|zi).

4.3.1 Consistency of the estimators

We will show that PE
k
B(t) consistently estimates PEkB(t). It then follows from the Continuous Map-

ping Theorem that PEB(t) =
∑K

k=1 PE
k
B(t) is a consistent estimator for PEB(t) =

∑K
k=1 PEkB(t).

The same is done for the Kullback-Leibler prediction error. We will use results about the asymp-
totics of the pseudo-values from [16] and the asymptotic properties of the Aalen-Johansen estimator
given in [13]. But first, we make some assumptions.
For simplification, we assume that there is only one starting state. This is often true in practice.

Assumption 5. State 1 is the only starting state. Therefore, the initial distribution vector π(0)
has elements π1(0) = 1 and πj(0) = 0 for j = 2, ...,K.

As a consequence of this assumption, the occupation probabilities are in the first row of the tran-
sition probability matrix.

The second assumption concerns the independence of the censoring.

Assumption 6. The random variable C, representing the censoring time, is independent of the
process (X(s), s ∈ T ) and the covariates Z.

Recall the notation P(s, t) =
∏

(s,t](I + dA) and let P∗(s, t) =
∏

(s,t](I + dA∗) be the matrix of
conditional transition probabilities Pjk(s, t|Z), j, k = 1, ...,K, with conditional cumulative hazards
A∗(du) = A(du|Z).
Let Yi

D(t) be the matrix with diagonal elements Y i
h(t) = I{X(t−) = h}, h = 1, ...,K and zeroes

elsewhere, and define

ȲD(t) =
1

n

n∑
i=1

Yi
D(t) =

1

n
YD(t).

The sample mean of the counting process matrix N(t) is given by N̄(t) = 1
n

∑n
i=1 Ni(t) = 1

nN(t).
The Yi

D(t) and the Ni(t) are i.i.d for i = 1, ..., n, so by the law of large numbers

Y(t) := lim
n→∞

ȲD(t) = E[Y1
D(t)]

and
N (t) := lim

n→∞
N̄(t) = E[N1(t)].

Write furthermore N (ds|Z) = EX|Z[N1(ds)|Z] and Y(s|Z) = EX|Z[Y1
D(s)|Z].
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Lemma 4.3.1.
√
n(π̂(n)(t)− π(t)) is asymptotically equivalent to 1√

n

∑n
i=1 Φi(t), and hence

π̂(n)(t) = π(t) +
1

n

n∑
i=1

Φi(t) + oP

(
1

n

)
,

where

Φi(t) = π(0)

∫ t

0

∏
(0,s)

(I + dA)Y−1(s)
(
Ni(ds)−Yi

D(s)A(ds)
)∏

(s,t]

(I + dA).

Proof. In Proposition 1 at the end of Chapter 3, the following asymptotic equivalence was given:

√
n(π̂(n)(t)− π(t)) ∼
√
nπ(0)

∫
s∈(0,t]

∏
(0,s)

(I + dA)
[
Y−1(s)

(
N̄−N

)
(ds)− Y−2(s)

(
ȲD − Y

)
(s)N (ds)

]∏
(s,t]

(I + dA).

This can be rewritten as

√
n(π̂(n)(t)− π(t)) ∼

1√
n

n∑
i=1

π(0)

∫
s∈(0,t]

∏
(0,s)

(I + dA)Y−1(s)
[
Ni(ds)− Y−1(s)Yi

D(s)N (ds)
]∏

(s,t]

(I + dA).

Because Y and Yi
D are diagonal, we can switch the order of multiplication, and Y−1(s)N (ds) =

E[Y−1
D (s)N(ds)] = A(ds). Then we have that

√
n(π̂(n)(t)− π(t)) ∼

1√
n

n∑
i=1

π(0)

∫ t

0

∏
(0,s)

(I + dA)Y−1(s)
(
Ni(ds)−Yi

D(s)A(ds)
)∏

(s,t]

(I + dA)

=
1√
n

n∑
i=1

Φi(t),

meaning that

√
n(π̂(n)(t)− π(t)) = (1 + oP (1))

1√
n

n∑
i=1

Φi(t),

so

π̂(n)(t) = π(t) +
1

n

n∑
i=1

Φi(t) + oP

(
1

n

)
.

Lemma 4.3.2. The pseudovalues satisfy

Ĵ ik(t) = πk(t) + Φi
k(t) + oP (1),

for i = 1, ..., n, and are independently and identically distributed.
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Proof. By Lemma 4.3.1

nπ̂(n)(t)− (n− 1)π̂(−i)(t) = nπ(t) +
n∑
i=1

Φi(t) + oP (1)− (n− 1)π(t)−
∑
j 6=i

Φj(t) + oP (1)

= π(t) + Φi(t) + oP (1).

And Ĵ ik(t) is the k-th element of nπ̂(n)(t)− (n− 1)π̂(−i)(t), so

Ĵ ik(t) = πk(t) + Φi
k(t) + oP (1).

Because πk(t) and Φi
k(t) do not depend on n, this can be written as Ĵ ik(t) = (πk(t)+Φi

k(t))(1+oP (1)),

from which it follows that Ĵ ik(t) is asymptotically equivalent to πk(t) + Φi
k(t). Φi

k(t) is a function

of Ni and Yi, which are i.i.d. for i = 1, ..., n. Hence, the Ĵ ik(t) are independently and identically
distributed.

Lemma 4.3.3.
π(0)

∏
(0,s)

(I + dA)Y−1(s)Y(s|Z) = π(0)P(0, s− |Z).

Proof.

π(0)
∏
(0,s)

(I + dA) = π(0)P(0, s−) = π(s−),

Y−1(s) is a diagonal matrix with elements

1

P(X(s−) = j, C ≥ s)
=

1

P(X(s−) = j)P(C ≥ s)
=

1

πj(s−)G(s−)
, j = 1, ...,K

by Assumption 6, and Y(s|Z) is diagonal with elements

P(X(s−) = j, C ≥ s|Z) = πj(s− |Z)G(s−), j = 1, ...,K.

Multiplication gives a vector with k-th element

πk(s−)πk(s− |Z)G(s−)

πk(s−)G(s−)
= πk(s− |Z).

This vector is equal to
π(s− |Z) = π(0)P(0, s− |Z).

Theorem 4.3.4. Let τ0 be a time point in T such that G(τ0) = P(C > τ0) > 0. Then, for

k = 1, ...,K, PE
k
B(t) is a consistent estimator for PEkB(t), for all t ∈ [0, τ0]:

PE
k
B(t)

P→ PEkB(t)

as n→∞.

46



Proof. By the Glivenko-Cantelli theorem, the empirical average in the expression for PE
k
B(t), con-

verges to the expected value:

PE
k
B(t)

P→EX,Z

[
Ĵ1
k (t) (1− 2π̂k(t|Z)) + π̂k(t|Z)2

]
= EZ

[
EX|Z

[
Ĵ1
k (t) (1− 2π̂k(t|Z)) + π̂k(t|Z)2|Z

]]
(tower property)

= EZ

[
EX|Z[Ĵ1

k (t)|Z] (1− 2π̂k(t|Z)) + π̂k(t|Z)2
]

(taking out what is known).

Using Lemma 4.3.2,
EX|Z[Ĵ1

k (t)|Z] = πk(t) + EX|Z[Φi
k(t)|Z] + oP (1).

EX|Z[Φi
k(t)|Z] is the k-th element of:

π(0)

∫ t

0

∏
(0,s)

(I + dA)Y−1(s)
(
EX|Z[N1(ds)|Z]− EX|Z[Y1

D(s)|Z]A(ds)
)∏

(s,t]

(I + dA). (4.3)

Recall the notation N (ds|Z) = EX|Z[N̄(ds)|Z] = EX|Z[N1(ds)|Z] and Y(s|Z) = EX|Z[ȲD(s)|Z] =
EX|Z[Y1

D(s)|Z]. Then (4.3) can be written as

π(0)

∫ t

0

∏
(0,s)

(I + dA)Y−1(s)Y(s|Z)
(
Y(s|Z)−1N (ds|Z)−A(ds)

)∏
(s,t]

(I + dA).

Furthermore, Y(s|Z)−1N (ds|Z) = A∗(ds), the cumulative hazard belonging to P∗. By Lemma
4.3.3 we can write (4.3) as

π(0)

∫ t

0
P∗(0, s−) (A∗(ds)−A(ds)) P(s, t) = π(0) (P∗(0, t)−P(0, t)) ,

where the last step follows from the Duhamel Equation (Theorem 3.2.2). This is the first row
of P∗(0, t) − P(0, t) (Assumption 5), containing the occupation probabilities πj(t|Z) − πj(t), j =
1, ...,K. Hence,

EX|Z[Ĵ1
k (t)|Z] = πk(t) + πk(t|Z)− πk(t) + oP (1) = πk(t|Z) + oP (1).

It follows that

PE
k
B(t)

P→EZ

[
πk(t|Z) (1− 2π̂k(t|Z)) + π̂k(t|Z)2

]
= EZ

[
EX|Z[I{X(t) = k}|Z] (1− 2π̂k(t|Z)) + π̂k(t|Z)2

]
= EX,Z

[
I{X(t) = k} (1− 2π̂k(t|Z)) + π̂k(t|Z)2

]
= PEkB(t).
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The consistency holds for the Kullback-Leibler prediction error as well.

Theorem 4.3.5. Let τ0 be a time point in T such that G(τ0) = P(C > τ0) > 0. Then, for

k = 1, ...,K, PE
k
KL(t) is a consistent estimator for PEkKL(t), for all t ∈ [0, τ0]:

PE
k
KL(t)

P→ PEkKL(t)

as n→∞.

Proof. By the Glivenko-Cantelli theorem, the empirical average in the expression for PE
k
KL(t),

converges to the expected value:

PE
k
KL(t)

P→EX,Z

[
Ĵ1
k (t) log π̂k(t|Z)

]
= EZ

[
EX|Z

[
Ĵ1
k (t) log π̂k(t|Z)|Z

]]
(tower property)

= EZ

[
EX|Z[Ĵ1

k (t)|Z] log π̂k(t|Z)
]

(taking out what is known).

By Theorem 4.3.4,
EX|Z[Ĵ1

k (t)|Z] = πk(t|Z) + oP (1).

It follows that

PE
k
KL(t)

P→EZ [πk(t|Z) log π̂k(t|Z)]

= EZ

[
EX|Z[I{X(t) = k}|Z] log π̂k(t|Z)

]
= EX,Z [I{X(t) = k} log π̂k(t|Z)]

= PEkKL(t).
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Chapter 5

Implementation in R

To illustrate the estimation of the prediction error, we have applied the methods discussed in the
previous chapter to two data sets in R [23]. We used the mstate package [26, 27] and the data sets
ebmt3 and ebmt4, included in this package. We will focus on the Brier prediction error and compare
the IPCW method with the pseudo-value approach in the case of static prediction. Additionally,
we study the error in dynamic predictions, using IPCW.

5.1 Data set 1

The ebmt3 data set contains data from 2204 patients that underwent a bone marrow transplantation
and is discussed in [21]. Events these patients can experience are platelet recovery, relapse or death.
There is also right censoring in this data set, also referred to as loss to follow-up. We assume
that this happens independently of the events and covariates. The recorded event times are the
time from transplantation to platelet recovery or last follow-up (censoring) and the time from
transplantation until relapse or death or last follow-up. The events are modelled as the multistate
model in Figure 5.1. The number of observed transitions is given for each of the three transitions.

Figure 5.1: The multistate model for ebmt3.

The data contain four covariates per patient: disease subclassification, age at transplant, donor-
recipient gender match and T-cell depletion. The number of individuals in each category is given
in Table 5.1.
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Covariate Category Number

Disease subclassification AML 853
ALL 447
CML 904

Age at transplant ≤ 20 419
20− 40 1057
> 40 728

Donor-recipient gender match No gender mismatch 1648
Gender mismatch 556

T-cell depletion No TCD 1928
TCD 276

Table 5.1: The covariates in ebmt3.

5.1.1 Static prediction with IPCW

First, we estimated the Brier prediction error for static prediction, using IPCW. The predictions
were derived by estimating the occupation probabilities with the Aalen-Johansen estimator. The

estimated occupation probabilities π̂
(n)
1 , π̂

(n)
2 and π̂

(n)
3 are plotted in Figure 5.2. Furthermore the

estimated censoring function Ĝ(n) is shown.

We compared nonparametric predictions, ignoring the covariates, with semi-parametric predictions,
where the covariates were included via a Cox regression model. We used the transition-stratified
model from Equation (3.3):

αhj(t|Z) = αhj,0(t) exp(β>Zhj).

For each value z of the covariates, we computed π̂
(n)
k (s|Z = z), k = 1, 2, 3. These are plotted for

different values of Z in Figure 5.3. For every patient i = 1, ..., 2204, π̂
(n)
k (s|zi) is the prediction

corresponding to the covariates zi of this patient. The regression coefficients are in Table 5.2, with
their standard errors and p-values.

The estimator for the prediction error was given in Section 4.2.1:

P̂EB(s) =
1

n

K∑
k=1

n∑
i=1

w(s, t̃i, x̃i(s), Ĝ(n), zi)
(
I{x̃i(s) = k} − π̂(n)

k (s|zi)
)2
, (5.1)

where

w(s, t̃i, x̃i(s), Ĝ(n), zi) =
I{t̃i ≤ s, x̃i(s) 6= 0}
Ĝ(n)(t̃i − |zi)

+
I{t̃i > s}
Ĝ(n)(s|zi)

.

We assume that censoring is independent of the covariates, because this assumption is also made
when using pseudo-values. Then Ĝ(n)(s|z) = Ĝ(n)(s). And for our data set, n = 2204 and K = 3.
The prediction error is estimated in the same sample as the predictive distribution.
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Figure 5.2: Nonparametrically estimated occupation probabilities and censoring function.
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Figure 5.3: Semi-parametrically estimated occupation probabilities for different values of the co-
variates.
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In Figure 5.4, the red line gives P̂E
non

, the estimated prediction error for nonparametric predictions

π̂
(n)
k (s), and the green line represents P̂E

semi
, for semi-parametric predictions π̂

(n)
k (s|z). The plot

shows that the covariates have predictive value, because the estimated prediction error is smaller
when including them in the predictions. The plot on the right shows the relative reduction in
prediction error:

PE reduction =
P̂E

non
− P̂E

semi

P̂E
non .

After five years, the amount of noise in the curves increases, because the probability to have been
censored by that time is almost 0.8, so many terms in P̂E have a weight of 0.

Figure 5.4: Brier prediction error for static prediction, estimated using IPCW (left), and the relative
reduction (right).

We have also plotted the prediction error P̂E
k

B for each state (k = 1, 2, 3) separately in Figure 5.5.

P̂E
k

B(s) =
1

n

n∑
i=1

w(s, t̃i, x̃i(s), Ĝ(n), zi)
(
I{x̃i(s) = k} − π̂(n)

k (s|zi)
)2
.

The prediction error decreases for the transient states 1 and 2 and increases for the absorbing state
3. In state 1, the shape of the curve becomes irregular after four years. This can be caused by the
fact that the number of individuals occupying state 1 becomes very small after four years.
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Figure 5.5: Static prediction error, estimated with IPCW, for each state.
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5.1.2 Static prediction with pseudo-values

With IPCW, the amount of data we use becomes small when a large portion of the individuals
has been censored. This can lead to a poor estimate of the prediction error. We do not have this
problem when we use pseudo-values, discussed in Section 4.3. We estimate the prediction error as

PEB(s) =
1

n

K∑
k=1

n∑
i=1

Ĵ ik(s)
(
1− 2π̂k(s|zi)

)
+ π̂k(s|zi)2,

where
Ĵ ik(s) = nπ̂

(n)
k (s)− (n− 1)π̂

(−i)
k (s).

The estimated prediction error curves are plotted in Figure 5.6.

Figure 5.6: Brier prediction error for static prediction, estimated using pseudo-values (left), and
the relative reduction (right).

The curves are almost the same as the curves obtained by using IPCW. But after four years,
the pseudo-value curve stays smoother than the IPCW curve. The behaviour of the pseudo-value
estimator is preferable. In Figure 5.7 the prediction error is plotted for each state separately:

PE
k
B(s) =

1

n

n∑
i=1

Ĵ ik(s)
(
1− 2π̂k(s|zi)

)
+ π̂k(s|zi)2, k = 1, 2, 3.
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Figure 5.7: Static prediction error, estimated with pseudo-values, for each state.

The difference between the two curves is small in state 1. This means that the predictions do not
improve much when including the covariates. The covariates have a larger effect on predictions
in state 2 and 3. The curves are very similar to the ones obtained with IPCW. However, the
behaviour stays more regular towards the end of the study. There is less noise in the estimation
with pseudo-values.
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Cross-validation

When we estimate the prediction error with the data that was used to derive the predictions, it is
possible that we underestimate the prediction error. The predictions will be closer to the data from
which they were derived than to new observations. Therefore, it is better to use cross-validation.
We divide the sample of size 2204 randomly into a testing sample of size n = 730 and a training
sample of size 1474, approximately 1/3 and 2/3 of the total size. The predictions are derived in the
training sample and the pseudo-values are calculated in the testing sample, where the prediction
error is estimated. To get the best result, this procedure should be repeated with different groupings
of the data into testing and training samples, and then taking the average of the outcomes. Here,
we choose to perform the division only once, to reduce the computational time. The results are
plotted in Figure 5.8.

Figure 5.8: Brier prediction error for static prediction (left), and the relative reduction (right),
estimated using pseudo-values and cross-validation.

If we compare Figure 5.6 with Figure 5.8, we see that the difference is very small. The predictive
model has not been strongly overfitted to the data.
Figure 5.9 contains the plots for the separate states.
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Figure 5.9: Static prediction error for each state, estimated using pseudo-values and cross-
validation.
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5.1.3 Dynamic prediction with IPCW

Now we will illustrate the case of dynamic prediction. Let R(r) be the risk set at time r, containing
the patients with t̃i ≥ r. An estimator for the prediction error is then

P̂EB(r, s) =
1

|R(r)|

K∑
k=1

∑
i∈R(r)

w(r, s, t̃i, x̃i(s), Ĝ(n), zi)

I{x̃i(s) = k} −
K∑
j=1

I{x̃i(r) = j}P̂ (n)
jk (r, s|zi)

2

,

where

w(r, s, t̃i, x̃i(s), Ĝ(n), zi) =
I{t̃i ≤ s, x̃i(s) 6= 0}

Ĝ(n)(t̃i − |zi)/Ĝ(n)(r − |zi)
+

I{t̃i > s}
Ĝ(n)(s|zi)/Ĝ(n)(r − |zi)

,

and we assume that censoring is independent of the covariates, so that Ĝ(n)(s|zi) = Ĝ(n)(s).

Window of fixed width

We will first look at fixed-width predictions, where s = r + w, for some fixed w. We compute
P̂EB(r, r + w), for different values of r. In Figure 5.10, we took w = 3 years and made predictions
from time origins r = 0.0, r = 0.2, r = 0.4, r = 0.6, r = 0.8, r = 1.0, r = 1.2 and r = 1.6. The
predictions are Aalen-Johansen estimates, and the error is estimated in the same sample. The time
axis represents the time when the prediction is made (r). We took most time origins in the first
year after transplant, because this is the time period when platelet recovery is most likely to occur,
as can be seen in Figure 5.2.

Figure 5.10: Brier prediction error for dynamic prediction with window of 3 years, estimated using
IPCW (left), and the relative reduction (right).

The prediction error decreases in time. This makes sense, because predictions based on more
information will be more accurate.
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The estimated prediction errors for each state are shown in Figure 5.11. As before, we see that the
effect of the covariates is small for predictions in state 1, and somewhat larger in the other states.

Figure 5.11: Brier prediction error for dynamic prediction with fixed window per state.
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Fixed horizon

We take a quick look at dynamic prediction with a fixed horizon. In this case, predictions are made
for a fixed time s, from different time origins smaller than s. For the plots in Figure 5.12, we took
as time horizon s = 3 years, and as time origins r = 0.0, r = 0.2, r = 0.4, r = 0.6, r = 0.8, r = 1.0,
r = 1.2, r = 1.6, and r = 2.0 years.

Figure 5.12: Brier prediction error for dynamic prediction with horizon of 3 years, estimated using
IPCW (left), and the relative reduction (right).

The estimated prediction errors at r = 0.0 are the same as in the case of a fixed window of 3 years.
After that, the prediction error for fixed-horizon predictions becomes smaller than for fixed-window
predictions. This is reasonable, because when the horizon is fixed, the gap between the time origin
(r) and the prediction time (s) decreases as r increases. When the predictions are made with a
window of fixed width, the gap between r and s = r+w stays the same. Predictions are naturally
more accurate when the time for which we make the prediction is closer to the present.
Looking at the plot of the reduction in prediction error in Figure 5.12, we see that the influence of
the covariates becomes smaller for later time origins. For short-term predictions, the information
about the current state has more predictive value than the time-fixed covariates.
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Covariate Category Observed number

Donor-recipient gender match no gender mismatch 1734
gender mismatch 545

Prophylaxis no 1730
yes 549

Year of transplant 1985-1989 634
1990-1994 896
1995-1998 749

Age at transplant ≤ 20 551
20− 40 1213
> 40 515

Table 5.3: The covariates in ebmt4.

5.2 Data set 2

In addition, we performed the calculations for static prediction with a different data set: ebmt4,
discussed in [27]. This data set contains the event times of 2279 leukaemia patients after bone
marrow transplantation. The recorded covariates are in Table 5.3. The times from transplantation
until the following events are observed: recovery, adverse event, relapse and death. The adverse
event can for example be Acute Graft-versus-Host Disease. The events are modelled as in Figure
5.13. The number of observations for each transition is given there as well.

Figure 5.13: The multistate model for ebmt4 and the observed transitions.

Figure 5.14 shows the estimated occupation probabilities for the six states. The covariates are
included by modelling the hazards with a transition-stratified Cox regression model. The regression
coefficients and their standard errors are given in Table 5.4, taken from [27].
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Figure 5.14: Estimated occupation probabilities.
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5.2.1 Static prediction with IPCW

The prediction error for nonparametric predictions is estimated as

P̂E
non

B (s) =
1

n

K∑
k=1

n∑
i=1

w(s, t̃i, x̃i(s), Ĝ(n))
(
I{x̃i(s) = k} − π̂(n)

k (s)
)2
,

where

w(s, t̃i, x̃i(s), Ĝ(n)) =
I{t̃i ≤ s, x̃i(s) 6= 0}

Ĝ(n)(t̃i−)
+

I{t̃i > s}
Ĝ(n)(s)

.

For semi-parametric predictions, it is estimated as

P̂E
semi

B (s) =
1

n

K∑
k=1

n∑
i=1

w(s, t̃i, x̃i(s), Ĝ(n), zi)
(
I{x̃i(s) = k} − π̂(n)

k (s|zi)
)2
,

with

w(s, t̃i, x̃i(s), Ĝ(n), zi) =
I{t̃i ≤ s, x̃i(s) 6= 0}
Ĝ(n)(t̃i − |zi)

+
I{t̃i > s}
Ĝ(n)(s|zi)

.

Figure 5.15: Brier prediction error for static prediction, estimated using IPCW (left), and the
relative reduction (right).

We notice that the prediction error is quite large for this data set. The curve for semi-parametric
predictions becomes very irregular after six years. This is caused by the covariate-dependent
weights. The estimation of G(s|z) is done by dividing the data into groups with the same value of
the covariates. When there has already been a lot of censoring, the groups become too small to get
a good estimate. In Figure 5.16, the estimated prediction error is plotted for each state separately.
The predictive power of the covariates is only notable in state 6. The differences in the other states
are mainly caused by the different weights.
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Figure 5.16: Static prediction error, estimated with IPCW, for each state.
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5.2.2 Static prediction with pseudo-values

The prediction error curves for static predictions, estimated with pseudo-values, are plotted in
Figure 5.17. The reduction in prediction error when including covariates, compared to the non-
parametric case, is very small. The covariates do not seem to have a significant effect on the
predictions in the current data set.

Figure 5.17: Brier prediction error for static prediction, estimated using pseudo-values (left), and
the relative reduction (right).

To take a closer look, we have computed the prediction error PE
k
B for each state k = 1, ..., 6

separately. The results are shown in Figure 5.18. The difference between the red and the green line
is only clearly visible in state 6, as observed in the previous section as well.
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Figure 5.18: Static prediction error per state, estimated using pseudo-values.
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Cross-validation

We have performed cross-validation by dividing the sample of size 2279 into a testing sample of
size n = 750 and a training sample of size 1529. The result is in Figure 5.19. For nonparametric
predictions, the difference with the curve in Figure 5.17 is very small. For semi-parametric predic-
tions, the effect of cross-validation is larger. The semi-parametric predictive model is derived by
dividing the data into groups with the same value of the covariates. These groups can be small,
which makes the model more sensitive to overfitting. Overfitting leads to underestimation of the
prediction error when no cross-validation is applied.

Figure 5.19: Brier prediction error for static prediction (left) and the relative reduction (right),
estimated using pseudo-values and cross-validation.

When we look at the prediction error per state in Figure 5.20, the effect of the covariates is hardly
visible. Even in state 6, the lines are very close together. We can conclude that, for the ebmt4
data, incorporation of the covariates via the Cox model used here does not improve the predictions
much.
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Figure 5.20: Static prediction error per state, estimated using pseudo-values.
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Chapter 6

Discussion

Concluding remarks

In this thesis we have given a review of the methods to derive predictions from time-to-event data.
These methods can be used in hospitals to get more insight into the process of recovery after a
treatment, for example. We have discussed the most detailed form into which the data can be
modelled: a multistate model. The mathematical theory about these models is based on counting
processes and was developed mostly by Andersen et al. [3].

The goal of the thesis was to find a way to assess the accuracy of predictions derived in the
multistate model. Earlier work regarding this topic concentrated on specific types of multistate
models, the most complicated being a competing risks model with time-dependent covariates, stud-
ied by Cortese et al. [8]. We have adapted measures suggested in [15] so they can be applied to
general multistate models, in our case with only time-fixed covariates. The measures are based on
scoring rules used in climatology: the Brier score and the Kullback-Leibler score. With the help of
theory about scoring rules [14], we proved the properness of our measures. This is needed to make
sure that better predictions receive a lower prediction error.

We investigated how to estimate the prediction error from independently right-censored data. We
derived estimators using Inverse Probability of Censoring Weighting for static and dynamic predic-
tion. The estimator for the Brier prediction error with IPCW for static prediction turned out to
be very similar to the one for competing risks in [25]. To proof the consistency of the estimators,
we followed the proof of [25], making the necessary adjustments.
For small data sets, IPCW has disadvantages, because less and less data is used when the number
of censored individuals increases. To avoid this, we proposed an estimator using pseudo-values for
the case of static prediction. This estimator is an extension of the one for competing risks models
with time-dependent covariates, given in [8]. We proved the consistency of this estimator as well,
so that we are sure that the estimated prediction error becomes closer to the real one if we estimate
with more data.

In the last chapter, we estimated the Brier prediction error with data from the mstate pack-
age [27] in R [23]. In the first data set, we saw that the predictions improved when we included
the effect of covariates. The covariates were included by using a Cox model stratified by transition.
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In the second data set, the influence of the covariates on the predictions was small. We noticed
that the IPCW estimator with covariate-dependent weights behaves not so well when the degree
of censoring becomes too large. Estimation with pseudo-values was less sensitive to noise. To rule
out the effect of overfitting, we repeated the pseudo-value method with cross-validation, but this
did not make a major difference.
For the first data set, we gave the results for dynamic predictions. Because this procedure is
computationally demanding, the prediction error was only calculated for a few time points. We
observed that the error decreases in time, in contrast to the error in static predictions. This meets
the expectation that predictions will be more accurate when more information becomes available.
Every time we make a dynamic prediction, we use updated information about the process. When
making predictions close to a fixed horizon, we noticed that the predictive value of the updated
information overshadowed the influence of the time-fixed covariates.

Future work

An extension to the research in this thesis is the inclusion of time-dependent covariates. Some
time-dependent covariates can be categorized and then modelled as intermediate states in the mul-
tistate model. When this is not possible, they have to be included in another way, for example by
using the technique of landmarking. Cortese et al. [8] have done this for competing risks models,
so their work can be used as a starting point to derive results for multistate models.
Another idea is to investigate how to handle the presence of other types of censoring, because we
only studied independent right censoring. It would further be useful to derive confidence intervals
for the estimated prediction errors.

In the implementation in R, some improvements can be made. We estimated the prediction er-
ror in the same sample as the predictive distribution. We have only applied a simple form of
cross-validation to the estimation with pseudo-values. It has not been extended because of the
computational intensity.
The R code for dynamic prediction is very slow and can be improved. There already exists a package
dynpred [22] for dynamic predictions in survival and competing risks models with time-dependent
covariates, but this was not sufficient for our purpose. The reason our code is so slow is because of
the long loops. To speed up the computations, a possibility is to perform the loops in C [20] and
use the output for further computations in R.
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Appendix A

R code

This appendix contains the R code used in Chapter 5.

A.1 Static prediction with IPCW

library(mstate)

library(dynpred)

# Prepare data

data(ebmt3)

tmat3 <- transMat(x = list(c(2, 3), c(3),c()), names = c("Tx", "PR", "RelDeath"))

covs3 <- c("dissub", "age", "drmatch", "tcd")

msbmt3 <- msprep(data = ebmt3, trans = tmat3, time = c(NA, "prtime", "rfstime"),

status = c(NA, "prstat", "rfsstat"), keep = covs3)

msbmt3[ ,c("Tstart", "Tstop", "time")] <- msbmt3[ , c("Tstart","Tstop", "time")]/365.25

msbmt3 <- expand.covs(msbmt3, covs3, longnames = FALSE)

# Fit Cox model without covariates

c0 <-coxph(Surv(Tstart, Tstop, status) ~ strata(trans), data = msbmt3,method="breslow")

msf0 <- msfit(object = c0, variance=F, trans = tmat3)

# Predict transition probabilities

pt0 <- probtrans(msf0, predt=0, variance=F, covariance=F)

tp <- pt0[[1]]$time[1:499] # vector of prediction times

t.last <- vector(length=2204) # vector of last transition times/censoring times

for(i in 1:2204){t.last[i] <- max(msbmt3[msbmt3$id==i,’Tstop’])}

delta<-vector(length=2204) # vector of last event status

for(i in 1:2204){delta[i] <- sum(msbmt3[msbmt3$id==i & msbmt3$Tstop==t.last[i],

’status’])}

#--------------------------------------------------------------------------------------

#’state(i)’ gives the state (1,2,3) individual i is in at each time point in ’tp’

# and 0 if it has been censored at that time point

state <- function(i)

{x <- c(unique(msbmt3$Tstart[msbmt3$id==i]), t.last[i])

st <- vector(length=length(x))

for(j in 1:length(x)-1){

74



st[j]<-unique(msbmt3[msbmt3$id==i&msbmt3$Tstart==x[j],’from’])}

if(delta[i]==0){st[length(x)]<-0} else

{st[length(x)] <-

msbmt3[msbmt3$id==i & msbmt3$Tstop==t.last[i] & msbmt3$status==1,’to’]}

evalstep(x, st, tp, subst=1, to.data.frame=F)}

#--------------------------------------------------------------------------------------

# Nonparametric (without covariates)

#--------------------------------------------------------------------------------------

pi.hat <- data.matrix(pt0[[1]][,2:4]) # predicted probabilities

# ’difference[[i]]’ gives ’observation - prediction’ for individual i

# at time points ’tp’

difference<-list(length=2204)

for(i in 1:2204){difference[[i]] <- matrix(nrow=length(tp),ncol=3)

sta <- state(i)

for(j in 1:length(tp))

{if(sta[j]==0){difference[[i]][j,]<-c(0,0,0)} else

{wk<-sta[j]

yyy<-vector(length=3)

yyy[wk]<-1

yyy[setdiff(1:3,wk)]<-0

difference[[i]][j,]<-yyy-pi.hat[j, ]}}}

#--------------------------------------------------------------------------------------

# Inverse Probability of Censoring Weights

cens <- 1 - delta # indicates censoring

cen.data <- data.frame(id=1:2204, t.last, cens)

cen.surv <- Surv(t.last, cens)

sf <- survfit(cen.surv~1) # estimated ’survival’ probabilities for censoring

G.hat <- function(s) # censoring function P(C>s)

{tm <- max(sf$time[sf$time<=s])

sf$surv[sf$time==tm]}

G.hat.min <- function(s) # censoring function P(C>s-)

{tmm <- max(sf$time[sf$time<s])

sf$surv[sf$time==tmm]}

weight <- function(i,s) # IPCW for individual i at time s

{if (t.last[i]<=s & delta[i]==1){1/G.hat.min(t.last[i])} else

{if (t.last[i]>s){1/G.hat(s)} else {0}}}

# weight.vec[[i]] is a vector with weights for individual i at times ’tp’

weight.vec <- list()

for(i in 1:2204){

x <- c(sf$time[sf$time<t.last[i]], t.last[i])

we.v <- vector(length=length(x))

for(j in 1:length(x)){we.v[j] <- weight(i, x[j])}

weight.vec[[i]] <- evalstep(x, we.v, tp, subst=1, to.data.frame=F)}

#--------------------------------------------------------------------------------------

# Prediction error

perror <- vector(length=length(tp))

for(j in 1:length(tp)){
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pf <- vector(length=2204)

for(i in 1:2204){if (weight.vec[[i]][j]==0){pf[i]<-0} else

{pf[i] <- drop(difference[[i]][j,]%*%difference[[i]][j,]) * weight.vec[[i]][j]}}

perror[j]<-mean(pf)}

plot(perror~tp,type="l",col="red",xlab="Time in years",ylab="Prediction error")

#--------------------------------------------------------------------------------------

# Semi-parametric (with covariates)

#--------------------------------------------------------------------------------------

# Cox model with covariates

cfull <- coxph(Surv(Tstart, Tstop, status) ~ dissub1.1 + dissub1.2 + dissub1.3 +

dissub2.1 + dissub2.2 + dissub2.3 + drmatch.1 + drmatch.2 + drmatch.3

+ tcd.1 + tcd.2 + tcd.3 + age1.1 + age1.2 + age1.3 + age2.1 + age2.2

+ age2.3 + strata(trans), data = msbmt3, method = "breslow")

# ’eg’ gives all 36 combinations of covariates

eg <- expand.grid(dis=c("AML","ALL","CML"), age=c("<=20","20-40",">40"),

tcd=c("No TCD","TCD"), drm=c("No gender mismatch","Gender mismatch"))

wh<-list() # which row in ’msbmt3’ has which covariate combination

for(l in 1:36){wh[[l]] <- which(msbmt3$dissub==eg$dis[l] & msbmt3$age==eg$age[l]

& msbmt3$tcd==eg$tcd[l] & msbmt3$drmatch==eg$drm[l])}

pat<-list() # which patient has which covariate combination

for(l in 1:36){pat[[l]] <-

unique(msbmt3$id[msbmt3$dissub==eg$dis[l] & msbmt3$age==eg$age[l]

& msbmt3$tcd==eg$tcd[l] & msbmt3$drmatch==eg$drm[l]])}

#--------------------------------------------------------------------------------------

# Predict occupation probabilities for every covariate combination

ptf0 <- list(length=36)

for(l in 1:36){

pal <- msbmt3[rep(wh[[l]][1], 3), 9:12]

pal$trans <- 1:3

attr(pal, "trans") <- tmat3

pal <- expand.covs(pal, covs3, longnames = FALSE)

pal$strata <- pal$trans

msfl <- msfit(cfull, pal, trans = tmat3)

ptf0[[l]]<-

data.matrix(probtrans(msfl, predt=0, variance=F, covariance=F)[[1]][,2:4])}

dif <- list(length=2204) # Observation - prediction

for(l in 1:36){

for(i in pat[[l]]){dif[[i]] <- matrix(nrow=length(tp),ncol=3)

sta<-state(i)

for(j in 1:length(tp))

{if(sta[j]==0){dif[[i]][j,]<-c(0,0,0)} else

{wk<-sta[j]

yyy<-vector(length=3)

yyy[wk]<-1

yyy[setdiff(1:3,wk)]<-0

dif[[i]][j,]<-yyy-ptf0[[l]][j, ]}}}}
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#--------------------------------------------------------------------------------------

# Prediction error with covariates

pferror <- vector(length=length(tp))

for(j in 1:length(tp)){

pff <- vector(length=2204)

for(i in 1:2204){if (weight.vec[[i]][j]==0){pff[i] <- 0} else

{pff[i] <- drop(dif[[i]][j,]%*%dif[[i]][j,]) * weight.vec[[i]][j]}}

pferror[j] <- mean(pff)}

lines(pferror~tp,col="darkgreen")

#--------------------------------------------------------------------------------------

# Reduction in prediction error

#--------------------------------------------------------------------------------------

PEred<-1-pferror/perror

plot(PEred~tp,type="l",col="blue",xlab="Time in years",ylab="PE reduction")

#--------------------------------------------------------------------------------------

# For each state separately

#--------------------------------------------------------------------------------------

# Nonparametric prediction error for state k

perrork<-function(k){

pek<-vector(length=length(tp))

for(j in 1:length(tp)){

pf<-vector(length=2204)

for(i in 1:2204){if (weight.vec[[i]][j]==0){pf[i]<-0} else

{pf[i]<-difference[[i]][j,k]^2*weight.vec[[i]][j]}}

pek[j]<-mean(pf)}

pek}

# Semi-parametric prediction error for state k

pferrork<-function(k){

pfek<-vector(length=length(tp))

for(j in 1:length(tp)){

pff<-vector(length=2204)

for(i in 1:2204){if (weight.vec[[i]][j]==0){pff[i]<-0} else

{pff[i]<-dif[[i]][j,k]^2*weight.vec[[i]][j]}}

pfek[j]<-mean(pff)}

pfek}

# Plots for state 1, 2, 3 and total

par( mfrow = c( 2, 2 ) )

plot(perrork(1)~tp, type="l", col="red", xlab="Time in years",

ylab="Prediction error", main="State 1 (Transplant)")

lines(pferrork(1)~tp, col="darkgreen")

plot(perrork(2)~tp, type="l", col="red", xlab="Time in years",

ylab="Prediction error", main="State 2 (Platelet Recovery)")

lines(pferrork(2)~tp, col="darkgreen")

plot(perrork(3)~tp, type="l", col="red", xlab="Time in years",

ylab="Prediction error", main="State 3 (Relapse or Death)")

lines(pferrork(3)~tp, col="darkgreen")

plot(perror~tp, type="l", col="red", xlab="Time in years",

ylab="Prediction error", main="Total")

lines(pferror~tp, col="darkgreen")

77



A.2 Static prediction with pseudo-values and cross-validation

The first part of the code is the same as in A.1.

library(mstate)

...

delta<-vector(length=2204)

for(i in 1:2204){delta[i] <- sum(msbmt3[msbmt3$id==i & msbmt3$Tstop==t.last[i],

’status’])}

#--------------------------------------------------------------------------------------

# Predict occupation probabilities in random testsample of size 730

tstsmpl0<-sample(1:2204,size=730,replace=F)

msbmtps<-msbmt3[msbmt3$id%in%tstsmpl0,]

cps<-coxph(Surv(Tstart, Tstop, status)~strata(trans), data=msbmtps, method="breslow")

msfps <- msfit(object = cps,variance=F, trans = tmat3)

pi.hatps<-data.matrix(probtrans(msfps,predt=0,variance=F,covariance=F)[[1]])[,2:4]

tpps<-probtrans(msfps,predt=0,variance=F,covariance=F)[[1]]$time

pi.hps<-evalstep(tpps, pi.hatps, tp, subst=0, to.data.frame=F)

# Calculate pseudo-values in testsample

pv<-list(length=2204)

for(i in tstsmpl0)

{dt<-msbmtps[msbmtps$id!=i,]

cp<-coxph(Surv(Tstart, Tstop, status)~strata(trans), data=dt, method="breslow")

ms<-msfit(object = cp,variance=F, trans = tmat3)

pr<-probtrans(ms,predt=0,variance=F,covariance=F)

ph<-data.matrix(pr[[1]])[,2:4]

tm<-pr[[1]]$time

pihat<-evalstep(tm, ph, tp, subst=0, to.data.frame=F)

pv[[i]]<-730*pi.hps-729*pihat}

# Training set= patients not in testsample

training<-setdiff(1:2204,tstsmpl0)

msbmttr<-msbmt3[msbmt3$id%in%training,]

#--------------------------------------------------------------------------------------

# Nonparametric (no covariates)

#--------------------------------------------------------------------------------------

# Cox model without covariates, fitted in training set

ctr<-coxph(Surv(Tstart, Tstop, status)~strata(trans), data=msbmttr, method = "breslow")

# Predict occupation probabilities in training set

msftr <- msfit(object = ctr,variance=F, trans = tmat3)

prtr<-probtrans(msftr,predt=0,variance=F,covariance=F)

pi.htr<-data.matrix(prtr[[1]])[,2:4]

tmtr<-prtr[[1]]$time

pi.h<-evalstep(tmtr, pi.htr, tp, subst=0, to.data.frame=F)

# Prediction error

prederr<-vector(length=length(tp))

prederr[1]<-0

for(j in 2:length(tp)){

pe<-vector(length=730)
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for(i in 1:730){

pe[i]<-drop(pv[[tstsmpl0[i]]][j,]%*%(1-2*pi.h[j,]))+drop(pi.h[j,]%*%pi.h[j,])}

prederr[j]<-mean(pe)}

plot(prederr~tp,type="l",col="red")

#--------------------------------------------------------------------------------------

# Semi-parametric (with covariates)

#--------------------------------------------------------------------------------------

# Cox model with covariates, fitted in training set

cfulltr <- coxph(Surv(Tstart, Tstop, status) ~ dissub1.1 + dissub1.2 + dissub1.3 +

dissub2.1 + dissub2.2 + dissub2.3 + drmatch.1 + drmatch.2 + drmatch.3

+ tcd.1 + tcd.2 + tcd.3 + age1.1 + age1.2 + age1.3 + age2.1 + age2.2

+ age2.3 + strata(trans), data = msbmttr, method = "breslow")

# All 36 combinations of covariates

eg<-expand.grid(dis=c("AML","ALL","CML"),age=c("<=20","20-40",">40"),

tcd=c("No TCD","TCD"),drm=c("No gender mismatch","Gender mismatch"))

wh<-list() # which row in msbmt3 has which covariate combination

for(l in 1:36){wh[[l]]<-which(msbmt3$dissub==eg$dis[l]&msbmt3$age==eg$age[l]&

msbmt3$tcd==eg$tcd[l]&msbmt3$drmatch==eg$drm[l])}

pat<-list() # which patient has which combination

for(l in 1:36){

pat[[l]]<-unique(msbmt3$id[msbmt3$dissub==eg$dis[l]&msbmt3$age==eg$age[l]&

msbmt3$tcd==eg$tcd[l]&msbmt3$drmatch==eg$drm[l]])}

# Predict occupation probabilities for 36 covariate combinations in training set

pt.h<-list(length=36)

for(l in 1:36){

pal <- msbmt3[rep(wh[[l]][1], 3), 9:12]

pal$trans <- 1:3

attr(pal, "trans") <- tmat3

pal <- expand.covs(pal, covs3, longnames = FALSE)

pal$strata <- pal$trans

msfc <- msfit(cfulltr, pal, trans = tmat3)

prtr<-probtrans(msfc,predt=0,variance=F,covariance=F)

ptf0c<-data.matrix(prtr[[1]])[,2:4]

tmtr<-prtr[[1]]$time

pt.h[[l]]<-evalstep(tmtr, ptf0c, tp, subst=0, to.data.frame=F)}

# Prediction error with covariates

prederc<-vector(length=length(tp))

prederc[1]<-0

for(j in 2:length(tp)){

pef<-vector(length=730)

for(l in 1:36){

indx<-intersect(pat[[l]],tstsmpl0)

if(length(indx)==0){next} else

{for(i in indx){wi<-which(tstsmpl0==i)

pef[wi]<-drop(pv[[i]][j,]%*%(1-2*pt.h[[l]][j,]))+

drop(pt.h[[l]][j,]%*%pt.h[[l]][j,])}}}

prederc[j]<-mean(pef)}
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lines(prederc~tp,col="darkgreen")

#--------------------------------------------------------------------------------------

# Reduction in prediction error

red<-1-prederc/prederr

plot(red~tp,type="l",col="blue",xlab="Time in years", ylab="PE reduction")

A.3 Dynamic prediction with IPCW

A.3.1 Window of fixed width

library(mstate)

...

delta<-vector(length=2204)

for(i in 1:2204){delta[i] <- sum(msbmt3[msbmt3$id==i & msbmt3$Tstop==t.last[i],

’status’])}

#--------------------------------------------------------------------------------------

tlm<-c(0,0.2,0.4,0.6,0.8,1,1.2,1.6,2) # prediction time points

w<-3 # width of time window (predictions for w years later)

tps<-c(tlm,tlm+w) # time points

#’state[[i]]’ gives the state individual i is in at each time point in ’tps’

# and 0 if it has been censored at that time point

state<-list(length=2204)

for(i in 1:2204)

{x<-c(unique(msbmt3$Tstart[msbmt3$id==i]),t.last[i])

st<-vector(length=length(x))

for(j in 1:length(x)-1){

st[j]<-unique(msbmt3[msbmt3$id==i&msbmt3$Tstart==x[j],’from’])}

if(delta[i]==0){st[length(x)]<-0} else

{st[length(x)]<-msbmt3[msbmt3$id==i&msbmt3$Tstop==t.last[i]&msbmt3$status==1,’to’]}

state[[i]]<- evalstep(x, st, tps, subst=1, to.data.frame=F)}

# IPCW

weight0<-function(i,s) # IPCW for individual i at time s

{if (t.last[i]<=s&delta[i]==1){1/G.hat.min(t.last[i])} else

{if (t.last[i]>s){1/G.hat(s)} else {0}}}

weight<-function(i,r,s) # IPCW for individual i at time s, conditional on time r

{if (t.last[i]<=s&delta[i]==1){G.hat.min(r)/G.hat.min(t.last[i])} else

{if (t.last[i]>s){G.hat.min(r)/G.hat(s)} else {0}}}

wght<-list() # list of weights at times ’tlm’

for(i in 1:2204){

x<-c(sf$time[sf$time<t.last[i]],t.last[i])

we.v<-vector(length=length(x))

we.v[1]<-weight0(i,w)

if(length(x)>1){for(j in 2:length(x)){we.v[j]<-weight(i,x[j],x[j]+w)}}

wght[[i]]<-evalstep(x, we.v, tlm, subst=we.v[1], to.data.frame=F)}

#--------------------------------------------------------------------------------------

# No covariates
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#--------------------------------------------------------------------------------------

# Transition probabilities starting at time s

pt<-function(s){probtrans(msf0,predt=s,variance=F,covariance=F)}

# Predicted transition probabilities from time ’tlm’ to ’tlm+w’

prd2<-list(length=2204)

for(i in 1:2204){

lng<-max(which(tlm<=t.last[i]))

prd2[[i]]<-matrix(nrow=lng,ncol=3)

for(j in 1:lng){

js<-which(tps==tlm[j])

st<-state[[i]][js]

pr<-pt(tlm[j])[[st]]

jw<-min(which(pr$time>=tlm[j]+w))

prd2[[i]][j,]<-data.matrix(pr)[jw,2:4]}}

# Prediction error at time points ’tlm’ for ’w’ years later

PE.dyn<-vector(length=length(tlm))

for(j in 1:length(tlm)){

risk<-which(t.last>=tlm[j])

ped<-vector(length=length(risk))

for(i in risk){

tw<-which(tps==tlm[j]+w)

st2<-state[[i]][tw]

wc<-which(risk==i)

if (st2==0){ped[wc]<-0} else

{yyy<-vector(length=3)

yyy[st2]<-1

yyy[setdiff(1:3,st2)]<-0

ped[wc]<-drop((yyy-prd2[[i]][j,])%*%(yyy-prd2[[i]][j,]))*wght[[i]][j]}}

PE.dyn[j]<-mean(ped)}

plot(PE.dyn~tlm,type="l",col="red",xlab="Time origin",ylab="Prediction error")

#--------------------------------------------------------------------------------------

# With covariates

#--------------------------------------------------------------------------------------

cfull <- coxph(Surv(Tstart, Tstop, status) ~ dissub1.1 + dissub1.2 + dissub1.3 +

dissub2.1 + dissub2.2 + dissub2.3 + drmatch.1 + drmatch.2 + drmatch.3

+ tcd.1 + tcd.2 + tcd.3 + age1.1 + age1.2 + age1.3 + age2.1 + age2.2

+ age2.3 + strata(trans), data = msbmt3, method = "breslow")

# Covariate combinations

eg<-expand.grid(dis=c("AML","ALL","CML"),age=c("<=20","20-40",">40"),

tcd=c("No TCD","TCD"),drm=c("No gender mismatch","Gender mismatch"))

wh<-list() # which row in msbmt3 has which combination

for(l in 1:36){wh[[l]]<-which(msbmt3$dissub==eg$dis[l]&msbmt3$age==eg$age[l]&

msbmt3$tcd==eg$tcd[l]&msbmt3$drmatch==eg$drm[l])}

pat<-list() # which patient has which combination

for(l in 1:36){

pat[[l]]<-unique(msbmt3$id[msbmt3$dissub==eg$dis[l]&msbmt3$age==eg$age[l]&

msbmt3$tcd==eg$tcd[l]&msbmt3$drmatch==eg$drm[l]])}

# Predicted transition probabilities starting at time s, for l-th covariate group
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ptf<-function(s,l){

pal <- msbmt3[rep(wh[[l]][1], 3), 9:12]

pal$trans <- 1:3

attr(pal, "trans") <- tmat3

pal <- expand.covs(pal, covs3, longnames = FALSE)

pal$strata <- pal$trans

msfl<-msfit(cfull, pal, trans = tmat3)

probtrans(msfl,predt=s,variance=F,covariance=F)}

prdf<-list(length=2204) # list of predicted transition probabilities

for(l in 1:36){

indl<-pat[[l]]

for(i in indl){

lng<-max(which(tlm<=t.last[i]))

prdf[[i]]<-matrix(nrow=lng,ncol=3)

for(j in 1:lng){

js<-which(tps==tlm[j])

st<-state[[i]][js]

pr<-ptf(tlm[j],l)[[st]]

jw<-min(which(pr$time>=tlm[j]+w))

prdf[[i]][j,]<-data.matrix(pr)[jw,2:4]}}}

# Prediction error with covariates at time points ’tlm’ for ’w’ years later

PEf.dyn<-vector(length=length(tlm))

for(j in 1:length(tlm)){

risk<-which(t.last>=tlm[j])

ped<-vector(length=length(risk))

for(l in 1:36){

setl<-intersect(pat[[l]],risk)

if (length(setl)==0){next} else

{for(i in setl){

wc<-which(risk==i)

tw<-which(tps==tlm[j]+w)

st2<-state[[i]][tw]

if (st2==0){ped[wc]<-0} else

{yyy<-vector(length=3)

yyy[st2]<-1

yyy[setdiff(1:3,st2)]<-0

ped[wc]<-drop((yyy-prdf[[i]][j,])%*%(yyy-prdf[[i]][j,]))*

wght[[i]][j]}}}}

PEf.dyn[j]<-mean(ped)}

lines(PEf.dyn~tlm,col="darkgreen")

#--------------------------------------------------------------------------------------

# Reduction in prediction error

reduc<-1-PEf.dyn/PE.dyn

plot(reduc~tlm,type="l",col="blue",ylab="PE reduction",xlab="Time origin")
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A.3.2 Fixed horizon

Similar to A.3.1, but with the following adjustments:

tlm<-c(0,0.2,0.4,0.6,0.8,1,1.2,1.6,2) #time origins

th<-3 #time horizon

tps<-c(tlm,th) #time points

wght<-list() #list of weights at times ’tlm’

for(i in 1:2204){

x<-c(sf$time[sf$time<t.last[i]],t.last[i])

we.v<-vector(length=length(x))

we.v[1]<-weight0(i,th)

if(length(x)>1){

for(j in 2:length(x)){we.v[j]<-weight(i,x[j],th)}}

wght[[i]]<-evalstep(x, we.v, tlm, subst=we.v[1], to.data.frame=F)}

#--------------------------------------------------------------------------------------

# No covariates

#list of predicted transition probabilities from time ’tlm’ to ’th’

prd2<-list(length=2204)

for(i in 1:2204){

lng<-max(which(tlm<=t.last[i]))

prd2[[i]]<-matrix(nrow=lng,ncol=3)

for(j in 1:lng){

st<-state[[i]][j]

pr<-pt(tlm[j])[[st]]

jh<-max(which(pr$time<=th))

prd2[[i]][j,]<-as.numeric(pr[jh,2:4])

}}

# prediction error at time points ’tlm’ for time horizon ’th’

PE.dyn<-vector(length=length(tlm))

for(j in 1:length(tlm)){

risk<-which(t.last>=tlm[j])

tw<-length(tps)

ped<-vector(length=length(risk))

for(i in risk){

st2<-state[[i]][tw]

wc<-which(risk==i)

if (st2==0){ped[wc]<-0} else

{yyy<-vector(length=3)

yyy[st2]<-1

yyy[setdiff(1:3,st2)]<-0

ped[wc]<-drop((yyy-prd2[[i]][j,])%*%(yyy-prd2[[i]][j,]))*wght[[i]][j]}

}

PE.dyn[j]<-mean(ped)}

#--------------------------------------------------------------------------------------

# With covariates

# transition probabilities for covariate group l

ptf<-function(l){

pal <- msbmt3[rep(wh[[l]][1], 3), 9:12]

pal$trans <- 1:3

83



attr(pal, "trans") <- tmat3

pal <- expand.covs(pal, covs3, longnames = FALSE)

pal$strata <- pal$trans

msfl<-msfit(cfull, pal, trans = tmat3)

probtrans(msfl,predt=th,direction="fixedhorizon",variance=F,covariance=F)}

prdf<-list(length=2204) #list of predicted transition probabilities

for(l in 1:36){

indl<-pat[[l]]

for(i in indl){

lng<-max(which(tlm<=t.last[i]))

prdf[[i]]<-matrix(nrow=lng,ncol=3)

for(j in 1:lng){

st<-state[[i]][j]

pr<-ptf(l)[[st]]

jw<-min(which(pr$time>=tlm[j]))

prdf[[i]][j,]<-as.numeric(pr[jw,2:4])

}}}

# prediction error at time points ’tlm’ for ’th’

PEf.dyn<-vector(length=length(tlm))

for(j in 1:length(tlm)){

risk<-which(t.last>=tlm[j])

ped<-vector(length=length(risk))

for(l in 1:36){

setl<-intersect(pat[[l]],risk)

if (length(setl)==0){next} else

{for(i in setl){

wc<-which(risk==i)

tw<-length(tps)

st2<-state[[i]][tw]

if (st2==0){ped[wc]<-0} else

{yyy<-vector(length=3)

yyy[st2]<-1

yyy[setdiff(1:3,st2)]<-0

ped[wc]<-drop((yyy-prdf[[i]][j,])%*%(yyy-prdf[[i]][j,]))*wght[[i]][j]

}}}}

PEf.dyn[j]<-mean(ped)}

A.4 Data set 2

For data set 2 (ebmt4) the code was adjusted where needed. Besides this, we included covariates
in the inverse probability of censoring weights for the semi-parametric prediction error:

w(s, t̃i, x̃i(s), Ĝ(n), zi) =
I{t̃i ≤ s, x̃i(s) 6= 0}
Ĝ(n)(t̃i − |zi)

+
I{t̃i > s}
Ĝ(n)(s|zi)

instead of

w(s, t̃i, x̃i(s), Ĝ(n)) =
I{t̃i ≤ s, x̃i(s) 6= 0}

Ĝ(n)(t̃i−)
+

I{t̃i > s}
Ĝ(n)(s)

.
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They are computed in R as follows:

cens<-1-delta # indicates censoring

cen.data<-data.frame(id=1:2279,t.last,cens)

cdataf<-cen.data

for(i in 1:2279){

cdataf$year[i]<-unique(msebmt$year[msebmt$id==i])

cdataf$agecl[i]<-unique(msebmt$agecl[msebmt$id==i])

cdataf$proph[i]<-unique(msebmt$proph[msebmt$id==i])

cdataf$match[i]<-unique(msebmt$match[msebmt$id==i])}

# Cox model with covariates for censoring

cenf <- coxph(Surv(t.last, cens) ~ year + agecl + proph + match,

data = cdataf, method = "breslow")

# Survival probabilities for censoring, conditional on covariates

sff<-list(length=36)

for(l in 1:36){

cenf.data<-cdataf[pat[[l]][1],]

sff[[l]]<-survfit(cenf,newdata=cenf.data)}

# How to calculate weights for each covariate combination

wef<-list(length=36)

for(l in 1:36){

Gf.hat<-function(s)

{if(s<sff[[l]]$time[1]){1} else

{tm<-max(sff[[l]]$time[sff[[l]]$time<=s])

sff[[l]]$surv[sff[[l]]$time==tm]}}

Gf.hat.min<-function(s)

{if(s<=sff[[l]]$time[1]){1} else

{tmm<-max(sff[[l]]$time[sff[[l]]$time<s])

sff[[l]]$surv[sff[[l]]$time==tmm]}}

wef[[l]]<-function(i,s)

{if (t.last[i]<=s&delta[i]==1){1/Gf.hat.min(t.last[i])} else

{if (t.last[i]>s){1/Gf.hat(s)} else {0}}}

}

# For each individual a vector of weights at prediction times

wf.lst<-list(length=2279)

for(l in 1:36){

for(i in pat[[l]]){

x<-c(sff[[l]]$time[sff[[l]]$time<t.last[i]],t.last[i])

w.v<-vector(length=length(x))

for(j in 1:length(x)){w.v[j]<-wef[[l]](i,x[j])}

wf.lst[[i]]<-evalstep(x, w.v, tp, subst=1, to.data.frame=F)}

}
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