
Adaptive d-dimensional Finite Difference Methods
Rouke Pouw

June 30th 2014

Supervisor: Paul Zegeling
Second reader: Rob Bisseling

2

1. Introduction 3

Chapter 1. Higher dimensional Initial Boundary Value Problems 5
1. Method overview 5
2. Problem statement 7
3. Testcases 12
4. Differential operators 15

Chapter 2. Generalized d-dimensional FDM 19
1. Generalized Domain Discretization 19
2. Boundaries 22
3. Function Discretization 24
4. Finite difference approximation 25
5. Linear System 37

Chapter 3. Uniform d-dimensional FDM 49
1. Introduction 49
2. Uniform finite difference operators 53
3. Uniform Traversal 56
4. Creating the linear systems 57
5. Solving the Linear System 60
6. Uniform Conclusions 61

Chapter 4. d-dimensional Adaptive FDM 63
1. Introduction 63
2. Monitor functions 64
3. Transformations 65
4. Testcase 2: Implosion equation 66
5. Method of Characteristics 71
6. Winslow Method 72

Bibliography 81

Chapter 5. Appendix 83
1. Stencil Operations 83
2. Matrices and vectors 84
3. Eigenvalues and Matrix Norms 89
4. Kronecker product 90
5. Testcase analysis 91
6. Notation 102

Contents

1. INTRODUCTION 3

1. Introduction

In this thesis I will endeavor to solve higher dimensional initial boundary value problems
using a generalized finite difference method. Boundary value problems arise in a very
wide variety of research areas and although classical physical systems are usually limited
to three space dimensions and a fourth time dimension applications in, for example,
finances[1], molecular biology [2] and quantum physics [3] do include higher dimensional
problems.

Increasing the dimension comes at a hefty cost. Challenges for higher dimensions are
at first glance the exponential increase in memory and computation. But even before
those the first hurdle is finding a fitting notation for the structures arising in these
computations. The curse of dimensionality is in the notation as well.

I chose not to limit my approach to conventional uniform grids. Using the philosophy to
first take a step back to then take a few steps forward I decided to define an approach
for very generalized grids. This enables me to thoroughly analyze the arising structures
and succeed in defining and applying uniform and r-refinement adaptive methods.

Where uniformity takes its strength from a highly structured homogenous approach
adaptivity seeks to strategically improve problem areas. r-refinement is, opposed to
other adaptive methods, a way to retain both the uniform advantages as strategic local
benefits.

To facilitate the implementation of adaptive method I refrained from simplifying the
method early on. Abandoning options beforehand may provide limitations later on.
Confining to linear operators or setting boundaries to zero might simplify things for the
uniform case but they are essential for r-refinement and might enable the application of
even more creative structures that will very likely be needed in future improvements to
the solving of higher dimensional boundary value problems.

CHAPTER 1

Higher dimensional Initial Boundary Value Problems

1. Method overview

1.1. Single system Method. An Initial-Boundary Value Problem, from here on
shortened to Boundary Value Problem (BVP) as the initial conditions (ICs) can be
considered as boundary conditions (BCs) in the time sense, consists of multiple Partial
Differential Equations (PDEs). A very rough description of the method developed in
this thesis is the following:

(BVP)

(PDE)0

...
(PDE)p

(FDE)0
...

(FDE)p

(LS)0
...

(LS)p

 (LS)’(1.1)

Graphical description of the complete method.(1.2)

Each PDE is approximated using the finite difference method resulting in a Finite Differ-
ence Equation (FDE). These FDEs are then represented by Linear Systems (LS) which
are combined into a larger Linear System (LS)’.

The process of approximating a PDE by a FDE consists of three parts: a finite difference
discretization of the differential operator (L → S), discretization of the domain (Ω →
W), and discretization of the inhomogeneous term (f → f):

(PDE) (FDE) (LS)

(L,Ω, f) (S,W, f) (A,b)
Graphical description of the method.

The matrix A and constant term b of the linear system are constructed from (S,W, f).
The solution of this linear system, u, approximates the solution of (PDE), u, restricted
to the nodes of the discretization.

1.2. Traversal. Especially for higher dimensional cases the linear system might
end up being very large. Separating the system into multiple smaller systems provides
options for more efficient solving. In this thesis I introduce the concept of Traversal
to handle the dependency of these systems on each other. This approach is based on
traversing through the unknowns layer by layer. Where time traversal is a very natural
approach also non time dependent processes can benefit from a traversal that divides a
larger linear system into multiple smaller ones.

5

6 1. HIGHER DIMENSIONAL INITIAL BOUNDARY VALUE PROBLEMS

The larger system is decoupled into multiple systems that can be ordered by their de-
pendence. In other words: system (LS)′n only depends on values already solved from
(LS)′0, . . . , (LS)′n−1:

(BVP) . . .

(LS)0

...
(LS)p

 (LS)’

(LS)’0

...
(LS)’N

Graphical description of the traversal method.

Not only does the traversal cover the ordered decoupling of a linear system following from
a PDE but also the sequence of solving the sub-PDEs of a BVP, starting with the lower
dimensional boundary conditions and working towards solving the highest dimensional
problem. Not all the systems belonging to the PDEs can be decoupled from each other
or into smaller parts individually. The finite difference stencils S convey restrictions on
the traversal possibilities .

2. PROBLEM STATEMENT 7

2. Problem statement

2.1. Generalized Domains.

2.1.1. Generalized Coordinates. The notion of a generalized domain removes the
need for a distinction between time and space coordinates x and t, respectively. To
emphasize this generalized notion and accommodate a cleaner notation a generalized
space-time coordinate, q, is introduced.

Definition 1. The dimensionality of a BVP problem is given by the spatial and temporal
dimensions. dx ∈ N, noted d for confinience, denotes the spatial dimension. dt ∈ {0, 1}
denotes the temporal dimension. The space-time or generalized dimensionality is denoted
as dq := dx + dt

x ∈ Ωx ⊂ Rdx ,

t ∈ Ωt ⊂ Rdt

q ∈ Ωq ⊂ Rdq .

Definition 2. For a d-dimensional system, the generalized coordinate q is a combi-
nation of spatial coordinate x = (x1, . . . , xd) and, if it is used i.e. dt = 1, temporal
coordinate t.

(2.1) q := (q1, . . . , qd+dt) :=
{

(x1, . . . , xd) dt = 0,
(x1, . . . , xd, t) dt = 1 .

A system of space dimensionality d and time dimensionality 1 differs from a purely spatial
system of space dimensionality d+1 and time dimensionality 0 in the assumptions made
for the last coordinate. For a time dependent system the space-time domain is assumed
to be decoupled as Ωx × Ωt. Furthermore Ωt is assumed to be of the form [0, T] for an
end-time parameter T ∈ R+.

2.2. Generalized Domains. With higher dimensionality more complex bound-
ary structures arise. Where a one dimensional line segments has two vertices as its
boundaries, a two dimensional rectangle has four line segment as its boundaries, each
of those having vertices as boundaries. Each of those vertex boundaries is shared with
one other line segment. This is even further complicated by higher dimensions and more
complicatedly shaped domains.

A domain Ω is assumed to be a subset of Rdq . A BVP defines PDEs for different subsets
of the domain. This subdivision results in a partition of domain Ω.

Definition 3. Given a domain Ω and partition W of this domain. Each element of W
is a subdomain of Ω.

For each element ω of the partition W the BVP defines a PDE and a right hand side
function f describing the inhomogeneous term.

The dimension of each subdomain is not necessarily equal to the domain dimension dq.
Boundary regions for example have a lower dimension.

8 1. HIGHER DIMENSIONAL INITIAL BOUNDARY VALUE PROBLEMS

Definition 4. For each subdomain ω ∈ W #W : W → {1, . . . ,dim Ω} × N provides a
unique index tuple: #W(ω) = (k, l). Here k = dimω and l is an enumeration of ω over
all k-dimensional elements of W.

The dimension of a subdomain, k = dimω, can, for example, be determined by using
Poincarés concept of removing a finite number of (k − 1)-dimensional spheres to create
a separation. Note that such an enumeration exists: for example the domains can
be sorted using a lexicographic ordering of the lexicographic minimal point of each
subdomain.

Definition 5. Given a domain partitionW the boundary operator for each subdomain
ω is defined as: ∂k,lω := ω′ such that #Nωω′ = (dimω−k, l), where Nω, the neighborhood
of ω, is defined by all elements of W that are connected to ω, including ω itself. The
boundary operator should not be confused with the partial derivative operator which is
applied to functions.

The definitions for dimension, subdomain, and boundary operators are formulated such
that they will remain applicable to the discretized domain.

2. PROBLEM STATEMENT 9

Example 1. 2-dimensional General boundary structure

The boundaries of this two dimensional domain provide for a boundary value problem of
the following structure:

BV P :=

L2,1u = f2,1 ∀q ∈ ∂2,1Ω
L1,1u = f1,1 ∀q ∈ ∂1,1Ω{
L0,1u = f0,1 ∀q ∈ ∂0,1Ω{
L0,3u = f0,3 ∀q ∈ ∂0,3Ω

L1,2u = f1,2 ∀q ∈ ∂1,2Ω{
L0,1u = f0,1 ∀q ∈ ∂0,1Ω{
L0,2u = f0,2 ∀q ∈ ∂0,2Ω

L1,3u = f1,3 ∀q ∈ ∂1,3Ω{
L0,1u = f0,1 ∀q ∈ ∂0,1Ω{
L0,3u = f0,3 ∀q ∈ ∂0,3Ω

(2.2)

10 1. HIGHER DIMENSIONAL INITIAL BOUNDARY VALUE PROBLEMS

Example 2. d-dimensional hyperrectangular boundary structure
A d dimensional hyperrectangle resides in a space defined with d coordinates. For each
(d− 1)- dimensional boundary one of those coordinates is fixed to either the minimal or
maximal value. Resulting in 2d (d− 1)- dimensional boundaries.

For the (d − 2)- dimensional boundaries two of the d coordinates are fixed
to either the minimal or maximal value. This gives

(
d
d−2

)
sets of two coor-

dinates and 4 = 22 ways of fixing them to the minimal or maximal value
((min,min),(min,max),(max,min),(max,max)).

This process is further described by observing that a d-dimensional hyper rectangular
domain has 2d−k

(
d
k

)
k-dimensional boundaries.

A one dimensional example:
∂1,1Ω = (xmin, xmax)
∂0,1Ω = {xmin}
∂0,2Ω = {xmax}

Ω =
1⋃

k=0

21−k(1
k)⋃

l=1

∂k,lΩ = [xmin, xmax]

A two dimensional example:
∂2,1Ω = (xmin, xmax)× (ymin, ymax)
∂1,1Ω = (xmin, xmax)× {ymin}
∂1,2Ω = (xmin, xmax)× {ymax}
∂1,3Ω = {xmin} × (ymin, ymax)
∂1,4Ω = {xmax} × (ymin, ymax)
∂0,1Ω = {(xmin, ymin)}
∂0,2Ω = {(xmin, ymax)}
∂0,3Ω = {(xmax, ymin)}
∂0,4Ω = {(xmax, ymax)}

Ω =
2⋃

k=0

22−k(2
k)⋃

l=1

∂k,lΩ = [xmin, xmax]× [ymin, ymax]

2.3. Boundary Value Problem. A Boundary Value Problem (BVP) is defined
by a partial differential equation (PDE) and the boundary conditions (BC). The PDE
describes the prescribed behavior for the solution function u in the interior of the domain
Ω. The BC describes the prescribed behavior for the solution function on the boundary
of the domain ∂Ω.

(BV P) =
{

(PDE)
(BC) .(2.3)

2. PROBLEM STATEMENT 11

The boundary can be partitioned with different conditions for each boundary part.

(BV P) =

(PDE)
(BC)1

(BC)2
...

.(2.4)

For time dependent problems the formulation of a special boundary condition: the initial
condition (IC) is used.

(BV P) =

(PDE)
(IC)
(BC)1

(BC)2
...

.(2.5)

For higher dimensional domains these boundaries can, in turn, be divided again into an
interior and a boundary and in fact state another, lower dimensional, BVP.

These BVPs can be nested until an explicit boundary condition is used of a zero-
dimensional subdomain is reached for which no differential can be defined and the BC
must therefore be explicit.

A d-dimensional BVP consisting of nested boundaries can be defined as follows:

(BV P) =

(PDE)d{

(PDE)d−1

. . .
{

(PDE)0

.(2.6)

Since boundary conditions can also be defined partially for boundaries, (PDE)k for
a given dimension k can represent a system of PDEs. This yields a tree-like struc-
ture.

(BV P) =

(PDE)d,1
...
(PDE)d,ld

(PDE)d−1,1
...
(PDE)d−1,ld−1

. . .

(PDE)0,1
...
(PDE)0,l0

.(2.7)

Note that some of the branches of this tree may be cut short by the use of an explicit
boundary condition. The PDEs are defined by a differential operator, L, and right hand

12 1. HIGHER DIMENSIONAL INITIAL BOUNDARY VALUE PROBLEMS

function f . This gives:

(BV P) =

Ld,1u = fd,1 ∀q ∈ ∂d,1Ω = int(Ω)
...
Ld,ldu = fd,ld ∀q ∈ ∂d,ldΩ

Ld−1,1u = fd−1,1 ∀q ∈ ∂d−1,1Ω
...
Ld−1,pd−1

u = fd−1,ld−1
∀q ∈ ∂d−1,ld−1

Ω

.. .

L0,1u = f0,1 ∀q ∈ ∂0,1Ω
...
L0,p0u = f0,l0 ∀q ∈ ∂0,l0Ω

,(2.8)

where

u : Ω→ R(2.9)
fk,l : ∂k,lΩ→ R ∀1 ≤ l ≤ lk(2.10)

To approximate u a cascading recursive traversal approach will be used to first approxi-
mate the lower dimensional problems and the climb up using those values to approximate
u for the entire domain Ω.

3. Testcases

To perform experiments three test cases have been selected. They have been selected
as both testing tools during the development of the methods as well as to compare the
complete methods. The presence of non linear terms in x, non linear terms in u, non
zero, non static boundaries and exact solution provided control mechanisms at different
stages of the development process.

3.1. Testcase 1: Heat equation. The heat equation simulates a conducting vol-
ume with insulated (zero) boundaries. Via diffusion the heat disperses and the temper-
ature equalizes to zero along the entire volume.

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

u

0.0

0.5

1.0

x

0.0

0.5

1.0

y

0.0

0.5

1.0

Figure 1. Testcase 1 : Heat equation for d = 1, 2.

3. TESTCASES 13

L := d
∂

∂t
−∆

Ω := [0, 1]d

T := 1

uexact(x, t) := e−t
d∏

k=1

sin(πxk)

fIC(x, t) :≡ uexact|Ω×{0} =
d∏

k=1

sin(πxk)

fBC(x, t) :≡ uexact|∂Ω ≡ 0.

Note the inclusion of dimensional parameter d as a scalar for the time derivative. It is
used to create an exact solution that is equivalent throughout dimensions. If this param-
eter is left out, the −t term in the exact solution will become −dt resulting in different
speeds in the propagation of the solutions for different dimensions. By equalizing these
speeds the exact solution to the d-dimensional problem restricted to the domain of any
lower dimensional problem is equivalent to the exact solution of that lower dimensional
problem.

3.2. Testcase 2: Implosion equation. The implosion equation features origin
oriented advection that compresses the starting volume into a thin needlelike solution.
The advection increases linearly with the distance from the origin. The boundaries are
zero at infinity but are already close to zero at much smaller distance to the origin.

-4 -2 0 2 4
x

0.2

0.4

0.6

0.8

1.0
u

-5

0

5

x

-5

0

5

y

0.0

0.5

1.0

u

Figure 2. Testcase 2: Implosion equation for d = 1, 2.

14 1. HIGHER DIMENSIONAL INITIAL BOUNDARY VALUE PROBLEMS

L :=
∂

∂t
− x · ∇

Ω := [−5, 5]d

T := 5
uexact(x, t) := e−e

2t||x||22

fIC(x, t) :≡ uexact|Ω×{0} = e−||x||
2
2

fBC(x, t) :≡ uexact|∂Ω ≈ 0.

Contrary to the other test cases no dimensional parameter is needed such that the exact
solution to the d-dimensional problem restricted to the domain of any lower dimensional
problem is equivalent to the exact solution of that lower dimensional problem.

3.3. Testcase 3: Burgers equation. Burgers equation features a wave propelled
by a non linear advection term coupled with diffusion regulated by parameter µ.

-4 -2 0 2 4
x

0.2

0.4

0.6

0.8

1.0
u

-5

0

5

x

-5

0

5

y

0.0

0.5

1.0

u

Figure 3. Testcase 3: Burgers equation for d = 1, 2.

L := d
∂

∂t
+ u(1 · ∇)− µ∆

Ω := [−5, 5]d

T := 5

uexact(x, t) :=
1

1 + e
− 1

4µ
+

Pd
k=1

xk
2µ

fIC(x, t) :≡ uexact|Ω×{0}
fBC(x, t) :≡ uexact|∂Ω.

Note again the inclusion of dimensional parameter d as a scalar for the time derivative.
It is used to create an exact solution that is equivalent throughout dimensions. If this
parameter is left out the − 1

4µ term in the exact solution will become − d
4µ resulting in

4. DIFFERENTIAL OPERATORS 15

different wave speeds in the solutions for different dimensions. By equalizing the wave
speeds the exact solution to the d-dimensional problem restricted to the domain of any
lower dimensional problem is equivalent to the exact solution of that lower dimensional
problem.

4. Differential operators

4.1. Linear differential operators. A linear differential operator L, which can
be defined using a multivariate polynomial, PL, in variables ∂q1 , . . . , ∂qd where ∂qk is
defined as ∂qk := ∂

∂qk
, consequently ∂jqk = ∂j

∂qjk
.

PL can be represented by coefficients si, a scalar, and ji, a vector containing exponent
coefficients, for each term indexed by i:

L := PL[∂q1 , . . . , ∂qd] :=
∑
i

si
d
©
k=1

∂
(ji)k
qk ,(4.1)

where © indicates the repeated function composition contrasting the repeated multipli-
cation operator,

∏
. L can now be denoted using a stencil representation:⋃

i

{(si, ji)}.(4.2)

I refrain from storing the coefficients in vectors or matrices because I want to leave
the option for fractional exponents open. At first not for the differential operator,
though fractional derivates do arise in certain field, but especially for the, yet to be
defined, finite difference operator which will adhere to an analogous stencil notation.
This stencil, or sparse, notation will also be better suited for cases where the label
options are numerous.

Example 3. Consider the equations:

u = αux;(4.3)
v = βvx + γvyy,(4.4)

their corresponding differential operators:

Lu = id− α ∂

∂x
;(4.5)

Lv = id− β ∂

∂x
− γ ∂

2

∂y2
,(4.6)

where id can be denoted as a scalar 1 in many cases but id(·)2 is an obvious exception
(i.e. id2(u) = id(u) = 1u but , id(u)2 = u2). Their stencil forms are given by:

16 1. HIGHER DIMENSIONAL INITIAL BOUNDARY VALUE PROBLEMS

Lu = {(1,0), (−α, e1)};(4.7)
Lv = {(1,0), (−β, e1), (−γ, 2e2},(4.8)

An overview for the differential operators:

Differential operators
Solution u
Atom ∂qk
Atom id
Atom Dv

Molecule L

The stencil operations of scaling, addition, subtraction and multiplication are defined in
Appendix 1.

4.2. Special linear differential operators. Two operators deserve special men-

tion: the Laplace operator ∆ :=
∑d

k=1
∂2

∂q2
d

and the Gradient operator∇ :=

∂
∂q1
...
∂
∂qd

.

Note that these are, by default defined over the spatial coordinates x1, . . . , xd not the
time coordinate t. A subscript parameter can be used to distinguish other cases:

∆ := ∆x :=
d∑

k=1

∂2

∂x2
k

, ∆q :=
d+1∑
k=1

∂2

∂q2
k

.(4.9)

And for a general coordinate vector a:

∆a :=
|a|∑
k=1

∂2

∂a2
k

.(4.10)

The directional derivative Dv := v · ∇ is defined for the derivative in the direction of
v.

4.3. Non linear differential operators. The stencil concept can be extended to
include a vastly larger set of differential operators by stating that s needs not be a scalar
but can also be a function: s(·) : Ω → R. This results in a differential operator that is
still linear in u but non linear in x, t. Some examples:

u(x) = cos(x)u(x) + sin(x)ux(x);(4.11)
v2 = vx,(4.12)

their corresponding differential operators:

4. DIFFERENTIAL OPERATORS 17

Lu = id− cos(·)id− sin(·) ∂
∂x

;(4.13)

= (1− cos(·))id− sin(·) ∂
∂x

;(4.14)

Lv = id(·)2 − ∂

∂x
(4.15)

= v(·)id− ∂

∂x
(4.16)

and their stencil forms:

Lu = {(1− cos(·),0), (− sin(·), 2e1)};(4.17)
Lv = {(v(·),0), (−1, e1},(4.18)

The last example of Lv is already a set up for finite difference discretization. It exem-
plifies a case where L is non linear in solution u. When solving a PDE for v, v(·) is of
course not yet available. A previous time step or iteration of v, vn−1 can be used as an
approximation in an effort to solve the quadratic equation:

Lvn = {(vn−1(·),0), (−1, e1}vn = f(4.19)

The (·) notation can also be dropped when it is clear which variables are scalars and
which are functions. As one is to expect with functions as famous as cos and sin.

CHAPTER 2

Generalized d-dimensional FDM

1. Generalized Domain Discretization

The challenge ahead lies in defining a method, and an accompanying notation, to provide
proper index administration for complex structures that can arise in the discretization
of domains. These domains are not restricted to one, two or three dimensions but can be
of any dimension d. Furthermore they are not limited to uniform grid but also provide
administration for non conforming grids such as might arise from h-refinement at a later
stage. Although this latter property is not used in this thesis I found that defining a
rigorous foundation, even for the well known uniform grids, allowed easier handling of
higher dimensional grids

To perform the manipulation required I introduce a new definition for a domain dis-
cretization on which the finite difference can be applied:

Definition 6. A discretization of domain Ω is defined using a tuple W = (W, ψ,Ji,∆i).

W is a partition of a set I such that I ⊂ N. This set is thereforegiven by:

I :=
⋃
ω∈W

ω.(1.1)

I is called the index set. It contains the indices for each node used in the discretization
of the domain.

Each index, i, is mapped to a node vector, qi, in the continuous domain Ω by the node
function ψ. The image of ψ is a discrete subset of Ω given by the node set Q.

ψ : I → Q(1.2)

ψ gives the location of a node given its index number. Besides the location of the nodes
a notion of spatial-temporal relation is needed. This neighborhood or adjacency
to form a grid is defined using a set of adjacency labels Ji and an adjacency operator
∆i for each node index i .

The adjacency operator,∆i, defines a neighborhood or adjacency set for each node
index i using the adjacency label set Ji. The adjacency operator maps an adjacency
label to an index offset:

∆i : (Ji ∪ {0})→ Ni ∪ {i} ∀i ∈ I(1.3)
Ni := {i+ ∆j|j ∈ Ji} ⊂ I(1.4)

19

20 2. GENERALIZED d-DIMENSIONAL FDM

For each adjacency operator it must hold that ∆i0 = 0. Such that i+∆i0 = i+0 = i. In
other words: the zero label always yields a zero offset and thus ends up where it started.

∆ij(1.5)
The adjacency operator, ∆i, indicates what offset should be added to arrive at the
index of the neighbor label by j.

Ji(1.6)
The adjacency label set, Ji, indicates what the labels of the surrounding neighbors
are.

Figure 1. ψ maps the index set I to the node set Q.

Example 4. Left and right neighbors

Given the nodes indexed from 1 to 5.

When we look at node 3 the label set could be defined as J3 = {left, right}. The adjacent
operator will map those labels to their corresponding offsets:

∆3(right) = 1
∆3(left) = −1

Such that we find neighbors i+ ∆3(right) = 4 and i+ ∆3(left) = 2.

Example 4 might seem pretty straightforward but with higher dimensional domains,
their boundaries, and topologically more intricate domains or node relations proper

1. GENERALIZED DOMAIN DISCRETIZATION 21

administration of the neighborhoods is key to unraveling the structures that can be
beneficial to efficient computations.

Consider for example the adjacency label sets for nodes 1 and 5, J1,J5. These will
include only the right respectively left label. For higher dimensions these differences
in adjacent sets become more complicated and will influence the structure of the linear
systems derived from the discretizations.

The index set of example 4 is given by I = {1, 2, 3, 4, 5} and the node count is m = 5.
Here the node count m is the number of nodes used in the discretization of Ω

m := |I| = |Q|(1.7)

The node set Q must have the same number of elements but without the definition of ψ
its elements are undefined. The image and use of left and right labels suggest a straight
one-dimensional domain, but this is not necessarily so. The scaling could be different
but the domain could be shaped completely different as well.

Example 5. Left and right neighbors: exotic cases

Given the nodes indexed from 1 to 5 already used in example 4 the introduction of ψ
could yield totally different node sets Q:

Ranging from differently spaced nodes to curves, crossing ’edges’ and even cyclical struc-
tures if an adjacency label set of J = {right, left} is used for all nodes.

To analyze the options arising from example 5 and various others the relative position
of neighboring nodes i given by:

ri,j = qi+∆j − qi(1.8)

is needed. Besides their relative position , distances to the neighboring nodes are defined.
This is not a straightforward Euclidian distance but a pseudo norm that retains some
information on the direction. This information is later needed for the finite difference
approximations.

hj : I → R is a sign preserving pseudo norm that maps the distance to neighboring
nodes:

hj(i) = sign(〈|ri,j |, ri,j〉)||ri,j ||(1.9)

22 2. GENERALIZED d-DIMENSIONAL FDM

2. Boundaries

To introduce the definitions for dimensionality and boundaries for the discretized do-
mains, I begin by defining the index and node equivalents to the domain and subdomain
defined in 2.2 for the index set I and the node set Q:

IΩ′ := I ⋂ψ−1
(
Ω′|Q

)
(2.1)

QΩ′ := Q⋂Ω′(2.2)

To implement the definitions for boundary operators only a revised definition of con-
nectivity is needed. The adjacency operator is a very good candidate but note that,
while the boundary operators can now be applied to an index subdomain Iω or a node
subdomain, subdomain Qω in general it does not hold that:

∂k,lIω = I∂k,lω(2.3)
∂k,lQω = Q∂k,lω(2.4)

Properties that might be desirable for the proper representation of a BVP but are not
explored in this thesis.

Figure 2. ∆i maps the adjacency label set Ji = {j1, j2, j3, j4} to the
adjacency set Ni.

Definition 7. A discretization W = (I, ψ,Ji,∆i) is called regular if for each sub-
domain ω ∈ W it holds that there exists a set J and a function ∆ such that Ji ≡ J
and ∆i ≡ ∆ for all i ∈ ω. W is called a lattice when for each subdomain ω the rel-
ative neighbor positions also coincide: Ri ≡ R for all i ∈ ω. The degree of a regular
discretization W = (I, ψ,Ji,∆i) is given by the degree of the interior nodes |J |.

Regularity and, even more so, lattices will be useful because they provide a more struc-
tured linear system that is easier to analyze and solve.

2. BOUNDARIES 23

Definition 8. A discretization W = (I, ψ,Ji,∆i) is called transitive if for each i ∈ I
and j ∈ Ji ∆i(j1 + j2) = ∆ij1 + ∆i+∆ij1j2 holds.

Transitivity will provide approximations for higher order differentials. It represents the
ability to describe the neighbor of a neighbor of a node directly relative to that node. (i.e.
the ‘northern’ neighbor of my ‘western’ neighbor is my ‘northwestern’ neighbor).

Definition 9. A discretization is called spanning if for each node i in each subdomain
∂k,lI there exists a subset {j1, . . . , jk} ⊆ Ji such that ri,j1 , . . . ri,jk spans ∂k,lΩ.

The spanning property ensures that derivatives in any direction can be approximated
using this domain discretization.

In further chapters discretization properties favorable to a finite difference approach will
become apparent. For one dimensional discretizations some statements can already be
made:

Lemma 1. Any strictly one dimensional connected discretization W of degree 2 can be
indexed and labeled such that it is transitive.

Choose the adjacency label set as Ji ≡ {1,−1}.

If W is not cyclical then the adjacency operator can be defined as

∆i ≡ id(2.5)

Let the nodes be sorted for example left to right and numbered accordingly. Now label
their predecessor by −1 and their successor by 1 .

Transitivity is shown by ∆ij1 + ∆i+∆ij1j2 = j1 + j2 = ∆i(j1 + j2) �

If W is cyclical then the adjacency operator can be defined as

∆i(j) = (i+ j) mod I − i(2.6)

Transitivity is shown by

∆ij1 + ∆i+∆ij1j2

= (i+ j1) mod I − i+ (i+ ∆ij1 + j2) mod I − (i+ ∆ij1)
= −i+ (i+ ∆ij1 + j2) mod I
= −i+ (i+ (i+ j1) mod I − i+ j2) mod I
= −i+ ((i+ j1) mod I + j2) mod I
= −i+ ((i+ j1) mod I + j2 mod I) mod I
= (i+ j1 + j2) mod I − i
= ∆i(j1 + j2) �

24 2. GENERALIZED d-DIMENSIONAL FDM

Anti-symmetry is shown by

−∆i+∆ij(−j)
= −(i+ ∆ij − j) mod I + (i+ ∆ij)
= −(i+ (i+ j) mod I − i− j) mod I + (i+ (i+ j) mod I − i)
= −((i+ j) mod I − j) mod I + ((i+ j) mod I)
= −i mod I + (i+ j) mod I
= (i+ j) mod I − i
= ∆i(j) �

For most one dimensional cases a domain discretization can be made transitive and
anti-symmetric providing favorable properties. This is, in general, not the case for
discretizations of higher dimensional domains.

3. Function Discretization

A function f : Ω → R can be discretized using a vector f containing nodal values such
that:

fi := f(qi) i ∈ I(3.1)

and a notational extension to create vectors containing all nodal values for a given subset
A of the index set I:

fA := ↓
i∈A

f(qi) =

...

f(qi)
...

 ,(3.2)

where the index values are in ascending order.

4. FINITE DIFFERENCE APPROXIMATION 25

4. Finite difference approximation

4.1. Finite difference operators. This section is focussed on the conversion, or
approximation, from a linear differential operator, L, to a linear finite difference operator,
S. First an implicit, then an explicit definition in the form of a stencil representation
will be proposed.

L S.(4.1)

The approach will be based on handling the atomic parts of the operators first and
transforming those:

∂

∂qk
 σ(·)qk .(4.2)

Given an atomic differential operator, ∂
∂qk

, an atomic finite difference approximation
stencil, σ(·)qk , is created. There can be several distinct approximations, σ(·)qk , of ∂

∂qk
,

where (·) implies the freedom to choose from different approximation methods e.g. For-
ward, Backward, Central or many others. The (·)qk implies that no choice has been
made but the choice should approximate ∂

∂qk
.

∂

∂qk
|Qu ≈ σ(·)qku,(4.3)

where Q is the node set, I the node index set, and u the discretization of the solution
function as defined in (3.2).

The approach then recombines the atoms using the multivariate polynomial, PL, that
can be used to describe the general linear differential operator, L:

L := PL[
∂

∂q1
, . . . ,

∂

∂qd
] PL[σ(·)q1 , . . . , σ(·)qd] := S.(4.4)

These operators can then be applied to the (discretized) solution function to approximate
the partial differential equation (PDE) using a finite difference equation (FDE).

(PDE) (FDE)
Lu|Q = f |Q SuI = fI .(4.5)

4.2. Atomic finite difference operators.

4.2.1. Molecules, atoms and subatoms. The term atomic is taken from the physi-
cal/chemical nomenclature. The complete differential operator is viewed as the mole-
cule. For example L = ∂

∂x + ∂
∂y . The individual partial derivatives ∂

∂x and ∂
∂y are atoms.

Just as with conventional molecules, atoms can also be molecules by themselves e.g.
L = ∂

∂x .

Their analogous finite difference operators adhere to the same structure: the molecule
approximating the differential molecule and the atom approximating the differential

26 2. GENERALIZED d-DIMENSIONAL FDM

atom. This nomenclature can be further extended by the concept of subatomic par-
ticles. These, in general, cannot function as atoms or molecules by themselves but in
combinations form the building blocks for the atoms. The stencil representations of
these operators are depicted below:

Figure 3. From left to right: the molecule representing a backward in
space approximation of ∂

∂x + ∂
∂y ; the atom representing the backward

approximation of ∂
∂x ; the atom representing the backward approximation

of ∂
∂y and the individual sub atoms of the finite difference operators.

4.2.2. One dimensional case. The basic concept of finite difference approximation of
a differential of a one dimensional function f is given by:

f ′(q) ≈ f(q + h)− f(q)
h

,(4.6)

where h is the finite difference parameter. Instead of the derivative of f it gives the
derivative of the linear approximation of f between q and q+h which is shown graphically
in Figure 4.

For a one dimensional grid as shown in Lemma 1 there is a straightforward ordering of
nodes ∆i = id and thus fi+∆i1 = fi+1 and

f(qi + h)− f(qi)
h

(4.7)

=
fi+1 − fi
qi+1 − qi

(4.8)

=
fi+∆i1 − fi
qi+∆i1 − qi

(4.9)

=
fi+∆i1 − fi

ri,1
(4.10)

=
fi+∆i1 − fi
h1(i)

.(4.11)

By defining the sub atomic finite difference operator ςj as(
ςjf
)
i

:= fi+∆ij(4.12)

4. FINITE DIFFERENCE APPROXIMATION 27

æ

æ

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

Tangent ¶xsinH1.5L

Tangent ΣFxsinH1.5L

sinHxL

Figure 4. The finite difference approximation of ∂
∂x sin(1.5) using nodes

qi = 1.5 and qi+1 = 1.5 + h = 2.5.

such that (4.11) can be written as

=
(
ς1 − ς0

hi(1)
f
)
i

≈ f ′(qi).(4.13)

ςj

The sub atomic finite difference operator ςj is a shifting operator that shifts nodes with
i to their j-th neighbor. The shift is given by ∆ij and the index of the neighbor is
thereforegiven by: i+ ∆ij.

Each sub atom is based on a neighboring node. The relative position is indicated by
the label j ∈ Ji. The definition for ςj is implicit for now but will be made explicit
when the matrix representations are handled. Note that, as one might expect of a zero
exponent: (

ς0f
)
i

:= fi+0 ⇒ ς0 = id|Q.(4.14)

When it comes to approximating differential operators, ς0 is the only subatomic operator
that can be used by itself. (Excluding exotic cases where one would have a PDE of the
form ∂f

∂x (x) = f(x+ h).

28 2. GENERALIZED d-DIMENSIONAL FDM

From these sub atomic operators we now construct atomic operators σ that will approx-
imate first order derivatives:

σj :=
ςj − ς0

hj(i)
.(4.15)

For j = 1 it holds that: (
σ1f
)
i
≈ f ′(qi) =

∂f

∂q
(qi)(4.16)

⇒ σ1 ≈ ∂

∂q
|Q.(4.17)

Analogously to using the 1 label, which points forward to i’s successor i+ 1 we can also
use the −1 label which points backwards to i’s predecessor i− 1:

σ−1 :=
ς−1 − ς0

h−1(i)
(4.18)

(4.19)

For which (
σ−1f

)
i

=
(
ς−1 − ς0

h−1(i)
f
)
i

(4.20)

=
fi+∆i(−1) − fi

h−1(i)
(4.21)

=
fi+∆i(−1) − fi

ri,−1
(4.22)

=
fi+∆i(−1) − fi
qi+∆i(−1) − qi

(4.23)

=
fi−1 − fi
qi−1 − qi

(4.24)

=
f(qi)− f(qi − h)

h
(4.25)

≈ f ′(qi).(4.26)

From which it follows that also σ−1 ≈ ∂
∂q |Q.

σ1 and σ−1 are two distinct approximations of the derivative operator they are named
the forward (F) respectively backward (B) finite difference operators.

Forward: σFq := σ1,(4.27)

Backward: σBq := σ−1.(4.28)

The next step is to combine atoms into molecules. This waym better approximations and
approximations of higher order derivatives can be constructed. Combining the forward
and backward operator into a weighted average yields the theta-operator (Θ):

Theta: σΘx(θ) := θσFx + (1− θ)σBx(4.29)

4. FINITE DIFFERENCE APPROXIMATION 29

with as a special case for θ = 1
2 : the central (C) operator:

Central: σCx := σΘx

(
1
2

)
=
σFx + σBx

2
.(4.30)

The central approximation is a second order finite difference approximation. This should
not be confused with a finite difference approximation of a second order derivative.
Higher order approximations are possible by combining more atoms and using more
surrounding nodes. Vast families of methods arise from these combinations.

æ

æ

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

Tangent ¶xsinH1.5L

Tangent ΣFxsinH1.5L

sinHxL

æ

æ

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

Tangent ¶xsinH1.5L

Tangent ΣBxsinH1.5L

sinHxL

æ

æ

æ

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

Tangent ¶xsinH1.5L

Tangent ΣCxsinH1.5L

sinHxL

æ

æ

æ

æ

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

h=0.25

h=0.5

h=1

sinHxL

Figure 5. The first three images shows the difference in approximations
of ∂

∂x sin(1.5) for hx = 1 by the forward, backward and central approxi-
mation. The last shows the difference for the forward approximation at
different values of hx ≡ h1 ≡ h−1 ≡ 1, 0.5, 0.25 constant for all i.

As already demonstrated for the one dimensional case, solutions need not be unique.
This is indicated by the (·) notation in σ(·)qk . This is a non explicitly defined operator
that approximates ∂

∂qk
.

Each occurrence of ∂
∂qk

in L can be approximated by a different choice of stencil. This
also applies for the n ∂

∂qk
-terms in ∂n

∂qnk
. Occurrences in special cases or higher order

derivatives can benefit greatly from smart choices. Examples of this are given in section
4.6.

4.2.3. Higher dimensional case. An extension to higher dimensions runs into the fol-
lowing problem: in one dimension there are only two directions: forward and backward
(or left and right). These directions can be indicated by the base vectors of one dimen-
sional space e1 = 1 and −e1 = −1. Any relative position between two nodes i and j is

30 2. GENERALIZED d-DIMENSIONAL FDM

given by ri,j := xi − xj and is always a scalar multiple of both directions. The spaces is
always spanned by ri,j for any j 6= 0. So a first order derivative in one dimension can
always be approximated by using a node and any of its neighbors. For higher dimen-
sions this is not always the case: whether the relative positions of the neighborhood of
a node can span the space becomes a prerequisite or a restriction to the approximation
of derivatives.

The d dimensional generalized version of finite difference approximation σj approximates
the first order derivative in the direction of ri,j :(

σjf
)
i

:=
fq+∆ij − fi
hj(i)

(4.31)

=
f(qi+∆i(j))− f(qi)

sign(〈|ri,j |, ri,j〉)||ri,j ||
(4.32)

=
f(qi + ri,j)− f(qi)

sign(〈|ri,j |, ri,j〉)||ri,j ||
(4.33)

≈ Dri,jf(qi).(4.34)

σj approximates the directional derivative Dri,j only locally because ri,j still depends on
node index i. For a lattice Ri ≡ R so ri,j ≡ rj does hold such that Dj ≈ Drj |Q. This
follows from:

Dvf(q) = lim
h→0

f(q + hv)− f(q)
h

.(4.35)

Using just σj only approximations of derivatives in the direction of ri,j can be made for
labels j ∈ J . To extend these directions we define

σα :=
∑
j∈J

αjσ
j .(4.36)

To transform a given directional derivative Dv into an approximating σα operator the
system needs to be solved:

Riα =
v
||v||

,(4.37)

where Ri is a matrix with columns ri,j scaled by their sign preserved length:

Ri = →
j∈J

rij
hj(i)

.(4.38)

Whether a solution exists is equivalent to the inclusion of v in the span of relative
locations of the neighboring nodes. Definition 9 provides a spanning classification for
grids that posses such a property for each node and each vector v.

For solution α of (4.37) it follows that:

σα :=
∑
j∈J

αjσ
j ≈ Dv.(4.39)

4. FINITE DIFFERENCE APPROXIMATION 31

with
∑

j∈J αj = 1 and α ∈ R|J |.

For anti-symmetric discretizations a subset of the neighborhood suffices. When from
each anti-symmetric pair j = −j′ one is chosen to create neighborhood J ′ it suffices to
use

σα :=
∑
j∈J ′
|αj |

{
σ−j αj < 0
σj αj > 0 ≈ D for

∑
j∈J ′
|αj | = 1 and α ∈ R|J

′|.(4.40)

For transitive discretizations the labels need not be restricted to neighborhood Ji and
even more possibilities arise where Ji consists of values in a ring structure pointing to
all other nodes in the domain.

Ji := ∆−1
i I.(4.41)

Because |I| will be a substantial number, storing α densely is not a practical solution.
Instead, a sparse stencil notation analogous to the one presented for differential operators
will be introduced in the next section.

After the uniform discretization is introduced, which will turn out to be both anti-
symmetric and transitive, it will become apparent that it has the great advantage of a
reduced complexity for these transformations.

The operator overview can now be extended to include finite difference operators.
Introducing sub atoms and some ambiguity in the conventions. Depending on the
discretization certain differential atoms can only be approximated by finite difference
molecules. And the differential atom id can be approximated by the finite difference
sub atom σ0:

Differential operators Finite Difference operators
Solution u u
Subatom n.a. ςj

(Sub)atom id ς0 = id
Atom Dri,j σj

Atom/Molecule ∂
∂qk

σ(·)qk
Atom/Molecule Dv σ(·)v
Molecule L S

4.3. Stencil representation. A finite difference stencil can be viewed as a sparse
notation for the matrices that arise in the finite difference method.

Analogously to section 4 a finite difference atom, ςj , can be defined using a tuple of
scalar s = 1 and coefficient in the form of an adjacency label j.

ςj := {(1, j)}.(4.42)

Scaling the subatomic part with a scalar s yields:

sςj := {(s, j)}.(4.43)

32 2. GENERALIZED d-DIMENSIONAL FDM

A subatomic part scaled by a function s : I → R is denoted as {(s(·), j)} where the
domain of s for finite difference operators is changed from Ω to the node index set I
such that s : I → R . (·) will be omitted if the function character of s is apparent from
context.

Applying a single scalar tuple to a discretized function f yields:

({(s, j)}f)i =
(
sςj
)
i

= sfi+∆ij(4.44)

and for a function scalar s(·):
({(s(·), j)}f)i =

(
s(i)ςjf

)
i

= s(i)fi+∆ij .(4.45)

Note that using the notation for discretization of function s, sI =: s, this can also be
denoted as:

({(s(·), j)}f)i =
(
diag(s)ςj

)
i

= sifi+∆ij .(4.46)

The setwise union of tuples of the stencil representation is equivalent to the summation
of the operators such that s1ς

j1 + s2ς
j2 can be represented by:

s1ς
j1 + s2ς

j2 = {(s1, j1), (s2, j2)}.(4.47)

General finite difference molecule operators are defined as:

S :=
⋃
k

{(sk, jk)}.(4.48)

applying them gives:

(Sf)i :=
∑
k

skς
jk .(4.49)

The finite difference atom σj can now be represented by:

σj = {(1
hj(·)

, j), (
−1
hj(·)

, 0)},(4.50)

where the function hj is indeed such that hj : I → R.

The application of a finite difference atom yields:(
σjf
)
i

=
(
{(1
hj
, j), (

−1
hj
, 0)}f

)
i

(4.51)

=
1

hj(i)
fi+∆ij −

1
hj(i)

fi+∆i0(4.52)

=
fi+∆ij − fi
hj(i)

,(4.53)

which conforms to its implicit definition in (4.31).

The stencil operations of scaling, addition, subtraction and composition are defined in
Appendix1 with an adaption to the definition for the composition as it was defined

4. FINITE DIFFERENCE APPROXIMATION 33

for differential operators. For general finite difference operators composition is defined
as: (⋃

k

{(sk, jk)}

)
◦

(⋃
k′

{(s′k′ , j′k′)}

)
:=
⋃
k

⋃
k′

{(sks′k′ , jk∆i+∆ijkj
′
k′)}.(4.54)

The new scalars will be formed by the multiplication of all combinations of the scalars.
The new coefficients are best viewed as the adjacency label relative from node i of the
node that is the j′ neighbor of the j neighbor of i.

Only for transitive domain discretizations this reduces to the form defined for the dif-
ferential operators(⋃

k

{(sk, jk)}

)
◦

(⋃
k′

{(s′k′ , j′k′)}

)
:=
⋃
k

⋃
k′

{(sks′k′ , jk + j′k′)}.(4.55)

Advocating once more to the benefits of the, amongst other properties, transitive uniform
discretization.

4.4. Local truncation error. The local truncation error is the difference between
the approximation and the exact derivation of the differential operator. It is, at first,
defined per node:

Definition 10. The local truncation error is defined as

τu,i = Lu(qi)− (Su)i ∀i ∈ I.(4.56)

It depends on the value of the function in that node and the surrounding nodes:

= Lu(qi)−
∑

(s,j)∈S

sui+∆j .(4.57)

Assuming that the approximation of u is exact at q and using the Taylor series differential
operator Ta(q) to estimate the function values of the surrounding nodes, a definition
depending solely on the function in node i can be made:

= Lu(qi)−
∑

(s,j)∈S

sTri,ju(qi)(4.58)

with

Ta :=
∞∑

n1=0

. . .

∞∑
nd=0

(a1)n1 . . . (ad)nd

n1! . . . nd!

(
∂n1+...+nd

∂qn1
1 . . . ∂qndd

)
.(4.59)

For a lattice discretization, it follows that ri,j is independent of i. This provides a τu
independent of i:

τu = Lu−
∑

(s,j)∈S

sTrju,(4.60)

which can be estimated in terms of a maximum over Q.

34 2. GENERALIZED d-DIMENSIONAL FDM

From this definition, the notion arises that a smaller distance between nodes provides a
smaller truncation error and consequently a better approximation.

The lattice property even allows defining τ as the difference between the operators
independent of u, which can be estimated by the order of the rj terms used:

Definition 11. The local truncation error estimate is given by the order estimation
of the difference between a differential operator and the Taylor sequence approximation
of the finite difference operator:

τ = L−
∑

(s,j)∈S

sTrj =
dq∑
k=1

∑
j∈J
O (rj)k .(4.61)

Note that for the identity label, the Taylor operator is indeed the identity operator:

Tr0 = T0 =
∞∑

n1=0

. . .
∞∑

nd=0

0n1 . . . 0nd

n1! . . . nd!

(
∂n1+...+nd

∂qn1
1 . . . ∂qndd

)
(4.62)

=
00 . . . 00

0! . . . 0!

(
∂0+...+0

∂q0
1 . . . ∂q

0
d

)
(4.63)

=
1 . . . 1
1 . . . 1

id = id.(4.64)

4.5. Approximating Higher order derivatives. Higher order derivatives can be
approximated by composing multiple finite difference operators:

n
©
i=1

σ(·)qki
≈

n
©
i=1

∂

∂qki
.(4.65)

The one dimensional discretization of the second order derivative ∂2

∂x2 can therefore be
approximated by for example using the forward operator twice:

((σFx ◦ σFx) u)i =
(
σFx

(
ui+∆i1 − ui

h1(i)

))
i

=
1

h1(i)
(σFx (ui+∆i1 − ui))i(4.66)

=
1

h1(i)

(ui+∆i1+∆i+∆i1
1 − ui+∆i1

h1(i)
− ui+∆i1 − ui

h1(i)

)
i

.(4.67)

For the transitive discretization used in lemma 1 this reduces to

=
1

h1(i)

(
ui+2 − ui+1

h1(i)
− ui+1 − ui

h1(i)

)
i

,(4.68)

which can be written as:

=
1

h1(i)

((
ς2 − ς1

h1(i)
− ς1 − ς0

h1(i)

)
u
)
i

(4.69)

=
(
ς2 − ς0

(h1(i))2 u
)
i

.(4.70)

4. FINITE DIFFERENCE APPROXIMATION 35

Now an explicit approximation of ∂2

∂x2 can be written as:

∂2

∂x2
≈ diag(h1)−2

(
ς2 − ς0

)
.(4.71)

For a second order d-dimensional derivative over a transitive discretization

diag(hj)−2
(
ς2j − ς0

)
≈ Dri,jDri,j(4.72)

locally around node i and globally for lattices:

diag(hj)−2
(
ς2j − ς0

)
≈ DrjDrj .(4.73)

For a spanning domain discretization, higher order derivatives in all directions can be
approximated. Given a vector v and, following (4.39), the solution α can be written
as:

D2
v ≈ σα ◦ σα(4.74)

=
∑
j1∈J

∑
j2∈J

αj1αj2σ
j1σj2(4.75)

=
∑
j1∈J

∑
j2∈J

αj1αj2 diag(hj1)−1
(
ςj1 − ς0

)
diag(hj2)−1

(
ςj2 − ς0

)
.(4.76)

For a transitive domain discretization this yields:

=
∑
j1∈J

∑
j2∈J

αj1αj2 diag(hj1)−1 diag(hj2)−1
(
ςj1+j2 − ςj1 − ςj2 + ς0

)
.(4.77)

A very generalized definition for finite difference approximations of higher order deriva-
tives on transitive spanning domain discretizations is:

n
©
k=1
Dvk ≈

n
©
k=1

σαk(4.78)

=
∑
j1∈J

. . .
∑
jn∈J

(
n∏
k=1

(αk)jk diag(hjk)−1

)(
n∏
k=1

σj
k

)
,(4.79)

where various choices for the different αk’s yield a very wide scope of approximation
options. Truncation error analysis will yield favorable choices that ensure smaller order
truncation errors.

36 2. GENERALIZED d-DIMENSIONAL FDM

4.6. Fractional labels. The options for approximating higher order derivatives are
extended even further by the the introduction of fractional labels.

To approximate one dimensional diffusion ∂2

∂q2
k

one could use S2
Fx
, S2

Bx
or S2

Cx
but also a

mixed approach: SFxSBx .

On a transitive grid for which it follows that (i+∆ij)+∆i+∆ijj = i+∆i(j+j) = i+∆i(2j)
and inspired by (4.73) one could use the label j

2 yielding:

diag(h j
2
)−2

(
ς2 j

2 − ς0
)
≈ Dr j

2

Dr j
2

.(4.80)

If one intuitively defines the relative position r j
2

to be halfway the relative position of

j with respect to the local node i this will yield r j
2

:= 1
2rj and consequently h j

2
= 1

2hj .
Noting that scaling rj by a positive scalar does not change the directional derivative. (
i.e. Drj = D 1

2
rj

) and so:

(σ
j
2)2 = diag(

1
2
hj)−2

(
ςj − ς0

)
≈ D2

rj .(4.81)

(σ
j
2)2 is a good candidate at being a better approximation of ∂2

∂x2 than (σj)2 because of
a reduced truncation error.

The fractional notation σ
j
n is a solution for the single label σj operator. The combined

label notation σα will run into difficulties when denoted as σα
n

. It will therefore be
denoted as σ

α
1
n

.

4.7. Operator discretization algorithms. Because of the wide array of approxi-
mation options arising in higher order higher dimensional finite difference operators one
should carefully denote the methods used and combined.

A common notation for these choices are the BT,FT,CS,FS,BS definitions, where FT
and BT indicate the forward, respectively backward, approximation of the time deriv-
ative ∂

∂t = ∂
∂qdq

and analogously the CS,FS,BS are the central, forward and backward

approximations of the space derivatives: ∂
∂x1

, . . . , ∂
∂xdx

= ∂
∂q1
, . . . , ∂

∂qdx
.

Unless otherwise stated the second order derivatives will be approximated using the

squared semi central operator,
(
σ

(Cxk)
1
2

)2
≈ ∂2

∂x2 .

Example 6. BTCS discretization of the test cases
A BTCS discretization of the test case equations (cf. Appendix 3) yields:

Testcase Differential Molecule (L) Finite Difference Molecule(S)
1 d ∂∂t −∆ dσBt −

∑dx
k=1(σ

(Cxk)
1
2
)2

2 ∂
∂t − x · ∇ σBt −

∑dx
k=1 diag(xk)σCxk

3 d ∂∂t + u1 · ∇ − µ∆ dσBt +
∑dx

k=1

(
diag(u)σCxk − µ(σ

(Cxk)
1
2
)2
)

5. LINEAR SYSTEM 37

5. Linear System

5.1. Matrix representation. This section focusses on the conversion from a finite
difference stencil, S, to a matrix M and a constant term vector b that define a linear
system (LS) from which an approximation to the discretized solution function u can be
obtained.

(L, f)→ (S, f)→ (M,b).(5.1)

As with the conversion from linear differential operators to finite difference operators
the approach will be based on handling the atomic parts of the operators first and
transforming those:

∂

∂qk
 σ(·)qk D(·)qk .(5.2)

It would be tempting to begin with defining the explicit matrix representation of a sub
atomic operator as

ςj = {(1, j)} = Qj(5.3)

For some matrix Qj such that

ςju = {(1, j)}u = Qju.(5.4)

MatrixQj would describe the shift that is induced by retrieving the j-th neighbor for each
node i but there are complications. The boundary value problem defines a differential
operator L for each boundary subdomain. Suppose that for a one dimensional domain
L is a first order derivative that is applied to the interior of the domain. But if L = ∂

∂x
is approximated using a central finite difference operator applying this operator to the
interior requires contributions from the boundaries as well:

The application of the central operator to the interior of the domain is described not
by one but by three matrices. Their dimensions are indicated by the size of the target
domain (the interior) and the source domains (interior and boundaries). Given a target

38 2. GENERALIZED d-DIMENSIONAL FDM

domain A, a source domain B, and an adjacency label j the matrix Q is defined as:

QjA,B := →
i∈A

↓
g∈B

δi,g+∆ij(5.5)

such that the actual matrix representation of ςj is given by:

ςjuA =
∑
k,l

QjA,∂k,lAu∂k,lA.(5.6)

Qj

The matrix representation Qj of the sub atomic finite difference operator ςj is a matrix
such that at row i it is one exactly at the column position of the j-th neighbor of i and
zero elsewhere.

Note that, as the superscript notation of j might suggest:

Q0
A,B := →

i∈A

↓
g∈B

δi,g+∆i0 = →
i∈A

↓
g∈B

δi,g,(5.7)

which is equal to the identity matrix, I, if and only if A = B and equal to the zero
matrix, 0, if A⋂B = ∅.

Now a differential operator L, approximated by finite difference operator S can be ap-
proximated by matrices M :

MS
A,B =

∑
(s,j)∈S

sQjA,B(5.8)

such that

SuA =
∑
k,l

MS
∂k,lA,Au∂k,lA ≈ Lu|A.(5.9)

Now the linear system (LS) that arises from a finite difference equation (FDE) that
approximates a partial difference equation (PDE) can be formulated. Given a PDE

Lu = f(5.10)

for all q in subdomain ω and an approximating FDE over the subdomain nodes A :

SuA = fA(5.11)

the following linear system (LS) is obtained:∑
k,l

MS
A,∂k,lAu∂k,lA = fA.(5.12)

Atomic operators Dj , D(·)qk and D(·)v are easily defined as matrices Mσj ,Mσ(·)qk and
Mσ(·)q .

5. LINEAR SYSTEM 39

The operator overview can now be extended to include matrix reprentations:

Differential operators FD operators Matrix operators
Solution u u u
Subatom n.a. ςj Qj

(Sub)atom id id I
Atom Dri,j σj Dj

Atom/Molecule ∂
∂qk

σ(·)qk D(·)qk
Atom/Molecule Dv σ(·)v D(·)v
Molecule L S M

5.2. Traversal methods. The linear system (5.12) is in most cases underdeter-
mined: it has |∂k,lA| equations and

∑
k,l |∂k,lA| unknowns. The solution of this problem

lies in the first assumption that here exist a subdomain T0 with finite difference operator
S0 for which (5.12) is not underdetermined: MS0

T0,∂k,lT0 is nonzero if and only if ∂k,l = id
and zero otherwise such that:

S0uT0 = MS0

T0,T0u
T0 .(5.13)

Candidates for such a subdomain are the zero dimensional boundaries for which no
differential can be defined. Such a boundary consists of a single vertex and yields a single
node equation for which no shifts are used and no boundaries are implicated. Another
candidate is the initial condition which in general is also explicitly defined.

The second assumption is that the subdomains and their finite difference operators can
be ordered T0, T1, T2, . . . according to their dependence on other subdomains: MS

Tn,Tn′
is

zero for n < n′ such that:

SnuTn =
n∑

n′=0

MSn

Tn,Tn′u
Tn′ .(5.14)

Definition 12. A traversal {T0, . . . , TN} is a partition of the node set I.

The idea is that the traversal levels Tn are ordered according to their use of known
values. At time step n only values already computed at steps 0, . . . , n − 1 are used to
solve for the unknown values of indices in Tn. This approach is iterated till n = N at
which point all values have been solved for.

To check into which traversal level a finite difference operator reaches the level function
is defined:

Definition 13.

level(i, j) := {n | i+ ∆ij ∈ Tn} ∀0 ≤ n ≤ N.(5.15)

Definition 14. A traversal is valid for finite difference operators S0, . . . , SN if it holds
that for 0 ≤ n ≤ N, i ∈ Tn and (s, j) ∈ Sn level(i, j) = nj ≤ n with nj not depending on
i.

For valid traversals the level will coincide for all indices in a given traversal level. There
is no need to specify an individual index thus we can denote this by level(Tn, j).

40 2. GENERALIZED d-DIMENSIONAL FDM

Solving the system will become trivial when the current level of unknowns depends
solely on previous traversal levels and not on each other, this property is defined as
explicit.

Definition 15. A traversal is explicit at level n for finite difference operators Sn if it
holds that
(5.16) level(i, j) = n⇔ j = 0

for all i ∈ I and (s, j) ∈ Sn, and implicit otherwise.

The discretization of (solution) functions over a traversal level is denoted as:

un := uTn = ↓
i∈Tn

u(qi).(5.17)

5.3. Traversal Extensions. By further subdividing the traversal levels more but
smaller systems will provide for more efficient solving. This should be done while retain-
ing the validity of the traversal. In Part 3 a time level traversal is formulated for the
uniform domain discretization. Time naturally lends itself to such an approach as the
future boundary is usually undefined while spatial boundaries are commonly defined in
all directions.

Although not explored in this thesis the combined solving of multiple traversal levels
with different operators will provide options for solving Neumann boundaries, vector
valued solutions and adaptive p-refinement which will be described in Part 4.

Subdividing the traversal levels can also be a way to divide the workload amongst mul-
tiple processing cores. The matrix formulation for contributions between traversal levels
can function as communication matrices for parallelization.

5. LINEAR SYSTEM 41

5.4. Traversing the Linear System. Given a valid traversal T0, T1, . . . , TN with
finite difference operators S0, S1, . . . , SN equation (5.14) combined with the notation
introduced in (5.17) is used to solve the FDE for each traversal level n:

Snun = fn(5.18)

⇔
n∑

n′=0

MSn
′

Tn,Tn′u
n′ = fn.(5.19)

Sorting unknowns to the left and knowns to the right results in:

⇔ MSn

Tn,Tnun = −
n−1∑
n′=0

MSn

Tn,Tn′u
n′ + fn.(5.20)

The right hand side can be stored in a right hand side vector bn:

⇔ MSn

Tn,TnuTn = bn.(5.21)

The matrices are constructed by combining the subatomic matrices Q. The construction
of these matrices remains implicit. The element values are not computed individually
but are constructed by operations on the stencil tuples.

The atomic operators σj , σ(·)qk , D
j ,M j , D(·)qk ,M(·)qk are not constructed explicitly in-

stead they are broken apart into their subatomic parts which can be divided amongst
the left hand matrix AnS and the right hand vector bn.

Example 7. BTCS discretization of Test Case I
Consider a one dimensional domain discretized into five nodes:

A uniform time traversal yields the following structure:

42 2. GENERALIZED d-DIMENSIONAL FDM

BTCS Discretization of the Heat equation differential operator yields:

L =
∂u

∂t
− ∂2

∂x2

≈ σBt − σ2

(Cx)
1
2
.

Continuing with a visual representation:

.

5. LINEAR SYSTEM 43

Divide the ‘influences’ of the operator over traversal levels:

Apply the operator to the n layer:

Apply the operator to the n− 1 layer:

44 2. GENERALIZED d-DIMENSIONAL FDM

Which yields a, perhaps familiar, linear system for the Heat equation: 2h−2
x + h−1

t −h2
x 0

−h2
x 2h−2

x + h−1
t −h2

x

0 −h2
x 2h−2

x + h−1
t

 un1
un2
un3

= −

 −h−1
t 0 0

0 −h−1
t 0

0 0 −h−1
t

 un−1
1

un−1
2

un−1
3

−
 −h−2

x
0
0

 (un0)−

 0
0
−h−2

x

 (un5 .)

5. LINEAR SYSTEM 45

The implications of the explicit property of a stencil become apparent when stating the
following lemma:

Lemma 2. Sn is explicit if and only if MSn

Tn,Tn = diag(a)I with a ∈ R|Tn|.

Proof: 5.8 states that:

MSn

Tn,Tn :=
∑

(s,j)∈Sn
sQjTn,Tn .(5.22)

Using definition 15:
=

∑
(s,0)∈Sn

sQ0
Tn,Tn(5.23)

and with the conclusion after :
=

∑
(s,0)∈Sn

sI.(5.24)

If all s are scalars, as opposed to a function scalar s(·), define a = s1 or else a :=∑
(s,0)∈Sn

level(Tn,0)=n

s and conclude:

= diag(a)I.(5.25)

Solving becomes trivial because the inverse of diagonal matrix diag(a)I is a diagonal
matrix with the inverted elements of a.

5.5. Stability Analysis. The following section focusses on stability analysis. Cen-
tral in this analysis is the question: what are the consequences of the approximation
defects in a given traversal layer? In other words, how do errors propagate?

5.5.1. Two level. Consider a two level stencil S, so that for the values of Tn only
values of Tn−1 are used and |Tn| = |Tn−1|. Then (5.20) reduces to:

⇔ MSn

Tn,Tnun = −MSn

Tn,Tn−1
un−1 + fn.(5.26)

Rename the matrices:

Anun = Bnun−1 + fn, ∀n ≥ 1(5.27)

with An a |Tn| × |Tn|-matrix and Bn a |Tn| × |Tn−1|-matrix. The superscript index n
might be confused for an exponent but is chosen to conform to the superscript index of
un. Assuming An is non singular, already a prerequisite for a system that can actually
be solved, we can state:

un = (An)−1Bnun−1 + (An)−1 fn ∀n ≥ 1.(5.28)

The system is said to be stable if any perturbation, ε, of solution un−1 is reduced when
solving for un.

(An)−1Bn(un−1 + ε) + (An)−1 fn(5.29)

= (An)−1Bnun−1 + (An)−1Bnε) + (An)−1 fn.(5.30)

46 2. GENERALIZED d-DIMENSIONAL FDM

Using (5.28) this is equal to:
= un + (An)−1Bnε, ∀n ≥ 1.(5.31)

For stability, the new perturbation, (An)−1Bnε, should be of smaller size than the
original perturbation ε. That reduction (or amplification in case the constraint is not
met) is measured using a norm such that a stability restraint is formulated as:

|| (An)−1Bnε|| < ||ε||, ∀ε ∈ Rd.(5.32)

This is equivalent to a stability restraint formulated using an induced matrix norm:∥∥∥(An)−1Bn
∥∥∥ < 1,(5.33)

This restriction is also met by restricting the moduli of the eigenvalues to∥∥∥λ((An)−1Bn
)∥∥∥ ⊆ (0, 1).(5.34)

The proof of this can be found in Lemma C8. This appendix also contains estimation
properties for eigenvalues and matrix norms.

This is again equivalent to a restriction of the eigenvalues to the open complex unit disk,
C<1:

λ
(

(An)−1Bn
)
⊆ C<1 :=

{
a+ ib ∈ C | a2 + b2 < 1

}
.(5.35)

C£1

a

-1 b

C£1

a

-1 b

Figure 6. (Left) All eigenvalues are within the complex unit disk: the
method is stable. (Right) Some eigenvalues are outside the complex unit
dis: the method is unstable.

Adhering to the restriction means that any error arising through approximation defi-
ciencies such as the truncation error are not carried forward into next iterations. Alter-
natively: not adhering to these restriction may cause the iterative process to ‘explode’:

5. LINEAR SYSTEM 47

errors are amplified exponentially and thus very quickly dominate the approximation
which thereforebecomes nonsensical.

A discretization is conditionally stable when stability depends on a specific choice of
parameters. It is unconditionally (un)stable when the choice of parameters does not
influence the restriction.

Calculating the eigenvalues explicitly is in many cases a complex task. Instead, matrix
norms are used to estimate an ellipsoidal region containing all eigenvalues and ensuring
that this region is restricted to the complex unit disk.

This may result in overestimation of the restrictions and false negatives as shown in
Figure 7.

C£1

Α+ÈÈAÈÈ C£1

Α

a

-1 b

Figure 7. All eigenvalues are within the complex unit disk: the method
is stable. But the estimation of matrix αI+A using a matrix norm yields
a larger region which will result in a false negative for stability check.

Choosing a proper discretization can prove to be helpful to favorably structured matrices
for eigenvalue and matrix norm estimates. To some extent the uniform discretization
will lend itself to such structures.

5.5.2. Multi level. Now consider a k-level stencil S, so that for the values of Tn only
values of Tn−1, . . . , Tn−k are used and |Tn| = |Tn−1| = . . . = |Tn−k|. Then (5.20) reduces
to:

Anun =
k∑
i=1

Bnun−i + fn, ∀n ≥ k(5.36)

48 2. GENERALIZED d-DIMENSIONAL FDM

with Bn a |Tn| × |Tn−i| = |Tn| × |Tn|-matrix. Assuming An is non singular, already a
prerequisite for a system that can actually be solved, we can state:

un =
k∑
i=1

(An)−1Bnun−i + (An)−1fn ∀n ≥ k(5.37)

Introducing perturbations, εi, in un−i results in:
k∑
i=1

(An)−1Bn(un−i + εi) + (An)−1fn(5.38)

=
k∑
i=1

(An)−1Bnun−i + (An)−1fn +
k∑
i=1

(An)−1Bnεi(5.39)

= un +
k∑
i=1

(An)−1Bnεi ∀n ≥ k.(5.40)

Analogously to the two time level approach, stability is ensured when the perturbations
are reduced which is when:∥∥∥(An)−1Bn

∥∥∥ < 1, ∀1 ≤ i ≤ k.(5.41)

When the |Tn−i|’s differ non square matrices will arise. The analysis of these cases is
not further explored in this thesis.

5.6. Conclusion for Generalized d-dimensional FDM. After a very gener-
alized approach certain characteristics are shown to potentially facilitate easier (and
perhaps more efficient) approximations. For the domain discretization these charac-
teristics include transitivity, anti-symmetry and spanning to facilitate easy operations
and proper discretization of the differential operators.All these structures are easy to
implement for automatization: given parameters for discretization, a boundary value
problem can be converted automatically to a linear system.For the discretization of the
differential operators a low truncation error yields higher quality approximations and
favorably structured matrices for which eigenvalues can be easily estimated and are sta-
ble. These are qualities that can, to an extent, be found in the aforementioned uniform
discretization which will be analyzed in the next chapter.

CHAPTER 3

Uniform d-dimensional FDM

1. Introduction

The uniform discretization introduced in this chapter is far from a novel idea. It is
extensively used and a very intuitive and practical discretization. By first introducing
the concepts for general discretizations I endeavored to formulate formal definitions
that are applicable to various domains independent of dimensionality. In this chapter
the uniform discretization will be formulated according to those definitions resulting in
practical and efficient matrix representation for higher dimensional domains. This will
show the formulation to have to following advantages:

• memory and computational efficient application;

• favorable properties to analyse stability;

• stencil multiplication to create higher order derivatives is trivial;

• regularity enhances possibilities for parallelization.

1.1. Uniform Domain Discretization.

Definition 16. Let Ω ⊂ Rd be defined as the hyper-rectangle [(qmin)1, (qmax)1] × . . . ×
[(qmin)d, (qmax)d]. The uniform discretization is defined by distributing m1 · . . . · md

nodes uniformly over this interval while covering the boundary:

ψ(i) := qmin +Hχ(i)(1.1)

for i ∈ I = {1, . . . ,md} where

mk := m1 · . . . ·mk(1.2)
m0 := 1(1.3)

χ(i) :=
d∑

k=1

(
b i− 1
mk−1

cmodmk

)
ek(1.4)

and

H :=

 hq1
. . .

hqd

(1.5)

49

50 3. UNIFORM d-DIMENSIONAL FDM

with hqk = (qmax−qmin)k
mk−1 nonzero. (If hk = 0 then it follows that (qmin)k = (qmax)k

making the hyper rectangular Ω de facto of lower-than-d-dimensionality.)

The adjacency label set and adjacency operator are defined as:

Ji :≡
d⋃

k=1

{±ek}(1.6)

∆i(j) :≡ χ−1(j) =
d∑

k=1

mk−1jk, ∀i ∈ int(I).(1.7)

For a spatially hyper-cubical lattice grids hx1 = . . . = hxdx holds, ht can differ. For
most example and test methods a spatially uniform grid will be used, but the method also
applies for more general uniform grids.

Lemma 3. The d-dimensional uniform discretization defined in definition 16

i) is regular and a lattice,

ii) has degree 2d,

iii) is anti-symmetric,

iv) is transitive,

v) and is spanning.

Proof:

i) regularity follows directly from the definition of Ji.

ri,j = ±hkek(1.8)

where k = | < j, (1, . . . , d) > |.

hj(i) = hk(1.9)

1. INTRODUCTION 51

Ri = →
j∈J

h−1
j (i)ri,j(1.10)

=
d

→
k=1

(
h−1
ek

(i)ri,ek h−1
−ek

(i)ri,−ek

)
(1.11)

=
d

→
k=1

(
ek ek

)
(1.12)

=
d

→
k1=1

d

↓
k2=1

(
(ek1)k2

(ek1)k2

)
(1.13)

=
d

→
k1=1

d

↓
k2=1

(δk1,k2 , δk1,k2)(1.14)

=
d

→
k1=1

d

↓
k2=1

δk1,k2

(
1 1

)
(1.15)

= Id ⊗
(

1 1
)

(1.16)

which is independent of i thus proving the discretization to be a lattice. �

ii) This follows directly from observing that |Ji| = 2d �

iii)

∆ij = χ−1(j)(1.17)

=
d∑

k=1

mk−1jk

= −
d∑

k=1

mk−1(−jk)

= −χ−1(−j)
= −∆i(−j) �

iv)

∆i(j1 + j2) = χ−1(j1 + j2)(1.18)

=
d∑

k=1

mk−1(j1 + j2)k

=
d∑

k=1

mk−1(j1)k +
d∑

k=1

mk−1(j2)k

= ∆ij1 + ∆ij2

= ∆ij1 + ∆i+∆j1j2 �

52 3. UNIFORM d-DIMENSIONAL FDM

v) The subset of relative positions ri,1, ri,3, . . . , ri,1+2dq equals h1e1, h2e2, . . . , hdqedq
which trivially span Rdq for hk 6= 0. �

Transitivity and spanning result in easy and complete discretization of differential oper-
ators and easy operations on the resulting finite difference operators to create approxi-
mations for higher order derivatives.

1.2. Boundaries. For a point on a k-dimensional boundary of a d-dimensional
hyperrectangle, it holds that d− k of its coordinates must be equal to its corresponding
value of qmin or qmax and thus fixed.

The number of k-dimensional boundaries for a d-dimensional hyper rectangle is given
by the number of options for fixing d − k coordinates times the number of options to
choose minimal or maximal boundaries.

lk = 2d−k
(
d

k

)
.(1.19)

A definition for the l-th k-dimensional boundary of a d-dimensional hyperrectangle is
given by:

∂k,lΩ =

q ∈ Ω

∣∣∣∣∣∣qk′ =

 (qmin)k′
⌊

l
2i−1

⌋
mod 2 = 0

(qmax)k′
⌊

l
2i−1

⌋
mod 2 = 1

,(1.20)

k′ = perm(
⌊

l

2d−k

⌋
, d− k, d)i, 1 ≤ i ≤ d− k

 ,

where perm(a, b, c) is the a-th permutation of b numbers from numbers 1, . . . , c.

Example 8. One dimensional Uniform Discretization
Let Ω ⊂ R be defined as the interval [qmin, qmax]. Distributing m nodes uniformly over
this interval while covering the boundary yields:

qi := ψ(i) = qmin + h(i− 1),(1.21)

where h = qmax−qmin
m−1 .

The adjacency label set is defined independent of i as Ji ≡ {−1, 1}, the adjacency oper-
ator is defined as ∆i(j) :≡ j for all i ∈ int(I) .

2. UNIFORM FINITE DIFFERENCE OPERATORS 53

Example 9. Example: Two dimensional Uniform Discretization
Let Ω ⊂ R2 be defined as the rectangle [(qmin)1, (qmax)1]× [(qmin)2, (qmax)2]. Distributing
m1m2 nodes uniformly over this interval while covering the boundary yields:

qi := ψ(i) = qmin +Hχ(i),(1.22)

where H =
(
hq1 0
0 hq2

)
with hqk = (qmax−qmin)k

mk−1 .

and

χ(i) :=
(

(i− 1) modm1

b i−1
m1
c

)
(1.23)

The adjacency label set is defined independent of i as

(1.24) Ji :≡ {
(
±1
0

)
,

(
0
±1

)
}

for all i ∈ int(I) and for those i the adjacency operator is defined as ∆i(j) := χ−1(j).
The discretization defines a square lattice if h1 = h2.

2. Uniform finite difference operators

Analogously to the definitions for the one dimensional case in 4.2.2 using the anti-
symmetric property of the uniform domain discretization for higher dimensional spaces
∂
∂qk

can be approximated by two different finite difference atoms: a forward and backward
finite difference operator (F respectively B) can be defined:

σFqk := ςek ≈ ∂

∂qk
(2.1)

σBqk := ς−ek ≈ ∂

∂qk
(2.2)

54 3. UNIFORM d-DIMENSIONAL FDM

A weighted average of these two approximations results in the first order θ finite differ-
ence operator:

σΘqk(θ) = θςek + (1− θ)ς−ek ≈ ∂

∂qk
(2.3)

For 0 ≤ θ ≤ 1 with special case θ = 1
2 , the central finite difference operator, C, can be

defined:

σCqk := σΘqk(1
2

) =
ςek + ς−ek

2
≈ ∂

∂qk
(2.4)

Adhering to the σαqk formulation I derive the following explicit values for F,B,Θ(θ) and
C:

Fqk := e2k(2.5)
Bqk := e2k+1(2.6)

Θ(θ)qk := θe2k + (1− θ)e2k+1(2.7)

Cqk := Θ(
1
2

)qk =
e2k + e2k+1

2
.(2.8)

Ordering the labels of J accordingly results in

R = Id ⊗
(

1 −1
)
.(2.9)

This means that the solution to

Rα =
v
||v||

(2.10)

⇔ Id ⊗
(

1 −1
)
α =

v
||v||

(2.11)

can be split α into αF containing all αk’s for k is odd and αB containing all αk’s for k
is even. They correlate to labels ek respectively −ek:

IαF − IαB =
v
||v||

.(2.12)

To approximate a directional derivative Dv by directional finite difference operator σ(·)v
we can solve for αF while setting αB = 0 finding αF = v to obtain a forward directional
finite difference operator σFv and vice versa for the backward directional finite difference
operator, σBv, with αB = v. Again with θ and thus central extension possibilities. Using
the ordering it follows that: (Fv)2k = −(Bv)2k+1.

The transformation of derivatives turns out to be trivial for the uniform discretization.
The transitivity property also ensures trivial operator composition to create approxima-
tions to higher order derivatives.

2. UNIFORM FINITE DIFFERENCE OPERATORS 55

2.1. Uniform local truncation error. The local truncation error estimate from
definition 11 is easily shown to be even simpler for uniform discretizations:

τ = L−
∑

(s,j)∈S

sTrj =
dq∑
k=1

∑
j∈J
O (rj)k =

d∑
k=1

O (hk) .(2.13)

The truncation error for a uniform label j = ±ek is greatly simplified compared to the
general definition. Because of the reduced complexity of the Taylor series (4.62):

Tr±ek
(q) = T±hkek(q)(2.14)

=
∞∑

n1=0

. . .
∞∑

nd=0

0n1 . . . (±hk)nk . . . 0nd
n1! . . . nd!

(
∂n1+...+nd

∂qn1
1 . . . ∂qndd

)
.(2.15)

Using

0nk =
{

1 nk = 1
0 otherwise ,

∂0

∂q0
k

= id, and 0! = 1(2.16)

(2.14) reduces to:

=
∞∑
n=0

(±hk)n

n!

(
∂n

∂qnk

)
(2.17)

For transitive labels j1 + j2, possibly mixed from approximating mixed derivatives, the
Taylor series for the uniform domain discretization will show to still be quite manage-
able.

The truncation errors for the forward, backward and central finite difference operators
are computed below.

Forward finite difference operator σFqk :

τ =
∂

∂qk
−

∑
(s,j)∈σFqk

sTrj(2.18)

=
∂

∂qk
− h−1

qk
Thqkek + h−1

qk
T0(2.19)

=
∂

∂qk
− h−1

qk

∞∑
n=0

hnqk
n!

∂n

∂qnk
+ h−1

qk

∞∑
n=0

0n

n!
∂n

∂qnk
(2.20)

=
∂

∂qk
− h−1

qk
id− ∂

∂qk
− h−1

qk

∞∑
n=2

hnqk
n!

∂n

∂qnk
+ h−1

qk
id(2.21)

= −
∞∑
n=2

hn−1
qk

n!
∂n

∂qnk
= O(hqk).(2.22)

This shows the forward finite difference operator to be of first order.

56 3. UNIFORM d-DIMENSIONAL FDM

Backward finite difference operator σBqk :

τ =
∂

∂qk
−

∑
(s,j)∈σBqk

sTrj(2.23)

= O(hqk).(2.24)

This shows the backward finite difference operator to also be of first order.

Central finite difference operator σCqk :

τ =
∂

∂qk
−

∑
(s,j)∈σCqk

sTrj(2.25)

= O(h2
qk

).(2.26)

This shows the central finite difference operator to be of second order.

“Squared halved central finite difference operator” σ2

(Cqk)
1
2
:

τ =
∂2

∂q2
k

−
∑

(s,j)∈σ2

(Cqk)
1
2

sTrj(2.27)

=
∂2

∂q2
k

+ h−2
qk
T0 − h−2

qk
T−hqkek − h

−2
qk
Thqkek(2.28)

=
∂2

∂q2
k

+ 2h−2
qk

∞∑
n=0

0n

n!
∂n

∂qnk
− h−2

qk

∞∑
n=0

(−hqk)n

n!
∂n

∂qnk
− h−2

qk

∞∑
n=0

hnqk
n!

∂n

∂qnk
(2.29)

=
∂2

∂q2
k

+ 2h−2
qk

id(2.30)

−h−2
qk

id + h−1
qk

∂

∂qk
− 1

2
∂2

∂q2
k

− hq
6
∂3

∂q3
k

− h−2
qk

∞∑
n=4

(−hqk)n

n!
∂n

∂qnk
(2.31)

−h−2
qk

id− h−1
qk

∂

∂qk
− 1

2
∂2

∂q2
k

+
hq
6
∂3

∂q3
k

− h−2
qk

∞∑
n=4

hnqk
n!

∂n

∂qnk
(2.32)

= −h−2
qk

∞∑
n=4

(−hqk)n

n!
∂n

∂qnk
− h−2

qk

∞∑
n=4

hnqk
n!

∂n

∂qnk
(2.33)

= O(h2
qk

).(2.34)

This shows the squared halved central finite difference operator to be of second or-
der.

3. Uniform Traversal

Uniform traversal is done intuitively by traversing through time. Each time layer indi-
cates the subdomains over which the time coordinate is constant:

4. CREATING THE LINEAR SYSTEMS 57

Tn = {i ∈ I | ψ(i)d+1 = nht}.

Note that Tn is a dx-dimensional uniform subdiscretization including lower dimensional
boundaries. This system can be solved as a complete system.

Traversing further space dimensions separately might be an option but since spatial
domains are defined all around and not one sided, such as the initial conditions do for the
time dimension, working from one boundary to the other might run into complications.
The end result might not match the other boundary. A self correcting back and forth
approach might yield possibilities for solving this problem.

4. Creating the linear systems

4.1. Uniform matrix representation. In 5.1 I introduced the generalized version
of the matrix representation.

Qj

The matrix representation Qj of the sub atomic finite difference operator ςj is a matrix
such that at row i it is one exactly at the column position of j-th neighbor of i and zero
elsewhere.

For uniform discretizations the matrix representation will consist of punctured banded
systems. The punctures in these band are formed by the fact that at the start or end
of ’row’ the node with the next respectively previous index is not a neighbor. It has
’jumped’ to the beginning of next ’row’ or to the end of the previous ’row’. For higher
dimensions these gaps become larger as not a one dimensional ’row’ is skipped but a two
dimensional ’slice’, a three dimensional ’volume’ etcetera. Cf. Figure 1.

For uniform systems these punctured banded systems can be described using Kronecker
products of matrices:

Qj
Tn,Tn−p :=

d⊗
k=1

J jkmk(4.1)

:= J j1m1
⊗ . . .⊗ J jdmd ∀j ∈ Zd × {−p}(4.2)

To prove that (4.1) is indeed the matrix representation belonging to the uniform dis-
cretization of definition 16 I proof the following lemma.

Lemma 4. The matrix representation of the uniform discretization of definition 16 is
indeed given by:

Qj
Tn,Tn−p :=

d⊗
k=1

J jkmk(4.3)

as stated in definition 5.5.

58 3. UNIFORM d-DIMENSIONAL FDM

Figure 1. Example of the punctured banded systems arising from the
Kronecker sequences for d = 1, 2, 3, 4 for S =

∑d
k=1 σCxk . with m = 5.

Proof:

(Qj
Tn,Tn)i,g := (

d⊗
k=1

J jkmk)i,g(4.4)

=

 d⊗
k=2

J jkmk ⊗

 m1

→
i1=1

m1

↓
g1=0

δi1,g1+j1

i,g

.(4.5)

4. CREATING THE LINEAR SYSTEMS 59

For this value to be one the first criterium is that δi1,g1+j1 must be one. This is equivalent
to:

δi1,g1+j1 = 1(4.6)
⇔ i1 = g1 + j1

⇔ i+ am1 = g + bm1 + j1 ∀a, b ∈ {1, . . . ,
d∏

k′=2

mk′}

⇔ i+ (a− b)m1 = g + j1 ∀a, b ∈ {1, . . . ,
d∏

k′=2

mk′}

⇒ imodm1 = g + j1.

From this follows that

=

 d⊗
k=2

J jkmk ⊗

 m1

→
i1=1

m1

↓
g1=0

1

i,g

δimodm1,g+j1(4.7)

=

(
d⊗

k=2

J jkmk ⊗ 1m1,m1

)
i,g

δimodm1,g+j1 ,(4.8)

where 1m,m is the m×m-matrix with all ones. We can repeat this process another d− 1
times by stating that:

δik,gk+jk(4.9)
⇔ ik = gk + j1

⇔
⌊

i

mk−1

⌋
+ amk = g + bmk + j1 ∀a, b ∈ {1, . . . ,

d∏
k′=k+1

mk′}

⇔
⌊

i

mk−1

⌋
+ (a− b)mk = g + j1 ∀a, b ∈ {1, . . . ,

d∏
k′=k+1

mk′}

⇒
⌊

i

mk−1

⌋
modmk = g + j1,

yielding:

=

(
d⊗

k=1

1mk,mk

)
i,g

d∏
k=1

δj
i

mk−1

k
modmk,g+jk

(4.10)

=
(
1md,md

)
i,g

d∏
k=1

δj
i

mk−1

k
modmk,g+jk

(4.11)

=
d∏

k=1

δj
i

mk−1

k
modmk,g+jk

.(4.12)

60 3. UNIFORM d-DIMENSIONAL FDM

These d equivalencies are solved by the following equivalency

= δi,g+
Pd
k=1 jkm

k−1 ,(4.13)

Which is identical to applying the adjacency operator:

= δi,g+∆j.(4.14)

this concludes the proof since it conforms to the definition of Q in 5.5 �

4.2. Boundaries. For the boundary term, contributions are described by Qj
Tn,∂k,lTn

. For k = d this is equal to the already defined internal matrix representation. For k < d
it follows that ∂k,lTn

⋂ Tn = ∅. The identity or zero label j = 0 will thereforealways yield
a zero matrix. (The boundary will contain nodes left, right, etc., of the internal nodes
but never the internal nodes themselves.)

Qj
Tn,∂k,lTn :=

0 k < d ∧ j = 0,⊗d

k′=1

({
J
jk′
mk′ k′ ∈ perm(

⌊
l

2d−k

⌋
, d− k, d)

∂J
jk′
mk′ k′ /∈ perm(

⌊
l

2d−k

⌋
, d− k, d)

)
otherwise.

Here perm(a, b, c) is the a-th permutation of b numbers from numbers 1, . . . , c and
∂J

jk′
mk′ = ejk′ mod mk′ . The J jk′mk′ represent the lower dimensional boundaries and ∂J

jk′
mk′

the restrictions layer upon this lower dimensional region. The two dimensional unit
square has four one dimensional boundaries: the north edge is the one dimensional do-
main restricted by y = 1, the south by y = −1 and east and west by x = −1 and x = 1
respectively. The four zero dimensional corners all have two restrictions: for example
northwest is the intersection of x = 1 and y = 1.

5. Solving the Linear System

When computing the solution to a linear system in practice one seldom computes the
explicit inverse of a matrix. Similarly matrices which are the result of the Kronecker
sequences need not be computed explicitly. This would not only be a time intensive
but also memory intensive process. The solution methods are applied to the three test
cases (1 Heat, 2 Implosion, 3 Burgers’) which where introduced in sections 3.1, 3.2 and
3.3.

The multiplications are computed using several BLAS subroutines, with these functions
a BiCGStab solver [4]. was constructed.

The local truncation error for each FTCS and BTCS discretization of the test cases is
O(ht) +O(h2

x). De derivation of the local truncation errors and the stability criteria are
detailed in Appendix 5.

Results for the uniform cases are included in the method comparison of part 4. See
section 6.5 for the results and section 6.5 for considerations on dimensional compari-
son.

6. UNIFORM CONCLUSIONS 61

Test case Discretization Stability
1 FTCS Conditionally stable
1 BTCS Unconditionally stable
2 FTCS Unconditionally unstable
2 BTCS Unconditionally stable
3 FTCS Conditionally stable
3 BTCS Unconditionally stable

6. Uniform Conclusions

The uniform domain discretization yields several favorable properties:

Advantages:

• Easy and efficient sparse matrix operations

• Easy operator operations (Higher order derivatives)

• (Relatively) easy analysis: truncation error and stability estimates

Disadvantages:

• Local truncation and stability issues can only be resolved globally.
Resulting in memory and or computationally intensive improvements.

CHAPTER 4

d-dimensional Adaptive FDM

1. Introduction

The exponential increase of resources needed to solve higher dimensional problems poses
a serious limitation on implementations. Fundamental improvement are needed to extend
the method to higher dimensions. The uniform method described in the previous Part
3 has several options for improvement which, ideally, would retain its advantages:

1 Improve the domain discretization

1a Decrease ht
Can only reduce the O(hkt) not the O(hkx) terms of the local truncation
error.

1b Decrease hx globally
Reducing the node distance by increasing the node density will increase the
number of nodes and the memory footprint. The increase is exponential
with dimension.

1c Decrease hx locally
This only adapts the node densities in regions perpendicular to the axis or
voids the uniform structure.

1d h-refinement : add/remove nodes at strategic positions.
This voids the uniform structure.

2 Improve operator discretization

2a Use a higher order approximation globally
Definitely an option, but not really a method improvement.

2b p-refinement : Use a higher order approximation at strategic positions
This voids the uniform structure. Only when using separate traversal levels
for separate approximations could this be an option but then simultaneous
solving of traversal levels should be implemented.

3 Improve the traversal
As mentioned in section 5.3 spatial traversal has its difficulties but for special
cases it might be an option.

4 r-refinement Transform the problem itself
By transforming the problem into two separate problems: one for adapted node
coordinates and one for solving the solution over these coordinates. The first is
done in a matter that is beneficial to the solving of the second.

63

64 4. d-DIMENSIONAL ADAPTIVE FDM

For this thesis I will apply an r-refinement by transforming the differential equation. In
a way this is more a case of adapting the problem to the structure than the structure
to the problem since the structure was already favorably to the finite difference method
by using a uniform domain discretization. The idea is to dissect the solution function
u(q) into a function composition v ◦q(ϟ). This way coordinates q are themselves viewed
as a function of original uniform coordinates ϟ. (ϟ or koppa being a - uncommon -
Greek character for q as ξ and θ are for x respectively t.)The grid equation: a boundary
value problem (BVP) is stated to solve for these adapted coordinates. The resulting
adapted space-time coordinates will be denoted by q = (x, t) and the original uniform
by ϟ = (ξ, θ).

These adapted coordinates are then used to solve for v. The transformation of u into v
is not done explicitly, instead it is the differential operator L that (partly) defines the
PDE that is transformed.

To benefit from this transformation a grid equation is formulated such that it would
yield a solution that is favorable to the solving of v. In this thesis two methods are
explored: the method of Characteristics[5] which can only be applied to certain cases
(Test case II) and the more general Winslow method [6]. With these node positions a
the transformation of the original boundary value problem is solved. Both BVPs are
solved using the uniform finite difference solution methods presented in earlier sections.
While the equation is transformed the discretization of the solution function remains the
same:

vi := v(qi) := v(q(ϟi)) = (v ◦ q)(ϟi) =: u(ϟi) =: ui.(1.1)

2. Monitor functions

A monitor function assigns priority to the node density in a given region. The higher the
monitor function at a certain point the higher the node density should be. The absolute
value of first order derivative is often a good indicator for the ‘turbulence’ and thus the
need for more nodes to properly represent the approximation. The summation of all
absolute first order spatial derivatives can be denoted as:

ω = ||∇u||2.(2.1)

Using the considerations of [8] a new floor value α(u) is included as the average gradient,
resulting in:

ω = α(u) + ||∇u||2,(2.2)

with α(u) =
R
Ω ||∇u|| dqR

Ω 1 dq
.

3. TRANSFORMATIONS 65

3. Transformations

3.1. First order. A first order derivative is transformed by:

∂

∂qk
=

dq∑
l=1

∂

∂ϟl

∂ϟl
∂qk

(3.1)

=
dq∑
l=1

∂

∂ϟl
J −1
k,l

∂
∂ϟl

does not operate on but is scaled by J −1
k,l . To clarify that it remains an operator

and not an operator working on the inverse Jacobian, exchange order such that:

=
dq∑
l=1

J −1
k,l

∂

∂ϟl
.

3.2. Second order. An arbitrary mixed second order derivative is transformed as
follows:

∂2

∂qk1qk2

=
∂

∂qk1

(
∂

∂qk2

)
.(3.2)

Apply (3.1):

=
∂

∂qk1

 dq∑
l=1

J −1
k2,l

∂

∂ϟl

 .

Apply product rule:

=
dq∑
l=1

∂

∂qk1

J −1
k2,l

∂

∂ϟl
+ J −1

k2,l

∂

∂qk1

∂

∂ϟl

Apply (3.1):

=
dq∑
l=1

 dq∑
m=1

J −1
k1,m

∂

∂ϟm

J −1
k2,l

∂

∂ϟl
+ J −1

k2,l

 dq∑
m=1

J −1
k1,m

∂

∂ϟm

 ∂

∂ϟl
.

=
dq∑
l=1

dq∑
m=1

J −1
k1,m

∂J −1
k2,l

∂ϟm

∂

∂ϟl
+ J −1

k2,l
J −1
k1,m

∂2

∂ϟmϟl
.

3.3. Higher order. An arbitrary mixed n-th order derivative is transformed as
follows:

n
©
j=1

∂

∂xkj
=

n−1
©
j=1

(
∂

∂ϟkj
◦
∂ϟkj
∂xkn

)
.(3.3)

I did not succeed in deriving a more explicit form. It should be remarked that the
number of terms grows exponentially both with increase of dimensions and with increase
of derivative order resulting in vast systems. This is a first doubt for the fitness of this
approach for higher-order higher-dimensional problems.

66 4. d-DIMENSIONAL ADAPTIVE FDM

4. Testcase 2: Implosion equation

4.1. One dimensional example. Consider the PDE of test case 2:

ut = xux.(4.1)

The value of u at the boundary which in the analytical case tends to zero towards infinity,
is forced to zero at a closer (finite) distance which simplifies matters.

Equation (4.1) yields the differential operator defined as Lu, the transformation of the
x coordinate will be solved by using another differential operator Lx

Lu =
∂

∂t
− x ∂

∂x
.(4.2)

Note that x is a (trivial) function of x so we can denote

Lu =
∂

∂t
− x(·) ∂

∂x
.(4.3)

Discretizing Lu with finite difference operator Su yields:

Su = S(·)t − diag(x)S(·)x,(4.4)

where (·) denotes the freedom to choose a finite difference stencil (forward, backward,
etc) .

To use an adaptive grid method define x and t as functions of new uniform variables ξ, θ
and define v(ξ, θ) = u(x(ξ, θ), t(ξ, θ)).

Using the following identities:

∂v

∂x
=

∂v

∂ξ

∂ξ

∂x
+
∂v

∂θ

∂θ

∂x
(4.5)

∂v

∂t
=

∂v

∂ξ

∂ξ

∂t
+
∂v

∂θ

∂θ

∂t
.(4.6)

The PDE can be transformed:

∂v

∂ξ

∂ξ

∂t
+
∂v

∂θ

∂θ

∂t
= x(·)

(
∂v

∂ξ

∂ξ

∂x
+
∂v

∂θ

∂θ

∂x

)
.(4.7)

(4.8)

Note that x is no longer the trivial function but a function of variable ξ and θ :
x(ξ, θ).

Lv =
∂ξ

∂t

∂

∂ξ
+
∂θ

∂t

∂

∂θ
− ∂ξ

∂x

∂

∂ξ
− ∂θ

∂x

∂

∂θ
.(4.9)

4. TESTCASE 2: IMPLOSION EQUATION 67

The derivatives of ξ and θ can be determined using the matrix equation for the Jacobian,
J matrix and its inverse J −1:

JJ −1 = I(4.10)

⇔
(

∂ξ
∂x

∂ξ
∂t

∂θ
∂x

∂θ
∂t

)(∂x
∂ξ

∂x
∂θ

∂t
∂ξ

∂t
∂θ

)
= I.(4.11)

Note that, for now, I have chosen t ≡ θ. The inverse of the Jacobian is now computed
as: (

∂ξ
∂x

∂ξ
∂t

∂θ
∂x

∂θ
∂t

)(
∂x
∂ξ

∂x
∂θ

0 1

)
= I(4.12) (

∂ξ
∂x

∂ξ
∂t

∂θ
∂x

∂θ
∂t

)
=

(
∂x
∂ξ

∂x
∂θ

0 1

)−1

(4.13)

=

(
1
∂x
∂ξ

−
∂x
∂θ
∂x
∂ξ

0 1

)
.(4.14)

The transformed differential operator can be written as:

Lv :=

((
−
∂x
∂θ
∂x
∂ξ

)
∂

∂ξ
+ 1

∂

∂θ

)
− x

((
1
∂x
∂ξ

)
∂

∂ξ
+ 0

∂

∂θ

)
= 0.(4.15)

This gives:

Lv =
∂

∂θ
−
(
x+ xθ
xξ

)
∂

∂ξ
(4.16)

=
∂

∂θ
−

(
id + ∂

∂θ
∂
∂ξ

)
x
∂

∂ξ
(4.17)

Note that Lx := id+ ∂
∂θ

∂
∂ξ

is an operator that operates on x while the complete operator

operates on v.

=
∂

∂θ
− Lxx

∂

∂ξ
.(4.18)

This nested structure is used when observing that when Lx = 0 it follows that Lu = ∂
∂θ

and the equation thereforebecomes: ∂
∂θ = 0. This results in a solution that is constant

over time and thus equal to the initial condition. This is the basis for the method of
Characteristics. [5] A powerful method to solve a PDE, if the equation permits it.

Discretization gives:

(4.19) Sv := S(·)θ − diag (Sxx)S(·)ξ,

with Sx = I+S(·)θ
S(·)ξ

. To implement Sv discretization choices for each (·) must be made. As
an example the derivation of the complete matrix representation using BTCS (Backwards

68 4. d-DIMENSIONAL ADAPTIVE FDM

in time, central in space) discretization:

(4.20) SBTCSv := SBθ − diag
(
SBTCSx x

)
SCξ,

with SBTCSx = I+SBθ
SCξ

.

Since x must cover the domain, its boundary values are qmin and qmax, and these cannot
be forced to zero.

In stencil form:
(4.21)
SBTCSv =

{
(h−1
θ ,0), (−h−1

θ ,−e2), (−(2hξ)−1 diag
(
SBTCSv x

)
, e1), ((2hξ)−1 diag

(
SBTCSv x

)
,−e1)

}
,

with SBTCSx = {(1,0),(h−1
θ ,0),(−h−1

θ ,−e2)}
{((2hξ)−1,e2),(−(2hξ)−1,−e2)} .

In matrix form:

SBTCSv = h−1
θ Q0 − h−1

θ Q−e2 − (2hξ)−1 diag
(
SBTCSx x

)
Qe1 + (2hξ)−1 diag

(
SBTCSx x

)
Q−e1

= h−1
θ (Q0 −Q−e2)− (2hξ)−1 diag

(
SBTCSx x

)
(Qe1 −Q−e1)

= h−1
θ

(
J0 ⊗ J0 − J0 ⊗ J−1

)
− (2hξ)−1 diag

(
SBTCSx x

) (
J1 ⊗ J0 − J−1 ⊗ J0

)
= h−1

θ

(
I − I ⊗ JT

)
− (2hξ)−1 diag

(
SBTCSx x

) (
J ⊗ I − JT ⊗ I

)
,

with SBTCSx =
I+h−1

θ (Q0−Q−e2)
(2hξ)−1(Qe1−Q−e1) =

I+h−1
θ (J0⊗J0−J0⊗J−1)

(2hξ)−1(J1⊗J0−J−1⊗J0)
=

I+h−1
θ (I−I⊗JT)

(2hξ)−1(J⊗I−JT⊗I) .

Applied to solution vector v per time level n:

(Sv,BTCSv)n = h−1
θ

(
vn − vn−1

)
− (2hξ)−1 diag

(
xn + h−1

t

(
xn − xn−1

)
(2hx)−1 (Jxn − JTxn)

)(
Jvn − JTvn

)
∀n

Since vi = v(ϟi) = u(q(ϟi)) = u(qi) = ui it follows that u = v. u and v are therefore
interchangeable and u will be used from now on.

To construct an equation for un assume that xn,xn−1 and un−1 known. A nodal repre-
sentation for node i at time level n is given by:

(4.22) (Svun)i =

xni −
xni −xn−1

i
hθ

xni+1−xni−1

2hξ

 uni+1 − uni−1

2hξ
+

uni − un−1
i

hθ
.

This explicated form is only mentioned to connect to classical per node formulation
which are renowned to become overly complicated for higher dimensional problems and
for problems with non zero boundary conditions. Describing the discretization by finite
difference operators remain compact even for higher dimensions and with boundary
terms. On top of that it provides flexibility to choose the method of discretization.

4. TESTCASE 2: IMPLOSION EQUATION 69

4.2. Higher dimensional example.

ut = x · ∇u(4.23)

from which we extract the differential operator:

Lu =
∂

∂t
− x(·) · ∇(4.24)

=
∂

∂t
−

d∑
k=1

xk(·)
∂

∂xk
,(4.25)

which is, using generalized space time coordinates q := (q1, . . . , qd, qd+1) = (x1, . . . , xd, t),
equivalent to

Lu =
∂

∂qd+1
−

d∑
k=1

qk(·)
∂

∂qk
.(4.26)

Analogous to the definition of the generalized coordinates I introduce the generalized
adaptive space time coordinates.

ϟ := (ϟ1, . . . , ϟd, ϟd+1) = (ξ1, . . . , ξd, θ).(4.27)

Define each variable qk to be function of adaptive variables ϟ1, . . . , ϟd+1 : qk(ϟ1, . . . , ϟd+1)
and use the following identity to transform the equation:

∂u

∂qi
=

d+1∑
k=1

∂u

∂ϟk

∂ϟk
∂qi

.(4.28)

The Jacobian is used to compute the inverse transformation:

JJ −1 = I(4.29)

⇔

∂ϟ1
∂q1

. . . ∂ϟ1
∂qd+1

...
...

∂ϟd+1

∂q1
. . .

∂ϟd+1

∂qd+1

∂q1
∂ϟ1

. . . ∂q1
∂ϟd+1

...
...

∂qd+1

∂ϟ1
. . .

∂qd+1

∂ϟd+1

 = I,(4.30)

such that

∂u

∂qi
=

d+1∑
k=1

(J −1)i,k
∂u

∂ϟk
.(4.31)

Now (4.26) can be transformed into adaptive form:

Lv =
d+1∑
k=1

(J −1)d+1,k
∂

∂ϟk
−

d∑
k=1

qk

d+1∑
k′=1

(J −1)k,k′
∂

∂ϟk′
= 0.(4.32)

Note that unlike the one dimensional case I have not yet explicitly computed J −1. In
its symbolical form the Jacobian matrix is a (d+ 1)× (d+ 1) matrix which is, for small
d perfectly within the scope of direct solution methods (i.e. Guassian elimination or

70 4. d-DIMENSIONAL ADAPTIVE FDM

Cramers’ rule). instead of computing J −1 symbolically with the possibilities of terms
coinciding or canceling each other I chose to discretize J into J, a matrix of diagonal
matrices (a ’matrix-matrix’), for which addition, multiplication and division operations
are conceptually equivalent to scalars in a regular scalar-matrix.

J =

 diag(S(·)ϟ1q1) . . . diag(S(·)ϟd+1
q1)

...
...

diag(S(·)ϟ1qd+1) . . . diag(S(·)ϟd+1
qd+1)

 .(4.33)

This choice was made to contain the scope of the method to a more numerical but
it does give options for further improvements. For the inversion of the Jacobian I’ve
implemented Cramers’ rule on the matrix-matrix and BLAS QLUP decomposition per
node i . Both with similar results. But the determinant for Cramers’ rule was computed
in a naive way so is open to further improvement. A third option: transforming the
matrix-matrix matrix equation to a matrix vector equation and applying BiCGStab was
also tried but proved much less efficient in its rough application so it was not explored
any further.

(JBTCS)n =

 diag((SCϟ1q1)n) . . . diag((SCϟdq1)n) diag((SBϟd+1
qd)n)

...
...

...
diag((SCϟ1qd)

n) . . . diag((SCϟd+1
qd+1)n) diag((SBϟd+1

qd+1)n)

=

diag(Qe1−Q−e1

2hq1
qn1) . . . diag(Qed

−Q−ed
2hqd

qn1) diag(qn1−qn−1
1

hqd+1
)

...
...

...

diag(Qe1−Q−e1
2hq1

qnd+1) . . . diag(Qed
−Q−ed

2hqd
qnd+1) diag(

qnd+1−qn−1
d+1

hqd+1
)

 .

The boundary terms for qk cannot be discarded as they cannot be forced to zero on all
boundaries. Their boundary terms are dictated by qmax and qmin.

Using the system of linear equations in diagonal matrices at each step n

Jn(J−1)n = II ,(4.34)

where II is a diagonal matrix with identity matrices as values. Since vi = v(ϟi) =
u(q(ϟi)) = u(qi) = ui it follows that u = v. u and v are therefore interchangeable and
u will be used from now on.

Use the discretized Jacobi matrices to formulate a uniform grid equation:
d∑

k=1

S(·)ϟk diag
(
(J−1)d+1,k

)
u =

d∑
k=1

diag(xk)
d∑

k′=1

S(·)ϟk′ diag
(
(J−1)k,k′

)
u.(4.35)

These consist only of constant banded Kronecker sequence matrices and diagonal matri-
ces. All very computational and memory efficient. Note that even the fractions, needed
to compute the inverse of the Jacobian via Cramers’ rule ,can be computed using the
inverses of the diagonal matrix, which are again diagonal matrices with per element
inversion. This provides the tools to implement adaptive grids to a very wide variety of
problems

5. METHOD OF CHARACTERISTICS 71

5. Method of Characteristics

The Method of Characteristics [5] is based on transforming Lu into a operator that
yields an ordinary differential equation (ODE). Observing the differential operator of
(4.16):

Lv =
∂

∂θ
−
(
x+ xθ
xξ

)
∂

∂ξ

a promising choice for an adapted grid is one such that x = xθ. If this is the case the
main equation (4.1) reduces to:

(5.1) uθ = 0.

The solution of which remains constant over time thus is equal to the initial condition
for u.

5.1. One dimensional case. Using the Method of Characteristics we have the
equation

(5.2) x = −xθ

with differential operator

(5.3) Lx(ξ,θ) := id +
∂

∂θ
.

BT discretization gives:

(5.4) Sx(ξ,θ) := I + σBθ.

The finite difference equation is given by:

Sx(ξ,θ)x = 0(5.5)

⇔ xni +
xni − xn−1

i

∆θ
= 0 ∀n, i,(5.6)

⇔ xni =
1

∆θ + 1
xn−1
i .(5.7)

Solving this will result in a one-dimensional grid that adapts to maintain a constant
solution since ∂u

∂θ = 0 for these nodes.

5.2. d-dimensional case. Using Method of Characteristics we have the d differen-
tial equations:

(5.8) x = −xθ,

each with differential operator

(5.9) Lx(ξ,θ) := id +
∂

∂θ
,

72 4. d-DIMENSIONAL ADAPTIVE FDM

which is discretized exactly as the one dimensional case resulting in d finite difference
equations:

Sx(ξ,θ)x = 0(5.10)

⇔ (xk)ni =
1

∆θ + 1
(xk)n−1

i , ∀n, i.(5.11)

Solving these equations will result in a d-dimensional grid that adapts to maintain a
constant solution since ∂u

∂θ = 0 for these nodes.

6. Winslow Method

Contrasting the Method of Characteristics which only works for specific cases the Winslow
method [6] is a more general method. It targets problem areas as indicated by a monitor
function ω : Ω → R+. The higher the monitor function the higher the node density at
that point.

6.1. One dimensional case.

xθ =
1
τ

(ωxξ)ξ,(6.1)

with

ω(t,x) := α(t) + |uξ|,(6.2)

and

α(t) :=
∫ xmax

xmin

|uξ| dx.(6.3)

Discretize using BTCS discretization:

(σBθx)n =
1
τ
σ

(Cξ)
1
2
(diag(ωn−1)

(
σ

(Cξ)
1
2
x
)n

)(6.4)

xni − xn−1
i

hθ
=

1
τ

(diag(ωn−1)σ
(Cξ)

1
2
x)ni+1/2 − (diag(ωn−1)σ

(Cξ)
1
2
x)ni−1/2

hξ

xni − xn−1
i

hθ
=

1
τ

ωn−1
i+1/2

xni+1−xni
hξ

− ωn−1
i−1/2

xni −xni−1

hξ

hξ

xni − xn−1
i

hθ
=

1
τ

(
αn−1 +

∣∣∣(σC/2ξu)n−1
i+1/2

∣∣∣) xni+1−xni
hξ

−
(
αn−1 +

∣∣∣(σ
(Cξ)

1
2
u)n−1

i−1/2

∣∣∣) xni −xni−1

hξ

hξ

xni − xn−1
i

hθ
=

1
τ

(
αn−1 +

∣∣un−1
i+1 − un−1

i

∣∣) xni+1−xni
hξ

−
(
αn−1 +

∣∣un−1
i − un−1

i−1

∣∣) xni −xni−1

hξ

hξ
.

6. WINSLOW METHOD 73

Note that applying the σ
(Cξ)

1
2

operator twice results in the appearance of the σFξ and
σBξ operators:

xni − xn−1
i

hθ
=

1
τ

(
αn−1 +

∣∣(σFξu)n−1
i

∣∣) xni+1−xni
hξ

−
(
αn−1 +

∣∣(σBξu)n−1
i

∣∣) xni −xni−1

hξ

hξ
,

which will be stored in ωF and ωB.

(ωF)ni := αn−1 +
∣∣(σFξu)n−1

i

∣∣ ,
(ωB)ni := αn−1 +

∣∣(σBξu)n−1
i

∣∣ .
The discretization for the one dimensional Winslow equation can now be formulated
as:

xni − xn−1
i

hθ
=

1
τ

(ωF)n−1
i

(
xni+1 − xni

)
− (ωB)ni

(
xni − xni−1

)
h2
ξ

.

6.2. d dimensional case. In d dimensional case d equations are formulated for all
d coordinates.

(x1)θ = 1
τ∇ξ · (ω(u)∇ξx1),

...
(xd)θ = 1

τ∇ξ · (ω(u)∇ξxd)
,

with monitor function

ω(u) = α(u) + βγ(u),(6.5)

and

βγ(u) := ||∇ξu||
1
γ(6.6)

=

(
d∑

k=1

(
∂u

∂ξk

)2
) 1

2γ

(6.7)

and

α(u) :=
∫

Ω
βγ(u) dx(6.8)

=
∫ (xmax)1

(xmin)1

. . .

∫ (xmax)d

(xmin)d

βγ(u) dxd . . . dx1.(6.9)

Discretization yields:

(σBθxk)
n =

1
τ

d∑
k′=1

σ
(Cξk′)

1
2

(
diag(ωn−1)

(
σ

(Cξk′)
1
2
xk

)n)
(6.10)

74 4. d-DIMENSIONAL ADAPTIVE FDM

⇒
(xk)ni − (xk)n−1

i

hθ
=

1
τ

d∑
k′=1

(ω)n−1
i−∆ 1

2
ek′

(
(xk)ni+∆ek′

− (xk)ni
)
− (ω)n−1

i+∆ 1
2
ek′

(
(xk)ni − (xk)ni−∆ek′

)
h2
ξ

.

In this equation we recognize terms from the one dimensional case. But a complication
arises as ω is evaluated not only in i ± 1/2 but in i ±∆1

2ek′ . In the once dimensional
case this was compensated by discretizing the uξ term in ω with σ

(Cξ)
1
2

resulting in only

integer node values. For the k = k′ terms the addition or subtraction of two 1
2 terms

will result in integer node values but for k 6= k′ non integer (in between) node values
will remain. As a solution I implement a linear interpolation of the surrounding integer
nodes along the xk′-axis:

ωn−1
i±∆ 1

2
ek′

=

αn−1 +
∣∣∣∣σ(Cξk′)

1
2
u
∣∣∣∣+

1
2

d∑
k′′=1
k′′ 6=k′

∣∣∣(Q 1
2
ek′σCxk′′ +Q−

1
2
ek′σCxk′′)u

∣∣∣

n−1

i±∆ 1
2
ek′

.

These results will be stored in vectors ωBxk′ and ωFxk′ for 1 ≤ k′ ≤ d.

(
ωFξk′

)n
i

:= αn−1 +
∣∣(σFξk′u)n−1

i

∣∣+
1
2

d∑
k′′=1
k′′ 6=k′

∣∣∣(σCξk′′u)n−1
i+∆ek′

+ (σCξk′′u)n−1
i

∣∣∣
(
ωBξk′

)n
i

:= αn−1 +
∣∣(σFξk′u)n−1

i

∣∣+
1
2

d∑
k′′=1
k′′ 6=k′

∣∣∣(σCξk′′u)n−1
i + (σCξk′′u)n−1

i−∆ek′

∣∣∣

The discretization for the multi-dimensional Winslow equation can now be formulated
as:

(xk)ni − (xk)n−1
i

hθ
=

1
τ

d∑
k′=1

(ωFξk′)
n−1
i

(
(xk)ni+∆ek′

− (xk)ni
)
− (ωBξk′)

n−1
i

(
(xk)ni − (xk)ni−∆ek′

)
h2
ξk′

.

6.3. Considerations on dimensional comparison. The higher the dimension
the larger the size of the d-dimensional sphere around a point and the more ‘heat’ can
be transported from that point. The equalizing effect of diffusion will be ‘stronger’ the
higher the dimension of the domain. Since the problem will already be harder (compu-
tation and memory wise) as the dimension increases (since more nodes are needed to
maintain the same node density) it seems unfair, or even unreasonable, to also maintain
a constant diffusion coefficient on top of what is called the Curse of dimensionality . The
fact that a problem becomes harder when the dimension of the domain or the diffusion

6. WINSLOW METHOD 75

coefficient is increased remains but to create a comparison I decided to implement a
dimensionally equalizing diffusion coefficient κ = d−1. This choice for κ results in a
stability criterium independent of d and an exact solution for the d-dimensional case
that is, when restricted to a lower dimensional domain, equal to the lower dimensional
solution over that domain.

Contrary to diffusion advection does not increase with the dimension of the domain.
A directional flow does not increase when placed in a higher dimensional volume. No
coefficients are needed to ensure that the exact solution for the d-dimensional case is,
when restricted to a lower dimensional domain, equal to the lower dimensional solution
over that domain.

6.4. Considerations on method comparison. To show the relevance of the
Winslow versus the uniform approximation of the three test cases (cf. Appendix 3)
I endeavored to construct a comparison as follows:

(1) Choose a time step resolution hθ and a base node count m for the Winslow
method.

(2) Determine the memory load, computation time and maximum error for a given
dimension, d.

(3) Find base node count m1 for the uniform method such that the memory load
roughly equals that of the Winslow method.

(4) Find a time step resolution ht for the uniform method such that the computation
time roughly equals that of the Winslow method.

(5) Compare the maximum error.

The method that results in smallest maximum error can be argued to be the more
efficient method: with roughly the same resources (time and memory) it achieves a
higher accuracy.

The uniform base node count, m, in step (3) is the number of nodes in each axial direction
making the total number of nodes md. It is derived analytically while the uniform time
resolution, ht, in step (4) is found empirically.

For step (3) estimates for the memory use are formulated for both methods. The memory
needed for the uniform implementation is described by: 6md. The factor 6 comes from
the storing the solution and 5 vectors needed for the BiCGStab iteration. For the
Winslow method the memory requirements are described by: (6+2d+2d(d+1))md The
factor 6 covers the same vectors as the uniform case but is supplemented with 2d vectors
for storing the d-dimensional node locations at step n and n− 1. The 2d(d+ 1) vectors
are used to store the Jacobi matrix again at n and n−1. Equating these formulas results
and solving for adaptive axial node count of 19 (19 nodes in each direction, 19d nodes
in total) yields: 38, 36.3822, 34.5253, 32.909, 31.5708 for d = 1, 2, 3, 4, 5 Rounding up to
the highest odd integer yields a uniform axial node count of 39.

The time stepsize for the Winslow method hθ = T
100 such that it takes 100 steps to

iterate to end time T .

76 4. d-DIMENSIONAL ADAPTIVE FDM

6.5. Results. To asses and compare the performance of the uniform and adaptive
methods numerical experiments for the three test cases were performed. Al experiments
were run on a 2008 MacBook 2.4 Ghz Intel Core 2 Duo, although no parallelization
has yet been implemented in the software to benefit from the dual core. The time
measurements represent the CPU time used by the program.

The error estimates are made using the exact solutions. A maximum of this error is
determined over a one dimensional cross section of the domain: ξ2 = . . . ξd = 0 for which
the solutions in each test case is equal throughout the dimension as stated in .

6.5.1. Testcase 1 : Diffusion. To roughly match and at least surpass the computation
time for the Winslow method a time step size for the uniform method is chosen as
hθ = T

2500 .

d Computation time (ms) max. error
Winslow Uniform Winslow Uniform

1 2.5× 101 5.8× 101 0.010 0.0021
2 3.2× 102 5.0× 102 0.0084 0.0021
3 9.9× 103 1.2× 104 0.0075 0.0021
4 5.0× 105 9.6× 105 0.0071 0.0021
5 3.7× 107 6.2× 107 0.0070 0.0021

Table 1. Results for Testcase 1 : Heat

1 2 3 4 5
1

100

104

106

Dimension HdL

C
om

pu
ta

tio
n

tim
e

Ht
L

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

Model time HtL

M
ax

im
um

er
ro

r

Figure 1. Method comparison of the d-dimensional Heat equation
(Testcase 1). Uniform (Green) 39d and Winslow (Blue) 19d nodes.

This clearly shows that the adaptive approach underperforms compared to the uniform
method. The marginal adaption visible in Figure 2 compared to the uniform method
indicates that the transformation yields little difference but still requires the increased
computational load of the Winslow method. This is caused by the little variation in the
first order derivative of the solution. On top of that the extra terms of the transforma-
tion of the second order derivatives as mentioned in section 3.3 are cause for increased
computation time and further reduce the efficiency.

6.5.2. Testcase 2 : Implosion. To roughly match and at least surpass the computa-
tion time for the Winslow method a time step size for the uniform method is chosen as
hθ = T

1000 .

6. WINSLOW METHOD 77

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. The inner nodes q(ϟ)1 such that ξ2 = . . . ξd = 0 as a function
of time θ. A one dimensional cross section of the d = 5 case.

d Computation time (ms) max. error
Winslow Uniform Winslow Uniform

1 5.3× 101 7.0× 102 0.25 0.92
2 2.5× 102 3.5× 102 0.21 0.92
3 9.5× 103 1.4× 104 0.23 0.92
4 3.9× 105 7.8× 105 0.23 0.92
5 2.2× 107 9.3× 107 0.22 0.92
Table 2. Results for Testcase 2 : Implosion

1 2 3 4 5
1

100

104

106

108

Dimension HdL

C
om

pu
ta

tio
n

tim
e

Ht
L

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Model time HtL

M
ax

im
um

er
ro

r

Figure 3. Method comparison of the d-dimensional Implosion equation
(Testcase 2). Uniform (Green) 39d and Winslow (Blue) 19d nodes.

Due to the steepness the Implosion test case the Winslow method performs considerably
better. The method of Characteristics performs even better, in fact so good that its error
cannot be significantly depicted in the graph, but this is to be expected of a method that
actually prescribes an analytical solution. The node lines in Figure 4 clearly indicate
that the system is strongly adapted resulting in increased overall performance.

6.5.3. Testcase 3 : Burgers’. The steepness or non-smoothness of the Burgers’ so-
lution is between that of the two previous test cases. The inclusion of second order
derivative increases the computational workload as it did with the Heat test case. The
node lines in Figure 6 clearly indicate the traveling wave and show adaptivity. The
benefits from this adaptivity is enough to outperform the uniform method based on
the maximum error. On top of that the uniform solution shows small irregularities

78 4. d-DIMENSIONAL ADAPTIVE FDM

-4 -2 0 2 4

1

2

3

4

5

-4 -2 0 2 4

1

2

3

4

5

Figure 4. The inner nodes q(ϟ)1 such that ξ2 = . . . ξd = 0 as a function
of time θ. Method of Characteristics left, Winslow Method right.

d Computation time (ms) max. error
Winslow Uniform Winslow Uniform

1 5.5× 101 6.4× 102 0.30 0.44
2 5.1× 102 4.4× 102 0.24 0.44
3 1.3× 104 1.4× 104 0.22 0.44
4 5.6× 105 1.0× 106 0.21 0.44
5 5.4× 107 8.1× 107 0.16 0.44

Table 3. Results for Testcase 3 : Burgers’

1 2 3 4 5
1

100

104

106

108

Dimension HdL

C
om

pu
ta

tio
n

tim
e

Ht
L

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Model time HtL

M
ax

im
um

er
ro

r

Figure 5. Method comparison of the d-dimensional Burgers’ equation
(Testcase 3). Uniform (Green) 39d and Winslow (Blue) 19d nodes.

or ‘wiggles’ on top of the solution which are undesirable. The error in the Winslow
method seems to be mainly based on a numerical solution that ‘drags’ behind the exact
solution.

6.6. Conclusion. The use of general definitions for the uniform domain discretiza-
tion facilitated easy implementation of higher dimensional r-refinement methods. By
using the same methods for the grid and the transformed equation the generality and
flexibility of the software can be fully utilized. Providing options for higher order, non
linear and non zero, non static boundaries.

6. WINSLOW METHOD 79

-4 -2 0 2 4

1

2

3

4

5

Figure 6. The inner nodes q(ϟ)1 such that ξ2 = . . . ξd = 0 as a function
of time θ.

The numerical results from the test cases show that the adaptive method can deliver
a higher quality approximation at the same or even lower cost than the uniform ap-
proach. Validating the implementation of the more complex computations for the adap-
tive method. At this point no exact formulations can be made to predict wether a
method will benefit from r-refinement. The adaptive method seems to outperform the
uniform method depending on the turbulence. The more pronounced differences in the
first order derivative are the better method can adapt to problematic areas.

Especially higher dimensional problems can benefit from adaptive approaches since any
reduction in required node density will pay of relatively exponentially. Higher order
higher dimensional derivatives do pose a problem since their transformation yields an
exponential increasing number of approximation terms. The diffusion terms for higher
dimensional problems can also proof to be more difficult to approximate when they are
not scaled with a d−1 parameter as was done for the test cases.

Using the limited computing capabilities of a personal computer a five dimensional ap-
plication remains the upper limit. But even with increased computation power it seems
unavoidable that further improvements should be made to allow constructive methods
for even higher dimensions or higher accuracy. Hopefully the generalized definitions can
facilitate in the development of these methods.

6.7. Future Research. Since higher dimensional problems remain a heavy task
further improvements remain very desirable. Implementation of the simultaneous solving
of several traversal layers would yield possibilities for Neumann boundaries, p-refinement,
improved r-refinement by simultaneous solving of v and q and even vector valued solu-
tions.

Simultaneous parallel solving would be a welcome extension to distribute the workload
amongst multiple processor units. Definitions for matrix representations can be used to
construct communication matrices.

Exploring the matrix structures arising from h-refinement or skewed uniform grids for
anisotropic applications and thus venturing into non uniform grids for which the notation
already provides, might yield interesting adaptive extensions. r-refinement can benefit
greatly from improved monitor functions.

80 4. d-DIMENSIONAL ADAPTIVE FDM

A dimension independent monitor function that provides similar results throughout di-
mensions would fine tuning considerably easier. Using more terms of the computed
truncation function as a basis for the monitor function might provide a more accurate
handling of problem areas.

Bibliography

[1] C. Reisinger and G. Wittum, Efficient hierarchical approximation of high-dimensional option pricing
problems, SIAM Journal on Scientific Computing 29(1) (2007), 440-458.

[2] P. Sjöberg, P. Lötstedt, and J. Elf, Fokker-Planck approximation of the master equation in molecular
biology, Technical Report 2005-044 (2005) Uppsala Universitet.

[3] C. Leforestier, R.H. Bisseling, C. Cerjan, M.D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G.
Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O.Roncero, and R. Kosloff, A comparision of different
propagation schemes for the time dependent Schrödinger equation, Journal of Computational Physics
94 (1991), 59-80.

[4] Van der Vorst, H. A., Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the
Solution of Nonsymmetric Linear Systems, SIAM J. Sci. and Stat. Comput. 13 (2) (1992) 631644

[5] Evans, Lawrence C., Partial Differential Equations, American Mathematical Society (1998) ISBN
0-8218-0772-2

[6] A. Winslow, Numerical solution of the quasi-linear Poisson equation, Journal of Computational
Physics (1967) 149-172.

[7] P.A. Zegeling, Theory and Application of Adaptive Moving Grid Methods, Adaptive Computations:
Theory and Algorithms, edited by T. Tang and J. Xu (2007)

[8] A. van Dam, and P.A. Zegeling, Balanced Monitoring of Flow Phenomena in Moving Mesh Methods,
Comput. Phys. 7 (2010), 138-170

[9] The eigenvalues of tridiagonal matrices. http://www.cems.uvm.edu/~tlakoba/math337/proof_
eigensystem_tridiagonal.pdf Note TMA4205, (2009) Norwegian University of Science and Tech-
nology

[10] Randall J. LeVeque Finite Difference Methods for Differential Equations, AMath 585-6, University
of Washington, Winter/Spring Quarters, (1998)

81

 http://www.cems.uvm.edu/~tlakoba/math337/proof_eigensystem_tridiagonal.pdf
 http://www.cems.uvm.edu/~tlakoba/math337/proof_eigensystem_tridiagonal.pdf

CHAPTER 5

Appendix

1. Stencil Operations

A stencil can be viewed as a sparse notation for both differential and finite difference
operators. But also for the matrices that arise in the finite difference methods. Sthe
stencil operations and notation is defined similarly for the differential and finite difference
operators. The only differences arise for local scaling: a differential operator is multiplied
with a function returning individual values for each q in domain Ω; a finite difference
operator is multiplied by the discretization of a function returning individual values for
each node index i ∈ I.

A stencil is as set of tuples containing a scalar, s, and a coefficient, j:

label coefficient

S =
⋃
i

(si, ji)(1.1)

Addition is equivalent to a union:

S1 + S2 := S1 ∪ S2(1.2)

Global scalar multiplication with a scalar α can easily be defined as:

α
⋃
k

{(sk, jk)} :=
⋃
k

{(αsk, jk)}(1.3)

Subtraction is performed by combining a union and scalar multiplication by −1.

Local (per node) scalar multiplication with a (discretized) function α : A → R is for
differential operators is noted as:

α(·)
⋃
k

{(sk, jk)}fA =
⋃
k

{(α(·)sk, jk)}fA(1.4)

and for finite difference operators as:

diag(αA)
⋃
k

{(sk, jk)}fA =
⋃
k

{(α(·)sk, jk)}fA(1.5)

83

84 5. APPENDIX

Multiplication or more accurately composition of two operators is defined separately for
general finite difference operators(⋃

k

{(sk, jk)}

)
◦

(⋃
k′

{(s′k′ , j′k′)}

)
:=
⋃
k

⋃
k′

{(sks′k′ , jk∆i+∆ijkj
′
k′)}(1.6)

The new scalars will be formed by the multiplication of all combinations of the scalars.
The new coefficients are best viewed as the adjacency label relative from node i of the
node that is the j′ neighbor of the j neighbor of i.

When a discretization is transitive this will adhere to the much simpler form:(⋃
k

{(sk, jk)}

)
◦

(⋃
k′

{(s′k′ , j′k′)}

)
:=
⋃
k

⋃
k′

{(sks′k′ , jk + j′k′)}(1.7)

The latter form is also applicable for differential operators.

To speed up calculations every two terms of S for which it holds that jk1 = jk2 can be
combined into a single term (sk1 + sk2 , jk1).

Inverse scaling can only be computed trivially for stencils of the form S = (s,0) with
s 6= 0. 1

S = (1
s ,0) for scalars, 1

S = (1
s(·) ,0) for functions which yields the inverse of a

diagonal, diag(s)−1 again a diagonal matrix for discretized functions.

Inverse composition should yield (approximations of) anti derivatives or primitive inte-
grals. ∫ b

a
∂

∂x
f dx = f(b)− f(a)(1.8)

Or alternatively: ∫ b

a
f dx =

(
∂

∂x

)−1

f(b)−
(
∂

∂x

)−1

f(a)(1.9)

For a one dimensional uniform domain discretizaions it follows that∫ xj

xi

f dx ≈ (MFx)−1 fi − (MFx)−1 fj(1.10)

But further research is needed to explore extensions to general domain dicretizations
and higher dimensions.

2. Matrices and vectors

Definition 17. The stack and append operators are used to construct matrices. Hor-
izontal and vertical stacking are defined by:

a → b =
(
a b

)
(2.1)

a ↓ b =
(
a
b

)
(2.2)

2. MATRICES AND VECTORS 85

while horizontal and vertical appending is defined by:(
a b

)
⇒ c =

(
a b c

)
(2.3) (

a
b

)
⇓ c =

 a
b
c

(2.4)

Note that the left hand side of the append operators should be a n ×m-matrix (or vec-
tor) and the right hand side should be compatibly shaped: p ×m-matrix for horizontal
appending and a n× q-matrix for vertical appending.

When applied to matrices A :=
(
a b
c d

)
and B :=

(
e f
g h

)
the differences become

more apparent:

A ⇒ B =
(
a b e f
c d g h

)
(2.5)

A → B =
((

a b
c d

) (
e f
g h

))
(2.6)

The first is a 2× 4-matrix of scalars the second a 2× 1 vector of 2× 2 matrices. They
are very different entities as demonstrated by:

(
a b e f
c d g h

) x
y
z
w

 =
(

xa+ yb+ ze+ df
xc+ yd+ zg + wh

)
(2.7)

((
a b
c d

) (
e f
g h

))(
x
y

)
=

(
a b
c d

)
x+

(
e f
g h

)
y(2.8)

=
(
xa xb ey fy
cx dx gy hy

)
The operators can also be used in repeated form. Let A1, . . . , An be matrices. If they are
compatibly shaped a block matrix can be formed by using the repeated append operator:

n

⇒
i=1

Ai = A1 ⇒ . . . ⇒ An = (A1 . . . An)(2.9)

n

⇓
i=1

Ai = A1 ⇓ . . . ⇓ An =

 A1
...
An

(2.10)

Let a1, . . . , an be scalars then repeating the stack operator yields the following nested
construction:

a1 → a2 → a3 =
(
a1 a2

)
→ a3 =

((
a1 a2

)
a3

)
(2.11)

86 5. APPENDIX

Because I have had no need for such a nested constructing I define the repeated stack
operator as:

n

→
i=1

ai = a1 → a2 ⇒ a3 ⇒ . . . ⇒ an = (a1 . . . an)(2.12)

n

↓
i=1

ai = a1 ↓ a2 ⇓ a3 ⇓ . . . ⇓ an =

 a1
...
an

(2.13)

where the repeated appending operator can only be applied to matrices, the repeated stack-
ing operator can also be applied to scalars. Note that when the repeated stacking operator
is applied to matrices it will result in a matrix of matrices.

A d-dimensional vector v with values vk can thus be denoted as:

v =
d

↓
k=1

vk(2.14)

vT =
d

→
k=1

vk(2.15)

and a m× n matrix A with values ai,j can be be denoted as:

A =
n

↓
i=1

m

→
j=1

ai,j(2.16)

AT =
n

↓
i=1

m

→
j=1

aj,i(2.17)

(2.18)

Definition 18. The Kronecker delta, δ, is defined an function that returns one or
zero based on the equality of its two subscript parameters:

δa,b =
{

1 a = b
0 otherwise

Definition 19. The base vectors, ek, are d-dimensional vectors. Their k-th element
is one, all others are zero. d is defined by context.

(ek)k′ =
{

1 k = k′

0 otherwise

Or using stack notation and the previously defined Kronecker delta:

ek =
d

↓
k′=1

δk,k′(2.19)

2. MATRICES AND VECTORS 87

Definition 20. The identity matrix, Im, is m×m-matrix with ones along its diagonal
and zeroes elsewhere. Subscript m will be left out if it can be determined from context.

(Im)i,j =
{

1 j = i
0 otherwise(2.20)

Or using stack notation:

Im =
m

↓
i=1

m

→
j=1

δi,j(2.21)

Definition 21. The zero matrix, 0m1,m2, and one matrix, 1m1,m2 , are m1 ×m2-
matrix consisting of all zeroes respectively ones. Subscripts m1 and m2 will be left out
if it can be determined from context. When only m2 is left out it is considered equal to
one indicating the zero vector, respectively one vector.

(0m1,m2)i,j = 0(2.22)

Or using stack notation:

0m1,m2 =
m1

↓
i=1

m2

→
j=1

0(2.23)

Definition 22. The offset matrix, Jm, is m × m-matrix with ones on the above
diagonal and zeroes elsewhere. Subscript m will be left out if it can be determined from
context.

(Jm)i,j =
{

1 j = i+ 1
0 otherwise

Or using stack notation:

Jm =
m

↓
i=1

m

→
j=1

δi,j+1(2.24)

Example 10.

J4 =

 0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

Definition 23. Jkm is a special notational convention/abuse for the m × m k offset-
matrix. It is defined as:

Jkm =

 Jkm k > 0
Im k = 0

(JTm)−k k < 0

Note that J−1
m might be confused with the inverse of Jm

88 5. APPENDIX

Example 11.

J2
4 =

 0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , J3
4 =

 0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , J−2
4 =

 0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

Lemma 5. (Jkm)i,j =

{
1 j = i+ k
0 otherwise

Corrolary 1. Row i of matrix Jkm has a non zero value if and only i ∈ {−k, . . . ,m−k}
and i ∈ {1, . . . ,m}

Lemma 6. aJm + bJTm = a+b
2 (Jm + JTm) + a−b

2 (Jm − JTm)

Corrolary 2. A vector multiplication with J j can be computed as a simple index shift.
This allows for fast computations which will be used in further algorithms

(2.25) J j

x1

x2
...
xm

 =

x1+j

x2+j
...

xm+j

where xi = 0 for i /∈ {1, . . . ,m}

Definition 24. The boundary offset matrix ∂Jm is a m×1-matrix which is structured
as follows:

∂Jm := e1(2.26)

Example 12.

∂J4 =

 1
0
0
0

Definition 25. ∂Jkm is a special notational convention/abuse for the m ×m or 2 ×m
k boundary offset-matrix. It is defined as:

∂Jkm :=

 Im k = 0
em−k k > 0
e−k k < 0

(2.27)

Note that ∂J−1
m might be confused with a (pseudo) inverse of ∂Jm

Example 13.

∂J2
4 =

 0
1
0
0

 , ∂J3
4 =

 0
0
1
0

 = ∂J−2
4 , ∂J0

4 =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3. EIGENVALUES AND MATRIX NORMS 89

3. Eigenvalues and Matrix Norms

Definition 26. The spectrum of a m ×m-matrix A is denoted as λ(A). It is the set
consisting of all eigenvalues λk of A.

Properties of spectra include:

• λ(I) = {1}

• λ(sA) = sλ(A)

• λ(sI +A) = s+ λ(A)

• For A a diagonal, upper of lower triangular m×m-matrix: λ(A) =
⋃m
i=1Ai,i

• λ(Ak) = {λki | λi ∈ λ(A)}

• λ(A−1) = {λ−1
i | λi ∈ λ(A)}

Lemma 7. λ(aJm + bJTm) = {2
√
ab cos(πs

m+1) | s ∈ {1, . . . ,m}} ⊆ 2
√
ab(−1, 1)

[9]

Definition 27. The matrix norm is defined as the maximum length of the matrix
vector product with all unit vectors:

||A|| := max
||x||=1

||Ax||(3.1)

Properties of the Matrix Norm include:

• ||A|| ≥ 0

• ||A|| = 0⇔ A = 0

• ||A+B|| ≤ ||A||+ ||B||

• ||AB|| ≤ ||A|| ||B||

Lemma 8. λ(A) ⊆ ‖A‖C<1

where C<1 is the open unit disk in the complex plane.

Proof This follows from the definition of eigenvalues. For each eigenvalue λi and eigen-
vector vi of A it follows that

Av = λiv(3.2)

⇔ A
vi
||vi||

= λi
vi
||vi||

(3.3)

⇒ ∃x | ||x|| = 1 such that Ax = λix(3.4)
⇔ ∃x | ||x|| = 1 such that ||Ax|| = |λi|(3.5)

⇒ max
||vectx||=1

||Ax|| ≥ |λi|(3.6)

⇔ ||A|| ≥ |λi|(3.7)
⇔ λ(A) ⊆ ‖A‖C<1 �(3.8)

90 5. APPENDIX

Lemma 9. Matrix norm of the offset matrix

||Jkm|| =
{

1 |k| < m
0 otherwise

Corrolary 3. ||Jm + JTm|| ≤ 2, ||Jm − JTm|| ≤ 2

Lemma 10. Eigenvalue decomposition

Jm + JTm = VmΛmV −1
m

where Λm is the diagonal matrix containing all eigenvalues of Jm + JTm and Vm is the
unitary matrix containing all eigenvectors of Jm+JTm corresponding to those eigenvalues
as columns.

The using the results from [9] the decomposition of the anti symmetric variant, Jm−JTm,
is found to be:

(3.9) Jm − JTm = ZmVm
√
−1Λm(ZVm)−1

With

(3.10) Zm := diag

(
↓
i=1m

(√
−1
)i−1

)

4. Kronecker product

Definition 28. The Kronecker product between a n×m-matrix A and a p×q-matrix
B is denoted by A⊗B and is defined as the np×mq block matrix:

A⊗B :=
n

⇒
i=1

m

⇓
j=1

a(i,j)B =

 a(1,1)B . . . a(1,n)B
...

. . .
...

a(m,1)B . . . a(m,n)B

Lemma 11. Im ⊗ Ip = Imp

Lemma 12. λ(A⊗B) = {λAλB | λA ∈ λ(A), λB ∈ λ(B)}

Lemma 13. (A⊗B)i,j = Ai mod m,j mod nBb i
m
c,b j

n
c

Matrix Norm of Kronecker Product

||(B ⊗A)|| = max
||x||=1

||(B ⊗A)x||(4.1)

= max
||x||=1

||vec(A matrix(x)BT)||(4.2)

= max
||x||=1

||A matrix(x)BT ||(4.3)

≤ max
||x||=1

||A|| || matrix(x)|| ||BT ||(4.4)

= ||A|| ||B||(4.5)

5. TESTCASE ANALYSIS 91

Definition 29. The Sequence Kronecker Product

d⊗
k=1

Ak = A1 ⊗ . . .⊗Ad

5. Testcase analysis

5.1. Testcase 1: Heat equation. See Appendix 3.1 for details on the formulation
of the Heat equation.

d
∂u

∂t
= ∆u(5.1)

L := d
∂

∂t
−∆(5.2)

:= d
∂

∂t
−

d∑
k=1

∂2

∂x2
k

(5.3)

5.1.1. FTCS. First using Forward in Time, Central in Space (FTCS) discretization
of L:

Sn := σFt −
d∑

k=1

σ2

Cx
1
2
k

(5.4)

or in stencil form:

Sn = {(−h−1
t ,0), (h−1

t , ed+1)} ∪
d⋃

k=1

{(−h−2
x ,−ek), (2h−2

x ,0)(−h−2
x , ek)}(5.5)

= {(2dh−2
x − h−1

t ,0), (h−1
t , ed+1)} ∪

d⋃
k=1

{(−h−2
x ,−ek), (−h−2

x , ek)}(5.6)

Using the local truncation error estimates found in 2.1 the local truncation error of the
FTCS discretization of L can be estimated as:

τ = O(ht) +
dx∑
k=1

O(h2
x)(5.7)

= O(ht) +O(h2
x)(5.8)

Using the matrix representation the stability of the arising system can be analyzed.
A FT discretization with zero boundary terms will result in a two level stencil which
enabled the use of two level approach described in 5.5.1.

92 5. APPENDIX

Matrices AnSn and Bn
Sn are given by

AnSn = h−1
t Q0(5.9)

Bn
Sn = (h−1

t − 2dh−2
x)Q0 + h−2

x

d∑
k=1

Q−ek +Qek(5.10)

(5.11)

The eigenvalues of these matrices are then derived:

λ(AnSn) = λ(h−1
t Q0) = λ(h−1

t I) = {h−1
t }(5.12)

and

λ(Bn
Sn) = λ

(
(h−1
t − 2dh−2

x)Q0 + h−2
x

d∑
k=1

Q−ek +Qek

)

= λ

(
(h−1
t − 2dh−2

x)I + h−2
x

d∑
k=1

Q−ek +Qek

)
(5.13)

Q0 = I is so:

= h−1
t − 2dh−2

x + h−2
x λ

(
d∑

k=1

Imk−1 ⊗ (JTm + Jm)⊗ Imd−k

)
(5.14)

Using the matrix norm to estimate the eigenvalues:

⊆ h−1
t − 2dh−2

x + h−2
x

∥∥∥∥∥
d∑

k=1

Imk−1 ⊗ (JTm + Jm)⊗ Imd−k

∥∥∥∥∥C≤1(5.15)

This is a real symmetric matrix so its eigenvalues must be real:

= h−1
t − 2dh−2

x + h−2
x

∥∥∥∥∥
d∑

k=1

Imk−1 ⊗ (JTm + Jm)⊗ Imd−k

∥∥∥∥∥ [−1, 1](5.16)

Using Matrix norm estimates:

⊆ h−1
t − 2dh−2

x + dh−2
x

∥∥JTm + Jm
∥∥ [−1, 1](5.17)

= h−1
t − 2dh−2

x + 2dh−2
x [−1, 1](5.18)

= h−1
t − 2dh−2

x [0, 2](5.19)

To uphold stability according to (5.34) the modulus of the eigenvalues must be restricted
to (0, 1) which yields the following restraints:

||λ((AnSn)−1Bn
Sn)|| ⊂ (0, 1)(5.20)

⇔ ||1 + h−2
x ht[−4d, 0]|| ⊂ (0, 1)(5.21)

5. TESTCASE ANALYSIS 93

Since this is real value this reduces to:
⇔ 1 + h−2

x ht[−4d, 0] ⊂ (−1, 1)(5.22)
⇔ h−2

x ht[−4d, 0] ⊂ (−2, 0)(5.23)

⇔ h−2
x ht ∈ (0,

1
2d

)(5.24)

⇔ ht <
h2
x

2d
(5.25)

The FTCS discretization of the diffusion PDE is conditionally stable. For a given spatial
step size, hx, the stable time step size, ht, is limited and vice versa. This is consistent
with the results for 1 and 4 dimensions in [10].

5.1.2. BTCS. Now using a Backward in Time, Central in Space (BTCS) discretiza-
tion of L:

Sn := σBt −
d∑

k=1

σ2

Cx
1
2
k

or in stencil form:

Sn = {(h−1
t ,0), (−h−1

t ,−ed+1)} ∪
d⋃

k=1

{(−h−2
x ,−ek), (2h−2

x ,0)(−h−2
x , ek)}

= {(2dh−2
x + h−1

t ,0), (−h−1
t ,−ed+1)} ∪

d⋃
k=1

{(−h−2
x ,−ek), (−h−2

x , ek)}

Using the local truncation error estimates found in 2.1 the local truncation error of the
BTCS discretization of L can be estimated as:

τ = O(ht) +
dx∑
k=1

O(h2
x)(5.26)

= O(ht) +O(h2
x)(5.27)

Using the matrix representation the stability of the arising system can be analyzed. A
BT discretization with zero boundary terms will again result in a two level stencil which
enabled the use of two level approach described in 5.5.1.

Matrices AnSn and Bn
Sn are given by

AnSn = (2dh−2
x + h−1

t)Q0 − h−2
x

d∑
k=1

Q−ek +Qek

Bn
Sn = h−1

t Q0

The eigenvalues of these matrices are then derived:

λ(AnSn) = λ

(
(2dh−2

x + h−1
t)Q0 − h−2

x

d∑
k=1

Q−ek +Qek

)

94 5. APPENDIX

Using the steps from the previous section (FTCS):
⊆ 2dh−2

x + h−1
t − 2h−2

x [−1, 1](5.28)

= h−1
t + h−2

x [0, 4d](5.29)

and

λmax(Bn
Sn) = λmax(h−1

t Q0) = λmax(h−1
t I) = {h−1

t }(5.30)

The maximum eigenvalues of the rearranged matrix (AnSn)−1(Bn
Sn) are confined to:

λ((AnSn)−1(Bn
Sn)) ⊆

(
h−1
t + h−2

x [0, 4d]
)−1 (h−1

t)(5.31)

=
(
1 + hth

−2
x [0, 4d]

)−1(5.32)

Since hx, ht and d are all real and strictly positive λ((AnSn)−1Bn
Sn ⊂ (0, 1) and thus by

(5.34) the BTCS approximation of the diffusion PDE is unconditionally stable. This is
consistent with the results for 1 and 4 dimensions in [10].

5.2. Testcase 2 : Implosion equation. See Appendix 3.2 for details on the
formulation of the Implosion equation. The implosion equation is non linear in x1, . . . , xd
but still linear in u

∂u

∂t
= −x · ∇u(5.33)

where ∇ is by default defined as the spatial gradient: ∇x = ↓
dx

k=1

∂
∂xk

. The exact
solution to the implosion problem is given by:

u(x, t) = e−de
t||x||22(5.34)

L :=
∂

∂t
+ x(·) · ∇(5.35)

:=
∂

∂t
+

d∑
k=1

xk(·)
∂

∂xk
(5.36)

5.2.1. FTCS. When the boundaries of the domain are sufficiently far from the origin
the solution will be near zero on those boundaries.

(5.37) Sn = σFt +
d∑

k=1

diag(xk)SCxk

or in stencil form:

Sn = {(−h−1
t ,0), (h−1

t , ed+1)} ∪
d⋃

k=1

{((2hx)−1xk(·), ek), (−(2hx)−1xk(·),−ek)}

5. TESTCASE ANALYSIS 95

Using the local truncation error estimates found in 2.1 the local truncation error of the
FTCS discretization of L can be estimated as:

τ = O(ht) +
d∑

k=1

diag(xk)O(h2
x)(5.38)

= O(ht) +O(h2
x)(5.39)

Using the matrix representation the stability of the arising system can be analyzed. A
FT discretization with (forced) zero boundary terms will result in a two level stencil
which enabled the use of two level approach described in 5.5.1.

AnSn and Bn
Sn are given by:

AnSn = h−1
t Q0

Bn
Sn = h−1

t Q0 − (2hx)−1
d∑

k=1

diag(xk)
(
Qek −Q−ek

)

The eigenvalues can be estimated by:

λ(AnSn) = h−1
t λ(Q0) = λ(h−1

t Imd) = {h−1
t }(5.40)

DefineXk := diag
(
↓

m1

i=1
− (~qmin)k + hxki

)
such that diag(xk) = Imk−1⊗Xk⊗Imd−k .

λ(Bn
Sn) = λ

(
h−1
t Q0 − h−1

x

d∑
k=1

diag(xk)
(
Qek −Q−ek

))
Q0 = I is so:

= h−1
t − (2hx)−1λ

(
d∑

k=1

diag(xk)
(
Qek −Q−ek

))
(5.41)

Using the matrix norm to estimate the eigenvalues:

⊆ h−1
t − (2hx)−1

∥∥∥∥∥
d∑

k=1

diag(xk)
(
Qek −Q−ek

)∥∥∥∥∥C≤1(5.42)

= h−1
t − (2hx)−1

∥∥∥∥∥
d∑

k=1

diag(xk)
(
Imk−1 ⊗ (Jm − JTm)⊗ Imd−k

)∥∥∥∥∥C≤1(5.43)

= h−1
t − (2hx)−1

∥∥∥∥∥
d∑

k=1

(
Imk−1 ⊗Xk(Jm − JTm)⊗ Imd−k

)∥∥∥∥∥C≤1(5.44)

This a real anti-symmetric matrix so its eigenvalues must be purely imaginary:

= h−1
t − (2hx)−1

√
−1

∥∥∥∥∥
d∑

k=1

(
Imk−1 ⊗Xk(Jm − JTm)⊗ Imd−k

)∥∥∥∥∥ [−1, 1](5.45)

Using Matrix norm estimates:
= h−1

t − (2hx)−1
√
−1dz

∥∥(Jm − JTm)
∥∥ [−1, 1](5.46)

96 5. APPENDIX

With z := max1≤i≤m,1≤k≤d |(Xk)i|.
= h−1

t − h−1
x

√
−1dz[−1, 1](5.47)

To uphold stability according to (5.34) the moduli of the eigenvalues must be restricted
to (−1, 1) which yields the following restraints:

||λ((AnSn)−1Bn
Sn)|| ⊂ (0, 1)(5.48)

⇔ ||1− hth−1
x

√
−1dz[−1, 1]|| ⊂ (0, 1)(5.49)

⇔
√

1 + (−hth−1
x dz[−1, 1])2 ⊂ (0, 1)(5.50)

⇔
√

1 + (hth−1
x dz)2[0, 1] ⊂ (0, 1)(5.51)

⇔ 1 + (hth−1
x dz)2[0, 1] ⊂ (0, 1)(5.52)

(5.53)

From observing that (htd(2hx)−1z > 0 follows that the FTCS discretization of the
implosion PDE is unconditionally unstable with respect to the estimates made.

5.2.2. BTCS.

(5.54) Sn = σBt +
dx∑
k=1

diag(xk)SCxk

or in stencil form:

(5.55)

Sn = {h−1
t ,0), (−h−1

t ,−ed+1)} ∪
d⋃

k=1

{((2hx)−1xk(·), ek), (−(2hx)−1xk(·),−ek)}

Using the local truncation error estimates found in 2.1 the local truncation error of the
BTCS discretization of L can be estimated as:

τ = O(ht) +
dx∑
k=1

diag(xk)O(h2
x)(5.56)

= O(ht) +O(h2
x)(5.57)

Again assuming zero boundaries a BT discretization will also result in a two level stencil
which enabled the use of approach described in 5.5.1.

AnSn and Bn
Sn are given by:

AnSn = h−1
t Q0 + (2hx)−1

d∑
k=1

diag(xk)
(
Qek −Q−ek

)
(5.58)

Bn
Sn = h−1

t Q0(5.59)

5. TESTCASE ANALYSIS 97

The eigenvalues can be estimated by:

λ(AnSn) = λ

(
h−1
t Q0 + (2hx)−1

d∑
k=1

diag(xk)
(
Qek −Q−ek

))
(5.60)

Using the steps of the FTCS discretization:
⊆ h−1

t + h−1
x

√
−1zd[−1, 1](5.61)

and

λ(Bn
Sn) = h−1

t λ(Q0) = λ(h−1
t Imd) = {h−1

t }(5.62)

To uphold stability according to (5.34) the moduli of the eigenvalues must be restricted
to [−1, 1] which yields the following restraints:∥∥λ ((AnSn)−1Bn

Sn
)∥∥ ⊂ (0, 1)(5.63)

⇔ || h−1
t

h−1
t + h−1

x

√
−1zd[−1, 1]

|| ⊂ (0, 1)(5.64)

⇔ || 1
1 + hth

−1
x

√
−1zd[−1, 1]

|| ⊂ (0, 1)(5.65)

⇔ ||1 + hth
−1
x

√
−1zd[−1, 1]|| ⊂ (1,∞)(5.66)

⇔
√

1 + (hth−1
x zd[−1, 1])2 ⊂ (1,∞)(5.67)

⇔
√

1 + (hth−1
x zd)2[0, 1] ⊂ (1,∞)(5.68)

⇔ 1 + (hth−1
x zd)2[0, 1] ⊂ (1,∞)(5.69)

Since ht, hx, z and d are all reals the BTCS discretization of the implosion PDE is
unconditionally stable.

5.3. Testcase 3 : Burgers’ equation. See Appendix 3.3 for details on the for-
mulation of the Burgers’ equation. Burgers’ equation is non linear in u

∂u

∂t
= −u1 · ∇u+ µ∆u(5.70)

L :=
∂

∂t
+ u(·)1 · ∇ − µ∆(5.71)

:=
∂

∂t
+

d∑
k=1

u
∂

∂xk
− µ ∂2

∂x2
k

(5.72)

5.3.1. FTCS. First using Forward in Time, Central in Space (FTCS) discretization
of L:

Sn := σFt +
d∑

k=1

u(·)σCxk − µσ
2

Cx
1
2
k

(5.73)

98 5. APPENDIX

or in stencil form:

Sn = {(−h−1
t ,0), (h−1

t , ed+1)} ∪
d⋃

k=1

{(−u(·)(2hx)−1 − µh−2
x ,−ek), (µ2h−2

x ,0), (u(·)(2hx)−1 − µh−2
x , ek)}(5.74)

= {(2µdh−2
x − h−1

t ,0), (h−1
t , ed+1)} ∪(5.75)

d⋃
k=1

{(−u(·)(2hx)−1 − µh−2
x ,−ek), (u(·)(2hx)−1 − µh−2

x , ek)}(5.76)

Using the local truncation error estimates found in 2.1 the local truncation error of the
FTCS discretization of L can be estimated as:

τ = O(ht) +
dx∑
k=1

diag(xk)O(h2
x) diag(un−1)O(h2

x)(5.77)

= O(ht) +O(h2
x)(5.78)

Using the matrix representation the stability of the arising system can be analyzed. A
FT discretization results in a two level stencil when the perturbations in the boundary
terms are discarded which enabled the use of two level approach described in 5.5.1.

Matrices AnSn and Bn
Sn are given by

AnSn = h−1
t Q0

Bn
Sn = (h−1

t − 2µdh−2
x)Q0

+
d∑

k=1

(µh−2
x − Un−1(2hx)−1)Q−ek + (µh−2

x + Un−1(2hx)−1)Qek

= (h−1
t − 2µdh−2

x)Q0

+
d∑

k=1

µh−2
x (Q−ek +Qek) + Un−1(2hx)−1(Q−ek −Qek)

With Un := diag(un). The eigenvalues of these matrices are then derived:

λ(AnSn) = λ(h−1
t Q0) = λ(h−1

t I) = {h−1
t }(5.79)

and

λ(Bn
Sn) =

λ

(
(h−1
t − 2µdh−2

x)Q0 +
d∑

k=1

µh−2
x (Q−ek +Qek) + Un−1(2hx)−1(Q−ek −Qek)

)
Using that Q0 = I, so:

= h−1
t − 2µdh−2

x + λ

(
d∑

k=1

µh−2
x (Q−ek +Qek) + Un−1(2hx)−1(Q−ek −Qek)

)

5. TESTCASE ANALYSIS 99

Using the matrix norm to estimate the eigenvalues:

= h−1
t − 2µdh−2

x +

∥∥∥∥∥
d∑

k=1

µh−2
x (Q−ek +Qek) + Un−1(2hx)−1(Q−ek −Qek)

∥∥∥∥∥
Using Matrix norm estimates:

⊆ h−1
t − 2µdh−2

x + d
(
µh−2

x

∥∥(JT + J)
∥∥+ (2hx)−1

∥∥Un+1
∥∥∥∥(JT − J)

∥∥)C≤1

= h−1
t − 2µdh−2

x + d
(
µ2h−2

x + h−1
x v
)

C≤1

with v := maxi∈Tn−1 |ui|

This is a very crude estimate which results in overestimation and unconditional unsta-
bility. JT + J is symmetric and thereforeit has only real eigenvalues. JT − J on the
other hand is anti-symmetric and thereforehas only purely imaginary eigenvalues. The
modulo of the eigenvalues of their linear combination can be estimated by using the the
absolute value of the same linear combination of the matrix norms.

Empirical results actually show that the matrix αJ(T+J) + β(JT − J) has either real
or purely imaginary eigenvalues for α, β 6= 0. Stability is possible. This is explored as
follows:

= h−1
t − 2µdh−2

x + λ

(
d∑

k=1

µh−2
x (JT + J) + Un−1(2hx)−1

√
−1(JT − J)

)

= h−1
t − 2µdh−2

x + λ

(
d∑

k=1

(µh−2
x − Un−1(2hx)−1)J + (µh−2

x + Un−1(2hx)−1)JT
)

Assuming u ≡ v constant, such that Un−1 = vI, the following estimate can be made.
This is an unfounded approach that needs rigorous analysis but seems to provide helpful
estimates.

= h−1
t − 2µdh−2

x +
d∑

k=1

λ
(
(µh−2

x − v(2hx)−1)J + (µh−2
x + v(2hx)−1)JT

)
⊆ h−1

t − 2µdh−2
x + d

√
(µh−2

x − v(2hx)−1)(µh−2
x + v(2hx)−1)2[−1, 1]

= h−1
t − 2µdh−2

x + d

√
((µh−2

x)2 − (v(2hx)−1)2)2[−1, 1]

To uphold stability according to (5.34) the moduli of the eigenvalues must be restricted
to (0, 1) which yields the following restraints:

||λ((AnSn)−1Bn
Sn)|| ⊂ (0, 1)(5.80)

⇔ ||1− 2µdhth−2
x + htd

√
((µh−2

x)2 − (v(2hx)−1)2)2[−1, 1]|| ⊂ (0, 1)(5.81)

(5.82)

100 5. APPENDIX

This represents a horizontal or vertical segment centered on 1 − 2µdhth−2
x that should

fit in the complex unit disk. It follows that the FTCS discretization of Burgers’ PDE is
conditionally stable.

5.3.2. BTCS. Using Backward in Time, Central in Space (BTCS) discretization of
L:

Sn := σBt +
d∑

k=1

u(·)σCxk − µσ
2

Cx
1
2
k

(5.83)

or in stencil form:

Sn = {(h−1
t ,0), (−h−1

t ,−ed+1)} ∪
d⋃

k=1

{(−u(·)(2hx)−1 − µh−2
x ,−ek), (µ2h−2

x ,0), (u(·)(2hx)−1 − µh−2
x , ek)}(5.84)

= {(2µdh−2
x + h−1

t ,0), (−h−1
t ,−ed+1)} ∪(5.85)

d⋃
k=1

{(−u(·)(2hx)−1 − µh−2
x ,−ek), (u(·)(2hx)−1 − µh−2

x , ek)}(5.86)

Using the local truncation error estimates found in 2.1 the local truncation error of the
BTCS discretization of L can be estimated as:

τ = O(ht) +
dx∑
k=1

diag(xk)O(h2
x) diag(un−1)O(h2

x)(5.87)

= O(ht) +O(h2
x)(5.88)

Using the matrix representation the stability of the arising system can be analyzed. A
BT discretization results in a two level stencil when the perturbations in the boundary
terms are discarded which enabled the use of two level approach described in 5.5.1.

Matrices AnSn and Bn
Sn are given by

AnSn = (h−1
t + 2µdh−2

x)Q0

−
d∑

k=1

(µh−2
x − Un−1(2hx)−1)Q−ek + (µh−2

x + Un−1(2hx)−1)Qek

= (h−1
t + 2µdh−2

x)Q0

−
d∑

k=1

µh−2
x (Q−ek +Qek) + Un−1(2hx)−1(Q−ek −Qek)

Bn
Sn = h−1

t Q0

5. TESTCASE ANALYSIS 101

With Un := diag(un). The eigenvalues of these matrices are then derived:

λ(AnSn) =

λ

(
(h−1
t + 2µdh−2

x)Q0 −
d∑

k=1

µh−2
x (Q−ek +Qek) + Un−1(2hx)−1(Q−ek −Qek)

)

Using the steps from the FTCS discretization:

⊆ h−1
t + 2µdh−2

x − d(µ2h−2
x + h−1

x v)C≤1

with v := maxi∈Tn−1 |ui|

and

λ(Bn
Sn) = λ(h−1

t Q0) = λ(h−1
t I) = {h−1

t }(5.89)

Just as with the FTCS case this is a very crude estimate which results in overestima-
tion and unconditional unstability. JT + J is symmetric and thereforeit has only real
eigenvalues. JT − J on the other hand is anti-symmetric and thereforehas only purely
imaginary eigenvalues. The modulo of the eigenvalues of their linear combination can be
estimated by using the the absolute value of the same linear combination of the matrix
norms.

Empirical results actually show that the matrix αJ(T+J) + β(JT − J) has either real
or purely imaginary eigenvalues for α, β 6= 0. Stability is possible. This is explored as
follows:

= h−1
t − 2µdh−2

x − λ

(
d∑

k=1

µh−2
x (JT + J) + Un−1(2hx)−1

√
−1(JT − J)

)

= h−1
t + 2µdh−2

x − λ

(
d∑

k=1

(µh−2
x − Un−1(2hx)−1)J + (µh−2

x + Un−1(2hx)−1)JT
)

Assuming u ≡ v constant, such that Un−1 = vI, the following estimate can be made.
This is an unfounded approach that needs rigorous analysis but seems to provide helpful
estimates.

= h−1
t + 2µdh−2

x −
d∑

k=1

λ
(
(µh−2

x − v(2hx)−1)J + (µh−2
x + v(2hx)−1)JT

)
⊆ h−1

t + 2µdh−2
x − d

√
(µh−2

x − v(2hx)−1)(µh−2
x + v(2hx)−1)2[−1, 1]

= h−1
t + 2µdh−2

x − d
√

((µh−2
x)2 − (v(2hx)−1)2)2[−1, 1]

102 5. APPENDIX

To uphold stability according to (5.34) the moduli of the eigenvalues must be restricted
to (0, 1) which yields the following restraints:

||λ((AnSn)−1Bn
Sn)|| ⊂ (0, 1)(5.90)

⇔ || h−1
t

h−1
t + 2µdh−2

x − d
√

((µh−2
x)2 − (v(2hx)−1)2)2[−1, 1]

|| ⊂ (0, 1)(5.91)

⇔ ||1 + 2µdhth−2
x − htd

√
((µh−2

x)2 − (v(2hx)−1)2)2[−1, 1]|| ⊂ (1,∞)(5.92)

This represents a horizontal or vertical segment centered on 1+2µdhth−2
x that should fit

in the complex unit disk. Since the segment is of length 2htd
√

((µh−2
x)2 − (v(2hx)−1)2)

and thus shorter than 2µdhth−2
x it follows that the BTCS discretization of Burgers’ PDE

is unconditionally stable.

6. Notation

6.1. Font use for variables. As a rule of thumb the following font use is used to
distinguish symbol properties. Note that there are various exemptions.

a, b, c, . . . : Functions and scalar values.

A,B,C, . . . : Matrices and equation defining operators

a,b, c, . . . : Vectors

A,B, C, . . . : Sets

For the i-th element of a vector of scalars a is denoted using a subscript as ai. For a
vector ak that already has subscripts this is solved by noting (ak)i.

6.2. Domain.

da := |a| i.e. a ∈ Rda

d := dx Default dimension.

Ω := Ωx Default domain.

Ωx ⊂ Rdx : Space domain

T : Upper time boundary.

Ωq := Ωx × [0, T] ⊂ Rdq Space-time domain

k :∈ {1, . . . , d} dimensional index.

x := (x1, . . . , xd) spatial coordinates.

t : Temporal coordinate.

q := (q1, . . . , qdq) := (x1, . . . , xd, t) Generalized spatial temporal coordinates.

∂k,l : Boundary operator: the l-th k-dimensional boundary.

6. NOTATION 103

lk : Number of k-dimensional boundaries.

l :∈ {1, . . . , lk} Boundary index.

int :=
∑ld

l=1 ∂d,l Interior operator.

u : Ω→ R Solution function.

f : Ω→ R Right hand function.

6.3. Differential operators.
∂
∂qk

: atomic partial differential operator

∂n

∂qk1
...∂qkn

:= ∂
∂qk1
◦ . . . ◦ ∂

∂qkn
higher order partial differential operator.

Dv : atomic directional differential operator.

∆a :=
∑|a|

k=1 ∂akak Laplace operator.

∇a := ↓
|a|

k=1
∂ak Gradient operator.

∆ := ∆x Default Laplace operator.

∇ := ∇x Default gradient operator.

L : Linear operator

6.4. Discretization.

6.4.1. General Discretization.

W : Discretization of Ω.

I : Node index set

i :∈ I Node index

∂k,lI : Boundary node index set

qi : Nodes

Q : Node set

∂k,lQ : Boundary node set

Ji : Adjacency label set

j :∈ Ji Adjacency label

N : Adjacency / Neighborhood set

ψ : I → R Nodal function

∆i : Ji → N Adjacency operator

ri,j := qi+∆j − qi Relative neighborhood positions

104 5. APPENDIX

hj(i) : Pseudo norm of ri,j

Ri := →
j∈J

ri,j
hj(i)

Transformation matrix.

6.4.2. Traversal.

N : Number of traversal levels.

n :∈ {1, . . . , N} traversal index.

Tn : n-th traversal level.

6.4.3. Uniform Discretization.

m := (m1, . . . ,md) Grid dimensions

h := (h1, . . . , hd) Grid cell dimensions

H := diag(h) Grid cell dimension matrix

mk := m1 · . . . ·mk Vector product

6.4.4. Function Discretization.

fA := ↓
i∈A

Discretized function over subset A ⊆ I.

f := f int(I) Discretized function over the domain.

fn := fT
n

Discretized function over a traversal level.

6.5. Finite Difference.

ςj : Sub atomic finite difference operator.

σj : Atomic finite difference operator that approximates Dri,j locally.

σα : An molecular finite difference operator

σ(·)q : A not explicitly defined finite difference operator that approximates ∂q

σ(·)v : A not explicitly defined finite difference operator that approximates Dv

σFqk : The forward finite difference operator that approximates ∂qk
σBqk : The backward finite difference operator that approximates ∂qk

σΘ(θ)qk : The θ finite difference operator that approximates ∂qk
σCqk : The central finite difference operator that approximates ∂qk

S : Finite Difference operator. General molecule.

6.6. Matrix representation.

→ : The horizontal stack operator

↓ : The vertical stack operator

6. NOTATION 105

⇒ : The horizontal append operator

⇓ : The vertical append operator

diag(v) : The matrix with the values of v on its diagonal, zero elsewhere.

δi,j : Kronecker delta.

⊗ : Kronecker product

Im : The m×m identity matrix.

Jm : The m×m offset matrix.

Jkm : The m×m k-offset matrix.

∂Jm : The m×m boundary offset matrix.

∂Jkm : The m×m boundary k-offset matrix.

ek : The k-th base vector.

0m1,m2 : The m1 ×m2 zero matrix.

1m1,m2 : The m1 ×m2 one matrix.

0m : The m dimensional zero vector.

1m : The m dimensional one vector.

λ(A) : Eigenvalue spectrum matrix A.

6.7. Creating the Linear System.

QjA,B : Approximation term matrix.

MS
A,B : Approximation term matrix.

An : Left hand side matrix

Bn : Right hand side matrix

bn : Right hand side vector.

6.8. r-refinement.

ξ := (ξ1, . . . , ξd) Pre adaptive uniform spatial coordinates.

θ : Pre adaptive uniform emporal coordinate.

ϟ := (ϟ1, . . . , ϟdq) := (ξ1, . . . , ξd, θ) Generalized pre adaptive uniform spatial tem-
poral coordinates.

J : Jacobian matrix of the adaptivity transformation.

J : Discretized Jacobian matrix.

	1. Introduction
	Chapter 1. Higher dimensional Initial Boundary Value Problems
	1. Method overview
	2. Problem statement
	3. Testcases
	4. Differential operators

	Chapter 2. Generalized d-dimensional FDM
	1. Generalized Domain Discretization
	2. Boundaries
	3. Function Discretization
	4. Finite difference approximation
	5. Linear System

	Chapter 3. Uniform d-dimensional FDM
	1. Introduction
	2. Uniform finite difference operators
	3. Uniform Traversal
	4. Creating the linear systems
	5. Solving the Linear System
	6. Uniform Conclusions

	Chapter 4. d-dimensional Adaptive FDM
	1. Introduction
	2. Monitor functions
	3. Transformations
	4. Testcase 2: Implosion equation
	5. Method of Characteristics
	6. Winslow Method

	Bibliography
	Chapter 5. Appendix
	1. Stencil Operations
	2. Matrices and vectors
	3. Eigenvalues and Matrix Norms
	4. Kronecker product
	5. Testcase analysis
	6. Notation

