
Solidification using Smoothed

Particle Hydrodynamics

Master Thesis

CA-3817512

Game and Media Technology

Utrecht University, The Netherlands

Supervisors:

dr. ir. J.Egges

dr. N.G. Pronost

July, 2014

- 2 -

- 3 -

Abstract

An increasingly popular way to display fluids in multimedia is by generating physically-

based fluid simulations. In the last couple of years hardware has finally been powerful

enough to simulate particle-based fluid simulation techniques in real-time. Existing works

provide basic fluid simulators but lack more advanced fluid aspects. Advanced aspects

include temperature, phase transitions such as the freezing or melting of water. More

advanced aspects are the interactions, such as heat diffusion and collisions, between fluids

and complex objects (i.e. terrain).

We propose extensions to the Smoothed Particle Hydrodynamics fluid simulation in order

to achieve this functionality for the common fluid water. We attempt to retain the real-time

nature of GPU-based SPH by extending an existing framework and by monitoring the

performance impact for each extension.

Our contributions include the addition of temperature to the simulated fluids and heat

conduction to manipulate this temperature. We have added phase transitions which can

adjust the physical state of the fluid as a result of the change of properties of the fluid.

Finally we have added interaction between the fluid and an environment in order to more

realistically simulate heat transfer. Our extensions make use of existing functionality in the

Smoothed Particle Hydrodynamics fluid simulator, this way we can provide

computationally heavy extensions with a minimal degradation of the performance.

- 4 -

- 5 -

“The concept of free will and moral responsibility for our

actions are really an effective theory in the sense of fluid

mechanics.”

Stephen William Hawking

- 6 -

- 7 -

Contents

Abstract ... - 3 -

Contents .. - 7 -

Introduction .. - 11 -

1.1 Motivation ... - 13 -

1.2 Goal ... - 13 -

1.3 Thesis Overview .. - 13 -

Related Work .. - 14 -

2.1 Fluid Dynamics .. - 15 -

2.1.1 Newton’s Second Law of Motion ... - 15 -

2.1.2 Navier-Stokes Equations .. - 16 -

2.1.3 Mathematical Background ... - 17 -

2.1.4 Vector Field .. - 18 -

2.2 Fluid Simulation .. - 19 -

2.2.1 Eulerian Methods ... - 19 -

2.2.2 Lagrangian Methods .. - 22 -

2.3 Smoothed Particle Hydrodynamics ... - 22 -

2.3.1 SPH Essentials .. - 23 -

2.3.2 Kernel Functions .. - 24 -

2.3.2 Method Overview .. - 27 -

2.4 Solidification .. - 31 -

2.4.1 Viscosity Solutions.. - 31 -

2.4.2 Alligation Systems .. - 31 -

2.4.3 Melting ... - 32 -

2.5 Fluid-Fluid Interaction ... - 32 -

2.5.1 Multiple Fluids.. - 32 -

2.5.2 Combining fluids .. - 33 -

- 8 -

2.5.3 Buoyancy .. - 33 -

2.6 Conclusion ... - 33 -

Solidification ... - 34 -

3.1 Physics of Freezing .. - 34 -

3.1.1 Temperature based fluid properties .. - 35 -

3.1.2 Lake Solidification .. - 37 -

3.2 Heat Transfer .. - 37 -

3.2.1 The Second Law of Thermodynamics .. - 37 -

3.2.2 Entropy ... - 38 -

3.2.3 Heat Conduction .. - 39 -

3.2.4 Computing Heat Conduction .. - 39 -

3.2.5 Implementation ... - 41 -

3.3 Phase Transition .. - 43 -

3.3.1 Freezing .. - 44 -

3.3.2 Melting ... - 46 -

Interaction ... - 47 -

4.1 Frozen Objects .. - 47 -

4.2 Terrain ... - 48 -

4.2.1 Terrain Representation .. - 48 -

4.2.2 Particle Collision ... - 49 -

4.2.3 Hardware Implementation .. - 50 -

4.2.4 Rendering ... - 51 -

Results ... - 53 -

5.1 Scene: Heat Conduction .. - 54 -

5.2 Scene: Terrain Interaction ... - 55 -

5.3 Scene: Bucket Terrain ... - 56 -

5.4 Dam Break ... - 57 -

5.5 Scene: Quick Freeze .. - 58 -

5.6 Scene: Normal Freeze ... - 59 -

5.7 Performance ... - 60 -

Conclusion ... - 63 -

6.1 Contributions .. - 63 -

- 9 -

6.2 Future Work .. - 64 -

References .. - 65 -

- 10 -

- 11 -

Chapter 1

Introduction

An increasingly popular way to display fluids in multimedia is by generating physically-

based fluid simulations. Fluid simulation is an ongoing study in the field of fluid mechanics.

The topic has been studied for centuries and theory dates back to ancient Greece [1]. It has

only been recently, however, that we are able to use this theory to create our own fluid

simulators.

Original solutions originate from the field of astrophysics where fluid simulations were

used to model the formation of stars. The first adaptation of the current most widely used

method for fluid simulation, Smoothed Particle Hydrodynamics, was introduced in 1977

[2]. Since it is a relatively young field of research, existing work focuses on realistic

behavior of a fluid simulation in the sense of the flow of the fluid and hasn’t yet deviated

much to extensions of existing fluid simulators. More advanced aspects of fluids such as the

phase transitions of freezing and melting have not yet been properly explored, while these

are required to simulate scenarios such as the one in Figure 1.1.

A downside of Smoothed Particle Hydrodynamics is that it is computationally expensive in

comparison to traditional Eulerian fluid simulations for real-time applications, but yet it

offers a much more realistic result. Recent hardware makes it possible to use a real-time

implementation of the fluid simulation method and offers the possibility of an interactive

environment. This offers the opportunity to create real-time realistic fluids for applications

such as simulations of geographical events (i.e. what happens when a volcano erupts),

medical simulations related to for example blood research, or games. The possibility to

interact with a fluid simulator in an interactive manner also triggers the desire for more

advanced fluid properties.

The key difference between an interactive real-time simulation of fluids and the physically

correct computations for fluid simulation is that the result only has to be visually plausible.

In other words, the realism of the simulation is a trade-off between computation time and

physically correctness. Therefore it is common that simplifying assumptions are made in

order to make it possible to model complex fluids.

- 12 -

Figure 1.1: Frozen Lake Baikal, Russia. From [52].

- 13 -

1.1 Motivation

There are currently no methods which provide the possibility to freeze and melt a fluid in a

physically correct manner. In order for physically-based fluid simulations to really succeed

as the way to simulate fluids in applications such as games, more advanced aspects of fluids

will have to be added to traditional simulators. Existing work exists on the field of heat

diffusion but these are slow and not integrated with Smoothed Particle Hydrodynamics.

Also, the interactivity of simulations presented by existing research is limited to simple

geometry but also requires an extension for heat diffusion.

1.2 Goal

The goal of this thesis is to introduce an advanced Smoothed Particle Hydrodynamics

model which can simulate phase transitions of fluids in a physically correct way. We will

also introduce more advanced interaction models for the interaction between particles and

an environment and extend this with heat diffusion. Furthermore, we attempt to preserve

the real-time computational possibility of the simulation with our additions so that the

more mature Smoothed Particle Hydrodynamics method can be used in games in the near

future.

1.3 Thesis Overview

This thesis will provide the reader with the essential understanding of fluid mechanics in

order to work with fluid simulation methods. In the next chapter, we will describe this

essential theory and different simulation methods which will eventually lead to the

Smoothed Particle Hydrodynamics method. Since this method forms the basis of our

research we will also describe this method in depth. Furthermore, phase transition

phenomena and interaction techniques are explained and later used for our solidification

solution. In Chapter 3 we will describe the fundamentals of freezing a fluid. In the second

section of this chapter heat diffusion is explained and we describe in detail how this is

implemented in our Smoothed Particle Hydrodynamics extension. And finally the

solidification extension is expanded with the phase transition of going from a solid to a

liquid state: melting. Existing interaction models are expanded in Chapter 4 by providing a

solution for interacting with other solid objects such as a terrain. Our results can be found

in Chapter 5 and the conclusions in Chapter 6 will summarize our research and provide

ideas for future work on the subject in order to make fluid simulations even more advanced

and realistic.

- 14 -

Chapter 2

Related Work

This chapter will describe the basics of fluid mechanics and fluid simulation. Fluid

simulation is generally done in two steps: the physical simulation of the fluid and the

visualization of the fluid. We will mainly focus on the physical simulation of the fluid. This

chapter will describe the difference between Lagrangian and Eulerian fluid simulators and

give a thorough explanation of the Smoothed Particle Hydrodynamics fluid simulation

technique. Related work regarding heat transferring and the interaction of fluids with other

systems will also be discussed. A goal of this thesis is to present a solid fluid simulator

which offers real-time solidification. With this in mind, the focus of the research is on

efficient implementations which give a visually convincing approximation instead of a fluid

simulation that is physically as accurate as possible.

First of all, section 2.1 will describe fluid dynamics which studies the motion of fluids in the

real world. This section will contain the theory and mathematical background for the

understanding of this subject. In section 2.2 we will discuss fluid simulation and how

methods have been changed over the years to result in the current most widely used

Smoothed Particle Hydrodynamics method. This method will be explained thoroughly in

section 2.3. Previously existing work and theory supporting the solidification of a fluid will

be discussed in section 2.4. Finally, the interaction between fluids with different properties

will be discussed in section 2.5.

- 15 -

2.1 Fluid Dynamics

Fluid dynamics is the active field of research of fluid mechanics which studies the motion of

fluids. The motion of fluids is described by Newton’s laws of motion which we will outline

in this section. The main sets of equations which are used to describe the motion of fluids

are the Navier-Stokes equations which we will outline afterwards. The theory handled in

this section forms the basis for physically correct computational simulation of fluids.

2.1.1 Newton’s Second Law of Motion

Newton’s first law states that an object remains at rest or moves at a constant velocity,

unless an external force acts upon this object [3]. The second law states that the complete

overall force of an object is equal to the acceleration of the object multiplied by its mass.

This gives the following equation:

𝐹 = 𝑚𝑎

where

● 𝐹 is the net force

● 𝑚 is the mass of the object

● 𝑎 is the acceleration vector of the object Eq. 1

This equation can be interpreted as the conservation of momentum. If there are no forces

acting on the object it means there is no change of velocity. This can be deduced as

acceleration equals the change in velocity over time as seen in equation (2) [4].

𝑎 =
𝑑𝑣

𝑑𝑡

where

 𝑎 is the acceleration vector of the object

 𝑑𝑣 is the change in velocity

 𝑑𝑡 is the change in time

 Eq. 2

The difference between a Laplacian and an Eulerian fluid influences the way how Newton’s

second law is interpreted. More about the differences between a Laplacian and an Eulerian

fluid simulation can be found in Section 2.2.1 and Section 2.2.2. The main difference which

should be understood is that in a Laplacian fluid simulator, particles describe the fluid and

are moved according to their own and neighbouring properties, whereas in an Eulerian

- 16 -

fluid simulation the domain in which the particles reside describe the fluid and governs the

state of the particles. Also keep in mind that Eulerian simulations are used in classic fluid

solvers whereas Laplacian simulators are used in more modern solvers such as Smoothed

Particle Hydrodynamics [5].

Newton’s third law is also important for realistic fluid simulations. This law states that

when an object applies a force upon another object, this second object applies an equal

force in the opposite direction of the first force. Action equals minus reaction as shown in

Figure 2.1.

Figure 2.1: Newton’s third law balloon demonstration. 𝐹𝑏is the force exerted by the balloon on the air. 𝐹𝑎is force

exerted by the air on the balloon.

2.1.2 Navier-Stokes Equations

In 1822 Claude-Louis Navier and George Gabriel Stokes contributed the Navier-Stokes

equations to the field of fluid mechanics. These equations describe the motion of fluid by

applying Newton’s second law to fluids. At the time that these equations were modelled,

they could only be analyzed on a mathematical scale. In the second half of the 20th century

progress could be made as computers became available for researchers. The Navier-Stokes

equations are computationally expensive in their general forms as they are precise models

for fluid flows [6]. Luckily, the equations can be simplified for real-time applications while

not sacrificing any visual result. In other words, the simulations will be less accurate but

the human eye will not notice the difference [7].

In order to understand the Navier-Stokes equations, we will start with the most general

form of the equations and reduce this to a form with which we can work. The classical

equations to compute the motion for incompressible fluid flow over time are the following

two equations [8]:

- 17 -

𝜌(
𝜕𝑢

𝜕𝑡
+ 𝑢 ⋅ 𝛻)𝑢 = −𝛻𝑝 + 𝜇𝛻 ⋅ (𝛻𝑢) + 𝐹

where

● 𝜌 is the density of the fluid

● 𝑝 is the scalar pressure field of the fluid

● 𝑢 is the vector velocity field of the fluid

● 𝜇 is the viscosity of the fluid

● 𝐹 is the sum of the external forces acting on the fluid Eq. 3

𝛻 ⋅ 𝑢 = 0
where

● 𝑢 is the vector velocity field of the fluid

Eq. 4

Equation (4) describes the conservation of mass for an incompressible fluid and is called

the continuity equation [9]. This means that the velocity field has zero divergence. This

enforces the incompressibility by stating that the volume of the fluid is constant over time.

2.1.3 Mathematical Background

In the equations used in fluid dynamics we encounter the nabla (∇) operator. This operator

is used in the applications of the gradient, divergence and Laplacian operators [10]. This

section will cover these applications of the nabla operator because they are used in normal

fluid simulations, but even more so as they are also used in simulations which use heat

diffusion.

Gradient

The gradient of a scalar field is a vector of the partial derivatives of this scalar field. The

definition of the gradient operator can be found in Equation 5. The result of the gradient of

a scalar field is a vector field.

𝛻𝑓 = (
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦

𝜕𝑓

𝜕𝑛
)

where

● 𝜕𝑥, 𝜕𝑦, 𝜕𝑛 are the spacings of the scalar field in the x, y

and n dimensions. Eq. 5

- 18 -

Divergence

The divergence of a vector field is the measure of the rate of which the parameter of the

field exits a given region in the field. In the Navier-Stokes equations, the divergence

operator is applied to the velocity of the flow of the fluid and thus describes the change in

velocity for a region in the velocity field. The result of the divergence of a vector field is a

scalar field.

𝛻 ⋅ 𝑢 = (
𝜕𝑓

𝜕𝑥
+

𝜕𝑓

𝜕𝑦
+. . . .

𝜕𝑓

𝜕𝑛
)

where

● 𝜕𝑥, 𝜕𝑦, 𝜕𝑛 are the spacings of the scalar field in the

𝑥, 𝑦 and 𝑛 dimensions. Eq. 6

Laplacian

The Laplacian operator is the result of when the divergence operator is applied to the

result of the gradient. The Laplacian of a function f at a point in Euclidean space is the rate

at which the average result value of the function over a sphere centered at the point

deviates from the initial value when the radius of this sphere is changed [11].

𝛻2𝑓 = (
𝜕2𝑓

𝜕𝑥2
+

𝜕2𝑓

𝜕𝑦2
+. . . .

𝜕2𝑓

𝜕𝑛2
)

where

● 𝜕𝑥, 𝜕𝑦, 𝜕𝑛 are the spacings of the scalar field in the 𝑥, 𝑦

and 𝑛 dimensions. Eq. 7

2.1.4 Vector Field

A vector field is a field in Euclidean space in which a vector is assigned to each point in this

space. Generally the space is a grid with uniform sizes [12]. The results of the Navier-Stokes

equations are vector fields. The vector quantity of those fields is the velocity of the fluid at a

given point in the described space. Figure 2.2 displays such a velocity field. These velocity

fields can be used to obtain the velocity of a fluid at a given point in the space. This velocity

value can then be used to reposition the fluid accordingly.

- 19 -

Figure 2.2: Velocity field from [8].

2.2 Fluid Simulation

Fluid simulation is the science of generating realistic animations of fluids. As described in

the previous section, fluid simulation is based on the Navier-Stokes equations. In this

section we will describe the most frequently used methods for fluid simulation: the

Eulerian and Lagrangian methods. Other fluid simulation methods which are less widely

used and which we will not describe are vorticity-based methods and Lattice-Boltzmann

methods. Finally we will end this section by describing Smoothed Particle Hydrodynamics

in detail.

2.2.1 Eulerian Methods

Leonhard Euler designed equations for fluid dynamics which manage inviscid flow. Inviscid

flows govern the flow of ideal fluids which do not have viscosity, but also fluids which have

very low values of viscosity are considered to be in the inviscid category. Ideal, or perfect,

fluids are fluids which do not have any viscosity, heat conductivity or shear stresses [13].

Practical examples of inviscid fluids are the matter of which stars consist. The advantage of

using the assumption that a fluid is inviscid is that the fluid mechanic problems are much

easier to solve as the equations are simpler [14].

The Navier-Stokes equation can be reduced to the following Euler’s equation in the case of

a fluid with inviscid flow:

- 20 -

𝜌𝑔 − 𝛻𝑝 = 𝜌
𝑑𝑣

𝑑𝑡

where

● 𝜌 is the volumetric mass density of the fluid

● 𝑝 is the pressure of the fluid

● 𝑔 is the constant gravity force

● 𝑣 is the velocity of the fluid

● 𝑡 is the simulation time Eq. 8

This equation can then be used to create the following equations to compute coordinates in

the Euclidean space.

In an Eulerian fluid simulation the particles in the fluid are moved through specific

locations in the space of the simulation. These locations can be defined by a grid [15]. The

flow can be described by the following function:

𝑣 (𝑥, 𝑡)
where

● 𝑣 is the velocity

● 𝑥 is the location in the space of the simulation

● 𝑡 is the simulation time Eq. 9

Other parameter quantities can also easily be obtained by using equations which are

similar to Equation 9. For example the following equation can be used to obtain the density

of the fluid:

𝜌 (𝑥, 𝑡)
where

● 𝜌 is the density

● 𝑥 is the location in the space of the simulation

● 𝑡 is the simulation time Eq. 10

Each cell in the grid holds parameter quantities of the fluid such as velocity and density.

This way these parameters of a particle can be retrieved from the grid by knowing the

current position of the particle and the current time of the simulation. This method offers a

- 21 -

simple and quick implementation of a fluid dynamics solver. However, it also introduces

challenges in regards to large fluid simulations. The largest drawback is that the scale of the

fluid is limited to the dimensions of the grid. Another drawback is that the accuracy of the

result depends on the resolution of the grid. The computational time also scales

exponentially with the resolution size.

The velocity field (for example, see Figure 2.2 and Figure 2.3) will be adapted according to

the particles which reside in the field. This is a result of mass conservation. An important

difference between Eulerian and Lagrangian methods is that in the Eulerian solver particles

have no knowledge of each other; all the adaptations of a particle are done through lookups

of the velocity field, whereas in a Lagrangian solver particle adaptations are done through

lookups of neighbouring particles. In the next section we will discuss Lagrangian particle

methods.

Figure 2.3: A 3D Eulerian simulation result: a velocity field, from [15].

Important to note is that with the grid-based method a lot of information about individual

particles is lost as most information is stored in the grid. This offers challenges when

additional parameters are required to be added to the simulation. Temperature for

example would be a challenging parameter to add as heat diffusion is measured on

molecule level.

Optimizations for Eulerian methods exist where the grid in which the fluid resides is

adaptive [16]. It is advantageous to use adaptive grids over traditional grids with equal cell

- 22 -

sizes for simulations where the domain is not a square for example. For cases where the

domain is a spherical volume different cell sizes might be required based on the location of

the fluid in the domain. Grids which handle this problem by dynamically changing the sizes

of their cells according to the domain are called adaptive grids. Similarly, a grid doesn’t

always have to be fixed in an arbitrary position in space, but it could move in certain

situations. It is often better to move boundaries of the grid around with the fluid than to

dynamically add new grid cells around the original domain and transfer mass and other

properties [17].

2.2.2 Lagrangian Methods

In a Lagrangian method the new position and state of a particle are computed for each

individual particle. Instead of looking at a grid for the information of the fluid, the particles

depend on their own parameters and those of their neighbouring particles. Neighbouring

particles are defined by a constant distance for which each particle within that distance is

used to compute the new values of the particle [18]. All parameters of a particle in the

Lagrangian description of fluid flow are described as a function of time. This gives the

following generalized formula:

𝑥 (𝑎, 𝑡)
where

● 𝑥 is an arbitrary parameter of the particle

● 𝑎 is the current state of the particle

● 𝑡 is the simulation time Eq. 11

With this information, the arbitrary parameter of a particle can be computed for any given

time.

Lagrangian approaches are also called particle-based approaches as they completely

depend on information of the particles. Almost all theory in fluid mechanics is originally

developed with Eulerian systems in mind as Lagrangian systems were simply too

computational expensive to develop on older hardware [19].

2.3 Smoothed Particle Hydrodynamics

One of the most widely accepted methods for real time fluid simulation is the Smoothed

Particle Hydrodynamics method (SPH). This method has first been introduced in 1977 [2].

The method was designed for compressible flow problems and was first used in the field of

Astrophysics to simulate the flow of interstellar gas. The first adaptation for computer

- 23 -

graphics was made in 1995 by Stam and Fiume [20].

As the name states, SPH is a particle-based fluid simulation method. The main advantage of

a particle-based method is that the representation of the fluid consists of multiple objects

rather than one. This gives the possibility for parallelization in order to get quick

computing speed. Visually speaking, particle-based methods offer more realism in

comparison to methods which are not particble based (i.e. vertex based) as it is possible to

create for example sprays, splashing fluids and smoke. The combination of the broad range

of opportunities and the possibility to parallelize the computations on current hardware

make the SPH method an increasingly popular technique for real time fluid simulation.

In this section, the SPH method will be explained in the following order. First, the essentials

of the method will be explained. Secondly we describe which kernels are used to smooth

the properties of the SPH fluid. And finally, the steps of the method are described.

2.3.1 SPH Essentials

SPH is a Lagrangian simulation method for free surface flow. The method simulates fluid

based on particles. These particles represent properties of the fluid on given positions in

the fluid’s domain. These properties are calculated with the kernels given later in this

section and are smoothed over a given spatial distance for each particle.

The governing equation used as the basic interpolation formula is the following:

𝐴(𝑟) = ∑ 𝑚𝑗

𝐴𝑗

𝜌𝑗
𝑊(𝑟 − 𝑟𝑗 , ℎ)

𝑗

where

● 𝐴 is a quantity which is to be computed

● 𝑟 is the given 3D coordinate

● 𝑚𝑗 is the mass of particle 𝑗

● 𝜌𝑗 is the density of particle 𝑗

● 𝑊 is the kernel function used to smooth the values

● ℎ is the cut off radius for the interpolation Eq. 12

The radius defined by ℎ means that if | 𝑟 − 𝑟𝑗 | > ℎ, the value for the sampled particle will

be zero, thus it will not be included in the summation. The result of this equation is the

value of a quantity at a given location in the fluid. Quantities which are required to be

calculated in the default SPH implementation are density, pressure and viscosity. These

values can then be used to compute the new state of the fluid.

If we would apply Equation 12 to the case of density, we would get the following equation:

- 24 -

𝜌(𝑟) = ∑ 𝑚𝑗𝑊(𝑟 − 𝑟𝑗 , ℎ)

𝑗

Eq. 13

Note that this shows that the density of a particle in a SPH simulation is calculated by

smoothing the mass of all particles in the simulation.

2.3.2 Kernel Functions

The value of a property of a particle in the SPH simulation has to be interpolated from a

discrete set of sample points, as is the case in other numerical solutions in fluid dynamics.

The interpolation is done through a kernel function which is a radial symmetric smoothing

function. These smoothing functions result weights by computing a weighted average of the

values of the nearest neighbours of the sample point. This means that the closer a

neighbour is to the sample point, the more weight its value will have. A suitable smoothing

kernel has to meet the following two requirements in order to result valid weights:

 ∫ 𝑊(𝑟, ℎ) 𝑑𝑟 = 1

Eq. 14

𝑊(𝑟, ℎ) = 𝑊(−𝑟, ℎ)

Eq. 15

The given requirements can be summarized into the following rules: the kernel has to be

normalized (Equation 14) and symmetrical (Equation 15). As long as a smoothing kernel

- 25 -

meets the requirements, the chosen kernel is suitable. Important is however that the

complexity of the chosen kernel strongly relates to the speed and of the simulation,

whereas the quality of the kernel is related to the stability of the simulation. Also, the

kernels should be able to support large time steps when integrating and they should have

vanishing derivatives at their boundaries. Therefore we have chosen to use kernels

defined in previous related work, rather than coming up with our own kernel functions

[21]. The following three kernels are used to compute density, forces due to pressure and

forces due to viscosity. They are called the poly6, spiky and viscosity kernel in respective

order. In more advanced SPH implementations, more kernels might be required. Figure 2.4

shows the graphs of the used kernels.

Figure 2.4: Plots of the three used kernel functions from [21]. From left to right: poly6, spiky, viscosity.

The thick lines show the kernels, the thin lines their gradients in the direction towards the center and

the dashed lines show the Laplacians. The x-axis shows the values for r between –h and h for h=1, the

y-axis shows the results of the kernel functions.

Density Kernel: poly6

The poly6 kernel (Eq. 16) is used in the computations for the density on a given location.

Equation 13 tells us that we require the normal kernel for the calculation of the density and

not the gradient or the laplacian. A drawback of the Poly6 kernel is that it has vanishing

gradients closer to the center as can be seen on figure 2.4. If this kernel would be used for

the computation of the pressure forces, it results in an error in the SPH simulation where

when two particles get too close to each other, they don’t generate enough force anymore

to repel the other. Therefore the spiky kernel is chosen for such situations.

- 26 -

for −ℎ ≤ 𝑟 ≤ ℎ

 𝑊𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑟, ℎ) =
315

64𝜋ℎ9 (ℎ2 − 𝑟2)3

otherwise

 𝑊𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑟, ℎ) = 0 Eq. 16

Pressure Kernel: spiky

The Navier-Stokes equations (Eq.13) tell us that we need to use the gradient of a kernel to

calculate the pressure. The spiky kernel (Eq.17) has an increasing gradient length closer to

zero, which makes sure that particles which are close together will get pushed away from

each other to avoid clustering. This kernel preserves the impact of the repulsive forces

between two particles.

for −ℎ ≤ 𝑟 ≤ ℎ

 𝑊𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝑟, ℎ) =
15

𝜋ℎ6
(ℎ − 𝑟)3

otherwise

 𝑊𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝑟, ℎ) = 0 Eq. 17

Viscosity Kernel

The Navier-Stokes equations (Eq.13) tell us that we need to use the Laplacian of a kernel to

calculate the viscosity. A requirement for the velocity kernel is that a particle should get

slowed down when it is near other objects. A negative Laplacian increases the acceleration

of a particle [21] and therefore we need a kernel for which the Laplacian stays positive.

The following positive Laplacian kernel is chosen and will make sure velocities will be

decreased between particles that are close to each other and thus result in clustering

particles.

for −ℎ ≤ 𝑟 ≤ ℎ

𝑊𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦(𝑟, ℎ)

=
15

2𝜋ℎ3
(−

𝑟3

2ℎ3
+

𝑟2

ℎ2
+

ℎ

2𝑟
− 1) Eq. 18

- 27 -

otherwise

𝑊𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦(𝑟, ℎ) = 0

2.3.2 Method Overview

One complete simulation step of the Smoothed Particle Hydrodynamics method applies the

steps described in this section. Figure 2.5 displays the flow of the SPH method described in

the following steps.

Figure 2.5. Flow of the SPH method.

- 28 -

Step1: Calculate the density of each particle

The density calculations can be done with the use of Eq. 13. The smoothing kernel used

which in this case is the poly6 kernel (Eq. 16).

Step2: Calculate the pressure of each particle

The pressure of a particle can be calculated with the following equation [22]:

𝑃𝑖 = 𝑘(𝜌𝑖 − 𝜌0)

Eq. 19

Where Pi is the pressure of particle 𝑖 and 𝑘 is the gas stiffness constant. The standard gas

law has been extended in this formula for it to work correctly with liquid fluids rather than

gaseous fluids by the parameter 𝜌0which represents the constant rest density of the fluid.

The correct values of those constants are dependent on the type of fluid.

Step 3: Calculate the internal pressure force

The following equation is used to calculate the internal pressure force for a particle:

𝑓𝑖
𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

= − ∑
𝜌𝑖 + 𝜌𝑗

𝜌𝑖
2 + 𝜌𝑗

2 𝛻𝑊(𝑟𝑖 − 𝑟𝑗 , ℎ)

𝑗≠𝑖

Eq. 20

The kernel used in this calculation is the spiky kernel (Equation 17). The linear and angular

momentums of this particle are conserved as the pressure force is symmetrical. Therefore

Newton’s 3rd law is held.

Step 4: Calculate the internal viscosity force

The viscosity of a fluid can also be read as the internal resistance to flow. A higher viscosity

coefficient for a fluid, results in more resistance to flow and thus its kinetic energy.

The equation used for the viscosity forces calculations is the following:

- 29 -

𝑓𝑖
𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦

= 𝜇 ∑ 𝑚𝑗

𝑗≠𝑖

𝑣𝑗 + 𝑣𝑖

𝜌𝑗

𝛻2𝑊(𝑟𝑖 − 𝑟𝑗 , ℎ)

where

 𝜇 is the viscosity coefficient of the fluid

 𝑣 is the velocity Eq. 21

Step 5: Calculate the force applied by gravity (external force)

The gravitational force is included in order to make the simulation look realistic. It is not

necessarily required for SPH and unrealistic gravitational forces can also be used to

simulate fluid behaviour on different planets or simulations with local gravities. The used

equation is the following:

𝑓𝑖
𝑔𝑟𝑎𝑣𝑖𝑡𝑦

= 𝜌𝑖𝑔

where

 𝑔 is the gravitational acceleration Eq. 22

Step 6: Calculate the force applied by body collisions (external force)

External forces are forces which don’t originate from within the fluid itself. An example

which is commonly used in fluid simulations is the collision with boundaries in which the

fluid is constraint. It should be impossible for a particle to penetrate the boundary of the

domain.

As collision handling is a large field of research and the implementation depends on the

required accuracy and realism, we will not further expand on this topic. Commonly, SPH

uses the following method to calculate collision response by the particles.

When a particle gets closer to a boundary than an arbitrary value ε, it is considered a

collision. The normal direction of the collision is then used to compute the acceleration that

has to be added to the currenct acceleration of the particle. This is done by calculating the

dot product between the velocity and the normal and multiply this with the damping value

ζ of the boundary. This value can then be subtracted from the fluid stiffness k multiplied by

the distance between the particle and the boundary. Finally this normal is multiplied by the

computed value and added to the current acceleration of the particle.

- 30 -

The combination of the forces computed in step 2,3,4 and 5 gives the total acting force Fi:

𝐹𝑖 = 𝑓𝑖
𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

+ 𝑓𝑖
𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦

+ 𝑓𝑖
𝑔𝑟𝑎𝑣𝑖𝑡𝑦

+ 𝑓𝑖
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

Eq. 23

Step 7: Calculate the new position for each particle

The integration scheme used to update the positions of the particles is the leapfrog

integration scheme. The leapfrog integration scheme is a method for numerically

integration [31]. The name leapfrog comes from the general idea of the method where

different properties such as position and velocity are updated in different time intervals

and thus leap over each other. This gives the following two equations:

𝑣𝑖(𝑡 + 𝛥𝑡) = 𝑣𝑖 +
1

2
(𝑎𝑖 + 𝑎𝑖(𝑡 + 𝛥𝑡))𝛥𝑡

where

● 𝑡 is the current time of the simulation

● 𝛥𝑡 is the timestep Eq. 24

𝑟𝑖(𝑡 + 𝛥𝑡) = 𝑟𝑖 + 𝑣𝑖𝛥𝑡 +
1

2
𝑎𝑖𝛥𝑡2

Eq. 25

- 31 -

2.4 Solidification

In the previous sections we have described how fluids can be generated in a physically

plausible manner. Other aspects of fluids which contribute to the realism of a simulation

are freezing and melting. We will refer to the method which will handle these phase

changes as solidification.

In this section we will first describe how previous research contributes to freezing

simulations. Secondly we will describe fluid systems which consist of more than just one

alligation (such as water and salt). Finally we will describe existing work on melting

simulations.

2.4.1 Viscosity Solutions

Traditional solidification methods solved the phase transition problem by adjusting the

viscosity of the fluid material so that the fluid appears less liquid. D.Stora, P.Agliati and

M.Cani animate lava flows by linking viscosity to a grid-based temperature field which uses

heat transferring. In terms of physics, lava is a liquid which is extremely viscous for which

the viscosity increases exponentially when the lava cools down [23].

M.Carlson and P.Mucha use the Marker-and-Cell grid-based method [3] to simulate fluids in

order to achieve a viscosity solution for the solidification problem. One drawback of the

viscosity-based solutions is also addressed by them. Numerical instability is a risk because

viscosity influences velocity greatly. In order to counter this, the time step of the simulation

has to shrink according to the size of the viscosity. Near-solid fluids require around 60.000

more time steps in comparison to completely liquid fluids.

Another drawback of viscosity-based methods is that they can never reach a solid state.

The fluids will appear increasingly more solid when the viscosity gets larger, but as there is

no upper bound for the viscosity, a complete solid state is never reached.

2.4.2 Alligation Systems

Monaghan et al. [24] propose a method to simulate the freezing of one and two-component

alligation systems as an extension of the SPH method. Multiple component solidification

solvers are interesting for geology and industry where liquids do not only consist of oxygen

and hydrogen. The emphasis of their research is on the realism of the freezing process of

the alloy-based systems. The SPH and solidification calculations are simplified and they

assume that particles which have been solidified remain in the position where the phase

transition occurred. Thus ‘frozen’ particles remain in stasis when their phase changes

based on their temperature. It is interesting to note that the accuracy of the temperature

diffusion gets improved when the number of particles gets increased. However, this

particular method does not actually turn an object into a solid completely, only partially.

- 32 -

2.4.3 Melting

Existing work exists for melting solid. Solenthaler et al. treat solids as mesh-based objects

and not as fluids [4]. When they melt or burn based on temperature, the resulting liquid

and gas are simulated as fluids. A great advantage of this method is that it can easily be

incorporated in existing simulations such as games where objects are generally handled as

meshes. Contrary to viscosity-based methods, this method does not treat solids as high-

viscous fluids. However, it also does not offer the possibility to change a liquid into a solid.

The proposed method is different from other methods in the way that the state change

from solid into liquid has to be handled differently than in the other methods. The density

of the source solid and a resulting liquid is equal in both states. So the volume of the

resulting liquid is approximately the same as the volume in the solid. The resulting liquid is

modelled using a grid-based system which forms a grid around the boundaries of the solid

object [25]. When the solid is about to melt, particles are formed within the boundaries of

the solid-based on the volume of the solid. These particles can then be released from the

solid by removing their constraints so that they form a fluid.

2.5 Fluid-Fluid Interaction

An interesting and complex phenomenon in fluid simulation is the interaction between

different fluids. In the case of fluid to fluid interaction there is a distinction to be made

between fluids which share the same properties and fluids which have different properties.

Besides fluid-fluid interaction, fluid-solid interaction is also an interesting behavior in

interactive situations. The most common example for fluid-fluid interaction is the

interaction between air and water. As air is a gas, it can also be modelled as a fluid.

Following are a number of phenomena which can be addressed by using a fluid to fluid

interaction scheme.

2.5.1 Multiple Fluids

In order to simulate multiple fluids interacting with each other there is no new theory that

has to be introduced. Lagrangian methods are exceptionally suited for multiple fluids. In

the case of an SPH-based simulation, multiple fluids will directly work. It does however

offer some opportunities for optimizations such as making certain fluid parameters global

which are the same for all the fluids in the simulation [26]. Examples of properties which

are the same for multiple fluids can be the particle mass, rest density or viscosity

coefficients.

- 33 -

2.5.2 Combining fluids

Complex chemical reactions can be handled in the case of certain fluids interacting with

each other. Multiple fluids can be used to combine or convert themselves into a third new

fluid [27]. Another method addressed more complex phenomena such as fire by using

ghost values [28]. In order to achieve the phase change where one fluid material turns into

another, surface reactions are used [29]. Surface reactions can be anything defined by the

source fluids and the new combined fluid. Generally, surface reaction methods will adjust

the parameters of existing particles in order to simulate the creation of a third.

2.5.3 Buoyancy

Buoyancy is the force which keeps objects floating on a fluid. The buoyancy force opposes

the force which pulls an object downward. If the buoyancy force is larger than the force

that pulls an object down, it will float. Archimedes’ principle states that buoyancy is the

weight of the fluid being displaced. So the deeper an object goes in a fluid, the higher the

displacement, pressure and the buoyancy will be. An interesting phenomenon in the case of

fluid to fluid interaction is that when the interacting fluids have a different rest density, the

less dense fluid will be caused to rise inside the denser fluid. What actually happens is that

the pressure of the particles will not only push particles which are close to each other

away, but it also pushes particles away in order to reach their rest densities.

2.6 Conclusion

In this chapter we have described the theory of fluid mechanics we have given a detailed

description of how fluid simulators work. Furthermore we have described related work in

the field of fluid simulation and the Smoothed Particle Hydrodynamics is explained in

depth. We have also provided mathematical knowledge relevant to fluid dynamics in a

concise manner.

We will expand the Smoothed Particle Hydrodynamics technique by adding heat

conduction to the equations. This means that we will add temperature as a new fluid

property. Existing work on solidification attempts to recreate realism by either adjusting

existing fluid properties in simulators which has the drawback of introducing numeric

instability. By adding temperature based on the laws of thermodynamics we will offer more

realistic simulations of fluids without having to constrain timesteps in order to counter the

numeric instability. Finally, we will add phase transitions to the simulator. This offers for

example the possibility to create a simple mesh when a fluid solidifies, rather than having

to simulate a solid object as particles like existing work does. The next chapter will cover

the heat conduction, temperatre addition and phase transitions in depth.

- 34 -

Chapter 3

Solidification

Solidification is the phase transition in which a liquid turns into a solid. In this chapter we

will describe our implementation of Solidification as an extension of SPH. As water is so

abundantly present in our daily life, it is the liquid of choice for the demonstration of our

solidification solution. The states in which water can exist are liquid, solid and gaseous. In

this chapter we will discuss the phase transition of liquid to solid (solidification) and of

solid to liquid (melting) and how we have extended SPH with this functionality.

As general testcase for our simulation we have used the solidification of a lake. Since one of

our subgoals is to offer a more realistic fluid simulator for applications such as games, we

have chosen a case which offers extendability. By simulating the solidification of a lake, we

introduce the requirement of more advanced domains which can be used for other fluids

such as lava whereas more basic cases, for example a glass of water, would offer less

extendability. However, our solution can also be used for such basic cases.

Water can be frozen by adjusting its pressure and temperature. In this chapter we will

describe the physics of freezing and how this translates to the solidification of a lake of

water. A required addition to the SPH method is the transferring of heat in order to change

the temperature of the fluid. We will describe how heat transferring works and how heat

conduction can be used in combination with a fluid simulator. In order to solidify a liquid, a

phase transition has to be triggered. In the final section of this chapter we will describe

phase transitions and how we manage phase transitions through heat transferring in our

implementation.

3.1 Physics of Freezing

The first steps in designing a solidification method is to understand the physics of freezing.

In this chapter we will first describe how a liquid freezes. Secondly we will describe what

happens to the liquid when this phase change occurs and how this applies to a realistic

simulation case such as the solidification of a lake.

A liquid can turn to its frozen state in several different ways. We will describe these

methods for the most basic liquid: water. The first and most recognizable way of freezing

- 35 -

water is by changing its temperature. When water goes below its freezing point of zero

degrees Celsius it will freeze and when it exceeds the freezing point it will melt. At this

freezing point a phase change occurs. These phase changes are described in Section 3.3.

Liquids can also be frozen by reducing the pressure of the liquid. The freezing point of

water is also related to its pressure. Reducing the pressure of a liquid increases its freezing

temperature, as is shown in Figure 3.1 which denotes the solid, liquid and vapor phases of

water and their transition points dependent on pressure and temperature

Figure 3.1. Water phase diagram from [12]. 273.15 Kelvin is 0 degrees Celsius. The Roman numbers indicate

phases of ice.

3.1.1 Temperature based fluid properties

There are two fundamental properties of a fluid incorporated in fluid simulators which are

based on temperatures. These are the viscosity and the density [30]. In traditional fluid

simulators the relationship between viscosity and density is not modelled as they do not

include temperature in their simulation. In our solidification extension we also model

viscosity and density of water as functions of temperature. For the data in this section we

assume a standard atmosphere (atm) value of 1 (= 1.0197 bar) for pressure.

Viscosity of water

The viscosity of a liquid is the measure of its resistance to angular and shear deformation. A

higher viscosity value will result in a fluid which looks stickier such as syrup, whereas a

- 36 -

low viscosity fluid will appear more liquid such as water. Note that a more viscous looking

fluid does not always mean that the fluid is also actually more sticky. A fluid which has no

resistance to shear stress (zero viscosity) is called an ideal fluid. The viscosity of water

depends on its temperature. Figure 3.2. shows the viscosity of water at certain

temperatures.

Figure 3.2. The viscosity of water at certain temperatures [31].

Density of water

Density of an object is its mass per unit volume. The density of water depends on its

temperature. This relation is however not linear. Figure 3.3 shows the density of water at

certain temperatures.

Figure 3.3 The density of water at certain temperatures [32].

1.787

1.519

1.307

1.002

0.282

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 20 100

V
is

co
si

ty
 (

kg
/(

s*
m

))

Temperature (°C)

993.547

998.117

999.839

999.972

999.702

998.207

995.65
992.2

983.2

971.8

958.4

930

940

950

960

970

980

990

1000

1010

-20 -10 0 4 10 20 30 40 60 80 100

D
en

si
ty

 (
kg

/m
3
)

Temperature (°C)

- 37 -

3.1.2 Lake Solidification

When water freezes or solidifies it expands and becomes less dense. The expansion

happens because the H2O molecules start to bond and will thus take less space in

comparison to a liquid. A solid object will retain its shape due to the molecules having

larger attractive forces towards each other.

From Figure 3.3 can be deduced that liquid water gets denser as the temperature lowers

and nears four degrees Celsius, where it starts getting less dense. When a liquid water fluid

is in contact with a colder gaseous air fluid which resides above the water, the top layer of

the water will cool down. As the top layer of the water cools down, the density will increase

and thus the colder molecules will sink, resulting in the warmer water below to rise. This

process will continue until the water reaches its turnover point of four degrees Celsius. As

seen in Figure 3.3 water actually gets less dense from this point onward resulting in a layer

of water having a smaller density than the water underneath. This layer of water then

continues to cool and eventually freeze and form the first layer of ice on a lake.

3.2 Heat Transfer

In this section we will describe the theory of heat transfer and how this is strongly related

to fluid dynamics. Afterwards we will describe the technique we have used in order to

achieve the transferring of heat and changing the temperature of the particles in our fluid

simulator.

Heat transfer is the description of the exchange of thermal energy between different

objects. Thermal energy is the partial energy of the collection of energy of an object which

results in temperature. Heat is the energy which is transferred from a hot object to a colder

object. Temperature is the measure of average speed of the molecules within an object.

When heat is transferred from an object with a high heat value, a hot object, to an object

with low thermal energy, a cold object, it produces entropy. Entropy is important for fluid

dynamics and has a strong relationship to the second law of thermodynamics. Both of these

subjects are fundamental for heat transfer and will be explained further along this section.

Our goal for the heat transferring process is to be able to transfer heat between different

particles in our simulation and to transfer heat from the environment to the particles.

Phase changes occur at certain temperatures based on which material the fluid consists of.

More about phase changing can be found in the next section of this chapter.

3.2.1 The Second Law of Thermodynamics

The first law of thermodynamics states that the internal energy of an object or system

changes as heat flows in or out of it because the law of conservation of energy states that

the total energy of an isolated system cannot change. The second law expands this theory

by stating that in an isolated system, entropy can only increase [33]. This means that the

- 38 -

temperature of two different objects will eventually reach equilibrium but that thermal

energy will be lost. Other properties which try to reach equilibrium are pressure and

density. The equilibrium value which properties are attempting to reach will be referred to

as resting states.

3.2.2 Entropy

In the field of thermodynamics, entropy is commonly defined as the measure of

progression towards the thermodynamic equilibrium state. This equilibrium state can be

referred to as maximum entropy. The entropy of an object can be measured as the amount

of energy that has been spread out in a process divided by the constant absolute

temperature [34]:

𝛥𝑆 = ∫
𝑑𝑄

𝑇

where

● 𝛥𝑆 is the change in entropy

● 𝑑𝑄 is the heat transferred into the object

● T is the absolute measure of temperature of the object Eq. 26

Boltzmann hypothesizes that molecules in an object have a rest position [35]. If

neighbouring molecules come close to each other, they repel each other. But if they move

further away, this turns into attraction. We can use this hypothesis for molecules for the

particles in our fluid simulation. In the case of a phase change, the rest position of particles

will change, when heated, they get pushed apart.

The following example of entropy and the second law of thermodynamics describes the

property which is interesting for our simulation. When a domain containing a liquid, such

as a glass of water or a lake in the mountains, is contained by a larger domain which has a

higher temperature, the temperatures of the domain and the liquid will equalize to the

same temperature. Heat will be transferred from the warmer domain into the colder object

until the temperature of both is the same. In terms of entropy, the entropy of the colder

liquid has increased and the entropy of the warmer domain has decreased. Since the liquid

system is smaller than the domain and will equalize more towards the temperature of the

domain, the entropy of the liquid has increased more than the entropy of the domain has

decreased, thus the complete change in entropy of the complete system (the domain and

the liquid together) has increased [36].

- 39 -

3.2.3 Heat Conduction

There are four governing mechanisms which can transfer heat: conduction, convection,

advection and radiation [37]. Conduction is the mechanism where heat is transferred from

neighbouring molecules when these interact with each other. Conduction is the heat

transfer mechanism which happens within an object. The thermal conductivity of an object

describes how much heat is conducted between particles when they are in contact. The

amount of thermal conductivity changes based on the properties of an object. Solid objects

have a higher thermal conductivity than fluids. And ultimately, gases have the least thermal

conductivity of the states.

Convection is the heat transfer mechanism where heat is tranferred due to the mass

movement of molecules, it is the transfer of heat in the vertical direction. An example is

that a warm air fluid is less dense than a cold air fluid. This results in the warmer air rising

and the cold air descending as the cold air is heavier. Another example is a pan of cold

water heating up from the bottom, warm water will rise and the colder water will get

heated.

Advection is the heat transfer mechanism where heat is tranferred in the horizontal

direction. An example is the wind moving molecules around.

Lastly, radition is the heat transfer mechanism which transfers heat through waves of

energy. The most common example is the sun radiating heat towards the earth.

In our simulation we will require the conduction and the convection mechanisms. Heat will

be transferred between particles through conduction, and the change in density due to the

temperature will result in the convection-based heat transferring.

3.2.4 Computing Heat Conduction

Heat transferring is a challenging subject in SPH fluid simulation because of the

computational heavy nature of the equations. However, making some assumptions can

result in simpler heat conduction methods and methods suited for real time simulations.

We use a particle strength exchange (PSE) which is a particle method for simulating

diffusion processes in a continuous space [38]. For this, particles have to be treated as

carriers of heat. The transferring of heat can then be computed using conduction [39].

For the heat conduction we refer to Fourier’s law of heat conduction. This law states that

heat transfers in the opposite direction of the temperature gradient. In other words, heat

transfers from hot to cold. Equation 27 displays Fourier’s law of heat conduction [53].

- 40 -

𝑄 = −𝑘𝛻𝑇

where

● 𝑄 is the heat flux

● 𝑘 is the thermal conductivity coefficient

● 𝛻𝑇 is the temperature gradient Eq. 27

Heat flux is the rate at which heat transfers (flows) to a certain surface, per unit area and

unit time. It is proportional to the gradient of the difference in temperature. The thermal

conductivity of a material is related to the temperature of the material, but since this

difference is so small for water, we can treat it as a constant [53]. The units in which

thermal conductivity is represented is watts per meter per Kelvin (W/mK).

The following partial differential equation describes how heat diffuses through a fluid, by

indicating what the change in temperature is. This is the equation we will use in our

simulation [40].

𝐷𝑇

𝐷𝑡
= 𝑘𝛻2𝑇

where

●
𝐷𝑇

𝐷𝑡
 is the change in temperature

● 𝑘 is the thermal conductivity coefficient

● 𝛻2𝑇 is the temperature Laplacian Eq. 28

Normally computing the Laplacian on the right hand side of Equation 28 would require

computationally heavy code. However, since the used base SPH implementation already

includes nearest neighbour searching, we can use this to find nearby particles. We can use

the difference in temperature between the neighbours.

- 41 -

3.2.5 Implementation

In our simulation we assume that the terrain which surrounds the lake of water is so large

that the heat transfer process between the particles and the terrain does not influence the

overall temperature of the environment. In other words, the terrain around the lake has a

constant temperature. If we were to simulate this with particles, an enormous number of

particles would have to be generated for the terrain while the result would be equal to a

constant temperature, for the cost of an increased simulation time. The implementation of

the equations used for computing the heat transfer process will offer some important

performance challenges and short-cuts. Following are the formulas and algorithms used for

the heat transfer interaction between neighbouring particles and the interaction between

particles and their environment.

Particle-Particle Heat Transfer

We compute the particle-particle heat transfer for each particle with its neighbouring

particles. The heat transfer equation used for interacting particles is the following, which is

based on the particle strength exchange method in [38]:

𝑇𝑖(𝑡 + 𝛥𝑡) = 𝑇𝑖 + ∑ 𝑘𝑗(𝑇𝑗 − 𝑇𝑖) 𝛥𝑡

𝑗≠𝑖

where

● 𝑇𝑖 is the temperature of particle i

● 𝑇𝑗 is the temperature of particle j

● 𝑘𝑗 is the thermal conductivity of particle j

● 𝛥𝑡 is the timestep Eq. 29

Since particles keep exchanging heat until they reach equilibrium, the order in which

particles get processed does not influence the result of the simulation visually enough to

notice, however when the value for ℎ is increased, this will influence the amount of

temperature that is being exchanged for each timestep. Algorithm 3.1. is used for the heat

conduction between particles.

- 42 -

Algorithm 3.1 Conduct Temperature

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:

18:

function ConductTemperature (int i, float dt)
 foreach(int j in neighbourParticles)
 // get temperature of both particles
 tempHere = temperatures[i];
 tempThere = temperatures[j];
 // if the temperature of both particles is not the same
 if(tempHere != tempThere)
 // compute difference
 tempDifference = tempThere - tempHere
 // compute exchange

 thermalConductivity = thermalConductivities[j]

 exchange = thermalConductivity * tempDifference * dt
 // add exchange to temperatures of particles
 temperatures[i] += exchange
 temperatures[j] -= exchange
 end if
 end foreach
end function

Particle-Terrain Heat Transfer

We assume that the volume of the terrain surrounding the particles is so large in

comparison to the volume of the fluid, that the average temperature of the terrain will not

be influenced. With this assumption we can use a constant temperature for the terrain

which does not change over through interaction with the particles. Heat is transferred from

the terrain to the particles whenever a particle gets close enough to the terrain. The

collision check between the terrain and the particles is described in Section 4.2.2.

The following formula is used for computing the heat conduction for particles which collide

with the terrain:

𝑇𝑝(𝑡 + 𝛥𝑡) = 𝑇𝑝 + 𝑘𝑡(𝑇𝑡 − 𝑇𝑝)𝛥𝑡
where

● 𝑇𝑝 is the temperature of particle p

● 𝑘𝑡 is the thermal conductivity of the terrain

● 𝑇𝑡 is the temperature of the terrain Eq. 30

Particle-Air Heat Transfer

Equal to the assumption that the terrain surrounding the fluid has a constant temperature,

we assume that the air above the fluid also has a constant temperature. Because of this, we

- 43 -

don’t have to model the air fluid as a set of particles which provides us with more

computational power to add more particles to the water fluid. With this in mind we can

come up with the following equation for the heat transfer between air and the fluid:

𝑇𝑝(𝑡 + 𝛥𝑡) = 𝑇𝑝 + 𝑘𝑎(𝑇𝑎 − 𝑇𝑝) 𝛥𝑡

where

● 𝑇𝑝 is the temperature of the interacting particle

● 𝑘𝑎 is the thermal conductivity of the air

● 𝑇𝑎 is the temperature of the air Eq. 31

The change in temperature for a particle is computed by adding the temperature transfers

from all other objects (i.e. neighbouring particles and environment).

3.3 Phase Transition

A phase transition happens when once state of matter transforms into another state of

matter. The four possible states of matter are: solid, liquid, gas and plasma as seen in

Figure 3.4.

Figure 3.4 States of Matter.

When a phase transition occurs, the physical properties of a material can change. For

example: the density of water changes drastically when it gets vaporized and transitions to

gas. The phase transition which is relevant for our simulation is the one happening when

an object goes from solid to liquid and from liquid to solid. We will not further discuss

phase changes including gaseous and plasma fluids. Plasma is also not mentioned in Figure

3.1 because either a very high temperature is required to turn water into plasma (around

12.000K = 11.726 °C) or through other means independent of temperature.

- 44 -

3.3.1 Freezing

Liquid water makes the phase transition to ice when it reaches its freezing point of zero

degrees Celsius. When this happens, the interaction between the new solid particles and

the existing liquid particles will be different in comparison to the interaction when they

were both liquid. More about the liquid to solid interaction can be found in Section 4.1.

For our frozen objects we use a mass-spring system . The basic idea of a mass-spring

system is that particles will have attraction towards each other. When a particle turns solid

it will freeze to other nearby solid particles. We solve the newly made bond between solid

particles by creating constraints (the springs). Since there is no bending involved in ice,

we will only have to add distance constraints between the new solid particle and the

nearby existing solid particles which are inside its interaction radius. After new positions

have been computed in a frame advance in the simulator, these constraints are satisfied in

order to reposition the frozen particles to the positions defined in the constraints.

Since we don’t require all the aspects of a mass-spring system, we will only describe the

aspects which we require. The most common example of a mass-spring system is the one

used in cloth simulation. Cloth simulation requires additional constraints such as shear and

bend constraints which we do not.

Mass-Spring Systems

For the sake of simplicity we will describe the mass-spring method for two dimensions;

however it can be adjusted to three dimensions with no extra work other than adding a

third dimension to the equations. In a mass-spring system an object is modelled as a grid of

m × n elements. These elements are then connected by massless springs which have a

length which is larger than zero [41]. There are three different kinds of springs; structural,

shear and flexion springs. Structural springs counteract tension by linking only the closest

elements with each other. Shear springs connect shear elements and flexion springs handle

bending [42]. Figure 3.5 displays those three different springs for clarification.

Figure 3.5: Different kind of springs. The green lines indicate structural springs. The yellow connections are

shear springs and the red connection is a flexion spring.

- 45 -

Create Constraints

When a particle turns solid it will freeze to other solid particles near its interaction radius.

This freezing is simulated by creating structural springs between said particles as seen in

Algorithm 3.2. A new structural spring constraint is created between the position of the

recently frozen particle and its neighbouring particles. The distance at the moment of

freezing defines the rest distance. The rest distance defines the distance which the newly

constrained particles will enforce during the satisfactory step of the simulation.

Algorithm 3.2 Create Constraints

1:
2:
3:
4:
5:
6:
7:
8:
9:

function CreateConstraints(Particle p)
 foreach(particle np in neighbourParticles)
 distanceSquared = (np.x - p.x)² + (np.y - p.y)² + (np.z - p.z)²
 // if particles are close enough to each other
 if distanceSquared <= interactionRadiusSquared
 new Constraint(p, np, distanceSquared)
 end if
 end foreach
end function

Satisfy Constraints

Each time step of the simulation, the spring constraints have to be satisfied. Algorithm 3.3

is used to satisfy the constraints. The current distances of particles which have a spring

between each other are compared with the distance bound to the constraint. When this

difference exceeds an arbitrary error value, the particles have to be repositioned in order

to satisfy the constraint. Repositioning is done by moving both particles towards each other

by half of the difference in distance.

An issue which occurs with this method is that when particles are getting repositioned in

order to satisfy a constraint, other constraints might not be satisfied anymore. This is

countered by iterating through the constraints for a number of times. The higher this

number is, the less error there will be in the satisfaction of constraints. When particles are

further apart, and constrained to multiple particles, it will require more iterations in order

to converge to a realistic result. Different fluid properties and environment parameters will

influence the impact of the change in distance between particles and thus the exact number

of iterations will differ per simulation setup. We have chosen an iteration count of 15 for

this as this resulted in no visual errors.

- 46 -

Algorithm 3.3 Satisfy Constraint

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:

19:

function SatisfyConstraint(Constraint c)
 Particle p1 = c.p1
 Particle p2 = c.p2
 // current distance
 distanceSquared = (p1.x - p2.x)² + (p1.y - p2.y)² + (p1.z -

p2.z)²
 // constraint distance
 constraintDistanceSquared = c.restDistance
 // difference fraction between distances
 difference = constraintDistanceSquared / distanceSquared
 // if the difference is large enough to correct particles
 if difference > error
 // correct both particles towards each other
 correction = distanceSquared.length * (1 - difference)
 correctionHalf = correction * 0.5f
 p2.pos += correctionHalf
 p1.pos -= correctionHalf
 end if
end function

3.3.2 Melting

We handle the melting of a solid in the following manner: once a particle in a solid fluid

exceeds its temperature melting point, we simply remove all the constraints which are

related to this particle and continue the simulation normally. Other consequences which

should be executed on the phase change can be defined, but this is not required for a water-

based simulation. Density is a function of temperature in our simulation. As a positive effect

this avoids the requirement of adding density changes to the phase transition between

solid and liquid for our water-based simulation. However, when changing to a gaseous

form, or in the case of other fluid compositions, the change of density is a consequence of

the phase transition.

- 47 -

Chapter 4

Interaction

In this chapter we will describe how we manage the interaction with more advanced

models other than the interaction between multiple fluids. First we will describe how we

manage the interaction between a liquid fluid and solid fluids. Afterwards we will describe

how we have incorporated a terrain into the simulation. We will describe how we take

advantage of the already existing graphics pipeline used by the fluid simulation to render

this terrain. And finally we describe how the interaction between fluids and the terrain is

handled.

4.1 Frozen Objects

With our implementation where density and viscosity are both functions of temperature

and where we use a mass-spring system for the implementation of solid frozen objects we

do not have to make additional adjustments to the simulation in order for collision

between liquids and fluids to work correctly. Since we do not create new geometry when

particles are frozen to each other and form solid objects, we can just use the particle

interaction from SPH to handle the interaction between solids and liquids.

The density of a frozen object is lower than liquid water above the phase transition point as

shown in Table 3.2. As a result, the frozen particles will float on top of the liquid particles

and they are kept together by the constraint satisfaction.

- 48 -

4.2 Terrain

Interesting for real-time applications is the interaction between a fluid simulation and the

surrounding terrain. In this section we will describe which representation we have used to

simulate this phenomenon and how we have implemented this. The fluid simulator which

we use as the basis for our simulation extension is accelerated with the use of CUDA [50].

CUDA is a parallel programming model which harnesses the power of the graphics

processing unit (GPU). The advantage of using a parallel programming model is that

multiple particles can be simulated at the same time whereas traditional programming

models only support one computation at a time. The use of this model introduces

challenges because data has to be transferred to the GPU in certain formats in order for it

to be used by the simulator. This section will also describe how we integrated our terrain

data with the CUDA-based implementation.

4.2.1 Terrain Representation

In order to avoid having to manually enter the elevation data we use a height map to define

the elevation of the vertices which in combination represent the terrain. Figure 4.1 shows

one of these height maps used in our simulation. We load the height map as a texture, each

pixel in the height map represents one vertex and the dimensions of the image define the

width and length of the fluid domain. The elevation of the terrain can be deduced from the

color channel. The grayscale value ranges from 0 – 255, the height of a vertex is equal to the

grayscale value of its corresponding pixel in the texture (i.e. a grayscale value of 5 will

result in a vertex with height 5 in unit sizes).

Figure 4.1 Height map of the terrain, used by testcases found in sections 5.3 through 5.6.

- 49 -

4.2.2 Particle Collision

Particle to particle collision occurs when neighbouring particles enter each others arbitrary

interaction radius. The response to this collision is defined by the properties of the fluids in

which these particles reside. In our simulation, there is no required distinction between

interactions of particles in a solid or liquid because the difference in fluid properties will

result in the required collision response. Collision between particles and objects which

don’t consist of particles should be managed in a different way. The collision between the

particles in our simulation and the surrounding terrain is described in this section.

Since we compute the particle simulation on the graphical processor unit, we need the

following information of the terrain on the GPU in order to calculate collision between

particles and the terrain:

 - Position of the vertices of the terrain

 - Normals of these vertices of the terrain

Terrain collision is checked in each simulation step of the fluid simulator. Instead of using a

rectangular domain in which the particles should reside, we can now use the terrain

boundaries as the domain. This means that we don’t have to use the general domain

satisfactory check anymore. Algorithms 4.1 and 4.2 are used to check the collisions with the

terrain. Algorithm 4.1 loops through all the particles and does a distance check between the

particles and the terrain. When the distance is closer than an arbitrary chosen value ε there

is a collision. Algorithm 4.2 is used to obtain the height of the terrain at a given x,z position.

Since only the height data of the vertices of the terrain is known, an interpolation between

the four vertices surrounding the x,z position is required in order to get the proper height

value. Note that these algorithms are not optimized, solutions for this can be found in

Chapter 6.

Algorithm 4.1 Check Terrain Collision

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:

function CheckTerrainCollision()
 foreach(particle p in particles)
 // get the height of the terrain at the particle x,z position
 terrainHeight = GetTerrainHeightAt(p.x, p.z)
 distance = p.radius - (p.y - terrainHeight) * simulation_scale
 if(distance < EPSILON)
 // Boundary collision, explained in section 2.3.2
 end if
 end foreach
end function

- 50 -

Algorithm 4.2 Get Terrain Height

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:

function GetTerrainHeight(float posX, float posZ)
 // get the height of the terrain at the x,z position
 int ix = (int)posX

 int iz = (int)posZ

 float topLeft = heights[(ix % 256 + (iz % 256) * 256)]

 float topRight = heights [((ix+1) % 256 + (iz % 256) * 256)]

 float botLeft = heights[(ix % 256 + ((iz+1) % 256) * 256)]

 float botRight = heights[((ix+1) % 256 + ((iz+1) % 256) * 256)]

 float fractX = posX - ix

 float fractZ = posZ - iz

 return interpolate(topLeft, topRight,

 botLeft, botRight,

 fractX, fractZ)

end function

4.2.3 Hardware Implementation

The computations for the collision between the terrain and the particles are done on the

GPU in the simulation step of the fluid simulator. The generation and rendering of the

terrain is not done during the fluid simulation steps. For this reason only information

which is required for the collision computations have to be stored on the GPU. This offers

some optimizations in regards to memory and speed. For example: we can construct the

data collection which stores the terrain height map on the graphical device in such a way

that we can retrieve a vertex without checking for its x and z position. The vertices are

stored in a one-dimensional array ordered by adding the vertices on the x-axis to the array

in an ascending order for each row on the z-axis, also in an ascending order. Figure 4.2

displays this ordering.

Figure 4.2: Ordering of vertices. The horizontal axis is the x-axis and the vertical axis is the z-axis.

This structure of the vertex position array would not be sufficient for the rendering of the

terrain, however, for the collision computations it will be. In order to compute the height of

the terrain at the position of a particle, we can obtain the index of the surrounding vertices

and interpolate between their heights, as shown in Algorithm 4.2.

- 51 -

4.2.4 Rendering

It is in important that the rendering of the terrain does not generate any overhead for the

simulation. With this in mind, the rendering of the terrain is done as an extension of the

governing rendering step. We render the terrain using the OpenGL renderer which also

renders the simulation. Rendering is done through a texture blending technique which is

implemented on a fragment shader. Blending of the terrain textures is done based on the

height of a vertex as shown in Equation 32. We define height-ranges for textures for which

weights can be computed. Weights for each texture are then multiplied by their

corresponding texture color and these are finally combined additively for the final result.

Figure 4.3 shows an example of a rendered terrain with this technique which makes use of

the textures shown in Figure 4.4.

𝑊 =
𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛 − | (𝑇ℎ𝑒𝑖𝑔ℎ𝑡 − 𝑅𝑚𝑎𝑥) |

𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛

where

● W is the weight of this height region

● 𝑅𝑚𝑎𝑥 is the maximum height value for this region

● 𝑅𝑚𝑖𝑛 is the minimum height value for this region

● 𝑇ℎ𝑒𝑖𝑔ℎ𝑡 is the height of the terrain at the to be

computed pixel Eq. 32

Figure 4.3. A rendered terrain using the texture blending method of Equation 32.

- 52 -

Figure 4.4. A combination of terrain textures.

- 53 -

Chapter 5

Results

In this section we will present some of the results. We have a collection of scenes which

demonstrate the contributions of our research. They demonstrate heat conductivity, phase

transitions between liquid and solid and the interaction with a terrain. Our final scene

simulates the solidification of a lake; this particular scene makes use of all the aspects

described in previous chapters. First, we will show screen captures of these scenes and

describe what happens in the scenes. Since traditional fluid simulators can run in real-time

on current hardware, it was important for our research that we don’t add too much

computation time to the simulation and risk that the simulation would become too slow;

therefore we have added a brief performance analysis of the added functionality in

comparison to the bare bone Smoothed Particle Hydrodynamics implementation.

- 54 -

5.1 Scene: Heat Conduction

524,288 particles.

 t = 0 seconds t=10 seconds

 t = 20 seconds t =30 seconds

t = 40 seconds

Figure 5.1. Scene: Heat Conduction images.

The heat conduction scene demonstrates the addition of temperature to the simulation. In

the first image, the initial state of the scene is shown. Once started, the hot red fluid is being

released and will fall into the cold blue fluid. Eventually the temperature of the red fluid

will go down due to the colder fluid being larger. If it were the other way around, the cold

fluid would actually warm up. The temperature of the combined fluid will eventually

always reach equilibrium.

- 55 -

5.2 Scene: Terrain Interaction

1,048,567particles.

Figure 5.2. Scene: Terrain Interaction images.

This scene demonstrates the interaction between the fluid and a more advanced

geometrical object such as a terrain. The initial state of the scene is displayed in the first

image. Once started, the particles start interacting with the terrain as shown in the second

image. It is shown that particles collide with the terrain and result in a visually pleasing

simulation.

- 56 -

5.3 Scene: Bucket Terrain

2,097,152 particles.

Figure 5.3. Scene: Bucket Terrain images.

This scene demonstrates a realistic test case where a fluid is contained by a surrounding

terrain, which replaces normal domain constraints of fluid simulators by an advanced

domain. In this particular scene we fill this ‘bucket’ with a large fluid as shown on the

images above. Since the number of particles is too large it will actually overflow the

boundary because of the pressure of the fluid as seen in the bottom image. The red square

can be used as an emitter for additional particles.

- 57 -

5.4 Dam Break

1,048,567particles.

Figure 5.4. Scene: Dam Break images.

In the ‘dam break’ scene we demonstrate a scenario which could be plausible in a real-time

interactive simulation. In the first image from above the dam which is blocking the fluid

from leaving the ‘bucket’ is still intact. In the second image, this dam is broken and thus the

fluid starts flowing out of the bucket. The last image shows the flow of the fluid after the

removal of the dam.

- 58 -

5.5 Scene: Quick Freeze

1,048,567particles.

t = 60 seconds t=90 seconds

t = 120 seconds t =150 seconds

t = 210 seconds t=300 seconds

Figure 5.5. Scene: Quick Freeze images.

One situation we have encountered is that in some real-time applications the solidification

of a fluid should happen faster than in the real world. There is a distinction between two

types of quick freezes. The first one being a quick freeze where the freezing process is

accelerated by decreasing the time scale of the simulation (i.e. simulating 1 second is done

in 0.5 seconds.) This quick freeze will result in a more rapid freezing simulation which has

the same visual end state as a real world time scale simulation. The other quick freeze

simulation is the one where the difference in temperature is so large, that the liquid fluid

will freeze faster due to large change in temperature. This particular simulation is more

- 59 -

interesting for applications because this is used to freeze something manually in the

medical field for example. The latter explained quick freeze simulation is demonstrated

above. We can insert a very low value for the surrounding environment (terrain and air)

such as -200 degrees celsius. The outer particles of the fluid, the ones closer to the terrain,

will freeze faster as the simulation has no time to reach equilibrium.

5.6 Scene: Normal Freeze

1,048,567 particles.

t = 120 seconds t =720 seconds

t = 2040 seconds t = 3420s seconds

Figure 5.6. Scene: Normal Freeze images.

The above images show the scene where we have used a slower freezing method in

comparison to the ‘Quick Freeze’ scene. In the ‘Normal Freeze’ scene, the temperature of

the terrain containing the water is zero degrees Celsius. This results in a more realistic

behaviour as the fluid has enough time to reach an equilibrium state of its temperature

constantly. The number of particles influences the rate at which a fluid freezes, above

simulation uses approximately 1,048,567particles. Freezing this particular simulation took

around one hour. For comparison, the ‘Quick Freeze’ scene took around 5 minutes to

completely freeze for the same number of particles.

- 60 -

5.7 Performance

In this section we make a brief performance analysis by comparing the performance of the

SPH implementation without our extensions and the implementation with our extensions.

We will do this by describing how much extra computation time it takes for each extension.

For this analysis, the normal freezing scene from section 5.6 is used. We’ve run each setup

for two minutes and we take the average values as benchmarks. We also display the

average number of particles which are calculated per second as this gives a better

understandable visualization of the performance. At the end of this section, a graph is

shown so different setups can easily be compared.

The measuring is done with the following hardware:

- Graphics Processing Unit: GeForce GT 750M.

- Central Processing Unit: Intel Core i7-4700HQ, 2.4GHz.

- RAM: 8.00 GB.

Note that this is a rather poor Graphics Processing Unit. High-end computer systems will be

able to simulate fluids a lot faster.

No Extensions

Number of Particles Avg. Time per Frame (ms) Avg. Particles per Second

32,768 4.02 8,151,243

524,288 92.08 5,693,831

1,048,576 222.74 4,707,623

2,097,152 632.21 3,317,172

4,194,304 2000.87 2,096,240

Table 5.1. Time comparison of the SPH simulation without extensions with different number of particles

setups. The column ‘Avg. Particles per Second’ contains how many particles could be simulated within a

second with the given setup.

- 61 -

Extension: Heat Diffusion

Number of Particles Avg Time per Frame (ms) Avg Particles per Second

32,768 4.43 7,396,839

524,288 99.89 5,248,653

1,048,576 232.72 4,505,740

2,097,152 718.6 2,918,385

4,194,304 2247.82 1,866,026

Table 5.2. Time comparison of the SPH simulation with the ‘heat diffusion’ extension with different number of

particle setups.

Extensions: Constraints & Heat Diffusion

Number of Particles Avg Time per Frame (ms) Avg Particles per Second

32,768 4.56 7,185,964

524,288 108.17 4,484,889

1,048,576 261.56 4,008,931

2,097,152 755.64 2,775,332

4,194,304 2485.23 1,687,692

Table 5.3. Time comparison of the SPH simulation with the ‘constraints’ and ‘heat diffusion’ extension with

diferent number of particle setups.

Extensions: Environment Interaction & Constraints & Heat Diffusion

Number of Particles Avg Time per Frame (ms) Avg Particles per Second

32,768 5.82 5,630,240

524,288 117.3 4,469,633

1,048,576 271.24 3,865,860

2,097,152 763.75 2,745,861

4,194,304 2493.51 1,682,088

Table 5.4. Time comparison of the SPH simulation with the ‘environment interaction’, ‘constraints’ and ‘heat

diffusion’ extension with diferent number of particle setups.

- 62 -

Deducible from above data is that the addition of heat diffusion has the impact of slowing

down the SPH implementation by approximately 9% for low particle counts and 11% for

higher particle counts. The addition of the terrain and air in combination with the heat

diffusion and the constraint satisfaction slows the original SPH implementation by

approximately 31% and on higher particle counts by 19.5%. This makes sense as the initial

impact of rendering the terrain does not scale with the number of particles, however the

interaction with the terrain and the satisfaction of constraints as there will be more

constraints does scale with the number of particles in the scene.

Figure 5.6. Plots of all performance scenario’s in one figure.

0

500

1000

1500

2000

2500

3000

32,768 524,288 1,048,576 2,097,152 4,194,304

Ti
m

e
p

er
 f

ra
m

e
(m

s)

Number of particles

No extensions

Heat Diffusion

Constraints & Heat Diffusion

Constraints & Heat Diffusion &
Environment Interaction

- 63 -

Chapter 6

Conclusion

In this thesis, we have presented an advanced Smoothed Particle Hydrodynamics method

which incorporates the phase transitions of freezing and melting for fluids. We have shown

that it is possible to solve the temperature computations of a fluid independently of its

current phase. In order to achieve our results we have modified an existing Smoothed

Particle Hydrodynamics method to integrate heat conduction.

6.1 Contributions

We contribute to the field of fluid simulation by extending Smoothed Particle

Hydrodynamics with more advanced fluid properties and interactions. In this section we

will summarize the proposed extensions.

The basis for our contributions is the addition of adding the temperature property to fluid

particles. With this temperature addition in place, we have added heat conduction

functionality to the fluid simulator by using the nearest neighbour search algorithm already

in place. Following these extensions we define the density and viscocity of particles as

functions of temperature.

Another contribution is the phase transition mechanism. Different consequences for

different types of phase transitions and different fluid compositions can be accomplished

with this mechanism. And as final addition we have added more advanced interactions

such as the interaction with terrain boundary.

The current state of our implementation is technically sufficient for real-time interactive

applications as it runs real-time. Yet, some future work will still have to be done such as the

rendering of the fluid’s surface. In the following section we will describe future work which

would enhance the result of this research.

- 64 -

6.2 Future Work

In this section we will describe some future work which will enhance the fluid simulation

methods even more. Some of this work has been done in existing research but not in the

combination with solidification and phase changes. What the current state of fluid

simulation lacks is an unified method which combines research into one advanced

simulator.

Surface rendering is one of these fields which have been researched before. Some existing

research consists of the following: point-based visualization of metaballs [43], marching

cubes [44] and screen space curvature [45]. These researches already provide visually

appealing results, however as stated before, making an unified method is the biggest

challenge.

Our current implementation of the terrain environment is straight forward and not

optimized. Adding spatial divisioning such as an octree would offer the possibility to avoid

having to compute collision between the environment for particles which are not near the

terrain [54].

The time it takes to freeze a fluid is dependent on the number of particles in this fluid.

Adding the simulation scale to the heat conduction equations could result in a scalable way

to manipulate the temperature of the fluid. With this, the freezing or melting of larger fluids

can be simulated with a relatively low number of particles. However, more research should

be made in order to confirm this.

In our research we are only working with the fluid water. However, fluids which consist of

multiple types of alloy will influence the way in which the fluid simulator should handle

them. Not only properties such as the melting and freezing points of fluids but also the

generation of new objects once a phase change occurs is interesting. When a phase change

occurs in high order alloy systems, multiple new fluids or solids might be created rather

than just one. This also means that phase changes in such systems might not be reversible

such as in the case of water and ice. For example, once lava solidifies, gases and solids are

formed. Melting the formed rock will not once again result in lava.

In the real world, on the surface of ice there is always a small layer of water. This small

layer of water is actually the reason why ice melts together rather than the closest solid

particles as we assume in our research. Extending our research with this phenomenon

would enhance the realism of the simulation.

- 65 -

References

[1] Archimedes of Syracuse. "The works of Archimedes". p. 257. Retrieved 11

March 2010.

[2] R.A. Gingold and J.J. Monaghan. “Smoothed particle hydrodynamics”.
Monthly Notices of the Royal Astronomical Society 181, pp. 375-389, 1977.

[3] D. Cline, D.Cardon and P.K. Egbert. “Fluid Flow for the Rest of US: Tutorial
of the Marker and Cell Method in Computer Graphics”. 2004

[4] B. Solenthaler, J. Schläfli and R. Pajarola. “A Unified Particle Model for
Fluid-Solid Interactions. 2007.

[5] M. Kelager. “Lagrangian Fluid Dynamics Using Smoothed Particle
Hydrodynamics”. 2006

[6] J. Stam. “Real-Time Fluid Dynamics for Games”. Proceedings of the Game
Developer Conference. 2003

[7] J.Stam. “A Simple Fluid Solver based on the FFT”. Journal of Graphics Tools,
Volume 6, Number 2. pp. 43-52. 2001.

[8] K. Erleben, J. Sporring, K.Henriksen, and H. Dohlmann. “Physics-Based
Animation”. Charles River Media, 2005

[9] M.J. Kirkby. “Hillslope process-response models based on the continuity
equation”. 1969

[10] M.J. Harris. “Fast Fluid Dynamics Simulation on the GPU”. GPU Gems, pp.
637-665, 2007.

[11] M.A. Shubin, “Laplace operator”. Encyclopedia of Mathematics. 7 Februari
2011. Web. 15 November 2013.

[12] A.Galbis and M.Maestre. “Vector Analysis Versus Vector Calculus”. 2012.

[13] M.D. Roberts. “A Fluid Generalization of Membranes”. 2004

[14] A.J. Chorin. “Numerical solution of the Navier-Stokes equations”.
Mathematics of Computation, pp. 745-762, 1968.

- 66 -

[15] INRIA. “Simulation Open Framework Architecture”. 2007-2011. Web. 07

June 2014.

[16] R.W. Anderson. “An arbitrary LAgrangian-Eulerian method with adaptive

mesh refinement for the solution of the Euler equations”. Journal of

Computational Physics, pp 598-617, 2004.

[17] M.J. Berger. and A.Jameson,. “An adaptive multigrid method for the euler
equations”. Ninth International Conference on Numerical Methods in Fluid
Dynamics Lecture Notes in Physics, pp 92-97, 1985.

[18] S. Premoze, T. Tasdizen, J.Bigler, A.Lefohn and R.T. Whitaker. “Particle-

Based Simulation of Fluids”. Eurographics, 2003.

[19] J.F. Price. “Lagrangian and Eulerian Representations of Fluid Flow:
Kinematics and the Equations of Motion”. 2006.

[20] J. Stam and E. Fiume. “Depicting Fire and other Gaseous Phenomena
using Diffusion Processes”. Computer Graphics, 29th Annual Conference
Series, pp. 129-136, 1995.

[21] M. Müller, D. Charypar, and M.Gross. “Particle-based Fluid Simulation for
Interactive Applications”.
In Proceedings of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 154-159. Eurographics
Association, 2003.

[22] M. Desbrun and M.P. Cani. “Smoothed Particles: a new paradigm for
animating highly deformable bodies”. Computer Animation and Simulation,
pp. 61-76, 1996.

[23] N. Bagdassarov. “Transient phenomena in vesicular lava flows based on

laboratory experiments with analogue materials”. Journal of Volcanology

and Geothermal Research., pp 115-136. 2004.

[24] R.C Kerr, A.W. Woods, M.G. Worster and H.E. Huppert. “Solidification of an
alloy cooled from above Part 1. Equilibrium growth”. J. Fluid Mech. vol. 216,
pp 323-342. 1989.

[25] D. Enright, S. Marschner, and R. Fedkiw, “Animation and

rendering of complex water surfaces,” ACM Trans. Graph.

(SIGGRAPH Proc.), vol. 21, no. 3, pp. 736–744, 2002.

[26] M. Müller, B. Solenthaler, R. Keiser, M. Gross. “Particle-Based Fluid-Fluid

Interaction”, Eurographic/ACM SIGGRAPH Symposium on Computer

Animation. pp. 1-7. 2005.

- 67 -

[27] F. Losasso, T. Shinar, T. Selle and R. Fedkiw. “Multiple Interacting Liquids”,
Proceeding SIGGRAPH (2006), pp 812-819. 2006.

[28] A. Lamorlette and N.Foster, “Structural modeling of natural

flames.” ACM Trans. Graph, pp. 729–735. 2002.

[29] D. Nguyen, R. Fedkiw and H. Jensen. “Physically based

modeling and animation of fire.” ACM Trans. Graph, pp. 721–728. 2002

[30] J.B. Franzini and E.J. Finnemore. “Fluid Mechanics with Engineering
Applications”, 1997.

[31] P. Hut, J. Makino, S.McMillan. “Building a better leapfrog”, Astrophysical
Journal, Part 2, vol. 443, no. 2, pp. 93-96, 1995.

[32] D.R. Lide, “CRC Handbook of Chemistry and Physics (70th Edn.).” Boca
Raton (FL). 1990.

[33] E.T. Jaynes. “The Evolution of Carnot’s Principle”. Carnot. 1996.

[34] F. Lambert. “A Student’s Approach to the Second Law and Entropy”.

Occidental College. 2008. Web. 02 February 2014.

[35] L. Boltzmann. “Lectures on Gas Theory”. Dover (reprint). 1995.

[36] A. Saha, S. Lahiri, A.M. Jayannavar. “Entropy production theorems and
some consequences”. The American Physical Society. pp 1-10. 2009.

[37] J.H. Lienhard. “A Heat Transfer Textbook (3rd ed.)”. Cambridge,
Massachusetts: Phlogiston Press. 2003.

[38] I.F. Sbalzarini. “Particle Methods for the Simulation of Diffusion Processes
in Space”. 2007.

[39] M.J. Gourlay. “Fluid Simulation for Video Games (part 10)”. Intel Developer
Zone. 2012. Web. 18 August 2013.

[40] P.L. Garrido, P.I. Hurtado, B. Nadrowski. “Simple One-Dimensional Model of
Heat Conduction which Obeys Fourier’s Law”. Physical Review Letters.
2001.

[41] G.Wallner. “Simulating, animating and rendering clothes”.

[42] J.Ciesko. “Practical Clothes Modeling and Simulation”. University of
Erlangen-Nuremberg. 2008.

[43] K. van Kooten, G. van den Bergen, A. Telea. “Point-Based Visualization of

- 68 -

Metaballs on a GPU”. GPU Gems 3. 2007.

[44] W.E. Lorensen, H.E. Cline. “Marching cubes: A high resolution 3D surface
construction algorithm”. Proceeding SIGGRAPH ‘87. pp 163-169. 1987.

[45] W.J. van der Laan, S. Green and M. Sainz. “Screen Space Fluid Rendering
with Curvature Flow”. Proceedings of the 2009 symposium on Interactive 3D
graphics and games. pp 91-98. 2009.

[46] M. Carlson, P.J. Mucha, R. Brooks van Horn III and G.Turk. “Melting and
Flowing”. ACM SIGGRAPH. 2002.

[47] M. Müller, S. Schirm, M. Teschnes, B. Heidelberger and M. Gross.
“Interaction of Fluids with Deformable Solids”. Journal Computer Animation
and Virtual Worlds. pp 159-171. 2004.

[48] Y.A. Çengel. “Heat Transfer: a practical approach”. McGraw-Hill series in
mechanical engineering. (2nd ed.). Boston: McGraw-Hill. 2004.

[49] D. Baraff and A. Witkin. “Large steps in cloth simulation.”, Proceedings of

SIGGRAPH. pp 43-54. 1998.

[50] 2012 Hoetzlein, Rama C. Fluids v.3 – A Large-Scale, Open Source Fluid
Simulator. Published online at http://fluids3.com. Released under Z-lib
license.

[51] M.E. Browne. “Schaum’s outline of theory and problems of physics for

engineering and science”. McGraw-Hill Companies. p. 58. 1999.

[52] Wal+, “Frozen Lake Baikal”. Panoramio.. 3 April 2011. Web. 22 Juni 2013.

[53] C.A. Pickover. “Laws of Science and the Great Minds Behind Them:

Archimedes to Hawking”. Oxford University Press, Inc. 2008.

[54] F. Losasso, F.Gibou, R.Fedkiw, “Simulating water and smoke with an octree

data structure”. Proceeding SIGGRAPH ’04. Pp 457-462. 2004.

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://books.google.com/?id=5gURYN4vFx4C&pg=PA58&dq=newton%27s+first+law+of+motion&q=newton%27s%20first%20law%20of%20motion
http://en.wikipedia.org/wiki/International_Standard_Book_Number

