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Abstract

Cluster analysis is a large field inside data mining. It tries to capture the structure of
a data set by grouping similar data points into clusters. Increasingly large and high
dimensional data sets present a problem for modern clustering algorithms. Especially
data sets containing nominal and sparse vector features. In this thesis I explore how
cluster analysis can be applied best to these kind of data sets. Data from the Xenon
web page crawler is used to test algorithms, which includes numeric, nominal and bag of
words data. We study different algorithms and propose a new algorithm called DBSNN,
which is based on Shared Nearest Neighbours and local densities. This algorithm is
implemented and experimented with. In order to deal with the size of the data set the
algorithm is made to work on a distributed system. The algorithm is robust against
outliers and can detect noise, finds clusters independent of difference in shape, sizes or
densities. In addition, the algorithm is extended to work on incremental data, meaning
it can detect new clusters who represent upcoming trends in the data set.

Keywords: Clustering, Algorithms, Incremental, Distributed, Shared Nearest
Neighbour
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Chapter 1

Introduction

In the data mining field clustering is one of the larger subjects. It tries to divide data
sets into meaningful groups (called clusters). These clusters should contain data which
is more similar to each other than to data in the other clusters. This way the clustering
partitions the data ,providing a way to explore the underlying structure of the data.
Clustering as a technique is often used in data analysis and is applied in many fields,
such as machine learning, pattern recognition, image analysis, information retrieval,
and bioinformatics [1].

Clustering is usually applied for two purposes; either for understanding or for
utility. Understanding data can be seen as unsupervised classification, similar data
points get grouped. For instance, finding objects in images, such as buildings, people,
animals, etc. This derives useful information from the original data set. Clustering can
also be done for utility, since clusters can be used as summarization of the data. This
is useful, for example, for compression or algorithmic optimization, like finding Nearest
Neighbours.

Often clustering is used to detect unknown patterns or coherence inside a data
set. This clustering, however, depends on how clusters are perceived, since there are
often multiple ways to look at data and its structure. In his paper [2], Estivill-Castro
already mentions that the notion of a cluster cannot be defined precisely and thus,
depending on which definition is used, different clusterings can be found. In this thesis
I will elaborate more on the different definitions of clusters, clusterings and measures of
similarity.

Nowadays data sets become increasingly larger (often referred to as Big Data)
and are often high dimensional. These characteristics provide all kinds of problems,
such as the feasibility of data analysis techniques and the problems of the curse of
dimensionality [3]. Can these data sets still be processed and if so, can they somehow
be made more insightful without having to check all data points. Clustering is one
technique to apply on these data sets to partition the data, and in this thesis we will
see how these problems are dealt with.
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Chapter 2

Problem Statement

Currently there exists a large collection of clustering algorithms, each often specialised
towards specific goals. Sentient Information Systems1 develops data mining software,
such as DataDetective2, that can be used widely in society. Creating a clustering
algorithm that can be used inside this application means the algorithm should be
applicable to as many types of data sets as possible. An example data set that
should be clustered by the algorithm, is Xenon Drugs and Medicine data. This
data set is provided by ParaBotS3. It is obtained for the purposes of the TAFEIC
(Tool Against Financial and Economic Internet Crime) project, which is an European
project aimed at fighting various forms of internet fraud and crime. The data set
contains websites that may be fraudulent. These sites might sell fake products in the
fields of sport enhancing drugs, alternative medication and illegal online pharmacy,
in short, drugs and medicine. By clustering this data, new kind of drugs or changes
in known drugs can be detected, especially when this data builds up incrementally.
This is useful for several government institutions, like the tax office or general health-
care. Samples of the data set are shown in Table 6.1 in the experimental setup, chapter 6.

The data set is large, contains many dimensions, has diverse data types (categor-
ical, bag of words) and increases over time (a continuous stream of data). Thus an
algorithm has to be found that can handle this kind of data set. In other words,
a clustering algorithm is needed that can cluster large, high dimensional data sets,
containing any kind of data type and do this in an incremental fashion. An ever
increasing data set will require a solution which can store a large amount of data in
memory, and can compute over it. Because such an expanding data set requires this,
the algorithm has to work in a distributed environment, where we can spread the
calculation and storage over multiple machines.

1 Sentient Information Systems, www.sentient.nl
2 DataDetective, http://www.sentient.nl/?dden
3 ParaBotS, http://www.parabots.nl/
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2.1. QUALIFICATIONS CHAPTER 2. PROBLEM STATEMENT

2.1 Qualifications

The algorithm to be developed needs to follow certain requirements to fulfil the stated
problem.

� High quality result
This is hard to define, but we want to have a result where data points belong in
the cluster they are assigned to, more than they would to any other cluster.

� Large data sets
The algorithm has to be able to handle large data sets with reasonable performance,
thus the algorithm might have to run on a distributed system.

� Incremental
Data should be able to increase over time and get clustered.

� High dimensions
The number of dimensions of the data can be high, and thus the algorithm should
perform well on this, in addition to keeping meaningful results.

� Interpretable
The result of the algorithm should be visualised so it can be interpreted.

Clustering large data sets will often lead to a long processing time because of the
amount of calculations required. In order to resolve this issue the algorithm can be
rewritten to one which can run in parallel. This way the limitation of processing power
gets shifted from one machine to the number of machines working on the clustering.

To make the data interpretable, the data will have to be projected into the vi-
sual dimensions (two or three dimensions). Thus we will have to apply some form of
dimension reduction.

2.2 Research Questions

Following the previous subsections the following research questions follow from the stated
problem.

� How can we design a clustering algorithm that can cluster a large set of high-
dimensional data incrementally?

� Can we implement this in a distributed way?

Additional sub questions can be raised, such as how do we define a good clustering, and
can we prevent runtime complexity becoming too high. These questions also apply to
how the algorithm can be implemented.

3



2.3. RELATED WORK CHAPTER 2. PROBLEM STATEMENT

2.3 Related Work

Previous work at Sentient Information Systems in this field has been done by Alexander
Mol, who in his thesis researched optimal parametrization for clustering algorithms [4]
and by Marijn Lems, who used clustering as a technique to identify gangs of spammers
by verifying if they share resources [5].

Concerning clustering algorithms in general, there are a lot of applications of
cluster analysis in the real world, causing different clustering algorithms to emerge,
each often tailored towards a specific problem (or a specific type of data set). Common
algorithms that are based on prototypes and prefer globular data structures are K-
Means [6] and Agglomerative Hierarchical [7] algorithms. Others are based on density,
such as DBSCAN [8] or on distribution, such as mixture models (EM [9] for example).
And there are the force-driven algorithms based upon graph drawing algorithms, like
Fruchterman-Reingold [10], which instead of using all dimensions apply physics rules
on a projection to cluster the data. In this thesis, K-Means will be explained in section
3.3.1, and a more advanced version K-Prototypes in section 4.1, DBSCAN will be
described in detail in section 3.3.3.

For incremental data there have been extensions to the known algorithms, like
incremental DBSCAN [11], but there are also entirely different algorithms, like k-
windows [12] (which however, might give meaningless results [13]) or BIRCH [14], which
is also a prototype-based algorithm but has a superior running time and works very
well on incremental sets. However, it does not work on categorical data. An extension
to BIRCH is the LIMBO algorithm [15], which does work on categorical data but has a
worse running time if the data set contains a lot of this type of data. More information
about LIMBO is given in section 4.2.

Because data sets start to get larger and larger, creating clustering algorithms
that work distributed and in parallel become attractive since they provide large speed
increases. These algorithms are sometimes based on well-known frameworks like
MapReduce [16], or sometimes custom made adaptations of popular algorithms like
Distributed DBSCAN [17].

There are a lot of optimizations for clustering, a large part of which unfortu-
nately only work on ordinal (or spatial) data. Examples of such optimizations are
kd-trees [18] or metric graphs [19], which speed up the computation for finding nearby
points or even algorithms which only work on ordinal data sets, such as Best Bin First
[20], which approximates nearest neighbours based on their distance to each other.

4



2.4. OUTLINE CHAPTER 2. PROBLEM STATEMENT

2.4 Outline

The following chapter, chapter 3, provides useful background about clustering in general
and on the specific characteristics of this study, such as similarity measures, incremental
clustering and distributed clustering. Chapter 4 explores algorithms taken in consid-
eration as solution to this study’s research questions. Chapter 5 explains the picked
Density-based Shared Nearest Neighbours algorithm, how it works in detail on an initial
data set, on incremental data, and how its distributed component works. The experi-
mental setup is explained in chapter 6, and in chapter 7 we show results of the algorithm
on the Xenon websites data set and expand upon the visualisation of the clustering.
Summarization and conclusions are done in chapter 8 and discussion can be read in
chapter 9. In the last chapter, chapter 10, we elaborate on future work that can be done
on my research.

5



Chapter 3

Clustering

Clustering is the task of creating groups inside a data set where data points are more
similar to the points inside the group (cluster) they are in, than to any other group. The
definition of what the best clusters of a certain data set are, is not always clear. This
is clarified in the example below (Figure 3.1). There are multiple clusterings possible,
where each partitions the data properly; each clustering makes sense. This implies
that when looking at a data set there are multiple ways to cluster it, which is best
depends on what type of clustering is preferred to be found in the data. This problem is
commonly handled in algorithms by requiring parameters, representing characteristics of
the algorithm. For instance, in K-Means clustering the number of clusters K is required
and for DBSCAN the minimum density MinPts has to be supplied. This problem can
never be elegantly solved since this is intrinsic to clustering [1].

(a) Original points. (b) Two clusters.

(c) Four clusters. (d) Six clusters.

Figure 3.1: Different ways of clustering the same set of points [1].

In the following sections general information is provided concerning clustering, defini-
tions of clusters and clusterings, common algorithms and their techniques, measurements

6



3.1. NOTATION AND DEFINITIONS CHAPTER 3. CLUSTERING

used for clustering, incremental clustering specifics and information about distributed
clustering and merging.

3.1 Notation and Definitions

In this section notation and definitions are given for the basic concepts used throughout
this thesis.

Let X = {x1,x2, . . . ,xn} be a set of data vectors. Each xi vector exists in a d
dimensional vector space. We thus have a n × d matrix consisting of n records with d
attributes. This will be the input data set for the clustering algorithm.

Let the cluster result be K groups, each consisting of a subset of X.

In the distributed system, let M = {machine1,machine2, . . . ,machinem} be the
set of machines performing the clustering task, where each machine has at most ϕ data
points of the input set X.

For canopy algorithm, c represents the amount of canopies found, and f is the
sample size. In the K-Means and K-Prototypes algorithm, K denotes the number of
clusters, b is the batch size, and I is the maximum number of iterations.

3.2 Clustering

As pointed out, there is no real definition for what clusters are. Instead there are
multiple ones, dependent on the data set and on the perspective of the interpreter.
Below is a short summary of types of cluster definitions.

Well-separated: A cluster is a set of objects in which each object is closer to
every other object in its cluster than any other object outside of the cluster. This is a
very strict definition, which makes finding proper clusters difficult.

Center-based: Every object inside a cluster is closer to the cluster centroid than to
any other centroid of any other cluster. This assumes that the data set has an average,
or center point, and it is meaningful, which is often the case for numeric data, but
often not for nominal. For nominal data the mode of the set can be picked as center value.

Contiguity-based: Every point in a cluster is closer to at least one point in
the cluster than to any point outside of its cluster. This is a less strict definition, which
makes it possible for clusters to have non-globular shapes.

Density-based: Separation of clusters is dependent on the density of the clus-
ters. High density areas are commonly clusters while low density areas are often just

7



3.2. CLUSTERING CHAPTER 3. CLUSTERING

noise.

Distribution-based: If we can make assumptions about the distribution before
clustering we can improve on clusterings. We can for instance assume a certain
Gaussian distribution. This is however less applicative for this project, because a
probability distribution requires a lot of domain knowledge, which might be lacking.

Subspace models: We divide the work over partitions of the attributes, e.g.
we just cluster on the pairwise combinations of each two dimensions. These clusters
then get merged to a final result.

In order to have an algorithm that works on most types of data sets, we pick
the definition which has the least limiting assumptions. This is preferred, since the tool
in which this algorithm is to be used can be applied on any kind of application. Thus
we choose contiguity-based clusters together with a density definition. This means we
want to find clusters independent of shape and size. We can also deal with non-globular
structures, which are clusters not spread out as a circle around a center, but in any
arbitrary form, because of clustering on density.

Besides choosing the cluster definition, a related choice has to be made on clus-
tering types. There are multiple ways on how we can assign data points to the clusters.

Hierarchical (nested or connectivity-based): We start out with a clustering
in which each data point is its own cluster. We merge the clusters which are most
related first, and each step merge towards one cluster which has all the data points.
The clustering is now built in a hierarchical way, where for any number of clusters
needed there is a solution. An alternative is to do this top-down instead of bottom-up.

Exclusive clustering: Any data point in the clustering can only be assigned to
one cluster.

Overlapping clustering: A data point may appear in more than one cluster,
meaning it has a high similarity (or short distance) to multiple clusters.

Fuzzy (probabilistic) clustering: The clustering is fuzzy, meaning for every
data point we have a value between zero and one which represents how well the point
fits the cluster. A point can also have multiple fuzzy values, one for each cluster in the
clustering.

Complete clustering: The total data set is clustered; every point belongs to a
cluster.

Partial clustering: Not every data point has to be in a cluster, thus we can

8



3.2. CLUSTERING CHAPTER 3. CLUSTERING

have noise points.

Although fuzzy clustering has its advantages, it is decided to pick partial exclu-
sive clustering as a result of the algorithm, since this gives a strict division of the data
points into clusters and noise. Distinct clusters provide clear results and noise detection
is beneficial if clustering happens in a distributed manner, since we can then detect
noise and send it to a machine with better matching clusterings.

3.2.1 High Dimensions

A common problem when clustering (and in data analysis in general) is the so called
curse of dimensionality [3], which is commonly described as the problems which occur
when data has a high number of dimensions. Such problems are for instance that
distances become indistinguishable and lose their usefulness, and that nearest and
farthest neighbours become more and more similar. Bernecker et al. [21] point out that,
although these problems hold for some data sets, the problem is often caused by the
increase of irrelevant dimensions, which make the analysis problem harder. We can see
this as a change in the ratio of useful features to noise features for the later, resulting
in a loss of contrast in the data [22].

Thus we can state that for high dimensional data, adding a lot of irrelevant di-
mensions, the problem becomes increasingly difficult. To solve this problem for
clustering, a number of solutions have been proposed, such as subspace projection [23]
or shared nearest neighbour similarity [22]. By applying clustering on subspaces, clusters
can still be found, however, it is computationally heavy, since all pairwise combinations
of dimensions are clustered, which is a search space of the size 2d. These type of high
dimension clustering algorithms focus on just finding clusters in axis-parallel subspaces.
An alternative is using Shared Nearest Neighbours, where clusters are found by finding
neighbourhood of similar data points. Shared Nearest Neighbours has been shown to
work well on high dimensions by Houle et al. [22], performing superior to common
measures such as Euclidean distance. Tan et al. [1] also show that a variation of SNN
using densities performs very well on high dimensional time series data, such as a data
set of atmospheric pressure on Earth.

The choice between these two methods comes down to characteristics in the data
set, if there are only a few distinguishing dimensions, finding these with subspace
projection algorithms is more effective. However, if the data contains a large number of
relevant dimensions SNN has been shown to be better [22].

3.2.2 Dimension Reduction for Visualisation

The data will have to be projected into the visual dimensions so the clustering result
is interpretable. This means some form of dimension reduction has to be applied.
This will lead to a lack of triangle inequality between the represented data points,

9



3.3. COMMON ALGORITHMS CHAPTER 3. CLUSTERING

meaning if point A and point B are both near point C (since they are in the same
cluster and are similar to C) they might differ from each other more than is implied
by their distance. This is a problem which is unsolvable, because we will always need
a dimension reduction to convert to an observable distance relation between data points.

Clustering high dimensional data is a complex task. Instead of clustering algo-
rithms specifically designed for high-dimensions, an alternative is reducing the number
of dimensions using a dimension reduction technique. After the reduction any
kind of clustering algorithm can be applied to find the clusters in the data. How-
ever, often a lot of characteristics of the data are lost by applying a dimension reduction.

Examples of dimensionality reduction are Principle Component Analysis [24, 25],
Singular Value Decomposition [1] and FastMap [26]. Most of these techniques have
a running time of O(n2), which, for large data sets, is quite long just for reducing
dimensions as subroutine. In addition, PCA and SVD have the assumption that there
has to be a linear relation between old and new sets of attributes [1]. FastMap is an
example of a linear running time dimensionality reduction technique. It is based of
MDS (multidimensional scaling), but it requires that for the data triangle inequality
holds, which is not the case when looking at similarity between data points containing
nominal attributes1.

An alternative way to deal with the high dimensionality problem is by using a
clustering algorithm which can deal with high dimensionality on its own, such as shared
nearest neighbours [22]. We can just apply the clustering algorithm on all dimensions,
thus not losing any kind of information, and then visualise by applying dimension
reduction only on the results. Dimensionality reduction is in this approach only needed
for visualisation, which has inherent problems anyway as explained in the previous
subsection.

3.3 Common Algorithms

In order to go more in-depth about clustering algorithms the following subsections each
explore an algorithm commonly used in clustering. Some of these will be used as sub-
routines in the final algorithm.

3.3.1 K-Means Clustering

K-Means is one of the first and most basic clustering algorithm described in the
literature. The algorithm iteratively finds local optimal centroid values. It starts
with K randomly picked locations (called centroids) in the data range, then it starts
iterating. For each iteration it assigns all data points to the closest centroid value,
then it recalculates the centroid value to the center value of the assigned data points of

1 For more information about triangle inequality on nominal data, see section 3.4.
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3.3. COMMON ALGORITHMS CHAPTER 3. CLUSTERING

that centroid. This causes the centroid values to shift every iteration towards the local
optimal center. After a number of iterations the algorithm has converged or is stopped.
The points all get assigned to the closest centroid and represent the K found clusters.
A few steps of the algorithm are displayed in Figure 3.2.

The running time of the algorithm is O(n ·K) per iteration.

(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3. (d) Iteration 4.

Figure 3.2: Using the K-means algorithm to find three clusters in sample data [1].

3.3.2 Canopy Clustering

Canopy clustering is often used as a pre-clustering step instead of actual clustering.
The idea is to make a rough partitioning of the data and then further cluster inside
these so called canopies, reducing computation time [27].

The algorithm starts by picking a random data point of the data set. We pick
two thresholds for which threshold2 ≤ threshold1 has to hold. All data points inside a
threshold1 range of this data point get assigned to its canopy. All data points which
are even closer (or more similar) than the threshold2 range also get assigned to the
canopy but are, together with the selected data point, removed from the data set. We
then continue by again at random picking a new data point, selecting canopy members
and removing very similar points. We end up with canopies containing roughly similar
data points. Data points can also be in multiple canopies, which does not have to
be a problem, depending on the follow-up algorithm. The canopies serve as input for
this algorithm, which often only considers points inside the same canopy as potential
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same-cluster points. An example of how canopies are selected can be seen in Figure 3.3.

The running time of the algorithm largely depends on the threshold values but is
often negligible compared to any clustering algorithm following it.

Figure 3.3: Four data clusters and the canopies that cover them [27].

3.3.3 DBSCAN

DBSCAN is a density-based clustering algorithm which separates clusters based on
their local densities [8]. For each point we determine how many points are inside a given
radius Eps, if this number exceeds given parameter MinPts we call the point a core
point. For all points which are non-core points we determine for each if it has a core
point inside its Eps radius, if so it is called a border point, else it is discarded as noise
point. We group core and border points which are in each others Eps inside the same
cluster. This way clusters are formed depending on density. In Figure 3.4 assignment
of core, border and noise points is shown.

The running time of this algorithm is O(n2) because we need to calculate all
pair-wise similarities for all the data points.

12



3.3. COMMON ALGORITHMS CHAPTER 3. CLUSTERING

Figure 3.4: Core, border and noise points [1].

3.3.4 Shared Nearest Neighbours

Shared Nearest Neighbours is a technique first described in detail by Jarvis and Patrick
[28]. It serves as a second order similarity measurement. Before we apply it, we calculate
for each data point its k-nearest neighbours. These are the k data points which have
the highest similarity or shortest distance over all dimensions to the data point. The
similarity calculation, or distance metric used is the first order measurement. The result,
a matrix of n× k, is then used as input for the SNN calculation. For each data point we
compare it with each of its k best neighbours and now set their similarity by the number
of neighbours they share divided by k, see figure 3.5. In equations this will look like;

SNNk(x,y) =

{
|NNk(x) ∩NNk(y)|, if x ∈ NNk(y) and y ∈ NNk(x)

0, otherwise

similarityk(x,y) =
SNNk(x,y)

k

Converting a k-nearest neighbour graph to one based upon shared nearest neighbours is
sometimes called sparsification. The edges between clusters get removed because they
share no neighbours, see figure 3.6.

Two points only get a positive shared nearest neighbour similarity if both of
them have each other in their nearest neighbour list. This causes clusters to be found
dependent on local densities. Points on the border of a high density area might have
points of that area in their nearest neighbours list, but the points in the actual high
density area are always nearer to their other high density points, thus they do not have
the border points in their nearest neighbour list. These points will not get connected in
the SNN graph, causing separation of clusters depending on density shifts.

13
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Figure 3.5: Computation of SNN similarity between two points [1].

In order to find the k-nearest neighbours we have to calculate all pair-wise sim-
ilarities, which costs O(n2) time. Additional time is spend on calculating the
intersection between the nearest neighbour lists per data point which takes O(k2) when
unsorted.

(a) K-Nearest Neighbours graph. (b) Shared Nearest Neighbours graph.

Figure 3.6: Sparsifying k-nearest neighbours by applying shared nearest neighbours
[29].

3.4 Similarity Measures

For clustering we need to have some sort of measure that can determine which
data points should be in the same cluster and which data points should not be.
We can look at this in two ways; either we take distance as measure, and define a
cluster as a group of points which are all close to each other, or we can look at how
similar the data is by using a similarity measure, and put similar data points in a cluster.
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For distances, or metrics, the following well-known properties have to hold:

Positivity : d(x,y) ≥ 0 for all x and y.

d(x,y) = 0 only if x = y.

Symmetry : d(x,y) = d(y,x) for all x and y.

Triangle Inequality : d(x, z) ≤ d(x,y) + d(y, z) for all points x, y, and z.

Distance measures are based on the distance between data points over all dimensions of
the points. This is quite intuitive; points which have a low distance between them need
to have values in their dimensions that are very close to each other, and thus the points
are very similar. There are a couple of distances measures (or better worded; metrics)
to choose from;

� Manhattan distance
The Manhattan distance is also known as L1 distance, or taxicab geometry. The
distance between two points is the sum over the absolute difference per coordinate
(per dimension).

d(xa,xb) =

d∑
i=1

|xi
a − xi

b|

� Euclidean distance
The Euclidean distance is also known as the L2 distance, it is the common way to
measure distance between points. It follows the Pythagorean formula. Generalized
for n dimensions, the formula becomes;

d(xa,xb) =

√
(x1

a − x1
b)

2 + (x2
a − x2

b)
2 + ...+ (xd

a − xd
b)2

� Minkowski distance
Minkowski distance is a generalization of both Manhattan and Euclidean distance,
p = 1 for Manhattan, and p = 2 for Euclidean.

d(xa,xb) =

(
d∑

i=1

|xi
a − xi

b|p
) 1

p

A different approach is calculating some form of similarity between the data points.
This makes more sense when we have data which has non-metric attributes. For
instance, persons who have hobbies; calculating a distance between two persons based
on these values seems nonsensical, since there is no ordering in the possible categories
(or even combinations) of the hobbies. Is football closer of further from hockey than
tennis is? How do we use the distance measure between these values?

A better measure here is a similarity measure, which can be seen as the opposite
of a distance metrics. Highly similar data has a low distance and very dissimilar data

15



3.4. SIMILARITY MEASURES CHAPTER 3. CLUSTERING

has a very large distance. The difference between distance and similarity measures is
that for similarity measures the triangle inequality typically does not hold. In addition,
sometimes for nominal attributes symmetry also does not hold. An example would
again be hobbies, someone who plays football, hockey and tennis matches someone who
only plays tennis by just one-third of his hobbies, but the person who plays only tennis
matches for all its hobbies to the other person.

There are quite some similarity measures to choose from;

For the first two measures some additional definitions are needed. If we have
two vectors which have a nominal attribute (can be complex, like bag of words), we can
represent this as a binary vector. With this we can define;

A11 = total number of binary values where both vectors have the value 1.
A01 = total number of binary values where first vector has value 1, other has value 0.
A10 = total number of binary values where first vector has value 0, other has value 1.
A00 = total number of binary values where both vectors have the value 0.

� Jaccard similarity
Jaccard similarity measures the similarity between two nominal attributes by tak-
ing the intersection of both and divide it by their union. In terms of the above
definitions this gives;

J =
A11

A01 +A10 +A11

� Jaccard distance
The Jaccard distance is not a typical distance measure. It measures the
dissimilarity between two sets, and thus, it is the complement of the Jaccard
similarity. It can be calculated by subtracting the Jaccard similarity from one, or
by subtracting the intersection from the union before division.

dJ =
A01 +A10

A01 +A10 +A11

� Cosine similarity:
Cosine similarity measures the similarity between two vectors by taking the cosine
of the angle the two vectors make in their dot product space. If the angle is zero,
their similarity is one, the larger the angle is, the smaller their similarity. The
measure is independent of vector length (the two vectors can even be of different
length), which makes it a commonly used measure for high-dimensional spaces.

sim(xa,xb) = cos(θ) =
xa · xb

‖xa‖‖xb‖
=

d∑
i=1

xi
a × xi

b√√√√ d∑
i=1

(xi
a)2 ×

√√√√ d∑
i=1

(xi
b)

2
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To elaborate a bit more on the formula; we calculate the inner dot product xa · xb

by multiplying for each dimension the value of xa with the value of xb, this results
in summing the number of dimensions where xa and xb match (are equal). We
divide this by the size of the vector space ‖xa‖‖xb‖.

For the clustering algorithm we have chosen to use a combination of measures. For
nominal data the cosine similarity is used since it performs well on sparse vectors, such
as bag of words, since it ignores 0-0 matches. Since it is independent of vector length it
works quite good on high dimensional data [30]. For metric data the Euclidean distance
is used, it is calculated between two points and divided by the range of the values. This
creates a little error rate since we do not know for sure if our lower and upper bound of
the metric range are the real bounds, but without external knowledge there is no other
way to solve this.

3.4.1 Combining Measurements

For each attribute of the data set the corresponding measure is applied, for nominal data
the cosine similarity, for metric data the Euclidean distance. We want these measures
to have an equal range, so we can combine them. This means that for for Euclidean
distance we have to divide the distance by the range of the metric data. This gives a
value between zero and one. From the similarities per attribute we calculate the average
which represents the match of the two data points. More formal;

similarity(xa,xb) =
1

d

d∑
i=1

ωiδi(x
i
a, x

i
b)

δi(x
i
a, x

i
b) =

1−
EuclideanDistance(xi

a, x
i
b)

rangei
, if attribute i is numeric

CosineSimiliarity(xi
a, x

i
b), if attribute i is nominal

In the algorithm weights (ωi) can be assigned per attribute which are used in the aver-
aging calculation, a high weight will cause an attribute to contribute more to the total
match. This is particularly useful for bag of words data, where one attribute may con-
tain a lot of hidden dimensions (like words in the Xenon data). We want the words of a
website to contribute more to the total match than for instance the country of the host
of the site. With the weights this problem gets addressed.

3.5 Incremental Clustering

Incremental clustering is a powerful concept which makes it possible to summarize
data on the fly. This makes it easier to spot developing trends inside a changing data
set that builds up over time. Sometimes this is called dynamic clustering, since the
clusters dynamically adapt to the incoming data. Incremental clustering invalidates
assumptions made on the data set, like number of clusters or densities. It also brings
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the problem of choosing between clustering noise and outliers or leaving them out of
the clustering.

There have been proposed many incremental clustering algorithms in literature,
some to cluster a continuous stream of data (as we would like to), and some as a perfor-
mance improvement. In the first case, the data stream is getting clustered, often using
some kind of time window. An example of such an algorithm is k-windows algorithm
[12]. In the second case, a subset of the data is clustered and the remainder is done
incrementally, speeding up the process. An example of this is IncrementalDBSCAN
[11]. Another algorithm often named in literature is BIRCH [14], which is a tree based
incremental clustering algorithm.

A common concept in data stream clustering algorithms is to make use of micro
and macro clusterings [31, 32]. The micro clustering is the online clustering, in which
incremental data gets best fitted into a cluster (which might potentially be a new
cluster). Either a micro cluster already exists because it has sufficient relevant data
points (inside a reasonable time window), or it is a potential cluster, still waiting for
enough new data points to join. The macro clustering is the offline clustering, this is
the output generated when a user requests a clustering from the algorithm.

3.6 Distributed Clustering

Since clustering is often a computationally heavy task, and it is more and more used on
very large data sets, distribution and parallelization are often employed techniques to
improve running time. Some cluster algorithms are easier to distribute than others. An
example of distributing is MapReduce clustering using K-Means [16]. Every machine
starts a run of K-Means with different initial centroid points. After each machine has
clustered the data set, the best clustering is picked depending on some quality measure,
like mean squared error or silhouette coefficient. A different example is the k-windows
algorithm [12]. This algorithm uses a sliding window technique, it applies this technique
per machine to a subset of the total data set. The resulting windows (clusters) are
considered for merging if they overlap in any way.

When using distributed techniques the limiting factor of the algorithm gets moved
from CPU time or memory size of one machine to the number of machines that are
connected to the task. This makes a distributed algorithm more scalable and thus more
suitable for large data sets (or even incremental data sets). There are, however, some
disadvantages to distributed computing that need to be considered. In his short paper,
Rotem-Gal-Oz [33] mentions common fallacies that are assumed concerning distributed
computing.

� Synchronisation:
The state of the calculation has to be equal over all machines to avoid double
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computations or getting false solutions because of not yet updated information.
Things to think about here are consensus over machines, deadlocks and synchro-
nised methods.

� Failure:
How can we best handle errors in corrupt data, failed machines, lost messages, etc?

� Stabilisation:
There has to be termination, there are situations where messages might keep get-
ting sent or where no decision is made and no termination will ever occur.

� Fallacies:
Common fallacies of distributed programming by making wrong assumptions [33]:

– Network is reliable

– Latency is zero

– Bandwidth is infinite

– Network is secure

– Topology does not change

– There is one administrator

– Transport cost is zero

– Network is homogeneous

These are things to consider before and while using a distributed solution.

3.6.1 Merging

When using a distributed solution, clustering results often need to be merged into a final
result. This is the case when machines work on a subset of the entire data set. The
found clusters might overlap or even be almost identical. To solve this issue, the clusters
need to be merged. This can be done in multiple ways. One is by applying a distance or
similarity measure between the centroids of the clusters, and, if they are similar, merge
them. Another would be to apply the measure on data points of the clusters and see if
the data points are more or less similar, and if so, to merge the clusters.
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Chapter 4

Candidate Algorithms

For this research a comparison is made between clustering algorithms to determine which
one provides the best solution to the problem. Most common algorithms have been
looked at and an eventual selection was made. In this section a number of candidate
algorithms are described. We start with Mini-batch K-Prototypes, which is a fast algo-
rithm based upon K-Means, then LIMBO, which is an algorithm which uses any kind
of clustering algorithm as subroutine and provides a tree structure which speeds up the
entire process, and we present a density-based Shared Nearest Neighbour algorithm,
which calculates groups of neighbours sharing nearby neighbours.

4.1 Mini-batch K-Prototypes

The first candidate algorithm is the Mini-batch K-Prototypes algorithm. This is an
adaptation of the original and well-known K-Means algorithm by using prototypes
instead of means, as shown by Huang [34]. In addition, instead of calculating new cen-
troids based upon all data points, we only use a batch each iteration and gradient step
so computation and convergence is quicker, this is shown in a paper by D. Sculley [35].
Instead of a running time of O(n·K ·I) for the classic K-Means algorithm, this algorithm
has a running time of O(b · K · I + n · K) because each iteration only b data points
are used. The algorithm is described below and in more (technical) detail in Algorithm 1.

Input: n data points, d dimensions, K number of clusters, b batch size
Output: clustered data

1. Load all data inside memory.

2. Pick center points (c) by picking K points at random from the n data points.

3. Iterate until the algorithm stabilizes or we exceed the max number of iterations.

(a) Pick b examples at random from the total data set.

(b) For each of these samples assign it to the nearest center point c.

(c) Recompute the center points by taking the average of these samples.
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(d) If the new center is little different from the old one for all center points c, stop
iterations.

4. Return the clusters.

As said, a difference between this algorithm and K-Means is the representation
of center points. For nominal data there is no ordinal mean, thus an alternative
has to be used. A simple solution could be using the mode, like in the K-Modes
algorithm, but instead in K-Prototypes a histogram is used. This histogram repre-
sents how often each category is counted in the samples. With this histogram we can
match how well a certain data point matches the centroid (more than an other centroid).

The algorithm can be made even faster by instead of taking the new average as
center point, using gradient stepping (explained in a paper by D. Sculley [35]). This
will only shift the new mean slightly each time, making it more robust against outliers
and poor sampling. Even without this optimization, the algorithm generally performs
so fast that no distribution of the algorithm is needed.

Algorithm 1 Mini-batch K-Prototypes algorithm

1: procedure MiniBatchKPrototypes(data X, size n, batchsize b, number of clus-
ters K, max iterations I)

2: Initialize each c ∈ C with an x picked randomly from X
3: change = true
4: while change and iterations < I do
5: change = false
6: M ← b random samples from X
7: for x ∈ M do
8: for y ∈ C do
9: d[x] ← max(d[x], similarity(M[x], c[y]))

10: end for
11: end for
12: for y ∈ C do
13: c[y] ← RecomputeCentroid(c[y], d)
14: end for
15: if similarity(c[y], old c[y]) < threshold then
16: change = true
17: end if
18: end while
19: return C
20: end procedure
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Figure 4.1: A DCF Tree with branching factor 6 [36].

4.2 LIMBO

LIMBO [15] is an algorithm that is actually a preprocessing step, much like the
canopies technique from section 3.3.2. The concept is to build a tree in one pass
over the data and group similar points into the same leaf. The resulting leaves
then get clustered in a secondary algorithm, K-Means for example. The LIMBO
algorithm is based upon the BIRCH algorithm [14], which is a popular algorithm for
large data sets. The difference is that BIRCH cannot cluster nominal data since it
uses centroid calculations which only work on metric data. LIMBO is an extension
to BIRCH and works on nominal data by keeping track of the distribution of the
nominal data inside the centroids. How this exactly works is described below and
more in depth in Algorithm 2, and of course in the original paper of Andritsos et al. [15].

Input: n data points, d dimensions, B branching factor
Output: clustered data, can be merged, but, since it is incremental, we might have yet
to decide this.

1. Load all data inside the memory by building a DCF-tree, this tree represents a sum-
mary of the data (see Figure 4.1).

(a) The DCF-tree is build by adding each point one by one into the tree.

(b) For each point go through the tree towards the leaf-node which has the best
similarity match.

(c) If the similarity is high enough it gets absorbed by one of the leaves in the leaf
node, else it becomes a new leaf (equal to the CF-tree [14]).
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(d) Store averages of leaves and propagate to parent nodes. Also save nominal
attributes inside the leaves by making a distribution of their occurrences in the
leaf. Propagate this upwards.

(e) For nominal attributes which can have multiple values (such as word lists), save
either all items as attributes or as a random sample (this is something to consider
for performance).

2. Reduce the tree (optional) in the same way as is done in BIRCH.

3. Apply a clustering algorithm upon all leaf nodes. This can be any type of clustering,
since the number of leaves is generally low, calculating a similarity matrix is done
fast.

4. The clusters found at the previous step are used as centroids, each point can now be
assigned to their nearest centroid.

5. Incremental data can be easily dealt with by using the DCF-tree. It is easy to
determine quickly if a point fits a cluster which already exists, or might form a new
cluster.

This algorithm can handle incremental data extremely well, since the build up is also
done incrementally. Time and quality performance are, however, heavily dependent on
the follow-up clustering algorithm.
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Algorithm 2 LIMBO algorithm

1: procedure LIMBO(data X, size n, branchsize B, clusters K, leafsize L)
2: tree ← new DCF-Tree
3: for x ∈ X do
4: Insert(tree, x, b, L)
5: if size(tree) > memoryThreshold then
6: tree ← RebuildTree(tree)
7: end if
8: end for
9: (Optional) GroupLeaves(tree) // If leaves overlap, we can merge

10: (Optional) RemoveOutliers(tree)
11: K-Prototypes(Leaves(tree)) // Or any other clustering algorithm
12: (Optional) Assign outliers to found clusters
13: end procedure
14:

15: procedure Insert(DCF-Tree tree, datapoint x, branchsize b, leafsize L)
16: if tree.isLeaf then
17: for l ∈ tree.node.children do
18: // If leaf matches and has free space, put the data inside
19: if similarity(l, x) > threshold and l.size < L then
20: l ← l + x
21: else if No leaf matches then
22: Remove(x) // Outlier point
23: else
24: Split(l, x) // We split the leaf with highest match
25: end if
26: end for
27: else
28: for c ∈ tree.node.children do
29: bestNode ← similarity(c, x) // Save highest similarity match
30: end for
31: Insert(bestNode, x, b, L)
32: end if
33: end procedure

4.3 Density-based Shared Nearest Neighbour

The concept of shared nearest neighbours as clustering technique was first used by
Jarvis and Patrick [28] as said earlier in section 3.3.4. Density-based Shared Nearest
Neighbour is an extension on this, described by Ertöz et al. [29, 37]. More recently,
there have even been incremental versions of the algorithm, described by Singh and
Awekar [38] and more in depth by Mendes et al. [39].
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The basic algorithm starts by computing the k-nearest neighbours for each point
and converting this into a shared nearest neighbours graph, much like the original
Jarvis-Patrick algorithm. This is then used as input into DBSCAN (which is explained
in section 3.3.3). The SNN part detects strongly connected groups inside the data set,
even on high dimensions [1]. By applying DBSCAN on its output the algorithm detects
the core points in the data instead of putting a flat threshold on the SNN value like
Jarvis and Patrick did. This way the algorithm is less brittle to density shifts, outliers
and noise. The algorithm automatically detects the number of clusters, and can discard
the noise points.

The DBSNN (density-based Shared Nearest Neighbour) algorithm is extended in
this research by adding an incremental component and distributing the clustering, in
addition to minor optimizations and tweaks (see the following chapter). Below the
algorithm is described, and in Algorithm 3 explained in detail.

Input: n data points, d dimensions, k nearest neighbour value, m machines,
Eps radius, MinPts threshold
Output: clustered data

1. An elected master machine M builds a distribution structure from the input data.
For a small number of canopies or machines an index will suffice, else a decision tree
is more appropriate.

(a) A sample is taken to calculate the radius thresholds and then used to create
canopies, as shown in section 3.3.2.

2. The leaves of the decision tree (or centroids of the index) are linked to the m machines.

(a) We determine how many leaves are linked per machine. This is done as best as
possible so the data load is balanced about equally over the machines.

(b) For every machine the number of points does not exceed the threshold ϕ.

3. The data points are distributed over the machines using the decision tree.

4. For each machine their data points are clustered as described in the SNN algorithm.

(a) This works as shown in section 3.3.4. In short:

i. Calculate k-nearest neighbours of all data points on the machine.
ii. Construct the shared nearest-neighbour graph.
iii. Run DBSCAN over the SNN graph.

(b) Noise points get passed on to the master machine M . It decides where to send
them based on the decision structure, it picks the highest matching machine
excluding the machines the point already has seen.
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(c) Every certain time period we can refine the decision tree of M by using the
clusters found on all machines. This can be done together with the merge step,
which is applied when visualising the clustering.

5. Incremental data points get distributed using the decision tree, refining the tree con-
tinuously solves the issue of inaccuracies. In addition, new clusters get detected at
the tree level, so bursts of incoming data get assigned to one machine quickly if they
are all very similar.

(a) If we hit the threshold ϕ for maximum number of data on one machine, new
data points get redirected to the machine which is next in line in similarity. The
inaccuracy created will be solved with the final merging.

(b) (Optional) Incremental input can cause too large clusters to form on machines
or can cause clusters on separate machines to converge towards each other. The
algorithm can be extended to that data gets split or merged after refining the
decision tree.

6. When the user wants to see a final result, master machine M requests all clusters
from the machines.

7. The received cluster centroids are used by M to determine the final clusters. We
might want to merge overlapping clusters, we do this by calculating the centroids of
all the clusters in the clusterings done on each machine. We compare the centroids
with each other and if centroids exceed a certain threshold of similarity between the
clusters we can merge them.

8. The result is shown on screen using the similarities between the cluster centroids as
distance measures.

There is no communication between machines, only with the master. Because of this, we
can easily scale up the number of machines, for instance when using a cloud computing
approach. This does create a potential bottleneck for this algorithm, since the master
machine might have to deal with an overload of incremental data (or a lot of noise).
It might be too much to be processed in time, to solve this we can also distribute the
master machine into multiple machines.

Four parameters have to be determined for this algorithm. For the radius thresholds of
the canopies we sample the data. The Eps radius and the MinPts threshold for cluster
creation are both correlated with the k value in the k-nearest neighbours calculation.
So only k has to be determined manually, which might be determined by some sampling
techniques or heuristics.
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Algorithm 3 Density-based SNN algorithm

1: procedure DensitySNN(data X, size n, nearest-neighbours k, machines M, radius
Eps, threshold MinPts)

2: Y ← random sample of X
3: T1 ← averageSimilarity(Y) // Using a similarity matrix on Y
4: T2 ← averageSimilarity(Y) + σ(Y)
5: c ← Canopies(X, T1, T2)
6: tree ← BuildDecisionTree(c)
7: tree.distribution(X, m)
8: for m ∈ M do
9: NN-List ← KNearestNeighbours(ϕ, k) // Costs ϕ2 · d

10: for x ∈ NN-List do // From 1 till ϕ
11: for y ∈ NN-List do // From 1 till K
12: similarities ← SNNSimilarity(x, y, NN-List) // Costs ϕ · k2
13: end for
14: end for
15: // Neighbours and similarities are already calculated, so fast
16: clustering[m] ← DBSCAN(ϕ, similarities, Eps, MinPts)
17: noise[m] ← X \ clustering[m]
18: tree.distribution(noise[m], m)
19: end for
20: for m ∈ M do
21: totalClustering ← Merge(clustering[m])
22: end for
23: tree.Rebuild(totalClustering) // We rebuild the tree using the new clustering
24: return totalClustering
25: end procedure

4.4 Comparison

To make a decision on which algorithm is best suited a comparison between the
algorithms is made. In addition to the qualifications named in section 2.1, criteria such
as network usage, robustness and others are added to give a global picture on the three
algorithms. See Table 4.1 for these.

Comparing the three algorithm on these criteria gives a rough estimate of how
well each algorithm performs. See Table 4.2 for this comparison. The main considera-
tion is time performance versus clustering quality. Almost all algorithms that run faster
than O(n2) cannot properly cluster data independent of shape, size or density shifts.
Additionally a lot of algorithms perform poorly on non-globular structures.

� Picking Mini-batch K-Prototypes as algorithm would give a fast algorithm
where no distribution is necessary. However, it is centroid based, and when ini-
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tialized badly gives poor results. This problem can be overcome by running the
algorithm a few times. In addition, there is a problem with representing a mean
of nominal data. A possible solution could be to use the mode of the data, or
by making a probability distribution (perhaps only for the top x elements, to be
determined by sample).

� Picking LIMBO gives a fast, already incremental algorithm, and it might not be
needed to make it distributed. However, it is centroid based and order dependent.
It needs additional computation to cluster bag of words data properly. It has the
same problem with categorical data averages as the previous algorithm.

� Picking Density-based SNN as algorithm gives an algorithm that gives good
clusters independent of data size and shapes. In addition, it works well on noisy
data in comparison to the other algorithms. A disadvantage is, that it is a com-
putationally heavy algorithm, meaning it will have a longer runtime.

Criteria Explanation

Distributions Whether the algorithm works on all distributions of data points

Complexity Running time in big-O notation

Large data sets How well it scales on large data sets

Data structure The data structure underneath the algorithm

Categorical Data Can it handle categorical data

Incremental Can it deal with incremental (online) data

Robustness Is it insensitive to outliers and noise

Memory usage How much memory is needed

Database usage How often is the database contacted

High Dimensions Does it work on high dimensions

Parameters How many parameters are used

Network usage When distributed, does it cause a lot of network traffic

Order-dependent Is it order dependent

Distributed Is distribution possible

Parallel Can we run it in parallel on one machine

Table 4.1: Comparison criteria between the candidate algorithms.

4.5 Choice

Following the comparison made in section 4.4, the density-based Shared Nearest Neigh-
bour algorithm is picked as preferred choice. Although the algorithm is computational
heavy compared to the others, we can run the algorithm on a distributed system,
lowering the runtime complexity somewhat. This makes it possible to choose a high
quality clustering algorithm.
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Criteria Mini-batch
K-Prototypes

LIMBO Density-based
SNN

Distributions Centroid-based Centroid-based All types

Complexity O(b ·K · I + n ·K) O(n log n) O(ϕ2 + n log c)

Large data sets Scales linearly Scales linearly Scales linearly, but
quadratic error

Data structure Centroids Tree structure Similarity matrix

Categorical Data Yes Yes (poorly) Yes

Incremental Yes Yes, very well Yes

Robustness No No Yes

Memory usage O(n ·K) O(n log n) O(n · k)

Database usage Low Low High

High Dimensions Yes Less than the other
algorithms

Yes

Parameters Two Three Three

Network usage Very low Low Medium

Order-dependent No Yes No

Distributed Not needed Yes, but difficult Yes

Parallel Yes Yes Yes

Table 4.2: Comparison between the candidate algorithms.

The picked algorithm has the advantage that it works well on various types of
data, since it finds clusters independent of size, shapes, densities and noise. This is
a useful solution for the problem of this thesis, since we prefer an algorithm that can
deal with as many types of data sets as possible. Especially the density-independence
is something that a lot of alternative algorithms lack, such as Mini-batch K-Prototypes
and LIMBO. So a fast runtime is sacrificed for better distinguishable clusters.

In addition, the algorithm works well on high dimensional and nominal data. This can
address the problem with clustering bag of words data, such as web pages. This type
of data often has on average, a low similarity, but by converting this direct similarity
into a shared nearest neighbours similarity we have a suitable match between data points.

The principle that two points are similar to many of the same points implies that they
are similar to each other, which overcomes problems of the curse of dimensionality [22].
A low direct similarity can get fixed into a high match.
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Chapter 5

Algorithmic Approach

As stated in the previous section, DBSNN is picked, the density-based Shared Nearest
Neighbour algorithm. A large part of this algorithm has already been explained in
section 4.3. In the following sections we go more in depth, explaining characteristics of
the algorithm. At first some specific concepts of the algorithm are explained, then how
the algorithm clusters incrementally is explained and finally we elaborate on how the
algorithm runs on a distributed system. A general scheme of the algorithm is shown in
Figure 5.1.

5.1 Density-based Shared Nearest Neighbour Clustering

In this section the asymptotic complexity of the algorithm is derived so we have a better
indication of its running time. We are excluding the incremental part of the algorithm
for now. After this, the detection of a locally optimal k value for the nearest neighbours
calculation is explained.

5.1.1 Complexity Analysis

In order to analyse the complexity of the initial algorithm, we have to look at all
separate steps. Starting with the first; sampling and the canopy algorithm.

Canopies: The sample is read from the database and for each of its points we
calculate its similarities with the other points. This has a running time depending on
sample size f , of O(f2), since we compute pairwise similarities for each combination
of the sample records. The canopy algorithm has a running time of O(n2), but this is
in the extreme case where each data point becomes a canopy. If we set the thresholds
properly - based on the sample - we can assure that the running time will be a lot less.
In tests, the algorithm has shown to be finding a very low percentage of n as canopies
by setting the thresholds to average similarity. This will cause its complexity to be
more towards linear time, O(n).
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Figure 5.1: Algorithm Scheme

Distribution: The next step in the algorithm is creating the distribution struc-
ture and distributing the data points. If we would use a decision tree for this, building it
based on canopies would take O(c log c), where c is the number of canopies. This tree is
log c levels deeps if perfectly balanced. Distributing the data set would take O(n log c),
since we have to traverse the tree for each data point. An alternative is using an index
with all the canopies. This will cost for n data points O(n · c), since we have to match
each point to the canopies. In practice the index is easier to implement and maintain,
since a decision tree would require some form of hierarchical structure of the canopies
and balancing might not always be possible.

k-Nearest Neighbours: The dominating factor of the complexity is likely to
be the distributed computation. Each machine receives ϕ data points of the total data
set. For each of these points its k-nearest neighbours are calculated, for which all
pairwise similarities have to be computed. This takes O(ϕ2 · d), where d is the number
of dimensions of the data.

Shared Nearest Neighbours: After this we compute the shared nearest neigh-
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bour similarity per k nearest neighbours. For each data point we compare its k
neighbours with each of those neighbours’ neighbours. This takes O(ϕ · k2). The
computation is independent of the number of dimensions, which means it takes less
time than the neighbours calculation for k <

√
ϕ · d. In practice this can easily be even

further improved by using sorting or hashing techniques to improve the comparison of
neighbour lists.

DBSCAN: The next step is computing the clusters using DBSCAN per ma-
chine. Since similarities are already computed and stored it only has to iterate over the
pairwise similarities, taking only O(ϕ2).

Merging: The last step is merging the found clusters on the master machine.
This calculation depends on the K number of clusters found, but this is often not too
large. It takes O(K2 · d).

Combining all these steps, the running time complexity of the algorithm becomes
O(ϕ2 · d) for k <

√
ϕ · d and K < ϕ. Memory usage is O(ϕ2) per machine for storing

the pairwise similarities.

5.1.2 Optimal k Detection

The algorithm uses local optimal k detection [40] for determining the k-nearest
neighbours. The method finds an optimal number of neighbours per data point still
dependent on the input (preferred) k. Using this method to calculate a local optimal k,
the algorithm prevents errors by putting a hard k bound on the nearest neighbours list.
Instead of this, neighbours are picked outside the preferred k if they have a similarity
which is equal or almost equal to that of the kth neighbour, which has the lowest
similarity compared to the record.

We first define:

k∗ = The preferred value for k.
n = The total number of potential neighbours (data set size).

X ∼ Bin
(
k∗

n
, n

)
The optimal value for k is now found by using the following formula, for k∗ ≤ k ≤ n:

kopt = argmax
k

(log(dk+1 − dk) + log(P (X = k))

Where dk+1 = 1 when k = n.
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5.2 Incremental

Incremental data is dealt with in a distributed fashion, the master machine matches
which machine best fits the incremental data point and passes it to that machine. This
machine then tries to cluster it, and if classified as noise point, sends it back. This is as
described in section 4.3. Now we will go more in depth on how new data gets fit into
the already existing clustering.

In Figure 5.2 the four cases are pictured which can happen when a new data
point enters an already existing clustering. The noise and absorption cases are quite
easily dealt with, noise is send back and absorption points are just added to the
clustering. Absorption points might cause surrounding noise to become border points,
but the effect is only in its own k-nearest neighbours.

When a data point enters that causes the local density to surpass the MinPts
threshold a new cluster is formed. This is the creation case. All neighbouring points
need to be updated and switched status from noise to either core or border point, and
if they become core points, their neighbours need to be checked as well for a possible
new status. It is hard to predict how many points will be affected by such an event.

In case a new point has core points in its radius of different clusters, these clus-
ters will need to be merged into one. This means all points of these clusters have to be
altered, or at least all minus one.
To keep the computation efficient, instead of adding points one by one, we add batches
of data points. This smooths out computation spikes from data points which cause
creations or merges of clusters, since these take significantly more time to process.
For each batch of new data points we compute the k-nearest neighbours. All already
clustered data points compute if the new points are possibly better nearest neighbours
and update their list accordingly.

Updating the k-nearest neighbours list can cause gaps to be formed inside clus-
ters or even clusters becoming dissolved (although this is an unlikely case). After
updating the k-nn lists, the shared nearest neighbours similarity is computed. Whenever
the master machine requests the clusters only DBSCAN needs to be applied to the
precomputed similarities, causing a quick response.

The master machine calculates the similarity of different clusters and possibly
merges them. More importantly, whenever the master machine pulls for clusters
it updates its distribution mechanism with the new found clusters. This way new
incremental data gets assigned to their best matching machine throughout time.

Looking at the complexity for an incremental batch of data points of size B; we
have directed this batch towards one machine by going through the distribution tree,
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(a) Noise case. (b) Creation case.

(c) Absorption case. (d) Merge case.

Figure 5.2: Different cases for incremental data, based on IncrementalDBSCAN [11].

taking O(B logK). Calculating and updating the k-nearest neighbours for all points,
including the B new ones takes O(ϕ · B · d). Shared nearest neighbours computation
takes the same as on an initial set, O(ϕ · k2). Merging costs O(K2 · d) for matching all
centroids to each other. Recomputing the distribution tree costs O(K logK).

5.3 Distributed

Distribution of data points over the available machines has already been described in
section 4.3 in general. In section 3.6 disadvantages and potential problems of distributed
computing are pointed out. In this section we will see how the algorithm deals with
these problems.

Synchronisation will not be a problem, since the master machine will keep a syn-
chronised state and all machines work independent of each other on their own tasks.
Failure is dealt with by time-outs, whenever a machine fails to respond within a certain
time frame, the master machine will initiate a new task which can be carried out by a
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different machine. Stabilisation will always occur, since we do not have non-determinate
tasks. An exception to this is the noise movement (data points wrongly clustered on
a machine), these get moved around. To prevent non-termination of this movement,
each data point is tracked when redistributed to a different machine, so that after an x
number of tries it gets assigned to a machine and stays there.

Distributing data points and dividing tasks over workers (often processing units
on one workstation machine) are both cases where scheduling can be applied to improve
results. During this research only a simple solution for these problems is used. Creating
a sophisticated scheduler can be a thesis on its own and since this research intention is
to focus on clustering algorithmic it is deemed out of scope.

5.4 Parameters

Parametrization is one of the hardest part of the DBSNN algorithm, since parameters
are mostly dependent on the characteristics of the data set. During this research the
values for parameters have mostly been determined by testing. Further analysis should
be done towards which values are optimal estimations for average data sets. In the
distributed density-based Shared Nearest Neighbour algorithm there are a number of
parameters to be set:

� Threshold1
Values within this similarity threshold are added to the canopy. This value is set to
the average similarity between samples (which are taken in the initial steps of the
algorithm) minus the standard deviance of these samples. By using a sample we
make sure there will be a reasonable number of canopies, preventing one canopy
consuming all data points or bad performance due to too many canopies being
formed.

� Threshold2
Values within this similarity threshold are removed once added to the canopy, this
lead to reduction in the data points on which canopies are calculated. While testing
the value of this parameter turned out to be best performing when set equal to
Threshold1.

� k
The number of nearest neighbours that need to be calculated for the nearest neigh-
bouring step of the algorithm. The value is set to

√
n, which is a good estimate

according to Saravanan Thirumuruganathan [41]. This parameter directly influ-
ences the degree of fine-grainedness of the clustering, meaning, a low k will cause a
large number of clusters, where a large k will cause a low number of clusters to be
found. This number of clusters depends on what the user of the algorithm wants
out of the data set, this problem is described before in the intro of chapter 3.
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� Eps
A parameter for the DBSCAN subroutine of the algorithm. It represents the radius
for which data points are counted towards being near, meaning they can create
core points, or get assigned to a cluster if they are a border point themself. If
Eps is increased we will have less core points, leading to more data points getting
removed as noise. Decreasing Eps has the opposite effect. The value is set as the
average of the similarities in the k-Nearest Neighbours list, this way we capture a
lot of points of the data set and remove only truly unrelated noise points.

� MinPts
The number of points threshold that need to be inside Eps in order for a point
to become a core point, and thus create a cluster or join one. This is of course
dependent on the size of k, thus it is estimated as

√
k.

� Number of Machines
Not a real parameter, but more of a hardware constraint. The clustering perfor-
mance and quality are dependent on this. If the number of machines increases,
performance is increased, but quality is decreased since data points are spread over
the machines and cannot become clusters with each other in the Shared Nearest
Neighbours step of the algorithm. They might however get merged when a result
is calculated by the master machine.

As stated in short at the k parameter, the number of clusters found is directly dependent
on this value. This is because Eps and MinPts are derived from k in the current
implementation. This makes it easier to tweak the clustering of a data set into returning
less or more clusters.

5.5 Implementation

The algorithm is implemented in Visual C# version 4.5 using part of the DataDetective
code from Sentient Information Systems. The backend framework of DataDetective is
inspired by MapReduce [42], mapping tasks to connected machines and reducing the
result by combining. Tweaks were made to the framework in order for the clustering
algorithm to work, such as the new possibility for machines to locally save part of the
computation in memory. Additional speed improvements were made, such as serial-
ization of task commands through Protocol Buffers [43]. The general implementation
scheme is shown in Figure 5.3.

In order to keep running time reasonable, parallel programming is used per ma-
chine. For the incremental part of the algorithm this has a notable effect in the
clustering quality. Because each separate process running in parallel can not know
the other process’ record information they cannot become neighbours. This error is
minimized by performing clustering on batches of records which are as small as possible.
An alternative is running the incremental part in sequence, but this slows down the
entire clustering considerably.
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Figure 5.3: Implementation Scheme
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Chapter 6

Experimental Setup

This chapter describes the experiments performed to test the performance of the algo-
rithm. The goal is to test the shared nearest neighbours algorithm on cluster quality,
performance on large data sets, on incremental data sets and on high dimensionality,
see section 2.1.

Experimentation is done with two data sets, the Drugs and Medicine web page
data set, as described in the problem statement, and an anonymized NOM data set,
which is a data set containing survey data for marketing purposes where participants
are made anonymous.

In order to validate if the clustering algorithm works we have to use quality measures
on the found clusters. Which methods are used is also described in this chapter.

6.1 Drugs and Medicine Data Set

The Drugs and Medicine data set contains 283.713 records containing information about
web pages that are possibly selling drugs and/or medicine. These records are obtained
by a web crawler, created by ParaBotS1. The web crawler, Xenon, is used by taxing
authorities to investigate possible tax evasion by various web sites. It uses time-controlled
web spiders that crawl through the web and parse web pages by downloading a page and
following its links. Each record in the data set contains the following information about
the website:

� Title
The title of the website. For clustering this value is ignored since we assume almost
all titles are unique, and thus they provide little additional grouping discrimination
in the data set.

1 ParaBotS, http://www.parabots.nl/
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� Country
The country where the website is hosted, this is encoded as a country code, like
US, NL, etc.

� Character Encoding
Encoding of the website, examples are UTF-8, Windows-1252 or ISO 8859-1.

� Reference Count
The number of times a reference to this website is found.

� Download Date
When the site has been downloaded by Xenon.

� URLs
The URLs the page can be found on.

� Words
All the unique words the web page contains. Frequency of words is not used.

� Main Language
Xenon automatically tries to assign a main language per page.

� Sub Languages
All possible sub languages used on the page.

The words make this data set high dimensional, since each unique value for these at-
tributes can be seen as a separate dimension. In addition, there is no limit to the
number of words, and thus, the number of possible dimensions this data set has. This
is because the data set incrementally increases by running the web crawler online and
letting the cluster algorithm continuously cluster the incoming data. For this thesis, we
will experiment with the initial data set, and feed it incrementally into the algorithm.
In total there are 1.669.507 unique URLs and 3.562.872 unique words. An example of
two records can be seen in table 6.1.

id title country-
Code

charSet URLs words main-
Language

sub-
Languages

1 Beter in
Balans

NL utf-8 1454 97; 100;
101; 102;

null null

5 Homeopathie
Geldrop

NL iso-8859-
1

1764;
1984

89; 101;
103; 114

Dutch null

Table 6.1: Samples from the Xenon database. For URLs and words there is a lexicon
which maps unique integers to their values.
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6.2 National Readership Survey Data Set

The National Readership Survey, in short: NOM, data set is a data set from the
Nationaal Onderzoek Multimedia foundation, which is a company that performs
research in the field of multimedia for marketing purposes. The data set consists of
21.544 records, each containing information of a person. For each record there are 2004
attributes stored containing information on various subjects, such as sex, age, marital
status, income level, residence, etc. and also survey data, such as preference for certain
brands, newspaper they read, favorite beverage, etc. All these attributes make this a
high dimensional data set, again containing mixed data types.

For this data we already know that an underlying cluster structure should exist,
since a lot of attributes are correlated. Only a few main attributes determine the real
differences between records, these are sex, age, income level and education. All other
attributes are almost all correlated with these attributes. Thus a clustering of the data
should be possible and should separate on these main attributes. This makes it ideal
for testing the clustering algorithm.

6.3 Validation

It is important to validate any found clustering, so it is possible to determine if the
clustering is correct or not, and if the data set even contains some form of clustering
tendency. This is important, because we have to distinguish whether or not the data
contains any cluster structure, else clustering the set is pointless. Evaluating a clustering
can be done in multiple ways, for this experiment we have no external classification of
the data, thus we will have to do this unsupervised.

6.3.1 Silhouette Coefficient

Common methods for cluster evaluation are detecting cluster cohesion, determining if
points in a cluster are highly similar, and cluster separation, which is determining if
clusters are well-separated from each other. The silhouette coefficient [44] combines both
cohesion and separation, it determines for an entire clustering, or cluster, or even just a
data point a silhouette value between -1 and 1 which represents how well the object fits
the cluster it has been assigned to. An advantage of using the silhouette coefficient is
its independence of cluster size and it has no overfitting issues like some other measures
have. It does, however, generally favor convex clusters over other concepts of clusters,
such as density based ones. This is because direct dissimilarity between points is used
instead of, for instance, some form of density separation measure. It is defined as follows;

ai = average dissimilarity of data point i to the other points in its cluster.
bi = average dissimilarity of data point i to the data points in the nearest other cluster.
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si =
bi − ai

max(ai, bi)

The smaller bi is, the better the data point i belongs to the nearest other cluster.
The smaller ai is, the better it is assigned to its own cluster. If si is negative, point
i would better fit its neighbouring cluster than its own cluster and thus the point
would be badly clustered. A positive si indicates a reasonable partitioning of the data,
so a silhouette coefficient closer to 1 is better. Values near 0 indicate overlapping clusters.

For using the silhouette coefficient as a measure we want to give a total cluster-
ing one quality number, so we average over all silhouette coefficients of all points and
give the result as an overall quality value of the clustering.

quality =
1

n

n∑
i=1

si

For this quality measure negative values generally indicate that a sample has been as-
signed to the wrong cluster, as a different cluster is more similar. A coefficient very near
to -1 indicates either a bad clustering or that there is probably no noticeable cluster-
ing found and the data set might not have any kind of underlying cluster structure. A
positive quality number would indicate a proper cluster structure.

6.3.2 Simplified Silhouette Coefficient

The silhouette coefficient requires a heavy computation, since for all records pairwise
similarities have to be calculated. While our algorithm saves these locally on machines,
the matches between points on different machines still need to be computed. This ends
up being in the order of magnitude O(n2). To reduce this computation an alternative,
simplified silhouette coefficient [45] is used. Instead of ai representing the average
dissimilarity of i to the points in its cluster, it now is redefined as the dissimilarity
between i and its cluster centroid. Likewise, bi is redefined as the lowest dissimilarity
between i and the nearest cluster centroid. This way we only need to compute all
dissimilarities between the data points and the cluster centroids, reducing computation
complexity to O(n · K). The measure seems to perform almost as well as the original
silhouette coefficient according to Vendramin et al. [45].

Like the silhouette coefficient we again average over all data points, thus the
only difference is the calculation of the silhouette coefficient. This gives one quality
value over the total clustering.

6.3.3 Davies-Bouldin Index

Another measure of evaluating clusters is the Davies-Bouldin index [46]. This is another
internal evaluation, but based on intra and inter cluster distances. It is defined as follows;
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σi = average dissimilarity of all points in cluster i to its centroid.
d(x, y) = dissimilarity between cluster centroids x and y.

DB =
1

K

K∑
i=1

max
i 6=j

(
σi + σj
d(ci, cj)

)
We average over each clusters’ Davies-Bouldin index by summing over the clusters
and dividing by the number of clusters K. Per cluster combination i and j, we sum
the average distance of all elements inside each cluster as σ. We divide this by the
distance between the cluster centroids c. For each cluster we take the maximum of its
combinations with other clusters. This results in a measure that is the ratio between
intra cluster distances (σi + σj) and inter cluster distances (d(ci, cj)).

The lower the Davies-Bouldin index, the better the clustering has separated clus-
ters with high intra cluster similarities. It can range from 0, where intra cluster
distances are very small and inter cluster distances are very large, till positive infinity
when inter cluster distances are very small and intra cluster distances are very large.
Generally, a value ranging from 0 till 2 indicates a good clustering. This method has
the drawback that a good low value returned by this measure does not imply the best
clustering [46].

6.4 Tests

In this section the tests are defined which are going to be done with the shared nearest
neighbour algorithm. Tests are carried out on an Intel i7-3770 running at 3.4 GHz
with 12 GB of memory. Each test is to be repeated five times and the average picked
as result. Exceptions are tests SNN4 and Distr4 which are run three times, and the
total data set tests SNN8 and Distr5 which are run just once, because of their high
computation time.

The tests are designed to validate how well the algorithm performs on the stated
qualifications in the problem statement.

6.4.1 Data Set Size

First the scaling on data input size is tested, see Table 6.2. To make sure the validation
measures are meaningful, we compare the clustering algorithm with an implementation
of Mini-batch K-Prototypes, see Table 6.3. If the measures are higher for the DBSNN
algorithm we know it performs better than Mini-batch K-Prototypes. The parameter
K for the Mini-Batch K-Prototypes algorithm is set to the number of clusters found by
the DBSNN algorithm to keep the comparison as fair as possible.
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Tests Number
of data
points

Parameter
k

Number
of Ma-
chines

Workers
per Ma-
chine

Sample
size

Weights

SNN1 100 10 1 8 10% All equal

SNN2 1.000 32 1 8 10% All equal

SNN3 10.000 100 1 8 10% All equal

SNN4 50.000 224 1 8 10% All equal

Table 6.2: Test setup for testing with Drugs and Medicine data set using DBSNN.
Parameter k is set to

√
n.

Tests Number of
data points

Number of
Clusters K

Iterations Workers Batch
size

Weights

Proto1 100 6 10 8 20 All equal

Proto2 1.000 17 10 8 200 All equal

Proto3 10.000 32 10 8 2.000 All equal

Proto4 50.000 69 10 8 10.000 All equal

Table 6.3: Test setup for testing with Drugs and Medicine data set using K-Prototypes.
Parameter K is set to the number of clusters found by the DBSNN algorithm.

6.4.2 Parametrization

Parameter values of the algorithm can influence the number of clusters found, to verify
this, a series of tests are done, see Table 6.4. All parameters of the algorithm are derived
from the input parameter k, which represents the number of nearest neighbours picked
per data point. We expect that the number of clusters increases with the increase of k
and that quality measures stay about equal. This last property is desirable, since this
makes the quality measures independent of the number of clusters found.

Tests Number of
data points

Parameter
k

Number of
Machines

Param1 10.000 25 1

Param2 10.000 50 1

Param3 10.000 150 1

Param4 10.000 200 1

Table 6.4: Test setup for testing parameter k with Drugs and Medicine data set using
DBSNN.
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6.4.3 Words Attribute

The Words attribute is one of the most interesting characteristics of the data set, since it
is a bag of words representation, and contains hidden dimensions, in the sense that each
word can be seen as a separate dimension. Because of this, we might prefer to weight
the Words attribute more important than the other attributes. In Table 6.5 weights are
changed on the attribute to see how this affects the quality of the clustering.

Tests Number of
data points

Parameter
k

Number of
Machines

Weights

Words1 10.000 100 1 Words = 2

Words2 10.000 100 1 Words = 5

Words3 10.000 100 1 Words = 10

Words4 10.000 100 1 Words = 100

Words5 10.000 100 1 Words = 200

Words6 10.000 100 1 Words = 300

Table 6.5: Test setup for testing with Drugs and Medicine data set using DBSNN with
different weights on Words.

6.4.4 Incremental Testing

In Table 6.6 tests for incremental data input are stated. The initial data set size is varied
to compare how the algorithm deals with a high ratio of incremental data versus a low
initial data set. This way we can examine the quality of the incremental clustering.

Tests Number of
data points

Parameter
k

Number of
Machines

Initial
Set

Inc1 10.000 100 1 75%

Inc2 10.000 100 1 50%

Inc3 10.000 100 1 25%

Inc4 10.000 100 1 10%

Inc5 10.000 100 1 1%

Table 6.6: Test setup for testing with Drugs and Medicine data set using DBSNN and
incremental clustering.

6.4.5 Distributed Testing

Testing the distributed component of the algorithm is done in two ways. Firstly, the
number of machines used for the clustering task is varied, see Table 6.7. Secondly, the
number of data points is varied, see Table 6.8. With the first set of tests we can verify
how an increasing number of machines influence the running time, and how it affects
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clustering quality. The second group of tests, compared with the results of Table 6.2,
will give insight in quality loss due to distributing the computation. Although more data
is used than in the tests of Table 6.2, the data points per machine and the parameters
derived from this are the same, providing a somewhat fair comparison.

Tests Number of
data points

Parameter
k

Number of
Machines

Distr1 10.000 71 2

Distr2 10.000 58 3

Distr3 10.000 50 4

Table 6.7: Test setup for testing with Drugs and Medicine data set using DBSNN and
multiple machines. Parameter k is set to

√
n/m. The last test is the entire data set.

Tests Number of
data points

Parameter
k

Number of
Machines

Distr4 200 10 2

Distr5 2.000 32 2

Distr6 20.000 100 2

Distr7 100.000 224 2

Distr8 283.713 266 4

Table 6.8: Test setup for testing with Drugs and Medicine data set using DBSNN and
multiple machines while increasing the data set. Parameter k is set to

√
n/m. The last

test is the entire data set.

6.4.6 NOM Data Set

Using the NOM data set we can verify if the algorithm works on other data sets too. If
we compare the tests in Table 6.9 with the first batch of tests with the DBSNN algorithm
we can see how it runs on a different data set.

Tests Number of
data points

Parameter
k

Number of
Machines

SNN5 500 31 1

SNN6 1.000 50 1

SNN7 2.000 79 1

SNN8 21.544 387 1

Table 6.9: Test setup for testing with NOM data set using DBSNN. Parameter k is set

to 1/2 · n
2
3 , found by testing. Last test is entire data set.
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6.4.7 DataDetective Clustering Algorithm

In addition to testing new algorithms, the current algorithm used for clustering by
Sentient in DataDetective2 is tested. The setup for this is shown in Table 6.10. This
clustering algorithm is force–directed, meaning it will apply a dimension reduction first,
and then use forces on each data point to cluster. This works by applying attracting
forces between similar points and opposing forces between dissimilar points. Data points
that end up near each other form clusters. We want to compare this technique with the
DBSNN algorithm.

Tests Number of
data points

Number of
Machines

DD1 100 1

DD2 1.000 1

DD3 10.000 1

DD4 50.000 1

Table 6.10: Test setup for testing with Drugs and Medicine data set using DataDetec-
tive.

2 DataDetective, http://www.sentient.nl/?dden
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Chapter 7

Results

The results of the tests as defined in section 6.4 are discussed in this chapter. In addition,
the visualisation of the results is shown in the last section.

7.1 Experimental Results

An example of the clusters found can be seen in Table 7.1, where for the clusters found
in the Drugs and Medicine data set, a sample of the words is shown. Each test that has
been done uses the internal validation criteria described before, namely the simplified
silhouette coefficient and the Davies-Bouldin index. A higher silhouette coefficient and a
lower Davies-Bouldin index generally indicate better clusterings. As stated before, each
experiment is repeated five times. In this chapter only averages are displayed, detailed
results can be found in the appendices.

Cluster Words (7 most significant)

1 praktijk, behandeling, tarieven, klachten, afspraak, behandelingen, lichaam

2 information, life, events, health, news, history, resources

3 arnhem, amersfoort, utrecht, breda, amsterdam, leeuwarden, zwolle

4 agenda, links, therapie, contact, leven, vragen, jezelf

5 geestelijke, gezondheidszorg, zorg, verpleging, ziekenhuizen, eerstelijnszorg, farmacie

6 producten, voorwaarden, algemene, privacy, winkelwagen, eiwitten, creatine

7 vitamins, vetzuren, berry, magnesium, vezels, aminozuren, anti-oxidanten

8 health, care, conditions, treatment, therapy, physical, condition

9 arts, informatie, disclaimer, complementaire, therapeut, geneeswijzen, alternatieve

Table 7.1: Example of clusters found on Drugs and Medicine data set using DBSNN.
Here weight of the Words attribute is set to 1000, creating clusters mostly separated on
their word lists. Statistical significance determined by using Fisher’s exact test, which is a
statistical test used to determine association between the cluster’s data points compared
to the total data set, for more information see [47].
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7.1.1 Data Set Size

When we look at the results in table 7.2, we can see that the running time of the
algorithm increases quadratic with the input size. This increase is as expected, since
we compute pairwise similarities. A more severe problem is that the silhouette of
the clustering decreases rapidly as the data set size increases, which indicates less
well-defined clusters. This can imply multiple things. Since the silhouette does
not become negative it looks as if the clustering found is still correct, however, a
silhouette near zero indicates either a large portion of the clusters overlapping or
that no well-defined structure exists on the data set. When comparing clusters using
Fisher’s exact test on their attributes we still see that clusters are significantly different
from each other. This, and the Davies-Bouldin index indicating a good clustering
seem to imply that we do find a well-defined clustering, but it might just contain a
lot of overlap. Overlapping clusters seem plausible since we cluster web pages with
a lot of words, where each page might have some overlapping words with any other page.

Comparing the results in tables 7.2 and 7.3 we can see how well the Shared Nearest
Neighbours algorithm compares against the Mini-batch K-Prototypes algorithm. We
can see that, as expected, Mini-batch K-Prototypes runs significantly faster on larger
data sets than Shared Nearest Neighbours. However, quality of the clusters is much
lower. The quality difference is even higher when considering that the quality measures
return better values on convex clusters, since they use centroids in their calculations.
Thus, the choice between either DBSNN or K-Prototypes is a choice between either
finding high quality clusters or having a fast running time.

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-
Bouldin Index

SNN1 0:22 6 22 (22%) 0,592 1,799

SNN2 0:35 17 53 (5%) 0,581 2,009

SNN3 5:15 32 806 (8%) 0,363 1,884

SNN4 1:37:39 69 5107 (10%) 0,296 2,548

Table 7.2: Test results with Drugs and Medicine data set using DBSNN.

Tests Clustering
Time

Number of
Clusters

Silhouette
Coefficient

Davies-Bouldin
Index

Proto1 1:34 6 0,297 2,945

Proto2 1:46 17 0,373 2,840

Proto3 3:08 32 0,302 4,247

Proto4 10:21 69 0,220 12,447

Table 7.3: Test results with Drugs and Medicine data set using K-Prototypes.
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7.1.2 Parametrization

Table 7.4 shows the results for the tests using various values for parameter k. Comparing
these with each other and with the SNN3 test, we can see that higher values for k
reduce the number of clusters found, which is as expected. Quality measures seem to
stay about equal over the different parameter settings. This means that the algorithm
has the desirable property that clusters found and their quality is independent of the
number of clusters. The parameter k setting thus provides a way to configure the
fine-grainedness of the clustering as a user of the algorithm. Comparing the results
with the result of the SNN3 test we can see that the estimation of k as

√
n seems

reasonable, it finds 32 clusters, which is a reasonable number to define the structure of
the data set.

We can also note, when looking at the results in Table 7.4, that the DBSNN al-
gorithm removes more noise on lower k values. This is because less data points are kept
as nearest neighbours, making it easier for data points to not have a core point in their
k nearest neighbours list. Not having a core point in the k nearest neighbours causes a
data point to become discarded as noise point.

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-
Bouldin Index

Param1 5:18 207 1838 (18%) 0,353 2,789

Param2 5:13 76 1074 (11%) 0,327 2,493

Param3 5:30 16 318 (3%) 0,416 3,050

Param4 5:31 11 196 (2%) 0,373 2,869

Table 7.4: Test results with Drugs and Medicine data set using various k values as
parameter.

7.1.3 Words Attribute

In Table 7.5 we can see how the DBSNN algorithm responds to increasing weights on
the Words attribute. Comparing these tests with the SNN3 test, we can see that
overall quality is considerably worse than when using equal weights for all attributes.
Significantly more noise gets removed from the data set when the weight for Words
is increased. Discriminating on the Words attribute thus seems hard for the DBSNN
algorithm. Probably this is either because of overlapping clusters or because there is
no deeper underlying structure when looking at just the Words. However, when we
look at the words found inside the clusters, we can clearly see that the clusters make
sense. In Table 7.1 a few of these clusters for an extremely high weight of 1000 are shown.

It seems that the cluster validation measures do not work that well on these
tests. A possible reason might be that adding Words to the clustering decreases
contrast, for example: if we were to have only a few dimensions such as Country and
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Character Encoding the clustering algorithm can find pretty strictly separated clusters,
providing good results to the measures. However, if we add Words to the data set it
becomes harder to find strictly defined clusters. This might be a possible reason why
increasing weights on Words leads to worse quality measure results.

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-
Bouldin Index

Words1 4:52 34 824 (8%) 0,272 1,885

Words2 4:55 28 816 (8%) -0,145 2,168

Words3 5:25 20 815 (8%) -0,343 2,492

Words4 5:44 23 1058 (11%) -0,523 11,097

Words5 5:48 21 1063 (11%) -0,533 12,041

Words6 5:51 18 1056 (11%) -0,525 12,973

Table 7.5: Test results with Drugs and Medicine data set using DBSNN with a different
weight on Words.

7.1.4 Incremental Testing

Table 7.6 shows the results for incremental clustering. We can see that all qualifications
stay somewhat constant when changing the size of the initial data set. The running time
improves a little without quality decreasing that much. This means that an incremental
clustering result seems to be independent of the initial data set size.

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Inc1 5:20 43 780 (8%) 0,485 2,689

Inc2 4:59 41 543 (5%) 0,444 3,226

Inc3 4:19 39 578 (6%) 0,417 3,947

Inc4 4:04 39 595 (6%) 0,395 2,861

Inc5 3:46 44 914 (9%) 0,432 4,064

Table 7.6: Test results with Drugs and Medicine data set using DBSNN and incremental
clustering.

7.1.5 Distributed Testing

In tables 7.7 and 7.8 the results for different distributed setups are shown. The first table
shows the results for scaling up the number of machines on the task. Comparing these
results with the SNN3 test we can see that increasing machines from one to two yields
the best running time improvement, cutting time in half. Further addition of machines
does not reduce running time in the same way, this is probably due to overhead costs
on the master machine.
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Besides running time improvement, the number of clusters increases. This is something
that is expected, since each machine clusters its own subset, creating a more fine-grained
overall clustering. Quality measures indicate that clusters found are even a little better
than when only using one machine. This is probably because of the more fine-grained
clustering. If we were to change parameters a bit when running on one machine we
might get similar results.

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-
Bouldin Index

Distr1 2:42 65 939 (9%) 0,470 2,374

Distr2 2:32 89 975 (10%) 0,447 2,415

Distr3 2:21 105 1038 (10%) 0,448 2,601

Table 7.7: Test results with Drugs and Medicine data set using DBSNN and multiple
machines.

Comparing the results of the second group of distributed tests, Table 7.8, with Table
7.2, we can see that doubling the number of machines and data points causes little
increase in running time, only some additional overhead is computed. Quality measures
stay equal or even become better. This is probably because of the pre-clustering,
causing the clusters found per machine to be already pre-picked. There are only small
differences between the clusters because of this.

The amount of noise does peak in test Distr6 for unknown reasons, it seems to
be normal on the other tests though. Running time on the last test is quite high. This
is because this test was ran on four machines and on the entire data set to see if it was
computationally possible to cluster all data. On this test, 3 of the 4 machines were done
in less than 10 hours, but one machine ran out of memory, becoming a bottleneck and
slowing down the entire test considerably. Solving this scheduling issue is not simple,
and is something done in possible future work, see chapter 10.

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-
Bouldin Index

Distr4 0:32 16 36 (18%) 0,656 1,840

Distr5 0:52 29 79 (4%) 0,514 2,485

Distr6 6:30 89 3902 (20%) 0,403 9,915

Distr7 1:59:42 120 7400 (7%) 0,213 4,749

Distr8 50:11:32 214 21620 (8%) 0,204 8,089

Table 7.8: Test results with Drugs and Medicine data set using DBSNN and multiple
machines. Note that the last test is on the entire data set.
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7.1.6 NOM Data Set

In Table 7.9 the results for clustering the NOM data set are shown. Quality stays good
when increasing the data set size. however, computation time increases rapidly (take
into account that the last test was on the entire data set). This is mainly caused by the
high number of dimensions of the data; for each pair-wise similarity computation has
to match over all these dimensions. In addition, a more technical aspect causes high
computation: the data is saved as binary bitstrings for which similarity comparisons
are not optimized yet. When clustering this type of data optimising this calculation is
something that would be one of the first things to do in future work. Computation time
can furthermore be reduced by running the clustering on a distributed system, which as
shown in the distributed tests reduces running time with little quality loss.

Examples of clusters found in the NOM data set can be viewed in Table 7.10.

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

SNN5 1:10 23 49 0,090 3,033

SNN6 3:27 16 68 0,178 2,964

SNN7 13:20 16 122 0,717 2,917

SNN8 23:43:23 22 813 0,399 3,102

Table 7.9: Test results with NOM data set using DBSNN.
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Clusters Attribute (4 most significant) Property

Cluster 1

Dagbladcombinaties Noordhollands Dagblad
Provincie Noord-Holland
Luisterfrequentie Radio Radio Noord-Holland
Kijkfrequentie Televisie Nederland 3

Cluster 2

Welstand W5 (Laag)
Frequentie activiteiten Puzzelen
Hoogst voltooide opleiding Geen onderwijs, basisonderwijs
Kleinkinderen Van 18+ jr

Cluster 3

Regionale dagbladen Leeuwarder Courant
Intresses Politiek
Provincie Friesland
Luisterfrequentie Radio Radio Noord

Cluster 4

Activiteiten Familie, vrienden bezoeken
Geslacht respondent Vrouw
Huurwoning/eigen woning Eigen woning
Drogisterijartikelen ICI PARIS XL

Cluster 5

Advies geven aan anderen Cosmetica
Activiteiten Naar discotheek/club gaan
Burgelijke staat Ongehuwd
Leeftijdsklasse 15-24 jaar

Cluster 6

Online gamen Vaak
Burgelijke staat Ongehuwd
Positie in huishouden Kind
Bezit rijbewijs Geen

Cluster 7

Gezinsfase NOM Oude tweepersoonshuishoudens
Provincie Noord-Brabant
Kerkelijke gezindte Rooms Katholiek
Energiebedrijf elektriciteit Essent

Cluster 8

Sportbladen Voetbal International
Merk maaltijdpakket Wagner Pizza
Informatie kunnen geven over Auto’s
Auto accessoire meest gebruikt Carkit

Cluster 9

Intresses Automatisering en computers
Leeftijd respondent 25-54 jaar Ja
Intresses Gadgets/nieuwe technologien
Gebruik haarproducten Gel/gelspray

Cluster 10

Beroepsgroep respondent Werkloos/arbeidsongeschikt/bijstand
Dagbladabonnementen Geen abonnement
Huurwoning/eigen woning Huurwoning
Inkomensklasse Laag

Table 7.10: Example of clusters found on NOM data set using SNN. Statistical signif-
icance is again determined by using Fisher’s exact test [47].
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7.1.7 DataDetective Clustering Algorithm

Table 7.11 shows the results of clustering the Drugs and Medicine data set with the cur-
rent DataDetective clustering algorithm. Comparing these results with Table 7.2 shows
a lot of differences. Quality of clusters found are generally higher with DataDetective
on smaller data sets, however, on larger data sets the quality seems to decrease rapidly.
Considering that DataDetective does not run on a distributed system, we can state that
the DBSNN algorithm scales better on larger data sets, since it maintains its cluster-
ing quality and its running time can be reduced by adding machines to the computation.

In addition, the DataDetective clustering algorithm discards a lot more data points as
noise. The quality measures are only calculated over the clustered (assigned) data, and
it seems that the DataDetective algorithm only assigns the best points to a cluster.
This creates a quality advantage since the DBSNN algorithm discards far less data as
noise.

Tests Clustering
Time

Number of
Clusters

Unassigned
Points

Silhouette
Coefficient

Davies-
Bouldin Index

DD1 0:14 3 56 (56%) 0,604 0,956

DD2 0:22 25 272 (27%) 0,738 0,742

DD3 5:15 45 1362 (14%) 0,494 2,316

DD4 1:44:22 152 6812 (14%) -0,111 1,624

Table 7.11: Test results with Drugs and Medicine data set using DataDetective.
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7.2 Visualisation

Visualisation of the clustering is done in WPF1, and using the Extended WPF Toolkit2.
Firstly, centroids of the clusters are determined and are placed in relation to each other
on the drawing field. Their relative position is calculated by a custom made algorithm
based on Fruchterman-Reingold [10]. Then they are spread over the canvas. For each
data point we calculate similar they are to the cluster centroids. Depending on these
values the data gets spread out over the canvas, closer to the centroid position if they
have a high similarity to its own cluster, and more towards other centroids if they have
a high similarity with them. Data points of the same cluster get colored an equal color.
This is shown in Figures 7.1 and 7.2.

By only computing similarities between centroids and data points the positions
of the data might not be accurately describing their relation between them and other
data points. This has been a trade-off, since computing pairwise similarities just for
drawing clusters is a heavy performance price to pay, even worse considering spreading
the data points depending on Fruchterman-Reingold takes several iterations. For large
data sets this just does not work out.

Another thing to note is that when we represent data in a metric space (like the
canvas) in terms of their similarities we get two problems [48];

1. Triangle inequality implies transitivity.
The triangle inequality that one assumes when looking at metric spaces would
mean that similarities are transitive, which they are not. When point A is similar
to point B, and point B is similar to point C, point A and C can have very little
similarity. For example; the word fall is similar (or related) to words like autumn
or season, if clustered these would appear near each other. But fall can have a
different meaning, as in falling down. Then it is similar to words like tumble or
slip, so it should be clustered with these as well. However, autumn and tumble
have very little to do with each other but are mapped next to each other on metric
space.

2. Number of nearest neighbours is limited.
In metric space only a limited number of points can have the same point as their
nearest (most similar) data point. In high dimensions this is possible because of
the high number of dimensions creating sufficient space, but when mapped to low
dimensions this becomes a problem. A data point which is the best neighbour for
a lot of other data points can never be properly in the middle of these data points,
more than the points are to each other.

1 Windows Presentation Foundation, http://msdn.microsoft.com/en-us/library/aa970268(v=vs.

110).aspx
2 Extended WPF Toolkit, http://wpftoolkit.codeplex.com/
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Because of these two fundamental problems there will be some interpretation distortion
when viewing the clustered data.

Figure 7.1: Example of visualisation of a clustering, in this case of 10.000 records of
the Xenon data set.

Figure 7.2: Another visualisation of a clustering, 10.000 records of the Xenon data set
but with a lower k parameter, creating more clusters.
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Chapter 8

Conclusions

In this research clustering algorithms and techniques for clustering high dimensional,
incremental data containing nominal and numeric attributes have been explored. An
implementation is given for a distributed density-based shared nearest neighbours
clustering algorithm that clusters this type of data. In addition, the result gets
visualised on screen.

This approach provides a generic way to summarize any kind of data and detect
groups of similar points. Following the results from chapter 7 we can state that the
algorithm performs reasonably well compared to Mini-batch K-Prototypes and the
currently implemented clustering algorithm of DataDetective. It can cluster data
incrementally without much quality loss and can be run on a distributed system to
reduce computation time.

To answer the research questions posed:

� How can we design a clustering algorithm that can cluster a large set of high-
dimensional data incrementally?
As shown in this thesis, there are multiple ways of creating such an algorithm. I
have picked the density-based SNN approach which works well on this problem.
It obtains high quality clusters independent of shape, size, densities and noise,
while working on various types of data. Its only major downside is its runtime
complexity, but this is reduced by distribution of the computation.

� Can we implement this in a distributed way?
The implemented algorithm runs on a distributed system, making it scalable to
large data sets by adding more machines, reducing running time. When looking
at the results of the distributed tests we can also state that it does not lower
clustering quality a lot.

57



Chapter 9

Discussion

Cluster analysis is an approach of unsupervised learning; we want to find patterns in
unlabeled data. Since we never know how these patterns might look, it can be hard to
evaluate the results properly. This problem is inherent in unsupervised learning, and
makes it hard to verify any results.

In this thesis we have seen that density-based shared nearest neighbours cluster-
ing works well on the specified problem. The algorithm is a good all-round clustering
algorithm, which is flexible on input data types and can detect clusters in different
structures, such as density separated ones. There are, however, as mentioned in the
introduction, a lot of possible clustering algorithms. For different cases of data, specific
algorithms will often work better, this is simply because in unsupervised learning
there is no defined objective for finding patterns. Because of this, algorithms tailored
specifically for a data set will give a more satisfying result.

The most notable shortcoming of the DBSNN algorithm is its quadratic running
time, which can only be reduced by distribution of the computation. The distribution
does, however, disable data points separated by being on different machines from
forming a cluster together. This increases the error rate of the clustering, lowering
overall quality. It does not need to be a bad thing though, since for large data sets
we might prefer data points not grouping together into very large clusters, but instead
forming small clusters per machine. A lot of small clusters do provide more information
about the data set than only a few large clusters, which can be found more easily by
just clustering a reasonable sample of the data set.

A different problem of the algorithm is the parametrization. While this is re-
duced to just defining a k value, it is hard to determine for which value a proper
clustering is found for the data set. Unfortunately, this is a fundamental problem of
unsupervised learning, since it is unknown at which level of fine-grainedness a clustering
is considered good. This was also described in the introduction of chapter 3. There is
no solution to this, and instead we will have to use trial and error on parameter values.

58



Chapter 10

Future Work

In this thesis cluster analysis on large, incremental data sets has been investigated.
While some interesting work has been done, there are still ways to expand on this
research.

A number of algorithmic optimizations could be possible. Most important, a
more robust and optimised scheduler of the distribution could be constructed. This way
the total work load is better spread over the distributed system. The initial distribution
method could be changed to Locality-Sensitive Hashing [49], reducing the running time
of the distribution of the data.

To improve interpretation of the clustering result a better visualisation algorithm
could be picked. At the moment a custom altered Fruchterman-Reingold algorithm,
using only centroids initially, is used. This could be improved by applying some
optimized form of this algorithm on the total clustered data set [50]. An additional
improvement could be converting the 2D canvas to a 3D representation.

Although data set specific, implementing a better similarity matcher for bag of
words data could improve the clustering. In the current implementation all words have
the same weight in the similarity calculation, but by using techniques such as term
frequency-inverse document frequency (TF-IDF [51]), less common words could have a
more significant impact on the similarity match. For instance, when two pages both
contain a very rare word, they will have a relative higher match. An alternative solution
to the bag of words data problem would be applying feature selection and select only a
subset of (possibly rare) words.

Lastly, in the future the work done can be integrated into the DataDetective1

tool created by Sentient Information Systems2, so that the users of the tool can benefit
from the clustering algorithm.

1 DataDetective, http://www.sentient.nl/?dden
2 Sentient Information Systems, www.sentient.nl
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Appendix A

Results Density-based Shared
Nearest Neighbours Algorithm

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

SNN1.1 0:21 5 20 0,553 1,929

SNN1.2 0:23 6 23 0,596 1,867

SNN1.3 0:23 6 23 0,596 2,029

SNN1.4 0:21 8 23 0,618 1,769

SNN1.5 0:24 6 23 0,596 1,403

SNN1 avg 0:22 6 22 0,592 1,799

SNN1 sdv 0:01 1,095 1,342 0,024 0,241

Table A.1: Drugs and Medicine, n = 100, k = 10

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

SNN2.1 0:34 15 52 0,566 1,869

SNN2.2 0:35 19 54 0,596 2,023

SNN2.3 0:35 17 53 0,578 2,139

SNN2.4 0:37 18 53 0,584 1,983

SNN2.5 0:37 17 53 0,578 2,034

SNN2 avg 0:35 17 53 0,581 2,009

SNN2 sdv 0:01 1,483 0,707 0,011 0,098

Table A.2: Drugs and Medicine, n = 1.000, k = 32
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APPENDIX A. RESULTS SHARED NEAREST NEIGHBOURS ALGORITHM

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

SNN3.1 5:13 33 811 0,364 1,859

SNN3.2 5:16 33 816 0,365 1,923

SNN3.3 5:16 32 797 0,362 1,875

SNN3.4 5:17 31 788 0,359 1,958

SNN3.5 5:16 33 816 0,365 1,804

SNN3 avg 5:15 32 806 0,363 1,884

SNN3 sdv 0:01 0,894 12,542 0,002 0,059

Table A.3: Drugs and Medicine, n = 10.000, k = 100

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

SNN4.1 1:37:33 69 5067 0,296 2,526

SNN4.2 1:37:24 69 5110 0,297 2,554

SNN4.3 1:38:00 69 2143 0,296 2,565

SNN4 avg 1:37:39 69 5107 0,296 2,548

SNN4 sdv 0:19 0 38,109 0 0,020

Table A.4: Drugs and Medicine, n = 50.000, k = 224

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

SNN5.1 1:07 23 47 0,081 3,042

SNN5.2 1:07 24 49 0,106 3,007

SNN5.3 1:13 24 50 0,110 3,040

SNN5.4 1:10 23 51 0,075 3,043

SNN5.5 1:14 23 47 0,078 3,035

SNN5 avg 1:10 23 49 0,090 3,033

SNN5 sdv 0:03 0,548 1,789 0,017 0,015

Table A.5: NOM, n = 500, k = 31
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APPENDIX A. RESULTS SHARED NEAREST NEIGHBOURS ALGORITHM

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

SNN6.1 3:27 16 68 0,177 2,965

SNN6.2 3:30 16 68 0,178 2,964

SNN6.3 3:27 16 68 0,178 2,963

SNN6.4 3:26 16 68 0,177 2,941

SNN6.5 3:25 16 68 0,178 2,989

SNN6 avg 3:27 16 68 0,178 2,964

SNN6 sdv 0:01 0 0 0,001 0,017

Table A.6: NOM, n = 1.000, k = 50

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

SNN7.1 13:10 16 122 0,717 2,908

SNN7.2 13:22 16 122 0,717 2,923

SNN7.3 13:26 16 122 0,717 2,932

SNN7.4 13:15 16 122 0,717 2,913

SNN7.5 13:27 16 122 0,717 2,907

SNN7 avg 13:20 16 122 0,717 2,917

SNN7 sdv 0:07 0 0 0 0,011

Table A.7: NOM, n = 2.000, k = 79

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

SNN8.1 23:43:23 22 813 0,399 3,102

Table A.8: NOM, n = 21.544, k = 387

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Param1.1 5:26 210 1901 0,362 2,788

Param1.2 5:20 199 1777 0,349 2,443

Param1.3 5:18 204 1769 0,361 2,289

Param1.4 5:09 215 1955 0,348 2,964

Param1.5 5:17 206 1787 0,343 3,461

Param1 avg 5:18 207 1838 0,353 2,789

Param1 sdv 0:06 6,06 84,766 0,008 0,462

Table A.9: Drugs and Medicine, n = 10.000, k = 25
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APPENDIX A. RESULTS SHARED NEAREST NEIGHBOURS ALGORITHM

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Param2.1 5:12 76 1030 0,311 2,644

Param2.2 5:06 68 1021 0,321 2,671

Param2.3 5:15 84 1061 0,330 2,507

Param2.4 5:16 76 1110 0,332 2,416

Param2.5 5:20 77 1150 0,343 2,228

Param2 avg 5:13 76 1074 0,327 2,493

Param2 sdv 0:05 5,67 54,738 0,012 0,181

Table A.10: Drugs and Medicine, n = 10.000, k = 50

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Param3.1 5:35 16 309 0,402 2,559

Param3.2 5:38 18 320 0,422 3,293

Param3.3 5:20 14 329 0,419 3,061

Param3.4 5:37 17 309 0,422 2,863

Param3.5 5:24 17 321 0,417 3,475

Param3 avg 5:30 16 318 0,416 3,050

Param3 sdv 0:08 1,52 8,591 0,008 0,359

Table A.11: Drugs and Medicine, n = 10.000, k = 150

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Param4.1 5:41 11 199 0,376 2,729

Param4.2 5:24 13 200 0,358 2,896

Param4.3 5:33 10 173 0,387 3,022

Param4.4 5:26 9 181 0,363 3,027

Param4.5 5:32 14 227 0,381 2,673

Param4 avg 5:31 11 196 0,373 2,869

Param4 sdv 0:06 2,07 20,857 0,012 0,164

Table A.12: Drugs and Medicine, n = 10.000, k = 200
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APPENDIX A. RESULTS SHARED NEAREST NEIGHBOURS ALGORITHM

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Words1.1 4:52 34 823 0,272 1,813

Words1.2 4:48 35 823 0,272 2,079

Words1.3 4:52 36 836 0,272 1,984

Words1.4 4:52 33 818 0,272 1,800

Words1.5 4:56 33 818 0,272 1,746

Words1 avg 4:52 34 824 0,272 1,885

Words1 sdv 0:02 1,304 7,369 0 0,141

Table A.13: Drugs and Medicine, n = 10.000, k = 100, words weight = 2

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Words2.1 4:51 28 817 -0,146 1,719

Words2.2 4:59 28 814 -0,146 2,336

Words2.3 4:56 28 814 -0,146 2,515

Words2.4 4:52 27 829 -0,145 2,288

Words2.5 4:59 30 804 -0,140 1,984

Words2 avg 4:55 28 816 -0,145 2,168

Words2 sdv 0:03 1,095 8,961 0,003 0,316

Table A.14: Drugs and Medicine, n = 10.000, k = 100, words weight = 5

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Words3.1 5:24 21 809 -0,343 2,526

Words3.2 5:24 21 809 -0,343 2,951

Words3.3 5:34 20 814 -0,342 2,203

Words3.4 5:10 20 823 -0,343 2,173

Words3.5 5:34 20 818 -0,343 2,609

Words3 avg 5:25 20 815 -0,343 2,492

Words3 sdv 0:09 0,548 6,025 0,001 0,320

Table A.15: Drugs and Medicine, n = 10.000, k = 100, words weight = 10
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APPENDIX A. RESULTS SHARED NEAREST NEIGHBOURS ALGORITHM

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Words4.1 5:33 21 1061 -0,524 9,306

Words4.2 5:48 22 1044 -0,527 19,814

Words4.3 5:43 23 1062 -0,520 6,661

Words4.4 5:44 23 1082 -0,520 7,219

Words4.5 5:53 24 1040 -0,526 12,487

Words4 avg 5:44 23 1058 -0,523 11,097

Words4 sdv 0:07 1,140 16,739 0,004 5,381

Table A.16: Drugs and Medicine, n = 10.000, k = 100, words weight = 100

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Words5.1 5:41 22 1074 -0,534 20,119

Words5.2 5:49 22 1097 -0,536 3,976

Words5.3 6:05 18 1017 -0,529 6,205

Words5.4 5:35 20 1051 -0,531 8,415

Words5.5 5:52 22 1074 -0,534 21,493

Words5 avg 5:48 21 1063 -0,533 12,041

Words5 sdv 0:11 1,789 30,237 0,003 8,168

Table A.17: Drugs and Medicine, n = 10.000, k = 100, words weight = 200

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Words6.1 6:03 20 1072 -0,535 12,204

Words6.2 6:00 17 1064 -0,522 12,318

Words6.3 5:41 17 1048 -0,523 27,887

Words6.4 5:45 17 1040 -0,523 8,134

Words6.5 5:46 18 1054 -0,524 4,323

Words6 avg 5:51 18 1056 -0,525 12,973

Words6 sdv 0:09 1,304 12,681 0,005 8,968

Table A.18: Drugs and Medicine, n = 10.000, k = 100, words weight = 300
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Appendix B

Results Mini-Batch K-Prototypes
Algorithm

Tests Clustering Time Silhouette Coefficient Davies-Bouldin Index

Proto1.1 1:31 0,297 2,271

Proto1.2 1:46 0,299 2,638

Proto1.3 1:28 0,257 3,709

Proto1.4 1:37 0,342 2,728

Proto1.5 1:30 0,291 3,378

Proto1 avg 1:34 0,297 2,945

Proto1 sdv 0:07 0,030 0,585

Table B.1: Drugs and Medicine, n = 100, K = 10, b = 20

Tests Clustering Time Silhouette Coefficient Davies-Bouldin Index

Proto2.1 1:48 0,400 2,161

Proto2.2 1:43 0,359 2,815

Proto2.3 1:46 0,365 3,057

Proto2.4 1:47 0,372 3,338

Proto2.5 1:47 0,367 2,827

Proto2 avg 1:46 0,373 2,840

Proto2 sdv 0:01 0,016 0,435

Table B.2: Drugs and Medicine, n = 1.000, K = 32, b = 200
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APPENDIX B. RESULTS MINI-BATCH K-PROTOTYPES ALGORITHM

Tests Clustering Time Silhouette Coefficient Davies-Bouldin Index

Proto3.1 3:12 0,289 4,625

Proto3.2 3:09 0,265 4,639

Proto3.3 3:07 0,333 4,407

Proto3.4 3:05 0,292 3,547

Proto3.5 3:07 0,329 4,016

Proto3 avg 3:08 0,302 4,247

Proto3 sdv 0:02 0,029 0,465

Table B.3: Drugs and Medicine, n = 10.000, K = 100, b = 2000

Tests Clustering Time Silhouette Coefficient Davies-Bouldin Index

Proto4.1 10:14 0,206 16,120

Proto4.2 10:20 0,202 13,304

Proto4.3 10:35 0,225 10,560

Proto4.4 10:17 0,233 11,591

Proto4.5 10:23 0,233 10,660

Proto4 avg 10:21 0,220 12,447

Proto4 sdv 0:08 0,015 2,330

Table B.4: Drugs and Medicine, n = 50.000, K = 224, b = 10.000
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Appendix C

Results Incremental Clustering

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Inc1.1 5:17 43 753 0,484 2,974

Inc1.2 5:11 42 764 0,485 2,508

Inc1.3 5:14 42 815 0,490 2,836

Inc1.4 5:17 44 761 0,472 2,520

Inc1.5 5:41 44 809 0,492 2,608

Inc1 avg 5:20 43 780 0,485 2,689

Inc1 sdv 0:12 1 29,203 0,008 0,206

Table C.1: Drugs and Medicine, n = 10.000, k = 100, initial set size = 75%

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Inc2.1 5:14 39 563 0,423 3,631

Inc2.2 5:00 42 541 0,450 3,024

Inc2.3 4:54 44 519 0,431 2,982

Inc2.4 4:56 41 572 0,454 3,429

Inc2.5 4:54 40 522 0,464 3,065

Inc2 avg 4:59 41 543 0,444 3,226

Inc2 sdv 0:08 1,924 23,776 0,017 0,288

Table C.2: Drugs and Medicine, n = 10.000, k = 100, initial set size = 50%
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APPENDIX C. RESULTS INCREMENTAL CLUSTERING

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Inc3.1 4:19 39 561 0,417 3,895

Inc3.2 4:20 37 576 0,406 5,416

Inc3.3 4:21 37 549 0,426 3,944

Inc3.4 4:17 39 564 0,414 3,679

Inc3.5 4:18 41 639 0,422 2,801

Inc3 avg 4:19 39 578 0,417 3,947

Inc3 sdv 0:01 1,673 35,534 0,008 0,941

Table C.3: Drugs and Medicine, n = 10.000, k = 100, initial set size = 25%

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Inc4.1 3:59 35 563 0,381 2,245

Inc4.2 4:05 42 648 0,422 3,270

Inc4.3 4:08 40 563 0,368 2,439

Inc4.4 4:01 36 550 0,380 2,372

Inc4.5 4:09 40 649 0,426 3,978

Inc4 avg 4:04 39 595 0,395 2,861

Inc4 sdv 0:04 2,966 49,490 0,027 0,744

Table C.4: Drugs and Medicine, n = 10.000, k = 100, initial set size = 10%

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Inc5.1 3:42 44 976 0,435 3,603

Inc5.2 3:48 40 911 0,430 4,025

Inc5.3 3:46 46 974 0,435 3,813

Inc5.4 3:47 46 917 0,429 5,166

Inc5.5 3:51 44 795 0,430 3,713

Inc5 avg 3:46 44 915 0,432 4,064

Inc5 sdv 0:03 2,449 73,521 0,003 0,635

Table C.5: Drugs and Medicine, n = 10.000, k = 100, initial set size = 1%
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Appendix D

Results Distributed Clustering

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Distr1.1 2:43 63 938 0,467 2,130

Distr1.2 2:38 69 968 0,475 2,124

Distr1.3 2:41 62 914 0,471 2,751

Distr1.4 2:48 65 909 0,462 2,654

Distr1.5 2:41 65 964 0,474 2,212

Distr1 avg 2:42 65 939 0,470 2,374

Distr1 std 0:03 2,683 27,346 0,006 0,303

Table D.1: Drugs and Medicine, n = 10.000, k = 71, m = 2

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Distr2.1 2:42 96 988 0,449 2,522

Distr2.2 2:32 84 1016 0,444 2,534

Distr2.3 2:39 87 949 0,451 2,429

Distr2.4 2:26 91 983 0,441 2,235

Distr2.5 2:21 85 941 0,453 2,353

Distr2 avg 2:32 89 975 0,447 2,415

Distr2 std 0:08 4,930 30,599 0,005 0,125

Table D.2: Drugs and Medicine, n = 10.000, k = 58, m = 3
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APPENDIX D. RESULTS DISTRIBUTED CLUSTERING

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Distr3.1 2:10 94 1073 0,443 2,596

Distr3.2 2:24 112 1013 0,468 2,549

Distr3.3 2:33 97 996 0,445 2,864

Distr3.4 2:24 110 1052 0,437 2,365

Distr3.5 2:18 114 1058 0,447 2,633

Distr3 avg 2:21 105 1038 0,448 2,601

Distr3 std 0:08 9,209 32,439 0,012 0,179

Table D.3: Drugs and Medicine, n = 10.000, k = 50, m = 4

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Distr4.1 0:22 14 44 0,662 2,389

Distr4.2 0:20 17 26 0,618 1,788

Distr4.3 0:38 16 34 0,692 1,320

Distr4.4 0:39 16 38 0,698 1,262

Distr4.5 0:41 15 38 0,609 2,442

Distr4 avg 0:32 16 36 0,656 1,840

Distr4 std 0:10 1,140 6,633 0,041 0,564

Table D.4: Drugs and Medicine, n = 200, k = 10, m = 2

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Distr5.1 0:56 30 78 0,523 2,2580

Distr5.2 0:51 26 75 0,508 2,283

Distr5.3 0:53 33 77 0,512 2,282

Distr5.4 0:52 32 76 0,518 2,370

Distr5.5 0:50 26 90 0,507 2,907

Distr5 avg 0:52 29 79 0,514 2,485

Distr5 std 0:02 3,286 6,140 0,007 0,266

Table D.5: Drugs and Medicine, n = 2.000, k = 32, m = 2
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APPENDIX D. RESULTS DISTRIBUTED CLUSTERING

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Distr6.1 6:45 89 3871 0,394 11,449

Distr6.2 6:38 90 3867 0,413 9,120

Distr6.3 6:32 89 3915 0,407 9,983

Distr6.4 6:25 89 3868 0,404 9,784

Distr6.5 6:11 87 3989 0,395 9,242

Distr6 avg 6:30 89 3902 0,403 9,915

Distr6 std 0:13 1,095 52,631 0,008 0,930

Table D.6: Drugs and Medicine, n = 20.000, k = 100, m = 2

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Distr7.1 2:01:34 121 7690 0,218 4,776

Distr7.2 1:58:29 120 7202 0,209 4,715

Distr7.3 1:59:03 120 7307 0,211 4,755

Distr7 avg 1:59:42 120 7400 0,213 4,749

Distr7 std 1:38 0,577 256,859 0,005 0,031

Table D.7: Drugs and Medicine, n = 100.000, k = 224, m = 2

Tests Clustering
Time

Number of
Clusters

Noise
Removed

Silhouette
Coefficient

Davies-Bouldin
Index

Distr8.1 50:11:32 214 21620 0,204 8,089

Table D.8: Drugs and Medicine, n = 283.713, k = 266, m = 4
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