
Connect The Closest Dot Puzzles

Tim van Kapel

June 23, 2014

Master’s Thesis

Utrecht University
Marc van Kreveld
Maarten Löffler

Abstract

In this thesis we present a new variation of the existing connect the dots puzzles. The goal
of the puzzle is similar to those connect the dots puzzles, where an illustration is revealed
by connecting pairs of dots via line segments. The puzzle uses colors and the distance be-
tween dots to define which pairs of dots to connect. An algorithm is presented that allows for
automatic generation of such puzzles from a planar graph in the shape of the illustration.

Contents

1 Introduction 2

2 Puzzle Specifications and Variants 4
2.1 Specifications . 6
2.2 Variants . 8

3 Algorithm 10
3.1 Splitting . 11
3.2 Polygonal Line Simplification . 12
3.3 Graph Coloring . 16
3.4 Time Complexity . 18

4 Results 19
4.1 Puzzle Quality . 19
4.2 Parameter Results . 22

4.2.1 Minimum Distance . 22
4.2.2 Maximum Distance . 22
4.2.3 Distance Buffer . 22
4.2.4 Error Margin . 24

5 Conclusion and Future Work 26
5.1 Future Work . 27

6 References 28

7 Appendices 29

A Puzzles 30

B Results 48

1

1 Introduction

Connect the dots or follow the dots puzzles are puzzles where the goal is to reveal an illus-
tration from a set of dots. This goal is accomplished by drawing lines between pairs of dots.
The indication of which pairs can differ, but usually consists of subsequent numbers. Figure 1
shows a half-solved connect the dots puzzle where the lines between two dots with subsequent
numbers must be drawn. The result of all these lines usually creates an illustration, in this
case a face. Multiple variants of this puzzle exist, such as a puzzle that uses subsequent letters
instead of number, or a puzzle where two dots are connected when the distance between them
is exactly some pre-determined distance [3]. In the second variant the dots are not labeled
with a number or letter, instead two dots are connected when there distance from eachother
is exactly x, where x is a pre-determined fixed distance. The goal of the puzzle, revealing the
illustration, remains similar, however the puzzler must measure the distance between dots
instead of finding the next number of letter.

Figure 1: A half-solved connect the dots puzzle. Connect two subsequent dots by drawing
a line segment from one to the other. The result of all line segments usually reveals an
illustration.

In this thesis we will introduce a new variation on the classic connect the dots puzzle
called connect the closest dot and an algorithm to automatically generate the puzzle from a
line drawing. Where the classic puzzle uses numbers to indicate the dots to connect, connect
the closest dot puzzles use colors and the distances between dots. In geometery this can

2

be seen as a nearest neighbor graph, where the vertices are represented as the dots and the
edges need to be drawn, an example is given in Figure 2. A nearest neighbor graph has the
disadvantage that only graph trees, with the shortest edges all towards a single location, can
be created. This restriction disallows for the puzzles to reveal an illustration when the edges
are drawn. Therefore multiple colors are used, and dots only connect to the same color. This
can be seen as multiple different nearest neighbor graphs, one for each color.

Figure 2: An example of a nearest neighbor graph. Vertices are only connected by an edge
when one of the two vertices has the other as closest vertex. Longer chains of connected
vertices are only possible if the distance between the vertices keeps increasing.

The goal of this thesis is to research the connect the closest dot puzzles and present an
algorithm that can generate connect the closest dot based on a given illustation. The algo-
rithm will be given an illustration from which a set of colored dots are produced. By solving
the puzzle from the set of colored dots a simplified yet still recognizable representation of the
original illustration should reappear.

Connect the closest dot puzzles and its rules are further explained in Section 2 where
examples of the puzzle are also given. The specification for a good connect the closest dot
puzzle are given in Section 2.1 and multiple variants of the puzzle in Section 2.2. The steps
taken to automatically generate a puzzle from an illustation are described throughout section
3. Sections 3.1, 3.2 and 3.3 describe each step of the algorithm in more detail. The time
complexity of the algorithm is analysed in Section 3.4. The effectiveness of the algorithms
is discussed in Section 4 and the qualtity of the generated puzzles in Section 4.1. The effect
of the different alogrithm parameters on the output of the algorithm is discussed in Section
4.2. This section discusses the effect of changing every parameter for the algorithm on the
generated puzzle. Finally a conclusion is given, and future work is discussed in Section 5.

3

2 Puzzle Specifications and Variants

In this section we describe connect the closest dot puzzles and the rules for the creation of
a puzzle. First the puzzle and the rules are described. Section 2.1 discusses what is needed
for a good puzzle. It discusses what makes a puzzle better, easier or harder for the puzzler.
Finally, Section 2.2 describes multiple variations of the connect the closest dot puzzle.

This thesis represents a new type of line puzzle as shown in Figure 3. Similar to the
connect the dots puzzles, the connect the closest dot puzzle consists of a set of dots that need
to be connected with line segments. However, there are no numbers or other indicators for
which dots to connect. Instead each dot is represented with a color. It is possible for two
dots with a different color to be at the same location. This is represented as a single dot with
all different colors. The size of the dots is dependent on the number of colors for that dot. A
dot with more colors will be larger than a dot with only a single color. The puzzle can also
contain pre-drawn curved that are part of the solution.

Figure 3: An example of an unsolved connect the closest dot puzzle.

4

The goal of connect the closest dot puzzles is to reveal an illustration by connecting pairs
of dots via line segments. Which pairs to connect is determined by the colors of both dots
and the distance between them. Each color for each dot must be connected to the single
closest dot with the same color. When a dot has multiple colors, for instance both red and
blue, a line should be drawn to the closest red dot and the closest blue dot. This means that
in order to solve the puzzle and reveal the illustration, for each dot, lines must be drawn to
the closest dots of the same colors. Figure 4 shows the steps for solving a puzzle.

Figure 4: (a) An example of a connect the closest dot puzzle. (b) The solution for the puzzle,
the arrows show which dot should connect to which. (c) The solved puzzle where a line is
drawn between each dot and its closest dot of the same color.

5

2.1 Specifications

This section describes the criteria for a good puzzle. Given an illustration, multiple differ-
ent connect the closest dot puzzles with the same resulting illustration can be created. In
this Section we specify a number of of optimization that should produce a well-solvable puzzle.

One of the most important aspects for connect the dots puzzles is that given a seemingly
random set of dots, after connecting the dots a clear illustration appears. In order for the
resulting illustration to be recognizable, the result needs to stay close to the original illustra-
tion. Therefore, when a puzzle is based on an image the distance between the original and
the puzzle representation needs to be minimized. A maximum error margin ε defines that
the Hausdorff distance between the original polyline and its representation cannot be larger
than ε. This means that from no point of the original or the puzzle, the distance to the other
can be larger than ε.

Another important aspect is that the puzzler cannot recognize the illustration beforehand.
Being able to see the resulting illustration based on the puzzle dots makes the puzzle less fun
and less satisfying. Not only is the result no longer a surprise, but finding the dots to connect
is also easier since it is already known where the lines should be drawn. For a puzzle with a
lot of dots, it is easier to recognize a pattern and the resulting illustration than for a puzzle
with the same illustration and fewer dots. For this reason the total number of dots n used
in the puzzle should be minimized.

The task is to connect pairs of dots via a line segment. When two dots are already touch-
ing or even overlapping not only is it impossible for the puzzler to connect these dots, but
visually it gives a very messy puzzle. For those reasons the minimum distance dmin be-
tween two dots must be at least more than a set threshold. The value of dmin should always
be equal or more than the diameter of the largest dots.

For the puzzler it should be clear which dot connect to which dot. When three dots of
equal color have almost the same distance from each other, it is unclear in what way the
dots must be connected. Figure 5 (a) shows 3 dots at an almost equals distance, it is unclear
what dots need to be connected. In this case p0 has p1 as its closest dot, this is denoted
as p0 → p1. For the puzzler it could also have been p0 → p2 since the distances are al-
most equal. Similar to the technique used in the unite-the-dots puzzle [3], the distance to
each dot other than the closest, should at least be a factor ρ larger than the distance to the
closest dot. Figure 5 (b) shows that if p0 → p1, p2 should be outside the circle C(p0, |p0p1|∗ρ).

Giving each pair of connecting dots a unique color also eliminates the issue where multiple
dots have an equal distance. However, a puzzle with 40 different colors shows very sloppy and
a lot of colors will look similar to each other. For the puzzler, rather than searching for the
closest dot, it becomes a case of figuring out whether two colors are equal. A smaller number
of colors is good in all cases. In order to keep the puzzle clear and to prevent colors from
looking too similar the number of colors m should be minimized.

By minimizing the number of dots, the distance distance betwen the dots is usually larger.
Figure 5 (c) shows a set of dots where the two connecting green dots lie on opposite sides

6

of the puzzle. Due to the large distance, and it not being logical for the connecting dot to
be on the opposite side of the puzzle, it will be tough for the puzzler to find the other green
dot, when solving the puzzle. A maximum distance dmax between two dots that need to
be connected prevents the distance being to large. Also due to the large distance between the
two green dots, the color green cannot be used anywhere else in the puzzle. By reducing the
distance between pairs of dots, the circles in which no dot of the same color can lay, become
smaller. Therefore it is possible that fewer colors are needed.

The current puzzle uses long chains of a single color. This means that when p0 → p1, p1
often connects to another dot p2 using the same color. When possible the puzzle should con-
tain long chains of a single color, rather than short multi colored polylines. By minimizing
the number of multi colored dots a puzzle with less changes of color is preferred.

Figure 5: (a) Three dots at alost equal distance, it is unclear which dot connects with which.
(b) p0 → p1, this means that the distance betwen p0 and p2 must be atleast a factor ρ more
than the distance between p0 and p1. (c) Given a puzzle, it is hard to spot that the left green
dot connects with the right green dot. Also due to the large distance no more other green
dots can be used.

7

2.2 Variants

The connect the closest dot puzzle as described, will be the puzzle variant that is used through-
out the rest of the thesis. Using the same concept of connecting the closest equally colored
dots, multiple variants of the puzzle can be made. This section describes a few variants and
the difference for the puzzler.

In the connect the closest dot puzzles each dot connects to exactly a single closest dot.
For the puzzler this creates a clear objective since it is known that the number of lines drawn
from each dot equals the number of colors for that dot. However the puzzle itself suffers from
this single closest rule, since it is only possible to have chains of a single color decreasing in
distance between dots. This means that the length of such chain is directly limited by dmin

and dmax. In order to have a long chain, the distance between dots is always larger at one
end of the chain. For curved lines the distance will quickly become too large, and the allowed
error to the original will become larger than ε.

The first variant can eliminate those issues by allowing multiple points to be at exactly
the same distance. This way it is possible to reduce the increase of the distances between
dots of a chain by having 2 dots at exactly the same distance to another dot. By allowing
multiple closest dots, it also becomes possible to create junctions with the distances increas-
ing towards the junction in a single color. This can potentually allow the same puzzles to be
created using fewer dots and fewer colors. For the puzzler this change drastically increases
the difficulty of the puzzle since the number of closest dots is now unknown. The margin ρ
has to potentially be increased as well as it is even more important to know whether a dot is
equally close or not. Overall this change can improve on the quality of the puzzle, but makes
the puzzle harder for the puzzler. An example of such a puzzle where multiple dots can be
the closest is given in Figure 6.

A second variant makes the puzzle easier for the puzzler by removing long chains of dots
of a single color. When p0 → p1 in the other puzzles it is possible that p1 → pi. For this
variant, only pairs of dots are used and no chains are created. When a dot is the closest of
another dot, in this case p1 of p0, p1 is forced to have p0 as its closest. This means that for
each pair of connected dots pipj , pi → pj and pi ← pj must be true. In the original puzzle the
number of colors of a dot equals the number of lines drawn from that dot to others. In this
variant, the number of colors equals the number of lines connecting that dot. For the puzzler
this creates an easy way of checking whether a dot still requires a line or not. An example of
this variant is given in Figure 7.

All of these puzzles use colored dots as a representation for the puzzle. However, colored
dots might not always be the best, for instance when there are lots of different colors, colors
will start looking the same. Colorblindness is also a problem. A different representation could
be by using different symbols such as dots, squares and triangles. All puzzles and variants
can use said representation and eliminate the described issues. A problem with this are the
currently multi-colored dots. When representing these dots with symbols they will overlap,
thus for using symbols the symbols need to be repositioned. A puzzle using symbols is shown
in Figure 8.

8

Figure 6: A different variant of the puzzle shown in Figure 4. A single dot can have multiple
closest dots at exactly the same distance. This allows the puzzle to be created using only a
single color.

Figure 7: A different variant of the puzzle shown in Figure 4. For each pair of connected dots
they must have each other as their closest neighbor. More colors are needed to create this
puzzle.

Figure 8: A different representation of the puzzle shown in Figure 4. The blue color is
represented as a circle whereas the red is represented as a square.

9

3 Algorithm

This section discusses the algorithm to automatically generate a connect the closest dot puz-
zle from a polygonal drawing. The input of the algorithm is a polygonal representation of
the illustration. The following parameters are also given to the algorithm: ε that defines the
maximum allowed error, the minimum distance increase ρ, the minimum distance between
two dots dmin and the maximum distance between two dots dmax. The values for these param-
eters can be used to change the quality of the resulting puzzle. The output of the algorithm
is a set of dots in one or multiple colors such that by connecting each dot with its closest dot
of the same color the original illustration is revealed. When a part of the original cannot be
solved, these sections of the puzzle will be pre-drawn.

The algorithm consists of three steps: 1) splitting the input into separate polylines 2) solv-
ing each polyline separately and 3) finally assigning colors to each solved polyline to form a
solvable puzzle. The output for each step is the input for the next step, at the end of the last
step we will have the data needed to create the puzzle. Each step is discussed in more detail
in the sections below. Finally in section 3.4 the time complexity of the algorithm is analyzed.
Algorithm 1 shows an overview of the algorithm.

Algorithm 1 Global Overview

Input: A planar graph G(V,E), maximum error ε, margin ρ, minimum distance dmin and
maximum distance dmax

Output: A set of colored dots V ′(v′0, ..., v
′
n) such that by solving the puzzle, the input graph

is revealed with a maximum error of ε
1: P (P0, ..., Pn)← SegmentGraph(G)
2: for i = 0 to n do
3: P ′ ← P ′∪ ← SimplifySegment(Pi, ε, ρ, dmin, dmax)
4: end for
5: GraphColoring(P ′)

The problem of finding a set of colored points from a set of vertices and edges such that
a line from each point to the closest point of the same color produces a simplified version of
the input graph whose distance is < ε, is a problem that we don’t know how to solve effi-
ciently. The problem is that each part of the graph infuences the rest, therefore the problem
is simplified.

10

3.1 Splitting

The input of the algorithm is a planar graph G(V,E) which represents the illustration. In-
stead of solving the problem for the whole graph, the problem is simplified by separating the
graph into polylines. The problem of line simplification is a well studied problem. Splitting
the graph into separate polylines also has some disadvantages such as always having fixed
nodes at intersections. Not having nodes at intersections can also create artifacts when lines
will be displaced during the simplification and intersections are shifted.

The splitting of a graph into separate polylines at vertices of a degree other than 2, can
be done in O(n) time where n is the number of edges of the graph.

Algorithm 2 SegmentGraph

Input: A planar graph G(V,E)
Output: A set of polylines P (P0, ..., Pn)
1: Set traversed false for each edge in E
2: for each vertex v in V do
3: if the degree of v not 2 then
4: p← v
5: for each untraversed edge e in v do
6: while the degree of the other vertex v′ of e is 2 do
7: p← p ∪ v′
8: v ← v′

9: Set traversed on e
10: end while
11: Add p to P
12: end for
13: end if
14: end for

. Convert loops into polylines, these are the only vertices with untraversed edges.
15: for each vertex v in V do
16: p← v
17: for each untraversed edge e in v do
18: while the degree of the other vertex v′ of e is 2 do
19: p← p ∪ v′
20: v ← v′

21: Set traversed on e
22: end while
23: Add p to P
24: end for
25: end for

11

3.2 Polygonal Line Simplification

With the input split into separate polylines, the problem is simplified as a polyline simplifi-
cation problem. Given a polyline P (p0, ..., pn), a maximum error ε, a margin ρ, a minimum
distance dmin and an optional maximum distance dmax, find a minimum set of points p′0,...,p

′
m

such that a line segment from each point to the closest point of the same color, creates a sim-
plified version of P . P ′ is a valid simplified polyline of P if the maximum distance between P
and P ′ is as most ε, a predefined maximum Hausdorff distance. For this solution to be col-
ored with a single color, the point set p′0,...,p

′
m is only a valid set of points when the distance

between any point p′i and any other point p′j except the closest point to p′i named p′iclosest,
is a factor ρ more than the distance to the closest point p′iclosest. For any pair of two points
where p′j is not p′iclosest the following must be true: d(p′i, p

′
j) > d(p′i, p

′
closest) ∗ ρ.

A line segment p′ip
′
j where i < j from the simplified polyline P ′ is called a shortcut. This

shortcut bypasses all original points between p′i and p′j . The shortcut p′ip
′
j is a valid shortcut if

the maximum Hausdorff distance from p′ip
′
j to every point on the original line is ≤ ε. In order

for the shortcut to be a valid shortcut for the puzzle, at least one of the points should have the
other point as its clear-closest point. The clear-closest point is defined when no point is closer
than the distance between the closest point multiplied by the factor ρ. If the closest point to
pi is pj and no other point is inside the circle C(pi, |pipj |∗ρ), pi has pj as its clear closest point.

Each point can only have a single closest other point. For any point p′i either p′i+1 or
p′i−1 must be the closest. When this isn’t the case, the shortcut will not be drawn when the
puzzle is solved since another point is closer. When p′i → p′i+1, p

′
i has p′i+1 as its closest point

to connect to, for the shortcut p′ip
′
i+1, p

′
i−1 must have pi as its closest point for the previous

shortcut p′i−1p
′
i. This means that for each shortcut p′ip

′
i+1 in P ′, p′i → p′i+1 or p′i ← p′i+1 must

be true. Furthermore since each point only has a single closest point, when p′i → p′i+1 the

previous shortcut p′i−1p
′
i, can only be created when p′i−1 → p′i. In Figure 9 it is shown that

when p2 → p1, the length of p2p3 must be at least p1p2 ∗ ρ. The polyline can therefore only
be simplified when one of the following is true:

• The length of the shortcuts are increasing by at least factor ρ each time.

• The length of the shortcuts are decreasing by at least factor 1/ρ each time.

• The length of the shortcuts are decreasing from both endpoints by at leas a factor
1/ρ each time and connect at a single point in the middle.

The algoritm needs to consider each combination of two adjacent shortcuts, since the al-
lowed length of a shortcut is based on the previous shortcut. Current well-accepted polygonal
line simplification algorithms do not take pairs of shortcuts into account. Algorithms such
a the ones presented by Douglas and Peucker [1] simplify the polyline just by selecting the
points farthest from the polyline until the distance is smaller than ε. Another algorithm by
Imai and Iri [4] generates a shortcut graph Gshortcut(V,E), where each vertex represents a
point of the polyline. Edges between the vertices are only created when the edge is a valid
shortcut, thus the distance is less than ε. Since each edge is a guaranteed valid shortcut

12

p3p1 p2 p4

|p1p2|

|p1p2| ∗ ρ

Figure 9: A possible solution with an increasing shortcut distance of at least factor ρ. In
order for the shortcut p1p2 where p2 has p1 as its closest point, to exists. No point can be
placed inside the circle C(p2, |p1p2| ∗ ρ). When no other point is inside C we say that p2 has
p1 as its clear-closest point, p2 → p1.

between these two points, the problem of finding a simplified polyline with a minimum num-
ber of points is as simple as running a shortest path algorithm, such as the one by Dijkstra [2].

In order to ensure the increase of lengths of two adjacent shortcuts, the Imai-Iri algorithm
is adjusted to allow unique pairs of shortcuts to be marked as valid or invalid. Instead of
running a shortest path algorithm on Gshortcut, it will be applied to an edge graph Gedge of
Gshortcut. Each vertex of Gedge represents a unique shortcut, an edge from Gshortcut. An edge
between two vertices in Gedge represents a valid combination of two shortcuts, this way the
increase or decrease of shortcut the lengths can be ensured. An edge between two vertices is
added when 1) the two shortcuts are ajacent i.e. they have one point in common and 2) the
length of the shortcuts is increasing or decreasing with at least factor ρ.

A shortcut is valid when one of the two points of the shortcut has the other point as its
clear-closest point. This means that no other point can be within a certain circle around this
point. Also every point p′i of P ′ must have either p′i−1 or p′i+1 as its clear-closest. In figure 10
it is shown that only increasing the shortcut length does not always ensure that all shortcuts
are valid for the puzzle. It is shown that despite the increasing shortcut lengths, p′3 → p′2 is
not valid. Due to the shape of the polyline, p′0 is closer to p′3 than p′2.

Given the polyline P (p0, ...pn) and a possible shortcut pipj where pi → pj , this is not a
valid shortcut when another point lies within the circle C(pi, |pipj | ∗ ρ). The radius of the
circle is distance(pi, pj) ∗ ρ. To ensure that the shortest path algorithm cannot select a point
that lies within C, any shortcut where a point of P can be chosen inside the cirle is invalid.
The shortcut pipj is therefore only a valid shortcut, and thus added to Gedge, when no point

13

p′0

p′1

p′2

p′3

Figure 10: A possible solution with an increasing shortcut length. The solution however is
still not valid since the line segment p′2p

′
3 does not exists when these points would be chosen

for the puzzle due to p′0 being closer to p′3 than p′2.

inside C can be chosen. Since there is already an increasing or decreasing length contraint, the
next point pk of shortcut pjpk will always lie outside of C. However any point after the next
shortcut can lie inside C. Therefore the shortcut pipj is invalid when the polyline re-enters C
again. Each side of the polyline P1(p0, ..., pi) and P2(pi, ..., pn) can only intersect with C once.
A vertex will only be added to Gedge when 1) the distance of the shortcut to the original is no
more than ε, 2) the length of the shortcut is longer than dmin and shorter than dmax and 3) the
polylines P1 and P2 intsect C at most once. An edge will only be added if 1) the two short-
cuts are ajacent, 2) the length of the shortcuts is increasing or decreasing with atleast factor ρ.

Any shortcut in Gedge is a valid shortcut and cannot be invalidated by any other shortcut.
Any shortest path algorithm can be used to find a path from p0 to pn using with smallest
number of shortcuts. The simplified polyline can either consist of increasing shortcut lengths
or decreasing shortcut lengths. The algorithm is therefore run twice, once on the increasing
shortcut lenghts graph Gedge inc and once on the decreasing Gedge dec. It is also possible to
decrease the shortcut length from the endpoint to a single point that both results have in
common. For this case a bi-directional Dijktra is run on both graphs until a single point is
found. All three of these solutions try to find an optimal solution using a single color. It is
possible that no solution using only a single color can be used to simplify the polyline. A
polyline in the shape of a circle for instance will never be able to be solved using a single color.
In this case the algorithm takes the solution that reaches the furthest node and tries to solve
the remaining polyline using the three possible options. Each of these colors will be handles as
separate polylines and thus be given a different color. If the remaining is unsolvable again the
furthest solution is again selected. When even no solution using multiple colors can be found,
the polyline will be pre-rendered in the puzzle.This can be the case when the parameters do
not allow a large shortcut due to a too small ε and short shortcuts are invalid due to a dmin.

14

Algorithm 3 SimplifyPolyline

Input: A polyline P (p0, ..., pn), maximum error ε, margin ρ, minimum distance dmin and
maximum distance dmax

Output: A set of simplified polylines P ′.
1: Gedge inc ← BuildEdgeGraph(P , ε, ρ, dmin, dmax)
2: Gedge dec ← BuildEdgeGraph(reverse of P , ε, ρ, dmin, dmax)
3: P ′ ← P ′∪ Dijkstra(Gedge inc, 0, n)
4: P ′ ← P ′∪ Dijkstra(Gedge dec, 0, n)
5: P ′ ← P ′∪ BidirectionalDijkstra(Gedge inc, Gedge dec, 0, n)
6: if P ′ contains no solution then
7: x← 0
8: y ← false
9: while x 6= n do

10: P ′inc ← Dijkstra(Gedge inc, x, n)
11: P ′dec ← Dijkstra(Gedge dec, x, n)
12: P ′bi ← BidirectionalDijkstra(Gedge inc, Gedge dec, x, n)
13: if any of P ′inc, P

′
dec or P ′bi has a solution then

14: Add the solutions to P ′

15: y ← true
16: else
17: Add the furtest solution to P ′

18: x← furthest node of the solution
19: end if
20: end while
21: if y = false then
22: Mark the polyline to be pre-rendered
23: end if
24: end if

15

3.3 Graph Coloring

Now that each polyline has one or more simplified solutions and each solution can consist of
a single color, the goal is to assign a color to each polyline such that a minimum number of
different colors is used. Each polyline can have multiple solution:, an increasing, decreasing
and bi-directional one. A single solution must be chosen. Each simplified polyline has an
area in which no other point of the same color can be placed, the uniform of all circles C
of all points in the polyline. The circles are used to indicate that no other point could be
placed inside them, or the shortcut would be invalid. The same is true for coloring multiple
polylines. No point of a single polyline can be placed inside the uniform of all cirles of another
polyline when both polylines have the same color.

The graph-coloring problem is a well known problem. Given a graph G(V,E), assign a
color to each vertex such that 1) no two vertices connected by an edge have the same color
and 2) a minimum number of colors is used. Computing the exact optimal solution is known
to be a NP-hard problem. Several heuristics exist for solving the graph coloring problem in
more efficient time. A greedy or First Fit method is to assign vertices the first available color.
The result of the number of used colors depends on the order of the vertices in which they are
assigned a color. The First Fit algorithm can be run in O(n) time where n is the number of
vertices. Since the quality of First Fit is based on the ordering of the vertices, other heuristics
try to order the vertices for an optimal First Fit approach. Largest degree ordering or LDO
orders the vertices based on their degree, coloring the vertex with the most attached edges
first. LDO has an upper bound of using at most one more color than the largest degree.
Several other heuristics such as saturation degree ordering (SDO) try to order the vertices
optimally for the First Fit coloring. The algorithm of this thesis uses a combination of both
LDO and SDO. Al Omari [5] shows that the running time of the combination of LDO and
SDO is equal to that of SDO but yields better results in general.

The coloring of the polylines can be converted to the graph coloring problem. Let every
polyline that can be colored using a single color, be a vertex in G. Add an edge between
two polylines Pi and Pj , when either a node from Pi lies within the area of Pj or vice versa.
The simplification of the polylines can however have multiple solutions for a single polyline.
The chosen solution for the polyline based on minimizing 1) the number of dots the solu-
tion contains and 2) the number of coloring edges that will connect to this vertex. When
two polylines are adjacent they can have the same color as long as the shortcut distance is
increased with at least factor ρ. When a polyline has multiple adjacent polylines who can
have a similar color, not all of those can have the same color. Given three polylines P0, P1

and P2 where P0 is adjacent to P1 and P1 is adjacent to P2. When the shortcut distance
of P1 is larger than that of P0 × ρ, P0 and P1 can have the same color. The same case is
true for P1 and P2. Also since the distance between P0 and P2 is large enough they can also
be of equal color. This situation is shown in Figure 11 (a). The result of this for the graph
coloring is a graph without edges between P0, P1 and P2 as in Figure 11 (b). The graph
coloring algorithm can color all three polylines with a single color since there are no edges
between them. Where each pair of polylines could have the same color the combination of
all three cannot. In Figure 11 (c) it is shown that the combination of all three using a single
color will cause P1 to not be drawn in the puzzle. This problem shows that even though each
individual pair of polylines can have the same color, it does not grantee that the combination

16

of all those pairs results in a valid coloring of the dots for the puzzle.

The solution to this is to consider adjacent polylines that can have the same color, as a
single vertex in the graph coloring graph G. This means that two vertices are merged into a
single vertex representing both polylines. Two polylines are merged when 1) the two polylines
are adjacent and 2) the polylines can have the same color. Given the example of Figure 11
the polylines can be merged as p0 − p1, p1 − p2 or p2 − p3. Wich polylines to merge can have
a huge impact on the amount of colors needed to color the other polylines. The heuristic
for graph coloring orders the vertices on the degree, where the highest degrees are seen to
be harder to color. Therefore the two polylines that result in a merged vertex with the least
degree, are merged first.

P0

P1

P2

(a) (b) (c)

P0 P1

P2

Figure 11: (a) Given the simplified polylines P0, P1 and P2 each polyline can have the same
color with each other. (b) This generates a graph with three vertices for each polyline without
any edges since they can have the same color. (c) Applying the single color to the puzzle dots
results in a solution where only polylines P0 and P2 are drawn.

17

3.4 Time Complexity

This section discusses the time complexity of each step in the algorithm. Given the input
graph with n vertices and m edges the first step of splitting the input into separate polylines
can be can be executed in O(m) time. The algorithm for splitting into polylines ensures that
each edge is only visited once.

The second step involves building an edge graph and running a Dijkstra shortest path
on the edge graph. Given a polyline with k vertices the edge graph can contain at most k2

vertices and k4 edges. Since a polyline can have n vertices, k is equal to n. Dijkstra’s shortest
path algorithm runs in O(m + n log n) time on a graph with n vertices and m edges. This
means that the shortest path algorithm on the edge graph runs in O(n4 + n2 log n2) time.
The edge graph is build in O(n4) time. This makes the polyline simplification take O(n4)
time when all polylines can be solved using a single color. When multiple colors are used, the
shortest path algoritm will be run multiple times per polyline. This can happen at most the
number of times of the number vertices of the polyline, when each time only a single shortcut
to the next point is used. This can therefore happen at most n times, thus the maximum
running time is O(n5) time.

The graph coloring heuristic takes O(l3) time, where l is the number of vertices of the
coloring graph. At most, each edge of the input can be a vertex in graph coloring, thus O(m3)
time where m is the number of edges of the original input illustration. Computing whether two
polylines can be the same color, is the same as computing whether any point lies inside a set of
circles. This can be computed in O(n log n) time. This is computed for each pair of polylines
thus O(m2) times. The total running time of the graph coloring takes O(m2n log n+m3) time.

Splitting into polylines O(m)

Polyline simplification O(n5)

Graph coloring O(m2n log n)

Total O(n5)

Table 1: The running times for each step of the algorithm where n is the number of nodes
and m the number of edges of the input graph.

18

4 Results

This section shows the results of the algorithm and the effect of the different parameters. The
input for each puzzle was a planar graph scaled to fit into bounds of 15 by 15 cm. Unless
specified, the values of the parameter are ε = 3mm, ρ = 25%, dmin = 4.5 mm and dmax =∞.
The diameters of the dots are 2.4 mm of one color, 3 mm two 2 colors, 3.6 mm for three colors
and 4.2 mm for four colors. The test results are an average over 18 different puzzles. The
resulting puzzles using these default parameters can be found in Appendix A.

4.1 Puzzle Quality

Automatically generated puzzles do not always generate ideal results. In this section the
quality of the generated puzzles is described. The quality of the puzzle is measured by the
criteria specified in Section 2.1.

Figure 3 and Figure 12 show two automatically generated puzzles using the default param-
eters. Both puzzles show that the algorithm is capable of producing a well-solvable puzzle.
Almost every part of the initial illustrations is converted into the puzzle and only 0.4% and
11% of the original illustration is pre-rendered. The parts that are pre-rendered are either
very short (thus shorther than dmin) or have a high curvature (thus ε is too large for dmin).
In both cases the short pre-rendered parts are due to the puzzle having multiple intersections
close to each other. Since the algorithm splits the input into polylines, node will always be
placed at the intersections. If the distance between the intersection nodes is smaller than
dmin this will always be pre-rendered.

The specifications state that in a good puzzle no two dots can be too close or overlap.
The algorithm uses the dmin parameter to ensure the distance during the polyline simplifica-
tion. However, as can be seen in Figure 12, two dots can still be closer to each other than
dmin. This is the case when two different polylines are close to each other. Each polyline is
simplified separately and combining the result of both simplifications can cause this conflict.
Since these dots represent two different polylines, the dots will never connect to each other.
This issue will never happen when the original illustration does not contain multiple polylines
close to each other. Another case where two dots can overlap is when two intersections are
close to each other. When not all polylines are pre-drawn, a node will always be placed at the
intersection. When two intersections are close, two dots will be close aswell. Again since the
distance is less than dmin the two dots will never be connected via a line segment. However,
it is possible that one dot obscures the other one such that for the puzzler the puzzle becomes
unsolvable. When the input of the algorithm does not contain close polylines or close inter-
sections this wil not hapen.

For the puzzler the generated puzzles are well-solvable. The distance buffer of 25% is big
enough to connect the closest dot without any issue.The number of used colors on averge is
also acceptable. An averge number of 7.33 different colors are needed with an maximum of 11.
As seen in both puzzles the different colors are still well distinguishable. By optimizing the
parameters for each puzzle the number of dots and/or the number of colors can be reduced
to produce a better puzzle.

19

Image Nodes Edges Distance (cm) Points Colors Time (s) Pre-Drawn (%)

668 677 115.9 76 9 49.6 7.4

880 895 91.2 60 10 5.7 21.7

1287 1296 134.8 98 8 24.5 11.0

828 828 82.9 47 4 1951.2 9.3

1371 1382 144.9 97 9 16.9 4.0

1029 1030 97.5 63 8 455.4 10.1

729 732 75.1 46 7 32.2 1.0

1027 1037 111.8 58 6 4.0 0.4

916 923 93.9 49 8 32.1 0.3

1075 1079 104.8 78 8 81.2 3.9

636 641 64.7 25 6 29.3 3.5

849 856 88.9 49 9 215.2 0.0

855 858 86.4 63 7 158.3 4.8

561 563 59.7 30 5 421.6 0.0

1718 1732 164.5 98 8 53.9 15.6

2917 2924 190.6 137 11 63.5 21.8

704 704 73.0 51 5 751.2 1.7

751 753 77.1 48 4 142.3 4.0

Table 2: A table showing the input and output for each puzzle. The first colomn shows a
small representation of the image. Nodes and Edges show the number of nodes and edges for
input graph for this illustration, Distance is the sum of the length of all edges from the input.
Points is the number of puzzle points in the generated puzzle using the default parameters
and Colors is the number of different colors. Time defines the time taken to compute the
puzzle and finally the percentage distance of edges that is pre-drawn, is given.

20

Figure 12: An example of a connect the closest dot puzzle.

21

4.2 Parameter Results

When automatically generating the puzzles the outcome can be influenced by changing the
input parameters. In this section we change each parameter over a range of different values.
For each parameter, the results are measured by number of points, number of colors, number
of points with 2 or more colors, maximum number of colors for a single point, number of
segments that cannot be solved with a single color and the percentage of the puzzle that is
unsolvable (pre-rendered). The most important and interesting results are described in this
section, the full results can be found in Appendix B.

4.2.1 Minimum Distance

The minimum distance dmin is used to set a minimum distance between two dots. The algo-
rithm only allows two dots whose distance from each other is more than dmin to be part of
the simplified polyline. As shown before this does not affect dots of multiple polylines.

The value of dmin is tested over a range from 0, no restriction on the minimum distance,
to 15, two connecting dots need a minimum distance of 15 mm. Figure 13 shows the average
percentage of the illustration that is unsolvable and will be pre-rendered. As shown, a larger
dmin results in a longer distance of the puzzle to be pre-rendered. A puzzle with lots of
pre-rendered polylines lowers the quality of the puzzle, but dots can also not be too close to
each other. Polylines become unsolvable due to either 1) the polyline is to short and distance
between the endpoints is smaller than dmin or 2) the curvature of the polyline is too large,
meaning that a shortcut with a minimum length of dmin can no longer sustain an error margin
less than ε.

4.2.2 Maximum Distance

The maximum distance dmax is used to limit two connecting dots to have a maximum distance
from each other. Figures 14 and 15 show the change in the number of points and colors for
values of dmax from 9 mm to 45 mm. The graphs show that a smaller dmax requires more
dots since dots shortcuts have a short maximum length. Interestingly having more dots and
shorter shortcuts reduces the number of colors. This shows that dmax can be used to reduce
the number of colors at the expense of a more dense set of dots. The full results as shown
in Appendix B also show that a too small dmax can lead to more unsolvable polylines. The
dmax of 9 mm shows a 30% rate of unsolvable segments, this is logical considering the options
for shortcuts are limited to only a length between 4.5 mm and 9 mm. This can be solved by
reducing the minimum shortcut distance to allow for more options.

4.2.3 Distance Buffer

The factor between the closest dot and any other dot is denoted as ρ. A larger factor of ρ
means a larger area for each shortcut in which no dot of the same color can be placed.

22

Figure 13: The effect of changing the dmin parameter on the percentage distance of the input
that will be pre-rendered. It is shown that a higher dmin results in a puzzle with longer
pre-rendered lines.

Figure 14: The effect of changing the dmax parameter on the number of dots. It shows that
a smaller dmax requires more dots.

23

Figure 15: The effect of changing the dmax parameter on the number of different colors. It
shows that a smaller limit to the maximum shortcut length reduces the number of colors.

Figure 16 shows the number of colors used for ρ ranging from 0% to 100%. It is clearly
visible that a larger margin drastically increases the number of colors needed to generate a
puzzle. This result is as expected considering that the area in which a color cannot be reused
becomes larger for a larger ρ. Furthermore, the results show a large decrease of the number
of points and an increase of the number of segments with multiple colors for an increase of
ρ. This is due to the fact that a larger ρ means that for the same initial shortcut a second
shortcut with the same color must be longer than for a shorter ρ. Therefore the minimum
length for a shortcut increases faster and the algorithm has less options to simplify a polyline
using only a single color.

4.2.4 Error Margin

The error margin ε ensures a certain level of quality of the resulting image. A larger ε allows
for a larger distance to the original image. Figure 17 shows that a smaller ε requires many
more points. The ε values of 0.6 mm and 1.2 mm result in fewer points since this error
margin is too small and results in 40% and 23% of the puzzle to be pre-rendered. As already
shown before with dmax, a shorter shortcut length results in fewer different colors. Figure 18
shows the increase of colors is not as large, values 0.6 mm and 1.2 mm excluded due to the
large pre-rendered parts. While more points are needed for a smaller ε this is only the case
on the curved polylines. Straight polylines will result in long shortcuts no matter the ε and
thus increase the number of colors. The results show that the number of colors are mostly
influenced by the values of ε < 3 mm.

24

Figure 16: The effect of changing the ρ parameter on the number of colors. It shows that a
smaller ρ requires fewer colors.

Figure 17: The effect of changing ε on the number of points. It shows that a smaller ε requires
more points.

25

Figure 18: The effect of changing ε on the number of colors. It shows that the number of
colors is mostly influenced at the lower ε values.

5 Conclusion and Future Work

In this thesis we presented a new type of line puzzle. Based on the idea of connect the dots
puzzles, pairs of dots need to be connected by line segments to reveal an illustration. Where
traditional connect the dots puzzles use number or letters to indicate which dots to connect,
our puzzle connects dots based on the color and distance between the dots. From each dot a
line segment must be drawn to the closest dot of the same color. When a dot has multiple
colors, a line must be drawn to the closest dot for each color. Furthermore, a few variants of
the puzzle are described. Each variant makes the puzzle easier or harder to solve.

In Section 3 we presented an algorithm that generates a puzzle based on a line drawing.
The proposed algorithm does not solve the problem as a whole but instead solves the problem
in smaller stages. The input, a line drawing in graph form, is split into separate polylines.
Each polyline is simplified to a small set of dots that can be used for the puzzle. This simpli-
fication is done by the creation of an shortcut edge graph. This graph ensures that the result
of any shortest path in this graph consists of a valid set of points that can be used for the
puzzle. After each polyline is solved individually a color is assigned to each of the polylines
using a graph coloring heuristic.

The provided algorith is capable of generating a well-solvable puzzle from a given line
drawing in reasonable time. The results show that the algorithm is capable of generating a
puzzle from most illustrations using the same parameters. By changing the parameters for
each puzzle the results can be optimized to procuce an even better puzzle.

26

5.1 Future Work

One of the most important aspects of a new type of puzzle is whether it is actually a fun
puzzle. While this thesis describes the new puzzle and presents an algorithm for it, the most
important questing is whether people like the new puzzle. Following research could conduct
a user study on these puzzles. Whether the puzzles are any fun and also whether the auto-
matically generated puzzles are equally fun compared to the hand-made puzzles.

While the algorithm prevents two nodes from being too close to each other when they
should connect, two nodes can still overlap when they are part of different polylines. This is
due to the algorithm solving each polyline individually. While this is not a problem for most
illustrations, these artifacts can prevent the algorithm from generating good puzzles for some
illustrations. Future reseach might look at solving the problem where no two points can be
closer than dmin. Also, since the graph coloring is done after the puzzle points are chosen,
sometimes more colors are used than needed. It is possible that the number of colors for
the puzzle can be reduced by selecting a different set of points. Currently the algorithm is
optimized for using the least amount of points first. It would be interesting if the algorithm
can consider the effect on the number of colors when the points are being selected.

Finally we describe multiple variants of connect the closest dot puzzles. It would be inter-
esting whether the current algorithm can generate these puzzles as well or what the differences
are. It is also possible that other variants are more fun for the puzzler. Future work can look
at all these aspects for each variant of the puzzle.

27

6 References

References

[1] Thomas K. Peucker David H. Douglas. Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature bibtex. Cartographica: The
International Journal for Geographic Information and Geovisualization, 10(2):112–122,
Oct 1973.

[2] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-
matik, (1):269–271, 1959.

[3] Marc van Kreveld Frank Staals, Maarten Löffler. Clear unit-distance graphs. EuroCG,
29:213–216, March 2013.

[4] Masao Iri Hiroshi Imai. Computational-geometric methods for polygonal approximations
of a curve. Computer Vision, Graphics, and Image Processing, 36(1):31–41, 1986.

[5] Khair Eddin Sabri Hussein Al-Omari. New graph coloring algorithms. American Journal
of Mathematics and Statistics, 2(4):739–741, 2006.

28

7 Appendices

29

A Puzzles

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

B Results

Figure 19: The effect of changing the dmin parameter on the total number of points.

Figure 20: The effect of changing the dmin parameter on the total number of colors.

48

Figure 21: The effect of changing the dmin parameter on the number of segments that could
not be solved using a single color.

Figure 22: The effect of changing the dmin parameter on the percentage distance of the input
that will be pre-rendered.

49

Figure 23: The effect of changing the dmax parameter on the total number of points.

Figure 24: The effect of changing the dmax parameter on the total number of colors.

50

Figure 25: The effect of changing the dmax parameter on the number of segments that could
not be solved using a single color.

Figure 26: The effect of changing the dmax parameter on the percentage distance of the input
that will be pre-rendered.

51

Figure 27: The effect of changing the ε parameter on the total number of points.

Figure 28: The effect of changing the ε parameter on the total number of colors.

52

Figure 29: The effect of changing the ε parameter on the number of segments that could not
be solved using a single color.

Figure 30: The effect of changing the ε parameter on the percentage distance of the input
that will be pre-rendered.

53

Figure 31: The effect of changing the ρ parameter on the total number of points.

Figure 32: The effect of changing the ρ parameter on the total number of colors.

54

Figure 33: The effect of changing the ρ parameter on the number of segments that could not
be solved using a single color.

Figure 34: The effect of changing the ρ parameter on the percentage distance of the input
that will be pre-rendered.

55

