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Abstract

The goal of this research is developing a dynamic AI for OpenTTD using Dy-
namic Scripting and Grammatical Evolution. First Grammatical Evolution was
used to develop a rulebase for the Dynamic Scripting algorithm. Rules used in
OpenTTD have to be able to be used in a wide range of circumstances, very
different than other games this combination of Dynamic Scripting and Gram-
matical Evolution has been tried on.

During this process we looked at the effects of grammar and genome struc-
ture on convergence. Restricting grammars by incorporating domain knowledge
and splitting the genomes into separate parts was found to have a strong ef-
fect on convergence. Better programs generated by the Grammatical Evolution
leads to a better rulebase.

Using these programs we hand build a rulebase from the generated programs
and tested a Dynamic Scripting algorithm. It was found to outperform the
evolved programs and beat several hand coded AI’s.
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One of the first challenges in game AI research was developing a program
capable of beating any person in chess. (Computer) Games are very interesting
from an AI perspective. Unlike situations in the real world they have clear
rules and a constrained scope of the problem [25]. In a sense they can act as a
microcosm of the world. Algorithms or techniques capable of solving nontrivial
challenges in games can act as a stepping stone to algorithms or techniques
trying to solve a problem in real life.

At the start most AI research looking at games looked at board or card
games, like chess, checkers, bridge & poker [25]. However in the last couple
of decades a huge industry has arisen surrounding computer games. These
games offer new and interesting challenges to AI research. The board games
used previously were mostly solved by looking ahead at possible moves and
evaluating the resulting board positions. These approaches don’t tend to work
well for modern computer games however.

Modern computer games are generally evaluated on their entertainment
value [29]. In games where players have opponents the AI of those opponents
has a big influence on the player experience and therefore the value assigned to
the game. This is especially true in games where the opponent has capabilities
equal to the human player, like in RTS games. Because of the limitations of
most AI’s in those type of games players generally prefer human opponents [25],
since AI’s are incapable of being challenging to most experienced players.

While there are programs capable of beating human players at board games,
players generally consider AI players in computer games to be too easy to pre-
dict and exhibiting artificial stupidity rather than artificial intelligence [25].
This offers an opportunity to AI research to develop new techniques capable of
exhibiting the same complicated behavior human players have. Several different
approaches have been developed to create new and better AI opponents. How-
ever game publishers are often weary of including online learning in their games.
They fear that agents will learn inferior behavior [28] and make the game look
bad. Dynamic Scripting is a reinforcement learning technique aimed at fast and
reliable adaptation.

Since Dynamic scripting is an online learning technique, it can be used to
create adaptive AI opponents. It works with a database of rules, each assigned
a weight. Weights represent the probability of that rule being chosen and at the
start all weights are the same. All probabilities summed together result in 1.
When a set of chosen rules wins, their weight is increased, and when they lose
it’s decreased. The weights that aren’t chosen are adjusted so the total sum of
all weights stays 1.

One of the algorithm’s main strengths is its capability of quickly adapting to
new strategies [20]. Thereby reducing its predictability and making it capable of
changing its strategy in response to a player’s strategy, creating a more dynamic
and interesting opponent. However, its main drawback is that it requires a
handmade database of rules. One possible solution to this drawback first used
by Ponsen & Spronck [14] is to use a form of Genetic Learning to generate a
rule base for the dynamic scripting to use. This combination has been used to
create AI’s for RTS games like Wargus and World in Conflict [14, 12].
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Ponsen et al. [14] used the game Wargus. An RTS game where the player
has to construct buildings and raise an army. By constructing those buildings
it unlocks new technologies and units to build, which in turn unlock new types
of buildings. They split the game into several distinct states, each representing
a possible combinations of unlocked buildings, technologies and units. They
then generated rules for each of these states. The result is a type of finite state
machine where the AI can move from state to state by constructing certain
buildings and researching technologies. The state also determines what units it
recruits and whether it attacks or defends. Since there is a set number of maps
to play on, they found the best set of rules for every map. Because different
factors or map sizes reward different strategies. This approach makes sense
given the structure of Wargus, however it isn’t feasible for all computer games.

A game with a very different structure is OpenTTD. OpenTTD is an open
source remake of the game; "Transport Tycoon Deluxe" by Microprose. Players
play as a transportation company and can make money by setting up routes
and transporting different cargo. OpenTTD is about building and maintain-
ing a transportation network. Compare this to Wargus where the strategy is
mostly about switching states in the correct order and building an army to
defeat your opponent while doing that. In OpenTTD new units are unlocked
at different points in time, irrelevant of player actions. Also unlike Wargus,
OpenTTD’s maps are randomly generated. This makes the environment highly
unpredictable. Because the environment is so unpredictable and the problem is
very different from Wargus, a different type of AI needs to be developed. One
that is capable of learning general rules of what constitute a good rule, rather
than determining a set order in which to take steps.

Apart from the highly unpredictable, stochastic, environment OpenTTD
also has a large number of different types of cargo and transportation methods.
There are four main transportation types, road vehicles, trains, ships and air-
planes. Each of these has dozens of different vehicles for different types of cargo
and of different quality. Combined with the fact that every point of interest on
the map can be connected to up a dozen other points in the area we end up
with a huge search space. This search space is fully observable, since we can see
everything that is happening in the map, but so large it’s impossible to look at
and evaluate every possible action. This situation is further complicated by the
sequential nature of the environment. Building a route takes a lot of time and
money, but the return on that investment can be years away. This return is
also spread out over a long period, and paid out in small increments. Causing
opportunity cost play a role. Since there are so many routes, there are always
routes that aren’t build, and building something now means we might not be
able to afford another route we want to build in the future.

Because of these challenges a different approach was taken for the Genetic
Learning component of the AI. Since a state based approach doesn’t seem to
make much sense. Instead we will use a form of genetic learning called gram-
matical evolution to generate rules for when to build/extend routes and how to
maintain them. The approach is described in more detail in Chapter 4.

There are several high performing AI’s that have been developed for OpenTTD
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by the community. However all of these approaches are hand-coded and static.
There hasn’t been an attempt to use learning algorithms to create a more adap-
tive AI for OpenTTD. The use of dynamic scripting would allow for an AI that
is dynamic and capable of reacting to the strategies the player uses. Increasing
the challenge players face and thereby the entertainment value of the game.

One of the advantages of working with OpenTTD is that it is open source,
this means that there is an available AI-API and documentation. There are
also several other AI’s made by other people and publicly available that can be
used for training and comparison as well as several fan made AI development
libraries. A modified version of the base OpenTTD game made at the TU Delft
in the Parallel and Distributed Group is used. This version allows running
games with only AI players without graphics, allowing for quicker testing, while
automatically generating results and statistics about AI performance.
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Chapter 1

OpenTTD

1.1 OpenTTD
In this chapter we will discuss the game OpenTTD, what are the goals its players
try to achieve, what is possible and what are the challenges.

1.1.1 The Basics
In the game the player controls a transportation company. This company can
build truck, train, air and ship routes. These routes can earn (and lose) money
and the goal of the game is to become the company with the highest net worth.
Since ship routes aren’t used very often by players unless on very specific maps,
they were left out in this project.

The game is open source, so development always continues. Over time a lot
of new features have been added to OpenTTD that allow the game to be played
in a wide variety of different modes and settings. The most important one for
us, is the ability to write custom AI’s for the game. These AI’s are written in a
scripting language called Squirrel. Another addition is multi-player, this means
it’s possible to build and test AI’s to work in a multi-agent environment.

OpenTTD also allows players to completely change the available transporta-
tion options, vehicles and industries. In OpenTTD graphics files (partly) deter-
mine what vehicles are in the game. The default graphics set is called OpenGFX.
It was created by the OpenTTD community to replace the old, still copyrighted,
graphics of Open Transport Deluxe. To reduce complexity we will only test with
the default vehicle set. However it should be noted that AI code is graphics set
agnostic, meaning it would still work in every configuration.
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Figure 1.1: Screenshot of OpenTTD at the start of the game, several industries
and towns are visible.

1.1.2 The World
The player plays in a randomly generated world. This world is a 2D grid of
tiles. For each tile several values are stored. One of these is a height value.
This means that the world can have hills and valleys and tiles can be below
and above water. On the map there are several industries and towns. These
industries and towns have different goods they accept and different goods on
offer. For instance Steel Mills offer Steel and accept Iron Ore.

The player has to transport goods (like coal, iron ore or steel, but also people
or mail) between different places. For instance it’s possible to connect industries
to other industries, but also to connect towns to towns and towns to industries.

The player can build stations next to these towns or industries to transport
goods between them. Each time one of the player’s vehicles drops off some
cargo, the player gets paid a certain amount. The amount of money returned is
a function of the type of cargo, the distance and the time taken.

Industries keep track of two things, the amount of goods produced and the
percentage produced transported. The higher the percentage of produced goods
that are transported is, the faster an industry grows. So by actively utilizing
an industry we help it grow and since the industries produces more, we can
transport more, thereby making more money.

Over time towns slowly grow, but just like industries players can increase
this growth when they are active in a town. When towns grow they will build

8



roads on the tiles surrounding them. A company can build these roads itself
and the town will automatically use them and grow even faster.

The goal of a player is to find profitable routes, however industries and towns
have a limited number of cargo they produce and accept. This means that we
want to start exploiting them before the other players have a chance too. The
game typically starts in 1950 and can run up to 2050. A day of in-game time
takes about a second of actual time on the default playing speed. It is possible
to speed this up, in this mode the game tries to process everything as fast
as possible. How fast this actually is depends on the power of the computer
used. For testing a modified version of OpenTTD that can be started from the
command line is used that has all its graphics components disabled. This way
its possible to process games with AI’s faster since more computing power is
available. Processing an entire 10year game takes about two minutes.

Generated worlds have a certain climate; temperate, sub-arctic, sub-tropical
and toyland (fictional children’s world). These climates affect exactly what
vehicles, goods and industries are available in the world and it affects the way
towns grow. In this research we will only be looking at the, default, temperate
climate.

1.2 Transportation
The player can build routes like; roads, train tracks & canals, or use the ones
already present in the map. Different types of routes have different characteris-
tics. Ships move slowly and are expensive, but they can take a lot with them.
Airplanes can make a lot of money, but they are expensive and airfields require
a lot of space. Vehicles are cheap and easy, but their profit margins tend to be
lower. Trains can carry a variable amount (different wagons), but they require
a lot of planning to get right.

Building routes and buying vehicles costs money. The player starts with a
loan and can borrow more money, but it will have to make most of the money
itself. This means it’s important to be profitable from the start, but preferably
also offer room for growth in the future.

In addition to building roads, canals and train tracks the player has to buy
and maintain vehicles to run on these routes. There exist many types of vehicles
with different characteristics. So a player not only has to find good routes, it
has to try to place the optimal number of vehicles on that route. To few and we
might be missing out on profit. Too many and we might turn a profitable route
into a net loss, since every vehicle has a maintenance cost associated with it.

1.3 Other considerations
Towns have governments. These governments have an opinion about our com-
pany, destroying trees, buildings or roads in a town lowers our rating, while
planting trees, providing services (working station) and bribing officials increases
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it. If a town’s rating of our company drops too much we might be bared from
building in or around that town.

As the in-game date increases more and better vehicles start becoming avail-
able. This means that an AI capable of playing over a longer period of time has
to be able to upgrade/replace its current fleet of vehicles.

Apart from building new routes, the player has to maintain its old routes
and manage its finances. A possible solution would be to split the AI up in to
different parts, each responsible for managing one side of the company. This is
an approach most hard-coded AI’s and this research as well. It is described in
more detail in Chapter 4.

1.4 Computational Challenges
One of the factors that make designing an AI capable of playing OpenTTD a
challenge is the incredibly large number of possible actions to take. Every town
or industry can be connected with up to several dozen other ones to create a
route. Add to that the fact that good routes might connect more than 2 places
together, and there is a very large number of possible routes to build.

There is also a limitation on the number of calculations an AI can make.
Every in-game tick the AI is allowed to take 10000 Squirrel actions. This pro-
hibits exploring the entire search-space and it increases the difficulty of using
online search algorithms. Next is a more formal description of the environment
the agent has to operate in.

1.5 Agent environment
The AI controlling the company acts as an agent in this multi-agent environ-
ment. It’s formal Russel & Norvig [23] environment classification is strategic,
fully observable, sequential, dynamic, discrete and competitive multi-agent[21].

While the game has some stochastic aspects, the rising and falling of in-
dustries or when vehicles break down for example. The next game state is
determined by the actions the player takes and the unpredictable actions its
opponents take. This makes the environment strategic.

Fully observable because the agent can access everything going on in the
world at all times. It can view all routes, vehicles, industries and the per-
formance of its competitors. It also has access to the routes the opponent is
currently working on.

In OpenTTD building routes or buying vehicles affects the decisions we take
in the future. It also creates new maintenance tasks in the future, this means
it’s a sequential environment.

Since the game map is always changing, industry and towns values change
and therefore profit margins on routes, it’s a dynamic environment. This is hap-
pening while the AI is busy making it’s decisions, making fast decision making
very important. Someone could see a player is building a route to some industry
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or town and decide to quickly connect it to their network before the player has
time.

The game map consist of discrete tiles in a 2D map and the time increments
in discrete steps as well.

The game can have one or several players and then the goal is to have a more
successful company than they do. This makes the environment a competitive
multi-agent environment. The resources they fight over are industries, towns
and tiles. Industries and towns because they allow us to make money and tiles
because once you build something on a tile another company can not, although
they can build (expensive) bridges over it. This means possibly lucrative routes
for one player might be blocked by another player’s route.
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Chapter 2

Other approaches

There are about 20 different AI’s that have been written for openTTD, these
vary in quality, scope and approach. In this chapter some of the more interesting
and/or ambitious ones will be discussed. Some of them focus only on a particular
type of cargo, some of them on a particular transportation type. These are also
the opponents for our Dynamic Scripting algorithm described in Chapter 8.

2.1 PathZilla
PathZilla is an AI that uses graph theory for network planning. First it uses
a Delaunay Triangulation on the set of all towns in the map. It then uses this
triangulation to find the shortest path tree for some large town in the map. The
town is chosen at random from the top 10% largest in the map. Based on this it
stores a graph with planned routes. In this graph the towns are nodes and the
routes edges. Since it often can’t build this network in one go, it will create a
queue of routes to complete. The steps in this process are shown in Figure 2.1.

There are two main downsides to this approach. First, since the computation
resources allocated to an AI are limited, this approach can take years of in
game time to compute. During this time the AI isn’t doing anything while it’s
competitors have often already started building routes. Secondly, because the
AI can take such a long time to plan out routes, it’s possible that part of the
routes it imagined as part of it’s network have already been taken over by other
players. The AI also doesn’t deal with upgrading or accessing routes it has
already built.

2.2 trAIns
This AI was developed by Rios & Chaimovicz [21]. Their main goal was creating
an AI that was capable of building large and complicated rail networks. They
choose an AI specializing in rail because none of the AI’s available at the time
were good at it. Rail is considered one of the hardest transportation methods
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Figure 2.1: The steps taken by PathZilla for determining routes. Images were
created by the author of the AI[1].

to get right, because the railway tracks require a lot more planning than for
instance roads. This because tracks are one way only, whereas roads are two way
streets. Rios & Chaimovicz focused on building double railways, a commonly
used player tactic, which at the time no AI except for AdmiralAI[21] was capable
of. Since then however several other AI’s have incorporated this behavior.

The trAIns AI only builds rail networks. As soon as it receives some money
it decides whether to upgrade one of it’s current routes or build a new one.
Upgrading routes is favored by the AI and can mean increasing/updating the
vehicles or the tracks.

For the laying of railway tracks they use an A* algorithm. Rather than the
normal single rail tiles they made several combinations with two rail tiles and
build with those instead. These combinations allow them to more easily build
two-way rail tracks by treating larger groups as single puzzle pieces. When
connected a 2-way rail system is left. While the main focus was on allowing the
AI to build complex two-way rail systems, it still needs to decide what industries
to connect with each other.

It decides using the following steps; for each industry in the game, compute
a ratio of the number of stations around the industry. The industry with the
highest ratio gets chosen. This ratio is calculated by the untransported pro-
duction divided by the number of stations around the industry within a certain
distance and by the price it would bring for a given distance and delay.
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Figure 2.2: Screenshot showing the ChooChoo four-way crossings and using
buses to connect to railroads.

However since this distance and delay are always the same value and not
based on what would really happen if the route were to be build, we can question
whether or not this approach is effective in finding the best possible routes to
build.

In their tests they find that trAIns outperforms AdmiralAI[21]. However
they only play against AdmiralAI using only rail, while AdmiralAI is capable
of many other different transportation options. It’s possible that limiting the
AI in this way hindered the performance. They did not test trAins against any
other AI’s either.

2.3 ChooChoo
ChooChoo is another AI focused on trains. It works by building a four-way
crossing in a somewhat random location (some restrictions still apply), and
extending its network to include nearby towns. Since these rail lines can only
be build in a straight line, sometimes nearby town’s can be reached directly. If
a town is "of to the side" it will place a new crossing and connect to the town’s
train station and the network from there. Sometimes the station can’t be build
close enough to the town. In those cases it will use a small bus route to take
passengers from the town to the station, Figure 2.2 shows an example of this.

This leads to a growing rail-network of connected towns. If the network
can’t grow anymore, a new one is started. In this approach only passengers
are transported between different cities. The approach here is very much a
network-based one. Later updates also added the ability to build cargo networks,
although without the same network structure it uses to connect towns.
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While the network approach is interesting, it seems like ChooChoo spends
much time and resources developing relatively unprofitable routes. Later up-
dates added support for more different types of routes, but their implementation
is very simple. For instance cargo train routes consists of a single line of track
with a train going back and forth. A route which is impossible to upgrade except
for adding more carts on the back of the train.

2.4 AdmiralAI
AdmiralAI is one of the more broad AI’s available for OpenTTD. It’s developed
by one of the main OpenTTD developers. Rios & Chaimovicz [21] used this AI
to test their trAIns AI against and they found it worse than their AI. There were
some problems with this approach though, namely the fact that they limited
AdmiralAI to only rail. AdmiralAI is an AI that is capable of using rail, air and
vehicle transports. It also connects routes of all cargo types. It is also capable
of planning two-way railtracks, something many AI’s struggle with.

The goal of the creator was to develop something fun to play against that
used all aspects of the OpenTTD AI framework NoAI. Because the developer
who made this AI also contributed to the NoAI framework, this AI contains
many examples of how to use the framework.

AdmiralAI is primarily included in this list because it is one of the most
complete AI’s. While many other AI’s focus on one particular transportation
method or cargo, AdmiralAI tries to do everything (except ships).
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Chapter 3

Genetic Learning

To use Dynamic Scripting, we first have to build a database filled with rules for
it to chose from. In the past these rules have been hand written, however this
takes a lot of time and is very dependent on the skill or domain knowledge of
the rule designer. An alternative might be to use a form of Genetic Learning
to create a database of proven rules. There have been several attempts at
this approach to acquire domain knowledge which was then used for dynamic
scripting[14, 27].

In Ponsen & Spronck[14] a Genetic Algorithm is used to gather domain
knowledge about a game called Wargus. The Genetic Algorithm has a set of
states. These states coincide with different states in the game. A state is
determined by the buildings an AI has built, since they control what it can do.
For each state the GA lists a set of moves. Completing these moves in the right
order means that the AI moves to another state, with a new set of rules. A
new strategy is developed for every different map in the game. So the AI in the
game acts like a type of finite state machine where the AI can move from state
to state by building certain buildings or developing technologies (which allow
it to build new buildings). The genetic learning tries to find a good order of
states to move to. There are 20 states in total and the total states and their
connections are shown in Figure 3.1.

However this approach does not seem to make sense for openTTD, since
in openTTD there aren’t really any technology levels. As time increases other
vehicles become available, but we can’t control the speed at which they appear.
Also, openTTD doesn’t have a set of maps we can play on, every time we
play the game we have a different map, nor are we limited by what we can
do based on the buildings we have. Therefore a different genetic algorithm is
probably more appropriate. For this case a variant of Genetic Programming,
called Grammatical evolution is used.

Grammatical evolution was picked because it has been used to create AI’s
for games in the past [5] and it creates explicit rules of the kind that can easily
be used in dynamic scripting.
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Figure 3.1: Possible states and state changes in Wargus[14]
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3.1 Grammatical Evolution
Grammars are one of the core representational structures in the field of Com-
puter Science. They can be used to structure and limit expressions in a language[22].
This allows for restricting the search space and embedding domain knowledge.
This also means that constructing the right grammar is crucial to the success
of the algorithm.

Genetic algorithms have been used to generate code for computer programs.
This code is based on certain grammars, that determine what is and what isn’t
valid. The most well known approach is Koza’s Genetic Programming[11]. Koza
used Lisp, but others have done similar things with other languages. Some ex-
amples are Whigham’s[30] where the initial population was created by a context
free grammar and Wong et al.[31] who used Prolog definite clause grammars to
learn first order relations. All of these approaches use trees to model code
structures.

3.2 Grammatical Structure
The grammatical structures consist of a genotype and a phenotype. The geno-
type is the structure that we change using our mutation and crossover operators.
The phenotype is the behavior exhibited when the individual is executed[22].
There are two ways in which we can structure our genotype for use in genetic
algorithms. It’s possible to store the tree structure directly, or alternatively
we can use a linear representation and use a string representing the tree struc-
ture. A linear representation has the advantage that many different crossover
and mutation operators from evolutionary strategies and genetic algorithms are
available. With a linear representation we require an algorithm to map the
genotype, a string, to an intermediate state before we’re able to check what the
phenotype looks like. This genotype-to-phenotype mapping algorithm ensures
that we can transform any string of numbers to a syntactically valid phenotype
(program)[17].

One of the most wildly used systems is called Grammatical Evolution (GE)
developed by Ryan et al. [24]. GE has been used in many things, from finding
rules for expert systems [7, 32], to evolving a strategy to play ms Pacman. In
their article Lopez et al. [6] describe an arcade game from the 1980’s called ms
Pacman. One of the challenging aspects of this game is that there is a strong
non-deterministic element to the game, just like openTTD has. In their article
they describe how they evolve "if <condition> then perform <action>" rules.
Generated rules of this type can easily be reused in the Dynamic Scripting rule
database and our approach is modeled on theirs.

3.3 Genotype
In the original article by Ryan[24] the genotype was coded as a list codons.
Each of these codons was made up of an 8-bit binary number. The length of
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the genotype is variable. The grammar that is used is in the Backus Naur
Form (BNF). The BNF is a notation technique to describe a grammar and it’s
production rules for the creation of programs.

3.3.1 Backus Naur Form
A Backus Naur Form grammar consists of terminals and non-terminals. Termi-
nals are items that appear in the grammar, for instance operators like bigger-
than or equal-to. Non-terminals are items that can be expanded into either one
or multiple terminals and non-terminals.

A grammar can be represented using a tuple {N, T, P, S}. Here the N is
the set of non-terminals, T the set of terminals, P the set of production rules
mapping N to T and finally S the start symbol. BNF production rules have the
following form <non-terminal> ::= <expression>. <expression> can be one or
multiple different sets of terminals and non-terminals. Each set representing a
possible choice. By evaluating these rules one by one we can build the program
tree. In their paper Ryan et al.[24] give an example grammar. This grammar
is included below. The goal of this grammar is to evolve a program capable of
solving a symbolic regression problem[17] where we try to find the function that
maps a set of input point to a set of output points.

N = {expr, op, preop}
T = {Sin, Cos, Tan, Log, +, -, /, *, X,()}

S = <expr>

The N, T & S values are defined above, that leaves P whose rules are used
to map the genotype to the phenotype, the first of P’s rules is listed here:

(1) <expr>::=<expr><op><expr>|(<expr><op><expr>)|
<pre-op>( <expr> )|<var>

Here the non-terminal <expr> can produce four different results:

<expr><op><expr> (0)

<expr><op><expr> (1)

<pre-op>( <expr> ) (2)

<var> (3)

This is the rest of P:

(2)<op>::= +(0) | -(1) | /(2) | * (3)

(3)<pre-op>::= Sin(1) | Cos(2) | Tan(3) | Log(4)

(4)<var>::= X

19



The genome consists of codons and each codon is a number. Every step the
algorithm takes the next available number and uses it to determine the next
production step. For this we use a mapping rule. The mapping rule used here
takes the modulo of the number on the genotype and the number of different
possibilities for this rule. For example if we take the rule (1), given earlier, to
be evaluated and the number on the genotype was 18, the algorithm would use
<pre-op>( <expr> ) since 19 modulo 4 is 2.

It should be noted that while the modulo mapping rule was the first one to
be implemented for Grammatical Evolution there are some issues with it. The
final mapping rule used in this research is a different one, the bucket rule. This
rule and the issues with the modulo rule will be described in more detail in
Section 3.4.4

The rest of the grammar is listed below.

<func>::= <header>;

<header>::= float symb(float X) <body> ;

<body>::= <declarations><code><return>;

<declarations>::= float a;

<code>::= a = <expr>;

<return>::= return(a);

What would a program generated from this grammar look like? Let’s con-
sider the following individual:

220 203 17 3 109 215 104

The 8-bit codon values have been converted to integers for clarity. The first
steps of our grammar require no input. They always result in the following
form.

float symb( float x ){

a = <expr>;

return(a);

}

The only thing left to expand is the <expr> expression, for this the first
rule given is used. There are 4 different possibilities. The first value on the
genome is 220 and 220 modulo 4 = 0. This means we will expand <expr> to

<expr> <op> <expr>
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Next we have to expand an <expr> expression again. 203 modulo 4 = 3
so we get <var> turning our expression into

<var> <op> <expr>

<var> can only be turned into X so that is the next step. Note that we
don’t have to look at our genome for this, since X is the only possibility. Below
are the next steps the algorithm will take. If the algorithm were to run out of
codons while generating the phenotype, it simply wraps around.

Expression Rule Gene
X <op> <expr> na na
X + <expr> 2.1 17
X + pre_op(<expr>) 2.3 19
X + Sin(<expr>) 3.1 109
X + Sin(<var>) 1.3 215
X + Sin(X) 4 na

The end result of the genotype to phenotype algorithm is the following

float symb( float x ){

a= X + Sin(X);

return(a);

}

While the system given here is only capable of generating a single line of
code. It can easily be modified to allow it to build multi-line programs. For
instance by adding a line like <code>::= a = <expr> | a = <expr>
<code>

3.4 Operators
All the standard operators, mutation and crossover, are available with genetic
evolution. However there are two other additional operators, duplicating and
pruning. In this section we will discuss these operators and their effects on
evolution.

3.4.1 Duplicate
Duplicating means making a copy of a gene or genes and placing it somewhere
else on the genome. This is a phenomenon that is observed in nature and can
be beneficial.[24] In Grammatical Evolution the duplication operator works by
taking a random number of genes and copying them. These new copied genes
get placed on the last position of the genome. It can be beneficial because either
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Figure 3.2: Showing the reduced effect of crossover when a genome has too
many introns [24].

it provides copies of a beneficial gene or because it allows new functionality to
be obtained[18]. New functionality can be obtained because the same set of
genes can lead to different impressions based on the rule the first element is
interpreted with.

3.4.2 Pruning
It’s possible that a genome has more genes than it uses for the creation of the
program associated with the genotype. These inactive genes are called introns
and they serve to protect the effective genes from the effects of crossover [24].
However having too many introns could hamper our evolution, because individ-
ual no longer change. Figure 3.2 shows the reduced efficacy of a crossover when
a genome has a lot of introns.

A solution to this problem is the pruning operator. Every individual that
does not use all of its genes has a probability of having the prune operator
applied to it. This prune operator removes all unused genes. Initially Ryan et
al. claim that the effect of pruning is a faster, better convergence[24]. However
in a later paper they cite research indicating that introns have been shown to
beneficial in other genetic algorithms[18]. They still use the operator in later
research[18], but with a much lower probability of 0.01. So the positive effects
of this operator are debated.

3.4.3 Modulo rule
The modulo rule is the first mapping rule developed for Grammatical Evolution.
When the modulo rule is used the codon values are drawn from [0,255]. This
leads to many codon values always mapping to the same rules. In the case of
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the grammar listed below there are only 2 possible values for each rule. This
means the result is determined by the least important bit of the codon[9], since
all even codons become 0 and all uneven 1.

<bitstring> ::= <bit> | <bit> <bitstring>

<bit> ::=0 | 1

Codon Value <bit> <bitstring>
0 0 <bit>
1 1 <bit> <bitstring>

Because the rule chosen only depends on the least significant bit, a linkage
between different production rules is introduced. Since even codons will always
pick <bit> or 0 and uneven codons 1 or <bit> <bitstring>. This linkage
is undesirable since it inhibits the GE’s intrinsic polymorphism[9]. Since this
bias is dependent on the layout of the rules, the way rules are laid out might
have an effect an the search efficiency, however this is effect can’t be predicted.
This was shown by Keijzer et al. [9] who showed that two similar grammars
with different orderings converged to different mean fitness values. The solution
offered by Keijzer et al. is to change the rule we use for picking production
rules, this new rule is called the bucket rule.

3.4.4 Bucket Rule
The bucket rule is an alternative mapping rule instead of the modulo rule devel-
oped by Keijzer et al.[9]. When given a set of n non-terminals with production
rules [c1 ,...,cn] and given the current symbol r. Condon values are taken from
the interval [0,

n∏
i=1

ci] instead of [0,255]. The mapping rule used is[9]:

choice(r) = codon
r−1∏
i=1

ci

mod cr

Keijzer et al. showed the effectiveness of this change in their experiments. In
the example from Section 3.4.3 that would mean codon values are chosen from
the interval [0,3]. Below is a table showing their new encoding values. Now
production rule results are not automatically linked, but the relative proportions
of the values chosen are still intact.

Codon Value <bit> <bitstring>
0 0 <bit>
1 1 <bit> <bitstring>
2 0 <bit> <bitstring>
3 1 <bit>
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3.4.5 Positional Effects
An often-mentioned issue with Grammatical Evolution is that a small change
in the genotype might completely change the interpretation of all the following
codons [4]. This would mean that mutation or crossover events that happens
near the front of the genotype would be far more destructive than those occur-
ring near the back. To test if this is true Castle et al.[4] ran a GE for different
problems; a Santa Fe trail, 6-bit multiplexer and a symbolic regression problem.
For each (one point) crossover and mutation they compared the parent(s) and
the offspring to see if they improved or not. They found that mutation opera-
tors have a bigger effect, both positive and negative, when they change codons
at the start of the genotype. The effect of the crossover was found to be more
likely to be positive and less likely to be negative the further back it occurred.

3.4.6 Crossover
Standard crossover in Grammatical Evolution consists of a 1-point crossover.
First two individuals are selected, then a point is chosen randomly for each in-
dividual. Next we swap everything to the right of the chosen point between the
two individuals. Despite the fact that this is a common approach in string based
genetic algorithms. Some research warns against using this crossover in GE al-
gorithms due to it’s destructive nature [19] or because they claim it isn’t an
improvement on randomly generating new subtrees and using those instead [3].
This last claim seems unlikely however and in research by OŃeill [19] the stan-
dard 1-point crossover clearly outperforms both "headless chicken" crossover,
which replaces random codons with a new random value, and using no crossover
operator.

An often noticed effect in genetic programming is the rapid increase of size
in a population. It has been theorized that is this arises to combat the harmful
effects of crossover, by creating a buffer so the crossover has no effect on the
phenotype[16]. This effect is called bloat.

Homologous Crossover

An alternative crossover method that was developed is called Homologuos Crossover[19].
This crossover method was developed to try to keep the context of the mapping
process in mind while recombinating. The crossover works as follows: while
the algorithm is running a history of rules chosen is stored for each individual.
When two individuals are selected for crossover this history is compared and
the region of similarity is determined. This region is the overlap in the rules
chosen at the start of both individuals. The first crossover point is chosen to be
at the end of the region of similarity. For both individuals the second crossover
point will be chosen somewhere at random in the region of dissimilarity. Note
that the selections swapped between individuals don’t have to be of equal size.

The homologous crossover operator was developed by O’Neill et al. [19]
and they tested it performance compared to the typical 1 and 2 point crossover
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operators. Both a homologous operator that allowed for differing sizes and one
with constant sizes were compared. While the homologous crossovers sometimes
found very large improvements, the 1-point crossover still outperformed it in the
long run. A possible explanation for this is that the homologous crossover starts
acting more like a local search the further it evolves. This in contrast with the
1-point operator which keeps searching on a global scale[19].

Ripples

Clearly the 1-point crossover has some advantages. It outperforms using no
crossover, replacing random codons and the homologous crossover. The question
however is why. When the genome is processed to create the final program it’s
possible that not all codons are used due to the bloat effect. This last group
of (unused) codons on the right of the genome is called the tail. The string of
codons in the genome is used to build a program tree. When a crossover event
occurs it’s as if we remove one of the subtrees of our tree and replace it with
the subtree from another genome[10]. These subtrees are also known as ripple
trees.

Due to the intrinsic polymorphism of the subtrees[19], every codon can take
every value, changes in one codon ripple out and change the interpretation of
the following codons. These ripples can even occur between subtrees. Since a
change in one tree could mean it now has codons left over or it’s lacking them,
the following trees would then respectively gain or lose codons. So despite
1-point crossover not taking the tree structure into account when performing
crossover, due to the intrinsic polymorphism tree structures stay intact.
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Chapter 4

Grammar and Approach

In OpenTTD the player has to perform several different tasks. They are the
following:

• Upgrade and repair vehicles

• Find new profitable routes

• Scrap unprofitable routes

• Manage money (how much to borrow, invest, etc.)

The approach used by all AI’s discussed in Chapter 2 and by Rios [21] is to
split the AI into different submodules, each responsible for a different task. Each
transportation method used get its own module and there is a separate finance
module in charge of managing the AI’s finances. These tasks can be subdivided
into several different sub-grammars, each capable of generating rules relevant to
the task. Figure 4.1 shows an overview.

First the first non-terminal, the start of the program, will be discussed. From
this non-terminal its determined what sub-grammar will be used. Since the rules
for the different transportation modes have very similar structures they will be
discussed next. After that the finance rules will be discussed. Parts of the
grammar will be replicated here, for the full grammar please see Appendix A.1.
The grammar presented here is cleaned up for readability, the changes made are
described in Appendix A.

In Chapter 3 grammatical evolution and the effect of grammar and produc-
tion rules on the efficacy of the algorithm were discussed. Changes in one codon
affect how the following codons are interpreted. O’Neill et al [19] refer to this
as the ripple effect. In order to minimize the destructive effect these ripples
the grammars where designed with the goal of having similar structures. This
means that the changes in one codon will still cause following codons to be in-
terpreted in a similar manner as they were before. This will hopefully preserve
the structure of the genotypes when performing a crossover or mutation.
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Figure 4.1: Overview of the different modules.

4.1 First Non-Terminal
The first non-terminal we use is<rule>, its grammar is listed below. Since this
is the first non-terminal in our grammar, it’s the first to be evaluated. What this
non-terminal does is select for what module a rule will be generated for. There
is some similarity between this approach and the gene-encoding used by Ponsen
et al.[14]. They subdivide the genome into several different states and have the
first element, a letter while the rest are numbers, of the sub-state determine
what type of rule is being encoded.

<rule> ::= <money> | <truck> | <rail> | <aircraft>

4.2 Transportation Modules
In this section the sub-grammar for the truck module will be discussed. It should
be noted however that the grammars for the other transportation mechanisms
have the same structure, only the truck is replaced. Again, the full grammar
can be found in Appendix A.1. After determining that the type of rule we are
using is a road transportation rule, the next step is determining what type of
rule we will use. Build rules are for adding new routes and maintain rules for
maintaining the ones we have. The <build> and <maintain> non-terminals
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have the prefix truck. this to distinguish the different transportation modules.
The <train> and <aircraft> have the prefixes train. and aircraft..

<truck> ::= if ( truck<route_var> <equals> <num> ) truck.<build> |

if ( truck<route_var> <equals> <num> ) truck.<maintain>

One important difference between the aircraft module and the other modules
is that the aircraft module ignores cargo designations. This because all airplanes
can only carry passengers and mail, nothing else. The distance variables work
as regular. The aircraft module still has a cargo designator so that when a
rule switches from aircraft to some other cargo type, all other variables are still
interpreted in the same way.

4.2.1 Build rules
<build> rules allow for two possibilities, find a new set of two industries to
connect, or extend an already existing network by adding a location to it. The
finding and extending nonterminals refer to functions the AI has access to at
runtime. These functions both require the same three variables. The first,
<cargo>, is the cargo type. The second two <distance> variables refer to
one of several possible distance values. The lowest of these two values is used
as a lower bound and the highest as an upper bound on the distance the new
route can be. These rules have an if statement at the start, determining when
they are used. If statements are expanded upon in Section 4.4. In addition to
an if statement, build rules also have a hard rule build in for when a route can
be build. The corresponding transportation module has to have enough money
available in it’s budget to build the route.

<build> ::= <find> | <extend>

<find> ::= find ( <cargo> <distance> <distance> )

<extend> ::= extend ( <cargo> <distance> <distance> )

4.2.2 Maintain rules
In addition to building new routes the AI also has to maintain old ones. There
are two options for maintaining old routes. These are adding new vehicles/upgrading
old ones on existing routes and removing unprofitable ones. Both the upgrade
and the remove non-terminals refer to functions the AI has access to. The
remove function tries to find the worst performing route and removes it. Up-
gradeVehicles tries to upgrade vehicles on all the routes, if this isn’t possible, it
will try to add vehicles instead, but only when routes have cargo waiting.

<maintain> ::= <upgrade_vehicle> | <remove_unprofitable>
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<upgrade_vehicle> ::= UpgradeVehicles()

<remove_unprofitable> ::= RemoveUnprofit( )

4.3 Finance
The finance module acts as the accountant of the company. Its role is to assign
money to the budget of the various transportation modules and to take on or pay
off debt. For this it has two rules a <debt> one and a <increase_budget>
one. The debt rule increases or decreases debt by a certain amount based on
the variables given. The boolean determines whether it is a return payment (0)
or an additional loan (1). The num non-terminal is a normalized value between
0.1 and 1. The actual value given is a percentage of the budget available, where
1 is 25% of all available money. Rules can maximally spend 25% of all available
money to prevent one rule from dominating all other money rules by the virtue
that it’s evaluated first.

The increase budget rule requires the type of transport to finance and again
a <num> variable. The num variable is handled the same as with debt and can
maximally spend 25% of the budget at once. The money is added to the chosen
transportation module’s budget.

<money> ::= if ( <fin_var> <equals> <num> ) game.<debt> |

if ( <fin_var> <equals> <num> ) game.<increase_budget>

<debt> ::= debt ( <boolean>, <num> )

<increase_budget> ::= add_budget( <num>, <trans_budget> )

4.4 If-statements
The rules used by the different modules are preceded by if-statements that then
determine when the rules should be applied. In this section we will look into
those if statement in more detail. The if-statement takes three arguments. A
variable, an equality variable (<, >, ≤ or ≥), and a number variable. The
num non-terminal is still a value from 0.1 to 1, and the variable values are all
normalized to be within the interval [0,1].

Variables are normalized to keep rules relevant in different stages of the
game. Since the amounts of money and vehicles in the later years of the game
can be a 100 times bigger than at the start. This makes it very difficult to have
a rule that can be relevant in all years of the game if the numbers are set. How
the variables are normalized will be discussed in section 4.5. There are two types
of if statements in the grammar, those looking at route variables <route_var>
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about the performance of different transportation companies. And there are
financial variables <fin_var>, looking at things like profitability and size of
budgets or loans. Two examples from the grammar are given below.

if ( truck<route_var> <equals> <num> )

if ( <fin_var> <equals> <num> )

4.5 Variables
As mentioned in Section 4.4 there are two types of variables, route variables
and financial variables. They are each used in the if statements of various rules.
Here in this section we will go into more detail about them. First we will look
at the route variables.

4.5.1 Route Variables
The route variables are selected for by the non-terminal <route_var>. Looking
at Section 4.2 we can see that the instances of <route_var> are preceded by
truck. This is to make sure we look at the corresponding variable for all truck
routes. For train or aircraft rules it’s replaced with train or aircraft respectively.
So while the <route_var> non-terminal ends has five possible choices, in the
end there are fifteen different variables, because we monitor five variables for
each of the three different transportation types.

<route_var> ::= _waiting | _pr_prof | _rt_build | _profit | _budget

For each transportation type we record five different variables. Below each
variable is explained in more detail.

Variable Complete
name

Explanation

_waiting Waiting Total amount of cargo waiting to be
transported relative to a set value per
route.

_pr_prof Percetage
profitable

Percentage of all routes that is prof-
itable

_rt_build Route build Time since the last route was build,
where 0 is 0 days ago and 1 is 2 years
ago.

_profit Profit Total profit routemanager relative to
maximum allowed loan

_budget Budget Total budget relative to maximum al-
lowed loan

Some of these variables are set relative to maximum allowed loan. This
is because the maximum allowed loan scales in game relative to the company
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value, and will always be higher than the value given, while not being so much
higher that the value stays very low. This way the requirements will scale up as
the company grows. The _waiting variable looks at the number of routes and
the total amount of cargo waiting. Depending on the type of transportation
company used we take a set amount of maximum cargo waiting per route. The
bigger the amount of cargo vehicles of a certain type can take with them, the
bigger the value is. For trucks it’s set at 200, for trains at 300 and for aircraft
at 400. So if we have five truck routes, and a total of 300 cargo waiting, our
truck_waiting variable would be 0.3, since 300 / (200 * 500) = 0.3.

4.5.2 Financial Variables
Rules for the financial manager use financial variables in their if statements.
They are selected by the non-terminal <fin_var>.

<fin_var> ::= truck_profit | aircraft_profit | train_profit | game.balance_left
| game.debt_taken | truck_budget | train_budget | aircraft_budget

These variables can be split into three different groups. First the _profit
variables. These values are the same as those discussed in Section 4.5.1. The
second group are the _budget variables, they too are the same as discussed
in Section 4.5.1. The third and final group are the game.balance_left and
game.debt_taken. They are the balance available, i.e. money not allocated to
the budget of a transportation module and the debt taken, respectively. Each of
these variables are normalized by making them relative to the maximum amount
we can loan.

4.5.3 Extending the Grammar
Now all the sub-grammars used have been described. However our current
grammar only allows for the creation of a single rule. One possible solution
would be to extend the grammar to allow multiple rules to be captured by it.
For instance like this:

<rule> ::= <money> <rule> | <truck> <rule> | <rail> <rule> | <air-
craft> <rule>

In GE this is the general approach. A <rule> is generated using a particular
sub-grammar and then the algorithm continues making rules using the rest of
the genome. However due to the earlier described ripple effect we theorize that
this would result in very unstable genomes. One change has the possibility of
changing all the rules present in a genome. This is undesirable of course. It’s
manageable with small grammars, where the final program might be 5 or 6
lines of pseudo code, for instance when generating an AI for ms Pacman[5]. In
this case however we decided to allow each AI to use at least 20 different rules,
making the original approach seem less feasible.
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Instead the genome has been split into 20 parts. Each part has 11 codons,
enough to generate any rule in the grammar. These parts are independent, so
changes in one part will only affect a single rule. Also rather than the whole
genome having a tail containing possible subtrees, each part has its own tail.
This is discussed in more detail in Section 5.1. In Chapter 5 we will compare
these two approaches.

Our hope is that this increases the locality of the crossover operator. A high
locality means that solutions that have a similar genotype will have a similar
phenotype and score. It’s been shown to be an important factor in convergence
towards a good solution [8]. Because it allows offspring to keep the qualities
that made their parents perform well.
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Chapter 5

Experimental Setup
Grammatical Evolution

In Chapter 4 we discussed the grammar we will use for our genetic learning.
In this Chapter the setup of the experiment will be discussed as well as the
operators used by the GE algorithm.

5.1 Genome makeup
The genome we use is cut into different parts. The size of these parts is prede-
termined and is based on the minimum size required to always form a complete
rule in the grammar. For the standard grammar discussed in Chapter 4 this
value is 11. At the start of the algorithm a variable is passed along declaring
how many rules each genome should contain. The genome length L is then
determined as follows:

L = n ∗ s

Where n is the number of rules and s is the size per rule. For instance if
rule length is 11 and 10 rules are required genome length is set to 110. Rather
than one long tail for the whole genome, with this approach each rule has it’s
own small tail. The generated AI’s each have 20 rules, with the length of each
segment of the genome being 11. This means that the genomes have a length
of 220 codons.

5.2 Operators
The Genetic Learning algorithm requires the use of several operators to change
the population and increase fitness. The operators needed are a mapping rule,
a crossover rule, a selection rule and a mutation rule.
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5.2.1 Mapping rule
The mapping rule is the rule used to map codon values to programs. Based
on the grammar the mapping rule determines what choice we make when un-
packing a non-terminal and it has more than one possibility. The bucket rule,
discussed in Section 3.4.4 will be used as the mapping rule. It was picked be-
cause it disables the linkage between different production rules present in the
modulo mapping rule, these linkages have been shown to have unwanted effects
on convergence [9].

5.2.2 Crossover Rule
The standard 1-point crossover will be used, since it has proven more effective
than other, more complicated rules, have [19, 10]. A random point is chosen on
the genomes from the parents and everything to the right of that is swapped.
Since our genomes consist of a set of rules, encoded one after the other, most
rules survive the crossover intact. This will hopefully keep children somewhat
similar to their parents, helping with convergence. To preserve rules both par-
ents have their genome cut in the same place.

The algorithm is elitist, this means that every generation we perform the
crossover 1 time, and then replace the lowest scoring genomes in the population.
The genome is only replaced if it’s score is worse than the score of the new
genome.

5.2.3 Selection Rule
The parents are picked using tournament selection. A tournament selection of
n means that we pick n random genomes population and pick the m with the
highest score to be one of the parents. The higher we set our n value, the higher
the selection pressure. Causing the population to converge faster. However we
don’t want to to converge to soon, since it could end up in a local optimum. A
n value of 3 and an m value of 1 were used. These values are the same as those
used in the research on Wargus[14].

5.2.4 Mutation
The standard 1 point mutation is used. Each genome in the population has
a chance p to be mutated. A mutation means that a single codon’s value is
replaced with another value. Since we split the genome into different parts for
different rules, only a single rule is affected by the mutation. This means the
effect of a single mutation might be rather limited.

5.3 Fitness function
Individuals in the population need to be scored. For this the following function
F is used:

34



F = m + v − l

Here m is the total amount of cash the AI has in it’s coffers, v is the company
value, the total value of all the vehicles and stations it possesses. Finally l is
the amount of money the company has loaned. By adding the money and value
variables we determine how successful the company was, since it represents
how much it was able to earn and invest. By subtracting the loan value we
punish AI’s that only have a high company valuation by borrowing lots of money
without doing anything with it. The fitness function allows both positive and
negative values to be returned.

5.4 Running experiments
The goal of these experiments is two-fold. First look at the normal grammar
defined in Chapter 4 and compare it to the extended version of the grammar
defined in Section 4.5.3. However before we can start comparing these two
grammars some other values have to be established. The second goal is to
generate a rule database for use in our dynamic scripting algorithm. Each test
consists of 50 complete runs of the algorithm, results about the population are
stored every 25 generations.

5.4.1 Population size
The size of the population has a big effect on the efficacy of the genetic learning
algorithm, and finding the optimal size is the subject of debate [2]. Larger pop-
ulations tend to give better results, but they also carry a larger computational
cost with them. For this experiment we chose a population size of 50, since
early tests indicated it offered a balance between computational resources and
results. This the same value as used by Ponsen et al.[14] for their experiments
with Wargus. A major practical limit are computational resources, each genome
has to be scored. This scoring takes a couple of minutes per genome so huge
populations of a 1000 like Keijzer et. al. [9] use are infeasible.

5.4.2 Mutation probability
In Section 5.2 we discussed the mutation operator. O’Neill et al. [19] showed
that for different problems, when a 1-point crossover is used mutation has a
beneficial effect. They use a mutation rate of 1% in their research. However
they also have much larger populations, in the 100’s, therefore for this research
we used a higher mutation rate, to help the smaller population escape local
optima. Each genome has a 3% chance of mutating.

5.4.3 Stopping criteria
The algorithm has to stop learning at some point. There are two different
criteria that determine when it stops. The maximum allowed generations and
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the maximum allowed generations without change. The first value, maximum
allowed generations, is set at 400. This means that the algorithm wil stop after
400 generations.

The second value is maximum allowed generations without change, this one
is set at 150. Every generation we check if we found a new best solution, if this
is the case we store this. At the end of every generation the algorithm checks
how many generations ago we last found a new optimum, if this is more than
150 generations ago the algorithm stops running. Here we assume that 150
generations without a change means that the algorithm has stopped evolving
and found an optimum.

5.4.4 Game Variables
The genomes were tested on a standard temperate climate map. The map was
512x512 tiles big. During the evolution the generated AI was the only AI in the
game. The best performing AI’s will be tested against other AI’s later. Games
were run for 20 years, after which the results were analyzed logged.
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Chapter 6

Results Grammatical
Evolution

In this Chapter we will discuss the results of the experiment discussed in Chap-
ter 5 comparing the long and short form of the grammar. We will also analyze
the programs generated from the different grammars and describe which rules we
chose for our Dynamic Scripting experiment. As well as describe some auxiliary
experiments run and their results.

6.1 Long vs. Short Grammar
In Chapter 4 our grammar was described, with a possible modification described
in Section 4.5.3. From now on the original grammar will be called the short
grammar and the modification the long grammar.

When working with the short grammar the program will split the genome
into different parts, each part corresponding with a single rule. The final pro-
gram is then created by placing the different rules one after the other. With
the long grammar the genome isn’t split into rules, rather the first non-terminal
<rule> can result in several different choices, but all of them contain a new
<rule> statement. Because of this the program continues adding rules until it
runs out of codons, any incomplete rules are ignored. The full grammars can
be viewed in Appendix A.1.

In Chapter 4 we theorized that the short form grammar would perform bet-
ter, since it would be more stable. Because the genome is split into independent
parts changes like a mutation or a crossover can no longer cause the whole
phenotype to change, disrupting the locality of the offspring. Rather smaller
changes are made to a part of the phenotype.

Figure 6.1 shows the highest score in the population as the number of gen-
erations increases. These results were obtained by running each the algorithm
50 times for each grammar with the experimental setup described in Chapter 5,
the results were then averaged.
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Figure 6.1: Figure showing the best score in the population over time, the x-axis
has the number of generations and the y-axis the fitness score in millions

The two grammars don’t differ significantly at the start. However it’s clear
that populations using the short grammar increase their performance at a much
higher rate than those using the long grammar. After 100 generations the short
grammar performs more than twice as good on average. The difference between
these two approaches is significant(p < 0.001) after 50 generations. Since every
phenotype the short-grammar can encode for can also be encoded by the long
grammar, and vice versa, the difference in performance isn’t caused because
one solution is possible in the short grammar, but not in the long. Rather it’s
because of the difference in structure in the genotype and phenotype used. Since
the genotype is split in parts, each encoding for a part of the phenotype, the
disruptive effect crossover and mutation can have is lessened.

The maximum allowed number of generations is 400, however both the long
and the short grammar results have stopped growing before then. This is an
indication that the populations already reached a local optimum before reaching
400 generations and that our stopping criteria, described in Section 5.4.3, were
liberal enough not to get in the way of better results.

Both grammars are shown to increase their fitness score up to around 100
generations, after that however the long grammar seems to get stuck in a local
optimum. While the short grammar keeps increasing for a while until around
275 generations.
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Figure 6.2: This figure shows the best score in the population, averaged over 50
runs, comparing the restricted and unrestricted versions of the grammar.

6.2 Unrestricting Variables
Assumptions were made while designing the original grammar. One of those was
that the final programs would be of a higher quality if variables were automat-
ically linked with regard to transportation module. So if the final action has to
do with the truck module, the variable in the if statement also says something
about truck module. Similarly we have different non-terminals for financial
and transportation modules and the rules generated for them, <fin_var> and
<route_var> respectively, this difference was kept intact. Because the variables
are unrestricted the grammar as a whole can be simplified. The grammar can
be found in Appendix A.3.

To test if this assumption was correct we compared the short grammar with
the new grammar, where there is no structure imposed on the variables. The re-
sults are in Figure 6.2. It is clear from these results that restricting the variables
is necessary to encourage convergence. While the genomes with unrestricted
variables show some evolution, it is very very slow. In fact most populations
were still evolving when hitting the 400 generations mark, indicating that the
grammar might be able to achieve somewhat comparable solutions if given more
time.

6.3 Programs generated
The goal of the genetic learning algorithm is to develop a database of rules for
use in the dynamic scripting. Since the rules evolved by the short grammar with
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restricted variables perform the best, they will act as the main source. However
we won’t just look at the best one, but also other well performing individuals,
since they might also give us insight into what rules perform well.

1. if ( game.truck_waiting < 0.6 ) truck.UpgradeVehicles()

2. if ( game.aircraft_rt_build <= 0.1 ) aircraft.RemoveUnprofit( )

3. if ( game.train_budget >= 0.1 ) game.debt( 0.3, 1 )

4. if ( game.balance_left <= 0.9 ) game.add_budget( 1.0, "aircraft" )

5. if ( game.truck_pr_prof <= 0.7 ) truck.find( "GRAI", 500, 500 )

6. if ( game.aircraft_profit <= 0.6 ) game.debt( 0.2, 1 )

7. if ( game.train_rt_build < 0.2 ) train.RemoveUnprofit( )

8. if ( game.truck_pr_prof >= 0.9 ) truck.UpgradeVehicles()

9. if ( game.aircraft_budget > 0.3 ) aircraft.find( "IRON", 400, 100 )

10. if ( game.truck_profit <= 0.7 ) truck.extend( "COAL", 500, 500 )

11. if ( game.train_profit <= 0.5 ) game.debt( 0.3, 1 )

12. if ( game.aircraft_waiting < 0.6 ) aircraft.RemoveUnprofit( )

13. if ( game.aircraft_profit < 0.6 ) game.add_budget( 0.2, "aircraft" )

14. if ( game.aircraft_profit >= 0.3 ) game.add_budget( 0.4, "aircraft" )

15. if ( game.aircraft_profit >= 0.1 ) game.debt( 0.7, 1 )

16. if ( game.train_rt_build >= 0.6 ) train.extend( "OIL_", 400, 75 )

17. if ( game.train_budget < 0.3 ) train.find( "WOOD", 75, 100 )

18. if ( game.truck_budget > 1.0 ) truck.RemoveUnprofit( )

19. if ( game.train_profit < 0.9 ) train.UpgradeVehicles()

20. if ( game.truck_rt_build >= 0.9 ) truck.RemoveUnprofit( )

Included above are the 20 generated rules for of the best performing genomes.
First lets look at the spread of the rules across the modules. Table 6.1, shows
how many rules are assigned to each module. What we see is that the aircraft
module has only three rules. One of them building new routes between 100
and 400 long and the other two remove unprofitable ones. The truck module
has 6 rules, so looking at this table it would seem the truck module is the
dominant one. However when we look at a game in which this AI plays we see
something curious. After a couple of years the entire map is filled with airports
and airplanes flying everywhere, although there are also some truck and train
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Module Number of rules
truck 6
train 4

aircraft 3
finance 7

Table 6.1: Table shows how many rules are assigned to each module.

routes. Despite having only one build rule, there are a lot of rules adding money
to the aircraft budget, allowing it the AI to constantly build aircraft routes at
an apparently favorable distance. Other AI’s in the same population showed
similar behavior.

In fact, the grammar often converged on behavior where the majority of the
money was spend on aircraft. One possible reason for this, is that air routes
are a lot quicker to build. This because while truck and train routes require a
pathfinder algorithm to find an actual route across tiles, the aircraft route only
requires two airfield. The AI then only has to give the order, and the planes
fly to the other airfield on their own. Pathfinding can be very computationally
intensive, especially over longer distances, and AI’s are limited to 10.000 op-
codes in OpenTTD. That means that sometimes for weeks in the game the AI
does nothing except calculate a path. This approach skips that and just builds
a ton of airfields instead. While this approach may be profitable, it’s not very
fun to play against. Since a lot of the AI’s from the short grammar tended to
focus on aircraft we decided to explore changes in the grammar to encourage
other play styles and gather different behavior for our database.

Some of the rules generated here are dead, they will never be triggered. An
example is "if ( game.truck_budget > 1.0 ) truck.RemoveUnprofit( )"
this rule will never trigger, since the truck_budget variable can never be higher
than 1. Another rule that is dead in a way is "if ( game.truck_pr_prof <=
0.7 ) truck.find( "GRAI", 500, 500 )" since this rule will only accept routes
between stations exactly 500 tiles apart from each other, it will almost never
build, despite being triggered.

6.3.1 Single transportation grammars
To broaden the rule database we ran the experiment described in Chapter 5 with
3 different grammars. All of them were restricted to only a single transportation
module, so only trucks, trains or aircraft were used. Based on the analysis in
Section 6.3 it would seem likely that the aircraft-only grammar will perform
best. Figure 6.3 shows that this is indeed the case. The aircraft only grammar
quickly rises and converges to a value not significantly different from the short
grammar, although lower. Clearly for this type of grammar aircraft are the
most profitable.

Trains perform the worst with trucks coming in second. This would confirm
our hypothesis that the increased performance of the aircraft module is due to
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Figure 6.3: This figure shows the best score in the population, averaged over 50
runs, comparing the grammars restricted to one transportation module

the lack of pathfinding, since the pathfinding for trucks is a lot simpler than
for trains. Trucks run on roads which are two-way streets, so a single line of
road tiles is enough. Train tracks are one-way so they require two separate,
non-overlapping, paths, which is more computationally expensive.
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Chapter 7

Constructing the Rulebase

Our dynamic scripting algorithm requires a database of rules, from now on
referred to as the rulebase. The rulebase will be split into different groups, to
ensure that all actions needed are available. Since our goal isn’t necessarily to
make the most profitable AI possible, but also something that is interesting to
play against, we generated different rulesets using different grammars. This was
done using a grammatical evolution algorithm, a form of evolutionary learning.
The process is described in Chapter 6.

We gathered the programs generated by the final genomes in populations
evolved using several different grammars. They were taken from the short gram-
mar and the single transportation grammars.

7.1 Analyzing the rules
We want all transportation modules to be included in the dynamic scripting,
so for all three transportation systems we need rules for finding, extending and
managing the network, as well as rules for dealing the with budgets of the
modules and the debt of the AI as a whole. We analyzed the different programs
by looking at the actions taken in them, and how often they occurred. A small
script was written which sorted actions and labeled how often they appeared and
what the average fitness score was of individuals using them. It would also list
examples from rules where this action was used. Note that here we distinguish
between the action which would be taken, and the rule as a whole (including if
statement). We assume that rules used in many genomes and associated with
a high fitness score are good rules. An example of the output from the script is
below:

train.find( "WOOD", 75, 100 ) 6350212 20

if ( game.train_budget < 0.1 ) train.find( "WOOD", 75, 100 ) 5729243 1

if ( game.train_budget < 0.3 ) train.find( "WOOD", 75, 100 ) 6382894 19
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Here the program lists all cases where the action was trying to find a train
route between 75 and 100 tiles long transporting wood. There are 20 rules in
total with this action, and their average score is 3350212. This action occurs
in two rules, listed next to the rules is how often they occur and the average
score of the genomes they occur in. In this case the first rule only occurred
once, while the second one occurred 19 times. The average fitness score of the
programs in which the second rule occurred was higher than the first one. These
two facts combined make the second rule a more likely candidate for inclusion
in the dynamic scripting rulebase. Rules with a very high average score, but
who only occur in a few genomes are also interesting, since they might be the
reason those genomes scored so good.

We found that the combined genomes from the aircraft grammar had fewer
unique rules in the their populations. On average about 50, while the truck
grammar had around 60 and the train around 80. Possibly this convergence to
fewer rules played a role in these genomes performing better.

7.1.1 Short Grammar
The best performing actions in the short grammar add money to the aircraft
module budget. This makes sense, since the short grammar strongly favors the
aircraft. From the short grammar we took several rules regarding the manage-
ment of loans and truck and airplane routes, the train module is rarely used in
this grammar.

7.1.2 Single Transport
Looking at the rules for the financial module evolved with a single transportation
module, the modules appear to be very greedy. Most of the high scoring rules
increase the budget for the transportation module with the maximum or a
near maximum amount. This probably happened because there was only one
transportation module. Since any money not allocated to the module couldn’t
be used to make routes, it makes sense to transfer most available money to the
budget of the transportation module.

The high performing finance rules usually have an if statement with very
generic variables. They rarely look at the performance of the module, but more
at factors like debt taken and balance left. One exception to this is low budgets,
there are several rules that increase the budget for a given transportation module
when it drops below a certain (generally low) value.

Looking at the rules for finding new routes there is a clear difference between
the aircraft module and the others. The aircraft module has only a handful of
distinct find actions, while there are dozens in the truck or train only popula-
tions. This probably occurred because the aircraft module is agnostic to cargo,
since it can only transport passengers and mail. So the only distinction between
the rules is distance used.

The train module on the other hand shows a nice spread across different
cargo types and ranges, same as the truck module. Although the truck module
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seems to have a preference for transporting coal. Most variables used in the if
statements of these rules are _waiting, which have to do with cargo available
at the stations, and _rt_build which increases the longer ago it is that a new
route was build by that corresponding module.

If-statements for actions regarding the upgrading of routes and removing
unprofitable ones generally looked at the profitability of the routes and how
much cargo was waiting. It seems that action’s value at a certain moment is
strongly linked to only a few variables. Future research might look into what
the effect of restricting the variables even more would be on the fitness scores
achieved by the genetic learning algorithm.

7.2 Gathering rules
We want to create a balanced AI, which uses several different transportation
types. Therefore we have gathered the best performing rules for each trans-
portation module. For each module we tried to find a balanced spread of rules.
This means we gather several different rules that find or extend routes for dif-
ferent cargoes. We also gathered rules for maintaining our routes, upgrading or
removing, and managing the finances, increasing and paying off debt. The final
rulebase is shown in Appendix B.

Using this approach we try to avoid "dead" rules. Rules that are never used,
for instance a rule trying to extend the oil transporting network, when there are
no rules creating an oil transporting network. If the network is never build, it
can’t be extended, and the AI is burdened. This because the rule takes a spot,
but never does anything. It could be replaced by a rule that might be beneficial.
A good mix of rules could help prevent this from happening.

For each single transportation grammar we extracted the best 4 rules for
the following actions; add_budget, (increase) debt, find (new route), extend
(old route), remove unprofitable and upgrade vehicles. So 24 per transportation
type, to this we added 15 rules from the short grammar, giving us 89 rules in
total.

45



Chapter 8

Dynamic Scripting

Dynamic scripting is an unsupervised online learning technique [20]. It was first
developed by Spronck et al. [20] for use in the Computer RolePlaying Game
Neverwinter Nights. They gave four requirements they wanted their algorithm
to fulfill;

1. Fast, this excludes most model-based learning.

2. Effective, meaning it’s at least as challenging as manually designed scripts.

3. Robust, capable of dealing with randomness.

4. Efficient, it should require few trials.

In another paper four additional, functional, requirements are listed [26]:

1. Clarity, results must be easily interpretable.

2. Variety, the AI must be capable of a variety of different behavior.

3. Consistency, the AI results should have little variance.

4. Scalability, the AI must scale with the results of the human player.

To meet these requirements a ’high performance’ algorithm is required [15].
High performance algorithms require two things [15]; exclusion of randomness,
and domain-specific knowledge. Dynamic scripting was developed to be able to
meet these requirements.

The algorithm is a reinforcement learning technique. It has been adapted
however, since traditional reinforcement learning doesn’t satisfy the efficiency
criteria [20], simple reinforcement learning systems generally don’t perform well
in games. It uses on-policy value iteration to learn state-action values. These
values are exclusively based on a reward signal, maximising immediate rewards
is it’s only concern [28] and it does not try to model opponents.
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Action Description Transport module
add_budget Add money to the budget of a transportation module *

find Finds a new route *
extend Extends an old route *

RemoveUnprofitable Removes unprofitable routes *
UpgradeVehicles Upgrades vehicles on routes *

debt Increases or decreases company debt

8.1 Components
The algorithm maintains a rule database, a rulebase, split into rules for different
components. Everytime an AI is needed it is created by combining rules from
these different components. In our research we split rules according to the
action they trigger. A balanced AI should have at least one rule triggering
each action. Since all of them represent a vital game function. The following
groups have been created, those marked with a * have different versions for each
transportation module:

In the rulebase each of these rules has a weight. The probability that a rule
is selected for play is equal to its weight. The weights of all rules in a component
group sum to 1. By changing the weight values in the rulebase the algorithm is
able to adapts to changing circumstances. For this approach to work, all, or at
least most, rules need to define sensible behavior.

8.2 Scoring
At the end of a game the score of the AI is evaluated using the fitness function
defined in Section 5.3. The AI plays against an opponent, so the opponent’s
fitness score is then determined in the same way. After this the final score is
calculated by subtracting the opponent’s score from the AI’s score.

The score is then normalized to the interval [0,1]. Here 0 represents a final
score of -1.000.000 and 1 a score of 2.000.000. The game is considered a win if
the AI scored higher than it’s opponent, resulting in a positive final score.

After the score is determined, the weights of the rules are adjusted. This is
done using the following algorithm:

w =
{

max(0, Worg − MP ∗ b−F
b ) F < b

min(Worg + MR ∗ F −b
1−b , 1)) F ≥ b

F is the normalized score, b is the threshold for winning. B is set at 0.3 in
our research. When the AI made more profit than it’s opponent F will be bigger
than 0.3, triggering the bottom rule, otherwise the top one is used. MP is the
maximum penalty and MR the maximum reward, both are set at 0.2. Worg is
the original weight of the rule and W the new one.
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After updating the activated rule, the other rules in the same component
need to be updated as well. This way we ensure that the sum of all weights
stays 1. The following function is used:

w =

 Worg + (c ∗ Worg∑n

i=1
wi

) F < b

Worg − (c ∗ Worg∑n

i=1
wi

) F ≥ b

c is the (absolute) change in weight the activated rule had,
∑n

i=1 wi is the
sum of weights of all n unused rules.

8.3 Rules chosen
In Chapter 7 we discussed how we assembled the rulebase for use in dynamic
scripting. For each of groups listed in Table 8.1 we have at least four rules in the
rulebase, and we pick one from each group each game. The only exception is the
debt group, there we pick 2 rules. This leads to a total of 17 rules. Comparable
to the AI’s generated by the grammatical evolution described in Chapter 6.
Those AI’s had 20 rules generated, however they often also contained several
dead rules. Causing them to have fewer than 20 effective rules.

8.4 Experiment
To asses the adaptive performance of the algorithm we let it play against several
static AI’s developed for OpenTTD. All the AI’s discussed in Chapter 2 will be
used as opponents. Here a quick recap of the opponents:

PathZilla, uses graph algorithms to find a good path between cities.

trAIns, sophisticated use of trains.

ChooChoo, build huge connected railway networks

AdmiralAI, strives to be an AI capable of using everything.

While using players would be the ideal way to evaluate how dynamic the AI
is, due to time constraints we have chosen to test them against strong static
opponents instead. This is a common strategy for testing dynamic scripting
algorithms [14, 28, 13].

Every round the AI played against an opponent the score was logged. If
the average score over the last 10 games was over 3.000.000, the algorithm was
stopped, since it was capable of reliably beating the opponent. Otherwise the
algorithm was allowed to run for 50 runs before being stopped.
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Figure 8.1: Average score from the last 10 generations. Averaged over 50 runs
of the algorithm.

8.5 Results
Experiments were run 50 times each, the result were then averaged. We tracked
the AI’s final score after each round, this is the score we calculate by subtracting
it’s opponent’s game score from the AI’s. These results are shown in Figure 8.1.
Against all the four different opponents the generated AI’s show progress and
in all but one case it beats them in the end.

We don’t know for sure why it’s unable to beat ChooChoo, but we theorize
it’s because ChooChoo builds large railnetworks, possibly blocking routes the
AI would otherwise take. This would result in very long pathfinding, since
the pathfinding algorithm tries to go around obstacles before going over them,
because building over other roads/tracks is very expensive. The AI is unable
to use the strategy that was evolved in Chapter 6, where it just build lots of
aircraft. This because the program generated by the dynamic scripting always
has transport rules for every type.

The other three AI’s the algorithm can beat. Although it’s only barely
capable of beating the trAIns AI. Since trAIns is an AI that is focused on trains,
it could be because trAIns also blocks a lot of routes, similar to ChooChoo.
The other two AI’s which are not as trains focused it can beat reliably, with
AdmiralAI being the easiest one to beat. It’s worth noting that none of the
evolved programs from Chapter 5 were able to beat any of the static approaches.
They probably contained to many dead rules to be competitive.
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8.6 Future research
While the AI’s generated by dynamic scripting were capable of beating 3 out
of 4 static AI’s, there is still room for improvement. One possible direction is
offered by research of Spronck et. al [28]. They compared different rule ordering
mechanisms. The default rule ordering by Ponsen et al.[14], also used here, was
compared with two other mechanisms.

The first is called Relation-Weight Ordering, in this approach a relation-
weight table is stored. For each combination of rules it stores whether they
have a positive or a negative effect on each other. Rules are ordered so as to
maximize the weights from the table.

The second was Relation-Weight Ordering with Selection Bonus. This mech-
anism works the same as regular relation-weight ordering, except for the rule
selection. If a rule is chosen, we look at the rule in the relation-weight table
with whom it has the best relation (highest weight). If this rule is not yet added
to the grammar, it will receive a bonus on its probability of being picked.

In their research Ponsen et al. showed these techniques to be effective and
their is reason to believe they would work in this domain. Since in the game
many rules depend on each other, for instance an extend rule for coal is useless
if a coal rule is never build. A form of relation-weight ordering could help find
these links.
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Chapter 9

Conclusion

The goal of this thesis is to use dynamic scripting and evolutionary learning to
develop an dynamic AI for the game OpenTTD. The database of rules required
by the dynamic scripting algorithm was created using a Grammatical Evolution
algorithm. Grammatical Evolution is a type of Evolutionary Learning where
genomes represent programs. During the development of the database we looked
at the effects of differently structured grammars and genomes.

We found that using domain knowledge to restrict variables had an enor-
mous effect on learning. Reinforcing the notion that domain knowledge is very
important when developing these types of algorithms [15]. Possible future work
could look into restricting variables even more by tying specific variables to
specific actions.

Another important change we made was to the structure of the genome.
Traditional grammatical evolution solutions view the genome has a single pro-
gram, our approach was to split the genome into parts. Each part encoding a
single rule. Our hope was that this would increase the locality of the genomes,
by protecting most of the rules in the program during crossover or mutation.
Despite both approaches being capable of generating the same programs, the
version with a split genome performed more than twice as good.

Finally we compared different single transport grammars, where only one
type of transportation was allowed. While none of the resulting programs per-
formed better than the version with all transportation modules, the resulting
grammars were a valuable source of rules for our rulebase.

We used the resulting programs to develop a rulebase. Currently these rules
were handpicked. While picking them rules we analyzed the rules in the pro-
grams by looking at how often they occurred across different genomes, and the
average fitness score of those genomes. Rules that had a high average fitness,
or occurred in many programs were considered to play a role in their program’s
success. Rules were picked looking at a combination of these two factors and
human judgment about the suitability of this rule. Future research could look
into developing algorithms to automate or at least formalize this process.

After constructing our rulebase we tested our dynamic scripting algorithm
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against four different static opponents. The algorithm was capable of beating
three. Although this is a good score there was room for improvement. In Sec-
tion 8.6 we discuss an alternative rule ordering mechanism that might improve
performance.

However our goal was not just to develop the highest scoring AI financially
but rather develop an AI that is fun to play against. We feel that dynamic
scripting offers a higher entertainment value since the AI is capable of constantly
changing it’s tactics, keeping players on edge. One interesting development is
using dynamic scripting to make automatically scaling opponents for human
players [26]. This could be done by changing the fitness function used and is an
avenue for possible future research.
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Appendix A

Grammars

The grammars represented below are cleaned up for readability. The actual pro-
grams run have truck, train and aircraft replaced with game._truck_manager,
game._train_manager and game._aircraft_manager respectively. Similarly all
variables have game. appended to them. The game variable passed along allows
the AI to send commands to and read variables from various parts of the AI
program.

A.1 Short Grammar
<rule> ::= <money> | <truck> | <rail> | <aircraft>

<truck> ::= if ( truck<route_var> <equals> <num> ) truck.<build> |
if ( truck<route_var> <equals> <num> ) truck.<maintain>

<rail> ::= if ( train<route_var> <equals> <num> ) train.<build> | if
( train<route_var> <equals> <num> ) train.<maintain>

<aircraft> ::= if ( aircraft<route_var> <equals> <num> ) aircraft.<build>
| if ( aircraft<route_var> <equals> <num> ) aircraft.<maintain>

<build> ::= <find> | <extend>

<find> ::= find ( <cargo> <distance> <distance> )

<extend> ::= extend ( <cargo> <distance> <distance> )
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<maintain> ::= <upgrade_vehicle> | <remove_unprofitable>

<upgrade_vehicle> ::= UpgradeVehicles()

<remove_unprofitable> ::= RemoveUnprofit()

<money> ::= if ( <fin_var> <equals> <num> ) game.<debt> | if (
<fin_var> <equals> <num> ) game.<increase_budget>

<debt> ::= debt ( <boolean> <amount> )

<increase_budget> ::= add_budget( <num>, <trans_budget> )

<cargo> ::= "PASS" | "IRON" | "OIL_" | "WOOD" | "GRAI" | "COAL"

<fin_var> ::= truck_profit | aircraft_profit | train_profit | game.balance_left
| game.debt_taken | truck_budget | train_budget | aircraft_budget

<route_var> ::= _waiting | _pr_prof | _rt_build | _profit | _budget

<num> ::= 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0

<equals> ::= < | > | ≤ | ≥

<distance> ::= 25 | 50 | 75 | 100 | 150 | 200 | 300 | 400 | 500

<boolean> ::= 0 | 1

<trans_manager> ::= truck | train | aircraft

<trans_budget> ::= "truck" | "train" | "aircraft"

This is the short grammar, the Grammar itself is described in more detail in
Chapter 4.
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A.2 Long Grammar
<rule> ::= <money> <rule> | <truck> <rule> | <rail> <rule> | <air-
craft> <rule>

The rest of the grammar is the same as for the Short Grammar

A.3 Unrestricted Variables
<rule> ::= <money> | <if> <trans_manager>.<build> | <if> <trans_manager>.<maintain>

<if> ::= if ( <fin_var> <equals> <num> ) | if ( <route_var> <equals>
<num> )

<build> ::= <find> | <extend>

<find> ::= find( <cargo>, <distance>, <distance> )

<extend> ::= extend( <cargo>, <distance>, <distance> )

<maintain> ::= <upgrade_vehicle> | <remove_unprofitable>

<upgrade_vehicle> ::= <trans_manager>.upgradeVehicles()

<remove_unprofitable> ::= <trans_manager>.removeUnprofitable( )

<money> ::= <if> game.<debt> | <if> game.<increase_budget>

<debt> ::= debt( <num>, <boolean> )

<increase_budget> ::= add_budget( <num>, <trans_budget> )

<cargo> ::= "PASS" | "IRON" | "OIL_" | "WOOD" | "GRAI" | "COAL"

55



<fin_var> ::= truck_profit |aircraft_profit | train_profit | balance_left
| debt_taken | truck_profit | train_profit | aircraft_profit

<route_var> ::= truck_waiting | train_waiting | aircraft_waiting | truck_pr_prof
| train_pr_prof | aircraft_pr_prof | aircraft_rt_build | train_rt_build |
truck_rt_build | truck_profit |aircraft_profit | train_profit | truck_profit
| train_profit | aircraft_profit

<num> ::= 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0

<equals> ::= < | > | <= | >=

<distance> ::= 25 | 50 | 75 | 100 | 150 | 200 | 300 | 400 | 500

<boolean> ::= 0 | 1

<trans_manager> ::= train | truck | aircraft

<trans_budget> ::= "road" | "train" | "aircraft"
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Appendix B

Rule database

B.1 Short Grammar Rules
if ( manager.balance_left > 0.6 ) manager.debt( 0.6, 1 )

if ( manager.debt_taken < 0.2 ) manager.debt( 0.4, 0 )

if ( manager.truck_budget < 0.4 ) manager._truck_manager.find( "OIL_",
150, 100 )

if ( manager.train_rt_build < 0.1 ) manager._train_manager.find( "WOOD",
750, 50 )

if ( manager.aircraft_budget > 0.3 ) manager._aircraft_manager.find(
"IRON", 400, 100 )

if ( manager.truck_budget < 1.0 ) manager._truck_manager.find( "COAL",
300, 50 )

if ( manager.aircraft_budget >= 0.7 ) manager._aircraft_manager.extend(
"WOOD", 400, 300 )

if ( manager.truck_profit <= 0.7 ) manager._truck_manager.extend( "COAL",
1000, 750 )

if ( manager.aircraft_budget > 0.5 ) manager._train_manager.extend(
"COAL", 150, 75 )

if ( manager.train_rt_build < 0.2 ) manager._train_manager.RemoveUnprofit(
)

if ( manager.aircraft_waiting < 0.6 ) manager._aircraft_manager.RemoveUnprofit(
)

if ( manager.truck_profit <= 0.4 ) manager._truck_manager.RemoveUnprofit(
)
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if ( manager.train_profit > 0.9 ) manager._train_manager.UpgradeVehicles()

if ( manager.truck_waiting > 0.3 ) manager._truck_manager.UpgradeVehicles()

if ( manager.aircraft_pr_prof >= 0.9 ) manager._aircraft_manager.UpgradeVehicles()

B.2 Aircraft only rules
if ( manager.balance_left > 0.4 ) manager.add_budget( 0.6, "aircraft" )

if ( manager.balance_left <= 0.3 ) manager.add_budget( 0.1, "aircraft"
)

if ( manager.balance_left <= 0.4 ) manager.add_budget( 0.7, "aircraft"
)

if ( manager.aircraft_budget >= 0.1 ) manager.add_budget( 0.5, "air-
craft" )

if ( manager.aircraft_budget > 0.9 ) manager.debt( 0.9, 0 )

if ( manager.balance_left >= 0.7 ) manager.debt( 0.8, 0 )

if ( manager.balance_left >= 0.2 ) manager.debt( 0.1, 0 )

if ( manager.debt_taken < 0.1 ) manager.debt( 0.2, 1 )

if ( manager.aircraft_rt_build < 0.4 ) manager._aircraft_manager.find(
"COAL", 300, 200 )

if ( manager.aircraft_pr_prof <= 0.6 ) manager._aircraft_manager.find(
"GRAI", 100, 500 )

if ( manager.aircraft_budget <= 0.6 ) manager._aircraft_manager.find(
"GRAI", 300, 500 )

if ( manager.aircraft_rt_build < 0.4 ) manager._aircraft_manager.find(
"COAL", 300, 75 )

if ( manager.aircraft_budget < 0.4 ) manager._aircraft_manager.extend(
"WOOD", 500, 300 )

if ( manager.aircraft_profit <= 0.3 ) manager._aircraft_manager.extend(
"PASS", 100, 25 )

if ( manager.aircraft_budget <= 0.2 ) manager._aircraft_manager.extend(
"IRON", 100, 75 )

if ( manager.aircraft_budget <= 0.7 ) manager._aircraft_manager.extend(
"GRAI", 500, 200 )
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if ( manager.aircraft_profit > 0.6 ) manager._aircraft_manager.RemoveUnprofit(
)

if ( manager.aircraft_rt_build < 0.2 ) manager._aircraft_manager.RemoveUnprofit(
)

if ( manager.aircraft_budget < 0.5 ) manager._aircraft_manager.RemoveUnprofit(
)

if ( manager.aircraft_pr_prof >= 0.2 ) manager._aircraft_manager.RemoveUnprofit(
)

if ( manager.aircraft_rt_build <= 0.2 ) manager._aircraft_manager.UpgradeVehicles()

if ( manager.aircraft_budget >= 0.1 ) manager._aircraft_manager.UpgradeVehicles()

if ( manager.aircraft_waiting < 0.6 ) manager._aircraft_manager.UpgradeVehicles()

if ( manager.aircraft_profit < 0.3 ) manager._aircraft_manager.UpgradeVehicles()

B.3 Train only rules
if ( manager.train_budget <= 0.4 ) manager.add_budget( 0.1, "train" )

if ( manager.debt_taken < 0.9 ) manager.add_budget( 0.9, "train" )

if ( manager.balance_left > 0.9 ) manager.add_budget( 0.9, "train" )

if ( manager.debt_taken < 0.7 ) manager.add_budget( 0.3, "train" )

if ( manager.debt_taken < 0.7 ) manager.debt( 0.7, 1 )

if ( manager.balance_left < 0.8 ) manager.debt( 0.3, 1 )

if ( manager.debt_taken >= 0.6 ) manager.debt( 0.1, 0 )

if ( manager.train_profit <= 0.1 ) manager.debt( 0.7, 1 )

if ( manager.train_waiting <= 0.3 ) manager._train_manager.find( "PASS",
50, 300 )

if ( manager.train_rt_build < 0.4 ) manager._train_manager.find( "WOOD",
75, 300 )

if ( manager.train_waiting <= 0.2 ) manager._train_manager.find( "COAL",
400, 100 )

if ( manager.train_rt_build < 0.8 ) manager._train_manager.find( "OIL_",
100, 150 )

if ( manager.train_budget <= 0.4 ) manager._train_manager.extend(
"COAL", 25, 400 )
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if ( manager.train_waiting >= 0.4 ) manager._train_manager.extend(
"WOOD", 25, 500 )

if ( manager.train_waiting < 0.2 ) manager._train_manager.extend( "PASS",
150, 200 )

if ( manager.train_waiting >= 0.6 ) manager._train_manager.extend(
"OIL_", 75, 300 )

if ( manager.train_rt_build >= 0.1 ) manager._train_manager.RemoveUnprofit(
)

if ( manager.train_waiting > 0.5 ) manager._train_manager.RemoveUnprofit(
)

if ( manager.train_waiting <= 0.6 ) manager._train_manager.RemoveUnprofit(
)

if ( manager.train_profit < 0.9 ) manager._train_manager.RemoveUnprofit(
)

if ( manager.train_profit >= 0.3 ) manager._train_manager.UpgradeVehicles()

if ( manager.train_rt_build > 0.2 ) manager._train_manager.UpgradeVehicles()

if ( manager.train_waiting <= 0.3 ) manager._train_manager.UpgradeVehicles()

if ( manager.train_pr_prof >= 0.1 ) manager._train_manager.UpgradeVehicles()

B.4 Truck only rules
if ( manager.truck_budget <= 0.2 ) manager.add_budget( 0.9, "truck" )

if ( manager.debt_taken > 0.2 ) manager.add_budget( 0.9, "truck" )

if ( manager.debt_taken < 0.6 ) manager.add_budget( 0.8, "truck" )

if ( manager.debt_taken <= 0.4 ) manager.add_budget( 0.4, "truck" )

if ( manager.balance_left >= 0.6 ) manager.debt( 0.5, 0 )

if ( manager.balance_left >= 0.4 ) manager.debt( 0.1, 1 )

if ( manager.debt_taken <= 0.3 ) manager.debt( 0.2, 1 )

if ( manager.debt_taken >= 0.5 ) manager.debt( 0.8, 1 )

if ( manager.truck_waiting > 0.4 ) manager._truck_manager.find( "COAL",
25, 100 )

if ( manager.truck_rt_build > 0.2 ) manager._truck_manager.find( "GRAI",
25, 100 )
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if ( manager.truck_budget >= 0.5 ) manager._truck_manager.find( "PASS",
100, 50 )

if ( manager.truck_rt_build <= 0.5 ) manager._truck_manager.find(
"PASS", 25, 75 )

if ( manager.truck_rt_build >= 0.6 ) manager._truck_manager.extend(
"PASS", 500, 75 )

if ( manager.truck_waiting > 0.4 ) manager._truck_manager.extend( "GRAI",
500, 100 )

if ( manager.truck_profit < 0.7 ) manager._truck_manager.extend( "COAL",
500, 300 )

if ( manager.truck_waiting <= 0.5 ) manager._truck_manager.extend(
"PASS", 25, 75 )

if ( manager.truck_waiting <= 0.9 ) manager._truck_manager.RemoveUnprofit(
)

if ( manager.truck_waiting <= 0.2 ) manager._truck_manager.RemoveUnprofit(
)

if ( manager.truck_pr_prof < 0.2 ) manager._truck_manager.RemoveUnprofit(
)

if ( manager.truck_budget >= 0.3 ) manager._truck_manager.RemoveUnprofit(
)

if ( manager.truck_budget >= 0.3 ) manager._truck_manager.UpgradeVehicles()

if ( manager.truck_budget < 0.3 ) manager._truck_manager.UpgradeVehicles()

if ( manager.truck_waiting > 0.4 ) manager._truck_manager.UpgradeVehicles()

if ( manager.truck_waiting > 0.1 ) manager._truck_manager.UpgradeVehicles()
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