
Comparing software patterns

SPEM: A Software Pattern Evaluation Method

René van Donselaar

Student ID: 3780570

Utrecht University, Utrecht, The Netherlands

r.n.a.vandonselaar@students.uu.nl

mailto:r.n.a.vandonselaar@students.uu.nl

Content
1. Problem statement ... 4

2. Introduction ... 8

2.1 Thesis structure ... 9

2.2 Definitions .. 9

2.2.1 Software pattern.. 9

2.2.2 Pattern language ... 10

2.2.3 Architectural style .. 10

3. Research approach ... 12

3.1 Construct validity .. 16

3.2 Internal validity ... 16

3.3 External validity .. 16

3.4 Reliability ... 17

3.5 Interview protocol ... 17

4. Literature review.. 18

4.1 Software Patterns .. 18

4.2 Architecture Evaluation .. 20

4.3 Quality attributes ... 21

4.4 Research implications ... 22

5. Initial Method Construction ... 24

5.1 Expert interview 1 ... 24

5.1.1 Results and interpretation ... 25

5.2 Expert interview 2 ... 27

5.2.1 Results and interpretation ... 27

5.3 Implications for pattern evaluation ... 28

6. Method evolution ... 30

6.1 Focus group session 1 results and interpretation 30

6.2 Focus group session 2 results and interpretation 37

6.3 Focus group session 3 results and interpretation 45

7. SPEM – Software pattern evaluation method .. 51

a. Role of the evaluator ... 55

b. Role of the participant ... 57

3

8. SPEM implementation ... 58

8.1 Industrial use ... 59

8.2 Academic use .. 59

8.3 SPEM’s position in software architecture ... 60

8.4 Advantages of using SPEM .. 61

9. Discussion.. 63

9.1 Interpreting SPEM evaluation summaries .. 63

9.2 SPEM over conventional software architecture discussions 64

9.3 Restrictions ... 65

10. Conclusion and future work... 66

Future work .. 67

11. Acknowledgements ... 68

References .. 69

Appendix .. 73

A. Participant profile .. 73

B. Score table ... 81

C. Evaluation summary .. 83

D. Expert interview 1 ... 83

E. Expert interview 2 ... 94

F. Focus group session 1 – Score table .. 114

G. Focus group session 2 – Score table .. 116

H. Focus group session 3 – Score table .. 118

1. Problem statement

Modern software architecture relies heavily on the use of many software patterns.

These patterns often extend each other or work together to solve one problem. Pattern

languages are groups of patterns that together target a style of architecture (Buschmann,

Henney, & Schmidt, 2007). This is an important factor to take into account, because it

means that rather than selecting individual patterns, an architect will want to select an

architectural style, and thus select a large set of patterns that fit this style. This area of

software architecture has developed, which resulted in a large amount of documented

patterns and allows for comparing architectural styles (Booch, 2005; Shaw & Garlan,

1996). Although it seems that comparing individual patterns is less relevant for soft-

ware architecture, an architectural style is selected at the early stages of software archi-

tecture design and cannot easily be changed after the development has started. This

creates a problem, because while the software is being developed, the requirements for

the project or the environment will change. Therefore it is necessary to extend the ar-

chitecture or at times alter the existing architecture. At this point it becomes relevant to

compare individual patterns in order to select the pattern that fits the project require-

ments. This is an ongoing process that happens throughout software development and

relies on the experience of software architects and developers. We have formulated the

following problem statement:

Software patterns and their impact on software quality cannot be compared without

studying pattern documentation or relying on relevant experience.

Current documentation of software patterns is lacking a way to compare them with

each other, while their influence on software design and on software quality is strong

(Brito e Abreu & Melo, 1996). But if multiple patterns tackle the same problem, how

does an architect decide which one to use? At this time such decision is based on the

experience of architects and developers (Garlan, 2000).

There are a few reasons why pattern documentation is not well suited for compari-

son:

- Different description styles

Patterns are often written by different authors, who can impose a different style of

writing on documentation. For a comparison, this means that the reader cannot know

what content documentation will hold. One author might give an example about how

the pattern can be implemented in a certain project, while another author does not.

Aside from the formal notation, the author has freedom in the details and examples

found in pattern documentation. A comparison requires that aspects which are im-

portant to the reader are consistently mentioned in all alternatives he tries to explore.

Although the majority of patterns are written by different authors, there are some ex-

ceptions to this.

Pattern languages are a collection of patterns which are written by an author to co-

herently solve a problem using multiple patterns. However, when we try to compare

5

patterns we are often looking at alternatives, not patterns that are part of a pattern se-

quence. For example, it is unlikely one would compare the role pattern with the limited

view pattern (Yoder & Barcalow, 1998). Both patterns can work together in sequence,

but solve a different problem. The role pattern allows for users to be assigned a role,

which can be used to restrict the user in their access of the application’s functions, while

the limited view pattern uses that the role information to either show or not show op-

tions to the user in the user interface. Both patterns are no alternative to one another as

they solve a different problem, which means that their comparison is not beneficial to

architectural decision making.

Another exception is a pattern collection, which is written by the same author or

group of authors. These collections can be found in software architecture handbooks

and academic literature. There are also examples of (large) companies that mine their

own patterns in order to allow for design reuse within their own company (Beck, et al.,

1996). Pattern collections have the advantage that they are written by the same author(s)

and as opposed to pattern languages, can also include alternative patterns. This means

that pattern collections can provide a way to compare alternative patterns based on doc-

umentation. However, the added restriction is that we are limited to the patterns in-

cluded in the collection.

- Qualitative description

Pattern documentation is qualitative in nature, consisting of text, images and dia-

grams. Text is written using a formal notation, dictating the number of sections and

their type content. Pattern documentation usually tries to answer a few questions:

 What is the problem?

 Why is it a problem?

 What is the solution?

 What are the consequences?

At minimum the chosen notation answers the above mentioned questions, but might

require more sections. Additional sections are often used to give examples of the pattern

and to explain how the pattern can be used for a certain type of implementation. Images

can be used to support the text. For instance, a real world example of the façade pattern

can be supported by an image of a support desk employee who allows the user to access

complex services without ever knowing these services exist or how they work, in this

case the image would help the reader to understand the pattern. Patterns often describe

objects are their relationships, supported by class diagrams. Any quantitative data on

the pattern is absent, which might be explained by the fact that a pattern is an abstract

solution without details on implementation. Therefore any quantitative data on the pat-

terns consequences would be irrelevant, because it would be implementation specific.

A quantitative expression of a pattern’s characteristics or impact on software quality

would have the reader ask, ‘in which case would these numbers apply?’ and ‘what do

these figures mean for my implementation?’. However, the goal of pattern documenta-

tion is to communicate working design, not to compare. The qualitative nature of pat-

tern documentation makes it difficult to compare patterns. It means that the documen-

tation has to be studied in-depth, before it can be compared.

- Quality attribute description

Software patterns can have an impact on software quality, which can be divided in

multiple quality attributes. Quality attributes can be used in software architecture eval-

uation and are well a well-known concept to software architects. There are many dif-

ferent lists mentioning a number of quality attributes and sub-attributes. Examples of

these attributes are performance, maintainability and usability. Quality attributes are

often mentioned in pattern documentation, specifically in the forces and consequences

sections. However, the level of depth in which these quality attributes are mentioned is

up to the author. It can be the case that performance is mentioned extensively, while

other attributes like maintainability are briefly mentioned, or not mentioned at all.

Therefore the reader of pattern documentation cannot know what to expect, meaning

that the documentation has to be studied. Time is lost if the pattern documentation does

not contain quality attributes that interest the reader. Pattern documentation does not

give a clear overview of the impact that a pattern has on software quality and its

tradeoffs. The fact that the author has freedom in which quality attributes are men-

tioned, means that pattern documentation is not a suitable tool for software pattern com-

parison based on quality attributes.

In the remainder of this section the need to compare patterns in explained. We have

discerned four scenarios that occur in software pattern selection (Figure 1). In the first

scenario the architect wants to select a pattern that solves a particular problem and only

one pattern provides a solution. In this scenario no choice is presented and it is clear

which pattern should be selected. In the second scenario the architect is aware of two

patterns that solve the problem. Because he has experience using both patterns, he uses

his existing knowledge of previous implementations to make a well-founded decision.

In the third scenario multiple patterns solve the problem. The architect has experience

using one solution, while he has no experience with the other. This makes for an inter-

esting decision, as one would expect an architect would study the pattern he has no

experience with in order to make a decision. However, it often occurs that an architect

will select a pattern he is familiar with in favor of an unused alternative. Studying a

pattern requires an investment from the architect, which makes a known pattern a more

appealing solution. This is a problem, because a known solution is not always the best

solution. The architect does not have experience using either of the patterns presented

in the fourth scenario. In this case both patterns have to be studied in-depth in order to

make a decision, making it time consuming.

7

Architect

Pattern A

Problem

Architect

Pattern A

Problem

Pattern B

Architect

Pattern A

Problem

Pattern B

Architect

Pattern A

Problem

Pattern B

Scenario 1

One pattern available
Scenario 2

Two patterns available

Experience using both

Scenario 3

Two patterns available

Experience using one

Scenario 4

Two patterns available

No experience

Figure 1 - Scenarios in software pattern selection

Only the second scenario involves a decision based on experience. However, there

are too many pattern available for an architect to have experience with. For inexperi-

enced architects the third and fourth scenario are common. In this study we want to

capture the knowledge of those who have experience with a pattern in order to share it

with those who do not.

2. Introduction

Modern software architecture heavily relies on the use of many different software

patterns, often used complementary to each other in order to solve complex architec-

tural problems. Software architecture provides guidelines and tools for high level sys-

tem design in which architects select best fitting patterns to be used within the software

product (Bass, Clements, & Kazman, 1998). Many different patterns and tactics exist,

leading to a complicated trade-off analysis between different solutions and causing the

evaluation and selection of the appropriate software patterns to be a complex task

(Jansen, Van Der Ven, Avgeriou, & Hammer, 2007). This complexity means architects

need to have in-depth understanding of the project characteristics and requirements

combined with extensive experience in software development.

The information needed for appropriate pattern selection is seldom available to all

architects in a centralized or standardized way. Architectural decisions are frequently

made based on experience and personal assessment of one person, instead of using the

knowledge of many (Babar & Gorton, 2007). Allowing software architects to use all

information efficiently saves time when selecting fitting software patterns and leads to

better and more adequate decision making. For this to be possible, a method has be to

created enabling the evaluation and documentation of crucial attributes of a software

pattern (Tyree & Akerman, 2005). This structured evaluation will allow architects and

decision makers to compare different solutions and select the best matching pattern.

Patterns, however, are a high-level solution that can be used different scenarios, making

it impossible to use one specific implementation of the pattern to evaluate the entire

pattern. Because specific implementations are unusable, the relevant pattern attributes

cannot be directly measured in a quantitative way.

Pattern evaluation adds retrospect and the knowledge of many experts to existing

pattern documentation. This study also relates to software architecture as it solves a

problem found in the software pattern selection process. Software pattern evaluation

helps when performing pattern oriented software architecture in cases where alternative

patterns to solve the same problem and only a single pattern can be selected. This is an

important factor to take into account, because it means that rather than selecting indi-

vidual patterns, an architect will want to select an architectural style, and thus select a

large set of patterns that fit this style. This area of software architecture has developed,

which resulted in a large amount of documented patterns and allows for comparing

architectural styles (Booch, 2005).

Although it seems that comparing individual patterns is less relevant for software

architecture, an architectural style is selected at the early stages of software design and

cannot easily be changed after the development has started. This creates a problem be-

cause while the software is being developed, the requirements for the project or the

environment will change. Therefore it is necessary to extend the architecture or at times

alter the existing architecture. At this point it becomes relevant to compare individual

patterns in order to select the pattern that fits the project requirements. This is an ongo-

ing process that happens throughout software development and relies on the experience

of software architects and developers. Current documentation of software patterns is

9

lacking a way to compare them with each other. But if multiple patterns tackle the same

problem, how does an architect decide which one to use?

This thesis presents the Software Pattern Evaluation Method (SPEM). Using SPEM,

software producing companies are supported in pattern selection decision making and

are able to quantitatively compare different patterns. SPEM enables them to get an

overview of specific pattern characteristics in a timely manner. Also, SPEM can be

used to generate a publicly available pattern related body of knowledge, helping re-

search and practitioners in architectural research and decision making.

2.1 Thesis structure

This thesis first explains why software pattern evaluation is needed and what makes

the lack thereof a problem in section 1 Problem statement. In section 2 Introduction an

introduction to software patterns is given and definitions for key concepts are ex-

plained. The research questions are introduced and explained in section 3 Research

approach. The design science approach used in this research is depicted and explained,

after which the section is concluded with an explanation of validity assurance and an

interview protocol. Section 4 Literature review gives an overview of research related

to pattern evaluation and comparison. An initial version of the pattern evaluation

method is presented and discussed in section 5 Initial method construction. The section

is divided in three subsections, covering two interviews and their implications for soft-

ware pattern evaluation. In section 6 Method evaluation the evolution of the method is

described by reporting on three focus group sessions, each covered in a sub-section.

The final version of the pattern evaluation method (SPEM) is presented in section 7

SPEM – Software Pattern Evaluation Method. In section 8 SPEM implementation we

discuss the various implementations of SPEM and its use in academia and the software

industry. The restrictions of the method, the advantages and how SPEM evaluations

should be interpreted is discussed in section 9 Discussion. The thesis is concluded with

section 10 Conclusion and future work, in which the research questions are answered

and future work is discussed.

2.2 Definitions

2.2.1 Software pattern

A software pattern is a solution to a recurring problem in a particular context

(Schmidt, 1995; Gamma, Helm, Johnson, & Vlissides, Gang of four, 1995; Buschmann,

1999). When properly documented these solutions can be shared with the industry. Us-

age of software patterns allows for time and cost reduction in software development

projects, making them an important tool for software design and development. Alt-

hough software patterns started out as a way to communicate solutions among devel-

opers, they have become a crucial part of software architecture (Buschmann, Henney,

& Schmidt, 2007). Patterns were popularized by the “Gang of Four” book in which a

collection of patterns was documented along with a formal notation (Gamma, Helm,

Johnson, & Vlissides, 1995). Since then many patterns were documented. An example

of this is the work of Grady Booch, who documented thousands of patterns and archi-

tectural styles (Booch, 2005). Currently it is nearly impossible to design software with-

out the use of software patterns.

2.2.2 Pattern language

A set of patterns which are related and have a common goal are referred to as a

pattern language (Roberts, 1996; Meszaros, 1998; Alexander, 1977). A pattern lan-

guage can help the software architect in the pattern selection process. Instead of having

to select individual patterns, a pattern language provides a collection of patterns and

documentation on their implementation respective to each other. When a pattern re-

quires another pattern to function, it is important to know in which order they should

be implemented. In a pattern language not only the pattern itself is described but also

which patterns might have to be implemented before and after. The order in which the

patterns need to be implemented is called a pattern sequence (Buschmann, Henney, &

Schimdt, 2007). For example, the limited view pattern only shows functionality the

current user is allowed to access which requires the session and role pattern to function,

as it would provide data on who is using the system. In sequence the session pattern

would be implemented first, followed by the role and limited view pattern.

When selecting individual patterns there might be overlap, as each pattern can be

documented by a different author. This causes the selection of individual patterns to be

time consuming because each pattern has to be studied in-depth to see if it can be im-

plemented with other patterns. In a pattern language there is no overlap between pat-

terns, they were documented to be part of a whole and the work of a single author. Each

pattern is essentially part of a puzzle, all connected together in a certain way and are

cut out to fit exactly.

The characteristics of pattern languages make them valuable for software architects

when selecting patterns at the initial stages of development. However, when the archi-

tecture is adapted it becomes less likely a pattern language can be used in its entirety.

When the architecture is adapted or expanded, the existing architecture has to be taken

into account. Although the patterns in a pattern language work well together, it does

not take into account other patterns or pattern languages. Therefore the same problem

arises as with the selection of individual patterns. There can be overlap or certain pat-

terns cannot be combined. It means that a pattern language has to be studied in-depth

when implementing together with other patterns or pattern languages.

2.2.3 Architectural style

An architectural style limits the architect in his choices for architectural elements and

can be defined as a constraint to both the design elements and the formal relation-

ships among design elements (Perry & Wolf, 1992). This means that, just like style in

general, architectural style restricts which elements can be used in order to create co-

herency. In software architecture an architectural style is used to make a system have

certain properties and satisfy non-functional requirements.

11

An architectural style can also be referred to as an architectural pattern (Bass,

Clements, & Kazman, 1998; Buschmann, 1999). An example of such a pattern, which

can impose a style on software architecture, is REST (Khare & Taylor, 2004). How-

ever, there are also definitions of architectural style that differentiate it from an archi-

tectural pattern. An architectural style can be viewed as being more predominant than

an architectural pattern (Bosch & Molin, 1999). Within the software engineering com-

munity there is no consensus on the definition of architectural style as discussed in

this section. In this thesis we consider an architectural style and architectural pattern

to be synonymous as defined by (Bass, Clements, & Kazman, 1998) and (Buschmann,

1999).

3. Research approach

This section presents the research questions answered in this thesis and the design

science approach used to construct SPEM. The main research question (MRQ) an-

swered in this thesis is:

MRQ: How can software patterns be evaluated by software architects in a manner

that is objective and allows for comparison?

The aim of this study is to aid software architects in the decision making process of

selecting software patterns. This can only be useful when the evaluation method yields

objective results. Since a software pattern cannot be objectively measured in any way,

the opinions of multiple software architects are used in the form of scores. A quantita-

tive study also allows for easy comparison between alternative patterns. For the purpose

of answering this research question, multiple sub-questions are constructed:

SQ1: Which attributes are relevant for software pattern evaluation?

Rationale: Patterns can possess many attributes that give important information on

usefulness and quality. For example, how the pattern effects performance or maintain-

ability can both be attributes of a pattern. Quality attributes are used in software archi-

tecture to evaluate the quality of certain aspects of the architecture. We apply the same

principles for evaluation of software patterns. The first step is to create a list of attrib-

utes by looking at related literature. This list is then reduced by performing expert in-

terviews. This tells us which of the listed attributes are important to software architects

when evaluating a pattern. A validation of the reduced list of attributes is performed by

interviewing a second expert. If validation fails, another expert interview and validation

is performed. When successful, the result of these interviews is a validated list of at-

tributes that relevant in the software pattern evaluation process.

Attribute

Quality attribute Pattern attribute

Figure 2 - Attribute, Quality attribute and Pattern attribute

An attribute can refer to a quality attribute or a pattern attribute. This distinction is

made because a quality attribute is not a property of a pattern, but rather an aspect of

software quality. When a quality attribute is referred to in the context of pattern evalu-

ation, we are talking about the impact the pattern has on software quality. A pattern

13

attribute refers to a characteristic of the pattern itself, for example the ease at which the

pattern can be learned. Learnability as a quality attribute would express to what degree

the pattern influences the software in this aspect, while it does not say anything about

the learnability of the pattern itself. Although quality attributes and pattern attributes

are viewed from a different perspective, they have in common that they are attributes

of a pattern which can be relevant for evaluation. Therefore the term attribute is used,

a characteristic of a pattern which can be relevant for pattern evaluation. The answer to

SQ1 would be a list of attributes which are relevant for pattern evaluation. It can be any

number of quality attributes are pattern attributes or mixture of both.

SQ2: How can attributes relevant for pattern evaluation be quantified in a manner

that allows for comparison?

Rationale: Typical documentation on software patterns is qualitative in nature. Alt-

hough this might be suited for documentation on patterns it does not allow for compar-

ison. For this reason, the different attributes relevant for pattern evaluation need to be

quantified. A structured method of quantification that is used for evaluations would

allow for patterns to be compared on attribute level.

To answer this question we first look at comparable methods of quantification within

the domain of software engineering. From these methods the specific characteristics are

deduced. An example of these characteristics can be the ability to assign a negative

value to an attribute. Finding out which characteristics are important to architects when

evaluating a pattern is the next step. This is done by conducting an expert interview. In

this interview the software architect can express which characteristics are important and

why. A second interview is held with a different expert to validate the findings. The

result is a validated list of characteristics that are important for quantification of attrib-

utes. A method for quantification is constructed based on the list of characteristics. The

method is evaluated by using it in a focus group session after which is can be incremen-

tally improved.

Conduct expert

interviews

Evaluate method

Improvements

No improvements

Initial method

Improved method

Is basis for

SPEM methodBuild SPEM method

Is finalized in

Figure 3 - Design Science Research Method

Table 1 - Design Science Research Method Activity Table

Activity Description

Conduct
expert
interviews

Interviews with experienced software architects are conducted to
form the basis of the INITIAL METHOD.

Evaluate
method

The method evaluated by using it in a focus group session, gathering
the feedback with evaluation forms. This process results in an
IMPROVED METHOD.

Build SPEM
method

Based on the IMPROVED METHOD, the finalized SPEM METHOD is
built.

Table 2 - Design Science Research Method Concept Table

Concept Description

Initial method Initial version of the method created based on expert interviews.

Improved
method

Improved version of the method based on focus group session
feedback.

SPEM method Software Pattern Evaluation Method.

15

A design science approach is used, which is depicted in Figure 3. An initial method

is created based on an earlier exploratory study (Kabbedijk, Galster, & Jansen, 2012),

extended by expert interviews. The interviews are based on the knowledge gained from

literature and are aimed towards answering SQ1 and SQ2. After conducting the first

interview an analysis follows and a second interview is scheduled. The questions from

the second interview are used to validate the answers of the first interview, but are also

an opportunity to ask questions that arose based on the first interview. The result of the

interviews is a list of relevant attributes for pattern evaluation and a way to quantify

them. This information is used to construct a first version of the evaluation method

which we call M1. Thereafter the method is evaluated in multiple focus group sessions

in which the method is put to practice in a real-life setting (Figure 4).

Expert

interview 1

Expert

interview 2

M1 (initial

method)

M2 (improved

method)

M3 (improved

method)

Focus group

session 1

Focus group

session 2

Focus group

session...

MN (improved

method)

Figure 4 - Method construction process

 These sessions will be performed with software architects or software architecture

students. As Höst points out that information system master students can be used as test

subjects instead of professional software developers (Höst, Regnell, & Wohlin, 2000).

In the first evaluation session the initial method (M1) is executed and evaluated. The

session is recorded and an evaluation form is filled out by all participants after the ses-

sion. Improvements to the method are added and a new improved method (method in-

crement) is constructed (M2). A new version of the method is always constructed, re-

gardless of the number of changes made. Even if no changes are made, it is still im-

portant to capture the rationale and explain why certain feedback did not lead to change.

When changes are made to the method, it is depicted in a diagram, showing where the

new version differs from the old version. The diagram is followed with an in-depth

analysis and textual description of the method rationale. The first focus group session

is followed by a second session which results in a new version of the method (M3),

carrying the improvements of the second evaluation session. Based on the feedback

received in the evaluation session, more cycles can follow. A new focus group session

is only scheduled if the evaluation leads to new questions which cannot be answered

by analyzing the data. There is no limit set to the number of focus group sessions, and

thus there is no limit to the number of method increments. Each session is carried out

with a different group of participants, making sure that new data is captured with every

cycle. When no new improvements are discovered, or when they do not require a focus

group session’s feedback, the final version of the method is created (i.e. SPEM).

3.1 Construct validity

Expert interviews were conducted with the goal to gather data on software pattern

evaluation, which was the basis of the initial method. An introduction to all underlying

theory, the protocol and the goal of the interview was given. The researcher and the

interviewee need to have the same understanding of all concepts used during the inter-

view. This was done by stipulating a definition of all concepts together with the inter-

viewee. The researcher gave a definition for a concept based on theory. Afterwards the

interviewee was asked if the definition is similar to his understanding of the concept.

Together with the interviewee it was decided whether the definition should be changed

or the original definition is kept.

Evaluation sessions began with the researcher introducing the theory, goal and pro-

tocol of the session. The participants were made aware what was expected of them and

how the session would transpire. All activities of both the researcher and participants

were explained before commencing with the evaluation session. The definition of an

attribute was given by the researcher based on ISO:25010 documentation. Participants

were able to share their views on the definition of an attribute in a discussion with

fellow participants. Defining attributes and their implications on software quality is an

integral part of evaluation sessions. After the session all participants were asked to fill

out an evaluation form. The concepts used in this form were introduced by the re-

searcher.

3.2 Internal validity

The aim of evaluation sessions is to improve the initial method. During these ses-

sions the method is performed in a focus group session. After the session all participants

fill out an evaluation form. Participants should give their feedback on the method itself,

this includes the activities and deliverables used during the session. The performance

of the evaluator should not influence the participants in their feedback on the method.

For example, a participant can comment on a certain activity being irrelevant because

the evaluator did not perform the activity in a way which convinced the participant of

the activity’s relevance. To prevent this, each evaluation session was performed with

the same evaluator and artifacts used by the evaluator. Any differences in the evalua-

tor’s style were documented and included in the interpretation of the data.

3.3 External validity

Expert interviews were performed in both a consultancy and a software development

company. The problems found with software pattern selection is present in all compa-

nies developing software. In the interviews questions were asked about the attributes

which might be relevant in software pattern selection. These questions were based on

software patterns in general, as an abstract solution rather than an implementation

thereof. Therefore, the market the company is in and the types of implementations the

17

interviewee had experience with do not influence the interview. The results of the in-

terview are generalizable to software development, rather than a specific market related

to software development.

3.4 Reliability

Related theory is documented to make the construction of artifacts used in this re-

search traceable by others. The activities and deliverables used during interviews and

evaluation sessions are documented and modelled. Questions and answers of the inter-

views were noted and sent to the interviewee for approval. All data from evaluation

sessions was digitized and made available. Both audio and video were recorded during

the evaluation sessions. Interpretation of the data is documented and references to the

data are included.

3.5 Interview protocol

The interviewee was selected based on accessibility, job description and company

size. A qualifying job description is that of software architect with multiple years of

experience. Software architect is generally a senior position that is acquired after years

of experience in software development. This makes accessibility an important criteria,

as there are only few software architects in most companies. A medium to large size

company was selected where software architecture has matured and pattern selection is

a recurring process. The interview was semi-structured, allowing the interviewee to

explain and expand upon each topic. After a brief introduction on the research topic and

goal of the interview, the interviewee is presented a list of quality attributes. This list is

based on the ISO standard for quality attributes and is used in the domain of software

engineering and common basis of software architecture evaluation. It is assumed that

the interviewee is familiar with these attributes.

The definition of software pattern evaluation was stipulated together with the inter-

viewee to make sure the outcome of the interview is valid when relating the attributes

to the process of software pattern evaluation. For each quality attribute the interviewee

was asked if it plays a role in software pattern evaluation. For every question the inter-

viewee was asked to give extensive motivation. Although the goal of the interview was

to reduce the list of attributes, it was possible for the entire list to be relevant for soft-

ware pattern evaluation. Because the quality attributes listed in the ISO standard have

been used and validated over time to cover each aspect of software architecture it is not

expected that attributes need to be added. However, there was an option for the inter-

viewee to add any attributes he considers missing but relevant. In such case additional

motivation was asked to explain its relevancy.

A second interview was conducted to validate the findings of the first. This was done

by interviewing a different software architect who works for a different company. The

previous results were discussed and validated. All results were documented and

served as input for further analysis. After analyzing the results and depending on the

validation a decision was made to perform an additional interview.

4. Literature review

4.1 Software Patterns

Patterns and pattern languages originated from architecture (cities, buildings) and

were first introduced by Alexander (Alexander, 1977). The concept of his work is that

through sharing knowledge on architectural design with patterns, both professionals

and non-professionals would be able to practice architecture. He argued that the occu-

pants of buildings would be able to design architecture because they know their require-

ments. Patterns have been used in a variety of domains and have had a large impact on

software development. Patterns have shaped the way software engineers think about

software design and how they communicate working design. As software engineering

matured in the 80’s and object oriented programming became popular, patterns were

used informally and in many cases were not yet referred to as patterns (Booch, 1986).

They were used unconsciously by developers who communicated their designs through

diagrams and documentation. Beck and Cunningham were interested in using patterns

for object oriented software design. They followed Alexander’s philosophy and let rep-

resentatives of the user create a user interface design consisting of five patterns (Beck

& Cunningham, 1987). In 1994 software patterns were popularized by the publication

of the “Gang of Four” book (Gamma, Helm, Johnson, & Vlissides, 1994). Gamma,

Helm, Johnson and Vlissides were software engineers that worked at the IBM research

department. They joined in a collaborative effort to research and document software

patterns. In their work they introduced the term design pattern, a type of pattern which

captures object oriented software design. The authors gave examples of design patterns

by documenting 23 design patterns using a formal notation. The notation is widely used

throughout the software industry to document software patterns and can include (class)

diagrams, examples and consequences. The book remains the most influential work in

software patterns to this day, well known by many software engineers, especially soft-

ware architects. The patterns described in the book are often referred to as “Gang of

Four patterns” and have been so influential that the knowledge on patterns often does

not extend beyond the formal notation and patterns provided in the Gang of Four book

(Buschmann, Henney, & Schmidt, 2007).

Research on patterns and pattern documentation has been shared yearly at PLoP con-

ferences since 1994. The works have been published as a collection in later years

(Coplien & Schmidt, 1995; Vlissides, Coplien, & Kerth, 1996).

In the early 90’s the need for high level software design arose because of increasing

complexity and size of software products. This discipline, called software architecture,

is based on architectural principles found in regular architecture (Perry & Wolf, 1992).

Since then patterns have also become a part of software architecture, although they

were often used informally and unconsciously. Garlan and Shaw documented many

commonly used architectural styles (Garlan & Shaw, 1993), which would later be con-

sidered architectural patterns (Shaw, 1996).

19

The role of patterns in software architecture was greatly influenced by the publica-

tion of Pattern Oriented Architecture: A System Of Patterns (Buschmann, 1999).

Buschman argues that patterns are rarely used standalone and that patterns can be used

to design software architecture. While the Gang of Four book focusses on design pat-

terns, Buschman categorizes patterns in idioms, design patterns and architectural pat-

terns. Patterns are described using an elaborate pattern notation which includes exam-

ples, guidelines for implementation and variants of the pattern. A new way of thinking

about architectural design is proposed by looking at patterns as an element which can

be used for constructing architecture with defined properties. It means that a software

architect needs to have knowledge on what the desired properties for an architecture

are, and then construct a system of interrelated patterns to meet the requirements. A

system of patterns is used to describe, classify and relate patterns. Pattern documenta-

tion and pattern catalogues describe patterns as standalone solutions, while a system of

patterns broadens this view by describing the relationships of patterns and their effects.

The work of Buschman has influenced how patterns are perceived, from a view where

patterns are used in isolation to solve a particular design problem, to a view where

patterns are used together to create a system of patterns, forming a software architecture

with defined properties.

The work of Fowler is an example of a collection of patterns which are aimed to

create a software architecture (Fowler, 2002). The documented patterns come from

Fowler’s years of experience in the field. Many of the patterns come from projects that

used older technology and programming languages, but Fowler claims that they are

generic enough to translate to newer programming languages, such as Java and .NET.

He provides patterns categorized by topic, such as ‘handling session state in stateless

environments’. This work shows that industry solutions have made their way into soft-

ware architecture, following the efforts of software architecture pioneers.

Patterns are not restricted to object oriented design, but can also be used for interac-

tion design and usability. Borchers experimented with the use of patterns in Human

Interaction Design (HCI) (Borchers, 2001). He argues that it is often difficult to express

and share interaction design knowledge. In his work pattern languages are presented,

which were based on interactive music. Borchers concludes that indeed patterns help

capture interaction design knowledge and encourage their use in HCI.

In the work of Zdun an approach to support the selection of patterns based on desired

quality attributes and systematic design decisions based on patterns is presented (Zdun,

2007). This approach deals with the problem that pattern documentation is written by

different authors and does not provide a formal notation for pattern relationships and

their effects on quality goals. This formal notation comes from the creation of pattern

language grammar. By scanning pattern documentation a grammar can be created

which includes the patterns as words and pattern sequences as sentences. An overview

of the grammar provides insight in the pattern variants, sequences and quality goals.

Quality goals are scored on a 5-point scale, allowing for negative, neutral and positive

scores. Design spaces are used to add rationale to the pattern language grammar. The

approach can be used to add in information on quality goals and rationale to existing

pattern documentation to aid in the pattern selection process.

Henninger and Correa looked at the current state and challenges of software patterns

(Henninger & Correa, 2007). They conclude that many patterns have been documented

over the years, but that it has become increasingly difficult to find and select patterns.

They support their claims with a survey that shows that 31% of patterns is not electron-

ically available. Even if patterns are available through the web, they can be hard to find

because many different pattern forms exist. Pattern forms describe the pattern, pattern

language or collection with a set of attributes. They often have a different name for the

same attribute, or have non-matching attributes. In order for tools to be developed

which facilitate finding the right solution for a design problem, consensus has to be

reached on a pattern form. Another problem the authors identify is pattern validation.

They state that pattern validation is not part of pattern documentation and that valida-

tion and evaluation of patterns can be beneficial to pattern selection and decision mak-

ing.

Web 2.0 marked a transition from packaged software to software as a service (SaaS)

along with many new design principles. O’Reilly looked at how the introduction of

Web 2.0 influenced design patterns and business models (O'Reilly, 2007). He explains

that Web 2.0 is a buzzword, but that we can find design principles that are linked to it.

Examples of this are: packaged software (Web 1.0) vs. services (Web 2.0) and profes-

sional content vs. user generated content. Especially the introduction of services have

had a profound influence on software patterns. Examples of patterns that are focused

on service oriented architecture are SOAP (Simple Object Access Protocol) and REST

(Representational State Transfer). Web services can be more dynamic than traditional

HTML web-sites by using asynchronous calls in the form of AJAX (Asynchronous

JavaScript and XML). At the core, web services are made for reuse and loose coupling

which has led to the creation of many new patterns over the years to support asynchro-

nous calls (Garrett, 2005; Gross, 2006).

4.2 Architecture Evaluation

Evaluation is commonly used in software architecture in order to increase quality

and decrease cost (Abowd, Bass, Clements, Kazman, & Northrop, 1997). Many evalu-

ation methods for software architecture have been developed and compared in recent

years (Babar, Zhu, & Jeffery, 2004). The evaluation should be performed as early as

possible in order to prevent large scale changes in later stages of development (Abowd,

Bass, Clements, Kazman, & Northrop, 1997). Software architecture evaluation is linked

to the development requirements and desired quality attributes. Therefore, it is not a

general evaluation of software architecture, nor an evaluation of a specific implemen-

tation. The evaluation should be an indication of whether the proposed architecture is a

good fit for the project. Pattern comparison and evaluation has been done before (Hills,

Klint, Van Der Storm, & Vinju, 2011) in a quantitative manner, but has focused on the

implementation of different patterns and lacks the evaluation of the idea the pattern

describes.

SAAM stands for Software Architecture Analysis Method and was created to vali-

date claims on qualities of software architectures (Kazman, Bass, Webb, & Abowd,

21

1994). The method focusses on describing an architecture and then analyzing its quality

attributes. In the original method only modifiability was discussed, but SAAM can be

used with other quality attributes as well. The analysis is performed to see if the organ-

ization’s needs are reflected in the architecture. Therefore SAAM requires that both the

organization’s needs and software architecture are well described.

Architecture Tradeoff Analysis Method (ATAM) is an evaluation method which al-

lows for analyzing an architecture based on quality attributes (Kazman, Klein, &

Clements, 2000). The method allows for analyzing an array of quality attributes and

expands on its predecessor SAAM. It is meant as an early analysis, preventing large

costs associated with architectural changes. The strength of ATAM is that it takes into

account many quality attributes and their tradeoffs, instead of focusing on one quality

attribute and ignoring the impact on other quality attributes.

Quality Attribute Workshop (QAW) is a method to evaluate a software architecture

based on quality attributes (Barbacci, et al., 2002). It differentiates itself from ATAM

by not requiring the existence of a software architecture, thus allowing software archi-

tecture evaluation at an earlier stage. Since there is no existing software architecture or

developed product, no direct measurements can be performed in the evaluation. QAW

involves stakeholders in the evaluation of the software architecture. The stakeholders,

together with software architects, discuss and create scenarios which target a specific

quality attribute. From these scenarios test cases are created which are analyzed with

the software architecture documentation. The analysis might require the creation of

documentation in order to address concerns presented in the test case. Using QAW, the

software architecture can be evaluated and adapted at an early stage, which can prevent

large scale changes to the architecture at a later stage in development. QAW is not a

replacement for ATAM, as both evaluate the architecture at different stages.

4.3 Quality attributes

Quality attributes are aspects of quality which allow for the measuring of software

quality, also referred to as software quality characteristics (Losavio, Chirinos, Levy, &

Ramdane-Cherif, 2003). They have been used in different domains to define what qual-

ity is, and how it can be measured (Cech, Kennedy, & Smith, 1960; Triplett, 1969).

There are sets of quality attributes throughout the industry and academia, many of

which overlap. The biggest difference in sets of quality attributes are sub-attributes,

which are related to a main attribute. For example, capacity and resource utilization can

be sub-attributes of an attribute called performance efficiency. However, not all sub-

attributes relate to the main attribute as strongly and we often see sub-attributes belong

to a different attribute in multiple sets of quality attributes. In 1991 an ISO standard for

quality attributes in software engineering was published, called ISO:9126 (ISO/IEC,

1991). The standard was created by a joint technical committee of ISO and IEC and

consists of six attributes: Functionality; Reliability; Usability; Efficiency; Maintaina-

bility and Portability. Over the years there have been many examples of the ISO:9126’s

use in the industry and academia (Behkamal, Kahani, & Akbari, 2009; Chua & Dyson,

2004; Zeiss, Vega, Schieferdecker, Neukirchen, & Grabowski, 2007). Jung et al. tested

the validity of the ISO:9126 standard and conclude that the attributes are valid, but that

some sub-attributes measure the same concept or do not relate to main attribute. For

example, they found that security did not relate to the functionality attribute, as it is

described in the standard (Jung, Kim, & Chung, 2004).

Because quality attributes allow for the measuring of software quality, they have

become a part of software architecture evaluation. Many evaluation methods use qual-

ity attributes to define quality, and measure them in software implementation (Barbacci

M. R., 1997; Clements, Kazman, & Klein, 2003). Berander et al. tried to define what

quality is by studying multiple works in the domain of quality management (Berander,

et al., 2005). They found that there are currently two distinct views; quality as conform-

ance to specification and quality as meeting customer needs. Quality models are also

mentioned, including ISO:9126. The authors conclude that quality models allow for

quality measurements, but that they are a simplified representation of quality. Quality

models do not capture all factors that are defined in quality philosophies and should be

used in situations where measurements and quantitative data on quality is needed.

4.4 Research implications

In this section we try to give an initial answer to the research questions based on the

above literature study.

SQ1: Which attributes are relevant for software pattern evaluation?

There are multiple sets of quality attributes which are used for software architecture

evaluation, which is highly related to software pattern evaluation. The ISO:9126 stand-

ard provides a starting point, which has been tested in academic and industrial situa-

tions. However, ISO:9126 is a standard for software quality and not specific to software

pattern evaluation. Therefore the standard might have to be adapted to only include

attributes that patterns can influence.

Patterns could have more attributes relevant for evaluation than ISO:9126 provides.

When we look at pattern documentation we see that there is often a section that men-

tions how the pattern can be implemented. If implementation is a factor in documen-

tation, it can be possible that it is an important attribute for pattern selection and pattern

evaluation. We cannot get into the specifics of an implementation for evaluation pur-

poses, but the implementation attribute can be adapted to be more general. An example

would be ‘ease of implementation’ which can be evaluated in general, while still

providing useful information for pattern selection and comparison.

SQ2: How can attributes relevant for pattern evaluation be quantified in a manner

that allows for comparison?

To answer this question we look closely at software architecture evaluation and

works that attempt to quantify pattern characteristics. Architecture evaluation methods

like ATAM involve stakeholders to determine the business drivers and requirements.

At a later stage scenarios are created that target a specific quality attribute, which is

used for testing whether the requirements for the attribute are satisfied. When we relate

this process to pattern evaluation it becomes apparent that business drivers and require-

23

ments are project specific and cannot be incorporated. However, the concept that stake-

holders are involved and a focus on communication can prove valuable for pattern eval-

uation. In the work of Zdun we can see an approach to assign a score to specific attrib-

utes of software patterns. This is done by assigning scores ranging from - - to + +,

giving an indication of a positive or negative trait of the pattern. For pattern evaluation

purposes we can use a similar approach, although it would be preferable to use a quan-

titative score range, which would allow for descriptive statistics and comparison. The

range of the scores can be determined using expert interviews.

5. Initial Method Construction

In this section the construction process of the initial pattern evaluation method is

described. Two expert interviews were conducted following the interview protocol dis-

cussed in 3.5 Interview protocol.

5.1 Expert interview 1

The first expert interview took place at a consultancy company with approximately

300 employees. The software architects are a group of five people who work on various

projects. The interview was conducted with the principal architect, who had over five

years of experience in this role and over 10 years of experience in software develop-

ment. Questions were divided in two topics, each covering a research question. Nine

questions were formulated on the topic of attributes and six questions on the topic of

quantification. The interview took approximately 1 hour and 45 minutes to complete

and was recorded (Appendix D - Expert interview 1). An introduction was given to

explain the context and goal of the interview. Afterward the key concepts, such as soft-

ware patterns, were stipulated with the interviewee. The first set of questions on the

topic of attributes were derived from ISO:9126 with the goal to determine which attrib-

utes are relevant for software pattern evaluation and comparison. The following attrib-

utes were discussed:

 Functionality

 Reliability

 Usability

 Efficiency

 Maintainability

 Portability

 Ease of learning

 Ease of implementation

These attributes find their origin in software quality assessments and software archi-

tecture evaluation. However, the differences in software pattern evaluation and soft-

ware architecture evaluation can mean the standard needs to be adapted. For this reason

the attributes were included in the interview, allowing the inclusion or exclusion of

attributes in pattern evaluation.

For each of these attributes the architect was asked if it plays a role in pattern selec-

tion or comparison. This was purposely done because the goal of the evaluation is to

enable pattern comparison. Asking directly which attributes would be relevant for pat-

tern evaluation could be difficult to answer, since evaluating patterns is not usually

done by a software architect and would not clarify the goal of the evaluation.

The sub-attributes described in ISO:9126 were not specifically mentioned due to

time constraints. They were added to clarify the definition of an attribute in each ques-

tion. For example, when asking the architect if portability plays a role in pattern selec-

tion or comparison, the question was supported by asking if the software can be moved

25

to other environments (adaptability). This way of questioning makes sure the inter-

viewee takes in mind all aspects of quality described in ISO:9126 and serves as a way

to broaden the comprehension of the attribute.

However, not including the relevance of each sub-attribute in the questions, means

that the data on which the initial method will be based cannot be entirely accurate on

this matter. Therefore the method needs to be evaluated in a later stage, to see which

sub-attributes are relevant for pattern evaluation. Although the questions on attributes

were closed, each question allowed the interviewee to elaborate and motivate his an-

swer.

5.1.1 Results and interpretation

In this section the results of the interview are discussed and interpreted. Functional

suitability plays a role, but this is mostly because interoperability and security are very

important aspects of software quality. ISO:9126 describes interoperability and security

as sub-attributes of functional suitability. These sub-attributes play such an important

role in pattern selection that they should be attributes rather than sub-attributes. On this

attribute the architect explains:

“Interoperability and security are very important and should be quality attributes

by themselves”.

Therefore, ISO:25010 could be a better standard to base pattern evaluation on, as

this standard describes both interoperability and security as attributes with their own

respective sub-attributes.

This result was the trigger to incorporate the attributes described in ISO:25010 in a

second interview. The role of functional suitability in pattern selection is not conclusive

from the first interview, because of the difference in the attribute’s definition in both

standards.

Reliability can play a role in pattern selection, although this is mostly an issue which

is handled at infrastructure level. Based on this result, the reliability attribute was added

to the initial method. On reliability the architect stated:

“This is sometimes important, but many times this is done at infrastructure level with

for instance load balancing.”

The fact that it is in most cases handled at infrastructure level is no reason to exclude

it, as the method needs to be able to apply to all software patterns whether an attribute

plays a frequent part in its selection or not.

Usability plays a role in pattern selection, although some of its aspects are handled

by interaction designers or visual artists. This attribute can play a role when selecting

patterns for front-end development to create the layout of an application. Asynchronous

data retrieval has an impact on usability for which many patterns are available. The

architect explained this by stating the following:

“Asynchronous retrieval of data is one area where patterns also influence usabil-

ity.”

Usability was included in the initial version of the evaluation method. Efficiency,

maintainability and portability play a role in pattern selection and comparison. Ease of

learning is an important aspect when selecting patterns as the experience of the devel-

opment team influences which patterns can be selected. With an experienced team you

might select a pattern that has the most benefits while also being complex. Ease of

implementation plays a role in pattern selection because you want a pattern to be im-

plemented as fast as possible, unless other quality attributes are so important you have

to select a pattern that requires more time to implement.

Scenario based evaluation is often used in software architecture evaluation, but is

not suitable for evaluating patterns. Scenarios need to be project specific in order to be

useful, while for patterns quality attributes play an important role in its selection and

an architect is capable of relating the impact a pattern has on software quality to their

own project.

It is important to be able to give a negative score to an attribute because a pattern

can have a negative impact on software quality. If no negative score is included, archi-

tects might tend to see the median as neutral and lower scores as negative. A 5-point or

at maximum 10-point scale would be optimal for scoring attributes. Any higher than a

10-point scale would have a negative effect on accuracy.

An architect should be experienced before partaking a pattern evaluation session.

The reason for this is that the result of the architecture and all decisions have to be seen

in retrospect in order to fully understand them. The differences in experience between

architects should be expressed in a weighted score. However, this cannot be captured

in any formula and it would be better to use a consensus based score for this. When

using a consensus based score it is expected that the architects will share their

knowledge in a discussion and that those who have the most experience will also have

better or more argumentation for their score. This would be a way to deal with the

differences in experience and gain a more accurate score.

When you have only designed architectures but have not been able to see the long

term results it is hard to evaluate software patterns. The experience between architects

may vary, but at least one architect should have experience using the pattern which is

being evaluated. Those who do not have experience using the pattern can still provide

meaningful input.

Based on the results of the first expert interview, the following elements were in-

cluded in the initial method:

 The quality attributes and sub-attributes described in ISO:9126.

 The possibility to assign a negative score.

 An ease of implementation attribute.

 An ease of learning attribute.

 A score range of -5 to +5.

 A discussion activity.

 A consensus based score.

27

5.2 Expert interview 2

The first interview raised new questions, after which a second interview was sched-

uled. The second interview was conducted at a large international software company

with approximately 1800 employees. The interviewee was a (technical lead) senior de-

veloper with over four years of experience in this role and over twenty years of experi-

ence in software development. The setup of the interview remained unchanged. The

questions on the topic of attributes were altered to include the ISO:25010 standard

which was proposed in the first interview. Sub-attributes were included in the interview,

although elaboration was not possible due to time constraints. The interview took ap-

proximately 2 hours to complete and was recorded.

The first set of questions on the topic of attributes were derived from ISO:25010

with the goal to determine which attributes are relevant for software pattern evaluation

and comparison, while the second set of questions aimed to answer how attributes can

be quantified.

5.2.1 Results and interpretation

In this section the results of the second interview are discussed and interpreted. Only

answers that conflict with the first interview, or answers to questions not present in the

first interview are discussed.

The second interview discussed the relevance of quality attributes found in

ISO:25010, a standard which is successor to ISO:9126. Functional suitability and its

sub-attributes were all found relevant by the interviewee. In the previous interview

functional suitability was considered relevant, but the sub-attributes, particularly secu-

rity, were not. The changes found in the newer standard have made its sub-attributes of

functional suitability more relevant for software pattern evaluation. The expectations

of the first interviewee are confirmed in the second interview.

Reliability is relevant in software pattern evaluation. The interviewee gives an ex-

ample of this:

“We use the Mediator pattern to enable unit testing.”

The attributes fault tolerance and recoverability were not found relevant, mainly be-

cause there were no examples of this at the projects the interviewee had worked on. For

recoverability the interviewee mentions:

“We use patterns for recoverability in the system layer, which is not my area of

expertise.”

Usability is found relevant, with the exception of two sub-attributes, learnability and

appropriateness recognisability. The interviewee had no experience with patterns that

influenced these two sub-attributes, which does not conclude that they are irrelevant. It

appears to be a matter of experience, because it conflicts with the findings of the first

interview.

The sub-attribute adaptability of the attribute portability was found irrelevant. This

had to do with the fact that the interviewee did not concern himself regularly with

adaptability in relation to software architecture. It is also an aspect of quality that is

satisfied in the system layer. The interviewee explains:

“This is no day to day business for me, because it is mostly covered in the system

layer and because we use things like jQuery.”

Compatibility was found relevant while it proved difficult to determine the relevance

of the sub-attribute co-existence. Eventually the interviewee decided that co-existance

is relevant, but that in his experience it was no relevant factor. The main product of the

company is multi-tenant but there is no co-existance of products.

The answers to the questions on quantification were in line with the first interview,

with no significant changes. The difference with the first interview is that the interview

could not determine whether or not an architect should have experience before partak-

ing in pattern evaluation.

5.3 Implications for pattern evaluation

The previously discussed expert interviews formed the basis of the initial version of

the SPEM method (Figure 5 - Initial method (M1)). Two software architects from dif-

ferent companies cooperated to share their views on software pattern evaluation. Un-

derstanding which attributes are relevant in pattern evaluation and how they could be

quantified was the goal of the interview. During the interview a list of quality attributes

derived from ISO/IEC 9126 (ISO/IEC, 2001) and ISO/IEC 25010 (ISO/IEC, 2010) was

discussed, the latter being preferred by the interviewees. Although both interviews had

different results on the importance of each individual attribute of the standard, none

could be excluded. Ease of learning and ease of implementation are both attributes de-

scribing characteristics of software patterns. Both these attributes should be included in

software pattern evaluation as they play an important part in software pattern selection.

Scenarios are often used in software architecture evaluation, but do not fit pattern

evaluation. The fact that patterns are evaluated without a specific implementation in

mind makes the use of scenarios irrelevant. A software architect should interpret the

results of pattern evaluation by relating it to their own project. When attributes are

quantified using a score, it should be possible to assign a negative value. Patterns can

affect software quality in a negative way or have negative characteristics, which a score

should be able to express. The range of the scores should be between a five and ten

point scale. At larger ranges it would be difficult for an architect to assign an accurate

score.

When multiple architects perform a pattern evaluation, they are likely to have vary-

ing degrees of experience. Experience is key in understanding software patterns and

their effect on software quality. It is important to assign a score to an attribute which

29

takes into account the varying degrees of experience software architects have. This

should be done using discussion and consensus. In a discussion those who have more

experience can share their knowledge with those who have less experience. Together

working towards consensus can improve the level of knowledge of the participants and

consequently improve the score. Software pattern evaluation should be performed with

at least one architect who has experience using the pattern which is being evaluated.

This restriction makes sure the evaluation yields a valuable result.

Based on these interview results a method was constructed incorporating the follow-

ing:

 All attributes and sub-attributes from ISO/IEC 25010 (ISO/IEC, 2010).

 Two additional attributes; ease of implementation and ease of learning.

 Scoring ranging from -5 to +5.

 Discussion after each attribute.

 The goal of trying to reach consensus on each attribute.

Evaluation summary

Assign score

Create participant

profile

Assign personal

score

Assign group score

Write evaluation

summary

[Consensus]

[No consensus]

Participant profile

Evaluation summary

[All attributes discussed]

[Next attribute]

Score table

is included in

is input for

is included in

1 *

1

1

1

1 *

1

Figure 5 - Initial method (M1)

6. Method evolution

In this section the evolution of the software pattern evaluation method is described.

Using a design science approach the initial method was evaluated and improved over

several iterations (Figure 6 – Software pattern evaluation method (M2)). A total of three

focus group sessions were hosted to evaluate the method. In these sessions the method

was carried out by evaluating a software pattern. Participants were asked to fill out an

evaluation form at the end of the focus group session. The feedback gathered in the

evaluation forms and experiences from hosting the sessions were the basis for each new

iteration of the SPEM method. The remainder of this section discusses each focus group

session and presents the changes which are incorporated in the method.

6.1 Focus group session 1 results and interpretation

During the first focus group session, four software architects participated, each having

over nine years of experience in software development (Table 3 - Focus group session

participants). During this session the observer pattern was evaluated using the initial

version of SPEM. The session took approximately two hours to complete.

Table 3 - Focus group session participants

Description Participant 1 Participant 2 Participant 3 Participant 4

Experience related to
software architecture 12 years 11 years 10 years 10 years

Job description
Principal
architect IT architect IT architect IT architect

Has experience using
the evaluated pattern Yes Yes Yes Yes

Method introduction

An introduction was given explaining this research, its relevance and the goal of the

evaluation session. The method that would be used was explained, including all activi-

ties and deliverables. Finally, an explanation of the session’s protocol was given, clar-

ifying who will be performing which activity and in which order. Before continuing to

the next step, the participants could ask questions on any of the previously discussed

topics.

For some participants the goal of the method was not immediately clear, which led

to a discussion among the architects. This discussion was quickly resolved after the

principal architect explained his arguments for pattern evaluation.

The goal of the method could be unclear to some because the introduction was in-

tentionally kept as short as possible to focus on the evaluation itself. The participants

were briefed on the evaluation session days before the event. In this briefing the goal

and context of the evaluation session were explained. However, the evaluation session

showed the value of an elaborate introduction, explaining the method with more detail.

31

Pattern selection

Because the evaluation session was hosted for academic purpose, a pattern needed

to be selected for evaluation. A number of patterns were prepared by the evaluator,

including high level architectural patterns and lower level design patterns. A restriction

of the initial method is that at least one of the participants needs to have experience

using the pattern which is being evaluated. Therefore, a pattern was introduced by the

evaluator and the participants were asked if they had experience with the pattern. Be-

cause of time constraints a pattern was selected that was familiar to all participants.

This way less time was spent explaining the pattern and more time was available for

the evaluation. After some debate the observer pattern was selected, a pattern which all

architects had experience with.

Participant profile creation

Participant profiles were handed out to each participant, after which they were asked

to fill in their name, job description, years of experience and experience using the pat-

tern. This process was straight forward and all participants completed it in a few

minutes.

Score assignment

For each attribute an introduction was given by the evaluator. A presentation slide

pointed out which attribute was being discussed. Sub-attributes were also included on

the slide but without a definition. For some sub-attributes the definition was not clear

to the participants, which led to discussion. The discussion made the definition clear

for all participants, but it also shows that definitions for sub-attributes should have been

included in the method. A participant stated after the evaluation that:

“I would add a description for sub-attributes as well and be more explicit about the

fact that the evaluation is about the effect of the pattern on the system and not about a

specific implementation”.

After introducing an attribute the evaluator would give the participants a few minutes

time to assign a personal score. The participants had no problem assigning a score

within this time frame. At times a participant would assign scores to the attribute and

its sub-attributes at once. Although the method was created to go over each attribute

and sub-attribute one by one, the participants’ tendency to assign scores to them both

at once could potentially speed up the score assigning activity. The problem with the

initial method is that discussion takes place after each attribute and sub-attribute in or-

der to assign a group score, which restricts the assigning of scores to be done one by

one. More sessions are needed to see if discussion and group scores are needed for sub-

attributes.

When a personal score was assigned by all participants, the evaluator would initiate

a discussion by asking a participant to reveal his score. This process went on without

any directing from the evaluator as the participants joined in the discussion. At all times

the attribute provoked a discussion, which could take from a few minutes up to twelve

minutes. When constructing the initial method it could not be foreseen how architects

would react to a discussion on this topic. The evaluator would need to direct the dis-

cussions based on the available time. Directing in this context means that not only does

the evaluator initiate the discussion, but also actively reminds the participants of the

available time and halts the discussion when no more time is available.

At the end of the discussion the evaluator would ask the participants if they have

reached consensus. Either consensus was reached or the discussion would be extended.

Consensus was reached for all attributes except for functional suitability and its sub-

attributes. For this attribute it was not possible to assign a score, as functional suitability

requires project specific context.

Score interpretation

When we look at the scores assigned in the first focus group session (Appendix F -

Focus group session 1 – Score table; Table 4 - FGS1 Score table excerpt) we can see

that functional suitability and its sub-attributes did not receive a group score. However,

there is an average score because one participant assigned a personal score. After a

discussion all participants agreed that functional suitability should not be included in

the evaluation, therefore no group score was assigned.

Performance efficiency received a group score of -2, which means the pattern has a

negative impact on performance. There is a rather large standard deviation of 1.89

caused by a participant who assigned +2. The participant argued that the pattern could

have a positive impact on performance under certain circumstances. The large discrep-

ancy in scores resulted in an average of -0.75. After a discussion consensus was reached

on a score of -2, which means that the discussion changed the views of one participant

to adopt the arguments of the other three participants. Although some sub-attributes

received a different score, they all got assigned -2 after reaching consensus.

Compatibility received a group score of +1 which can be interpreted as mildly posi-

tive impact on compatibility. The average showed a similar result with a score of 0.75.

The participants agreed that the pattern had no impact or a mildly positive impact on

compatibility. After a round of discussion and some examples of implementations, the

participants reached consensus on a score of +1. The results of the sub-attributes were

close to identical, all receiving a group score of +1, with only a slightly different aver-

age score for co-existence (+0,5).

The pattern had no impact on usability and all participants agreed with this stand-

point, leaving the average score and group score at 0 (neutral).

Reliability and its sub-attributes received a group score of +1. There was debate on

this attribute which is reflected in a high standard deviation of 1.91. The highest score

was 4 while the lowest was 0. This was mainly due to the different experiences the

participants had with the pattern and how it affected certain implementations. In the

discussion the focus shifted to a more general perspective of the pattern and moved

away from specific implementations.

The pattern had no impact on security and received a score of 0. Three participants

assigned a score of 0, while one participant assigned -2. Similar to reliability, this was

due to one participant thinking about a specific implementation. In the discussion all

participants agreed that the pattern had no impact on security in general.

33

Maintainability received a group score of +3, the highest score assigned to any of

the quality attributes. The average personal score was +3.5 resembling the group score.

All participants quickly agreed that this was the strength of the pattern and that it had a

positive influence. The only debate was on how positive this impact was with one par-

ticipant assigning a personal score of +5 while the others assigned a +3. What stands

out is that this is the only attribute where the sub-attributes received a deviating group

score.

The participants were divided on analyzability with scores ranging from -4 to +4. A

discussion revealed different perspectives on analyzability and consensus was reached

on a score of +2.

All participants agreed that the pattern did not have an impact on portability and

consensus was quickly reached on a neutral score.

Participants considered the observer pattern easy to implement with an average score

of +4.25 and a group score of +4.

Ease of learning received a group score of +3, although there were multiple views

on this attribute. Some architects would consider ease of learning to be negative, as

time has to be invested to learn the pattern, while others compared how easy the pattern

was to learn when compared to other patterns. The latter view was adopted by all par-

ticipants after a round of discussion.

When looking at the score table we can see that the highest and lowest scores are

being avoided. There was no group score of +5 or -5 assigned in the evaluation. A

personal score of +5 was assigned eight times, which suggests that discussion and con-

sensus allows for compromise. Four out of ten attributes did not receive a group score

and were deemed irrelevant for this particular pattern. The way a participant views the

attribute before and after discussion can be different. In some cases a participant would

assign a negative personal score and later reach consensus on a positive score. Discus-

sions allow the participants to share their knowledge and learn from each other. The

feedback on this activity was positive with a participant stating:

“Discussions during the evaluation session were very useful”.

Table 4 - FGS1 Score table excerpt

Pattern name: Observer

Attribute name Group score Average Standard deviation

Functional suitability 0 1,25 2,50

Functional completeness 0 1,25 2,50

Functional correctness 0 0,75 1,50

Functional appropriateness 0 1,25 2,50

Performance efficiency -2 -0,75 1,89

Time-behavior -2 -0,50 1,73

Resource utilization -2 -0,50 1,73

Capacity -2 0,25 2,06

Compatibility 1 0,75 0,96

Co-existence 1 0,50 1,00

Interoperability 1 0,75 0,96

Usability 0 0,00 0,00

Appropriateness recognisability 0 0,00 0,00

Learnability 0 0,00 0,00

Operability 0 0,00 0,00

User error protection 0 0,00 0,00

User interface aesthetics 0 0,00 0,00

Accessibility 0 0,00 0,00

Reliability 1 1,50 1,91

Maturity 1 1,00 2,00

Availability 1 1,50 1,91

Fault tolerance 1 1,50 1,91

Recoverability 1 0,50 1,00

Security 0 -0,50 1,00

Confidentiality 0 0,00 0,00

Integrity 0 -0,75 1,50

Non-repudiation 0 0,00 0,00

Accountability 0 -0,75 1,50

Authenticity 0 0,00 0,00

Maintainability 3 3,50 1,00

Modulatiry 4 4,25 0,96

Reusability 2 2,50 1,73

Analysability 2 0,00 3,65

Modifiability 4 4,00 0,82

Testability 3 2,75 2,63

Portability 0 0,25 0,50

Adaptability 0 0,25 0,50

Installability 0 0,25 0,50

Replaceability 0 0,25 0,50

Ease of implementation 4 4,25 0,50

Ease of learning 3 2,25 2,50

35

Method evaluation

When all scores were assigned, the method was evaluated. The evaluator handed out

evaluation forms to all participants. In the evaluation form participants were asked

both closed and open questions on each deliverable and activity of the method. The

data from these evaluation forms is summarized in Table 5 – Focus group session 1

evaluation data summary.

Table 5 – Focus group session 1 evaluation data summary

Question P1 P2 P3 P4

Information asked on the participant profile is relevant Yes Yes Yes Yes

The introduction provides enough information N/A N/A Yes N/A

The introduction of attributes provides enough understanding Yes Yes Yes Yes

The score range is sufficient Yes Yes Yes Yes

The score table includes all relevant score data Yes Yes Yes Yes

The score table and diagram allow for pattern comparison No Yes Yes Yes

The information asked on the participant profile was found relevant by all partici-

pants. One participant suggested the inclusion of:

“Technology, average size/length of software development”.

We chose not to include the suggested fields because technology and size/ length of

software development are not always related to experience with patterns. Because

100% of participants answered positively on the relevance of information asked on

the participant profile, no changes were made to the deliverable.

When we look at the question on the pattern introduction we see that it was not appli-

cable to 75% of participants. This is caused by the fact that the participants had expe-

rience using the pattern, which means that many of them did not learn anything new

from the introduction. One participant did find the introduction of the pattern to pro-

vide enough information to allow for pattern evaluation. It could be that he was less

experienced using the pattern than the other participants. More data is needed to make

any statements on the pattern introduction.

All participants thought that the attribute introduction provided enough understand-

ing. It should be noted that all participants had over 10 years of experience in soft-

ware development, which means that we cannot conclude that the introduction is suf-

ficient for inexperienced participants.

Most participants thought that the score table and diagram allowed for pattern com-

parison. One participant did not agree and stated:

“Maybe a spider diagram, putting in multiple patterns is better suited”.

A spider diagram can be an alternative to the bar diagram used in the evaluation

method. However, there is no reason to change the score diagram based on the data

provided in the evaluation in which 75% thought the current bar chart allowed for pat-

tern comparison. The feedback will be taken into account for future evaluation ses-

sions.

Figure 6 – Software pattern evaluation method (M2)

In Figure 6 – Software pattern evaluation method (M2) the improved method is de-

picted, it includes the changes incorporated based on the first focus group session.

37

Changes that are present in processes or deliverables are underlined. The observation,

pattern data and evaluation data have led to the following changes:

 A score range of -3 to +3 — A smaller score range would be sufficient to

express the impact a pattern can have on software quality. This score range

was suggested by one of the participants. Combined with an analysis of the

score table, we can see that extremes (-5 and +5) are being avoided.

 Removal of attribute ‘Functional suitability’ — This attribute, including

its sub-attributes turned out to be irrelevant based on the focus group ses-

sion. Functional suitability can only be assessed by looking at specific im-

plementations.

 Inclusion of a description for all sub-attributes — A description of each

attribute, including all sub-attributes was needed. This way different inter-

pretations of attributes can be precluded.

Figure 7 – First method evaluation session

6.2 Focus group session 2 results and interpretation

During the second focus group session, ten software architecture master students

participated. The students have an information systems background and were all en-

rolled in the Software Architecture course, which prepared the students for the focus

group session.

In this session the check point pattern was evaluated using the second (M2) version of

SPEM. The session took approximately two hours to complete.

Method introduction

An introduction to the evaluation session was given by the evaluator, explaining key

concepts and providing context to the session. Because the group consisted of soft-

ware architecture master students, the introduction was adapted to include the concept

of software patterns and an example of a pattern. This change was excluded from

evaluation analysis and cannot be considered part of the method. An aspect that was

changed based on the feedback of the first focus group session is the length of the in-

troduction. For this session the introduction was more elaborate with more examples

of the problem statement and what the evaluation’s goal is. The introduction con-

sumed 15 minutes after which there was an opportunity for the participants to ask

questions. In total the introduction, including questions, did not take more time than it

did in the first evaluation session. Although the introduction was more elaborate and

longer, the questions did not provoke discussion, making the process shorter.

Pattern selection

It could not be expected that the participants had experience using and selecting pat-

terns, therefore multiple patterns were selected by the evaluator. Depending on the

available time, one or more patterns could be evaluated in one session. The check

point and limited view pattern were selected. Both are high level security patterns

which are easy to comprehend and are used in many well-known software products.

Participant profile creation

A form containing the participant profile was handed out by the evaluator to all par-

ticipants. The questions on the form were unaltered, although they were not always

relevant to the participants. Questions, such as the experience in software architecture

were not applicable to many students. Some participants had a few years of experi-

ence related to software architecture because they had worked in software develop-

ment. The feedback on the participant profile’s relevance towards students was dis-

carded, as the method is meant to be performed by software architects.

Score assignment

Each attribute was introduced by the evaluator by presenting a short description.

Based on the feedback of the first session, sub-attributes were also included in the in-

troduction with a similar description.

After the introduction of an attribute or sub-attribute, the participants assigned a per-

sonal score. This process was completed within five minutes for each attribute. How-

ever, the participants were not always familiar with the presented attributes. A partici-

pant formulated this problem as:

“The definition of the quality attributes need more explaining in some cases. That

way a better understanding of the attributes is provided for people who have limited

experience with patterns or software architecture”.

 There was debate on how to interpret the attributes and how scores should be as-

signed. It is likely that these problems arose because the participants were students

who do not possess the same experience evaluating software products as software ar-

chitects. In this context a participant stated:

39

“For people without a background in software architecture, there is little information

to base an opinion on”.

The problem was resolved by allowing the participants to withdraw from scoring if

they did not understand the attribute.

When personal scores were assigned, a discussion was initiated by the evaluator. A

random participant was asked to reveal his personal score and motivate it. It was ex-

pected that students would not have as many arguments as software architects because

of a lack of experience. However, as with the first session, each attribute provoked a

lengthy discussion. A difference with the first session is that only a few dominated the

discussion while others did not engage. It could be the effect of a concept called so-

cial loafing, meaning that participants might not agree with what is being said, but

choose to keep silent (Latane, Williams, & Harkins, 1979). The evaluator should be

aware of this and direct discussions asking questions to those who do not actively par-

ticipate. One of the participants stressed the importance of this by stating:

“Try to make sure everyone gives his/her opinion”.

At the end of the discussion or when no time was left, the evaluator asked if the par-

ticipants had reached consensus. In the end consensus was always reached, although

for some attributes this meant that the discussion had to be extended.

Due to the time spent on discussions and reaching consensus the evaluation could not

be completed within a two hour timeframe. Only five out of nine attributes were eval-

uated, this could be because of the larger focus group of ten participants versus the

group of four participants in the first session. Regardless, the method would need to

be adapted to work in a much smaller timeframe, otherwise the method becomes im-

practical and unusable in an industrial setting. A participant defined this problem as:

“The session can be very time consuming if participants are not familiar with patterns

or quality attributes”.

In order to evaluate a pattern within an hour the evaluator would need to do strict

timekeeping. A participant stated the following solution:

“Set a time per attribute, so that every attribute is evaluated within the time of the

session”.

 When time is up, a discussion should be halted whether consensus has been reached

or not. Also, participants should not be allowed to discuss previous attributes. When-

ever this does happen, the evaluator should direct the discussion towards the attribute

that is currently being assessed.

The majority of time is consumed by the discussion of sub-attributes. In order to deal

with time constraints the role of sub-attributes in the method would need to be altered.

The focus should be on attributes, while sub-attributes support these, providing better

understanding of the attribute and more detailed data. To make it concrete, attributes

should be discussed and assigned a group score while sub-attributes would only re-

ceive personal scores.

Score interpretation

Nine out of ten participants assigned personal scores. One participant did not assign

any scores and is not included in the data analysis. It has to be noted that analysis of

the data is not related to the pattern, but to the method itself. For a pattern evaluation

this session would not be valid for the following reasons:

 The use of software architecture master students

 Not all attributes were evaluated

However, we can still analyze the behavior and feedback of the participants based on

scores, observation and evaluation forms. A complete overview of the scores can be

found in (Appendix G - Focus group session 2 – Score table).

Figure 8 - Focus group session 2 - Score diagram

Consensus for performance efficiency was reached on -1, while personal scores for

this attribute were both positive and negative, ranging from -1 to +1. The different

perspectives on the attribute were aligned in the discussion. Compatibility and usabil-

ity both got assigned neutral group score, while again both positive and negative per-

sonal scores were assigned. For these attributes some participants requested more ex-

planation on their definition and an example. It is not the role of the evaluator to enter

discussion on the definition or view on an attribute or its relation to software quality.

Participants should share their views and educate each other in the discussion. This

way, a participant might have a different view on an attribute when assigning a per-

sonal score than when reaching consensus. It contributes to the value of a group score

and knowledge that has been shared in the evaluation session.

Reliability and security both got assigned a positive group score, +1 and +2 respec-

tively. From the start of the discussion it was clear that both these attributes would re-

ceive a positive group score. No negative personal scores were assigned either. The

attributes were clear to the participants and the evaluated pattern is a security pattern,

41

which might explain the high score and easily reached consensus on security. There

wasn’t sufficient time to evaluate any other attributes. The following attributes did not

receive a score:

 Maintainability

 Portability

 Ease of implementation

 Ease of learning

Table 6 - FGS2 score table excerpt

Pattern name: Check point

Attribute name Group score Average Standard deviation

Performance efficiency -1 0,00 1,07

Time-behavior -1 -1,00 0,00

Resource utilization -1 -1,00 0,00

Capacity -1 -0,88 0,35

Compatibility 0 0,38 1,06

Co-existence 0 0,00 0,00

Interoperability 0 0,00 0,00

Usability 0 0,13 0,83

Appropriateness recognisability 0 0,13 0,83

Learnability 0 0,13 0,83

Operability 0 0,13 0,83

User error protection 0 0,13 0,83

User interface aesthetics 0 0,13 0,83

Accessibility 0 0,13 0,83

Reliability 1 0,63 0,52

Maturity 1 0,63 0,52

Availability 1 0,63 0,52

Fault tolerance 1 0,63 0,52

Recoverability 1 0,63 0,52

Security 2 2,50 0,53

Confidentiality 2 2,50 0,53

Integrity 2 2,50 0,53

Non-repudiation 2 2,50 0,53

Accountability 2 2,50 0,53

Authenticity 2 2,50 0,53

Method evaluation

Assigning scores to sub-attributes and discussing them was time consuming. Sub-

attributes needed a less prominent role in the method. It was not always possible for

participants to assign a score to an attribute. Therefore it should be possible to have an

explicit option stating that no score is assigned, instead of leaving it empty which might

imply a neutral score. The introduction of the pattern was unclear, leading to discussion

and debate. A participant stated that the pattern introduction could be improved:

“Make it more clear by using examples. There was too much discussion over the

pattern”.

How scores should be assigned and what they represent raised questions during the

session. The evaluator should focus more on explaining the meaning of scores and the

difference between quality attributes and pattern attributes.

When the focus group session was concluded an evaluation form was handed out to

all participants. The data has been summarized in Table 7 - Focus group session 2 eval-

uation data summary.

Table 7 - Focus group session 2 evaluation data summary

Question P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Information asked on the participant profile is relevant Yes Yes Yes Yes No Yes Yes Yes No No

The pattern introduction provides enough information Yes No No Yes No No No No No No

The introduction of attributes provides enough understanding No No No Yes Yes No No No No No

The score range is sufficient Yes No No Yes No Yes Yes Yes

The score table includes all relevant score data Yes No Yes Yes Yes Yes Yes Yes No

The score table and diagram allow for pattern comparison Yes Yes No Yes Yes Yes Yes

When we analyze the evaluation data summary and compare it to the first session

we see that the negative feedback has increased from 4% (first session) to 42%.

Considering the efforts that were made to improve the method based on the feedback

from the first session, one would expect an improvement in positive feedback. It is

unlikely that the changes to the method have caused this result, because they had no

effect on most of the activities and deliverables found in the evaluation, except for score

range.

The increase in negative feedback is most likely caused by the use of software archi-

tecture master students as opposed to experienced software architects.

43

When we look at the individual questions we can see why the feedback has changed

over the last two sessions. The information on the participant profile was found relevant

by all participants of the first session while it was deemed irrelevant by 30% of partic-

ipants in the second session. The result is not surprising because the participant profile

is created for software architects. Questions, such as, how many years of experience

someone has in software architecture, do not apply to software architecture master stu-

dents. It does not mean that the participant profile needs to be adapted, it only confirms

that the profile is not applicable to software architecture master students.

According to 80% of participants the pattern introduction did not provide enough

information in order to evaluate the pattern. The reason we see this negative result for

the first time in the second session is because the participants had no experience using

the pattern, which means they needed a proper introduction in order to understand and

evaluate it. This was not the case during the first session where all participants had

experience using the pattern and an introduction was not necessary.

It means that the pattern needs to be more thoroughly explained during the introduc-

tion in order to enable less experienced participants to partake in the evaluation.

The introduction of attributes did not provide enough understanding according to

80% of participants. The increase compared to the first session, where the negative

feedback on this activity was 0%, shows that those who are inexperienced at software

architecture most likely need a more elaborate introduction to attributes. Experienced

software architects are used to working with quality attributes and need little explana-

tion, this explains why they (in the first session) thought the attribute introduction pro-

vided enough understanding. The evaluation method is meant to be accessible to both

experienced and inexperienced software architects, which means the method needs to

be adapted. The attributes, what they represent and how they should be scored should

get more focus in the introduction.

Although 30% of participants did not think the score range was sufficient, the sug-

gested scores ranges were inconsistent, therefore the score range remains unaltered.

Figure 9 - Software pattern evaluation method (M3)

In Figure 9 - Software pattern evaluation method (M3) the improved method is de-

picted, it includes the changes incorporated based on the second focus group session.

Changes that are present in processes or deliverables are underlined.

Based on the second evaluation session, the following improvements were incorpo-

rated in the method:

 Sub-attribute group scores removed — Because discussion on sub-at-

tributes took too long, they were removed from the method.

 Added an option to give an attribute no score — An explicit way was

added for participants to indicate they do not want to give a score to a cer-

tain attribute.

 More focus on pattern introduction — The pattern needs to be thor-

oughly explained to prevent discussions.

45

 Personal score list included — A form containing all attributes and per-

sonal scores. Included as a separate deliverable, formerly part of the partic-

ipant profile.

 More focus on explaining what the scores represent — Scores represent

the impact the evaluated pattern has on software quality or characteristics

of the pattern itself. This distinction needs to be clear in order to properly

assign scores.

 Stronger role of the evaluator — The evaluator needs to direct the dis-

cussions. Apart from initiating discussions, they should also be halted.

Time keeping is the responsibility of the evaluator.

6.3 Focus group session 3 results and interpretation

The third focus group session was performed with different students from the same

group as the second focus group session. The session was carried out with eight partic-

ipants and took approximately one hour to complete. The check point pattern was eval-

uated, which was selected in the same manner as the second evaluation session. There-

fore the selection process will not be described in detail in this section.

Method introduction

The evaluator introduced the method to the participants similarly to the previous

evaluation session. The process has been adapted since the last session to focus more

on explaining the pattern and keeping short on the theoretical background of the method

and software patterns in general. By doing this the understanding of the pattern was

improved for the participants, reducing the questions asked during the session. The in-

troduction focused more on the scoring system, in particular the way a score should be

assigned. The difference between a quality attribute and a pattern attribute were made

clear. Especially the thought process is important when assigning scores, as quality at-

tributes require a participant to think about the effects on software quality. During this

session there was no need to explain this more thoroughly as opposed to the previous

session. The introduction including questions was completed within 20 minutes.

Score assignment

Scores were only assigned to attributes, excluding sub-attributes. An attribute was

introduced by the evaluator with a short description. The participants were given time

to assign a personal score. In the previous session there was a debate on how to assign

scores, which did not present itself in this session. It is likely that the changes to the

introduction discussed in the previous section prevented the debate. This process took

between 5 to 10 minutes for each attribute.

After assigning a personal score, a discussion was initiated by the evaluator. The role

of the evaluator was more proactive in this session with a focus on strict timekeeping.

It was achieved by letting the participants discuss and reminding them of the available

time. When no more time was available the discussion was halted by the evaluator, who

asked if consensus was reached. When consensus was not reached, the evaluator asked

the participants to raise their hand if they had favored a certain score. This way the

evaluator can make a decision to extend the discussion if only a few participants prevent

consensus from being reached. At times when participants are divided on a certain at-

tribute the evaluator can decide to halt the discussion and not assign a group score,

continuing to the next attribute.

A more proactive role of the evaluator and the exclusion of sub-attributes greatly

reduced the time spent on the evaluation. The participants responded positively to the

role of the evaluator in the discussion by stating:

“The role of the evaluator was good and allowed us to assign our own scores”.

“The group was allowed to reach their own consensus”.

Score interpretation

In this section the assigned scores are interpreted. A complete overview of the scores

can be found in (Appendix H - Focus group session 3 – Score table).

Figure 10 - Focus group session 3 - Score diagram

Performance efficiency received a group score of -1, the same as the average per-

sonal score. There was not much discussion, because all participant agreed on a nega-

tive or neutral impact. For compatibility personal scores were assigned between -1 and

+3, resulting in a high standard deviation of 1.25. There was no debate on the attribute

itself, only on the effects of the pattern on this aspect of software quality. Consensus

was quickly reached, assigning a neutral score. Usability had a similar result, with both

negative and positive personal assigned scores. The final group score was 0 (neutral).

For reliability consensus was not reached because one participant could not be con-

vinced by the other participants. This shows that a participant can at times solely pre-

vent consensus and is not overcome by any social pressure by his peers. The pattern

was found to have a positive impact on security by six out of eight participants. The

other two assigned a neutral score, while the average score was +1.88 and consensus

was reached on +2. An attribute that stood out was ease of implementation, for which

no consensus was reached. It was caused by three participants who thought the score

should be negative and four participants who thought the score should be positive. The

discussion was not extended because too many participants had a different view on this

attribute.

Although sub-attributes did not receive a score, they were referred to in discussions

to better understand an attribute. Therefore it is important to include the sub-attributes

in the method. Discussions for each sub-attribute would increase the time to complete

47

an evaluation substantially. A personal score should be assigned to a sub-attribute while

discussions and consequently group scores, should be left out.

Table 8 - FGS3 Score table excerpt

Pattern name: Check point

Attribute name Group score Average

Performance efficiency -1 -1,00

Compatibility 0 0,88

Usability 0 0,00

Reliability -0,25

Security 2 1,88

Maintainability 0 0,38

Portability 1 1,00

Ease of implementation 0,38

Ease of learning 2 1,88

Figure 11 - Method evaluation session at Utrecht University

Method evaluation

At the end of the session the method was evaluated by means of an evaluation form.

The questions on the form remain unchanged from focus group session 1 and 2. The

data of the evaluation has been summarized in Table 9.

.

Table 9 - Focus group session 3 evaluation data summary

Question P1 P2 P3 P4 P5 P6 P7 P8

Information asked on the participant profile is relevant Yes Yes Yes Yes Yes Yes Yes Yes

The introduction provides enough information Yes No Yes Yes Yes Yes No Yes

The introduction of attributes provides enough understanding No Yes No Yes Yes No Yes Yes

The score range is sufficient Yes Yes Yes Yes Yes Yes Yes No

The score table includes all relevant score data Yes Yes No Yes Yes Yes Yes Yes

The score table and diagram allow for pattern comparison Yes Yes Yes Yes Yes Yes Yes Yes

Overall we see that compared to the second focus group session, the responses to the

third session were more positive. In the second session 42% of the answers were nega-

tive, indicating that many activities and deliverables needed to be adapted. The changes

to the method resulted in 15% negative answers to the questions found in the method

evaluation.

Compared to the second session, negative feedback found in the evaluation results

has decreased by 64%.

When we look at the individual questions we can see what attributes to this decrease.

All participants thought that the information asked on the participant profile was rele-

vant. In the previous session 30% did not agree with the statement, which can be ex-

plained by a better introduction. Because the session was performed with students it is

important that they are told the participant profile is targeted towards software archi-

tects. Although this was explained in the first session, the larger emphasis on this aspect

of the introduction can explain why 100% now agrees with the statement.

The more elaborate pattern introduction was beneficial to the participants.

The number of participants who though that the introduction did not provide enough

information was reduced by 68%.

This result confirms the observation that during this session there were no discus-

sions on the pattern itself. No questions were asked about the pattern, although there

was a difference in how it was perceived by some participants. The way a pattern is

viewed by participants should not be considered part of the introduction. Aligning

views can effectively be done during the discussion activity.

What attributes represent and how they should be scored was elaborated on during

the attribute introduction. The method was improved to focus on the impact that quality

attributes have on software quality and how patterns can influence these.

The evaluation data also reflects this improvement reducing the negative feedback

on the attribute introduction activity from 80% (second session) to 38%, a 53% reduc-

tion.

49

The score range was no concern in previous session although a minority considered

the score range to be insufficient. There was no consistency in the score ranges sug-

gested by the participants. Although no changes were made to the score range, negative

feedback on the -3 to +3 range was reduced to 13%. An explanation for this can be the

added focus on how scores should be assigned in the introduction activity.

The score table does not have to be adapted based on the evaluation data. Only 13%

thought the score table did not include all relevant data, but the suggested changes, like

including standard deviation, were already present in the score table.

The score table and score diagram allow for pattern comparison, which is a con-

sistent result from all three evaluation sessions.

When comparing the last two evaluation sessions the number of unanswered ques-

tions in the evaluation forms has been reduced from 10% (second session) to 0%.

It could be that the participants were more confident answering the questions, be-

cause all activities and deliverables were elaborately discussed during the introduction.

Figure 12 - Software pattern evaluation method (M4)

In Figure 12 - Software pattern evaluation method (M4) the improved method is

depicted, it includes the changes incorporated based on the third focus group session.

Changes that are present in processes or deliverables are underlined.

Based on the third evaluation session, the following improvements were incorpo-

rated in the method:

 Sub-attributes added — Can help the understanding of attributes and pro-

vide more detail to the data.

 Sub-attribute discussions removed — Gives the sub-attributes a less

prominent role in the method and focusses more on attributes.

 Descriptions for each attribute / sub-attribute added to participant

profile — Allows the participants to read descriptions of attributes inde-

pendent of the evaluator.

After the three sessions, the final method (i.e. SPEM) was created.

51

7. SPEM – Software pattern evaluation method

In this section the final version of the pattern evaluation method called SPEM (Soft-

ware Pattern Evaluation Method) is presented. This method is the result of a literature

study, expert interviews and three focus group evaluation sessions. First, the method is

discussed in general, describing the stakeholders, activities and deliverables. Two sub-

sections explain the method from the perspective of the evaluator and the participant,

going more into detail on their individual activities.

SPEM has been constructed to evaluate software patterns in a manner which allows

for comparison. There are two distinct roles:

Evaluator — Leads the evaluation process by introducing concepts and directing

discussions. Is responsible for timekeeping, collecting all deliverables and noting

scores.

Participant — A software architect or developer who uses his knowledge to assign

scores to attributes, enters discussion, shares arguments and tries to reach consensus.

The evaluation data is gathered during a focus group session. These sessions vary in

duration from one to two hours. Four to twelve participants can partake in the evalua-

tion, excluding the evaluator. The basis of the evaluation are attributes, categorized in

both quality attributes and pattern attributes. Quality attributes are used to measure the

impact the pattern has on software quality and are based on ISO/IEC 25010 (ISO/IEC,

2010). The following quality attributes (excluding sub-attributes) are used in SPEM:

 Performance efficiency — Degree to which the software product provides

appropriate performance, relative to the amount of resources used, under

stated conditions.

 Compatibility — The ability of multiple software components to exchange

information or to perform their required functions while sharing the same

environment.

 Usability — Degree to which the software product can be understood,

learned, used and attractive to the user, when used under specified condi-

tions.

 Reliability — Degree to which the software product can maintain a speci-

fied level of performance when used under specified conditions.

 Security — The protection of system items from accidental or malicious

access, use, modification, destruction, or disclosure.

 Maintainability — Degree to which the software product can be modified.

Modifications may include corrections, improvements or adaptation of the

software to changes in environment, and in requirements and functional

specifications.

 Portability — Degree to which the software product can be transferred

from one environment to another.

Evaluation summary

Assign score

Create participant

profile

Assign personal

score

Assign group score

Write evaluation

summary

[Consensus]

[No consensus]

Participant profile

Personal score list

Evaluation summary

[All attributes discussed]

[Next attribute]

Score table

is included in

is input for

is included in

1 *

1

1

1

1 *

1

Figure 13 - SPEM: Software Pattern Evaluation Method

Table 10 - SPEM activity table

Activity Sub-acitivity Description

Create
participant
profile

 A PARTICIPANT PROFILE is created for each participant.

Assign score Assign personal
score

A personal score is assigned to an attribute and corre-
sponding sub-attributes. The score is assigned on the
PERSONAL SCORE LIST.

 Assign group
score

A group score is assigned to an attribute after discussion
and reaching consensus.

Write
evaluation
summary

 All data is gathered, meta-data is added and the score table
is filled out.

53

Table 11 - SPEM concept table

Concept Description

Personal
profile

A form containing fields for the participant's name, job description and experi-
ence,

Personal
score list

A list containing all attributes and sub-attributes with input fields for assigning
scores.

Score table A table containing all attributes and sub-attributes with columns used for as-
signing personal scores and group scores.

Pattern attributes are characteristics of the pattern itself, used to measure its learna-

bility or ease of implementation. The goal of the evaluation is to assign a score to each

attribute by all participants. The score is a relative measure based on the experience of

the participant, ranging from -3 to +3. The score is a generalization of the software

pattern, not based on a specific implementation. Experience using the pattern in a vari-

ety of situations is expressed by the score. Therefore the difference in experience among

all participants is a key factor in the evaluation, which is compensated in a group score.

A group score is assigned to each attribute (excluding sub-attributes) and expresses a

score after a round of discussion. The discussion of each attribute allows the partici-

pants to share their knowledge with each other. The goal of the discussion is to reach

consensus, meaning that after knowledge has been shared between participants with

different amounts of experience, one score is assigned on which all participants agree.

The result is quantitative data in the form of scores based on personal experience and

the knowledge of a group, visualized in an evaluation summary (see Figure 14).

Figure 14 - SPEM evaluation summary (observer pattern)

SPEM consists of four activities and four deliverables, as shown in Figure 13. The

first activity focuses on creating participant profiles. These profiles are forms contain-

ing fields for the participant’s name, job description and years of experience. Addition-

ally there are input fields for the pattern name and experience with the pattern. Provided

with the participant profile is a personal score list containing a list of quality attributes,

sub-attributes and pattern attributes. For each item on this list there is a possibility to

give a personal score. The evaluator introduces the method to the participants by ex-

plaining each deliverable and the focus group session protocol. In the protocol all ac-

tivities and by who they are performed are listed and described. Thereafter the evaluator

asks the participants to fill out the participant profile.

In the second process personal scores are assigned to an attribute. During the evalu-

ation the scores are recorded in the personal score list. After the evaluation the personal

scores are entered in the score table (Figure 15 - Score table excerpt). The score table

contains rows with all attributes used in the evaluation and columns containing all per-

sonal scores, average scores, standard deviations and group scores. The evaluator in-

troduces an attribute by giving a short description. The participants are then asked to

assign a score to the attribute and all corresponding sub-attributes.

Figure 15 - Score table excerpt

In the process assign group score a group score is assigned to an attribute and noted

in the score table. The group score is a score which is produced by gaining consensus.

This means all participants partake in a discussion. The focus of the discussion is to

exchange arguments on the score of an attribute. If consensus is reached among all

participants, the resulting group score is assigned and noted on the score table. If con-

sensus is not reached, the group score is not assigned and no score will be noted in the

score table. The evaluator initiates a discussion on the current attribute by asking a

single participant’s score and motivation for the score. Other participants are free to

respond and exchange views, directed by the evaluator. If the discussion ends or if no

time is left, the evaluator asks the participants if they have reached consensus. When

consensus is reached, the group score is recorded in the score table.

When all attributes have been evaluated an evaluation summary is created. The eval-

uation summary is a combination of all participant profiles and a filled out score table.

Additionally a new form is added containing the name of the evaluator, date and threats

to validity. This gives the evaluator the opportunity to note any occurrences that are not

expressed in the main deliverables. This process is performed by the evaluator at the

end of the focus group session and concludes the evaluation.

Pattern name: Observer

Attribute name Group score Average Standard deviation Participant 1 Participant 2 Participant 3 Participant 4

Functional suitability 0 1,25 2,50 0 5 0 0

Functional completeness 0 1,25 2,50 0 5 0 0

Functional correctness 0 0,75 1,50 0 3 0 0

Functional appropriateness 0 1,25 2,50 0 5 0 0

Performance efficiency -2 -0,75 1,89 -2 -1 2 -2

Time-behavior -2 -0,50 1,73 -1 -1 2 -2

Resource utilization -2 -0,50 1,73 -1 -1 2 -2

Capacity -2 0,25 2,06 2 -1 2 -2

55

a. Role of the evaluator

The evaluator leads the SPEM session by di-

recting discussions, introducing concepts and

writing an evaluation summary (Figure 16 - Eval-

uator activity diagram). It is required that an eval-

uator has understanding of SPEM, software pat-

terns and attributes to an extent which allows the

evaluator to introduce and explain each of the con-

cepts. Although this role can be filled in by soft-

ware architects or developers, the role is not re-

stricted by any set of job descriptions. Anyone

with the required knowledge can fill in the role of

evaluator.

There are six main activities carried out by the

evaluator. An introduction to SPEM is given in

the form of a short presentation. The goal is to cre-

ate understanding of SPEM among participants,

allowing them to participate in the evaluation. It

is important that the difference between quality at-

tributes and pattern attributes is made clear. Par-

ticipants need to be made aware how scores

should be assigned to different types of attributes,

as each type of attribute require a different thought

process. For quality attributes this means that a

participant should a score based on the impact the

pattern has on software quality as criteria. For pat-

tern attributes the score can be assigned based the

pattern’s characteristics as criteria. This is a cru-

cial part of the evaluation and it is the responsibil-

ity of the evaluator to make sure all participants

are able to assign scores.

The evaluator gives an explanation of the pat-

tern which is being evaluated. This is done briefly

without going into the specifics of implementa-

tion. The problem the pattern is trying to solve and its solution should be explained in

general. For the ease of understanding, a depiction of the pattern’s solution can be in-

cluded. After this activity all participants should have basic knowledge of the pattern.

When the participants are ready to assign scores, the evaluator introduces an attribute

and then directs a discussion. This process is repeated until all attributes have been

assigned a score. The introduction of attributes has been included for two reasons;

1. To create understanding of the attribute.

2. To define the attribute, preventing different interpretations among partici-

pants.

Figure 16 - Evaluator activity dia-
gram

Introduce SPEM

Introduce pattern

Introduce attribute

Direct discussion

Write evaluation

summary

[next attribute]

[evaluation finished]

Assign score

The definition of an attribute is also present on the personal score list.

When participants have assigned a score to the attribute and corresponding sub-at-

tributes, the evaluator initiates a discussion. The goal of the discussion is to reach con-

sensus and assign a group score to the attribute (excluding sub-attributes). The role of

the evaluator in this process is to direct the discussion. After opening the discussion the

evaluator asks a random participant to reveal his score and give motivation for the score.

Other participants can raise their hand if they want to enter the discussion. The evalua-

tor directs the discussion by giving the floor to participants who want to enter the dis-

cussion. If participants do not make apparent they want to enter the discussion, the

evaluator can initiate by asking if any participants have a different score. When scores

no longer differ or when all motivation and arguments have been shared, it is an indi-

cation that consensus has been reached. In this case the evaluator halts the discussion

and asks if consensus has been reached by asking if a score which was dominant during

the session can be agreed upon. When all participants agree, consensus has been

reached and a group score can be assigned. If consensus is not reached the evaluator

can decide to extend the discussion. This can help in cases where few participants dis-

agree with the others.

Discussion is a time consuming process which can take anywhere from a few

minutes to tens of minutes. It depends on the available time whether discussions can go

on, therefore timekeeping is an important responsibility of the evaluator. It can mean

that a discussion is halted prematurely by the evaluator and that consensus may not be

reached.

The final activity of the evaluator is to write an evaluation summary. In this summary

all deliverables are collected. At this stage the evaluator fills out the score table, adding

all personal scores and visualizing the data in the form of a diagram. A form is included

containing the date, evaluator’s name, pattern name and number of participants. There

is an optional field for threats to validity which could not be expressed in the delivera-

bles.

An evaluation summary is a deliverable which concludes and summarizes a SPEM

session. It provides information on when the evaluation has taken place and who par-

ticipated. Without having to examine the data, the evaluation summary can inform the

reader of the evaluation’s reliability and validity.

The summary can help someone decide to use the session’s data, discard it or redo

the evaluation. For the last option it is important that it is transparent who has partici-

pated in the evaluation and what threats to validity might have occurred. This infor-

mation could improve any future evaluation sessions of the same pattern.

57

b. Role of the participant

A participant enters discussion, assigns per-

sonal scores and creates a participant profile

(Figure 17 - Participant activity diagram). This

role can be taken by developers or software archi-

tects. It is required that a participant has

knowledge of software patterns and experience

using them. Any knowledge on SPEM is not re-

quired as it is introduced by the evaluator. It is

desirable that the participant has used the pattern

that is being evaluated in a SPEM session, it is not

mandatory for every participant. At least one par-

ticipant should have experience using the evalu-

ated pattern. This requirement can be validated in

the participant profile, where experience with the

software pattern is noted.

The first activity of a participant is to create a

participant profile. This is done by filling out a

form containing personal information. There is a

field for the name of the participant, which is used

to link the personal scores to a participant. The

participant’s job description is asked in order to

validate if a person has met the requirements.

The second activity of a participant involves

assigning personal scores. A score is assigned to

an attribute and corresponding sub-attributes. The

participant notes the score on a form, the personal

score list. This activity ensures that each attribute

and sub-attribute is assigned a score. The scores represent the impact a software pattern

has on software quality or a characteristic of the pattern itself. It allows for descriptive

statistics, providing averages and standard deviations. However, personal scores are not

weighted, each score from each participant is weighted the same. Scores can be less

accurate when participants with varying degrees of experience participate in a SPEM

session. To cope with this problem, group scores were introduced.

The final activity of a participant is to enter discussion. A participant shares his score

and motivates it. During the discussion a participant can respond to others, share

knowledge and gain a better understanding of the pattern. It is assumed that participants

that have the most experience also have a stronger case when defending their score. At

the end of the discussion all participants work towards consensus. Consensus does not

have to be reached and any participant is free to stick to their personal score. When

consensus is reached a group score is assigned otherwise it is left blank.

Figure 17 - Participant activity diagram

Create participant

profile

Assign personal

score

Enter discussion

[next attribute]

[evaluation finished]

8. SPEM implementation

SPEM is created to evaluate software patterns in general, without a specific imple-

mentation in mind. This enables the option for comparison of software patterns, because

each pattern has been evaluated as an abstract solution. It prevents unbalanced compar-

ison between patterns based on different implementations. There is a trade-off between

easy to compare generic evaluation and implementation specific evaluation. An imple-

mentation specific evaluation provides more accurate data, but it can only be compared

to evaluated patterns based on the same implementation. A generic evaluation might

not be as accurate, but ensures all evaluated patterns can be compared. SPEM can be

used for implementation specific evaluation with few adjustments. It requires the eval-

uator to explain that the scores should be assigned with an implementation in mind.

There needs to be an input field describing the implementation on the score table. With

these adjustments an evaluation session would be identical to SPEM and allows for use

of all processes and deliverables used in SPEM.

This study provides knowledge on software pattern evaluation by introducing a

method to evaluate software patterns. The data SPEM evaluations provide further ex-

pands the body of knowledge on patterns. It adds retrospect to the existing software

pattern documentation and provides insight on the impact patterns have on software

quality. A collection of SPEM evaluation results provides valuable knowledge on the

understanding of software patterns and software quality. A knowledge base would en-

able the disclosure of SPEM evaluation results and would allow results to be combined

and compared. From an industrial perspective, a SPEM knowledge base would enable

software architects to share their knowledge on software patterns. It would make

knowledge available to aid in software pattern selection, leading to better decision mak-

ing and overall software quality. It is through sharing knowledge that software pattern

selection can reach a higher level of maturity, allowing for a structured way of compar-

ing software patterns.

SPEM uses discussion and consensus to obtain quantitative evaluation data. This

method of quantification was introduced to cope with different experience levels among

participants. It has imposed a constraint on the method of data gathering used in SPEM.

As discussions require interaction between participants, all participants need to be able

to communicate with each other at the same time. Therefore SPEM is used in focus

group sessions, limiting the number of participants. A trade-off exists between a more

accurate score based on consensus with a small number of participants and a less accu-

rate but more reliable score with a large number of participants.

SPEM can be used as a survey rather than focus group sessions with a few altera-

tions. The participant profile and personal score list would need to be included in the

survey along with a description of the evaluation itself. The process of assigning group

scores would need to be removed from the evaluation.

This would allow a large amount of data to be collected, consisting of personal scores

assigned to attributes. It would expand the possibilities of statistical analysis of the data

beyond descriptive statistics. Before altering SPEM as a method based on surveys, it is

important to value the importance of discussion and consensus. This can be done by

59

looking at the difference between group scores and average scores. The data from this

study does not allow for testing if the difference between these two scores is significant.

To test this, another study would be required using a larger population.

8.1 Industrial use

SPEM gains its relevance from a problem found in software development, namely

selecting a software pattern when multiple alternatives exist. Experience is the basis of

software pattern selection, but is not always available. SPEM tries to capture this

knowledge to aid inexperienced software architects in the pattern selection process.

Pattern selection can have effects throughout software development as design decisions

cannot easily be changed further in development, therefore this decision can have large

implications for a project. Any tool which can help a software architect make better

decisions represents value for a company. However, SPEM requires that a company

invests time in an evaluation session. It means that pattern evaluation becomes a busi-

ness decision, where the value needs to outweigh the effort. SPEM is most valuable if

the pattern selection involves a decision between patterns which are crucial for a pro-

ject. For example, in a mobile banking application security patterns can have such im-

plications that an evaluation session is viable. The decision to use SPEM depends on

the potential value gained from selecting one pattern over another. This value can be

different for each project and pattern selection process.

Each evaluation summary can be stored in a knowledge base, which makes SPEM

results easily accessible. Because accessing the knowledge base is not as time consum-

ing as an evaluation session, the threshold for using the knowledge base is lower.

8.2 Academic use

This study provides knowledge in the domain of software engineering by introduc-

ing a method to evaluate software patterns. The method enables gathering data on soft-

ware patterns through evaluation sessions. Evaluation summaries provide understand-

ing of software patterns and their relation to software quality. The summaries can be

accumulated and stored in a knowledge base. Research using SPEM can add results to

the knowledge base, making it accessible for others. As more evaluation results are

gathered, the knowledge on software patterns is expanded. The academic value of a

SPEM knowledge base lies beyond the domain of software patterns, as evaluation sum-

maries contain data on software quality. The link between software patterns and soft-

ware quality can be the basis of future work. The knowledge base opens up the possi-

bility for statistical analysis. For example, it would be possible to see what impact se-

curity patterns have on performance or maintainability in general. When examining

large sets of data the trade-offs in software quality by using certain types of patterns

can become apparent.

SPEM is restricted to the evaluation of software patterns in general. Project specific

pattern evaluation is not possible and would require more research. It is unknown what

categorization of projects would enable comparison while providing more detailed data.

Without categorization a projects name or description can be too detailed, making it

difficult to find other evaluations to compare with. There are no problems when two

patterns are evaluated at the same company for a specific project. However, the results

would not be as valuable to academia as a more general evaluation method such as

SPEM.

An area in which SPEM can possible be improved is the method of data gathering.

Focus group sessions are restricted to small number of participants. A way to make the

data more reliable is by using a larger population. To do this, a different method of data

gathering is needed. A survey could increase the amount of data at the cost of group

scores. The focus group sessions allow for discussion and assigning group scores. Re-

search is needed to find out if the difference between average scores and group scores

is significant. If the difference is not significant, SPEM could be adapted to use a survey

as method of data gathering.

8.3 SPEM’s position in software architecture

In this section we position SPEM within the domain of software architecture. It is

important to evaluate the software architecture at an early stage. This can be done by

performing a Quality Attribute Workshop (QAW), which does not require a (partially)

developed product. However, a draft of the architecture is required, which means that

patterns should have been selected at this stage.

The output of the workshop provides us with data on:

 Quality attributes that are crucial to the project.

 The part of the architecture that needs to be adapted.

When a test case targeting a specific quality attribute is not passed, the architecture

needs to be adapted. In many cases this means that new patterns need to be selected to

satisfy the requirements. However, the functional requirements remain the same, so the

selection process focuses on selecting alternative patterns that have desired effects on

software quality. From the early architectural evaluation we know which quality attrib-

utes are crucial, which can serve as input for pattern selection.

At this point the architect faces the scenarios discussed in (1 - Problem statement),

which depending on the scenario, determines the next step. If the architect has experi-

ence using the alternative patterns, no further evaluation is needed. However, if the

architect is inexperienced with one or more of the alternative patterns, a SPEM session

can be of value. Such session could provide the necessary data a pattern’s impact on

software quality in the form of scores. The scores can then be related to the crucial

quality attributes found in QAW.

Although SPEM is ideally used at an early stage of architectural design, it can also

be used in conjunction with ATAM. QAW and ATAM use a similar approach towards

software architecture evaluation, both using stakeholders, quality attributes, scenarios

and test cases. The difference lies in how test cases are performed and analyzed. While

QAW relies on documentation and modelling, ATAM allows for quality attribute anal-

ysis on a (partially) developed software product. The output of ATAM can be the input

for a SPEM session. The risks identified by ATAM can be used to alter the architecture,

61

likely leading to the selection of alternative patterns. For this type of pattern selection

SPEM can be a valuable tool. The data provided by ATAM allows for pattern selection

based on quality attributes, as quality requirement elicitation has taken place. Therefore

it is ideal that alternative pattern selection contains data on the impact on quality attrib-

utes provided by SPEM.

SPEM allows for the selection of software patterns based on quality requirements

elicited in software architecture evaluation.

8.4 Advantages of using SPEM

In this section the advantages of using SPEM are discussed in general, and compared

to traditional advice. The advantages associated with software evaluation, such as im-

proved software quality and cost reduction, also apply to SPEM. Software patterns

have a direct effect on software quality, consequently selecting one pattern over another

can influence the system’s quality. SPEM helps understand what quality attributes are

affected by a pattern and to what degree, which in turn can help software architects

during the pattern selection process. SPEM evaluations can be performed at an early

stage in development and do not require any form of implementation. Therefore it can

contribute at the early stages of creating a software architecture.

By selecting patterns that satisfy quality requirements at an early stage, large costs

associated with architectural changes can be prevented.

SPEM allows for more efficient pattern selection by eliminating the need to study

all candidate patterns. When multiple patterns solve the same problem, it becomes im-

portant to see which will be the best fit for the project. By looking at SPEM evaluation

summaries an architect can quickly assess which patterns possibly satisfy the project’s

quality requirements. SPEM provides quantitative visualized data, which allows for di-

rect comparison of patterns.

The result is that less patterns have to be studied in depth, reducing the time needed

to select patterns.

The results of SPEM sessions can be stored and shared, making it an effective tool

for communication. The sharing of knowledge on patterns and their effect on software

quality can further improve efficiency in the pattern selection process. Using existing

SPEM evaluation summaries eliminates the need to perform evaluation sessions.

SPEM allows knowledge of software architects on patterns to be captured in a way

that resembles advice from coworkers. There are some key advantages by using SPEM

over traditional advice:

 Group scores

 Moderated discussions

 Consensus

 Formal processes and deliverables

Consensus based group scores force software architects to express themselves quan-

titatively and prevents a flood of qualitative data on experiences with pattern imple-

mentation. This way SPEM provides essential data on a pattern’s effects on quality

attributes, which allows for quick assessment.

Discussions are moderated which helps SPEM to be performed in a reasonable time

frame, which can be adapted to satisfy business needs. SPEM uses formal processes

and deliverables which ensures that the output can be compared to any other SPEM

evaluation regardless of who participated.

The focus of all SPEM processes and deliverables is on improving software quality

by sharing knowledge and reducing costs by aiding in the software pattern selection

process, making it a valuable tool for both academic and industrial purpose.

63

9. Discussion

9.1 Interpreting SPEM evaluation summaries

SPEM allows for evaluating software patterns as an abstract concept, rather than an

implementation thereof. This means that the scores of a SPEM session should not be

interpreted as an absolute measurement. The scores are a relative representation of a

pattern’s effects on software quality and its own characteristics. SPEM aims to quantify

and objectify the knowledge and experience of a group of experts. Attributes are quan-

tified by assigning scores and objectified by doing this with a group. It should be noted

that the limited size of a focus group does not allow for objective evaluation. When

performing multiple evaluation sessions on the same pattern, scores may vary. The goal

of SPEM is to be as objective as possible within the boundaries of focus group sessions.

The results of a SPEM session can be interpreted as advice from coworkers to aid a

software architect when deciding which patterns to use.

The value in the evaluation result does not lie in the exact score but rather the com-

bination and their positive or negative values.

SPEM results need context and knowledge in order to be interpreted. It is necessary

that someone has read the pattern documentation or has a general understanding of the

pattern before interpreting an evaluation summary. Knowledge of software develop-

ment is needed to relate the scores to a project and future implementation. Relying

solely an evaluation summary for pattern selection does not always improve decision

making. The complexities of implementation and knowledge thereof is key in under-

standing and interpreting evaluation results.

Patterns have been compared using expert interviews is in the past. There are a few

problems with this way of data collection. It can be argued that expert interviews are

not suited as a method of data collection for pattern comparisons. Software architecture

relies on craftsmanship, accumulated knowledge based on previous implementations.

The projects in which a pattern has been encountered can shape the view of an architect

on that particular pattern. The importance of experience and different implementations

found in projects make interviews particularly subjective when it comes to pattern com-

parison. We can also see that in the evaluations that were performed in this study, the

scores and comments varied between participants and arguments for scores were based

on individual experience with pattern implementation.

If we want a more complete picture of a pattern’s effect on quality attributes, we

need multiple architects to share their experiences on implementation in order to get a

more objective view. The shared experiences of a group of architects can help us to see

what the effects of patterns are in general. If the goal is to compare patterns to teach

others what their effects are, then we should try to stay as objective and general as

possible. Otherwise the comparison is only potentially interesting for those who intend

to use a similar implementation and work with similar projects.

9.2 SPEM over conventional software architecture discussions

Software architectural knowledge is shared in formal evaluations and documenta-

tion, but also in informal meetings and discussions among architects. One could argue

that the same results that SPEM provides can be obtained through informal discussions.

However, such discussions are not an alternative to SPEM, as they lack the direction,

moderation, consensus, quantification and artifacts that SPEM provides. Without the

direction and moderation provided by SPEM, a discussion can become uncontrolled

and lose focus. After a SPEM evaluation session an architect said:

“We have regular discussions, but they quickly resort in endless debate on techni-

calities. We don’t focus on any particular result and do not easily agree with each

other”.

This is also the observation from the evaluation sessions that were hosted with soft-

ware architect participants. Architects can easily divert from the main subject as they

passionately share their knowledge on technical details and past experiences. An eval-

uator that directs, keeps time, and moderates discussion helps to focus and reach con-

sensus.

A regular discussion allows for knowledge to be shared, but not stored. Therefore

we need a person that records the session and creates artifacts, which is the role of the

evaluator in SPEM. This is an added value because it means that the knowledge is not

only shared with those who participate in the SPEM session, but also with the industry.

The results can be viewed for immediate or future use.

SPEM discussions have a very specific goal, namely to assign consensus based

scores.

It is not the discussion that is central to software pattern comparison, it is the com-

bined quantified and visualized output that allows for comparison.

Comparing software patterns in a regular discussion does not contain the structure

or output that allows the architect to compare based on quality requirements. A regular

discussion might be easier to set up, but is not suited for pattern evaluation and com-

parison.

65

9.3 Restrictions

The role of evaluator is an important aspect of SPEM evaluation. The reason not to

restrict this role to software architects or developers comes from the fact that an evalu-

ator does not use his experience to assign scores. An evaluator uses knowledge of

SPEM and basic knowledge of software patterns. It is possible that a software architec-

ture student, junior developer or business consultant could lead a SPEM evaluation. It

is desirable that an evaluator does not have any direct relationship with the participants

and does not share the same experience. The evaluator should be as objective as possi-

ble when directing discussions. Any presumed notions of what a score might or should

be can be an interference.

At least one participant should have experience using the pattern when performing

a SPEM session. The value of a SPEM evaluation session lies in the experience of the

participants. Although participants can comprehend the evaluated pattern by listening

to a pattern introduction and reading documentation, they would lack experience of

using the pattern. It is not required that all participants have experience using the pat-

tern, because there is room for discussion and questions during the discussion activity.

It also means that there is always at least one participant that can share his experience

with the pattern and can answer questions.

SPEM sessions make use of focus group sessions, which means that all participants

need to participate at the same time. Optimally the participants are in the same room,

but a digital conference could also be possible. The use of a focus group session also

means that a group of participants is needed, rather than a single individual. It is rec-

ommended that a minimum of four participants attend the session, in order to allow of

discussions and reliable results. Of course a lower of participants could be possible,

although it will affect the reliability of evaluation in a negative way. There is no maxi-

mum number of participants, although we have learned from this study that 10 partici-

pants can lead to a successful evaluation. The restriction for the maximum number of

participants is therefore up to the available time that has been reserved for the session,

as more participants often leads to longer discussions and requires more moderation.

10. Conclusion and future work

In this section we try to answer the research questions which were defined in

section 0.

MRQ: How can software patterns be evaluated by software architects in a manner

that is objective and allows for comparison?

SPEM is an objective software pattern evaluation method which can be used to

compare patterns. It is used to evaluate relevant attributes of patterns and software

quality based on the experience of software architects. SPEM provides quantita-

tive data on attributes in the form of scores. The data can be interpreted and vis-

ualized to allow for software pattern comparison.

This answers the main research question (MRQ).

SQ1: Which attributes are relevant for software pattern evaluation?

SQ1 is answered with a list of attributes, consisting of quality attributes and

pattern attributes. The quality attributes are based on ISO/IEC 25010 and modified

for pattern evaluation, resulting in the following set of attributes:

 Performance efficiency

 Compatibility

 Usability

 Reliability

 Security

 Maintainability

 Portability

Two attributes deduced from pattern documentation have also been added:

 Ease of implementation

 Ease of learning

SQ2: How can attributes relevant for pattern evaluation be quantified in a manner

that allows for comparison?

The attributes provided by SQ1 can be quantified in a manner that allows for

comparison by rating the different attributes by experts in a focus group setting. It

requires that personal scores ranging from -3 to +3 are assigned to all attributes

and sub-attributes. A group score is assigned to all attributes after a discussion and

reaching consensus. All scores are noted in the score table, summarized and visu-

alized in the evaluation summary, allowing for pattern comparison.

67

Future work

A general evaluation of software patterns is a first step in pattern evaluation. In order

to gain more accurate data from an evaluation session, the environment in which the

pattern will be used needs to be included. A study is required to adapt SPEM into taking

the project environment into account. A different thought process is needed to assign

scores, as in SPEM these score are assigned in general, without a project in mind. A

concern for this type of evaluation is how data can become more accurate while still

allowing for comparison. As projects are described with more detail, it becomes less

likely to find evaluations with the same description, which could lead to invalid com-

parisons. Of course when we evaluate for a specific project, new possibilities arise, such

as involving the project’s stakeholders in the evaluation. Such evaluation can comple-

ment an early software architecture evaluation such as QAW, which involves stake-

holders and identifies critical non-function requirements. The next step could be to se-

lect new patterns based on a similar early evaluation before implementation.

Another way to make the data of SPEM more accurate is by including the architec-

tural style in the method. By evaluating patterns with a certain architectural style in

mind, the data that is produced can include whether a pattern fits the architectural style.

Architectural styles might have to be classified in order to make the result more com-

parable. A way to classify architectural styles has been provided by (Shaw & Clements,

1997).

The focus group sessions performed in this research shaped the final version of the

SPEM method. The next step is to perform SPEM sessions to gather data and produce

results that allow for software pattern comparisons. In this regard the final method pre-

sented in this study, is the first version to be used in an industrial setting and real-world

scenarios. The method might be further improved from the experience gained by future

evaluation sessions using SPEM, because this study cannot cover all scenarios found

in the software industry. Gathering the output of evaluation sessions and adding them

to the knowledge base can help to further validate the method and produces valuable

knowledge for academic and industrial purpose.

11. Acknowledgements

I would like to thank Jaap Kabbedijk for his guidance and the many discussions

we’ve had. Secondly, I would like to thank Slinger Jansen and Jan Martijn van der Werf

for acting as second supervisor and providing me with feedback. I could not have done

this study without the cooperation of Exact software and Info Support. I thank Raymond

Brookman from Info Support and Leo van Houwelingen from Exact software for

providing me with an interview and sharing their knowledge. I’d like to thank Peter

Hendriks, Sander Molendijk, Mark Rexwinkel and Raymond Brookman for participat-

ing in a focus group evaluation session. And finally I would like to thank Utrecht Uni-

versity for helping me host focus group evaluation sessions and providing a focus group

session room. There are too many names for me to mention in this section, but I would

like to thank the master students who participated in the multiple evaluation sessions,

which proved invaluable for this study.

69

References

Abowd, G., Bass, L., Clements, P., Kazman, R., & Northrop, L. (1997). Recommended

Best Industrial Practice for Software Architecture Evaluation. Tech. rep.,

DTIC Document.
Alexander, C. a. (1977). Pattern languages. Center for Environmental Structure.

Babar, M. A., & Gorton, I. (2007). A tool for managing software architecture

knowledge. Proceedings of ICSE Workshop on Sharing and Reusing

Architectural Knowledge (SHARK), (pp. 11-17).

Babar, M. A., Zhu, L., & Jeffery, R. (2004). A framework for classifying and comparing

software architecture evaluation methods. Software Engineering Conference,

2004. Proceedings. 2004 Australian, (pp. 309-318).

Barbacci, M. R. (1997). Principles for Evaluating the Quality Attributes of a Software

Architecture. DTIC Document.

Barbacci, M., Ellison, R., Lattanze, A., Stafford, J., Weinstock, C., & Wood, W. (2002).

Quality attribute workshops.

Bass, L., Clements, P., & Kazman, R. (1998). Software Architecture in Practice, 2/E.

Pearson Education India.

Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice.

Addison-Wesley Professional.

Beck, K., & Cunningham, W. (1987). Using pattern languages for object-oriented

programs.

Beck, K., Crocker, R., Meszaros, G., Vlissides, J., Coplien, J. O., Dominick, L., &

Paulisch, F. (1996). Industrial experience with design patterns. Proceedings of

the 18th international conference on Software engineering, (pp. 103-114).

Beck, K., Crocker, R., Meszaros, G., Vlissides, J., Coplien, J. O., Dominick, L., &

Paulisch, F. (1996). Industrial experience with design patterns. Proceedings of

the 18th international conference on Software engineering, (pp. 103-114).

Behkamal, B., Kahani, M., & Akbari, M. K. (2009). Customizing ISO 9126 quality

model for evaluation of B2B applications. Information and software

technology, 599-609.

Berander, P., Damm, L.-O., Eriksson, J., Gorschek, T., Henningsson, K., Jonsson, P., .

. . Ronkko, K. (2005). Software quality attributes and trade-offs. Blekinge

Institute of Technology.

Booch, G. (1986). Object-oriented development. Software Engineering, IEEE

Transactions on, 211-221.

Booch, G. (2005). On creating a handbook of software architecture. Conference on

Object Oriented Programming Systems Languages and Applications:

Companion to the 20 th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications, 16, pp. 8-8.

Borchers, J. O. (2001). A pattern approach to interaction design. AI & SOCIETY, 359-

376.

Bosch, J., & Molin, P. (1999). Software architecture design: evaluation and

transformation. Engineering of Computer-Based Systems, 1999. Proceedings.

ECBS'99. IEEE Conference and Workshop (pp. 4--10). IEEE.

Brito e Abreu, F., & Melo, W. (1996). Evaluating the impact of object-oriented design

on software quality. Software Metrics Symposium, 1996., Proceedings of the

3rd International, (pp. 90--99).

Buschmann, F. (1999). Pattern oriented software architecture: a system of patters.

Ashish Raut.

Buschmann, F., Henney, K., & Schimdt, D. (2007). Pattern-oriented Software

Architecture: On Patterns and Pattern Language. John Wiley & Sons.

Buschmann, F., Henney, K., & Schmidt, D. C. (2007). Past, present, and future trends

in software patterns. Software, IEEE, 24(4), 31-37.

Cech, M. Y., Kennedy, R., & Smith, J. a. (1960). Variation in some wood quality

attributes of one-year-old Black Cottonwood [Populus trichocarpa. Tappi,

957-9.

Chua, B. B., & Dyson, L. E. (2004). Applying the ISO 9126 model to the evaluation of

an elearning system. Proc. of ASCILITE, (pp. 5-8).

Clements, P., Kazman, R., & Klein, M. (2003). Evaluating software architectures.

Coplien, J. O., & Schmidt, D. C. (1995). Pattern languages of program design. ACM

Press/Addison-Wesley Publishing Co.

Fowler, M. (2002). Patterns of enterprise application architecture. Addison-Wesley

Longman Publishing Co., Inc.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: elements

of reusable object-oriented software. Pearson Education.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Gang of four. GoF). Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley

Professional, ISBN, 20163361.

Garlan, D. (2000). Software architecture: a roadmap. Proceedings of the Conference on

the Future of Software Engineering (pp. 91-101). ACM.

Garlan, D., & Shaw, M. (1993). An introduction to software architecture. Advances in

software engineering and knowledge engineering, 1-40.

Garrett, J. J. (2005). Ajax: A new approach to web applications.

Gross, C. (2006). Ajax patterns and best practices. Springer.

Henninger, S., & Correa, V. (2007). Software pattern communities: Current practices

and challenges. Proceedings of the 14th Conference on Pattern Languages of

Programs (p. 14). ACM.

Hills, M., Klint, P., Van Der Storm, T., & Vinju, J. (2011). A case of visitor versus

interpreter pattern. In Objects, Models, Components, Patterns (pp. 228-243).

Springer.

Höst, M., Regnell, B., & Wohlin, C. (2000). Using students as subjects—a comparative

study of students and professionals in lead-time impact assessment. Empirical

Software Engineering, 5(3), 201-214.

ISO/IEC. (1991). ISO 9126/ISO, IEC (Hrsg.): International Standard ISO/IEC 9126:

Information Technology-Software Product Evaluation. Quality

Characteristics and Guidelines for their use}, 12-15.

ISO/IEC. (2001). ISO/IEC 9126. Software engineering -- Product quality.

71

ISO/IEC. (2010). {ISO/IEC 25010. Systems and software engineering - Systems and

software Quality Requirements and Evaluation (SQuaRE) - System and

software quality models}.

Jansen, A., Van Der Ven, J., Avgeriou, P., & Hammer, D. K. (2007). Tool support for

architectural decisions. The Working IEEE/IFIP Conference on Software

Architecture (WICSA'07), (pp. 4-4).

Jung, H.-W., Kim, S.-G., & Chung, C.-S. (2004). Measuring software product quality:

A survey of ISO/IEC 9126. IEEE software, 88-92.

Kabbedijk, J., Galster, M., & Jansen, S. (2012). Focus Group Report: Evaluating the

Consequences of Applying Architectural Patterns. Proceedings of the 17th

European conference on Pattern Languages of Programs (EuroPLoP 2012).

Kazman, R., Bass, L., Webb, M., & Abowd, G. (1994). SAAM: A method for analyzing

the properties of software architectures. Proceedings of the 16th international

conference on Software engineering (pp. 81--90). IEEE Computer Society

Press.

Kazman, R., Klein, M., & Clements, P. (2000). ATAM: Method for architecture

evaluation. DTIC Document.

Khare, R., & Taylor, R. (2004). Extending the representational state transfer (rest)

architectural style for decentralized systems. Software Engineering, 2004.

ICSE 2004. Proceedings. 26th International Conference on (pp. 428-437).

IEEE.

Klein, M. H., Kazman, R., Bass, L., Carriere, J., Barbacci, M., & Lipson, H. (1999).

Attribute-based architecture styles. Proceedings of the TC2 First Working

IFIP Conference on Software Architecture (WICSA1), (pp. 225-244).

Latane, B., Williams, K., & Harkins, S. (1979). Many hands make light the work: The

causes and consequences of social loafing. Journal of personality and social

psychology, 822.

Losavio, F., Chirinos, L., Levy, N., & Ramdane-Cherif, A. (2003). Quality

characteristics for software architecture. Journal of Object Technology, 133-

150.

Meszaros, G. a. (1998). A pattern language for pattern writing. Pattern languages of

program design, 529--574.

O'Reilly, T. (2007). What is Web 2.0: Design patterns and business models for the next

generation of software. Communications & Strategies.

Perry, D., & Wolf, A. (1992). Foundations for the study of software architecture. ACM

SIGSOFT Software Engineering Notes, 40-52.

Polillo, R. (2012). Quality models for web [2.0] sites: a methodological approach and

a proposal. In Current Trends in Web Engineering (pp. 251-265). Springer.

Roberts, D. J. (1996). Evolving frameworks: A pattern language for developing object-

oriented frameworks. Pattern languages of program design, 471--486.

Schmidt, D. C. (1995). Using design patterns to develop reusable object-oriented

communication software. Communications of the ACM, 38(10), 65-74.

Shaw, M. (1995). Patterns for software architectures. Pattern languages of program

design.

Shaw, M. (1996). Some patterns for software architectures. Pattern languages of

program design, 255-269.

Shaw, M., & Clements, P. (1997). A field guide to boxology: Preliminary classification

of architectural styles for software systems. Computer Software and

Applications Conference, 1997. COMPSAC'97. Proceedings., The Twenty-

First Annual International (pp. 6-13). IEEE.

Shaw, M., & Garlan, D. (1996). Software architecture: perspectives on an emerging

discipline. Prentice Hall Englewood Cliffs.

Triplett, J. E. (1969). Automobiles and hedonic quality measurement. The Journal of

Political Economy, 408-417.

Tyree, J., & Akerman, A. (2005). Architecture decisions: Demystifying architecture.

Software, IEEE, 22(2), 19-27.

Vlissides, J. M., Coplien, J. O., & Kerth, N. L. (1996). Pattern languages of program

design 2. Addison-Wesley Longman Publishing Co., Inc.

Yoder, J., & Barcalow, J. (1998). Architectural patterns for enabling application

security. Urbana, 61801.

Zdun, U. (2007). Systematic pattern selection using pattern language grammars and

design space analysis. Software: Practice and Experience, 983--1016.

Zeiss, B., Vega, D., Schieferdecker, I., Neukirchen, H., & Grabowski, J. (2007).

Applying the iso 9126 quality model to test specifications. Software

Engineering, 231-242.

73

Appendix

A. Participant profile

Participant profile

Name: __________________________________

Job description*: __________________________________

Years of experience*: __________________________________

*Relevant to software architecture

Pattern name: __________________________________

I have experience using the pattern which is being evaluated in this session.

Yes ☐ No ☐

Personal score list

1. Performance efficiency

The degree to which the software product provides appropriate performance,

relative to the amount of resources used, under stated conditions.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

1.1 Time-behavior

The degree to which the software product provides appropriate response

and processing times and throughput rates when performing its function,

under stated conditions.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

1.2 Resource utilization

The degree to which the software product uses appropriate amounts and

types of resources when the software performs its function under stated

conditions.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

1.3 Capacity

The extent to which the maximum limits of a product or system parame-

ter meets the requirements.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

2. Compatibility

The ability of two or more software components to exchange information

and/or to perform their required functions while sharing the same hardware

or software environment.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

2.1 Co-existence

The degree to which the software product can co-exist with other inde-

pendent software in a common environment sharing common resources

without any detrimental impacts.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

2.2 Interoperability

The degree to which the software product can be cooperatively operable

with one or more other software products.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

3. Usability

The degree to which the software product can be understood, learned, used

and attractive to the user, when used under specified conditions.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

75

3.1 Appropriateness recognisability

The degree to which the software product enables users to recognise

whether the software is appropriate for their needs.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

3.2 Learnability

The degree to which the software product enables users to learn its ap-

plication.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

3.3 Operability

The degree to which the software product makes it easy for users to op-

erate and control it.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

3.4 User error protection

The degree to which the software product provides help when users need

assistance.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

3.5 User interface aesthetics

The degree to which the software product is attractive to the user.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

3.6 Accessibility

The degree of operability of the software product for users with speci-

fied disabilities.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

4. Reliability

The degree to which the software product can maintain a specified level of

performance when used under specified conditions.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

4.1 Maturity

The degree to which a system, product or component complies to relia-

bility needs under normal operating conditions.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

4.2 Availability

The degree to which a software component is operational and available

when required for use.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

4.3 Fault tolerance

The degree to which the software product can maintain a specified level

of performance in cases of software faults or of infringement of its spec-

ified interface.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

4.4 Recoverability

The degree to which the software product can re-establish a specified

level of performance and recover the data directly affected in the case of

a failure.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

77

5. Security

The protection of system items from accidental or malicious access, use,

modification, destruction, or disclosure.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

5.1 Confidentiality

The degree to which the software product provides protection from un-

authorized disclosure of data or information, whether accidental or de-

liberate.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

5.2 Integrity

The degree to which the accuracy and completeness of assets are safe-

guarded.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

5.3 Non-repudiation

The degree to which actions or events can be proven to have taken

place, so that the events or actions cannot be repudiated later.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

5.4 Accountability

The degree to which the actions of an entity can be traced uniquely to

the entity.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

5.5 Authenticity

The degree to which the identity of a subject or resource can be proved

to be the one claimed.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

6. Maintainability

The degree to which the software product can be modified. Modifications

may include corrections, improvements or adaptation of the software to

changes in environment, and in requirements and functional specifications.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

6.1 Modularity

The degree to which a system or computer program is composed of dis-

crete components such that a change to one component has minimal im-

pact on other components.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

6.2 Reusability

The degree to which an asset can be used in more than one software sys-

tem, or in building other assets.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

6.3 Analysability

The degree to which the software product can be diagnosed for deficien-

cies or causes of failures in the software, or for the parts to be modified

to be identified.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

79

6.4 Modifiability

The degree to which the software product enables a specified modifica-

tion to be implemented. The ease with which a software product can be

modified.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

6.5 Testability

The degree to which the software product enables modified software to

be validated.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

7. Portability

The ease with which a system or component can be transferred from one

hardware or software environment to another.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

7.1 Adaptability

The degree to which the software product can be adapted for different

specified environments without applying actions or means other than

those provided for this purpose for the software considered.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

7.2 Installability

The degree to which the software product can be successfully installed

and uninstalled in a specified environment.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

7.3 Replaceability

The extent to which a product can replace another specific software

product, with the same purpose in the same environment.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Highly negative impact Neutral Highly positive impact

8. Ease of implementation

The ease with which the software pattern can be implemented.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Difficult to implement Neutral Easy to implement

9. Ease of learning

The ease with which the software pattern can learned in order to implement

it.

-3 ☐ -2 ☐ -1 ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐

Difficult to learn Neutral Easy to learn

B. Score table

Pattern name:

Attribute name Group score Average Standard deviation Participant 1 Participant 2 Participant 3 Participant 4

Performance efficiency ''

Time-behavior '' ''

Resource utilization '' ''

Capacity '' ''

Compatibility '' ''

Co-existence '' ''

Interoperability '' ''

Usability '' ''

Appropriateness recognisability '' ''

Learnability '' ''

Operability '' ''

User error protection '' ''

User interface aesthetics '' ''

Accessibility '' ''

Reliability '' ''

Maturity '' ''

Availability '' ''

Fault tolerance '' ''

Recoverability '' ''

Security '' ''

Confidentiality '' ''

Integrity '' ''

Non-repudiation '' ''

Accountability '' ''

Authenticity '' ''

Maintainability '' ''

Modulatiry '' ''

Reusability '' ''

Analysability '' ''

Modifiability '' ''

Testability '' ''

Portability '' ''

Adaptability '' ''

Installability '' ''

Replaceability '' ''

Ease of implementation '' ''

Ease of learning '' ''

C. Evaluation summary

SPEM evaluation summary

Date: __________________________________

Evaluator: __________________________________

Pattern: __________________________________

Number of participants: __________________________________

Threats to validity:

D. Expert interview 1

Date: 18-9-2013

Interviewer profile

First name: René

Last name: van Donselaar

Interviewee profile

First name: Raimond

Last name: Brookman

Company name: Info Support

Job description: Software Architect

Years of experience: 5 years

Research question

RQ1) Which quality attributes and pattern characteristics play a

role in the software pattern evaluation process?

Introduction

In many cases software architecture evaluation is performed by look-

ing at qualities the product or system should have. Since software pat-

terns are a part of modern software architecture, it is expected that

quality attributes like those found in the ISO/IEC 9126 standard also

play a role in software pattern evaluation. The next series of questions

involve each quality attribute of the ISO/IEC 9126 standard. It is im-

portant to note that software pattern evaluation means the evaluation

of a pattern based on its documentation and not a specific implementa-

tion.

Q1) Functionality – Is functionality an aspect of quality that plays a

role when selecting or comparing software patterns?

When selecting or comparing software patterns does a software archi-

tect take into account if:

 The software can perform the tasks required? (Suitability)

 Is the result as expected? (Accurateness)

 Can the system interact with another system? (Interoperabil-

ity)

 Does the software prevent unauthorized access? (Security)

Answer: Yes ☒ No ☐

(If the attribute can play a role or might play a role when selecting or

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

Elaboration:

Interoperability and security are very important and should be

quality attributes by themselves.

85

Q2) Reliability – Is reliability an aspect of quality that plays a role

when selecting or comparing software patterns?

When selecting or comparing software patterns does a software archi-

tect take into account if:

 Have most of the faults in the software been eliminated over

time? (Maturity)

 Is the software capable of handling errors? (Fault tolerance)

 Can the software resume working and restore lost data after

failure? (Recoverability)

Answer: Yes ☒ No ☐

(If the attribute can play a role or might play a role when selecting or

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

Elaboration:

This is sometimes important, but many times this is done at infra-

structure level with for instance load balancing.

Q3) Usability – Is usability an aspect of quality that plays a role

when selecting or comparing software patterns?

When selecting or comparing software patterns does a software archi-

tect take into account if:

 Does the user comprehend how to use the system easily? (Un-

derstandability)

 Can the user learn to use the system easily? (Learnability)

 Can the user use the system without much effort? (Operabil-

ity)

 Does the interface look good? (Attractiveness)

Answer: Yes ☒ No ☐

(If the attribute can play a role or might play a role when selecting or

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

Elaboration:

Sometimes, in many cases this is important for interaction de-

sign. However sometimes patterns are used to create the layout

or to maintain consistency. Asynchronous retrieval of data is one

area where pattens also influence usability. Attractiveness is not

important as it is handled by designers rather than architects.

Q4) Efficiency – Is efficiency an aspect of quality that plays a role

when selecting or comparing software patterns?

When selecting or comparing software patterns does a software archi-

tect take into account if:

 How quickly does the system respond? (Time behavior)

 Does the system utilize resources efficiently? (Resource utili-

zation)

Answer: Yes ☒ No ☐

(If the attribute can play a role or might play a role when selecting or

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

Elaboration:

In almost all cases important. In very many cases this is a crucial

selection criteria.

Q5) Maintainability – Is maintainability an aspect of quality that

plays a role when selecting or comparing software patterns?

87

When selecting or comparing software patterns does a software archi-

tect take into account if:

 Can faults be easily diagnosed? (Analyzability)

 Can the software be easily modified? (Changeability)

 Can the software continue functioning if changes are made?

(Stability)

 Can the software be tested easily? (Testability)

Answer: Yes ☒ No ☐

(If the attribute can play a role or might play a role when selecting or

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

Elaboration:

Klik hier als u tekst wilt invoeren.

Q6) Portability – Is portability an aspect of quality that plays a role

when selecting or comparing software patterns?

When selecting or comparing software patterns does a software archi-

tect take into account if:

 Can the software be moved to other environments? (Adapta-

bility)

 Can the software be installed easily? (Installability)

 Does the software comply with portability standards? (Con-

formance)

 Can the software easily replace other software? (Replaceabil-

ity)

Answer: Yes ☒ No ☐

(If the attribute can play a role or might play a role when selecting or

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

Elaboration:

In many cases this is important with certain constraints. Platform

independency can be an important when comparing patterns.

Q7) Ease of learning – Is ease of learning a pattern characteristic

that plays a role when selecting or comparing software pat-

terns?

When selecting or comparing software patterns does a software archi-

tect take into account if:

 How long does it take for a developer to master the pattern?

 Is the pattern easy to understand?

Answer: Yes ☒ No ☐

(If the attribute can play a role or might play a role when selecting or

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

Elaboration:

The experience of the team that is going to work with the pattern

is important when comparing patterns. With a very experienced

team you might select the pattern that has the most benefits while

also being complex.

Q8) Ease of implementation – Is ease of implementation a pattern

characteristic that plays a role when selecting or comparing

software patterns?

When selecting or comparing software patterns does a software archi-

tect take into account if:

 How long it takes to implement the pattern?

89

 What difficulties can be expected when implementing the pat-

tern?

Answer: Yes ☒ No ☐

(If the attribute can play a role or might play a role when selecting or

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

Elaboration:

In almost all cases it is important that a pattern can be imple-

mented as fast as possible, unless other quality attributes are so

important that you have to select a pattern that requires more

time to implement.

Q9) Dependency – Is dependency a pattern characteristic that

plays a role when selecting or comparing software patterns?

When selecting or comparing software patterns does a software archi-

tect take into account if:

 Does the pattern need other patterns to function?

 Does the pattern belong to a group of patterns?

Answer: Yes ☒ No ☐

(If the attribute can play a role or might play a role when selecting or

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

Elaboration:

This is important because if certain patterns have already been

used, the evaluated pattern can build upon the existing structure.

Research question

RQ2) How can attributes of software patterns be quantified in a

manner that allows for comparison?

Introduction

In order for quality attributes to be comparable, they need to be quanti-

fied. If the same scale and quantification method is used, the results of

the evaluation can be compared with one another. This is done by

quantifying the results of an evaluation session where multiple experts

give their scores. Evaluation of software architectures is common prac-

tice in the domain of software architecture. The characteristics of sev-

eral popular assessment methods have been deduced and form the

basis of the following questions. Based on these questions a quality at-

tribute quantification method for software patterns is created.

Q1) SAAM – Is it important to give a value to quality attributes

based on multiple scenarios?

It is possible that a quality attribute would be valued differently under

different circumstances. For example the impact on performance of a

software product by a software pattern can be very different for a large

scale application then it is for a smaller project. Including these scenar-

ios might give the software architect more detailed information on the

software pattern.

Answer: Yes ☐ No ☒

Elaboration:

Scenarios can be important for software architecture evaluation,

but not for pattern evaluation. In most cases it are the quaty at-

tributes which are used for evaluation and it is not hard for a soft-

ware architect to interpret those and relate them to their project.

91

Q2) Should it be possible to give a negative value to a quality at-

tribute?

The influence of a software pattern on the software product can be

negative at times. Each pattern has strengths and weaknesses that af-

fect quality attributes. It might be important for a software architect to

know that the implementation of a certain software pattern has a nega-

tive influence on the quality of software.

Answer: Yes ☒ No ☐

Elaboration:

Patterns can have negative effects on software and it is handy to

include that in the evaluation. Otherwise one would probably stay

in the middle range for a neutral score and interpret a lower score

as negative.

Q3) Should trade-offs between quality attributes be included?

In many cases there are certain trade-offs between quality attributes. A

pattern which adds more security can do so at the cost of perfor-

mance. Although all quality attributes are valued, the specific trade-offs

could also be included in the evaluation. Adding information on trade-

offs would give additional information on quality attributes and their re-

lationships.

Answer: Yes ☒ No ☐

Elaboration:

Adding trade-offs can further explain the scores. Also some

scores really ask for more explanation, especially when they are

unexpected.

Q4) At what scale should attributes be measured?

The scale determines the level of detail at which quality attributes are

valued. A larger scale can provide more detail, but only if the evalua-

tion yields meaningful information that can be quantified on such scale.

In other words, we want to provide the highest level of detail at which

the evaluation can still provide meaningful results.

Answer: 3-point scale ☐ 5-point scale ☒ 10-point scale ☒ 100-

point scale ☐

Elaboration:

A minimum of 5 and a maximum of 10. A higher scale would not

add much, as it is not possible to be that accurate.

Q5) Should the experience of a software architect be weighted?

When an evaluation of software patterns is performed, it is done by a

group of experts. The experience of an expert accounts for much of

the knowledge on software patterns and their quality attributes. When

the results of an evaluation session are quantified the experience of

each software architect can be weighted in the score to enable a

higher influence by those who have more experience.

Answer: Yes ☒ No ☐

Elaboration:

An architect should at least have 2 years of experience before

evaluating. The reason for this is that the result of the architec-

ture and all decisions have to be seen in retrospect in order to

93

fully understand them. When you have only designed architec-

tures but have not been able to see the long term results it is hard

to evaluate software patterns. It should be possible for less expe-

rienced architects partake in the evaluation if there is at least one

experienced architect. The expectation is that the most experi-

enced architect has good reasoning for his score and will auto-

matically have most influence in the discussion.

Q6) Should the software architect have experience using the pat-

tern?

When evaluating a pattern the knowledge of multiple experts is used

as input. However, it might not be possible for an expert to perform a

thorough evaluation based on general understanding of patterns with-

out having experience with the pattern that is being evaluated. Can a

pattern be evaluated based on a description of the pattern without hav-

ing experience using it?

Answer: Yes ☒ No ☐

Elaboration:

It is important for an architect to have experience using the pat-

tern that is being evaluated. Although an architect who hasn't

used the pattern can also give meaningful input to the evaluation,

at least one architect should have experience using the pattern

or the evaluation would not have enough value.

General remarks or notes

The new ISO 25010 standard would be better as a basis for software

pattern evaluation. The main reason being that certain sub-attributes

are so important (security and interoperability) that they should be a

quality attribute.

It would be better to gain consensus among the focus group when de-

termining the score for a quality attribute. This means that the group

can discuss the score and then determine one score which all evalua-

tors can agree upon. This process also gives the more experienced ar-

chitects a chance to explain their viewpoint and convince others.

Therefore it is not needed to give weighted scores, because it is ex-

pected that more experienced architects also have more arguments to

explain their score.

If some architects would give a very discrepant score and cannot be

convinced, it should be possible to remove those outliers and value the

more experienced architects over those with less experience.

E. Expert interview 2

Date: 19-9-2013

Interviewer profile

First name: René

Last name: van Donselaar

Interviewee profile

First name: Leo

Last name: van Houwelingen

Company name: Exact

Job description: Software engineer senior / Technical lead

Years of experience: 3 years in this role (23 years in total)

Research question

RQ1) Which quality attributes and pattern characteristics play a

role in the software pattern evaluation process?

95

Introduction

In many cases software architecture evaluation is performed by look-

ing at qualities the product or system should have. Since software pat-

terns are a part of modern software architecture, it is expected that

quality attributes like those found in the ISO/IEC 25010 standard also

play a role in software pattern evaluation. The next series of questions

involve each quality attribute of the ISO/IEC 25010 standard. It is im-

portant to note that software pattern evaluation means the evaluation

of a pattern based on its documentation and not a specific implementa-

tion.

Q1) Functional suitability – Is functional suitability (geschiktheid)

an aspect of quality that plays a role when selecting or compar-

ing software patterns?

(De mate waarin een softwareproduct of computersysteem

functies levert die voldoen aan de uitgesproken en

veronderstelde behoeften, bij gebruik onder gespecificeerde

condities.)

Answer: Yes ☒ No ☐

(If the attribute can play a role or might play a role when selecting or

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

Elaboration:

Klik hier als u tekst wilt invoeren.

When selecting or comparing software patterns does a software archi-

tect take into account:

Functionele compleetheid (Functional completeness)

De mate waarin de set van functies alle gespecificeerde taken en

gebruikersdoelen ondersteunen.

Answer: Yes ☒ No ☐

Elaboration:

Klik hier als u tekst wilt invoeren.

Functionele correctheid (Functional correctness)

De mate waarin een softwareproduct of computersysteem de juiste resultaten

met de benodigde nauwkeurigheid beschikbaar stelt.

Answer: Yes ☒ No ☐

Elaboration:

Klik hier als u tekst wilt invoeren.

Functionele toepasselijkheid (Functional appropriateness)

De mate waarin de functies bijdragen aan het behalen van specifieke taken

en doelen.

Answer: Yes ☒ No ☐

Elaboration:

Klik hier als u tekst wilt invoeren.

Q2) Reliability – Is reliability (betrouwbaarheid) an aspect of quality

that plays a role when selecting or comparing software pat-

terns?

(De mate waarin een systeem, product of component

gespecificeerde functies uitvoert onder gespecificeerde

condities gedurende een gespecificeerde hoeveelheid tijd.)

Answer: Yes ☒ No ☐

(If the attribute can play a role or might play a role when selecting or

97

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

Elaboration:

Bijv: We gebruiken Mediator pattern om unit testing mogelijk te

maken.

When selecting or comparing software patterns does a software archi-

tect take into account:

Volwassenheid (Maturity)

De mate waarin een systeem, product of component aan

betrouwbaarheidsbehoeften voldoet onder normale werkomstandigheden.

Answer: Yes ☒ No ☐

Elaboration:

Beschikbaarheid (Availability)

De mate waarin een systeem, product of component operationeel en

toegankelijk is wanneer men het wil gebruiken.

Answer: Yes ☒ No ☐

Elaboration:

Klik hier als u tekst wilt invoeren.

Foutbestendigheid (Fault tolerance)

De mate waarin een systeem, product of component werkt zoals bedoeld

ondanks de aanwezigheid van hard- of softwarefouten.

Answer: Yes ☐ No ☒

Elaboration:

Ik kan me zo geen voorbeeld herinneren.

Herstelbaarheid (Recoverability)

De mate waarin het product of systeem, in geval van een onderbreking of bij

een fout, de direct betrokken gegevens kan herstellen en het systeem in de

gewenste staat kan terug brengen.

Answer: Yes ☐ No ☒

Elaboration:

Dit aspect zit bij ons met name in de systeemlaag denk ik, zodat

ik voor mijn specifieke deelgebied er niet zoveel mee te maken

heb.

Q3) Usability – Is usability an aspect of quality that plays a role

when selecting or comparing software patterns?

(De mate waarin een product of systeem gebruikt kan worden

door gespecificeerde gebruikers om effectief, efficiënt en naar

tevredenheid gespecificeerde doelen te bereiken in een

gespecificeerde gebruikscontext.)

Answer: Yes ☒ No ☐

(If the attribute can play a role or might play a role when selecting or

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

Elaboration:

Klik hier als u tekst wilt invoeren.

When selecting or comparing software patterns does a software archi-

tect take into account if:

Herkenbaarheid van geschiktheid (Appropriateness recognisability)

99

De mate waarin gebruikers kunnen herkennen of een product of systeem

geschikt is voor hun behoeften.

Answer: Yes ☐ No ☒

Elaboration:

Klik hier als u tekst wilt invoeren.

Leerbaarheid (Learnability)

De mate waarin een product of systeem gebruikt kan worden door

gespecificeerde gebruikers om gespecificeerde leerdoelen te bereiken met

betrekking tot het gebruik van het product of systeem met effectiviteit,

efficiëntie, vrijheid van risico en voldoening, in een gespecificeerde

gebruikscontext.

Answer: Yes ☐ No ☒

Elaboration:

Klik hier als u tekst wilt invoeren.

Bedienbaarheid (Operability)

De mate waarin een product of systeem attributen heeft die het makkelijk

maken om het te bedienen en beheersen.

Answer: Yes ☒ No ☐

Elaboration:

Klik hier als u tekst wilt invoeren.

Voorkomen gebruikersfouten (User error protection)

De mate waarin het systeem gebruikers beschermt tegen het maken van

fouten.

Answer: Yes ☒ No ☐

Elaboration:

Klik hier als u tekst wilt invoeren.

Volmaaktheid gebruikersinteractie (User interface aesthetics)

De mate waarin een gebruikersinterface het de gebruiker mogelijk maakt om

een plezierige en voldoening gevende interactie te hebben.

Answer: Yes ☒ No ☐

Elaboration:

Ook hier wordt dit groot deel door systeemlaag geimplementeerd.

Toegankelijkheid (Accessibility)

De mate waarin een product of systeem gebruikt kan worden door mensen

met de meest uiteenlopende eigenschappen en mogelijkheden om een

gespecificeerd doel te bereiken in een gespecificeerde gebruikscontext

Answer: Yes ☒ No ☐

Elaboration:

Klik hier als u tekst wilt invoeren.

Q4) Prestatie-efficiëntie (Performance efficiency) – Is efficiency

an aspect of quality that plays a role when selecting or compar-

ing software patterns?

(De prestaties in verhouding tot de hoeveelheid middelen

gebruikt onder genoemde condities.)

Answer: Yes ☒ No ☐

(If the attribute can play a role or might play a role when selecting or

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

Elaboration:

Klik hier als u tekst wilt invoeren.

101

When selecting or comparing software patterns does a software archi-

tect take into account:

Snelheid (Time-behaviour)

De mate waarin antwoord- en verwerkingstijden en doorvoersnelheid van een

product of systeem, tijdens de uitvoer van zijn functies, voldoet aan de

wensen.

Answer: Yes ☒ No ☐

Elaboration:

Klik hier als u tekst wilt invoeren.

Middelenbeslag (Resource utilization)

De mate waarin de hoeveelheid en type middelen die gebruikt worden door

een product of systeem, tijdens de uitvoer van zijn functies, voldoet aan de

wensen.

Answer: Yes ☒ No ☐

Elaboration:

Klik hier als u tekst wilt invoeren.

Capaciteit (Capacity)

De mate waarin de maximale limieten van een product- of systeemparameter

voldoet aan de wensen.

Answer: Yes ☒ No ☐

Elaboration:

Klik hier als u tekst wilt invoeren.

Q5) Onderhoudbaarheid (Maintainability) – Is maintainability an

aspect of quality that plays a role when selecting or comparing

software patterns?

(De mate waarin een product of systeem effectief en efficiënt

gewijzigd kan worden door de aangewezen beheerders.)

Answer: Yes ☒ No ☐

(If the attribute can play a role or might play a role when selecting or

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

Elaboration:

Klik hier als u tekst wilt invoeren.

When selecting or comparing software patterns does a software archi-

tect take into account:

Modulariteit (Modularity)

De mate waarin een systeem of computerprogramma opgebouwd is in

losstaande componenten zodat wijzigingen van een component minimale

impact heeft op andere componenten.

Answer: Yes ☒ No ☐

Elaboration:

Klik hier als u tekst wilt invoeren.

Herbruikbaarheid (Reusability)

De mate waarin een bestaand onderdeel gebruikt kan worden in meer dan

één systeem of bij het bouwen van een nieuw onderdeel.

Answer: Yes ☒ No ☐

Elaboration:

Klik hier als u tekst wilt invoeren.

103

Analyseerbaarheid (Analysability)

De mate waarin het mogelijk is om effectief en efficiënt de impact, van een

geplande verandering van één of meer onderdelen, op een product of

systeem te beoordelen, om afwijkingen en/of foutoorzaken van een product

vast te stellen of om onderdelen te identificeren die gewijzigd moeten worden.

Answer: Yes ☒ No ☐

Elaboration:

Klik hier als u tekst wilt invoeren.

Wijzigbaarheid (Modifiability)

De mate waarin een product of systeem effectief en efficiënt gewijzigd kan

worden zonder fouten of kwaliteitsvermindering tot gevolg.

Answer: Yes ☒ No ☐

Elaboration:

Klik hier als u tekst wilt invoeren.

Testbaarheid (Testability)

De mate waarin effectief en efficiënt testcriteria vastgesteld kunnen worden

voor een systeem, product of component en waarin tests uitgevoerd kunnen

worden om vast te stellen of aan die criteria is voldaan.

Answer: Yes ☒ No ☐

Elaboration:

Klik hier als u tekst wilt invoeren.

Q6) Overdraagbaarheid (Portability) – Is portability an aspect of

quality that plays a role when selecting or comparing software

patterns?

(De mate waarin een systeem, product of component effectief

en efficiënt overgezet kan worden van één hardware, software

of andere operationele of gebruiksomgeving naar een andere.)

Answer: Yes ☒ No ☐

(If the attribute can play a role or might play a role when selecting or

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

Elaboration:

Klik hier als u tekst wilt invoeren.

When selecting or comparing software patterns does a software archi-

tect take into account:

Aanpasbaarheid (Adaptability)

De mate waarin een product of systeem effectief en efficiënt aangepast kan

worden voor andere of zich ontwikkelende hardware, software of andere

operationele of gebruiksomgevingen.

Answer: Yes ☐ No ☒

Elaboration:

Dit is voor mij geen day to day business omdat de systeemlaag

dit implementeert en dat we gebruik maken van bijv. jQuery.

Installeerbaarheid (Installability)

De mate waarin het product of het systeem effectief en efficiënt geïnstalleerd

of verwijderd kan worden in een gespecificeerde omgeving.

Answer: Yes ☐ No ☒

Elaboration:

Klik hier als u tekst wilt invoeren.

Vervangbaarheid (Replaceability)

105

De mate waarin een product een ander specifiek softwareproduct, met

hetzelfde doel in de zelfde omgeving, kan vervangen.

Answer: Yes ☐ No ☒

Elaboration:

Klik hier als u tekst wilt invoeren.

Q7) Uitwisselbaarheid (Compatibility)– Is compatibility an aspect

of quality that plays a role when selecting or comparing soft-

ware patterns?

(De mate waarin een product, systeem of component informatie

uit kan wisselen met andere producten, systemen of

componenten, en/of het de gewenste functies kan uitvoeren

terwijl het dezelfde hard- of software-omgeving deelt.)

Answer: Yes ☒ No ☐

(If the attribute can play a role or might play a role when selecting or

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

Elaboration:

Implementatie van zowel import/export via XML als CSV

When selecting or comparing software patterns does a software archi-

tect take into account:

Beïnvloedbaarheid (Co-existence)

De mate waarin een product zijn gewenste functies efficiënt kan uitvoeren

terwijl het een gemeenschappelijke omgeving en middelen deelt met andere

producten, zonder nadelige invloed op enig ander product.

Answer: Yes ☒ No ☐

Elaboration:

Ja en Nee. Omdat we een Multi tentant product zijn betekent dat

dat op die ene omgeving/database meerdere klanten actief zijn.

Het is dus zeer belangrijk voor ons dat de ene klant niet de data

van de andere klant kan benaderen. Anderzijds moet ik misschien

No kiezen omdat het eigenlijk geen ander product is.

Koppelbaarheid (Interoperability)

De mate waarin twee of meer systemen, producten of componenten

informatie kunnen uitwisselen en de uitgewisselde informatie kunnen

gebruiken.

Answer: Yes ☒ No ☐

Elaboration:

Denk aan uitwisseling tussen ons product en web shop

Q8) Beveiligbaarheid (Security) - Is security an aspect of quality

that plays a role when selecting or comparing software pat-

terns?

(De mate waarin een product of systeem informatie en

gegevens beschermt zodat personen, andere producten of

systemen de juiste mate van gegevenstoegang hebben

passend bij hun soort en niveau van autorisatie.

Answer: Yes ☒ No ☐

(If the attribute can play a role or might play a role when selecting or

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

Elaboration:

Uiteraard heeft een web product te maken met security.

107

When selecting or comparing software patterns does a software archi-

tect take into account:

Vertrouwelijkheid (Confidentiality)

De mate waarin een product of systeem er voor zorgt dat gegevens alleen

toegankelijk zijn voor diegenen die geautoriseerd zijn.

Answer: Yes ☒ No ☐

Elaboration:

Ja enerzijds hoe de verschillende users van een klant afhankelijk

van rechten sommige dingen wel of niet mogen zien. Anderzijds

hoe wij als software leverancier omgaan met de toegang tot de

data van de klant voor de eigen mensen.

Integriteit (Integrity)

De mate waarin een systeem, product of component ongeautoriseerde

toegang tot of aanpassing van computerprogramma’s of gegevens verhindert.

Answer: Yes ☒ No ☐

Elaboration:

Klik hier als u tekst wilt invoeren.

Onweerlegbaarheid (Non-repudiation)

De mate waarin kan worden bewezen dat acties of gebeurtenissen plaats

hebben gevonden, zodat later deze acties of gebeurtenissen niet ontkend

kunnen worden.

Answer: Yes ☒ No ☐

Elaboration:

Dit is meer vanuit de optiek, dat data op een bepaalde manier

opslaan zodat bij analyse van problemen/data min of meer

eenduidig kunnen concluderen wat er is gebeurd.

Verantwoording (Accountability)

De mate waarin acties van een entiteit getraceerd kunnen worden naar die

specifieke entiteit.

Answer: Yes ☒ No ☐

Elaboration:

Vaak functioneel nodig. Komt een factuur nu vanuit een

verkooporder of is deze aangemaakt bij de verkoop van een

active of nog een andere bron. Is dat wat je bedoeld?

Authenticiteit (Authenticity)

De mate waarin bewezen kan worden dat de identiteit van een onderwerp of

bron is zoals wordt beweerd. De mate waarin een claim over de oorsprong of

de auteur van de informatie verifieerbaar is, bijvoorbeeld aan handschrift.

Answer: Yes ☐ No ☒

Elaboration:

Klik hier als u tekst wilt invoeren.

Q9) Ease of learning – Is ease of learning a pattern characteristic

that plays a role when selecting or comparing software pat-

terns?

When selecting or comparing software patterns does a software archi-

tect take into account if:

 How long does it take for a developer to master the pattern?

 Is the pattern easy to understand?

Answer: Yes ☒ No ☐

(If the attribute can play a role or might play a role when selecting or

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

109

Elaboration:

Klik hier als u tekst wilt invoeren.

Q10) Ease of implementation – Is ease of implementation a pattern

characteristic that plays a role when selecting or comparing

software patterns?

When selecting or comparing software patterns does a software archi-

tect take into account if:

 How long it takes to implement the pattern?

 What difficulties can be expected when implementing the pat-

tern?

Answer: Yes ☒ No ☐

(If the attribute can play a role or might play a role when selecting or

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

Elaboration:

Klik hier als u tekst wilt invoeren.

Q11) Dependency – Is dependency a pattern characteristic that

plays a role when selecting or comparing software patterns?

When selecting or comparing software patterns does a software archi-

tect take into account if:

 Does the pattern need other patterns to function?

 Does the pattern belong to a group of patterns?

Answer: Yes ☐ No ☒

(If the attribute can play a role or might play a role when selecting or

comparing software patterns, “yes” should be answered. Only when an

attribute is never used in these cases, “no” should be answered.)

Elaboration:

Geen voorbeeld van.

Research question

RQ2) How can attributes of software patterns be quantified in a

manner that allows for comparison?

Introduction

In order for quality attributes to be comparable, they need to be quanti-

fied. If the same scale and quantification method is used, the results of

the evaluation can be compared with one another. This is done by

quantifying the results of an evaluation session where multiple experts

give their scores. Evaluation of software architectures is common prac-

tice in the domain of software architecture. The characteristics of sev-

eral popular assessment methods have been deduced and form the

basis of the following questions. Based on these questions a quality at-

tribute quantification method for software patterns is created.

Q1) SAAM – Is it important to give a value to quality attributes

based on multiple scenarios?

It is possible that a quality attribute would be valued differently under

different circumstances. For example the impact on performance of a

software product by a software pattern can be very different for a large

scale application then it is for a smaller project. Including these scenar-

ios might give the software architect more detailed information on the

software pattern.

111

Answer: Yes ☒ No ☐

Elaboration:

Dit speelt niet altijd een rol, maar het voorbeeld van performance

spreekt wel aan. Soms moet je na verloop van tijd een stuk

refactoren omdat het functioneel wel correct is, maar de gebruikte

opzet voor teveel vertraging zorgt.

Q2) Should it be possible to give a negative value to a quality at-

tribute?

The influence of a software pattern on the software product can be

negative at times. Each pattern has strengths and weaknesses that af-

fect quality attributes. It might be important for a software architect to

know that the implementation of a certain software pattern has a nega-

tive influence on the quality of software.

Answer: Yes ☒ No ☐

Elaboration:

Q3) Should trade-offs between quality attributes be included?

In many cases there are certain trade-offs between quality attributes. A

pattern which adds more security can do so at the cost of perfor-

mance. Although all quality attributes are valued, the specific trade-offs

could also be included in the evaluation. Adding information on trade-

offs would give additional information on quality attributes and their re-

lationships.

Answer: Yes ☒ No ☐

Elaboration:

Klik hier als u tekst wilt invoeren.

Q4) At what scale should attributes be measured?

The scale determines the level of detail at which quality attributes are

valued. A larger scale can provide more detail, but only if the evalua-

tion yields meaningful information that can be quantified on such scale.

In other words, we want to provide the highest level of detail at which

the evaluation can still provide meaningful results.

Answer: 3-point scale ☒ 5-point scale ☒ 10-point scale ☐ 100-

point scale ☐

Elaboration:

Klik hier als u tekst wilt invoeren.

Q5) Should the experience of a software architect be weighted?

When an evaluation of software patterns is performed, it is done by a

group of experts. The experience of an expert accounts for much of

the knowledge on software patterns and their quality attributes. When

the results of an evaluation session are quantified the experience of

each software architect can be weighted in the score to enable a

higher influence by those who have more experience.

Answer: Yes ☒ No ☐

113

Elaboration:

Klik hier als u tekst wilt invoeren.

Q6) Should the software architect have experience using the pat-

tern?

When evaluating a pattern the knowledge of multiple experts is used

as input. However, it might not be possible for an expert to perform a

thorough evaluation based on general understanding of patterns with-

out having experience with the pattern that is being evaluated. Can a

pattern be evaluated based on a description of the pattern without hav-

ing experience using it?

Answer: Yes ☒ No ☒

Elaboration:

I’m not sure

F. Focus group session 1 – Score table

Pattern name: Observer

Attribute name Group score Average Standard deviation Participant 1 Participant 2 Participant 3 Participant 4

Functional suitability 0 1,25 2,50 0 5 0 0

Functional completeness 0 1,25 2,50 0 5 0 0

Functional correctness 0 0,75 1,50 0 3 0 0

Functional appropriateness 0 1,25 2,50 0 5 0 0

Performance efficiency -2 -0,75 1,89 -2 -1 2 -2

Time-behavior -2 -0,50 1,73 -1 -1 2 -2

Resource utilization -2 -0,50 1,73 -1 -1 2 -2

Capacity -2 0,25 2,06 2 -1 2 -2

Compatibility 1 0,75 0,96 1 0 2 0

Co-existence 1 0,50 1,00 0 0 2 0

Interoperability 1 0,75 0,96 1 0 2 0

Usability 0 0,00 0,00 0 0 0 0

Appropriateness recognisability 0 0,00 0,00 0 0 0 0

Learnability 0 0,00 0,00 0 0 0 0

Operability 0 0,00 0,00 0 0 0 0

User error protection 0 0,00 0,00 0 0 0 0

User interface aesthetics 0 0,00 0,00 0 0 0 0

Accessibility 0 0,00 0,00 0 0 0 0

115

Reliability 1 1,50 1,91 4 2 0 0

Maturity 1 1,00 2,00 0 4 0 0

Availability 1 1,50 1,91 4 2 0 0

Fault tolerance 1 1,50 1,91 4 2 0 0

Recoverability 1 0,50 1,00 0 2 0 0

Security 0 -0,50 1,00 -2 0 0 0

Confidentiality 0 0,00 0,00 0 0 0 0

Integrity 0 -0,75 1,50 -3 0 0 0

Non-repudiation 0 0,00 0,00 0 0 0 0

Accountability 0 -0,75 1,50 -3 0 0 0

Authenticity 0 0,00 0,00 0 0 0 0

Maintainability 3 3,50 1,00 5 3 3 3

Modulatiry 4 4,25 0,96 5 4 3 5

Reusability 2 2,50 1,73 3 3 0 4

Analysability 2 0,00 3,65 -4 4 2 -2

Modifiability 4 4,00 0,82 5 4 4 3

Testability 3 2,75 2,63 5 -1 3 4

Portability 0 0,25 0,50 0 0 1 0

Adaptability 0 0,25 0,50 0 0 1 0

Installability 0 0,25 0,50 0 0 1 0

Replaceability 0 0,25 0,50 0 0 1 0

Ease of implementation 4 4,25 0,50 4 4 5 4

Ease of learning 3 2,25 2,50 2 -1 5 3

G. Focus group session 2 – Score table

Pattern name: Check point

Attribute name Group score Avg. SD P1 P2 P3 P4 P5 P6 P7 P8 P9

Performance efficiency -1 0,00 1,07 -1 -1 -1 -1 1 1 1 1 -1

Time-behavior -1 -1,00 0,00 -1 -1 -1 -1 -1 -1 -1 -1 -1

Resource utilization -1 -1,00 0,00 -1 -1 -1 -1 -1 -1 -1 -1 -1

Capacity -1 -0,88 0,35 -1 0 -1 -1 -1 -1 -1 -1 -1

Compatibility 0 0,38 1,06 0 0 -1 2 0 0 2 0 0

Co-existence 0 0,00 0,00 0 0 0 0 0 0 0 0 0

Interoperability 0 0,00 0,00 0 0 0 0 0 0 0 0 0

Usability 0 0,13 0,83 0 -1 0 1 -1 1 1 0 1

Appropriateness recognisability 0 0,13 0,83 0 -1 0 1 -1 1 1 0 1

Learnability 0 0,13 0,83 0 -1 0 1 -1 1 1 0 1

Operability 0 0,13 0,83 0 -1 0 1 -1 1 1 0 1

User error protection 0 0,13 0,83 0 -1 0 1 -1 1 1 0 1

User interface aesthetics 0 0,13 0,83 0 -1 0 1 -1 1 1 0 1

Accessibility 0 0,13 0,83 0 -1 0 1 -1 1 1 0 1

Reliability 1 0,63 0,52 0 1 1 0 1 1 0 1 1

Maturity 1 0,63 0,52 0 1 1 0 1 1 0 1 1

Availability 1 0,63 0,52 0 1 1 0 1 1 0 1 1

Fault tolerance 1 0,63 0,52 0 1 1 0 1 1 0 1 1

117

Recoverability 1 0,63 0,52 0 1 1 0 1 1 0 1 1

Security 2 2,50 0,53 3 3 2 3 2 2 2 3 2

Confidentiality 2 2,50 0,53 3 3 2 3 2 2 2 3 2

Integrity 2 2,50 0,53 3 3 2 3 2 2 2 3 2

Non-repudiation 2 2,50 0,53 3 3 2 3 2 2 2 3 2

Accountability 2 2,50 0,53 3 3 2 3 2 2 2 3 2

Authenticity 2 2,50 0,53 3 3 2 3 2 2 2 3 2

Maintainability '' ''

Modulatiry '' ''

Reusability '' ''

Analysability '' ''

Modifiability '' ''

Testability '' ''

Portability '' ''

Adaptability '' ''

Installability '' ''

Replaceability '' ''

Ease of implementation '' ''

Ease of learning '' ''

H. Focus group session 3 – Score table

Pattern name: Check point

Attribute name Group score Avg. SD P1 P2 P3 P4 P5 P6 P7 P8

Performance efficiency -1 -1,00 0,76 -1 0 -2 -1 0 -1 -1 -2

Time-behavior '' ''

Resource utilization '' ''

Capacity '' ''

Compatibility 0 0,88 1,25 1 1 2 3 0 1 -1 0

Co-existence '' ''

Interoperability '' ''

Usability 0 0,00 1,07 0 1 0 0 -1 2 -1 -1

Appropriateness recognisability '' ''

Learnability '' ''

Operability '' ''

User error protection '' ''

User interface aesthetics '' ''

Accessibility '' ''

Reliability -0,25 1,04 0 -1 -1 -1 0 -1 2 0

Maturity '' ''

Availability '' ''

Fault tolerance '' ''

Recoverability '' ''

119

Security 2 1,88 1,25 0 0 3 2 2 3 2 3

Confidentiality '' ''

Integrity '' ''

Non-repudiation '' ''

Accountability '' ''

Authenticity '' ''

Maintainability 0 0,38 0,74 0 1 0 1 0 1 -1 1

Modulatiry '' ''

Reusability '' ''

Analysability '' ''

Modifiability '' ''

Testability '' ''

Portability 1 1,00 0,93 1 2 2 2 1 0 0 0

Adaptability '' ''

Installability '' ''

Replaceability '' ''

Ease of implementation 0,38 1,85 -1 0 -2 2 2 2 -2 2

Ease of learning 2 1,88 0,83 1 2 3 3 1 2 1 2

