
Bridging the Gap Between Software Platforms:

A Template Method for Software Evolution

Research thesis

Gerard Nijboer

G.Nijboer@students.uu.nl

Department of Information and Computing

Sciences

Utrecht University, Utrecht, The Netherlands

Abstract

Software products that no longer meet current customer and market demands are classified as legacy
information systems. Legacy information systems can cause problems related to costs, maintenance,
accessibility and extensibility. In order to prevent such issues, software evolution by implementing new
software platforms in the product portfolio can reveal new opportunities for a software product.

No structured approach towards the mapping of functionality between software platforms exists. A
structured approach increases efficiency and allows for comparison and benchmarking of results. The
results of an instantiation of the method can be used for product roadmapping, such that a software
product manager can make strategic decisions based on the resulting product requirements.

Based on a literature review and expert interviews, a first version of the template method has been
designed. By applying the method in a case study, we analyze the template method and its performance.
Method increments are designed based on the analysis, which improve the method’s next version. The
incremental method engineering process is repeated until a stable version of the method is designed.
We call this template method the Software Functionality Evolution Method (SFEM).

The SFEM aligns with the Software Product Management Competence Model in three categories,
Triggers, Execution and Output. Triggers concern focus areas in the Competence Model which initiate
an instantiation of the template method. Execution designates focus areas that are supported by a
template method instantiation. Finally, Output focus areas can use the results of an instantiation as
input for the execution of their activities.

To allow for reflection on the incremental method engineering process, a categorization for method
increments is proposed. This categorization is applied to the method increments and their reason-
ing and motivation. This concept assists a researcher in explicit reflection of the method engineering
process.

i

ii

Nederlandse samenvatting

Software producten die niet meer voldoen aan de behoeften van klanten en de markt, worden bestem-
peld als legacy informatiesystemen. Legacy informatiesystemen kunnen problemen veroorzaken omtrent
kosten, onderhoud, toegankelijkheid en flexibiliteit. Om dergelijke problemen te voorkomen kan soft-
ware evolutie nieuwe mogelijkheden blootleggen, door nieuwe software platformen op te nemen in het
product portfolio.

Er bestaat geen gestructureerde benadering voor het indelen van functionaliteit tussen software
platformen. Een gestructureerde benadering verbetert de efficiëntie en maakt vergelijking en bench-
marking van resultaten mogelijk. De resultaten van een instantiëring kunnen worden gebruikt voor het
maken van een product roadmap, zodat een software product manager strategische beslissingen kan
nemen op basis van de resulterende producteisen.

Op basis van een literatuurstudie en interviews met domeinexperts is een eerste versie van de
template methode gemaakt. Door de methode toe te passen in een case study worden de template
methode en zijn prestaties geanalyseerd. Method increments worden ontworpen aan de hand van de
analyse, welke de volgende versie van de methode verbeteren. Het incrementele method engineering
proces wordt herhaald tot een stabiele versie van de methode is ontworpen. We noemen deze template
methode de Software Functionality Evolution Method (SFEM).

De SFEM positioneert zich binnen het Software Product Management Competence Model in drie
categorieën, Triggers, Execution en Output. Triggers zijn aandachtsgebieden in het competentiemodel
welke een instantiatie van de methode aanroepen. Execution wijst aandachtsgebieden aan die wed-
erzijds worden ondersteund door een instantiëring van de template methode. Als laatste worden de
activiteiten binnen de Output aandachtsgebieden gevoed door de uitkomst van een instantiëring.

Om de reflectie op het incrementele proces mogelijk te maken, stellen we een categorisatie van
method increments voor. Deze categorisatie wordt toegepast op de method increments en hun re-
denering en motivatie. Dit concept ondersteunt een onderzoeker in het expliciet reflecteren op het
method engineering proces.

iii

iv

Preface

This research project would never have been possible,
if it weren’t for the people who stood by my side.

Lots of thanks go to my friends, family, colleagues and former colleagues for surrounding me over
the past few years. I am thankful for those who surround me, who make me happy, who make me laugh,
who help me when I am in need, who are always by my side, simply because they care.

I would like to express my gratitude to my colleagues at AFAS Software, in particular Henk, Mo-
hamed, Bas, Dennis, Daniel, Bart, Mark, Jelle and Floris. Your inspiration, participation, support and
knowledge have been a vital contribution to this graduation project and resulting thesis. With joy I look
forward to working with you in the near future.

Next, I want to thank my coordinators from the Utrecht University, Jan Martijn and Sjaak, for their
contribution to my research. Your dedicated and continuous support, suggestions, advice and reviews
have made it possible to get where we currently are.

Also, a word of gratitude goes out to my fellow graduates at AFAS Software. Bas, Jeroen, Rick and
Jan Pieter, thanks for your inspiration and contribution during the various moments we have been able
to review each other’s work.

Most importantly, I want to thank my closest friend, my life companion, my fiancée, Laura. Your
everlasting and unconditional love and support have been of great importance to this achievement,
which would never have been possible if it weren’t for you. Your warmth has given me strength and
inspiration to continue, now matter how hard times may have been. With great excitement I look forward
to spending the rest of my life with you.

Gerard Nijboer
June, 2014

v

vi

Communication

G. (Gerard) Nijboer BSc
Graduating student
Student number: 3476766

g.nijboer@students.uu.nl

Utrecht University
Department of Information and Computing Sciences
Buys Ballot Building
Princetonplein 5, De Uithof
3584 CC, Utrecht

dr. ir. J.M.E.M. (Jan Martijn) van der Werf
First supervisor

j.m.e.m.vanderwerf@uu.nl

Utrecht University
Department of Information and Computing Sciences
Buys Ballot Building, office 584
Princetonplein 5, De Uithof
3584 CC, Utrecht

prof. dr. S. (Sjaak) Brinkkemper
Second supervisor

s.brinkkemper@uu.nl

Utrecht University
Department of Information and Computing Sciences
Buys Ballot Building, office 582
Princetonplein 5, De Uithof
3584 CC, Utrecht

dr. H. (Henk) van der Schuur
First external supervisor

h.vdschuur@afas.nl

AFAS Software
Philipsstraat 9
3833 LC, Leusden

M. (Mohamed) Amri
Second external supervisor

m.amri@afas.nl

AFAS Software
Philipsstraat 9
3833 LC, Leusden

vii

mailto:g.nijboer@students.uu.nl
mailto:j.m.e.m.vanderwerf@uu.nl
mailto:s.brinkkemper@uu.nl
mailto:h.vdschuur@afas.nl
mailto:m.amri@afas.nl

viii

Table of contents

Abstract i

Nederlandse samenvatting iii

Preface v

Communication vii

Table of contents ix

1 Introduction 1
1.1 Problem statement . 1
1.2 Research objective . 3
1.3 Research questions . 3
1.4 Relevance . 4
1.5 Main deliverables . 5
1.6 Case study company . 6
1.7 Thesis outline . 7
1.8 Glossary . 7

2 Research approach 11
2.1 Literature review . 11
2.2 Method engineering . 13
2.3 Case study . 15
2.4 Design science . 16

3 Requirements Management in Software Product Management 19
3.1 Positioning on the SPM Competence Model . 20

4 The Software Functionality Evolution Method 23
4.1 Method engineering . 23
4.2 Process-Deliverable Diagram . 24
4.3 Project definition . 26
4.4 Functionality identification . 29
4.5 Scenario creation . 35
4.6 Functionality mapping . 41
4.7 Results reporting . 50

5 Template method instantiations 55
5.1 Template method increments . 55
5.2 Case study summaries . 64

6 Discussion 69

7 Conclusion 71

ix

7.1 Future research . 73

Bibliography 79

List of figures 81

List of tables 83

Appendices 85

A Paper IWSPM14 87

B Activity table 97

C Concept table 101

D Case study: Course management in AFAS InSite 105
D.1 Template method . 105
D.2 Template method instantiation . 111

E Case study: Fixed assets in AFAS InSite 139
E.1 Template method . 139
E.2 Template method instantiation . 146

x

Chapter 1

Introduction

This research project covers the subject of software evolution from the perspective of a software prod-
uct manager. The thesis is subject to the graduation project of Gerard Nijboer for the finalization of his
Master’s degree in the Business Informatics program at the Department of Information and Computing
Sciences, Faculty of Science of the Utrecht University in the Netherlands. Over the period of 2 De-
cember 2013 to 30 June 2014 and facilitated by AFAS Software, this research has explored the field of
Software Product Management to design a method which assists software developing organizations in
the evolution of their software product through mapping of functionality between software platforms.

1.1 Problem statement

As organizations evolve, they embrace new opportunities to strengthen the position of their business
in the market. If the products do not evolve as fast the organization, the markets and their mutual
demands do, a gap can emerge between the business and its supporting IT systems. In the case where
such a software product is no longer suitable for modern needs, nor modifiable for project purposes,
it is classified as a legacy system (Robertson, 1997). Brodie and Stonebraker (1995) define legacy
information systems as “any information system that significantly resists modification and evolution”.

Legacy information systems can cause severe problems for organizations, for instance related to
costs, maintenance, accessibility and extensibility (Bisbal et al., 1999). In order to correctly cope with
these challenges, organizations must find appropriate ways to prepare software products and product
portfolios for future needs. Technological advancements can introduce opportunities in order to deal
with issues arising from legacy information systems.

The introduction of emerging technologies allows organizations to explore and adopt new oppor-
tunities. Emerging technologies can help organizations to innovate, improve efficiencies, and realize
new business opportunities (Yee and Oh, 2013). The same goes for software developing organizations,
which can use technological advancements to anticipate issues which arise from legacy systems.

For software products, issues can arise from the software platforms it is implemented on. On the
other hand, emerging technologies and software platforms may introduce new opportunities. A software
platform is defined as “a set of software subsystems and interfaces that form a common structure from
which a set of derivative products can be efficiently developed and produced” (Meyer and Lehnerd,
1997). Emerging technologies can introduce new software platforms, such as smartphones, tablets and
wearables, which offer new opportunities for software products. The evolution of a software product by
implementing its functionality on a new software platform is an example of such an opportunity.

1

A software product can be deployed onto different platforms, depending on the product’s purpose
and the requirements of its users. For instance, a product can be deployed on a web-based client for
staff operations, a mobile application for existing customers, and a mobile application for en-route sales
managers. This results in a variety of software applications on different platforms, each having its own
purpose and platform characteristics and constraints.

New technological advancements emerge, develop and mature rather quickly, which makes it a
challenge for organizations to make guided, rational decisions on which opportunities to adapt and
which to neglect. The decision on which emerging technologies to nominate for implementation is often
guided by precision-based methods for technology selection and justification, such as net present value,
internal rate of return, payback period and return on investment (Chan et al., 2000). However, as Chan
et al. state, information can be unavailable or uncertain, due to a lack of precise and absolute figures
which are needed in these calculations. Therefore, decision-makers base their assessment on implicit
knowledge, experience and subjective judgments.

When a software product evolves, the software developing organization has to decide which func-
tionality to implement on the new software platform, and which to discard. We call this practice the
“mapping” of functionality on software platforms. A mapping, often decided upon by a software prod-
uct manager, can be based on multiple factors, such as technical and functional characteristics and
constraints of the platform, as well as constraints posed by personas.

Currently, no structured approach exists which assists in the evolution of a software product by
mapping functionality on new software platforms. This creates a gap in the evolutionary process, as a
mapping of functionality between platforms needs to be created, yet it is uncertain what functionality is
to be included. The uncertainty of the mapping of functionality can be resolved by exploring what factors
constrain a mapping, for instance related to the software platform and the functionality itself. Only if a
guideline is set out for the determination of a mapping and its priority, a product management team can
follow the same approach in the evolutionary process.

If a software product developing organization is able to correctly apply the proposed method, it can
increase agility and efficiency, as the process is guided by a structured approach, rather than pragmatic
and subjective reasoning solely based on experience. With more efficiency and transparency in prac-
tices, (stakeholder) communication and strategic planning, the organization can respond to changing
market requirements more rapidly and thus gain a competitive advantage compared to competitors.

The proposed method assists a software product developing organization in extracting functionality
from the software product from a functional perspective, thus without analysis of the software prod-
uct’s technical architecture or source code. This enables a software product manager to compose the
requirements for a new application by assigning functionality, without the necessity of having explicit
knowledge of the underlying structure of the software product. The focus is therefore purely based
on the functional design of software products. The deliverables of an instantiation of the method align
with the work of a software product manager, by acting as input for the focus areas Release definition,
Roadmap intelligence and Product roadmapping (Bekkers et al., 2010) from the Software Product Man-
agement Competence Model (Bekkers et al., 2010). A more elaborate description of how the research
fits in the SPM Competence Model is given in Chapter 3.

2

1.2 Research objective

This research project aims to develop a method which assists in the evolution of a software product
by mapping functionality between software platforms. A method is designed as the tool to increase
efficiency in Software Product Management practices.

The method is designed to be generic, so that it can be applied to any software product, towards
any software platform and thus in any scenario. Especially since the current pace of technological
developments is so high, software developing organizations need rapid and efficient contemplation of
their options. Each opportunity addressed by the organization requires a quick, yet thorough evaluation
of the available functionality. As soon as the mapping of functionality for a user persona on a software
platform has been decided upon, the development of the application can begin. And in order to gain the
intended competitive advantage, the sooner is the better.

Another objective of the research project is to support the process of strategic roadmapping of
a software product. By assigning a priority to the mapping of functionality to a user persona on a
software platform, it becomes clear which functionality needs to be implemented at first, and which has
a lower priority. Even though an instantiation of the method does not produce a product roadmap itself,
the results are perfectly suitable for defining releases, composing a roadmap and identifying strategic
themes.

Also related to roadmapping is the objective of efficient stakeholder communication. Software Prod-
uct Management knows a variety of internal and external stakeholders, such as sales, marketing, devel-
opment, support, customers and partners. Each stakeholder may need a different view on the plans of
the product management department. For instance, a developer may need more in-depth information
about the relationships between functionality and the order in which they are to be implemented. On
the other hand, a sales manager is more interested in high-level themes of upcoming releases and
implemented requirements. Therefore, different and effective visualization techniques for the reporting
of results are explored and proposed.

1.3 Research questions

As this research project aims to design a method which assists software product evolution from a func-
tional perspective, the following main research question plays a central role in the research design:

What method assists in software product evolution through mapping of functionality be-
tween software platforms?

In order to answer the main research question, the following sub questions address subjects which
assist in the engineering of the method:

1. Which methods assist in identification and characterization of software functionality from a func-
tional perspective?

2. What characterizes the users and functional context and constraints of a software platform?

3. Which methods assist in the prioritization of functionality when mapping functionality between
software platforms?

4. How can the results of a method instantiation be reported in order to assist in the evolution of a
software product?

3

The validation of the method has not been described as a separate research question. However,
it is included by means of the iterative method engineering approach we conduct in the research project.
A further elaboration on the research approach is described in Chapter 2.

Sub question 1 aims to identify methods which help an analyst to identify and characterize func-
tionality from a software product. The research uses a composition of method fragments to present a
structured approach towards the process of functionality identification. By defining the functionality of
the software product in scope, the basis for the proceedings of the proposed method is laid out.

The aim of sub question 2 is to define the target software platform by characterizing the platform’s
users and functional context and constraints. The resulting parameters give a conclusive definition of
the platform, which assists the mapping of functionality to the platform.

When the functionality, users and platforms come together, sub question 3 gives the researcher
tools to define the priority of a mapping of functionality. Depending on the demands of the organization,
the priority can be determined either by a subjective assessment, as well as by a more structured
approach, such as the method by Wiegers (1999a).

Sub question 4 investigates how the results of a method instantiation can be presented to assist a
software product manager by providing input for product roadmapping. The visualization of the method’s
outcome also serves for communicating the results with other stakeholders.

1.4 Relevance

As stressed by Ebert (2007), the success of any product depends on the skills and competences of
its product manager. A carefully composed mix of product requirements, tuned to the demands of the
variety of stakeholders, is critical to business success. The subject of functionality-centered decision
making processes has yet received little attention in accordance with the literature that surrounds soft-
ware evolution, as is also stressed by Colomo-Palacios et al. (2011).

This research contributes more efficiency in the decision making processes of software product
managers, and closes the gap between scientific literature and industrial practices on software evolu-
tion. Mentioned earlier in the problem statement in Section 1.1, decision-makers base their assessment
on implicit knowledge, experience and subjective judgments, rather than precision-based methods for
technology selection and justification.

By deploying the method in the industrial field, further validation and evolution of the method
becomes possible. A more advanced and mature method contributes to the Software Product Man-
agement Body of Knowledge (ISPMA, 2014), as the practiced decision-making process in evolutionary
projects becomes more transparent.

For the industry itself, the method allows for more efficiency in product management practices
concerning software evolution, as a structured approach can be adhered to. More efficiency may result
in a reduction of costs and consumed resources, and a faster time-to-market. With the opportunities of
a more diverse application landscape for a single software product, different market requirements can
be met, creating a competitive advantage for the business.

As a more diverse landscape of applications of a software product can be realized, the busi-
ness faces less threat concerning legacy information systems, reducing overall risk related to costs,
maintenance, accessibility and extensibility (Bisbal et al., 1999).

4

1.5 Main deliverables

The research explores to design a template method which supports a software vendor in the evolution
of a software product. A template method is different from a situational method, in the sense that it
is not designed specifically for one project. For each project, an instantiation of the template method
can be created. This research aims to design a template method, labeled as the Software Functionality
Evolution Method.

Other artifacts have been designed during the research project, as well. These artifacts are the
instantiations of the template method through case studies, a categorization of method increments, and
a matrix to assist in the classification of stakeholders in a method instantiation. Each of the deliverables
is briefly explained in the following sections.

1.5.1 Software Functionality Evolution Method

This research project’s main deliverable is a template method, known as the Software Functionality
Evolution Method (SFEM), which assists a software developing organization in the evolution of a soft-
ware product by mapping functionality between software platforms. The template method is designed
to be generic, which means it can be instantiated in any software evolution project, rather than being
specifically tuned to the situational factors in one single project. The SFEM focuses on a functional
perspective, to support a software product manager without the necessity of analyzing technical or
architectural aspects of the software product.

The method defines a standardized approach towards the extraction of functionality, the definition
of user personas and software platforms, and the mapping of functionality based on the applicable
constraints and characteristics of those personas and platforms. The template method is presented as
a Process-Deliverable Diagram (Van de Weerd and Brinkkemper, 2008) with corresponding activity and
concept tables, constructed by method engineering (Brinkkemper, 1996).

Read more about the Software Functionality Evolution Method in Chapter 4.

1.5.2 Template method instantiations

In order to analyze the performance of the template method, the method is instantiated in multiple case
studies. These case studies are recorded in a backlog, which describes the process of instantiating the
activities and concepts of the method. A summary of these backlogs is given in Section 5.2.

A case study’s backlog is an excellent instrument for analysis of the method’s performance. The
analysis allows for identification of improvements, captured as method increments. As part of the tem-
plate method’s evolution, labels are assigned to the method increments, making reasoning and reflection
on the engineering process more transparent and complete.

Read more about the template method instantiations in Chapter 5.

5

1.5.3 Method increment categorization

To reflect on the incremental process of method engineering, we propose a categorization of method
increment types. The application of categories to method increments allows for a transparent reflection
on the improvements that have been made, and their underlying reasons. The concept is inspired by
the constructivist hermeneutic framework by Van der Schuur (2011), which reflects on the hermeneutic
process which is experienced during the construction of artifacts in a research project.

Read more about the method increment categorization in Section 5.1.

1.5.4 Method Stakeholder Classification Matrix

As part of the research, we present the Method Stakeholder Classification Matrix (MSCM). The MSCM
proposes a classification for the stakeholders in a template method instantiation, depending on the
degree of participation in the template method instantiation and the degree of interaction with the deliv-
erables of the template method instantiation.

Read more about the Method Stakeholder Classification Matrix in Section 4.3.1.

1.6 Case study company

The problem statement is exemplified by a case study at AFAS Software, an Enterprise Resource
Planning (ERP) software developing organization from the Netherlands. The AFAS Profit software
application currently runs as a Microsoft Windows client application and parts of its functionality is
being implemented on a web-based software platform (see Figure 1.1). The web-based platform hosts
two applications, AFAS InSite and AFAS OutSite, of which the latter is subdivided in a Portal and a
Website (depicted in Figure 1.1 by the horizontal lines connecting AFAS OutSite to Portal and Website).

Figure 1.1: AFAS Software platform evolution

AFAS InSite is an intranet application which allows an organization’s employees for operations
through the web interface, including self-service. AFAS OutSite is an extranet application which enables
functionality that should be available to users outside of the organization, such as clients, prospects,
applicants and partners. The AFAS OutSite (Portal) requires authentication, just as AFAS InSite (de-
picted in Figure 1.1 by the user icons on the platforms), and can thus interact with the profile of the
authenticated user. The AFAS OutSite (Website) does not require authentication and can be used to
present static content about the organization through its website.

At AFAS Software, the Profit Windows application is evolving by extending its functionality over
three web-based software platforms, AFAS InSite, AFAS OutSite (Portal) and AFAS OutSite (Website).
Each of these platforms hosts one or more different user personas and should therefore host only a
subset of the functionality of the full AFAS Profit Windows application. AFAS requires a structured and
standardized approach to the evolution, so that the same method can also be applied when for instance
a mobile application must be designed for job applicants.

6

During the evolution of the software product, the organization’s product managers have limited re-
sources at their disposal. This forces them to create a software product roadmap containing a rationale
on which functionality to implement first, based on the priority given to the different sets of functionality,
mapped to the platforms mentioned in Figure 1.1.

The AFAS Profit software product consists of a set of components, each with an extended set of
functionality. Extracting functionality and deciding and rationalizing the mapping of the functionality to
the different software platforms is a time-consuming task. With the perspective of constantly emerging
technologies, for instance related to mobile devices and ubiquitous computing, the organization expects
to spend an increasing amount of time on the evolution of its software product, and thus the mapping
of its functionality. In order to streamline this process, the organization desires a structured approach,
which increases efficiency and ultimately creates a competitive advantage.

The information system at the case study at AFAS Software can only partly be classified as a
legacy system, as the AFAS Profit Windows application is still in production and new releases of the
application are distributed to the market. The organization still invests a significant proportion of their
resources in the development of the Windows product, yet the business is implementing the functionality
of the software product on next-generation platforms in order to embrace new opportunities.

1.7 Thesis outline

This thesis is structured as follows: This introduction is followed by an explanation of the research
approach in Chapter 2. The research project is contextualized in the field of Requirements Management
and Software Product Management in Chapter 3. The Software Functionality Evolution Method and
its theoretical foundations are introduced in Chapter 4. The incremental process of template method
instantiation is explained in Chapter 5, which shows how the final template method was designed. The
thesis concludes with a discussion in Chapter 6, and a conclusion in Chapter 7.

The appendix of the thesis contains a paper submitted to the 8th International Workshop on
Software Product Management (IWSPM 2014) in Appendix A, the template method’s activity table (Ap-
pendix B) and concept table (Appendix C), and two case study instantiations in Appendix D and Ap-
pendix E.

1.8 Glossary

The following terms are used in the contents of this thesis. A formal definition is given first, after which
the terms will be contextualized in the other chapters of this document.

Classification A grouping of objects on the basis of common characteristics. (IEEE Std. 1671-2010)

Constraint A statement that expresses measurable bounds for element or function of the system. That
is, a constraint is a factor that is imposed on the solution by force or compulsion and may limit or
modify the design changes. (IEEE Std. 1233-1998)

Data model A data model identifies the entities, domains (attributes), and relationships (associations)
with other data and provides the conceptual view of the data and the relationships among data.
(IEEE Std. 1320.2-1998)

Design rationale Information capturing the reasoning of the designer that led to the system as de-
signed, including design options, trade-offs considered, decisions made, and the justifications of
those decisions. (IEEE Std. 1016-2009)

7

Entity In computer programming, an entity is any item that can be named or denoted in a program. For
example, a data item, program statement, or subprogram. (IEEE Std. 610.12-1990)

Functionality The capabilities of the various computational, user interface, input, output, data man-
agement, and other features provided by a product. (IEEE Std. 1362-1998)

Goal An objective that is desirable to meet, but it is not mandatory to meet. (IEEE Std. 1413-2002)

Graphical user interface A means of presenting function to a user through the use of graphics. (IEEE
Std. 1387.2-1995)

Mapping An assigned correspondence between two things that is represented as a set of ordered
pairs. (IEEE Std. 1320.2-1998)

Method engineering The engineering discipline to design, construct and adapt methods, techniques
and tools for the development of information systems. (Brinkkemper, 1996)

Method increment A method adaptation, in order to improve the overall performance of a method.
(Van de Weerd et al., 2007)

Ontology A description of the entities within the domain in discourse, and how these entities are inter-
related. (Gruber, 1993)

Persona Archetypical user of a system, based on research into real users of a system. (ISO/IEC/IEEE
26515)

Product software A packaged configuration of software components or a software-based service, with
auxiliary materials, which is released for and traded in a specific market. (Xu and Brinkkemper,
2005)

Project plan A document that describes the technical and management approach to be followed for a
project. (IEEE Std. 610.12-1990)

Report Information item that describes the results of activities such as investigations, observations,
assessments, or tests. (ISO/IEC/IEEE 15289)

Requirement A condition or capability needed by a user to solve a problem or achieve an objective,
or a condition or capability that must be met or possessed by a system or system component
to satisfy a contract, standard, specification, or other formally imposed documents. (IEEE Std.
7-4.3.2-2010)

Roadmap A document that provides a layout of the product releases to come over a time frame of
three to five years. It is written in terms of expectations, plans and themes and core assets of the
product. (Regnell and Brinkkemper, 2005; Moon et al., 2005)

Scenario The combination of a possible and relevant appearance of a persona on a given software
platform.

Situational method An information systems development method tuned to the situation of the project
at hand. (Harmsen et al., 1994)

Software evolution The adaption of capabilities and functionality of a system, in order to meet user
needs. (Rajlich and Bennett, 2000)

Software migration Transformation of software systems into a new environment, without changing its
functionality. (Gimnich and Winter, 2005)

Software platform A platform is the combination of an operating system and hardware that makes up
the operating environment in which a program runs (ISO/IEC 26513). Thus, a software platform
defines the environment in which a software product is designed to operate.

Software Product Management The discipline and role, which governs a product (or solution or ser-
vice) from its inception to the market/customer delivery in order to generate biggest possible value
to the business. (Ebert, 2007)

8

Stakeholder Individual or organization having a right, share, claim or interest in a system or in its
possession of characteristics that meet their needs and expectations. (IEEE Std. 12207-2008)

Template method A template method describes what, rather than how, the activities and concepts are
to be implemented by the instantiating organization. (Van der Schuur et al., 2011)

User manual A document that presents the information necessary to employ a system or component
to obtain desired results. Typically described are system or component capabilities, limitations,
options, permitted inputs, expected outputs, possible error messages, and special instructions.
(IEEE Std. 610.12-1990)

User need A user requirement for a system that a user believes would solve a problem experienced by
the user. (IEEE Std. 1362-1998)

9

10

Chapter 2

Research approach

In order to conduct this research project and answer the research questions as in Section 1.3, this chap-
ter continues by describing the applied research approach. Figure 2.1 gives a graphical representation
of the research approach, and how this has contributed to the objectives of the research.

2.1 Literature review

To answer the research questions and to provide a solution to the problem statement, the research
project initiates by exploring the current state of literature through means of a literature review. The
literature review helps to identify and organize activities and concepts which support instantiating the
method.

The literature review uses multiple queries with sets of keywords and operators to search online
databases of literature for relevant items. Each query focuses on a certain topic, relating to the sub
questions, such as “software functionality characterization” or “user persona”. Queries are expanded
with operators to include related keywords and synonyms.

Inspired by the PRISMA 2009 checklist (Moher et al., 2009), a structured flow is followed to filter
out articles that are not relevant to the research. Figure 2.2 presents the original flow of the PRISMA
Statement. At first, all identified articles are gathered and listed together. Then, duplicates from the
various queries are removed from the listed articles. The screening phase includes excluding articles
based on the contents of their abstract. This gives a high-level overview of the contents of the article,
which can be used to assess the relevance of the article to the research. The articles that pass the
screening phase, are included in the full-text assessment. This means analyzing the contents of the
full-text of the article and extracting contents that are relevant to the research.

The literature review in this research project differs from the original PRISMA Statement by not
performing a meta-analysis of the literature. Such quantitative research is relevant to conducting a sys-
tematic literature review with the goal of researching the current state of literature on a certain topic, and
identifying possible research gaps for further research. However, the current gap in scientific literature
has already been identified, and thus a quantitative meta-analysis of the literature would produce too
much overhead. This does not serve the goal of the literature review, as the aim is to gather literature
to support the template method’s theoretical foundations.

To support the findings of the literature review, and relate them to actual practices in Software Product
Management, expert interviews are conducted. These interviews merely serve to validate the outcome
of the literature review, and explore new opportunities by means of discussion.

11

Figure 2.1: Research approach

12

Figure 2.2: PRISMA 2009 Flow Diagram (Moher et al., 2009)

2.2 Method engineering

The current variety of methods for the design, development and implementation of information systems
makes it hard to select the correct method for a software evolution situation at hand. Since no method
exists which is suitable for every situation, a method can be engineered into a situational method,
which is defined as “an information systems development method tuned to the situation of the project at
hand” (Harmsen et al., 1994).

The engineering of a method which addresses the problem statement in Section 1.1 and the re-
search questions in Section 1.3 involves the configuration process as described by Brinkkemper (1996)
and represented in Figure 2.3. Through the methods administration, method fragments are fed to the
selection and assembly of method fragments into the method. The resulting method is instantiated in a
project, from which the performance is measured and analyzed.

From the analysis of the method’s performance, method improvements are captured and sent
back as requests for adaptations, which results in method increments. The new conceptual method is
then again instantiated in another case study, from which the project performance is again analyzed.
Only when the project performance results in satisfying output, is the method considered valid and
integer.

In Figure 2.3, it is visualized how a situational method is dependent on the situation of the project
at hand. The project environment in which the method is to be operable, serves certain project factors,
which characterize the requirements for the project. This determines which method fragments are
suitable for the method and which are to be omitted.

13

Figure 2.3: The configuration process for situational methods (Brinkkemper, 1996)

Figure 2.4: Template method instantiation (Van der Schuur et al., 2011)

2.2.1 Template method instantiation

The deliverable of the method engineering process of this research project is a template method, which
can be instantiated by software developing organizations to support the evolution of their software prod-
uct by mapping functionality between software platforms. In contrast to a situational method, a template
method describes what, rather than how, the activities and concepts are to be implemented by the
instantiating organization (Van der Schuur et al., 2011). Thus, a template method is different from a
situational method as it serves as a template for an instantiation, rather than describing the instantiation
of the situational method itself.

In Figure 2.4, the concept of instantiating a template method is visualized (Van der Schuur et al.,
2011). The figure indicates how the open activities and concepts of a template method may result in
extra elements after instantiation. This can be due to situational factors of the project at hand, which
suits the characterization of the project, as depicted in Figure 2.3.

Different from the design of template methods as described by Van der Schuur et al. (2011),
we do not design a template method which is only composed of open activities and concepts. This is
because many of the described activities and concepts in the Process-Deliverable Diagram are more
complex than what is actually described in the method and corresponding activity and concept tables.
On the other hand, the method contains simple template activities and concepts which do not require
further elaboration before they can be instantiated.

14

The concept of template method instantiation assists in the method engineering process of this
research project. By instantiating the template method in case studies, we are able to analyze the
method’s performance and identify issues, which can be improved by method increments. These
method increments are categorized, so that we can analyze the main improvements made to the
method. Chapter 5 gives more insight in how the template method was instantiated in the research
project, and what results were gathered from this.

The method instantiation process takes place by initiating a case study, of which the procedure
is described in Section 2.3. The method is analyzed in both its template state, as its instantiated state
in the case study. This brings forth method increments, which are used as input for the next iteration of
the template method.

If the designed template method and its instantiated method performance do not introduce any
significant issues, and the results of the instantiation are satisfying, the latest iteration delivers the
final template method, which is the Software Functionality Evolution Method (SFEM). This incremental
process of composing, instantiating and improving the template method is depicted in Figure 2.1.

To reflect on the process of the research project, we use the constructivist hermeneutic framework
by Van der Schuur (2011), which is an adaption to the framework by Cole and Avison (2007). The
framework enables us to reflect on the reason why certain increments were made, the cause that lead
to the increment, and the classification of the increment.

2.3 Case study

For this research, a qualitative research is conducted through means of a single case study at a product
software company. This case study takes place at AFAS Software1, a Dutch product software company
from Leusden which develops an Enterprise Resource Planning (ERP) system called AFAS Profit. The
case company serves for inspiration, instantiation and validation of the template method to be developed
by means of this research.

In the research, the functionality of the software product is used to map against a next-generation
platform, which is a web-based application. By means of this process, which is repeated multiple times
on different function groups of the product in order to cover all the functionality, the aim of this research
is reached, as the repetitive process of performing the case study eventuallys result in validation of the
answers to the sub questions and confirmation that the process in the method indeed helps to identify
the necessary concepts.

For the case study, the guidelines by Runeson and Höst (2009) and Yin (2009) assist in struc-
turing the case study. The case study approach matches the objective of this research project, given
the characteristics of the research methods named by Runeson and Höst. The primary objective is
exploratory, as we are certain there are fragments of the main deliverable available in literature, though
the complete method has not yet been composed. This makes us aim at exploring the available data
in literature, composing a method, validating the method in a case study, and identifying weaknesses
in the research for future work. The primary data of the research is qualitative, as there is only one
case study company. We have decided to limit the number of case study companies to one, so that the
scope and focus remain steady and can not be distorted. In future research, a quantitative research
can validate the method more extensively.

In the case study, influences from outside the closed environment are excluded, as we work in one
stable version and deployment of the software product, without following up on updates or changes to
the dataset, nor changing the scope of the research subject. This matches the definition of Runeson and
Höst (2009), as we investigate the contemporary phenomena in their natural context, without making
nor allowing changes to the software product and its environment.

1http://www.afas.com

15

http://www.afas.com

At the case study company, the evolution of the Windows-application to a web-based platform is
an actual ongoing process during the execution of the research project. This means that the findings
from the cases are also directly applicable to the situation at the case company. A constant process of
evolution and validation takes place between the theoretical background and the case study to provide
a well formed basis for the envisioned outcome of the research: a generic template method.

2.4 Design science

As this research project aims to compose a generic template method, rather than a situational method,
this research is classified as design science (Hevner et al., 2004). The resulting method is designed to
be applicable in any case where a software product is to evolve by mapping its functionality between
software platforms.

The results of the literature review and the case study cover a variety of subjects that contribute to
the composition of the template method. It contains information about how to identify and characterize
functionality within a software product, and how to describe the contextual factors that influence whether
or not a software product functionality can be mapped on another persona and platform, or not.

2.4.1 Information systems research framework

The image in Figure 2.5 shows the information systems research framework, as proposed by Hevner
et al. (2004). It describes the positioning of the research in the environment on the one hand, and the
knowledge base on the other hand.

The roles, capabilities and characteristics of the people in the environment focus around the field
of Software Product Management. The role who instantiates the method is therefore also a software
product manager. The capabilities must include making decisions, as this is important in assigning
priorities to functionality and mappings. Not having those capabilities would counter the efficiency of
the method.

Figure 2.5: Information systems research framework (Hevner et al., 2004)

16

The organizations for which the method is to be designed are software developing organizations.
They are active within a competitive industry, which drives them to seek for and act on opportunities,
for instance in emerging technologies and next-generation software platforms. Due to the differentiating
demands from their market, organizations need a constant and sharp steering of their product roadmap,
and thus an efficient way to do so.

The technology to which the method applies is technology independent. This is due to the fact
that the method focuses especially on the functionality of software, and not the underlying technical or
architectural aspects.

The research that is carried out designs a template method which serves as a structured ap-
proach towards the evolution of a software product. In order to present the outcoming deliverables of
the method, a visualization technique has to be designed. However, as depicted in the elaboration of
the template method, the correct medium for the reporting of the outcome of an instantiation depends
on the selected stakeholders as audience.

The research is evaluated through means of multiple case studies and expert interviews. The
case studies aim to evaluate the instantiated method by analysis of its performance and to design im-
provements, which are captured as method increments. The expert interviews apply domain knowledge
to the method in order to test it without the direct necessity to go through an entire case study. They
also reflect the knowledge of a software product manager on the method, which suits the audience for
whom the method is designed.

The knowledge base serves foundations of the research through the field of Software Product
Management. Here we find methods and techniques, for instance for the identification and prioritization
of software functionality, which are included in the research. An example of such a technique is the
Wieger’s matrix (Wiegers, 1999a). Also, method engineering (Brinkkemper, 1996) serves as a foun-
dation of the research, defining how to design, improve and document a method and rationalize on a
meta-level.

Methodologies that are included in the research include that of a literature review, case study and
design science. The literature review is inspired by the PRISMA 2009 method of Moher et al. (2009),
yet it does not follow its precise method due to unnecessarily produced overhead. The case studies of
the research are guided by guidelines of Runeson and Höst (2009) and Yin (2009). Furthermore, the
designed method is brought down to a generic level by design science (Hevner et al., 2004), making
the method applicable in any situation.

17

18

Chapter 3

Requirements Management in
Software Product Management

Software Product Management (SPM) concerns “the discipline and role, which governs a product (or
solution or service) from its inception to the market/customer delivery in order to generate the biggest
possible value to the business” (Ebert, 2007). The SPM Competence Model (Bekkers et al., 2010) in
Figure 3.1 gives an overview of the focus areas a software product manager is responsible for, and how
these areas are interrelated. The SPM Competence Model includes internal and external stakeholders
which (try to) influence the activities. In Van de Weerd et al. (2006), the basis for the SPM Competence
Model is laid out, of which we discuss its details in the section below.

On the left side of the model, external stakeholders in the field of Software Product Management
(Lehtola et al., 2005) are shown. The Market concerns potential customers, competitors and market
analysts. Partners can be implementation partners, development partners and distribution partners.
Customers are the current customer base, using the software product and submitting requirements for
new releases.

The right side of the model identifies internal stakeholders of Software Product Management (Con-
don, 2002; Dver, 2003). The operational execution and decision making of these stakeholders is easier
to be influenced compared to external stakeholders (Van de Weerd et al., 2006), as they are expected
to act in favor of the software product and the vendor organization. The Company board defines the
corporate strategy, which has to be translated into the strategy, tactics and operations of the product
management department. Research & innovation explores product innovations and improvements. The
internal stakeholders from Services implement the software at new or existent customers. New releases
are developed and implemented into the system by the Development department. Customer support
is provided by the Support team, which may comprise different layers to separate by level of difficulty
and in-depth analysis of the software. Sales & marketing is concerned with the first contact with new,
potential customers.

The multitude of stakeholders from the roles mentioned before gives a good impression of the
complexity of the field of Software Product Management. Each stakeholder role, each organization
and each individual has its own agenda, with its own priorities, and all concerning one single software
product. In the case of product software, resources are limited, and thus trade-offs need to be made.
It is these trade-offs which make requirements management and release planning such complicated
competencies.

19

Figure 3.1: Software Product Management Competence Model (Bekkers et al., 2010)

The goal of requirements management is to maintain the requirements continuously throughout
the development and system life cycle and thus to ensure that a consistent and up-to-date requirements
specification is available at all times (Pohl et al., 2005). For Software Product Management, this means
that a software product manager is concerned with requirements management in order to structure
them for release planning. This is also visible in the SPM Competence Model in Figure 3.1, where
requirements are gathered, identified and organized, prior to being prioritized in the release planning.

As stated in the CHAOS report (The Standish Group, 1995), inadequate requirements manage-
ment is a major cause of problems in software projects. Given the problem statement in Section 1.1
and the complexity of requirements management in Software Product Management due to a variety of
stakeholders interests, we emphasize the importance of efficiency in SPM practices.

Software evolution is an issue of all times, and the rapid pace of technological advancements
introduces opportunities which are waiting to be implemented. To support software evolution by the im-
plementation of new software platforms, the Software Functionality Evolution Method introduced in this
research attempts to increase the efficiency in the SPM practices. The structured approach allows for
comparison and benchmarking of results, which also contributes to synergy in a product management
team. To explain how the template method is positioned within the SPM Competence Model, the next
section explains the relationships with the various competencies.

3.1 Positioning on the SPM Competence Model

By positioning this research project on the focus areas of the SPM Competence Model (Figure 3.1),
we are able to relate the research with the field of Software Product Management, and thus indicate
its relevance in the scientific research area of Software Product Management. Figure 3.2 visualizes
how the research is related to the Competence Model. In the remainder of this section, we give a
brief summary of the focus areas to which this research project relates, and describe how the template
method contributes to this aspect of Software Product Management.

20

Three categories are used for the relationships with focus areas: (1) triggers which instantiate
the template method, (2) execution for the mutual support of the instantiation of activities, and (3) output
for those focus areas that can use the results of an instantiation for their activities.

Triggers focus areas

Market analysis gathers decision support information about the market needed to make decisions
about the product portfolio of an organization (Bekkers et al., 2010). The result of this focus area of
Software Product Management reveals new opportunities for software developing organizations,
concerning potential software platforms to develop new applications for.

Product lifecycle management concerns the information gathering and key decision making about
product life and major product changes across the entire product portfolio (Bekkers et al., 2010).
Decisions made in perspective of product lifecycle management serve as input for the template
method, and can even cause an instantiation of the template method.

Execution focus areas

Requirements gathering concerns the acquisition of requirements from both internal and external
stakeholders (Bekkers et al., 2010). The template method which is designed in this research
project incorporates the identification of functionality in an existent software product. This func-
tionality serves as input for requirements of the application on another software platform.

Requirements organizing structures the requirements throughout their entire lifecycle based on
shared aspects, and describes the dependencies between product requirements (Bekkers et al.,
2010). Since functionality is grouped by the entity it acts upon, clusters of functionality can be
formed, which indicates a certain degree of dependency between sets of functionality.

Requirements prioritization prioritizes the identified and organized requirements (Bekkers et al.,
2010). Different prioritization techniques are described as part of the template method, of which
the choice depends on the complexity of the project. Mapping occurs between a scenario of
a persona on a software platform and a set of functionality. To this “requirement”, a priority is
assigned.

Output focus areas

Release definition selects the requirements that will be implemented in the next release, based on the
prioritization they received in the preceding process. It also creates a release definition based on
the selection (Bekkers et al., 2010). The results of an instantiation of the template method can be
used to create a release definition. The prioritized list of mappings and their interdependencies
assist in the selection of requirements for a future release.

Roadmap intelligence gathers decision supporting information needed in the creation of the product
roadmap (Bekkers et al., 2010). The output of an instantiation of the template method, which is a
list of ordered requirements for a new software application on another software platform, inspires
themes and central subjects for upcoming roadmaps.

Product roadmapping deals with the actual creation of the product roadmap itself (Bekkers et al.,
2010). The prioritized list of requirements, produced by an instantiation of the template method,
can be used as input for the requirements and themes to put on a roadmap. Obviously, those
requirements with the highest priority are candidates for an implementation on the short term,
while those with a lower priority can be postponed to later releases.

21

Figure 3.2: Positioning of the research on the SPM Competence Model

22

Chapter 4

The Software Functionality Evolution
Method

This chapter describes the final version of the template method that was designed during the course of
this research project. The process of the development of the template method and its evolution through
analysis of its performance in multiple case studies is described in Chapter 5. This chapter starts
with a description of method engineering, and its application in this research. The Process-Deliverable
Diagram of the template method is presented in Section 4.2. The diagram’s corresponding activity
and concept tables are described in respectively Appendix B and Appendix C. The remainder of this
chapter elaborates on the five main phases of the method, and the theoretical foundations that explain
the phases.

4.1 Method engineering

Method engineering is “the engineering discipline to design, construct and adapt methods, techniques
and tools for the development of information systems” (Brinkkemper, 1996). In Van der Schuur (2011),
the term “template method” is introduced. A template method differentiates from situational method
engineering by the fact that it prescribes what, rather than how, activities and concepts are to be in-
stantiated in case of a template method instantiation (Van der Schuur, 2011). By applying this view
on method engineering, this research project introduces a template method (rather than a situational
method) which can be instantiated in different cases with different project requirements. This varies
from the situational method engineering approach, where the method is designed to be tuned for one
situational case.

The template method designed in this research project is instantiated in multiple case studies.
The analysis of the performance of the template method instantiation enables the improvement of the
template method, by designing method increments. In Van de Weerd et al. (2007), the authors mention
that a definition of a method increment seems not to be available, and therefore a definition is pro-
posed: a method increment is “a method adaption, in order to improve the overall performance of a
method” (Van de Weerd et al., 2007). Based on the analysis of earlier case studies and the structure
of the meta-meta-model of a Process-Deliverable Diagram, Van de Weerd et al. distinguish that 18
elementary types of method increments can be distinguished:

• insertion of a concept, property, relationship, activity node, transition, role
• modification of a concept, property, relationship, activity node, transition, role
• deletion of a concept, property, relationship, activity node, transition, role

23

In this research project, we are inspired by the work of Van der Schuur (2011) to apply construc-
tivist hermeneutics in information systems research in order to reflect on the process of the research. To
reflect on the process of method improvement through method increments, we propose another catego-
rization of method increments, other than that of Van de Weerd et al. (2007), which is further elaborated
in Chapter 5. The correct application of the categorization allows for more transparent reflection on
incremental method engineering.

4.2 Process-Deliverable Diagram

In Figure 4.1, the Process-Deliverable Diagram (PDD) of the Software Functionality Evolution Method (SFEM)
is shown. A PDD is a meta-modeling technique used for modeling activities and artifacts of a certain
process (Van de Weerd and Brinkkemper, 2008). In the PDD, activities resemble a method’s process,
of which the deliverables are represented as concepts. Both activities as concepts know a simple and
complex form, of which the complex form consists of a collection of sub-elements. A complex activity or
concept can be open or closed, depending whether or not the sub-elements are known and relevant in
the context of the PDD.

On the left side of the diagram are the activities of the method’s process, of which the notation
is based on the UML activity diagram (Object Management Group, 2004). These activities are to be
implemented in the practices of the software developing organization, in order to be able to increase
efficiency in the Software Product Management practices concerning software evolution. As in method
engineering, we make a distinction between activities and main activities. Different relationships be-
tween activities exist, which are sequential, unordered, concurrent and conditional. In the SFEM, main
activities resemble phases of the template method. The method’s five phases cluster the variety of
activities around a certain subject. As from Section 4.3 onward, the main activities of the method are
further explained. A complete overview of the SFEM’s activities is given in Appendix B.

On the right side of the diagram, deliverables are visualized as concepts to indicate what artifacts
are produced by a template method instantiation, of which the notation is based on the UML class
diagram (Object Management Group, 2004). Different relationships between concepts exist, which are
generalization, association, multiplicity and aggregation. In the PDD, we have visualized aggregations
between concepts with a blue line instead of the common black color. We have decided to do so in
order to improve the comprehensibility of the diagram and method, as the diagram became obscured
by the many lines between concepts. However, this is not according to the official technique, as defined
by Van de Weerd and Brinkkemper (2008). A complete overview of the SFEM’s concepts is given in
Appendix C.

The Software Functionality Evolution Method consists of five main phases, which are depicted as
main activities:

• Project definition, exploring the basis of the project (Section 4.3)
• Functionality identification, extracting entities and functionality from the software (Section 4.4)
• Scenario creation, identifying scenarios of personas on software platforms (Section 4.5)
• Functionality mapping, assigning a priority to the mapping of functionality on scenarios

(Section 4.6)
• Results reporting, reporting the results of an instantiation to the project stakeholders (Section 4.7)

The remainder of this chapter will elaborate on the activities and concepts within the main activi-
ties of the template method.

24

Figure 4.1: Process-Deliverable Diagram of the SFEM

25

4.3 Project definition

To start an instantiation of the template method, the project has to be defined and prepared. The basis
for the rest of the template method and its instantiations is created by instantiating the activities and
concepts of the main activity Project definition.

At first, an instantiation of the concept PROJECT PLAN has to be created. The concept is a formal
definition of the metadata of the project, created by the activity Write project plan. The activity is a
complex open activity, because it’s known that the sub activities are centered around the properties of
the concept PROJECT PLAN.

Second, the relevant stakeholders of a project are identified by instantiating the activity Identify
stakeholders and by instantiating the concept STAKEHOLDER at least once. Each stakeholder has a role,
which can be identified by the Method Stakeholder Classification Matrix (Section 4.3.1). An instantiation
of the concept REPORT is designed specifically for one or more stakeholders, and stakeholders can be
included in the group session during activities of the Functionality mapping main activity.

Last, the ontology of the domain of discourse is captured in an instantiation of the concept DOMAIN
ONTOLOGY. This concept plays a role in the next main activity, centered around the extraction of entities
and functionality from the system.

4.3.1 Method Stakeholder Classification Matrix

In method engineering, it is possible that a process is explicitly carried out by a specific individual or
organizational role. In that case, the role is indicated in the activity depicted in the method (Van de
Weerd and Brinkkemper, 2008). The usage of roles is not required in method engineering, and a role
can be applicable to both activities and sub-activities.

Roles depict the actual individual or organizational role who is responsible for carrying out a
specific activity. On the other hand, stakeholders are involved in the method instantiation to provide
the necessary input. There are also stakeholders involved who share an interest in the output of the
method, the instantiated concepts. To help identify these stakeholders, and apply a classification to their
role in the method’s instantiation, we introduce the Method Stakeholder Classification Matrix (MSCM),
visualized in Figure 4.2.

Degree of participation The degree of participation defines how active a stakeholder is within the
instantiation of the method. Active stakeholders play a role during the length of the method instantiation,
while passive stakeholders are only interested in a part, or only just its deliverables.

Degree of interaction The degree of interaction defines how direct a stakeholder acts with the deliv-
erables of the method. A direct relationship implies that the stakeholder gets the results of the method
directly through its deliverables, or even contributes to the creation of the deliverables. An indirect re-
lationship implies that the stakeholder only sees results of the method in an edited, more focused way,
without being aware of the decisions or precise details.

26

Figure 4.2: Method Stakeholder Classification Matrix

Participant The stakeholder role Participant is an active stakeholder who directly interacts with the
deliverables of the method. The stakeholder can be involved as the individual who instantiates the
method, or someone who delivers direct input through means of expert validations or interactions based
on questions of other method stakeholders.

Observer The stakeholder role Observer is a passive stakeholder who directly interacts with the de-
liverables of the method. This could be someone who needs to approve or understand the output of the
method, without it being edited by stakeholders other than those with the role Participant.

Informer The stakeholder role Informer is an active stakeholer who indirectly interacts with the deliv-
erables of the method. This means that in order for the stakeholder to interact with the deliverables, a
passthrough from a direct stakeholder is necessary. The Informer often acts as a provider of knowledge
for the Participant stakeholder role.

Outsider The stakeholder role Outsider is a passive stakeholder who indirectly interacts with the
deliverables of the method. The stakeholder plays no role in the method instantiation process and does
not get to see the whole picture of the method’s deliverables, but is rather provided with a modified view
with an as-is status.

27

4.3.2 Domain ontology

An ontology describes the entities within the domain in discourse, and how these entities are interre-
lated (Gruber, 1993). The domain of discourse is the environment in which the software product in
scope is designed to operate. The template method is designed for the evolution of a software prod-
uct which is currently operational, which means that a domain ontology is scoped at the operational
environment.

The identification of different abstraction levels of entities and groupings in the software product
assists in the scoping of the project. This enables an analyst to create an overview of the software
architecture, and discuss at different levels of detail with stakeholders. A domain ontology lays the basis
for the further identification of entities and their functionality within the domain of discourse.

4.3.3 Activity and concept table

Table 4.1 gives a summary of the activities within the main activity Project definition of the Software
Functionality Evolution Method.

Main activity Sub activity Description

Project definition Write project plan The project’s outline is defined, so that a common
understanding of the project’s goal and properties is
set. This concept is also included in the REPORT.
The property Scope of the concept limits the explo-
ration of ENTITIES and FUNCTIONALITY in the project
instantiation.

Identify stakeholders Each STAKEHOLDER of the project is identified and
his/her Role in the project is noted. The person who
instantiates the template method is also a STAKE-
HOLDER, as are STAKEHOLDERS who are only inter-
ested in the final REPORT. In Section 4.3.1, a Method
Stakeholder Classification Matrix is proposed, which
can help in the identification and labeling of the Role
of the STAKEHOLDER.

Define domain ontology By analyzing the ENTITIES within the domain of dis-
course and how those ENTITIES are related, a DO-
MAIN ONTOLOGY can be defined (Gruber, 1993). The
underlying descriptive models of the software prod-
uct can assist in retrieving an accurate description
of the DOMAIN ONTOLOGY. The DOMAIN ONTOLOGY
lays a basis for the DATA MODEL.

Table 4.1: Activity table of the SFEM,
main activity Project definition

28

Table 4.2 gives a summary of the concepts that are instantiated by the activities within the main
activity Project definition of the Software Functionality Evolution Method.

Concept Description

PROJECT PLAN The PROJECT PLAN is a document that describes the technical and manage-
ment approach to be followed for a project. The plan typically describes the
work to be done, the resources required, the methods to be used, the proce-
dures to be followed, the schedules to be met, and the way that the project will
be organized (IEEE Std. 610.12-1990). The PROJECT PLAN is included in the
REPORT of the project’s results, and in any other documentation that acts as a
deliverable of the project. The concept’s properties Scope and Goal play an
important role in the further instantiation of the template method.

STAKEHOLDER A STAKEHOLDER is an individual or organization having a right, share, claim
or interest in a system or in its possession of characteristics that meet their
needs and expectations (IEEE Std. 12207-2008). The STAKEHOLDER has
a predefined Role in the project. At least one STAKEHOLDER is the project
manager, who is the person with overall responsibility for the management
and running of a project (ISO/IEC/IEEE 26512). A STAKEHOLDER’s role can
be organized as described in Section 4.3.1.

DOMAIN ONTOLOGY An ontology describes the ENTITIES within the domain in discourse, and how
these ENTITIES are interrelated (Gruber, 1993). The DOMAIN ONTOLOGY rep-
resents the domain in which the software product is designed to operate, the
domain of discourse. It is composed of higher-level ENTITIES which are iden-
tified in the product’s functional architecture. The DOMAIN ONTOLOGY lays the
basis for the DATA MODEL.

Table 4.2: Concept table of the SFEM,
main activity Project definition

4.4 Functionality identification

By extracting entities and functionality from the software product, an overview of the current capabilities
of the system is created. Because a set of functionality can influence one or more entities, the rela-
tionships between entities become evident, which establishes an understanding of the system’s data
model.

The main activity starts with identifying all entities within the scope of the project. This creates
instantiations of the concept ENTITY. These entities are included in the instantiation of the concept DATA
MODEL, in which functionality establishes relationships between entities. To identify instantiations of the
concepts ENTITY and FUNCTIONALITY, the remainder of this section introduces techniques to assist in
the identification of the concepts, and improve efficiency.

The activity Define entity relationships creates an instantiation of the concept DATA MODEL, which
may play a role in the concept REPORT, and explicates the way entities are linked together by function-
ality in the software product. A data model can be represented by a UML class diagram (Booch et al.,
1999), but a simple tree diagram can also suffice, depending on the complexity of the software product
at hand.

29

It is possible that new relevant entities and functionality are discovered during the further instan-
tiation of the template method, making the project’s progress return to the main activity Functionality
identification. This is not wrong, as it contributes to a more complete view of the software product.
However, we have decided not to explicitly design this transition, because returning to the main activity
Functionality identification may occur from any activity in the template method.

4.4.1 Software functionality identification

In order to compose the template method which is to be designed in this research project, we have
performed research to find a structured approach to identifying and characterizing functionality in a
software product. However, since the method which is to be designed in this software product is de-
signed for software product managers, an in-depth analysis of source code and data representations in
databases does not suit the projected audience of this research deliverable. Therefore, the described
techniques focus on a functional, higher level view of software functionality, instead of a technical or
architectural level of detail.

User manual The functionality in a software product can be identified by many non-technical ap-
proaches. Well-documented software with an extensive user manual serves as an excellent source for
analysis of its architecture and features. Documentation is often arranged in processes instead of single
features, because it focuses on the goals of the software’s user. This helps an analyst by thinking in
processes, which is exactly how a user would behave as well.

A user manual’s items often have hyperlinks which link to other relevant content, which creates a
navigation structure of related items. By following hyperlinks, items related to the project’s scope can be
identified, followed by further analysis if a feature is indeed relevant. An advantage of this approach is
that software functionality can be identified, without becoming too distracted by the interaction with the
user interface of the software product. The analysis of a combination of textual and visual descriptions
in a user manual gives a good overview of the required input and the goal that is achieved by the
functionality.

A possible downside to this approach is that user manuals can be outdated, since documentation
often follows up on updates of software. Secondly, it is uncertain if all relevant functionality of the
software product is described in its documentation.

In Royce (1970), the importance of documentation throughout the entire process of software de-
velopment is stressed, from design to development, testing and being operational. It enables commu-
nication between software stakeholders, such as designers, developers, management and customers,
without the need of direct interaction with one another.

Graphical user interface Another functional approach to software product functionality identification
is the analysis of interaction with the software product’s graphical user interface (GUI). If a user interface
is present, it allows for manual and interpretive analysis of the software’s functionality.

An advantage of this approach is that the user interface is supposed to display the available
functionality, as it would not be functional if it could not be triggered by a user. By interacting with the
user interface, processes can be taken as starting point of the analysis. These processes resemble the
daily activities of potential users of the product. For instance, a single process could require multiple
input actions of a user, meaning that a single process could span multiple sets of functionality.

A downside to this approach is that the user must have an environment of the software where
all functionality is available, thus not restricted by authorization or disabled views or interfaces. Fur-
thermore, the approach is more error-prone because functionality may not be revealed when certain
scenarios are omitted, for instance when it is dependent on the data inserted by the user.

30

Formal design artifacts If formal design artifacts are available in the software developing organiza-
tion, such documents can also assist in the identification of software product functionality. These design
descriptions can be both at a technical or functional level of detail.

As described in the UML specification (Booch et al., 1999), structure diagrams are more focused
on technical aspects of modeling, such as data representations and architectural descriptions, while
behavior diagrams concern the functionality that a system is designed to perform. While this means
that behavior diagrams are most suitable for the identification of processes, workflows and functionality
in software products, structure diagrams can also assist the identification of entities, which can then be
used for analysis of functionality.

Since design artifacts can reveal the relationships between entities, it enables an analyst to iden-
tify a large portion of the possible functionality, since those relationships also need to be maintained by
functionality.

Architecture reconstruction Architecture reconstruction is defined by Kazman et al. (2003) as “the
process where the ‘as-built’ architecture of an implemented system is obtained from an existing legacy
system”. Tools can assist in the extraction of information from an existent system, and generating visual-
izations at different levels of abstraction. The authors introduce ARMIN, the Architecture Reconstruction
and Mining tool, which is a follow-up of the Dali Architecture Reconstruction workbench (Kazman and
Carrière, 1999). Kazman et al. identify a software architecture reconstruction process which comprises
five phases:

1. Information extraction
2. Database construction
3. View fusion
4. Architectural view composition
5. Architecture analysis

The report of Kazman et al. (2003) mentions different types of tools to be used in the extraction of
architectural information, each being applied to the raw source code of a software product. Considering
the goal of this research project, the abstract syntax tree (AST) analysis is a relevant approach, as it
builds an explicit tree of the information about the architecture of the software product. Also, lexical ana-
lyzers can help to identify the relationships between entities in a software product, and thus reconstruct
its architecture.

The architectural view composition phase is of particular interest for this research project, as
it helps in creating a visualization of the software architecture, and reveal the relationships between
entities. This allows for the final phase, the architecture analysis phase, to help an analyst in retrieving
information about the software product and the entities and functionality incorporated.

In O’Brien et al. (2002), a categorization of approaches and tools for architecture reconstruction is
given, including manual architecture reconstruction, manual reconstruction with tool support, query lan-
guages for writing patterns to build aggregations automatically and other techniques, such as clustering,
data mining and architecture description languages (O’Brien et al., 2002).

A popular example of a manual reconstruction method with tool support is Rigi (Müller and
Klashinsky, 1988). The Rigi Standard Format (RSF) is the file format which represents the information
that was extracted by the parser. By manual processing of the information retrieved from the software
product, groupings, collapsing and filtering creates a visualization suitable for the project needs.

31

An example of a query language is the Dali workbench (Kazman and Carrière, 1999), which
is also mentioned in the reports by Kazman et al. (2003) and O’Brien et al. (2002). The workbench
includes the PostgreSQL database system and is an extension to the Rigi tool. The extension generates
different architectural views of the system, based on the information extracted from the system by the
Rigi tool. Queries sent to the PostgreSQL database in the form of Structured Query Language (SQL)
enable an analyst to generate the architectural views.

Natural Language Processing Natural Language Processing (NLP) is “an area of research and ap-
plication that explores how computers can be used to understand and manipulate natural language
text or speech to do useful things” (Chowdhury, 2003). Through means of techniques such as lexical
analysis and text segmentation, large sets of text can be analyzed in an automated manner, in order to
make conclusions about the actual contents of the text. Tokenization implies creating “tokens”, sets of
characters, words, phrases or other elements, based on elements retrieved from a text.

In the analysis of a software product’s architecture, in order to identify entities and their func-
tionality, NLP and related techniques can help an analyst to analyze nearly any textual description of
the software’s architecture. This includes user manuals, formal design artifacts, translation files, and
changelogs.

The textual analysis can result in different forms. For instance, tag clouds (or word clouds) can
help to visualize the relative occurrence of a token by differentiating in size, dependent on the occurrence
compared to other token. Furthermore, analysis of the text can result in linking of tokens because of
their similar occurrence.

Based on the multitude of possibilities by application of Natural Language Processing techniques,
not only does it help in the identification of functionality within a software product, but also does it help
in the identification of entities within a software product, and their interrelationships.

4.4.2 Software functionality classification

The classification of software functionality helps to make a distinction between different sets of function-
ality. In the case of a software system with a large set of functionality, a classification gives an overview
of the larger whole. The classification does not only help to better understand a set of functionality
compared to the larger whole, but it also helps to go deeper into a set of functionality and understand
what it concerns.

Applying a classification to functionality also helps in the further identification of functionality. For
instance, if one is able to add and view a certain entity, such as a customer, one should also be able
to modify and remove the customer entity. Although this reveals a relatively basic set of functionality, it
does speed up the identification process.

The role of a classification proves to be relatively useful, as is exemplified in the case studies of
this research project. By means of a scenario of a persona on a software platform, one classification
may prove to be more important than the other. For instance, a scenario could reveal that creating an
entity is more important than deleting one, and viewing an entity is more important than creating one. A
classification helps to be more efficient in the mapping of functionality, based on their classification, as
all deletions may receive a lower priority by default.

CRUD One of the most common and basic classifiers of functionality is the CRUD classification (Mar-
tin, 1983). CRUD stands for Create, Read, Update and Delete. The classification depicts the type
of action that is performed on a certain entity. When seen from the entity-perspective, any action to
be performed on the entity can be classified with the CRUD classification. This classification can be
compared to the Insert, Select, Update and Delete operators which are present in SQL.

32

sCRUD and BREAD In the research by Cooper et al. (2010) it has been proposed to extend the CRUD
classification with an extra Scan operator, which helps to make a distinction between reading a single
record or scanning multiple records in a specific order. If applicable, this extension can be included to
make a better distinction between reading a single or multiple records at once, and thus seeing only a
summary of a record (scan), or seeing all the details of a record (read). Stolze et al. (2007) explicitly
specify the BREAD classification as part of their workflow task model. BREAD is an abbreviation of
Browse, Read, Edit, Add and Delete. As in sCRUD, the Browse operation is an extra operator which
can be used to read more than one entity.

Read-only / Maintain Derived from authorization levels in the software product of the case studies,
functionality can also be classified according to two operators: Read-only and Maintain. This is a
noteworthy classification, because it is common that when you would authorize the functionality to
create an object, one would also need to be able to update and delete the same object. Therefore,
merging the Create, Update and Delete operators under one option reduces the amount of functionality
to analyze and thus increases efficiency.

One should proceed with caution before deciding on merging these operators, and perform an
extensive check first to make sure that there is no harm done by merging these operators. For instance,
if the project circumstances depict that creating and updating an object in a scenario is preferable, yet
deleting the object is a back-office task which is not to be present in the current scenario, using the
Read-only / Maintain operators would not be suitable.

33

4.4.3 Activity and concept table

Table 4.3 gives a summary of the activities within the main activity Functionality identification of the
Software Functionality Evolution Method.

Main activity Sub activity Description

Functionality identification Identify entities within scope Limited by the Scope of the PROJECT
DEFINITION, the ENTITIES within the
project instantiation’s Scope are iden-
tified. The underlying descriptive
models of the software product can
help in the identification of ENTITIES.

Identify functionality Based on identified the ENTITIES and
an analysis of the software product
in scope, FUNCTIONALITY is identified
and linked to the ENTITIES it corre-
sponds with. Section 4.4.1 describes
different methods on how to identify
FUNCTIONALITY from a functional per-
spective. FUNCTIONALITY can be or-
ganized by a functionality classifier,
as described in Section 4.4.2, which
makes identification of all FUNCTION-
ALITY within the project scope easier
and more efficient.

Define entity relationships By defining the relationships amongst
ENTITIES, the concept DATA MODEL
is instantiated. The relationships can
be extracted from underlying descrip-
tive models, and from descriptions
of FUNCTIONALITY, by interpreting on
which ENTITIES the FUNCTIONALITY
acts.

Table 4.3: Activity table of the SFEM,
main activity Functionality identification

34

Table 4.4 gives a summary of the concepts that are instantiated by the activities within the main
activity Functionality identification of the Software Functionality Evolution Method.

Concept Description

ENTITY In computer programming, an ENTITY is any item that can be named or denoted in
a program. For example, a data item, program statement, or subprogram. (IEEE
Std. 610.12-1990). The concept FUNCTIONALITY is applicable to ENTITIES, and
the relationships between ENTITIES are represented in the DATA MODEL.

FUNCTIONALITY FUNCTIONALITY concerns the capabilities of the various computational, user in-
terface, input, output, data management, and other features provided by a prod-
uct (IEEE Std. 1362-1998). Techniques to identify software FUNCTIONALITY have
been described in Section 4.4.1. To organize the instances of FUNCTIONALITY, a
classification can be applied, as is described in Section 4.4.2.

DATA MODEL A DATA MODEL identifies the entities, domains (attributes), and relationships (as-
sociations) with other data and provides the conceptual view of the data and the
relationships among data (IEEE Std. 1320.2-1998). The DATA MODEL serves as
a basis for the remainder of a template method instantiation and can be included
in a REPORT. A DATA MODEL can be represented by a UML class diagram (Booch
et al., 1999), but a simple tree diagram can also suffice, depending on the com-
plexity of the software product at hand.

Table 4.4: Concept table of the SFEM,
main activity Functionality identification

4.5 Scenario creation

When the characteristics of the functionality of the software product in scope have been defined, the
project may continue to explore other factors which may influence the mapping of functionality between
software platforms. We limit the influential factors to constraints raised by the users of the system, and
the software platform we are mapping functionality on. We define the possible appearance of a user
persona on a given software platform as a scenario.

In the SFEM, a scenario represents the possible occurrence of a persona on a given software
platform. It is not to be confused with the common definition of a scenario in the field of software engi-
neering, which is “a description of a series of events that may occur concurrently or sequentially” (IEEE
Std. 829-2008), as the scenarios in the template method do not represent a specific sequence of events.

In order to create instantiations of the concept SCENARIO, the template method explores relevant
personas and software platforms that (may) play a role in the software product’s evolution. The em-
phasis here lays on the word relevant, as many personas and software platforms may be identified for
even a single software product. The same goes for the instantiations of the concept SCENARIO, where
we only instantiate the concept if it would be relevant and natural that the given persona uses the given
software platform.

The activities Define personas and Define software platforms are parallel activities, since the
order of the activities is not strict, and instantiations of one concept may result in instantiations of the
other. Both an instantiation of PERSONA as SOFTWARE PLATFORM appear in at least one instantiation
of SCENARIO, otherwise it is not relevant to the project, and thus the instantiated concept would need to
be excluded.

35

4.5.1 Persona

A persona is defined as a social role of a person in a specific context (Jung and Storr, 1983). However,
as suggested in Aoyama (2005), there is no strict guideline to identifying personas, which is why Aoyama
uses a rational approach to identify personas.

Given the context of the template method, a persona thus represents a (potential) user of the
system. It is the definition of the persona which represent its ability or inability to execute certain
functionality, and the goals the persona aims to achieve by using the software product. For the mapping
of functionality, this depicts the relevance of the functionality in a given scenario.

Cooper (1999) states that an actual user of a system is a valuable resource, yet it is not desirable
to let an actual user directly influence the designing process. Therefore, the use of pretend users in
terms of personas is a good way to represent the actual users of a system in the designing process.
Cooper (1999) therefore defines personas as hypothetical archetypes of actual users, which are defined
by their goals.

The research of Junior and Filgueiras (2005) gives a good comparison of user modeling tech-
niques, including user roles, user profiles, user segments, extreme characters and personas. Junior
and Filgueiras emphasize the importance of personas, as it is a very concrete representation of an
expected user, which leaves little room for interpretation.

Cooper (1999) also suggests defining a persona as specific as possible, which implies giving the
persona a real name. This makes the persona become real in the minds of the designers, which makes
storytelling more efficient. The feeling of defining a living creature can be amplified by also assigning
a photo to the persona, so that it also gets a face and really starts “living”. This personification of the
persona is also described by Junior and Filgueiras (2005), who give examples of information concerning
personal, technical, relational and opinion aspects.

When designing an interactive system, a product requires a small set of personas rather than
just one (Rogers et al., 2011). Though it is hard to recommend how many personas are best, it is
recommended to identify a primary persona, which represents a large section of the intended user
group.

Based on the literature by Jung and Storr, Aoyama, Cooper and Junior and Filgueiras, the fol-
lowing subsections proposes focus areas which help to define personas. It is not strict that each of the
areas should be defined for each persona in every project, as the focus areas are merely guidelines for
addressing the definition of a persona.

Characteristics By addressing a persona with a name and giving him/her a face by means of a photo,
the persona starts to live in the minds of designers. The characteristics can be extended by demographic
data about the user, which add as much facts and details as possible. The more detailed a persona
is, the less room is left for interpretation. A too shallow description of the persona creates a so-called
elastic user (Cooper, 1999), which is a too vague representation of the actual persona. Examples of
demographic data that can be included, as well, are gender, age, ethnicity, marital status, career path,
spoken languages, and location.

We believe the description of attitudes is also part of the characteristics of the persona. An
example is a negative and cautious attitude towards storing data in the cloud, due to privacy concerns.
Such attitudes also tell us more about the characteristics of the persona, and the way the persona
thinks about certain (relevant) subjects. In Pruitt and Grudin (2003), technology attributes are included
in a foundation document to explicate a person’s perspective on technology, past and future. Also, in
Sommerville (2007), an attitude defines what is and is not acceptable for users, based on their attitude
towards a certain topic.

36

Needs and goals The defining of goals for personas is fundamental in the designing of interactive
systems. There is no use to defining personas if we have no clear image of what they are actually
trying to achieve. It is not their actions (or interactions) that are of direct interest, it is what they wish to
accomplish which drives the design of the system. Their actions are merely the way they try to achieve
their goals, which is something which can be changed and improved by design. As actions are driven
by goals, goals can in turn be driven by needs. If a user has a certain need, his/her goal is to satisfy
that need. Examples of such needs are the need for information about the age of a co-worker, or the
need to create a new invoice for a customer, based on a completed transaction.

Cooper et al. (2012) describes an interesting view on the classification of persona goals, which
are life goals, experience goals and purpose goals. Life goals represent personal aspirations, yet
typically go beyond the context of the product being designed. Experience goals concern the feeling
that arises when using a product. Last, purpose goals describe “what” the user would like to use in a
well designed product or service (Junior and Filgueiras, 2005).

Skills and competencies The competencies of a persona give the designers a good interpretation
of what a pretend user is capable of doing, or not. Competencies are a great guideline for designers
to design functionality, as it defines the fundamentals that enable or disable a user to perform certain
actions.

The difference between competencies and skills is that a skill is something learned in order to be
able to carry out certain actions, while a competency can incorporate a skill, yet also concern abilities,
behaviors and knowledge that are fundamental in order to be able to perform a certain skill1.

The example we wish to sketch is the ability to use the Command Line Interface (CLI) of a
software product. The actual fact to be able to use this CLI or not, is a skill. However, in order to be able
to use the CLI, one has to understand the necessity of correct syntax, and thus be precise and flawless
in the composing of commands to enter into the CLI, which is a competency.

The driving forces behind skills and competencies are experience and knowledge. Even though
skills, competencies, experience and knowledge are driving forces behind one another, the identification
of experience and knowledge for a persona also helps to understand what the persona would be able
to do.

Constraints Last, but certainly not least, we emphasize the importance of identifying constraints of a
persona, and especially the importance of (re-)defining them separately. Constraints may result from
personal characteristics, needs and goals, or skills and competencies, yet the explication of persona
constraints is of high importance for the mapping of software functionality, and thus requires extra em-
phasis. It is not only a persona’s ability, but also the inability, which helps in deciding whether or not to
map software functionality to another software platform.

4.5.2 Software platform

In a publication by Van Angeren (2013), definitions for the term platform by Robertson and Ulrich (1998),
Bresnahan and Greenstein (1999) and Baldwin and Woodard (2009) are compared. The author iden-
tifies common elements from the definitions, which are (1) a certain core of stable components and
(2) reuse or extension by other components or parties. The definition of a platform by Gawer and
Cusumano (2003), covers those two elements best: “[a platform is] a foundation technology or set of
components used beyond a single firm that brings together multiple parties for a common purpose or
recurring problem”.

1Source: http://www.talentalign.com/skills-vs-competencies-whats-the-difference/

37

http://www.talentalign.com/skills-vs-competencies-whats-the-difference/

Platform type The research by Bosch (2009) gives a two-dimensional typology of software ecosys-
tem taxonomies, where the platform is classified as either desktop, web or mobile. This classification
of platforms helps to categorize software platforms on a high-level, without going too much into de-
tails about the specifics of the platform. With a view on actual next-generation software platforms and
emerging technologies, we extend this classification with a wearable platform, which aims to position
or contextualize the computer in such a way that the human and computer are inextricably intertwined,
so as to achieve Humanistic Intelligence (Mann, 1997). Based on Bosch (2009) and Mann (1997), we
propose the following classification of software platforms:

• Desktop – A platform which facilitates software on a fixed location, as it requires the installation
of and interaction with other components and peripherals.

• Web – A platform which does not require components that are not incorporated by default in
modern web browsers, and can thus run its software anywhere, at any time.

• Mobile – A platform which is suitable for smaller devices that are as mobile as its user.

• Wearable – A platform which is attached to the user’s body through means of accessories or
clothing, and can therefore interact with the user, without the necessity of user input.

Another dimension we add to the classification of a platform type, is the typology of platforms
by Gawer (2009), where the author distinguishes four types:

• Internal platform – A set of subsystems and interfaces to form a common structure from which
a stream derivative products can be efficiently developed and produced. (Muffatto and Roveda,
2002)

• Supply chain platform – A set of subsystems and interfaces that forms a common structure from
which a stream of derivative products can be efficiently developed and produced by partners along
a supply chain. (Gawer, 2009)

• Industry platform – A product, service or technology, that is developed by one or several firms,
that serves as a foundation upon which other firms can build complementary products, services
or technologies. (Gawer, 2009)

• Two-sided market – A market in which a platform facilitates transactions between at least two
distinct groups of actors. (Rochet and Tirole, 2003; Rysman, 2009)

SWOT analysis One way to analyze the functional characteristics of a software platform is to perform
a SWOT analysis. SWOT stands for Strengths, Weaknesses, Opportunities and Threats. Strengths and
weaknesses concern factors with an internal origin, so from within the software platform. Opportunities
and threats concern factors with an external origin, so from the software platform’s environment. Al-
though the analysis was originally designed to analyze an organization and its environment, it can just
as well be applied to any other situation that can generate a competitive advantage for an organization.
Based on the results of a SWOT analysis, the strategy is to build on your strengths, minimize your
weaknesses, seize opportunities and counteract threats2.

2Source: http://ctb.ku.edu/en/table-of-contents/assessment/assessing-community-needs-and-resources/swot-analysis/main

38

http://ctb.ku.edu/en/table-of-contents/assessment/assessing-community-needs-and-resources/swot-analysis/main

Functional context and constraints By analyzing the functional context and constraints of a software
platform, the research is limited to only two factors instead of four in the SWOT analysis. By describing
the functional context of a software platform, new opportunities are explicated, which could enable the
mapping of software functionality. An example of a functional contextual parameter of a smartphone
device (mobile software platform), is that it is common that the device is always carried by the owner.
Since most people own a smartphone, the device and its data are considered to be personal, and
devices are not exchanged or shared with other people, which adds contextual information that one can
assume that a smartphone is always used by one individual.

Functional constraints of a software platform are concerned with characteristics of a software
platform which limit the mapping of functionality, because it would not suit the environment of the new
software platform. A functional constraint can originate from both the software platform itself, as from
the environment that surrounds the platform. For example, a functional constraint from the platform itself
is that the screen size of a smartphone is a lot smaller than the size of a desktop monitor. A functional
constraint from the environment is that a user of a smartphone does not always have full attention for
the application on the device, as the environment in which it is used is changing and dynamic.

Technical context and constraints As this research project focuses on the functional aspects that
play a role in the mapping of software products to another software platform, the precise technical con-
text and constraints of a software platform are of less interest to us. However, it is often the technical
capabilities and incapabilities of a software platform that enable or disable certain functionality. There-
fore, we state that the technical context and constraints of a software platform need not be explicated
when analyzing the software platform. It is possible, however, that a certain aspect of the functional
context or constraints is inherent to the underlying technical details of the platform.

39

4.5.3 Activity and concept table

Table 4.5 gives a summary of the activities within the main activity Scenario creation of the Software
Functionality Evolution Method.

Main activity Sub activity Description

Scenario creation Define personas Based on the actual users of the software product,
PERSONAS are defined to represent them. A PER-
SONA can be both an actual as a potential user
of the software product, which means that a PER-
SONA can also represent a user group from a new
market segment which is about to be explored.
The exploration of PERSONAS is, however, limited
by the Scope and Goal of the PROJECT DEFINI-
TION. In Section 4.5.1, different properties of a
PERSONA are explored, which help in the instanti-
ation of the concept.

Define software platforms After the PERSONAS in the project have been iden-
tified, an analysis of new SOFTWARE PLATFORMS
can be made. As with the PERSONAS, the SOFT-
WARE PLATFORMS align with the PROJECT DEF-
INITION’s Scope and Goal. Section 4.5.2 ex-
plains more about the analysis of SOFTWARE PLAT-
FORMS from a functional perspective.

Create scenarios By combining use cases of PERSONAS on the de-
fined SOFTWARE PLATFORMS, SCENARIOS are de-
fined. It is possible that a PERSONA is not present
on a SOFTWARE PLATFORM, which means this
combination does not produce a SCENARIO.

Table 4.5: Activity table of the SFEM,
main activity Scenario creation

40

Table 4.6 gives a summary of the concepts that are instantiated by the activities within the main
activity Scenario creation of the Software Functionality Evolution Method.

Concept Description

PERSONA PERSONAS are defined as representations of the actual users of a system,
defined by the goals they aim to accomplish. Personas are hypothetical
archetypes of actual users (Cooper, 1999). A PERSONA appears in at least
one SCENARIO, which maps it to at least one SOFTWARE PLATFORM. More
information about the defining of a PERSONA can be found in Section 4.5.1.

SOFTWARE PLATFORM A platform is the combination of an operating system and hardware that
makes up the operating environment in which a program runs (ISO/IEC
26513). Thus, a SOFTWARE PLATFORM defines the environment in which
a software product is designed to operate. In Section 4.5.2, more informa-
tion about the description of a SOFTWARE PLATFORM is given.

SCENARIO The combination of possible and relevant appearances of PERSONAS on
SOFTWARE PLATFORMS creates an instantiation of the concept SCENARIO.
A SCENARIO is used to map FUNCTIONALITY by MAPPINGS and their Priori-
ties.

Table 4.6: Concept table of the SFEM,
main activity Scenario creation

4.6 Functionality mapping

The mapping of functionality concerns the application of functionality in a given scenario, thus in the
combination of a persona with a software platform. If no instantiation of the concept MAPPING is created,
this means the functionality is not relevant for the scenario.

The activities concerning the mapping of functionality on instantiations of the concept SCENARIO
lay at the heart of the template method. The activities Review mapping candidates and Prioritize map-
ping candidates are performed in parallel in a group session. The preceding activity, Identify mapping
candidates, prepares the work in the group session by excluding irrelevant mappings, which increases
the efficiency of the group session.

During the instantiation of the template method, it is possible that no priority is yet assigned to
the mapping. A mapping without priority implies that the mapping is considered a candidate, yet the
mapping and its priority are open to further discussion in the group session activity of the template
method.

The minimum and maximum value of the priority of a mapping are not strict, and can be different
for each template method instantiation, depending on the complexity of the project at hand. For instance,
for a simple project, one might use a three-point scale with priority groups, while for a more complex
project, one might use a formula to calculate the relative priority on a decimal scale from 0 to 1.

41

4.6.1 Prioritization techniques

In the field of Software Product Management, prioritization techniques are used in order to assist a
software product manager in selecting the right set of requirements for a planned release. For soft-
ware products, requirements management is driven by the available resources and time, in contrast to
tailor-made software, where the amount of resources and time needed are driven by the total amount of
requirements. In other words, a software product manager must select requirements based on the avail-
able resources and time at hand. Therefore, prioritization techniques assist in selecting requirements
for a planned release by filtering only those requirements that are important to the software product and
its stakeholders, and can be completed within the limited set of resources and time.

We introduce a set of requirements prioritization techniques that are known in the field of Software
Product Management in the sections below. However, the list of techniques is not complete, and always
leave room for interpretation or customization to the project at hand. This means that the parameters of
a technique can be adjusted, or extended, with the best outcome of the technique in mind.

We acknowledge that there are more (advanced) prioritization approaches, such as the Analytic
Hierarchy Process (Karlsson and Ryan, 1997) or the Integer Linear Programming approach (Ruhe and
Saliu, 2005; Van den Akker et al., 2008; Carlshamre, 2002). We believe these techniques do not suit the
audience of this research - the software product manager - and the purpose of this research - analysis
of a software product’s functionality on a functional level - and are therefore omitted from this research.

Supported by the research by Berander and Andrews (2005) and Racheva et al. (2008), we
give an explanation of different prioritization techniques that are applicable to requirements engineering
for software products. Besides the explanation of the technique, we try to identify the strengths and
weaknesses of each approach, which helps in selecting the right approach for the project at hand.

A comparison of the characteristics of the techniques is given in Table 4.7, inspired by the re-
search by Berander and Andrews (2005) and Racheva et al. (2008). Prioritization techniques are char-
acterized by scale, granularity and sophistication. The following subsections elaborate on the tech-
niques themselves.

The scale for the priority values of the technique can be depicted as nominal, ordinal, interval or
ratio (Stevens, 1946). A nominal variable, also known as a categorical variable, is for categories that
are mutual exclusive, yet no order is depicted among the categories. An ordinal variable does depict
an order among the categories, however the distance between categories does not matter. For interval
variables, both the order and the distance between categories is of importance. However, interval
variables do not have a clear definition of 0.0, while a ratio variable is the same, yet does have a clear
definition of a “none” value.

The value in the granularity column defines the depth of the technique, the extend to which
is goes into the details of the requirements. Three values are used, fine, medium and coarse. A
fine granularity means that the technique requires in-depth knowledge about the requirement, before a
priority can be assigned. Coarse depicts a very high-level definition of the requirement before a priority
can be assigned, and medium represents any value in between.

The sophistication represents the complexity of the technique itself. For instance, it could rep-
resent how hard it would be to explain the technique to a group of 25 people, and make sure everyone
has the same understanding of the technique and values. Three values are used, simple, medium and
complex, of which the second is not applied to any of the discussed techniques.

The explanations for the values in Table 4.7 are given in each last paragraph of the prioritization
techniques, discussed below.

42

Technique Scale Granularity Sophistication

Binary priority list Ordinal Medium Complex

Priority groups Ordinal Coarse Simple

MoSCoW Ordinal Coarse Simple

Requirements triage Ordinal Coarse Simple

Cumulative voting Ratio Fine Complex

Ranking Ordinal Medium Simple

Top ten Ordinal Coarse Simple

Wieger’s matrix Ratio Fine Complex

Table 4.7: Comparison of prioritization techniques

Binary priority list The Binary Priority List (BPL, or Binary Search List or Binary Search Tree) is
described and researched by Bebensee et al. (2010). The binary search is a popular algorithm to sort
and search information (Knuth, 2005), but it can also be used to prioritize requirements (Karlsson et al.,
1998). The algorithm aims to create a descending tree of requirements in order of priority, with the most
important requirement on the top part of the tree.

The technique includes six steps, of which steps 2, 3 and 4 are repeated for all requirements (Racheva
et al., 2008; Karlsson et al., 1998; Ahl, 2005):

1. Gather all requirements and give them a unique identifier

2. Take one random requirement, and use it as the root requirement

3. Take another random requirement and compare it with the root requirement in terms of priority

4. If the new requirement’s priority is lower than that of the root requirements, compare it to the
requirements below the root, and so forth. If its priority is higher than that of the root requirements,
compare it to the requirements above the root, and so forth. Eventually, the process stops when
the new requirement has found a place as a sub-requirement of a root requirement which has not
yet received its sub-requirement

5. Steps 2, 3 and 4 are repeated for all requirements

6. Eventually, the tree is traversed from top to bottom to get the actual order of prioritized require-
ments

The image in Figure 4.3 exemplifies a possible outcome of the algorithm. A completed Binary
Priority List has to be read from top to bottom, independent of the horizontal position of the elements in
the diagram. Given the image in Figure 4.3, the prioritization of the requirements in this example would
be as follows: D, B, E, A, F, C, G.

43

Figure 4.3: Example of the Binary Priority List

This requirements prioritization technique’s scale is ordinal, because the requirements are served
in an ordered fashion, yet the distance between two prioritized, subsequent requirements does not imply
extra or less importance. The granularity is medium, as requirements are compared with each other
over and over again, giving more insight into the importance of a requirement as the project continues.
The sophistication is complex, because the resulting tree is hard to compose and keep track of, and
grows in complexity as more requirements are added and prioritized.

Priority groups The priority groups technique, also known as numerical assignment, is a relatively
simple prioritization technique. It has been suggested in RFC 2119 and IEEE Standard 830-1998. The
involved stakeholders assign each requirement to a priority group, which is labeled with an absolute
term (critical, standard, optional), instead of a relative term which leaves room for interpretation (high,
medium, low) (Wiegers, 1999b). According to Leffingwell and Widrig (2003) and Sommerville and
Sawyer (1997), a total of three priority groups is common.

As reported by Berander and Andrews (2005), the technique may result in a long list of “critical”
requirements. Reported by Berander (2004) and Wiegers (1999b), it is common that 85 percent is clas-
sified as critical, 10 percent as standard, and 5 percent as optional. Given that the majority is assigned
to the highest priority group, the results of the technique often lack details and depth. Also, the technique
does not take the available resources in account, which might result in a list of critical requirements that
are still not suitable for implementation in requirements engineering for software products.

Two variations of the priority groups technique are MoSCoW and Requirements triage, described
in the following two sections. Although the techniques are distinct in their approach, the essence re-
mains the same as the priority groups technique.

This requirements prioritization technique’s scale is ordinal, because there is an order among
priority groups, yet there is no distinct distance between priority groups. The granularity is coarse,
because no specific attributes from the requirements are required in order to be able to assign a priority
group. The sophistication is simple, because the number of priority groups is often limited to three,
and the definition of a category is therefore easy to establish.

44

Figure 4.4: MoSCoW prioritization technique (DSDM Consortium, 2008)

MoSCoW The MoSCoW prioritization technique (DSDM Consortium, 2008) is a common classifica-
tion which can be applied in requirements engineering. The capital letters of the abbreviation MoSCoW
represent the following values (DSDM Consortium, 2008):

• Must have
This requirement belongs in the Minimum Usable Subset (MUS), and is of great importance to the
success of the project.

• Should have
The requirement is important, but not of vital importance to the project’s success.

• Could have
If this requirement were not to be implemented, there is less impact on the project’s success.

• Won’t have
Any requirement that is excluded from the project, is listed on a Prioritized Requirements List for
later review.

The quantification of the prioritization outcome, as described by the DSDM Consortium, is visu-
alized in Figure 4.4. The Figure describes what parts of the prioritized requirements contribute to the
total effort of a project, and what part of the total effort belongs to the actual Business Case, and what
is left for contingency.

This requirements prioritization technique’s scale is ordinal, because there is an order among the
MoSCoW labels, yet there is no distinct distance between any of the groups. The granularity is coarse,
because no specific attributes from the requirements are required in order to be able to assign a label.
The sophistication is simple, because the number of priority groups is limited to four, making it easier
to achieve a common understanding of the technique and labels.

45

Requirements triage Prioritization by means of triage (from the French verb trier, meaning to select,
sort, order or filter) is a technique that originates from the medical world, and applies very well to
the initial prioritization of software requirements and defects. Requirements triage is defined by Davis
(2003) as “the process of determining which requirements a product should satisfy given the time and
resources available”. The original technique is designed to quickly sort patients who seek immediate
care from those who can, simply put, wait and be treated later. Many classifications and labels exist,
though most of them seem to result in (a variant of) the following classification:

• High Those with immediate need for treatment

• Medium Those with an urgent need for treatment, yet not critical

• Low Those with a need for treatment, yet can wait before those of higher priorities have been
treated

• None Those with little chance of success after treatment, and can therefore better be omitted in
order to treat those with more chance of success

An interesting deviation from the triage application in the medical field, is that for software faults,
the None category would imply that a software error is so severe, that it would not make any more
sense to treat it. Of course, this does not apply to software faults, as those would be even more critical
than those in the High category. Therefore, we suggest that the None category in the field of software
engineering implies that the requirement or fault stands no chance to be implemented, as it adds no
significant value for the software’s users.

This requirements prioritization technique’s scale is ordinal, because there is an order among
classifications, yet there is no distinct distance between labels. The granularity is coarse, because one
can remain relatively abstract about a requirement’s details before assigning a priority. The sophistica-
tion is simple, because in essence, only four labels are known in the original classification.

Cumulative voting Cumulative voting, also known as the 100 dollar test, is a technique in which
the stakeholders are given an imaginary set of 100 units (such as money, hours, or FTEs), which the
stakeholders need to distribute between the requirements Leffingwell and Widrig (2003). When the
prioritization has completed, the requirements are ranked in a descending order of assigned units.

The technique has some weaknesses, for which the research by Berander and Andrews (2005)
summarizes some solutions. One noteworthy downside to the technique, as exemplified in the case
study by Regnell et al. (2001), is when the number of requirements increases it becomes more difficult
to assign the right number of units to a requirement. A solution to this problem was also proposed in the
case study, which involved making more units available per stakeholder. This solution was well received
by the stakeholders of the concerning research.

This requirements prioritization technique’s scale is ratio, because requirements are ordered
by their score assigned, a zero-value is established, and something can be said about the distance
between requirements, based on their assigned score. The granularity is fine, because a specific value
has to be assigned to a requirement as score, and trade-offs need to be made between requirements
in order to be able to correctly allocate the available “dollars” to the requirements. The sophistication
is complex, because in order to get to representative values, one must be certain that a common
understanding of the project and requirements has been established, before dividing the scores.

46

Ranking The ranking technique is a relatively simple sorting method which is best suitable for projects
with only one stakeholder. The idea is to make a list of all requirements, and sorting them from most
important requirement on top, and least important at the bottom.

As noted by Berander and Andrews (2005), the outcome of this technique does not reveal the
actual distance between two requirements. Taken for instance the cumulative voting technique, if the
first requirement receives $300 and the second $243, we can state there is a distance of $57 between
both requirements. With ranking we can only say that requirement 2 is less important than requirement
1, however we can not state how less important it is.

Also noted by Berander and Andrews (2005), when dealing with multiple stakeholders, the tech-
nique is less suitable. One could take the mean priority in the order of each requirement, but this could
lead to ties in the sorting, which is something the technique tries to avoid in its essence.

This requirements prioritization technique’s scale is ordinal, because by ranking, the require-
ments are ordered, yet the distance between requirements is of no particular interest or meaning. The
granularity is medium, because requirements need to be compared with each other to be given a
priority. The sophistication is simple, because the concept of ranking is not particularly difficult, by
itself.

Top ten When relatively many stakeholders and requirements are involved, applying the top ten tech-
nique may offer a suitable solution. Each stakeholder creates a top ten of requirements, without ordering
the selected requirements. The outcome of the accumulation of assigned “points” to the requirements,
gives a reasonable overview of the requirements that are preferred by the stakeholders.

This requirements prioritization technique’s scale is ordinal, because given the individual top tens
and the thus assigned points (from 1 to 10), do not say anything about the precise distance between
prioritized and included requirements. Also after accumulating the points per requirement, nothing can
be said about the relative distance, because of the lack of distance in the originating scores. The
granularity is course, because it is not possible to go into too much depth for requirements, since only
ten requirements can be selected in the end. The sophistication is simple, because one only needs
to select those requirements that are of utmost importance to him/her, and other requirements can be
neglected.

Wiegers’ prioritization model The requirements prioritization technique by Wiegers (1999a) is a
method which involves an extended prioritization of requirements. Instead of applying a single number
as a priority to a requirement, it incorporates an estimate of the relative benefit, penalty, cost and
risk of implementing or omitting a requirement. The benefit and penalty are often assessed by key
customer representatives, and the cost and risk by development representatives. The relative values
of the benefit and penalty are added up in order to calculate the total value of the requirement.

The following approach is proposed by Wiegers (1999a):

1. List all requirements that you want to prioritize

2. Estimate the relative benefit for each requirement on a scale of 1 to 9

3. Estimate the relative penalty for each requirement on a scale of 1 to 9

4. Calculate the total value as relative penalty + relative value

5. Estimate the relative cost for each requirement on a scale of 1 to 9

6. Estimate the relative risk for each requirement on a scale of 1 to 9

7. Calculate the priority and sort the requirements list, ordered descending by the calculated priority

47

Figure 4.5: Example of the Wiegers’ prioritization matrix

The relative variables can be weighed extra or less by assigning a relative weight to the benefit,
penalty, cost or risk. This may be applicable to cases where resources are limited or abundant. In
Figure 4.5, an example of the Wieger’s prioritization matrix is presented.

This requirements prioritization technique’s scale is ratio, because the priority that results from
the calculation says something about the distance between requirements, an order can be established,
and a zero-point is defined. The granularity is fine, because the formula includes the four aspects ben-
efit, penalty, cost and risk, of which an assessment needs in-depth knowledge about the requirements.
The sophistication is complex, because the priority is dependent on a formula, different relative weights
can be established for the four calculation aspects, and each aspect requires a common understanding
of what the aspect means for a requirement.

4.6.2 Design rationale

The concept of a design rationale plays an important role in this research project and the template
method deliverable. Since the decision making of mapping software functionality to next-generation
software platforms is often based on subjective and tacit knowledge, it is hard for decision makers to
communicate and rationalize the outcome of their process. Therefore, we emphasize the important
of explication of a design rationale. We use the definition of a design rationale from Lee (1997): “the
reasons behind a design decision, the justification for it, the other alternatives considered, the trade offs
evaluated, and the argumentation that led to the decision”.

A design rationale thus helps to communicate the reasoning behind decision making, and can
be seen as the basis for documentation of the project. Based on the complexity, a template for the
structure of the explication can be designed, which helps to quickly cover all required aspects of the
design rationale, such as those from the above mentioned definition by Lee (1997). However, we find it
important to state that capturing a design rationale is purely a means to an end, and should therefore not
be seen as a required concept. In the method we are designing, we make a design rationale optional,
which prevents too much overhead for design decisions that are too simple or logical.

48

4.6.3 Activity and concept table

Table 4.8 gives a summary of the activities within the main activity Functionality mapping of the Software
Functionality Evolution Method.

Main activity Sub activity Description

Functionality mapping Identify mapping candidates By iterating over the instantiations of
FUNCTIONALITY for each SCENARIO, an
initial mapping is made which defines
whether or not it would make sense to
provision the FUNCTIONALITY for a given
SCENARIO. If so, an instantiation of
the concept MAPPING is made, with an
empty Priority property. If the FUNCTION-
ALITY should not be provisioned for the
given SCENARIO, no MAPPING is instanti-
ated.

Review mapping candidates The reviewing of MAPPING candidates is
performed in a group session with se-
lected and relevant STAKEHOLDERS. The
initial MAPPINGS are discussed and MAP-
PINGS can be added or removed. No Pri-
ority is yet assigned to the MAPPING dur-
ing this activity.

Prioritize mapping candidates Parallel with the activity Review mapping
candidates, the MAPPING candidates are
reviewed by assigning a Priority. The
activity is performed in a group session
with selected and relevant STAKEHOLD-
ERS. The complexity of this activity de-
pends on the complexity of the project
instantiation, the complexity of the soft-
ware product and the depth of the analy-
sis of FUNCTIONALITY. If the decision of
a MAPPING is complex or not sufficiently
obvious, the decision can be captured in
a DESIGN RATIONALE. Different prioriti-
zation techniques, which can help in the
calculation of the Priority, are described
in Section 4.6.1.

Table 4.8: Activity table of the SFEM,
main activity Functionality mapping

49

Table 4.9 gives a summary of the concepts that are instantiated by the activities within the main
activity Functionality mapping of the Software Functionality Evolution Method.

Concept Description

MAPPING A MAPPING is an assigned correspondence between two things that is rep-
resented as a set of ordered pairs (IEEE Std. 1320.2-1998). The MAPPING
concept plays a central role in the REPORT of the results of a template method
instantiation. A MAPPING is created by the combination of a SCENARIO with
FUNCTIONALITY. If no mapping occurs at the SCENARIO, meaning that a cer-
tain FUNCTIONALITY is excluded from a SCENARIO, the MAPPING does not exist.
The Priority of the MAPPING is determined based on the importance of a set
of FUNCTIONALITY for a given SCENARIO. If a MAPPING has no Priority as-
signed, it is considered to be a candidate. The decision and rationale behind a
MAPPING can be captured in a DESIGN RATIONALE.

DESIGN RATIONALE A DESIGN RATIONALE is defined as information capturing the reasoning of
the designer that led to the system as designed, including design options,
trade-offs considered, decisions made, and the justifications of those deci-
sions (IEEE Std. 1016-2009). It presents the arguments behind a MAPPING
and its Priority. If the MAPPING changes due to an iteration after the Re-
sults reporting activities, another DESIGN RATIONALE can be assigned to the
same MAPPING. More information about the concept DESIGN RATIONALE can
be found in Section 4.6.2.

Table 4.9: Concept table of the SFEM,
main activity Functionality mapping

4.7 Results reporting

Finalizing an instantiation of the template method, the activities in the main activity Results reporting
communicate the results of the instantiation to selected and relevant stakeholders. The reporting of a
project is important to a successful completion, since the stakeholders of the project need to be properly
informed and agree to the outcome of the instantiation. Different stakeholders in the project can have
different objectives, and therefore need to make an assessment of the reported outcome, to determine
whether it suits their needs.

If the stakeholders to whom a report has been handed, are not able to agree on the outcome of
the instantiation, it may be decided to return to the Functionality mapping activities. If so, it is advisable
to include those stakeholders in the Functionality mapping activities, as well. After another iteration
of mapping has been performed, the results of the project can be reported again, after which another
assessment of consensus needs to be made.

It is possible that the activities in the main activity are repeated, regardless of an agreement on
consensus or not, for instance when it has become clear that another selection of stakeholders needs
to be informed, also requiring a different design of the concept REPORT. However, we have not modeled
this into the template method, as it is an exception which is not certain to occur.

50

The outcome of a template method instantiation does not create a product roadmap. A prod-
uct roadmap is highly dependent on the available resources and required resources per requirement,
which is something that was consciously omitted from the template method. If resources were to be
incorporated into the mapping and prioritization activities of the template method, the process would
have become too devious, significantly increasing the time required for a template method instantiation
and reducing its efficiency. It is possible that the report of an instantiation is used as input for the product
roadmap, as was also discussed in Section 1.4.

4.7.1 Mapping matrix

A suitable way to present the report of a template method instantiation is by what we call a “mapping
matrix”. Different variations of mapping matrices are presented in literature, of which an excellent ex-
ample is the domain mapping matrix (Danilovic and Sandkull, 2005). The research helps understanding
the interdependencies between items, components, organizations, teams, or people, where complexity
arises from the relationships and dependencies among items.

In terms of this research project, a mapping matrix serves a similar cause. It helps to understand
the relationships between sets of functionality and scenarios of personas acting on a software platform.
The mapping entity of the template method, optionally with a corresponding design rationale, defines
the existence of a relationship between an entity of functionality and an entity of a scenario.

Simply put, a mapping matrix is a matrix with functionality the vertical axis, and scenarios on
the horizontal axis. The mappings between functionality and scenarios are represented in the cells of
the matrix, by means of their assigned priority. Different variations and levels of detail can be added
or omitted, dependent on the stakeholders for whom the report is designed. The functionality on the
vertical axis can be further elaborated by showing the related entity in another column, as well as related
groupings from the domain ontology.

4.7.2 Categorization

An important side note about the results of an instantiation of the template method is that it does not
take into account the relationships and dependencies between functionality. However, when the report
of the outcome of the instantiation is designed, categorization can be applied to the functionality, based
on their mappings. Different categorizations are presented below. By means of categorization, the
designed report can be tuned more towards strategic planning, which suits the desired information for
a product roadmap better.

Per component By categorizing requirements per architectural component, a software product man-
ager is assisted in the creation of a product roadmap because functional dependencies or rela-
tionships between functionality are identified. Especially when seen from a top-down perspective,
when deciding about an entity having to be mapped in a given scenario, grouping by component
helps to make decisions about a large set of mappings at the same time.

Per product If a software suite exists of different types of products (such as ERP, CRM, and HRM), de-
ciding about all entities and functionality within a given product can help speeding up the decision
making process when creating a product roadmap. This categorization also helps in the analysis
of the impact of a mapping decision, as it reveals which products are impacted by a decision.

51

Per industry If a software developing organization wishes to categorize its product roadmap per in-
dustry, it helps in identifying strategic focus areas which provide a competitive advantage for the
software product. Different roadmaps thus have a different theme, based on the industry. This
can either be an industry in which the organization is already active, or an industry to which they
wish to expand.

Per release A categorization per release can help an organization in making both a short and long
term planning for their product releases, and which requirements will be implemented in those
releases. This categorization is practically already the creation of a product roadmap, although
the product manager could decide not to take available and required resources into account, yet.

4.7.3 Activity and concept table

Table 4.10 gives a summary of the activities within the main activity Results reporting of the Software
Functionality Evolution Method.

Main activity Sub activity Description

Results reporting Select stakeholders Before a REPORT can be created, a set of STAKE-
HOLDERS has to be selected, for whom to report to.
The interests of the STAKEHOLDERS determine the
level of detail in the REPORT.

Create report Tuned to the interests of the selected STAKEHOLD-
ERS, a REPORT of the project instantiation’s outcome
is created. In Section 4.7, more information about the
concept REPORT and categorizations is given.

Report to stakeholders The created REPORT is presented to the selected
STAKEHOLDERS, and a discussion is held to deter-
mine whether there is consensus about the REPORT
and results being satisfying to all STAKEHOLDERS. If
the STAKEHOLDERS can not reach consensus about
the results in the REPORT, a new group session is ini-
tiated to review the MAPPINGS. In the case where no
new iteration over the MAPPINGS has to be made, the
project instantiation comes to an end.

Table 4.10: Activity table of the SFEM,
main activity Results reporting

52

Table 4.11 gives a summary of the concepts that are instantiated by the activities within the main
activity Results reporting of the Software Functionality Evolution Method.

Concept Description

REPORT A REPORT is an information item that describes the results of activities such as investiga-
tions, observations, assessments, or tests (ISO/IEC/IEEE 15289). The results of a tem-
plate method instantiation are communicated to selected STAKEHOLDERS by a REPORT,
which is designed to suit the STAKEHOLDER’s interests. As the needs of the STAKE-
HOLDER, and thus the details of the REPORT, highly depend on the situation at hand, we
define the REPORT as a closed complex concept. A REPORT incorporates at least one
or more instantiations of the concepts PROJECT PLAN, FUNCTIONALITY, SCENARIO and
MAPPING. Section 4.7 describes possible formats of a REPORT.

Table 4.11: Concept table of the SFEM,
main activity Results reporting

53

54

Chapter 5

Template method instantiations

In two case studies, the designed template method was instantiated, creating a backlog of the activities
conducted and concepts produced. This chapter describes how the method has evolved by means of
creating method increments and implementing these in the design of the Software Functionality Evo-
lution Method (SFEM). Section 5.1 proposes a categorization for the reflection on method increments,
followed by the increments that were designed between versions of the SFEM. In Section 5.2, we give
a summary of the case studies that were performed, of which a complete backlog is available in the
appendices.

5.1 Template method increments

This section describes how the Software Functionality Evolution Method (SFEM) has evolved during
the execution of the research project, by means of template method instantiation. The instantiation of a
template method gives insight into the performance of a template method. The performance is analyzed,
which allowed us to identify method increments. These increments serve to improve the SFEM.

As described in Section 2.2.1, we are inspired by the constructivist hermeneutic framework
by Van der Schuur (2011) as a framework to reflect on the method increments that we identify. In
Figure 5.1, the incremental approach by means of method increments and method improvement is vi-
sualized. Both the template method and the template method instantiation are used for the analysis of
the method’s performance. This results in issues, to be resolved by method increments. The method
increments are implemented into the template method to improve it and increase its effectiveness and
efficiency. When another iteration of the template method is designed, it is ready to be instantiated
again, so that the analysis can be repeated and the method can keep improving.

In earlier work by Van de Weerd et al. (2007), the following elementary increment types have
been distinguished:

• insertion of a concept, property, relationship, activity node, transition, role

• modification of a concept, property, relationship, activity node, transition, role

• deletion of a concept, property, relationship, activity node, transition, role

55

Figure 5.1: Incremental method engineering approach

56

However, we believe these increment types do not take into account reasoning and motivation for
usage, which limits the researcher correctly reflecting on the incremental method engineering. There-
fore, we propose a categorization for method increments, which has been established based on analysis
of the incremental method engineering conducted during the construction of the Software Functional-
ity Evolution Method, and the method increments resulting from the process. The method increment
categorization allows for reflection on the research process, instead of solely naming and applying the
method increments. The categorization is presented in Table 5.1.

Category Description

Constructing Adding or removing (main) activities, concepts or properties in the diagram. Chang-
ing activity or concept types to simple or complex and to open or closed is also
considered Constructing. Associations that comes with new (main) activities or con-
cepts are not considered as Associating, but are part of the Constructing.

Labeling Adding, changing or removing a label of (main) activities, concepts, properties, as-
sociations or roles. This prevents confusion or removes any room for interpretation.

Associating Adding, changing or removing associations between existing (main) activities or
concepts. For activities, this includes normal, conditional, unordered and concur-
rent associations, and changing the direction of the association or the order of the
activities. For concepts, this includes normal associations, aggregations and gen-
eralizations, and the multiplicity of associations. This also applies to connections
between activities and concepts. Creating associations that come with new (main)
activities or concepts is considered Constructing.

Table 5.1: Method increment categorization

The incremental method engineering approach has been introduced in Figure 5.1. The figure
depicts how the initial research contributed to the first version of the template method, and how anal-
ysis of the template method and instantiation have provided method increments to improve the next
version of the template method. Furthermore, the cumulatives of the method increments that resulted
from the instantiations have been included presented. These cumulatives are specified in the following
subsections, in which the method increments are presented.

5.1.1 Towards the initial version

The following method increments have been captured during the engineering of the initial version of
the SFEM. The fact that we have designed method increments even before instantiating the method is
something that may require extra explanation. The initial version of the SFEM has been designed based
on the initial research, as seen in Figure 5.1, which conducted a literature review and expert interviews.

After the very first version of the SFEM had been designed, it became possible to start reasoning
about the method in terms of the Process-Deliverable Diagram (PDD) that was designed as part of
them SFEM. Because we had a PDD to go with the method, improvements to the method could now
be captured as method increments. This is why we have captured method increments, even before we
have instantiated the template method and had a backlog of its performance to reflect on.

57

Based on the initial research and the application of these method increments, the initial version
of the SFEM has been designed, which is visualized as a PDD in Figure 5.2.

Constructing We need an activity to select the correct STAKEHOLDER for which to design a VISUAL-
IZATION. This makes it possible to tune the level of detail in the VISUALIZATION to the selected
STAKEHOLDER.

Constructing A STAKEHOLDER should have the property Role. This prevents a too shallow description
of the concept STAKEHOLDER.

Associating The activities Review mapping candidates and Prioritize mapping candidates should be
concurrent activities, because they can occur simultaneously in the same session, and they are
not consecutive.

Labeling The activity Identify absolute mapping is ambiguous. It would be better to rename this activity
to Identify mapping candidates.

5.1.2 Towards the second version

After the first version of the template method had been instantiated in the first case study, the backlog
(captured in Appendix D) allowed for analysis of the performance of the template method. Combined
with an analysis and reasoning about the design of the template method itself, the following list of
method increments has been captured.

Based on the analysis of the initial template method and its performance during the first template
method instantiation, the second version of the SFEM has been designed, which is visualized as a PDD
in Figure 5.3.

Constructing The activity Design visualization is a closed activity. It can be an open activity, but we
would have to define the sub-activities that need to be undertaken.

Associating The main activity Visualization is not a singular process. It should be incremental, so that
multiple VISUALIZATIONS can be designed for different STAKEHOLDERS.

Constructing We need to capture documentation to reside with the VISUALIZATION. Instead of adding
an explicit concept, a VISUALIZATION includes the concept DESIGN RATIONALE. This implies that a
VISUALIZATION does not necessarily need to be a figure, it can just as well be textual.

Associating A VISUALIZATION must also include the concepts FUNCTIONALITY and ENTITY.
Associating There must be an association between the concepts STAKEHOLDER and VISUALIZATION,

because a VISUALIZATION is designed for one or more STAKEHOLDERS.
Constructing In the Peer review activity, a VISUALIZATION of the method’s output must be included in

order to review the performance. Therefore, we suggest merging the Peer review activity with the
main activity Visualization. This implies that after the Visualization activity, we must also be able
to return to the Mapping main activity.

Associating The concepts that are included in a VISUALIZATION may not all have a multiplicity of at
least one. For instance, when we design a visual roadmap, the instantiated concepts ENTITY
and DATA MODEL are not necessarily included in the deliverable. We must carefully review the
multiplicity of associations.

Associating The aggregation of the concept VISUALIZATION adds many lines to the Process-Deliverable
Diagram, which makes it harder to read. If we change the color of the lines of aggregations, this
would increase the ease of interpretation of the diagram.

Associating You should determine STAKEHOLDERS only after the project’s scope has been set, other-
wise it is not certain where to find them.

Associating We can’t set the project’s goal without knowing what the scope actually is we’re working
in. Therefore, the activity Set project scope is implied by the activity Define migration project.

Associating The concepts SOFTWARE PLATFORM and PERSONA both appear in at least one SCENARIO,
otherwise it would not make sense to define either of the concepts at all.

Associating If we define the PERSONAS before we define the SOFTWARE PLATFORMS, we can select
the corresponding SOFTWARE PLATFORMS that the PERSONAS are actually working on. The driving
goal of the method is to address the needs of PERSONAS, not that of the SOFTWARE PLATFORMS.

58

Figure 5.2: Initial version of the Software Functionality Evolution Method

59

Labeling The main activity Platforms and personas should be renamed to Scenarios, as the aim of the
main activity is to develop SCENARIOS.

Labeling The term for the concept OBJECT is ambiguous. The term ENTITY is more suitable, consider-
ing the method domain’s jargon.

Labeling The concept OBJECT TREE should be renamed to DATA MODEL, considering the method do-
main’s jargon.

Associating—Labeling The relationship between DOMAIN ONTOLOGY and DATA MODEL should be
“DOMAIN ONTOLOGY structures DATA MODEL” or “DOMAIN ONTOLOGY gives structure to DATA MODEL”.

Labeling The activity Define functionality should be renamed to Identify functionality, because the
defining of FUNCTIONALITY is something that has already been done in the original design of the
software product. Now, we are simply identifying the already defined FUNCTIONALITY.

Constructing The concept FUNCTIONALITY CLASSIFIER does not contribute significantly to the method’s
performance and deliverables. It would be better to leave it out of the method and describe it in
the activity and concept tables. For instance, we could describe it in the description of the activity
Identify functionality.

Labeling The main activity Objects and functionality should be renamed to Functionality, as the iden-
tification of FUNCTIONALITY is the main focus of the sub activities.

Associating By performing the activity Identify functionality before performing the activity Define entity
relationships, you can use the instantiations of FUNCTIONALITY to identify relationships amongst
ENTITIES.

5.1.3 Towards the final version

The final version of the SFEM has been designed based on method increments which have been cap-
tured based on analysis of the second version of the SFEM and an analysis of the backlog of the second
template method instantiation, represented in Appendix E.

The final version of the template method is visualized as a PDD in Figure 5.4, and further de-
scribed in Chapter 4.

Associating The association between DATA MODEL and FUNCTIONALITY must be removed. Adding re-
lationships between FUNCTIONALITY next to the relationships between ENTITIES makes a diagram
unnecessarily large.

Associating The activities Define personas and Define software platforms should be parallel activities,
since the identification of a SOFTWARE PLATFORM can also complement the identified PERSONAS.

Labeling The activity Combine personas with software platforms should be renamed to Create scenar-
ios. The way to create scenarios, by combining PERSONAS with SOFTWARE PLATFORMS, will be
elaborated in the activity table.

Labeling The concept VISUALIZATION should be renamed to REPORT, as the deliverable is not neces-
sarily a visual representation in form of a diagram of figure, but can also be a textual document or
matrix.

Constructing The main activity Visualization is not iterative by default. Therefore, we do not return to
the activity Select stakeholders after reporting to STAKEHOLDERS. However, we can still go back
in the method when the STAKEHOLDERS can not reach consensus about the reported deliverable.

Labeling The activity Design visualization must be renamed to Create report, conform the method
increments mentioned earlier in this method revision.

Labeling The main activity Visualization must be renamed to Results reporting, conform the method
increments mentioned earlier in this method revision.

Constructing We need an activity Report to stakeholders to complete the main activity Results report-
ing, before we can end the method or return to the main activity Mapping.

Labeling We rename the concept MIGRATION MAPPING to MAPPING, since we want to avoid wrong
interpretations of its purpose considering the thought that migration means movement from A to
B.

Labeling The concept MIGRATION PROJECT DEFINITION is renamed to PROJECT PLAN, to conform to
the IEEE Standard 610.12-1990 definition. The concept itself remains the same.

60

Figure 5.3: Second version of the Software Functionality Evolution Method

61

Labeling The activity Define migration project is renamed to Write project plan, to adhere to the change
of the MIGRATION PROJECT DEFINITION label.

Labeling The main activity Functionality is renamed to Functionality identification, to change the label
from a passive to an active state.

Labeling The main activity Scenarios is renamed to Scenario creation, to change the label from a
passive to an active state.

Labeling The main activity Mapping is renamed to Functionality mapping, to change the label from a
passive to an active state.

62

Figure 5.4: Final version of the Software Functionality Evolution Method

63

Figure 5.5: Template method instantiation for Course management

5.2 Case study summaries

In the appendices of this thesis, two case studies are reported as being part of the incremental cycle
of method engineering to design the template method in this research project. As explained in the
research approach (Chapter 2) and supported by the research by Van der Schuur (2011), instantiating
a template method enables analysis of its performance and allows to improve the method by designing
method increments.

For the sake of visualizing what a template method instantiation looks like, we present a snippet
of the template method instantiation in the first case study in Figure 5.5. The visualization shows how
the concepts surrounding the concept MAPPING are instantiated. The functionality, VIEW PARTICIPANTS
PER COURSE EVENT, is given a priority of five out of a maximum of five points, given the scenario of
a TEACHER working on the AFAS INSITE platform. The priority of the MAPPING has been decided upon
during the group session, in which it became clear that during a course day, a teacher is particularly
interested in the number of participants and their names and organizations, which helps a teacher to
prepare for the course event.

5.2.1 Course management in AFAS InSite

This case study1 aims to perform a mapping of the functionality in the function group Course manage-
ment to the software platform AFAS InSite. AFAS InSite is a web application designed to be used as
an intranet for organizations. This means that the functionality in the platform is designed for authorized
employees of the organization, and no external entities are supposed to have access to the system.
Although we can imagine that functionality from Course management may also be of interest to individ-
uals outside an organization, such as external participants or teachers, this case study has restricted
itself to the intranet application, due to the particular scope and goal of the case study.

As a matter of fact, a larger part of the functionality related to Course management has already
been implemented in AFAS InSite. However, in correspondence with the case company, we have de-
cided to initiate our template method instantiations and case studies with this function group in scope,
as it is an excellent approach to compare the outcome of the template method with the current state of
the software evolution, which is believed not to follow a structured approach as captured by the template
method.

1Please refer to Appendix D for the complete backlog of this case study.

64

During the execution of the case study, the researchers developed the Method Stakeholder Clas-
sification Matrix (MSCM), which assists in the identification of stakeholders and their roles in the instanti-
ation of a template method. The identified stakeholders are 2 Participants, 1 Informer, and 2 Observers.

After defining the domain ontology, a total of 11 instances of the concept OBJECT were identified
directly within the function group in scope. However, since objects do not necessarily have to be inside
the function group in order to be relevant to the case study (such as the object DOSSIERITEM), an
extended list of 29 objects was included in the case study. Assisted by the functionality classifier CRUD,
a total of 135 sets of functionality was identified.

As discussed earlier in this section, the case study was limited to only the software platform
AFAS INSITE. Three personas were identified: EMPLOYEE, TEACHER and COURSE MANAGER. Given the
single software platform, this also creates three instantiations of the concept SCENARIO.

From the identified functionality, 90 of the 135 sets were never assigned a mapping, excluding
them from the software evolution. Given the three scenarios and 135 sets of functionality, a maximum
of 405 mappings could have been defined. After the group sessions, 97 mappings and their priorities
were defined, which means that 24 percent of the possible mappings ends up as a mapping.

The desired specifications of a visualization were briefly discussed with the stakeholders in the
case study. It became clear that a matrix of functionality, scenarios and mappings would be the most
suitable way to present the outcome. The columns represent scenarios, rows represent functionality,
and the intersections contain the mappings. By sorting the functionality descending by their average
mapping priority, the most obvious functionality to put on a product roadmap would be presented at the
top of the matrix, and the least important functionality would be at the bottom, or even excluded.

In the first paragraph of this case study summary, we pointed out that the aim of the case study
was to compare the outcome of an instantiation with the actual, completed implementation of the func-
tion group Course management in AFAS InSite, which has been done without use of the template
method. After an analysis of the implemented functionality and the results of the template method
instantiation, we can state that the results are relatively the same. The functionality of the entity AF-
BEELDING is already implemented, as well as the functionality which enables the viewing/reading of the
primary entities of Course management, such as CURSUS, CURSUSSESSIE, DOSSIERITEM and EVENE-
MENT.

However, if we look closely at the current implementation of functionality, we see that most of the
current functionality is centered around read-only operators of entities, and not the actual management
of entities. For instance, it is currently not possible to add new participants to a course event, nor can
you add a new course event to a course. This differentiates from the results of the case study, where
managing operators were not explicitly excluded from the mappings.

From the case study results, another interesting facts caught our attention. In the case study, the
functionality to create an instantiation of the entity ORGANISATIE/PERSOON had been given a relatively
high average priority of 3.3, yet it has not been implemented into AFAS InSite. This was explained by the
product managers by the fact that this functionality has a high complexity, due to the many dependencies
from other entities and function groups. This means that if the functionality were to be implemented in
AFAS InSite, related entities would need to be available as well, in order for the functionality to be
usable.

65

5.2.2 Fixed assets in AFAS InSite

The second case study of the research project2 aims to perform a mapping of the functionality in the
function group Fixed assets, again towards the software platform AFAS InSite. AFAS InSite is a web
application designed to be used as an intranet for organizations. This means that the functionality
in the platform is designed for authorized employees of the organization, and no external entities are
supposed to have access to the system. For the functionality and entities of Fixed assets, the limitation
of the case study to only the software platform AFAS InSite makes sense, since a fixed asset is an entity
which is supposed to be handled inside an organization, and no external entities are expected to work
on fixed assets within an organization’s administration.

Compared to the first case study, this case study aims to perform a mapping of functionality that
has not yet been implemented on the new software platform, instead of trying to compare results of
the instantiation with an actual completed implementation. Since none of the product managers said
to have given any particular attention to the mapping of functionality in this function group, yet, it is
interesting to see how the template method performs in such circumstances.

Again assisted by the Method Stakeholder Classification Matrix, four stakeholders were identified,
a Participant, a Participant–Informer, an Observer–Informer, and an Informer. The Observer–Informer
stakeholder played two explicit roles in the case study, which is why we assigned two roles.

Supported by the ontology of entities in the software product, 28 instantiations of the concept
ENTITY were identified. 79 sets of functionality were applicable to the entities, of which the identification
was supported by the CRUD classifier, the AFAS Knowledge Base and the course Financieel Proces-
beheer, provided by AFAS Software. In a consult with one of the stakeholders, the relevance of a few
entities was discussed, which resulted in the exclusion of two entities and their functionality from the
case study.

As the research project had progressed, the founding theory of the template method now allowed
for a more structured and complete definition of the concepts PERSONA and SOFTWARE PLATFORM.
Therefore, elaborate descriptions of five personas were given. The personas include EMPLOYEE, FA-
CILITY MANAGER, ICT MANAGER, FINANCIAL CONTROLLER and CHIEF FINANCIAL OFFICER. A total of
five software platforms was identified, although only the platform AFAS InSite was relevant in this case
study.

In the group session with selected stakeholders, the functionality was discussed in order to create
instantiations of the concept MAPPING. 79 sets of functionality were discussed, of which 56 sets were
assigned a mapping and priority. This implies that 23 sets of functionality were excluded from the
software evolution.

Because an instantiation of the VISUALIZATION3 had already been discussed in the first case
study, for this case study the stakeholders was asked whether or not the previous visualization was
satisfying. It was pointed out that the visualization was sufficient and suitable for its goal: input for
product roadmapping. An important sidenote given was that the matrix should be sorted by the total
score of priority, divided by the total amount of scenarios, instead of divided by the amount of mappings
for the given functionality.

In Figure 5.6, we present the instantiation of the concept VISUALIZATION for the case study Fixed
assets in AFAS InSite. As discussed in the previous paragraph, the stakeholders decided to have the
requirements prioritized by the final column, which is calculated by summing up the total priority score,
and dividing it by the total number of possible scenarios. Given the third row, with a total priority score
of 15, divided by a total of 5 scenarios, the average priority score would be 3.0.

2Please refer to Appendix E for the complete backlog of this case study.
3This concept was renamed to REPORT after the instantiation of this case study, because of a formalization of terminology,

captured by a method increment.

66

Figure 5.6: REPORT of case study Fixed assets in AFAS InSite

The results of the case study have been received well by the case company, as the product
managers had not yet rationalized the mapping of functionality of the function group Fixed assets.
Especially since the previous case study had not revealed new insight in future work, but was rather
more focused on the validation of the template method. During the case study and mapping group
session, it became clear how the template method is limited in its contribution to the product roadmap, as
it does not take into account the required and available resources for the implementation of the mapped
functionality on another software platform. Also, it became evident that there are strong relationships
between sets of functionality, which may influence the priority of mappings, but the template method
does not provide tools to cascade the priority of a mapping to related functionality.

The participants of the group session explained how the case study had helped them to think
about the function group Fixed assets in AFAS InSite in a strict way, given the fact that every bit of func-
tionality had to be rationalized for every scenario, and an average priority would roll out automatically,
based on their assessment.

67

68

Chapter 6

Discussion

During the course of this research project, it has become evident that both the research itself and the
designed artifacts have their limitations. We believe the explication of these limitations is not a sign of
weakness, but rather a strength of the research, in the sense that it provides new opportunities for future
research and continuation of the research subject.

The research project’s goal is to design a template method for software developing organizations.
Since the role of a software product manager does not necessarily imply having in-depth knowledge
about the product’s source code and technical architecture, techniques that concern technical com-
petencies such as the analysis of source code or implemented architecture, are omitted. Thus, the
software product is analyzed from a functional perspective. However, this might not be conclusive, and
a functional approach may produce more overhead and consume more resources compared to those
technical, potentially automated approaches that were left out in the research.

During the extraction of entities and functionality from the software product, functionality is not
clustered, nor are relationships between functionality recorded. Should we have decided to do so, the
process of mapping functionality on scenarios would have become too complex, due to a cascading as-
signment of priorities amongst functionality. This does not benefit the efficiency of the template method,
as the mapping phase is not designed to consider such extensive dependencies.

The template method’s deliverable, an instantiation of the concept REPORT, is not suitable to
be considered a product roadmap. The method does not take into account the required and available
resources for the implementation of each set of functionality during the mapping phase. The required
resources is not exclusively dependent on the characteristics of the functionality itself, as the difficulty
of implementing functionality can be different per software platform. However, it has been a conscious
decision to exclude the consideration of resources, as it would increase the complexity of the mapping
phase, making the method less efficient. The prioritized shortlist of requirements, delivered by the
method, can in turn be used as input for roadmap intelligence.

The template method has been designed, instantiated and validated at a single case company,
which produces an integrated ERP software product. It may be possible that validation at another
case company, producing different software products, possibly even adhering to another development
methodology, may result in different performance. Such validation is left open for future work.

69

In the case studies of this research project, an existing software product has been examined,
which is AFAS Profit. In order to evaluate the evolution of the software product, the software platforms
AFAS InSite and AFAS OutSite were included in the template method instantiations. However, those
platforms are also already in their production phase, yet they do resemble a significant part of the
functionality in the AFAS Profit Windows software suite. Since the software platforms in scope are
already live and have already been developed, the case studies did not explore the template method’s
performance in cases of virtual, non-existent software platforms that are still to be developed. Therefore,
evaluation of the template method is subject to future work in case studies where software platforms
are considered for which an application has not yet been developed.

The case studies of the research have both focused at all functionality within one function group
of the software product. The function groups to be analyzed have been pointed out by a software
product manager of the case company, given the relevance in the research project and the personal
interests of the product managers concerning the mapping of the function groups. This implies that the
template method has not been instantiated for a complete software product, nor has it been instantiated
for multiple function groups.

Also, given the limitation in the previous paragraph, it has not been explored whether the tem-
plate method can decide what function groups to implement first on new software platforms first, thus
maintaining a higher level of abstraction on the software’s functionality.

Concerning the representation of the results of a template method instantiation, the current vi-
sualization focuses mainly around a matrix of functionality, scenarios and mappings. Even though the
visualization is not to be designed as a product roadmap, the participants of the case company have
also indicated that the research could have done more on visualization of the deliverables. However, it
is not certain whether it would be possible to visualize mappings as (for instance) a network, since no
relationships between functionality are captured by the method. We do acknowledge that the reporting
aspect of the template method leaves room for future research.

70

Chapter 7

Conclusion

In this research, the Software Functional Evolution Method (SFEM) has been proposed, a structured
approach towards the evolution of a software product by mapping functionality between software plat-
forms. The template method is designed for software product managers, having a functional perspective
on the analysis of existent software products and their functionality.

In Section 1.3, the main research question was established as follows: What method assists in
software product evolution through mapping of functionality between software platforms? We
answer this main research question by first answering the four sub questions, followed by an answer to
the main research question.

1. Which methods assist in the identification and characterization of software functionality
from a functional perspective?

We have identified five techniques to extract functionality from an existent software product. First,
by analysis of the software product’s user manual, the user processes for which the software
has been designed, become clear, revealing the underlying functionality. Second, formal design
artifacts contain detailed information about the expected functioning of the product, and how this
has been implemented in the product. Analysis of descriptive texts of the software’s functionality
can be assisted by Natural Language Processing. The graphical user interface of the software
product reveals end-user functionality and features by interaction elements. Finally, architecture
reconstruction extracts the implemented software architecture from the software product, which
can be used to define how functionality links together different entities within the product.

Different functionality classifications are described, which can help in an efficient identification of
the majority of functionality, after the entities in scope have been identified. The Create, Read,
Update, Delete (CRUD) classification can be extended with a Scan operator, of which the BREAD
classification is similar. Finally, the Read-only / Maintain classification is a simplified classifier of
software functionality.

2. What characterizes the users and functional context and constraints of a software plat-
form?

The research has explored the characterization of users by personas in four focus areas. First,
the characteristics of a persona assist in making the persona live in the minds of the design-
ers. Second, needs and goals explicate what the persona wishes to accomplish, which can be
achieved by the use of the software product. Third, skills and competencies define what a per-
sona is able to do, but also what constrains him/her in performing certain actions. Last, explicit
recording of the persona’s constraints reveals what may limit the mapping of functionality, based
on the characteristics of the persona.

71

Software platforms are defined in the research by four focus areas. First, two typologies of the
platform type are given, which are desktop, web, mobile or wearable, and internal platform, supply
chain platform, industry platform or two-sided market. A SWOT analysis identifies how a software
platform can contribute to strategic roadmapping of the product. The functional context and con-
straints reveal what may limit the mapping of functionality, as well as the technical context and
constraints.

3. Which methods assist in the prioritization of functionality when mapping functionality be-
tween software platforms?

Given the importance of the priority that is assigned to a mapping of functionality between soft-
ware platforms, eight different prioritization techniques are described and compared by means of
their scale, granularity and sophistication. The techniques include the binary priority list, prior-
ity groups, MoSCoW, requirements triage, cumulative voting, ranking, top ten and the Wieger’s
prioritization model.

The concept “mapping” is introduced as being the decision to implement a set of functionality on
another software platform. The likely occurrence of a persona on a software platform is defined
as a scenario. The instantiation of a mapping connects functionality to a given scenario.

4. How can the results of a method instantiation be reported in order to assist in the evolution
of a software product?

It has become clear that the results of an instantiation cannot serve as a product roadmap on its
own. Therefore, the report of an instantiation serves as input for product roadmapping, basically
being presented as an ordered list of product requirements for new applications on new software
platforms. We have introduced the mapping matrix as the most obvious way to report an instanti-
ation, although the choice of medium depends on the stakeholder audience. A categorization of
requirements can be applied based on the related component, product, industry or release.

Having answered the sub questions of the research project, we can answer the main research ques-
tions, which was stated:

What method assists in software product evolution through mapping of functionality be-
tween software platforms?

This research proposes the Software Functionality Evolution Method, a template method which
assists a software developing organization in the evolution of a software product by means of
mapping functionality between software platforms. The method consists of five main activities,
which are basically (1) the defining of the project to be performed, (2) the extraction of entities and
functionality from the software product, (3) the identification of personas and software platforms
in scenarios, (4) the mapping and prioritizing of functionality on scenarios, and (5) the report-
ing of the project’s outcome to selected stakeholders. A variety of theoretical foundations has
been given, which support the instantiation of the activities and the production of the method’s
concepts.

The Software Functionality Evolution Method has been designed by means of an incremental
method engineering approach. The template method has been instantiated in two case studies, which
has been recorded in a backlog. By analyzing the template method and the instantiation’s backlog,
method increments have been designed to improve the template method. In order to reflect on the
incremental approach, a categorization of constructing, labeling and associating has been proposed.
The categorization allows for reasoning and discussion of the method evolution.

A correct application and instantiation of the template method can help organizations to embrace
opportunities resulting from emerging technologies and modern software platforms. A more rapid and
rational response to designing requirements for new applications leads to a competitive advantage,
compared to other market players who struggle with efficiency in their Software Product Management
practices.

72

We believe that this research project contributes to the many attempts to bridge the gap between
scientific literature and industrial practices in the field of Software Product Management. A common
understanding of the theoretical foundations and actual practices can assist in a better education of
software product managers, which are of growing importance in the modern industry of software ven-
dors.

7.1 Future research

The two case studies in which the template method is instantiated are performed at one single software
developing organization in the Netherlands, which produces an integrated ERP system for the Dutch
marketplace. Future work will further validate and improve the template method by means of case
studies at other software vendors, with different software products and different project requirements.
Thus, a more quantitative approach towards the instantiation and validation of the template is subject to
future research.

Also, concerning the validation and evaluation of the template method, the status of the software
platforms in the case studies has been discussed in Chapter 6. Future work will explore the template
method performance in cases where functionality is to be mapped between software platforms for which
an application has not yet been developed. This increases the level of abstraction about the software
platform, and may or may not have an impact on the method’s performance.

Another example is the mapping of functionality in a case study where there is not even a software
product to extract functionality from. Future research will explore if and how the method performs in case
of a software product which still has to be designed and developed, and where the central question is
which functionality should be designed and implemented for which software platform.

The research project is designed for software product managers, and thus technical approaches
for the analysis of software products and their architecture are omitted. Future work will explore the
(semi-)automated analysis of software products, to make the process of extracting entities and function-
ality more efficient and conclusive.

In the mapping phase of the template method, opportunities exist for automated application and
cascading of priorities, based on relationships between entities and functionality. However, this is not
explored in this research project, as it is still unclear what effect cascading has on the outcome of
an instantiation. Such dependencies would require a thoroughly tested algorithm which automatically
cascades a mapping’s priority based on properties of the relationship between entities or functionality.

Future research can also expand on the visualizations for reporting the results of a template
method instantiation. Currently, the mapping matrix serves the goal of providing input to product
roadmapping, yet it is uncertain whether the resulting mappings can be clustered to create networks of
functionality, or any other relevant visualization technique.

73

74

Bibliography

Ahl, V. (2005). An Experimental Comparison of Five Prioritization Methods. Master’s thesis, Blekinge
Institute of Technology.

Aoyama, M. (2005). Persona-and-Scenario Based Requirements Engineering for Software Embedded
in Digital Consumer Products. In Proceedings of the 13th IEEE International Conference on Require-
ments Engineering, pages 85–94.

Baldwin, C. Y. and Woodard, C. J. (2009). The Architecture of Platforms: A Unified View. Edward Elgar
London.

Bebensee, T., Van de Weerd, I., and Brinkkemper, S. (2010). Binary Priority List for Prioritizing Soft-
ware Requirements. In Requirements Engineering: Foundation for Software Quality, pages 67–78.
Springer Berlin Heidelberg.

Bekkers, W., Van de Weerd, I., Spruit, M., and Brinkkemper, S. (2010). A Framework for Process
Improvement in Software Product Management. In Systems, Software and Services Process Im-
provement, volume 99, pages 1–12. Springer Berlin Heidelberg.

Berander, P. (2004). Using Students as Subjects in Requirements Prioritization. In International Sym-
posium on Empirical Software Engineering, pages 167–176.

Berander, P. and Andrews, A. (2005). Requirements Prioritization. In Engineering and Managing Soft-
ware Requirements, pages 69–94. Springer Berlin Heidelberg.

Bisbal, J., Lawless, D., Wu, B., and Grimson, J. (1999). Legacy Information Systems: Issues and
Directions. Software, IEEE, 16(5):103–111.

Booch, G., Rumbaugh, J., and Jacobson, I. (1999). The Unified Modeling Language User Guide.
Number September. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA.

Bosch, J. (2009). From Software Product Lines to Software Ecosystems. In Proceedings of the 13th
International Software Product Line Conference, number Splc, pages 111–119. Carnegie Mellon Uni-
versity.

Bresnahan, T. F. and Greenstein, S. (1999). Technological Competition and the Structure of the Com-
puter Industry. The Journal of Industrial Economics, 47(1):1–40.

Brinkkemper, S. (1996). Method Engineering: Engineering of Information Systems Development Meth-
ods and Tools. Information and software technology, 38(4):275–280.

Brodie, M. L. and Stonebraker, M. (1995). Migrating Legacy Systems: Gateways, Interfaces & the
Incremental Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Carlshamre, P. (2002). Release Planning in Market-Driven Software Product Development: Provoking
an Understanding. Requirements Engineering, 7(3):139–151.

Chan, F., Chan, M., and Tang, N. (2000). Evaluation Methodologies for Technology Selection. Journal
of Materials Processing Technology, 107(1-3):330–337.

75

Chowdhury, G. G. (2003). Natural Language Processing. Annual Review of Information Science and
Technology, 37(1):51–89.

Cole, M. and Avison, D. (2007). The Potential of Hermeneutics in Information Systems Research.
European Journal of Information Systems, 16(6):820–833.

Colomo-Palacios, R., Fernandes, E., Soto-Acosta, P., and Sabbagh, M. (2011). Software Product
Evolution for Intellectual Capital Management: The Case of Meta4 PeopleNet. International Journal
of Information Management, 31(4):395–399.

Condon, D. (2002). Software Product Management: Managing Software Development from Idea to
Product to Marketing to Sales. Aspatore Books.

Cooper, A. (1999). The Inmates are Running the Asylum: Why Hightech Products Drive us Crazy and
How to Restore the Sanity. SAMS, Macmillan Computer Publishing, Indianapolis, IN.

Cooper, A., Reimann, R., and Cronin, D. (2012). About Face 3: The Essentials of Interaction Design.
John Wiley & Sons.

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R. (2010). Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st ACM symposium on Cloud computing, pages
143–154, New York, New York, USA. ACM, ACM Press.

Danilovic, M. and Sandkull, B. (2005). The Use of Dependence Structure Matrix and Domain Map-
ping Matrix in Managing Uncertainty in Multiple Project Situations. International Journal of Project
Management, 23(3):193–203.

Davis, A. M. (2003). The Art of Requirements Triage. Computer, 36(3):42–49.

DSDM Consortium (2008). DSDM Atern Handbook. DSDM Consortium.

Dver, A. S. (2003). Software Product Management Essentials. Anclote Press, Tampa, Florida.

Ebert, C. (2007). The Impacts of Software Product Management. Journal of Systems and Software,
80(6):850–861.

Gawer, A. (2009). Platform Dynamics and Strategies: From Products to Services. Cheltenham: Edward
Elgar Publishing Limited.

Gawer, A. and Cusumano, M. A. (2003). Platform Leadership: How Intel, Microsoft, and Cisco Drive
Industry Innovation. Innovation: Management, Policy & Practice, 5(1):91–94.

Gimnich, R. and Winter, A. (2005). Workflows der Software-Migration. Softwaretechnik-Trends,
25(2):22—-24.

Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications. Knowledge Acquisi-
tion, 5(2):199–220.

Harmsen, F., Brinkkemper, S., and Oei, H. (1994). Situational Method Engineering for Information
System Project Approaches. Number September. University of Twente, Department of Computer
Science.

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design Science in Information Systems
Research. MIS quarterly, 28(1):75–105.

ISPMA (2014). Software Product Management Body of Knowledge. http://ispma.org/spmbok/.

Jung, C. G. and Storr, A. E. (1983). The Essential Jung. Princeton University Press.

Junior, P. T. A. and Filgueiras, L. V. L. (2005). User Modeling with Personas. In Proceedings of the 2005
Latin American conference on Human-computer interaction, pages 277–282, New York, New York,
USA. ACM Press.

76

Karlsson, J. and Ryan, K. (1997). A Cost-Value Approach for Prioritizing Requirements. IEEE Software,
14(5):67–74.

Karlsson, J., Wohlin, C., and Regnell, B. (1998). An Evaluation of Methods for Prioritizing Software
Requirements. Information and Software Technology, 39(14):939–947.

Kazman, R. and Carrière, S. J. (1999). Playing Detective: Reconstructing Software Architecture from
Available Evidence. Automated Software Engineering, 6(2):107–138.

Kazman, R., O’Brien, L., and Verhoef, C. (2003). Architecture Reconstruction Guidelines, Third Edition.
Technical Report November, Software Engineering Institute, Carnegie Mellon University.

Knuth, D. E. (2005). The Art of Computer Programming. Pearson Education.

Lee, J. (1997). Design Rationale Systems: Understanding the Issues. IEEE Expert: Intelligent Systems
and Their Applications, 12(3):78–85.

Leffingwell, D. and Widrig, D. (2003). Managing Software Requirements: A Use Case Approach.
Addison-Wesley Professional.

Lehtola, L., Kauppinen, M., and Kujala, S. (2005). Linking the Business View to Requirements Engi-
neering: Long-Term Product Planning by Roadmapping. In 13th IEEE International Conference on
Requirements Engineering (RE’05), pages 439–443. Ieee.

Mann, S. (1997). Wearable Computing: A First Step Toward Personal Imaging. Computer, 30(2):25–32.

Martin, J. (1983). Managing the Data Base Environment. Prentice Hall PTR.

Meyer, M. H. and Lehnerd, A. P. (1997). The Power of Product Platforms: Building Value and Cost
Leadership. Free Press, New York.

Moher, D., Liberati, A., Tetzlaff, J., and Altman, D. G. (2009). Preferred Reporting Items for Systematic
Reviews and Meta-Analyses: The PRISMA Statement. Annals of Internal Medicine, 151(4):264–269.

Moon, M., Yeom, K., and Chae, H. S. (2005). An Approach to Developing Domain Requirements as a
Core Asset Based on Commonality and Variability Analysis in a Product Line. IEEE Transactions on
Software Engineering, 31(7):551–569.

Muffatto, M. and Roveda, M. (2002). Product Architecture and Platforms: A Conceptual Framework.
International Journal of Technology Management, 24(1):1–16.

Müller, H. A. and Klashinsky, K. (1988). Rigi-A system for Programming-In-The-Large. In Proceedings
of the 10th International Conference on Software Engineering, pages 80–86. IEEE Computer Society
Press.

Object Management Group (2004). UML 2.0 Superstructure Specification. Technical report, Technical
Report ptc/04-10-02.

O’Brien, L., Stoermer, C., and Verhoef, C. (2002). Software Architecture Reconstruction: Practice
Needs and Current Approaches. Technical Report August, Software Engineering Institute, Carnegie
Mellon University.

Phaal, R., Farrukh, C. J. P., and Probert, D. R. (2004). Technology Roadmapping - A Planning Frame-
work for Evolution and Revolution. Technological forecasting and social change, 71(1):5–26.

Pohl, K., Böckle, G., and Van der Linden, F. (2005). Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer, Heidelberg.

Pruitt, J. and Grudin, J. (2003). Personas: Practice and Theory. In Proceedings of the 2003 conference
on Designing for user experiences, pages 1–15.

Racheva, Z., Daneva, M., and Buglione, L. (2008). Supporting the Dynamic Reprioritization of Require-
ments in Agile Development of Software Products. In Second International Workshop on Software
Product Management, pages 49–58, Barcelona, Catalunya.

77

Rajlich, V. T. and Bennett, K. H. (2000). A Staged Model for the Software Life Cycle. Computer,
33(7):66–71.

Regnell, B. and Brinkkemper, S. (2005). Market-Driven Requirements Engineering for Software Prod-
ucts. In Engineering and Managing Software Requirements, pages 287–308. Springer Berlin Heidel-
berg.

Regnell, B., Höst, M., Och Dag, J. N., Beremark, P., and Hjelm, T. (2001). An Industrial Case Study
on Distributed Prioritisation in Market- Driven Requirements Engineering for Packaged Software. Re-
quirements Engineering, 6(1):51–62.

Robertson, D. and Ulrich, K. (1998). Planning for Product Platforms. Sloan management review, 39(4).

Robertson, P. (1997). Integrating Legacy Systems with Modern Corporate Applications. Communica-
tions of the ACM, 40(5):39–46.

Rochet, J.-C. and Tirole, J. (2003). Platform Competition in Two-Sided Markets. Journal of the European
Economic Association, 4(1):990–1029.

Rogers, Y., Sharp, H., and Preece, J. (2011). Interaction Design: Beyond Human-Computer Interaction.
John Wiley & Sons.

Royce, W. W. (1970). Managing the Development of Large Software Systems. In proceedings of IEEE
WESCON, number August, pages 1–9, Los Angeles.

Ruhe, G. and Saliu, M. O. (2005). The Art and Science of Software Release Planning. IEEE Software,
22(6):47–53.

Runeson, P. and Höst, M. (2009). Guidelines for Conducting and Reporting Case Study Research in
Software Engineering. Empirical Software Engineering, 14(2):131–164.

Rysman, M. (2009). The Economies of Two-Sided Markets. The Journal of Economic Perspectives,
pages 125–143.

Sommerville, I. (2007). Software Engineering. Addison-Wesley, 8th edition.

Sommerville, I. and Sawyer, P. (1997). Requirements Engineering: A Good Practice Guide. John Wiley
& Sons, Inc.

Stevens, S. S. (1946). On the Theory of Scales of Measurement. Science (New York, N.Y.),
103(2684):677–80.

Stolze, M., Riand, P., Wallace, M., and Heath, T. (2007). Agile Development of Workflow Applications
with Interpreted Task Models. In 6th international conference on Task Models and Diagrams for User
Interface Design, pages 2–14. Springer.

The Standish Group (1995). The CHAOS Report. Project Smart.

Van Angeren, J. (2013). Exploring Platform Ecosystems: A Comparison of Complementor Networks
and their Characteristics. PhD thesis, Utrecht University.

Van de Weerd, I. and Brinkkemper, S. (2008). Meta-Modeling for Situational Analysis and Design Meth-
ods. In Handbook of research on modern systems analysis and design technologies and applications,
volume 35, pages 35–54. Information Science Reference.

Van de Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., and Bijlsma, L. (2006). On the
Creation of a Reference Framework for Software Product Management: Validation and Tool Support.
In 14th IEEE International Requirements Engineering Conference, pages 319–322. Ieee.

Van de Weerd, I., Brinkkemper, S., and Versendaal, J. (2007). Concepts for Incremental Method Evolu-
tion: Empirical Exploration and Validation in Requirements Management. In Krogstie, J., Opdahl, A.,
and Sindre, G., editors, Advanced Information Systems Engineering SE - 33, volume 4495 of Lecture
Notes in Computer Science, pages 469–484. Springer Berlin Heidelberg.

78

Van den Akker, M., Brinkkemper, S., Diepen, G., and Versendaal, J. (2008). Software Product Release
Planning Through Optimization and What-If Analysis. Information and Software Technology, 50(1-
2):101–111.

Van der Schuur, H. (2011). Process Improvement Through Software Operation Knowledge — If the
SOK Fits, Wear It! {PhD} dissertation, Utrecht University.

Van der Schuur, H., Jansen, S., and Brinkkemper, S. (2011). If the SOK Fits, Wear It: Pragmatic Pro-
cess Improvement Through Software Operation Knowledge. In Proceedings of the 12th International
Conference on Product Focused Software Development and Process Improvement, pages 306–321.
Springer.

Wiegers, K. (1999a). First Things First: Prioritizing Requirements. Software Development, 7(9):48–53.

Wiegers, K. (1999b). Software Requirements. Microsoft Press (Redmond, WA).

Xu, L. and Brinkkemper, S. (2005). Concepts of Product Software: Paving the Road for Urgently Needed
Research. In The first International Workshop on Philosophical Foundations of Information Systems
Engineering, pages 523–528.

Yee, J. T. and Oh, S.-C. (2013). Focusing on RFID, Interoperability, and Sustainability for Manufacturing,
Logistics, and Supply Chain Management. In Technology Integration to Business, pages 67–95.
Springer.

Yin, R. K. (2009). Case Study Research: Design and Methods. Sage.

79

80

List of figures

1.1 AFAS Software platform evolution . 6

2.1 Research approach . 12

2.2 PRISMA 2009 Flow Diagram (Moher et al., 2009) . 13

2.3 The configuration process for situational methods (Brinkkemper, 1996) 14

2.4 Template method instantiation (Van der Schuur et al., 2011) 14

2.5 Information systems research framework (Hevner et al., 2004) 16

3.1 Software Product Management Competence Model (Bekkers et al., 2010) 20

3.2 Positioning of the research on the SPM Competence Model 22

4.1 Process-Deliverable Diagram of the SFEM . 25

4.2 Method Stakeholder Classification Matrix . 27

4.3 Example of the Binary Priority List . 44

4.4 MoSCoW prioritization technique (DSDM Consortium, 2008) 45

4.5 Example of the Wiegers’ prioritization matrix . 48

5.1 Incremental method engineering approach . 56

5.2 Initial version of the Software Functionality Evolution Method 59

5.3 Second version of the Software Functionality Evolution Method 61

5.4 Final version of the Software Functionality Evolution Method 63

5.5 Template method instantiation for Course management 64

5.6 REPORT of case study Fixed assets in AFAS InSite . 67

D.1 Template method 1: Process-Deliverable Diagram . 106

D.2 Method Stakeholder Classification Matrix . 113

81

D.3 DOMAIN ONTOLOGY . 123

D.4 VISUALIZATION . 138

E.1 Template method 2: Process-Deliverable Diagram . 140

E.2 MIGRATION MAPPING tool . 156

E.3 MIGRATION MAPPING tool with candidates . 157

E.4 DOMAIN ONTOLOGY . 159

E.5 DATA MODEL . 163

E.6 DATA MODEL by formal design document . 164

E.7 VISUALIZATION . 167

82

List of tables

4.1 Activity table of the SFEM,
main activity Project definition . 28

4.2 Concept table of the SFEM,
main activity Project definition . 29

4.3 Activity table of the SFEM,
main activity Functionality identification . 34

4.4 Concept table of the SFEM,
main activity Functionality identification . 35

4.5 Activity table of the SFEM,
main activity Scenario creation . 40

4.6 Concept table of the SFEM,
main activity Scenario creation . 41

4.7 Comparison of prioritization techniques . 43

4.8 Activity table of the SFEM,
main activity Functionality mapping . 49

4.9 Concept table of the SFEM,
main activity Functionality mapping . 50

4.10 Activity table of the SFEM,
main activity Results reporting . 52

4.11 Concept table of the SFEM,
main activity Results reporting . 53

5.1 Method increment categorization . 57

B.1 Activity table of the SFEM . 100

C.1 Concept table of the SFEM . 103

D.1 Template method 1: Activity table . 109

D.2 Template method 1: Concept table . 111

D.3 MIGRATION PROJECT DEFINITION . 121

83

D.4 Stakeholders . 122

D.5 Instantiated stakeholder classification matrix . 122

D.6 OBJECTS directly within Cursusmanagement . 124

D.7 Object tree . 127

D.8 Inherited objects in Cursusmanagement . 128

D.9 Functionality of objects in Cursusmanagement . 131

E.1 Template method 2: Activity table . 143

E.2 Template method 2: Concept table . 145

E.3 MIGRATION PROJECT DEFINITION . 158

E.4 STAKEHOLDER . 158

E.5 STAKEHOLDER . 158

E.6 STAKEHOLDER . 159

E.7 STAKEHOLDER . 159

E.8 ENTITY . 160

E.9 FUNCTIONALITY of ENTITIES in Vaste activa . 163

E.10 PERSONA . 165

E.11 PERSONA . 165

E.12 PERSONA . 165

E.13 PERSONA . 165

E.14 PERSONA . 165

E.15 SOFTWARE PLATFORM . 165

E.16 SCENARIO . 166

E.17 SCENARIO . 166

E.18 SCENARIO . 166

E.19 SCENARIO . 166

E.20 SCENARIO . 166

E.21 SCENARIO . 167

84

Appendices

85

Appendix A

Paper IWSPM14

This paper has been submitted and accepted to the 8th International Workshop on Software Product
Management (IWSPM 2014). The workshop is co-located with the 22nd IEEE International Conference
on Requirements Engineering in Karlskrona, Sweden, from August 25 to 29, 2014.

Software product management (SPM) is an important discipline that unites both technical and
business perspectives to creating software products. The success of a product depends on skilled
and competent product management. In essence, a product manager makes strategic and tactical
decisions on what functionality and quality a product should offer, to which customers, and at what time.
IWSPM’14 aims at contributing to the body of knowledge for software product management in order
to support the evolution of software product management as a scientific discipline and as a practical
approach to management of software products. The workshop should also foster collaboration between
academia and industry. The workshop main goals are:

• Contribute to the SPM Body of Knowledge (SPMBoK);

• Identify challenges and future avenues for research relevant for SPM practice;

• Strengthen SPM as a research field within the greater field of software engineering and business
management;

• Provide software product managers and researchers a dedicated form for exchanging ideas and
best practices fostering industry-academia collaboration;

• Offer opportunities for industry participants to contribute with articles and participation.

Important dates

• Paper Submission: Friday, June 6, 2014

• Paper Notification: Monday, June 23, 2014

• Camera Ready Due: Monday, July 7, 2014

• Workshop: Tuesday, August 26, 2014

87

Bridging the Gap Between Software Platforms:
A Template Method for Software Evolution

Gerard Nijboer
Department of Information
and Computing Sciences

Utrecht University
Utrecht, The Netherlands
g.nijboer@students.uu.nl

Henk van der Schuur
AFAS Software

Leusden, The Netherlands
h.vdschuur@afas.nl

Jan Martijn E.M. van der Werf
Department of Information
and Computing Sciences

Utrecht University
Utrecht, The Netherlands
j.m.e.m.vanderwerf@uu.nl

Sjaak Brinkkemper
Department of Information
and Computing Sciences

Utrecht University
Utrecht, The Netherlands

s.brinkkemper@uu.nl

Abstract—To prevent issues arising from legacy software
platforms, adapting to changing customer needs by software
evolution is a growing concern of software organizations. How-
ever, current practices are pragmatic and subjective, which
restricts benchmarking and reduces efficiency. In order to im-
prove evolutionary practices, this paper proposes the Software
Functionality Evolution Method (SFEM). The SFEM provides
a software vendor with input for product roadmapping, by
mapping functionality between software platforms. Mappings are
based on characteristics and constraints of functionality, personas
and software platforms. An incremental method engineering
approach is put to practice, in which the template method
is instantiated and improved over multiple case studies. Case
studies show that the method contributes to efficient reasoning
and strategic decision making in software evolution for software
product managers.

I. INTRODUCTION

The current pace of technological developments offers op-
portunities to software developing organizations concerning
software platforms and applications. In order to avoid issues
caused by legacy software platforms, concerning costs, main-
tenance, accessibility and extensibility [1], emerging technolo-
gies can help organizations to innovate, improve efficiencies,
and realize new business opportunities [2]. Software evolution
concerns the adaption of capabilities and functionality of a
system, in order to meet user needs [3].

Currently, no structured approach exists which assists in the
evolution of a software product by mapping functionality on
new software platforms. Thus, a gap exists in the evolutionary
process, as a mapping of functionality between platforms
needs to be created, yet it is uncertain what functionality
should be included. A structured approach enables comparison
of performance and results, and increases efficiency in method
instantiations.

Considering the problem statement above, the main research
question of this paper is: What method could assist in software
product evolution through mapping functionality between soft-
ware platforms?

This paper proposes a method, the Software Functionality
Evolution Method (SFEM), which assists in the evolution of a
software product. It is designed for software product managers,
as this organizational role is responsible for strategic decision

making [4], including a software product’s lifecycle [5]. With
this audience in mind, the evolutionary process is considered
with a focus on functional, rather than technical properties
and constraints. The constraints, raised by characteristics of
personas, platforms and functionality, determine the mapping
and priority of functionality.

The SPM Competence Model [5] proposes 15 focus areas
in the field of Software Product Management (SPM) practices.
To position this research and the designed method in the
field of SPM, Figure 1 visualizes the relationships with the
different focus areas and competencies. Three categories are
applied to related focus areas: (1) triggers which instantiate
the method, (2) execution for the mutual support of activities,
and (3) output for those focus areas that have an interest in
the results of an instantiation.

An instantiation of the method can be triggered by activities
within the focus areas Market analysis and Product lifecycle
management. An opportunity can be identified, such as a new
software platform, which generates a competitive advantage
for the software company if implemented correctly.

The SFEM assists in the execution of activities within the
focus areas Requirements gathering, Requirements organizing
and Requirements prioritization. By mapping existing func-
tionality between platforms, requirements are gathered and
prioritized based on their added value in the market and
product portfolio.

The results of an instantiation of the method provides the
organization with information which can be used in activities
in the focus areas Release definition, Roadmap intelligence and
Product roadmapping. On the short term, mappings of func-
tionality help to identify which requirements add significant
value to a new release. On the long term, mappings assist in
the creation of themes for the product roadmap.

This introduction is followed by an explanation of the
research approach in Section II. The Software Functionality
Evolution Method is presented in Section III. In Section IV,
a categorization for method increments is presented, which
enables reflection on the process of incremental method en-
gineering. The results of the method instantiations in case
studies are presented in Section V. Section VI contextualizes
the research with related literature, followed by a discussion

88

Fig. 1. Positioning of the research to the SPM Competence Model

in Section VII and the conclusion in Section VIII.

II. RESEARCH APPROACH

The research is based on a combination of a literature review
and interviews with domain experts at a Dutch Enterprise
Resource Planning (ERP) software vendor. The approach
followed in the literature review is inspired by the PRISMA
2009 checklist [6].

By means of method engineering [7]–[9], the initial research
results in a conceptual, initial version of the method, which is
called the Software Functionality Evolution Method (SFEM).
Different from a situational method [7], [8], this template
method prescribes what activities and concepts are to be
implemented, rather than what an instantiation of the method
would look like [10].

In two case studies at the ERP software vendor, the template
method is instantiated, of which a backlog is recorded for
analysis purposes. This backlog contains rationales on the
instantiation of activities and concepts, and decisions made
accordingly. A structured approach towards the case studies is
followed [11], [12].

The performance of the template method instantiation is
analyzed, in order to identify opportunities to improve the

Fig. 2. Template method instantiation [10]

method. The cycle of method engineering, template method
instantiation and method improvement is repeated until a
stable version of the SFEM is engineered. The method will
be contributed to the Software Product Management Body
of Knowledge (SPMBOK) [13], classifying the research as
design science [14].

The results of the initial research lay a basis for the design of
the first version of the template method. The template method
and a case study instantiation are analyzed, which results in a
set of method increments to improve the template method. The
process of instantiation and analysis is repeated in a second
case study, which results in the final template method.

III. SOFTWARE FUNCTIONALITY EVOLUTION METHOD

The Software Functionality Evolution Method (SFEM) is
a template method which assists a software developing orga-
nization in the evolution of a software product by means of
mapping functionality between software platforms. A template
method is different from a situational method as it serves
as a template for an instantiation, rather than describing the
instantiation of the situational method itself. In Figure 2, the
concept of template method instantiation is visualized [10].
The figure indicates how the open activities and concepts
of a template method may result in extra elements after
instantiation.

The method is visualized as a Process-Deliverable Dia-
gram (PDD), which is a technique used for modeling activities
and artifacts of a certain process [9]. On the left side of the
diagram are the activities of the method’s process, of which
the notation is based on the UML activity diagram [15]. On
the right side of the diagram, deliverables are visualized as
concepts to indicate what artifacts are produced by a template
method instantiation, of which the notation is based on the
UML class diagram [15].

The template method’s PDD is shown in Figure 3. The cor-
responding concepts are explained in Section III-A, followed
by theoretical foundations in Section III-B.

A. Concepts

The concepts of the SFEM are the artifacts of a template
method instantiation, produced by the execution of activities
in the method. We introduce a definition of each concept in the
method, followed by theoretical foundations in Section III-B.

PROJECT PLAN — The PROJECT PLAN is a document
that describes the technical and management approach to be
followed for a project. The plan typically describes the work

89

Fig. 3. Software Functionality Evolution Method as a Process-Deliverable Diagram

90

to be done, the resources required, the methods to be used,
the procedures to be followed, the schedules to be met, and
the way that the project will be organized [16].

STAKEHOLDER — A STAKEHOLDER is an individual or
organization having a right, share, claim or interest in a
system or in its possession of characteristics that meet their
needs and expectations [17]. A STAKEHOLDER’s Role in a
template method instantiation can be organized as described
in Section III-B1.

DOMAIN ONTOLOGY — An ontology describes the ENTI-
TIES within the domain in discourse, and how these ENTITIES
are interrelated [18]. The DOMAIN ONTOLOGY represents the
domain in which the software product is designed to operate,
the domain of discourse.

ENTITY — In computer programming, an ENTITY is any
item that can be named or denoted in a program. For example,
a data item, program statement, or subprogram. [16].

FUNCTIONALITY — FUNCTIONALITY concerns the capa-
bilities of the various computational, user interface, input,
output, data management, and other features provided by a
product [19].

DATA MODEL — A DATA MODEL identifies the ENTI-
TIES, domains (attributes), and relationships (associations)
with other data and provides the conceptual view of the data
and the relationships among data [20].

PERSONA — PERSONAS are defined as representations of
the actual users of a system, defined by the goals they aim
to accomplish. They are hypothetical archetypes of actual
users [21].

SOFTWARE PLATFORM — A platform is the combination
of an operating system and hardware that makes up the
operating environment in which a program runs [22]. Thus,
a SOFTWARE PLATFORM defines the environment in which a
software product is designed to operate.

SCENARIO — The combination of possible and relevant ap-
pearances of PERSONAS on SOFTWARE PLATFORMS creates an
instantiation of the concept SCENARIO. A SCENARIO is used
to map FUNCTIONALITY by MAPPINGS and their Priorities.

MAPPING — A MAPPING is an assigned correspondence
between two things that is represented as a set of ordered
pairs [20]. The concepts is instantiated by the combination of a
SCENARIO with FUNCTIONALITY. The Priority of a MAPPING
is determined based on the importance of the FUNCTIONALITY
for the given SCENARIO. If a MAPPING has no Priority
assigned, it is considered to be a candidate.

DESIGN RATIONALE — A DESIGN RATIONALE is defined
as information capturing the reasoning of the designer that
led to the system as designed, including design options, trade-
offs considered, decisions made, and the justifications of those
decisions [23]. It presents the arguments behind a MAPPING
and its Priority.

REPORT — A REPORT is an information item that describes
the results of activities such as investigations, observations,
assessments, or tests [24]. The results of an instantiation
are communicated to selected STAKEHOLDERS by a REPORT,
which is designed to suit the STAKEHOLDER’s interests.

Fig. 4. Method Stakeholder Classification Matrix

B. Theoretical foundations

To support the instantiation of activities and concepts of
the SFEM, this research has explored various theoretical
foundations. These foundations assist an analyst in the instan-
tiation of the template method, by means of extra background
information and supporting techniques for the implementation
of processes.

1) Method Stakeholder Classification Matrix: In method
engineering, it is possible that a process is explicitly carried
out by a specific individual or organizational role. In that case,
the role is indicated in the activity depicted in the method [9].
On the other hand, stakeholders are involved in a method
instantiation to provide or consume information.

To help identify these stakeholders and apply a classification
to their role in the method’s instantiation, we introduce the
Method Stakeholder Classification Matrix (MSCM), presented
in Figure 4. The role of the stakeholder is dependent on the
degree of participation in the instantiation of the template
method, and the degree of interaction with the deliverables
of the instantiation.

The MSCM is applicable in the activity Identify stakehold-
ers, and makes the process of describing stakeholders more
efficient. The selected value from the matrix can be used as
the Role of the concept STAKEHOLDER.

2) Software functionality identification: To extract entities
and their functionality from existent software products and
underlying architectures, many techniques have already been
discussed in scientific literature. Given the audience of this
template method, as discussed in Section I, we have limited
the exploration of such techniques by excluding technical
approaches such as code-analysis. The techniques are appli-
cable to the activities within the main activity Functionality
identification, and the concepts resulting from these activities.

The analysis of a user manual allows for an analyst to
identify functionality as it was designed and documented
for the user. Natural Language Processing [25] can support
analysis of such texts by tokenization, and generating tag
clouds.

91

Architecture reconstruction, the process where the “as-built”
architecture of an implemented system is obtained from an
existing legacy system [26], helps in the identification of
relationships among entities, and how this is translated into
functionality. Different tools for reconstruction exist, such
as ARMIN [26] and the Dali Architecture Reconstruction
workbench [27].

A categorization of architecture reconstruction
approaches [28] distinguishes manual architecture
reconstruction, manual reconstruction with tool support,
query languages for writing patterns to build aggregations
automatically, and other techniques, such as clustering, data
mining and architecture description languages.

To support the identification of functionality, the application
of a functionality classifier to entities assists in covering a
large portion of the functionality. Examples of such classifiers
include CRUD [29], BREAD [30] and read-only/maintain.

3) Scenarios of personas and software platforms: In the
template method, the concept SCENARIO plays a central role
in the mapping of functionality between software platforms.
As described in Section III-A, a scenario is the appearance
of a persona on a given software platform. A persona may
appear on one or more software platforms, and a software
platform may host one or more appearances of personas. It
is the combination of personas on platforms that is used to
create the mapping of functionality, indicating the priority of
the functionality for a given scenario.

As it is not desirable to let an actual user directly influence
the designing process [21], the use of pretend users as personas
is a good way to represent the actual users during systems
design. Different sources [21], [31]–[33] have contributed to
the following focus areas in the description of personas:

Characteristics — Make the persona live in the minds of
designers by giving him/her characteristics like a name, photo,
demographic data and attitudes.
Needs and goals — Explicate what a persona wishes to
achieve, which can be achieved by the use of a software
product. Goals can be classified as life goals, experience goals
and purpose goals [34].
Skills and competencies — Driven by experience and knowl-
edge, skills and competencies define a persona’s abilities, and
how they are limited in their actions.
Constraints — The separate definition of constraints, which
may reside from other focus areas, puts extra emphasis on the
inability of personas. These constraints are of particular inter-
est when mapping functionality in the Functionality mapping
activity phase of the template method.

Platforms, defined as “a foundation technology or set of
components used beyond a single firm that brings together
multiple parties for a common purpose or recurring prob-
lem” [35], represent opportunities for new software applica-
tions which a software vendor might adopt in the evolution
of a software product. Four focus areas have been defined to
help in the description of software platforms:

Platform type — A classification of the platform, either
being desktop, web, mobile or wearable [36], [37] or internal
platform, supply chain platform, industry platform or two-
sided market [38].
SWOT analysis — The analysis of strengths, weaknesses,
opportunities and threats of a software platform explicates the
potential of the platform in the software product evolution.
Functional context and constraints — Given the functional
context of a platform, either virtual or physical, it may enable
or restrict the mapping of certain functionality.
Technical context and constraints — Technical opportunities
or constraints may allow or disallow for the mapping of
functionality to a software platform.

4) Mapping and prioritization: The mapping of functional-
ity on scenarios is the main goal of the template method. The
activities Review mapping candidates and Prioritize mapping
candidates in the PDD of the SFEM are conducted in a group
session with relevant stakeholders, in which the mapping and
priority of functionality is discussed. A variety of requirements
prioritization techniques exist [39], [40], of which the selection
of the correct technique is dependent on the complexity of the
project at hand.

Techniques which are relevant in the prioritization of
requirements include the Binary Priority List [41], cumu-
lative voting [42], ranking [39], the Wiegers’ prioritiza-
tion model [43], and priority groups [42], [44] such as
MoSCoW [45] and requirements triage [46].

Creating a mapping is dependent on the characteristics
and constraints of the persona and software platform of a
scenario, and the characteristics and constraints of the regarded
functionality. The priority assigned determines the importance
of the mapping, compared to other mappings of functionality.

A mapping may have one or more instantiations of the
concept DESIGN RATIONALE assigned, which captures the
decision making process during the mapping activities. This
allows for reasoning about the decisions in later stages of the
product evolution.

IV. REFLECTING ON METHOD INCREMENTS

A multitude of methods has been developed since the
emergence of the method engineering research field. All too
often, however, the processes of method creation, as well as
decisions made within remain underexposed, limiting under-
standing and repeatability of the respective method engineer-
ing research [10].

While elementary method increment types have been dis-
tinguished in earlier research [47], these types do not take
into account reasoning and motivation for usage, limiting for
reflection on method creation. We have attempted to address
this issue by categorizing method increments. The following
method increment categories1 have been identified based on
creation of the SFEM:

1Obviously, this set of method increment categories is not complete and is
to certain extent specific to our method.

92

Constructing (C) — Adding, changing or removing (prop-
erties of) activities, concepts or properties in the diagram,
including activity and concept types.
Labeling (L) — Adding, changing or removing a label of
(properties of) activities, concepts, properties, associations or
roles.
Associating (A) — Adding, changing or removing (properties
of) associations between existing activities or concepts.

By explicating and motivating each increment in a method
increment log, the method construction process as a whole is
explicated. Below, an excerpt of the SFEM increment log with
motivations per increment is shown.

C We need to capture documentation to reside with
the VISUALIZATION. Instead of adding an explicit
concept, a VISUALIZATION will include the concept
DESIGN RATIONALE. This implies that a VISUAL-
IZATION does not necessarily need to be a figure, it
can just as well be textual.

C In the Peer review activity, a VISUALIZATION of the
method’s output must be included in order to review
the performance. Therefore, we merged the Peer
review activity with the main activity Visualization.
This implies that after the Visualization activity, we
must also be able to return to the Mapping main
activity.

A We can’t set the project’s goal without knowing what
the scope actually is we’re working in. Therefore,
the activity Set project scope will be implied by the
activity Define migration project.

A The concepts SOFTWARE PLATFORM and PERSONA
both appear in at least one SCENARIO, otherwise it
would not make sense to define either of the concepts
at all.

L The main activity Platforms and personas should be
renamed to Scenarios, as the aim of the main activity
is to develop SCENARIOS.

L The term for the concept OBJECT is ambiguous.
The term ENTITY is more suitable, considering the
method domain’s jargon.

L The concept OBJECT TREE should be renamed to
DATA MODEL, considering the method domain’s
jargon.

Figure 5 visualizes how different versions of template
method instantiations contribute to the creation of the tem-
plate method. Since a new version of a template method is
constructed based on input from the previous version of the
template method as well as its instantiation, template methods
particularly benefit from method increment reflection. When
a new version of a template method is to be developed,
potential method increments (as well as underlying reasoning
and motivations) are considered, compared and weighed from
both an abstract/conceptual (template) perspective and a con-
crete/practical (instantiation) perspective. During the construc-
tion of the SFEM (Figure 3), we learned that this approach
results in thorough yet rapid method development.

Fig. 5. Template method increments

V. CASE STUDY RESULTS

The Software Functionality Evolution Method (SFEM) has
been instantiated in two case studies at an ERP software
vendor, having its main office in the Netherlands. The software
suite in scope exists of a Windows client application and two
web applications, an intranet and a portal application. The
Windows client is considered being the originating platform,
having the base set of functionality.

In an ongoing attempt to evolve the software suite to meet
current customer demands, functionality is being extracted
from the Windows client and implemented in the web applica-
tions. The SFEM has been instantiated to assist the mapping of
functionality of two function groups on the intranet platform.

In Figure 6, we present a snippet of the first template method
instantiation in a case study. The case study was scoped
towards the function group Course management and related
functionality, currently implemented in the Windows client
platform. Only the software platform INTRANET was relevant
in this case study, because the current functionality is designed
for employees within the organization. For this example we
have limited ourselves to the persona TEACHER, although
other personas have been identified in the complete case study.
We have selected the functionality VIEW PARTICIPANTS PER
COURSE EVENT, originating from the entity COURSE EVENT.
Given the scenario TEACHER ON INTRANET and the selected
functionality, a MAPPING was assigned with a relatively high
Priority of 0.9. This is because in the group session, it became

93

obvious that during a course day, a teacher is particularly
interested in the number of participants and their names and
organizations, which helps a teacher to prepare for the course.

In the first case study, 135 sets of functionality were initially
identified. 90 sets of functionality were never assigned a
mapping, which means they are currently not relevant in the
evolution of the software suite for this software platform.
Of the remaining 45 sets of functionality, an average of
the mapping priorities was calculated per functionality. The
functionality, the scenarios and their mappings are presented
in a matrix, sorted in a descending order by their average
mapping priority.

The second case study was scoped towards functionality
in the function group Fixed assets management. It initiated
with a total of 79 sets of functionality, of which 56 sets were
assigned a mapping and priority. This implies that 23 sets of
functionality were excluded from the software evolution by
discussing them in the group session.

VI. RELATED WORK

In requirements prioritization, different techniques exist,
each with a different level of complexity. Examples are the
composition of a top ten, ranking [39], cumulative voting [42],
priority groups such as MoSCoW [48] and requirements
triage [46], the binary priority list [41], and Karl Wieger’s pri-
oritization matrix [43]. The selection of the correct technique
depends on the complexity and magnitude of the project, and
the skills and competencies of the project manager or analyst.

The Actor Dependency (AD) model [49] analyzes the
software processes to capture why a software process has
been implemented by a software developing organization,
rather than how it was implemented, or what the process
was designed like. This creates a better understanding of
the composition of software development processes and the
motivations, intents and rationales behind them.

Generally, strategies to cope with legacy information sys-
tems can be subdivided into three categories: redevelopment,
wrapping and migration [1]. The difference in impact on the
current and new system give a good impression of the wide
range of aspects to take into account in software evolution.

The context of legacy system reengineering can be seen
from the perspective of engineering, system, software, man-
agerial, evolutionary and maintenance [50]. Each perspective
comes with challenges to be considered, to realize an effective
approach towards reengineering.

The Chicken Little Methodology [51] is considered to be
the most mature approach for the migration of a software
product [52]. However, the approach makes extensive use of
gateways, which increases the complexity of the software.
Therefore, the Butterfly Methodology is a gateway-free ap-
proach to legacy system migration which reduces the risk of
increasing complexity [52].

VII. DISCUSSION

The research project’s goal is to design a template method
for software developing organizations. Since the role of a soft-

ware product manager does not necessarily imply having in-
depth knowledge about the product’s source code and technical
architecture, techniques that concern technical competencies
such as the analysis of source code or implemented archi-
tecture, are omitted. Thus, the software product is analyzed
from a functional perspective. However, this might not be
conclusive, and a functional approach may produce more
overhead and consume more resources compared to technical,
potentially automated approaches that were left out in the
research.

During the extraction of entities and functionality from
the software product, functionality is not clustered, nor are
relationships between functionality recorded. Should we have
decided to do so, the process of mapping functionality on
scenarios would have become too complex, due to a cascading
assignment of priorities among functionality. This does not
benefit the efficiency of the template method, as the mapping
phase is not designed to consider such extensive dependencies.

The template method’s deliverable, an instantiation of the
concept REPORT, is not suitable to be considered a product
roadmap. The method does not take into account the required
and available resources for the implementation of each set
of functionality during the mapping phase. The required re-
sources are not exclusively dependent on the characteristics
of the functionality itself, as the difficulty of implementing
functionality can be different per software platform. However,
it has been a conscious decision to exclude the consideration of
resources, as it would increase the complexity of the mapping
phase, making the method less efficient. The prioritized short-
list of requirements, delivered by the method as a report, can
in turn be used as input for roadmap intelligence, as described
in Section I and visualized in Figure 1.

The template method has been designed, instantiated and
validated at a single case company, which produces an inte-
grated ERP software product. It may be possible that validation
at another case company, producing different software prod-
ucts, possibly even adhering to another development method-
ology, may result in different performance. Such validation is
left open for future work.

VIII. CONCLUSION

This research presents the Software Functional Evolution
Method (SFEM), a structured approach towards the evolution
of a software product by mapping functionality between soft-
ware platforms. The template method is designed for software
product managers. The foundations are concerned with a
functional, rather than a technical perspective on software
analysis.

An initial template method is designed on the basis of a
literature review and expert interviews. By means of instanti-
ating the template method in case studies, the performance of
the method is analyzed, which makes it possible to improve
the method by designing method increments.

The method increments are captured and a categorization
is applied to each increment. The categorization enables the
analysis of the complete and incremental method engineering

94

Fig. 6. Template method instantiation for Course management

process, which allows for reflection on the process by the
researcher.

A. Future work

The two case studies in which the template method is
instantiated are performed at one single software developing
organization in the Netherlands, which produces an integrated
ERP system for the Dutch marketplace. Future work validates
and improves the template method by means of case studies at
other software vendors, with different software products and
different project requirements. Thus, a more quantitative ap-
proach towards the instantiation and validation of the template
is subject to future research.

The research project is designed for software product man-
agers, and thus technical approaches for the analysis of soft-
ware products and their architecture are omitted. Future work
explores the (semi-)automated analysis of software products,
to make the process of extracting entities and functionality
more efficient and conclusive.

In the mapping phase of the template method, opportunities
exist for automated application and cascading of priorities,
based on relationships between entities and functionality.
However, this is not explored in this research project, as it is
still unclear what effect cascading has on the outcome of an
instantiation. Such dependencies would require a thoroughly
tested algorithm which automatically cascades a mapping’s
priority based on properties of the relationship between entities
or functionality.

ACKNOWLEDGMENTS

We would like to thank all interviewees who have par-
ticipated in the case studies and group sessions for their
knowledge and cooperation during the research project. Their
contribution has been of great significance to the development
of the template method.

REFERENCES

[1] J. Bisbal, D. Lawless, B. Wu, and J. Grimson, “Legacy information
systems: Issues and directions,” Software, IEEE, vol. 16, no. 5, pp. 103–
111, 1999.

[2] J. T. Yee and S.-C. Oh, “Focusing on RFID, Interoperability, and Sustain-
ability for Manufacturing, Logistics, and Supply Chain Management,”
in Technology Integration to Business. Springer, 2013, pp. 67–95.

[3] V. T. Rajlich and K. H. Bennett, “A staged model for the software life
cycle,” Computer, vol. 33, no. 7, pp. 66–71, 2000.

[4] C. Ebert, “The impacts of software product management,” Journal of
Systems and Software, vol. 80, no. 6, pp. 850–861, Jun. 2007.

[5] W. Bekkers, I. van de Weerd, M. Spruit, and S. Brinkkemper, “A
Framework for Process Improvement in Software Product Management,”
in Systems, Software and Services Process Improvement. Springer
Berlin Heidelberg, 2010, vol. 99, pp. 1–12.

[6] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, “Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses: The PRISMA
Statement,” Annals of Internal Medicine, vol. 151, no. 4, pp. 264–269,
2009.

[7] F. Harmsen, S. Brinkkemper, and H. Oei, Situational Method Engineer-
ing for Information System Project Approaches. University of Twente,
Department of Computer Science, 1994, no. September.

[8] S. Brinkkemper, “Method engineering: engineering of information sys-
tems development methods and tools,” Information and software tech-
nology, vol. 38, no. 4, pp. 275–280, 1996.

[9] I. van de Weerd and S. Brinkkemper, “Meta-Modeling for Situational
Analysis and Design Methods,” in Handbook of research on modern
systems analysis and design technologies and applications. Information
Science Reference, 2008, vol. 35, pp. 35–54.

[10] H. van der Schuur, “Process Improvement through Software Operation
Knowledge: If the SOK Fits, Wear It!” SIKS Dissertation Series, vol.
2011, no. 43, 2011.

[11] R. K. Yin, Case study research: Design and methods. Sage, 2009.
[12] P. Runeson and M. Höst, “Guidelines for conducting and reporting case

study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, Dec. 2009.

[13] International Software Product Management Association. (2014)
Software Product Management Body of Knowledge (SPMBOK).
[Online]. Available: http://ispma.org/spmbok/

[14] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in
Information Systems Research,” MIS quarterly, vol. 28, no. 1, pp. 75–
105, 2004.

[15] Object Management Group, “UML 2.0 superstructure specification,”
Technical Report ptc/04-10-02, Tech. Rep., 2004.

[16] “IEEE Standard Glossary of Software Engineering Terminology,” IEEE
Standard 610.12, 1990.

95

[17] “Systems and software engineering – Software life cycle processes,”
IEEE Standard 12207, 2008.

[18] T. R. Gruber, “A translation approach to portable ontology specifica-
tions,” Knowledge Acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[19] “IEEE Guide for Information Technology - System Definition - Concept
of Operations (ConOps) Document,” IEEE Standard 1362, 1998.

[20] “IEEE Standard for Conceptual Modeling Language - Syntax and
Semantics for IDEF1X97 (IDEFobject),” IEEE Standard 1320.2, 1998.

[21] A. Cooper, The inmates are running the asylum: Why hightech products
drive us crazy and how to restore the sanity. Indianapolis, IN: SAMS,
Macmillan Computer Publishing, 1999.

[22] “IEEE Standard for Adoption of ISO/IEC 26513:2009 Systems and
Software Engineering–Requirements for Testers and Reviewers of Doc-
umentation,” IEEE Standard 26513, 2010.

[23] “IEEE Standard for Information Technology–Systems Design–Software
Design Descriptions,” IEEE Standard 1016, 2009.

[24] “ISO/IEC/IEEE Systems and software engineering – Content of life-
cycle information products (documentation),” IEEE Standard 15289,
2011.

[25] G. G. Chowdhury, “Natural language processing,” Annual Review of
Information Science and Technology, vol. 37, no. 1, pp. 51–89, 2003.

[26] R. Kazman, L. O’Brien, and C. Verhoef, “Architecture Reconstruction
Guidelines, Third Edition,” Software Engineering Institute, Carnegie
Mellon University, Tech. Rep. November, 2003.

[27] R. Kazman and S. J. Carrière, “Playing Detective: Reconstructing
Software Architecture from Available Evidence,” Automated Software
Engineering, vol. 6, no. 2, pp. 107–138, 1999.

[28] L. O’Brien, C. Stoermer, and C. Verhoef, “Software Architecture
Reconstruction: Practice Needs and Current Approaches,” Software
Engineering Institute, Carnegie Mellon University, Tech. Rep. August,
2002.

[29] J. Martin, Managing the data base environment. Prentice Hall PTR,
1983.

[30] M. Stolze, P. Riand, M. Wallace, and T. Heath, “Agile Development
of Workflow Applications with Interpreted Task Models,” in 6th inter-
national conference on Task Models and Diagrams for User Interface
Design. Springer, 2007, pp. 2–14.

[31] C. G. Jung and A. E. Storr, The essential Jung. Princeton University
Press, 1983.

[32] M. Aoyama, “Persona-and-scenario based requirements engineering for
software embedded in digital consumer products,” in Proceedings of
the 13th IEEE International Conference on Requirements Engineering,
2005, pp. 85–94.

[33] P. T. A. Junior and L. V. L. Filgueiras, “User modeling with personas,” in
Proceedings of the 2005 Latin American conference on Human-computer
interaction. New York, New York, USA: ACM Press, 2005, pp. 277–
282.

[34] A. Cooper, R. Reimann, and D. Cronin, About Face 3: The Essentials
of Interaction Design. John Wiley & Sons, 2012.

[35] A. Gawer and M. A. Cusumano, “Platform leadership: How Intel, Mi-
crosoft, and Cisco drive industry innovation,” Innovation: Management,
Policy & Practice, vol. 5, no. 1, pp. 91–94, 2003.

[36] J. Bosch, “From Software Product Lines to Software Ecosystems,” in
Proceedings of the 13th International Software Product Line Conference,
no. Splc. Carnegie Mellon University, 2009, pp. 111–119.

[37] S. Mann, “Wearable computing: a first step toward personal imaging,”
Computer, vol. 30, no. 2, pp. 25–32, 1997.

[38] A. Gawer, Platform dynamics and strategies: from products to services.
Cheltenham: Edward Elgar Publishing Limited, 2009.

[39] P. Berander and A. Andrews, “Requirements Prioritization,” in Engineer-
ing and Managing Software Requirements. Springer Berlin Heidelberg,
2005, pp. 69–94.

[40] Z. Racheva, M. Daneva, and L. Buglione, “Supporting the Dynamic
Reprioritization of Requirements in Agile Development of Software
Products,” in Second International Workshop on Software Product
Management, Barcelona, Catalunya, 2008, pp. 49–58.

[41] T. Bebensee, I. van de Weerd, and S. Brinkkemper, “Binary Priority List
for Prioritizing Software Requirements,” in Requirements Engineering:
Foundation for Software Quality. Springer Berlin Heidelberg, 2010,
pp. 67–78.

[42] D. Leffingwell and D. Widrig, Managing software requirements: a
unified approach. Addison-Wesley Professional, 2000.

[43] K. Wiegers, “First things first: prioritizing requirements,” Software
Development, vol. 7, no. 9, pp. 48–53, 1999.

[44] I. Sommerville and P. Sawyer, Requirements engineering: a good
practice guide. John Wiley & Sons, Inc., 1997.

[45] DSDM Consortium, DSDM Atern Handbook. DSDM Con-
sortium, 2008. [Online]. Available: http://www.dsdm.org/content/
10-moscow-prioritisation

[46] A. M. Davis, “The art of requirements triage,” Computer, vol. 36, no. 3,
pp. 42–49, 2003.

[47] I. van de Weerd, S. Brinkkemper, and J. Versendaal, “Concepts for
Incremental Method Evolution: Empirical Exploration and Validation
in Requirements Management,” in Advanced Information Systems Engi-
neering SE - 33, ser. Lecture Notes in Computer Science, J. Krogstie,
A. Opdahl, and G. Sindre, Eds. Springer Berlin Heidelberg, 2007, vol.
4495, pp. 469–484.

[48] DSDM Consortium, MoSCoW Prioritisation — DSDM Atern Handbook.
DSDM Consortium, 2008. [Online]. Available: http://www.dsdm.org/
content/10-moscow-prioritisation

[49] E. S. Yu and J. Mylopoulos, “Understanding ”why” in software process
modelling, analysis, and design,” in Proceedings of the 16th interna-
tional conference on Software engineering. IEEE Computer Society
Press, 1994, pp. 159–168.

[50] S. R. Tilley and D. Smith, “Perspectives on Legacy System Reengineer-
ing,” 1995.

[51] M. L. Brodie and M. Stonebraker, Migrating legacy systems: gateways,
interfaces & the incremental approach. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1995.

[52] B. Wu, D. Lawless, J. Bisbal, R. Richardson, J. Grimson, V. Wade, and
D. O’Sullivan, “The butterfly methodology: A gateway-free approach
for migrating legacy information systems,” in Third IEEE International
Conference on Engineering of Complex Computer Systems. IEEE, 1997,
pp. 200–205.

96

Appendix B

Activity table

The activities of a Process-Deliverable Diagram (PDD) represent the process of the designed method.
Table B.1 describes the activities of the Software Functionality Evolution Method. The activities of the
method are presented on the left side of the PDD in Figure 4.1. The notation is based on the UML
activity diagram (Object Management Group, 2004).

Main activity Sub activity Description

Project definition Write project plan The project’s outline is defined, so
that a common understanding of the
project’s goal and properties is set.
This concept is also included in the
REPORT. The property Scope of
the concept limits the exploration of
ENTITIES and FUNCTIONALITY in the
project instantiation.

Identify stakeholders Each STAKEHOLDER of the project
is identified and his/her Role in the
project is noted. The person who
instantiates the template method is
also a STAKEHOLDER, as are STAKE-
HOLDERS who are only interested in
the final REPORT. In Section 4.3.1,
a Method Stakeholder Classification
Matrix is proposed, which can help
in the identification and labeling of
the Role of the STAKEHOLDER.

Define domain ontology By analyzing the ENTITIES within the
domain of discourse and how those
ENTITIES are related, a DOMAIN ON-
TOLOGY can be defined (Gruber,
1993). The underlying descriptive
models of the software product can
assist in retrieving an accurate de-
scription of the DOMAIN ONTOLOGY.
The DOMAIN ONTOLOGY lays a basis
for the DATA MODEL.

97

Functionality identification Identify entities within scope Limited by the Scope of the
PROJECT DEFINITION, the ENTITIES
within the project instantiation’s
Scope are identified. The under-
lying descriptive models of the
software product can help in the
identification of ENTITIES.

Identify functionality Based on identified the ENTITIES
and an analysis of the software
product in scope, FUNCTIONALITY is
identified and linked to the ENTITIES
it corresponds with. Section 4.4.1
describes different methods on how
to identify FUNCTIONALITY from a
functional perspective. FUNCTION-
ALITY can be organized by a func-
tionality classifier, as described in
Section 4.4.2, which makes identi-
fication of all FUNCTIONALITY within
the project scope easier and more
efficient.

Define entity relationships By defining the relationships
amongst ENTITIES, the concept
DATA MODEL is instantiated. The
relationships can be extracted from
underlying descriptive models, and
from descriptions of FUNCTION-
ALITY, by interpreting on which
ENTITIES the FUNCTIONALITY acts.

Scenario creation Define personas Based on the actual users of the
software product, PERSONAS are
defined to represent them. A PER-
SONA can be both an actual as a po-
tential user of the software product,
which means that a PERSONA can
also represent a user group from a
new market segment which is about
to be explored. The exploration of
PERSONAS is, however, limited by
the Scope and Goal of the PROJECT
DEFINITION. In Section 4.5.1, differ-
ent properties of a PERSONA are ex-
plored, which help in the instantia-
tion of the concept.

Define software platforms After the PERSONAS in the project
have been identified, an analysis of
new SOFTWARE PLATFORMS can be
made. As with the PERSONAS, the
SOFTWARE PLATFORMS align with
the PROJECT DEFINITION’s Scope
and Goal. Section 4.5.2 explains
more about the analysis of SOFT-
WARE PLATFORMS from a functional
perspective.

98

Create scenarios By combining use cases of PER-
SONAS on the defined SOFTWARE
PLATFORMS, SCENARIOS are de-
fined. It is possible that a PERSONA
is not present on a SOFTWARE PLAT-
FORM, which means this combina-
tion does not produce a SCENARIO.

Functionality mapping Identify mapping candidates By iterating over the instantiations of
FUNCTIONALITY for each SCENARIO,
an initial mapping is made which de-
fines whether or not it would make
sense to provision the FUNCTION-
ALITY for a given SCENARIO. If so,
an instantiation of the concept MAP-
PING is made, with an empty Pri-
ority property. If the FUNCTIONAL-
ITY should not be provisioned for the
given SCENARIO, no MAPPING is in-
stantiated.

Review mapping candidates The reviewing of MAPPING can-
didates is performed in a group
session with selected and relevant
STAKEHOLDERS. The initial MAP-
PINGS are discussed and MAPPINGS
can be added or removed. No Prior-
ity is yet assigned to the MAPPING
during this activity.

Prioritize mapping candidates Parallel with the activity Review
mapping candidates, the MAPPING
candidates are reviewed by assign-
ing a Priority. The activity is per-
formed in a group session with
selected and relevant STAKEHOLD-
ERS. The complexity of this activ-
ity depends on the complexity of the
project instantiation, the complex-
ity of the software product and the
depth of the analysis of FUNCTION-
ALITY. If the decision of a MAPPING
is complex or not sufficiently obvi-
ous, the decision can be captured
in a DESIGN RATIONALE. Different
prioritization techniques, which can
help in the calculation of the Prior-
ity, are described in Section 4.6.1.

Results reporting Select stakeholders Before a REPORT can be created, a
set of STAKEHOLDERS has to be se-
lected, for whom to report to. The
interests of the STAKEHOLDERS de-
termine the level of detail in the RE-
PORT.

99

Create report Tuned to the interests of the se-
lected STAKEHOLDERS, a REPORT of
the project instantiation’s outcome is
created. In Section 4.7, more infor-
mation about the concept REPORT
and categorizations is given.

Report to stakeholders The created REPORT is presented
to the selected STAKEHOLDERS, and
a discussion is held to determine
whether there is consensus about
the REPORT and results being sat-
isfying to all STAKEHOLDERS. If the
STAKEHOLDERS can not reach con-
sensus about the results in the RE-
PORT, a new group session is ini-
tiated to review the MAPPINGS. In
the case where no new iteration
over the MAPPINGS has to be made,
the project instantiation comes to an
end.

Table B.1: Activity table of the SFEM

100

Appendix C

Concept table

The deliverables of a template method instantiation, represented in Table C.1, result from the execution
of activities within an instantiated method. Formal definitions based on the IEEE Standards Definition
Database1 are included, with support of scientific literature and the results from the case study method
instantiations.

The concepts of the template method are visualized on the right side of the Process-Deliverable
Diagram in Figure 4.1. The notation of concepts is based on the UML class diagram (Object Manage-
ment Group, 2004). All instantiations of concepts result from the performance of activities, except for
the concept DESIGN RATIONALE, which is implicitly incorporated in the activities instantiating the concept
MAPPING.

Concept Description

PROJECT PLAN The PROJECT PLAN is a document that describes the technical and man-
agement approach to be followed for a project. The plan typically describes
the work to be done, the resources required, the methods to be used, the
procedures to be followed, the schedules to be met, and the way that the
project will be organized (IEEE Std. 610.12-1990). The PROJECT PLAN is
included in the REPORT of the project’s results, and in any other documenta-
tion that acts as a deliverable of the project. The concept’s properties Scope
and Goal play an important role in the further instantiation of the template
method.

STAKEHOLDER A STAKEHOLDER is an individual or organization having a right, share, claim
or interest in a system or in its possession of characteristics that meet their
needs and expectations (IEEE Std. 12207-2008). The STAKEHOLDER has
a predefined Role in the project. At least one STAKEHOLDER is the project
manager, who is the person with overall responsibility for the management
and running of a project (ISO/IEC/IEEE 26512). A STAKEHOLDER’s role can
be organized as described in Section 4.3.1.

DOMAIN ONTOLOGY An ontology describes the ENTITIES within the domain in discourse, and how
these ENTITIES are interrelated (Gruber, 1993). The DOMAIN ONTOLOGY
represents the domain in which the software product is designed to operate,
the domain of discourse. It is composed of higher-level ENTITIES which are
identified in the product’s functional architecture. The DOMAIN ONTOLOGY
lays the basis for the DATA MODEL.

1http://dictionary.ieee.org

101

http://dictionary.ieee.org

ENTITY In computer programming, an ENTITY is any item that can be named or de-
noted in a program. For example, a data item, program statement, or sub-
program. (IEEE Std. 610.12-1990). The concept FUNCTIONALITY is appli-
cable to ENTITIES, and the relationships between ENTITIES are represented
in the DATA MODEL.

FUNCTIONALITY FUNCTIONALITY concerns the capabilities of the various computational, user
interface, input, output, data management, and other features provided by
a product (IEEE Std. 1362-1998). Techniques to identify software FUNC-
TIONALITY have been described in Section 4.4.1. To organize the instances
of FUNCTIONALITY, a classification can be applied, as is described in Sec-
tion 4.4.2.

DATA MODEL A DATA MODEL identifies the entities, domains (attributes), and relationships
(associations) with other data and provides the conceptual view of the data
and the relationships among data (IEEE Std. 1320.2-1998). The DATA
MODEL serves as a basis for the remainder of a template method instantia-
tion and can be included in a REPORT. A DATA MODEL can be represented
by a UML class diagram (Booch et al., 1999), but a simple tree diagram can
also suffice, depending on the complexity of the software product at hand.

PERSONA PERSONAS are defined as representations of the actual users of a system,
defined by the goals they aim to accomplish. Personas are hypothetical
archetypes of actual users (Cooper, 1999). A PERSONA appears in at least
one SCENARIO, which maps it to at least one SOFTWARE PLATFORM. More
information about the defining of a PERSONA can be found in Section 4.5.1.

SOFTWARE PLATFORM A platform is the combination of an operating system and hardware that
makes up the operating environment in which a program runs (ISO/IEC
26513). Thus, a SOFTWARE PLATFORM defines the environment in which
a software product is designed to operate. In Section 4.5.2, more informa-
tion about the description of a SOFTWARE PLATFORM is given.

SCENARIO The combination of possible and relevant appearances of PERSONAS on
SOFTWARE PLATFORMS creates an instantiation of the concept SCENARIO.
A SCENARIO is used to map FUNCTIONALITY by MAPPINGS and their Priori-
ties.

MAPPING A MAPPING is an assigned correspondence between two things that is rep-
resented as a set of ordered pairs (IEEE Std. 1320.2-1998). The MAP-
PING concept plays a central role in the REPORT of the results of a tem-
plate method instantiation. A MAPPING is created by the combination of a
SCENARIO with FUNCTIONALITY. If no mapping occurs at the SCENARIO,
meaning that a certain FUNCTIONALITY is excluded from a SCENARIO, the
MAPPING does not exist. The Priority of the MAPPING is determined based
on the importance of a set of FUNCTIONALITY for a given SCENARIO. If a
MAPPING has no Priority assigned, it is considered to be a candidate. The
decision and rationale behind a MAPPING can be captured in a DESIGN RA-
TIONALE.

DESIGN RATIONALE A DESIGN RATIONALE is defined as information capturing the reasoning of
the designer that led to the system as designed, including design options,
trade-offs considered, decisions made, and the justifications of those deci-
sions (IEEE Std. 1016-2009). It presents the arguments behind a MAPPING
and its Priority. If the MAPPING changes due to an iteration after the Re-
sults reporting activities, another DESIGN RATIONALE can be assigned to
the same MAPPING. More information about the concept DESIGN RATIO-
NALE can be found in Section 4.6.2.

102

REPORT A REPORT is an information item that describes the results of activities
such as investigations, observations, assessments, or tests (ISO/IEC/IEEE
15289). The results of a template method instantiation are communicated to
selected STAKEHOLDERS by a REPORT, which is designed to suit the STAKE-
HOLDER’s interests. As the needs of the STAKEHOLDER, and thus the details
of the REPORT, highly depend on the situation at hand, we define the RE-
PORT as a closed complex concept. A REPORT incorporates at least one or
more instantiations of the concepts PROJECT PLAN, FUNCTIONALITY, SCE-
NARIO and MAPPING. Section 4.7 describes possible formats of a REPORT.

Table C.1: Concept table of the SFEM

103

104

Appendix D

Case study: Course management in
AFAS InSite

Product CRM

Functiegroep Cursusmanagement

Platform AFAS InSite

Persona Employee (Dutch: Medewerker)
Trainer (Dutch: Docent)
Training manager (Dutch: Cursusbeheerder)

This section describes the execution of the first case study of our research. Its goal is to in-
stantiate the designed method in a closed environment, analyze its performance and design method
increments so that the method can evolve by improvement.

We begin by describing the applied method as it was designed before the execution of the case
study (Section D.1). In Section D.2 we describe the instantiation that results from executing the method.
The results of the analysis of the template method instantiation performance are further elaborated in
Section 5.1.

D.1 Template method

This section explains the method as it was designed before the execution of this case study. The
method’s design is left untouched during the execution phase of the case study, so that its performance
can be analyzed and method increments can be captured. These method increments serve as feedback
for the method’s design, so that it can be improved. This process is also depicted in Figure 2.3, where
the activity Project performance serves Requests for adaptations to the activity Assembly of method
fragments.

For this case study, the conceptual method in Figure D.1 has been applied.

105

Figure D.1: Template method 1: Process-Deliverable Diagram

106

D.1.1 Activity table

The activities of the method are listed in Table D.1.

Main activity Sub activity Description

Project definition Define migration project The project’s outline is defined, so
that a common understanding of
the project’s goal and properties
is made explicit.

Identify stakeholders Each STAKEHOLDER of the project
is identified and his/her role in the
project is noted. The project man-
ager is also a STAKEHOLDER, as
well as STAKEHOLDERS who are
only interested in the final deliver-
able as VISUALIZATION.

Set functionality classifier Depending on the complexity of
the software product at hand,
a FUNCTIONALITY CLASSIFIER is
set.

Define domain ontology By analyzing the entities within
the domain of discourse and how
those entities are related (Gruber,
1993), a DOMAIN ONTOLOGY is
defined. The structure of the data
model of the software product can
assist in retrieving an accurate de-
scription of the DOMAIN ONTOL-
OGY.

Set project scope The scope of the project is set
and saved in the PROJECT DEFINI-
TION. The project scope depends
on the goal of the project at hand.

Objects and functionality Identify objects within scope Limited by the scope in the
PROJECT DEFINITION, the OB-
JECTS that are within the scope
are identified. The software prod-
uct’s data model can assist in the
retrieval of the OBJECTS.

Define object relationships The OBJECT TREE is formed by
identifying relationships between
the different OBJECTS. Re-
lationships are based on the
UML class diagram’s relationship
types (Booch et al., 1999), so that
a common understanding of the
meaning is maintained.

107

Define functionality Based on the OBJECTS in the
OBJECT TREE, FUNCTIONALITY is
identified and linked to the OB-
JECTS it corresponds with. FUNC-
TIONALITY is defined by the
project’s FUNCTIONALITY CLASSI-
FIER.

Platforms and personas Define software platforms The SOFTWARE PLATFORMS that
are within the scope of the
PROJECT DEFINITION are defined.
They align with the goal of the
project at hand.

Define personas For each SOFTWARE PLATFORM,
the types of users that can work
with the SOFTWARE PLATFORM
are defined as PERSONAS.

Combine personas with software
platforms

By combining use cases of PER-
SONAS on the defined SOFTWARE
PLATFORMS, SCENARIOS are de-
fined.

Mapping Identify mapping candidates The identification of mapping can-
didates involves the definition of
either absolute inclusion or exclu-
sion of FUNCTIONALITY to given
SCENARIOS. If FUNCTIONALITY
is not expected in a given SCE-
NARIO, no MIGRATION MAPPING is
created and a void remains.

Review mapping candidates The reviewing of mapping candi-
dates is performed in a group ses-
sion with selected and relevant
STAKEHOLDERS. The previously
determined mapping candidates
are again discussed and decided
upon inclusion or exclusion. This
decision is based on and adjusted
by the decisions made over other
mapping candidates. For exam-
ple, the inclusion of one MIGRA-
TION MAPPING could imply the ex-
clusion of another mapping candi-
date, even though it has been in-
cluded as mapping candidate ear-
lier.

108

Prioritize mapping candidates Parallel with the previous activ-
ity, mapping candidates are prior-
itized, based on the importance
of the MIGRATION MAPPING for the
given SCENARIO. The complexity
of the project at hand determines
the the adhered method to calcu-
late the priority for the MIGRATION
MAPPING. If the decision of a MI-
GRATION MAPPING is complex or
not sufficiently obvious, the deci-
sion can be captured in a DESIGN
RATIONALE.

Peer review The MIGRATION MAPPING and op-
tionally its DESIGN RATIONALE
are discussed in a peer review
session. This can be either
group sessions or individual inter-
views, depending on the complex-
ity and absence of sufficient do-
main knowledge. If no consen-
sus is reached, the priority of the
MIGRATION MAPPING is reconsid-
ered.

Visualization Select stakeholder In order to design and perform
the VISUALIZATION, the STAKE-
HOLDER for whom the VISUALIZA-
TION is designed, is selected.

Design visualization Specialized for the selected
STAKEHOLDER, a VISUALIZATION
is designed and created.

Table D.1: Template method 1: Activity table

109

D.1.2 Concept table

Concept Description

MIGRATION PROJECT DEFINITION The PROJECT DEFINITION includes metadata about the project to
be executed. It is included in the VISUALIZATION of the project’s
outcome, and in any other documentation that acts as a deliver-
able of the project.

STAKEHOLDER A STAKEHOLDER is anyone who plays a significant role in the
project. The STAKEHOLDER has a predefined role in the migra-
tion project. At least one STAKEHOLDER is the project’s project
manager.

FUNCTIONALITY CLASSIFIER The FUNCTIONALITY CLASSIFIER helps to classify FUNCTIONAL-
ITY, so that a standard definition of FUNCTIONALITY can be main-
tained.

DOMAIN ONTOLOGY An ontology describes the objects within the domain in discourse,
and how these objects are interrelated (Gruber, 1993). The DO-
MAIN ONTOLOGY represents the domain in which the software
product is designed to operate, the domain of discourse. It is
composed of higher-lever entities which are identified in the prod-
uct’s functional architecture. The DOMAIN ONTOLOGY helps in the
structuring of the OBJECT TREE.

OBJECT An OBJECT is an entity in the software product in scope, to which
FUNCTIONALITY has been applied. It is equal to an entity in the
UML class diagram (Booch et al., 1999) and can have different
types of relationships with other OBJECTS. The OBJECTS and
their relationships are included in the OBJECT TREE.

OBJECT TREE The OBJECT TREE contains the OBJECTS and their FUNCTION-
ALITY within the software product. It is based on the DOMAIN
ONTOLOGY. The notation for the object tree is the UML class
diagram (Booch et al., 1999).

FUNCTIONALITY FUNCTIONALITY concerns the behavior the software product is
designed to perform for the user. It acts with at least one OB-
JECT. The FUNCTIONALITY CLASSIFIER is used to set a standard
definition for FUNCTIONALITY.

SOFTWARE PLATFORM A SOFTWARE PLATFORM defines the environment in which a soft-
ware product is designed to operate within. It can appear in SCE-
NARIOS in order to be combined with a PERSONA.

PERSONA Cooper (1999) defines PERSONAS as representations of the
users of a system, defined by the goals they wish to accomplish.
They are hypothetical archetypes of actual users.

SCENARIO By combining possible appearances of PERSONAS to SOFTWARE
PLATFORMS, we create SCENARIOS. A SCENARIO is used to map
FUNCTIONALITY in the MIGRATION MAPPING. It plays a central
role in the VISUALIZATION of the output of the project.

110

MIGRATION MAPPING The MIGRATION MAPPING concept plays a central role in the VI-
SUALIZATION of the output of the project. It is formed by the com-
bination of SCENARIOS with FUNCTIONALITY. If no mapping oc-
curs at the SCENARIO, meaning that a certain FUNCTIONALITY is
excluded from a SCENARIO, the MIGRATION MAPPING does not
exist (defined in the activity of identifying mapping candidates).
The priority of the MIGRATION MAPPING is determined based on
its importance in the migration project. The decision about the
MIGRATION MAPPING can be captured in a DESIGN RATIONALE. If
the MIGRATION MAPPING changes due to the group sessions or
peer review, another DESIGN RATIONALE is assigned.

DESIGN RATIONALE A DESIGN RATIONALE captures the decision making arguments
for a MIGRATION MAPPING’s priority. If the MIGRATION MAPPING
changes due to the expert evaluation, another DESIGN RATIO-
NALE is assigned, which implies that one MIGRATION MAPPING
can have multiple DESIGN RATIONALES.

VISUALIZATION The output of a migration project is communicated to selected
STAKEHOLDERS in a VISUALIZATION, which is designed to suit the
STAKEHOLDER’s interests, for instance by means of the degree
of details. Example VISUALIZATIONS include different technology
roadmap types (purpose and format) (Phaal et al., 2004) or a
spreadsheet with SCENARIOS as columns and FUNCTIONALITY
as rows.

Table D.2: Template method 1: Concept table

D.2 Template method instantiation

As suggested by Van der Schuur et al. (2011), creating an instance of a method by instantiating activities
and objects helps to explicate and analyze the actual performance of a method. This enabled analysis
of the method’s performance, which can in turn lead to improvement in terms of method increments.

This section describes the instantiation of the method’s activities and concepts, as reported in
Section D.1.

D.2.1 Activity instantiations

Define migration project

The case study’s migration project takes place at AFAS Software, an ERP software vendor from Leus-
den, The Netherlands. The software suit comprises different products, such as ERP, CRM, HRM,
logistics and finance. This case study is known by code AFAS.Profit.CRM.001. The project’s scope is
prematurely set to Cursusmanagement (training planning), a function group of the CRM product. The
scope is addressed and expanded in a later activity of the method. The start date of the case study and
thus the method instantiation is at 3 February 2014. This is the first version of the case study at the
training planning module. The goal of the project is to compare the output of the migration project
with already completed evolution of the product suite.

111

The concept which acts as output of the activity Define migration project is the MIGRATION
PROJECT DEFINITION. The result of the instantiation is captured in Section D.2.2.

Set project code The project code is written in alphanumeric characters, separated by dots. Any
long textual string can be abbreviated in order to improve legibility. The project code consists of four
sections. The first section defines the organization’s name. The second section defines the software
product suite which is concerned in the migration project. The third section defines the product in the
software product suite which is addressed. The fourth and last section of the project code is an identifier
which can be used to distinguish multiple multiple projects within the same product.

Format: Organization.Suite.Product.Identifier

Value: AFAS.Profit.CRM.001

Set project start date The project start date is set to the first day at which the migration project is
initiated.

Format: DD-MM-YYYY

Value: 03-02-2014

Set project version The project version is defined by numeric characters, separated by dots. It con-
sists of two sections. The first section defines the major updates with a numeric identifier. The second
section defines the minor updates with a numeric identifier.

Format: Major.Minor

Value: 1.0

Describe project goal The migration project’s goal is described in terms of the organization’s and
migration project’s aim and vision.

The goal of this migration project is to execute the project for the CRM product’s Cursusmanagement
(training planning) function group, and compare these results with the actual evolution of the product’s
functionality. The software product has already evolved its functionality of Cursusmanagement to
new software platforms by means of pragmatic reasoning and project management. This provides
sufficient means to compare the outcome of pragmatic evolution with structured evolution of software
functionality. The software platforms to be migrated towards are AFAS InSite and AFAS OutSite,
web-based software platforms which run in the user’s browser. The personas include all personas
which can be identified on the AFAS InSite and AFAS OutSite platforms. The required deliverable
of the project is a software product roadmap for the functionality in the Cursusmanagement function
group, with priorities defining which functionality to migrate, and in which order.

Identify stakeholders

The STAKEHOLDERS of this migration project are identified in collaboration with the product management
team of AFAS Software. Each stakeholder must play a significant role in the contribution to the project,
either in a direct or indirect way.

112

In order to classify the stakeholders of the project, we introduce a classification matrix that is
based on the interaction with the method’s deliverables, and the degree of participation in the method
execution. Based on these two parameters, we introduce the following “stakeholder classification ma-
trix”:

Figure D.2: Method Stakeholder Classification Matrix

Participation The degree of Participation defines how active a stakeholder is within the execution of
the project. Active stakeholders play a role during the length of the project execution, while passive
stakeholders are only interested in a portion of the project, or only just its deliverables.

Interaction The degree of Interaction defines how direct a stakeholder acts with the deliverables of the
project. A direct relationship implies that the stakeholder gets the results of the project directly through
its deliverables, or even contributes to the creation of the deliverables. An indirect relationship implies
that the stakeholder only sees results of the project in an edited, more narrow way, without being aware
of the decisions or precise details.

Participant The stakeholder role Participant is an active stakeholder who directly interacts with the
deliverables of the project. The stakeholder can be involved as the manager of the project, or someone
who delivers direct input through means of expert validations or interactions based on questions of the
project manager.

Observer The stakeholder role Observer is a passive stakeholder who directly interacts with the de-
liverables of the project. This could be someone who needs to approve or understand the output of the
project, without it being edited by stakeholders other than those with the role Participant.

Informer The stakeholder role Informer is an active stakeholer who indirectly interacts with the deliv-
erables of the project. This means that in order for the stakeholder to interact with the deliverables, a
passthrough from a direct stakeholder is necessary. The Informer often acts as a provider of knowledge
for the Participant stakeholder role.

113

Outsider The stakeholder role Outsider is a passive stakeholder who indirectly interacts with the
deliverables of the project. The stakeholder plays no role in the decision making project and does not
get to see the whole picture of the project’s deliverables, but is rather provided with a modified view with
an as-is status.

Based on the proposed classification and the stakeholders within the product development team
of AFAS Software, the stakeholders, their roles and classification are identified and the concept STAKE-
HOLDER is instantiated in Section D.2.2.

Notice how the table of stakeholders does not list any Outsiders at this point of time. That is
because there is no actual plan to actually develop the method’s outcome yet. As mentioned before,
the purpose of this migration project is only to compare the outcome of a structured approach with that
of a pragmatic approach.

Set functionality classifier

In AFAS Profit, an authorization tool is present to control which users can perform specific functionality
in the software product. The authorization tool allows an administrator to give access to user groups,
known as “roles”. In the AFAS Profit Windows product, the following rights can be provided to users:

• No access
• View only
• Maintain

However, we believe that the web-based software platforms allow for much more personas and
functionality to be executed, which is why we wish to expand the classification beyond these three
classes. The CRUD classification of operations is therefore a better, more detailed specification which
suits the use of a wide range of functionality better. The abbreviation CRUD stands for Create, Read,
Update and Delete, which can be seen as the fundamentals of any software operation. The article
by Cooper et al. (2010) suggests the addition of the Scan operation, which allows for reading a number
of records and defines the Read method as reading only a single record. We do not think this adds
any extra value in this case study, as in most cases a single record can only be accessed through an
aggregated view of multiple records.

To conclude, in this migration project the FUNCTIONALITY CLASSIFIER is the CRUD classifica-
tion of operations, which is specified in the instantiated concept FUNCTIONALITY CLASSIFIER in Sec-
tion D.2.2.

Define domain ontology

The AFAS Profit software product is a suite of multiple information system functions combined. For
instance, the software product does not only include functionality that is common in an enterprise
resource planning (ERP) application, but also includes a product for customer relationship manage-
ment (CRM) and human resource management (HRM). These are marketed as different products with
different licenses, while the software product is packaged in one application and runs from one architec-
ture. The products are also integrated, which means that an entity of a person can simultaneously be a
trainee (CRM), an employee of the organization (HRM), while ordering products from the organization’s
catalog (ERP).

114

Therefore, the highest level of entities in the ontology is the products within the AFAS Profit suite.
A product is then subdivided into function groups, which serve a shared goal or theme. For instance, the
CRM product has the function group Training planning (Cursusmanagement), which manages trainings
provided by an organization to its clients. A level lower is are entities, which are objects which can be
acted upon by functionality. For instance, the function group Training planning has objects which repre-
sent the trainings themselves, the corresponding occurrences as events, and trainees as attendees. In
the hierarchy of the ontology, objects can have other objects as parents or children in relationships. An
example is the relationships between Training, Event, Session, Trainee and Organization/Person.

The domain ontology for this migration project is represented in the instantiated concept DOMAIN
ONTOLOGY in Section D.2.2.

Set project scope

The project scope has been prematurely set in this method instantiation’s activity Define migration
project in Section D.2.1. The scope is set to Cursusmanagement (training planning), which is at the
DOMAIN ONTOLOGY level of Functiegroep. This means that all Gegevens and Functionaliteit of the
Functiegroep are included.

The activity contributes to the instantiated concept MIGRATION PROJECT DEFINITION.

Identify objects within scope

The scope, as defined in the instantiated concept MIGRATION PROJECT DEFINITION, is set to the Func-
tiegroep Cursusmanagement. Looking at the DOMAIN ONTOLOGY, the concept OBJECT is instantiated
as Gegeven in this migration project. Because a Gegeven can have relationships with other Gegevens,
which leads to the instantiation of the concept OBJECT TREE, we show all objects in this activity, and
create relationships between them in the next activity.

We first describe the objects that are directly in the function group of Cursusmanagement. This
excludes the objects that are included in the migration project because they are related or inherited by
objects that are directly included in the function group. The data has been acquired by running the tool
Gegevensverzamelingen in AFAS Profit, which returns a list of OBJECTS in the AFAS Profit database,
and in which Product and Functiegroep they are included.

Because we do not look any further than the objects that are directly in the function group Cur-
susmanagement, we miss out on the OBJECTS and FUNCTIONALITY that are important for Cursusman-
agement to work, yet are not directly linked. Therefore, the next activity (Define object relationships)
goes deeper into the function group, identifying OBJECTS that are also indirectly linked to the function
group Cursusmanagement. These OBJECTS are then included in the full view of the OBJECT TREE.

Define object relationships

The instantiated concept OBJECT can be related to one another by defining relationships, from which the
concept OBJECT TREE is instantiated. The relationships have been defined by analyzing a full-access
environment in AFAS Profit in which relationships between objects are represented by tabs in views in
the user interface.

The resulting instantiation of the concept OBJECT TREE is represented in Section D.2.2. The
UML class diagram notation has been omitted, because in this case study it has been determined that
a simple descending tree visualization would serve the cause well enough.

115

As mentioned in the previous activity, this activity also reveals other OBJECTS that are included in
the function group Cursusmanagement, but through and indirect relationship. This means the OBJECTS
are related to OBJECTS that are directly included in Cursusmanagement.

In the OBJECT TREE, we have stopped to go deeper into the OBJECT relationships when we
identified an OBJECT which is too complex, for instance by having too many relationships with other
OBJECTS. This is the case at the OBJECT Organisatie/persoon. This OBJECT has too many relationships
with other OBJECTS, yet out of scope in Cursusmanagement, and is therefore not further elaborated in
the OBJECT TREE.

Define functionality

The concept FUNCTIONALITY has been instantiated by assistance of the instantiated concept FUNC-
TIONALITY CLASSIFIER, which is CRUD. As was described in Section D.2.1, the original classification of
functionality which is used in AFAS Profit does not align well enough with the diversity of personas in
the new software platforms.

The operators Create, Read, Update and Delete have been applied to the different OBJECTS
that have been identified. The result was that most of the FUNCTIONALITY was based on the CRUD
FUNCTIONALITY CLASSIFIER. However, the user interface exposed other functionality as well, which
goes beyond the direct application of four CRUD operators to OBJECTS. For instance, we identified
FUNCTIONALITY that implied both the Update of an OBJECT, while Deleting another.

An example is the FUNCTIONALITY with ID 42: Organisatie/persoon samenvoegen met andere
Organisatie/persoon. This FUNCTIONALITY moves all data and relationships from Organisatie/persoon
A to Organisatie/persoon B, and then removes Organisatie/persoon A.

Because the OBJECT TREE inherited OBJECTS that were not directly in the function group Cursus-
management, we had to expand our research into other function groups in order to give a full overview of
the functionality that is either directly or indirectly integrated in the migration project’s scope. However,
to avoid the migration project becoming too complex and large, we have limited the listing of FUNC-
TIONALITY to only those OBJECTS that are included in the function group Cursusmanagement, or play a
significant role in the FUNCTIONALITY of the function group.

For instance, we have excluded the further elaboration of the FUNCTIONALITY that is applicable
to the OBJECT Administratie, because the FUNCTIONALITY is not relevant to the function group Cursus-
management. On the other hand, we did include FUNCTIONALITY on the OBJECT Organisatie/persoon,
because this functionality is inherited by the OBJECTS Docent and Deelnemer (Cursist), which both are
included in the function group Cursusmanagement.

In the identification and definition of FUNCTIONALITY, no source code or official data representa-
tions have been consulted. The FUNCTIONALITY has been defined by interacting with the user interface
of the software product and interpreting this into the instantiation of the required concepts. This ap-
proach has been chosen, because the analysis of source code or official data representations would
produce too much overhead, which does not serve a significant contribution to the migration project.

By listing all OBJECTS within the OBJECT TREE, it has been able to identify those OBJECTS within
the migration project’s scope which still miss their applicable functionality. A complete list of all OBJECTS
that are either directly or indirectly inherited by functiegroep Cursusmanagement is shown in Table D.8.

116

Define software platforms

The SOFTWARE PLATFORM in scope of this migration project is called AFAS InSite. AFAS InSite is a
web-based SOFTWARE PLATFORM which runs in a web browser. It does not require any additional third-
party software in order to operate, such as Adobe Flash1 or Microsoft Silverlight2. In order to enlarge
compatibility with modern systems, the system relies on standard client-side features like Javascript and
cookies, which are enabled by default in modern web browsers.

In order to use the web application, a user is required to login with his/her credentials. Apart from
password recovery, no functionality is available to unauthorized users. This creates several advantages,
such as:

• Performed actions can be linked to and tracked back to the authorized user
• A user can only access pages, views and data to which he/she has the required authorization
• Workflows can be assigned to users and followed up by means of tasks in AFAS InSite
• Personal and confidential information, such as upcoming meetings, declaration status and salaries,

can be presented with discretion

The creation and implementation of web pages in AFAS InSite is performed from the web in-
terface itself, without the necessity of complex configuration controls from the AFAS Profit Windows
application. Administrators with the right level of authorization can use the Content Management Sys-
tem (CMS) functionality to create pages, include widgets, design menu structures, and more. Since
changes need to be published before becoming available to all users, an administrator can design
changes in a conceptual version, without interfering with the usability of active users. The online ad-
ministration interface also allows the changing of the site’s theme, without the necessity of touching a
single line of code. This so-called What You See Is What You Get (WYSIWYG) editor makes it possible
to manage the website’s content and theme and structure, without prior knowledge of how to write code
or understand how a website technically works.

The AFAS InSite application already hosts a set of functionality which is derived from the AFAS Profit
Windows application, which hosts the original set of functionality of the software suite. Examples of func-
tion groups that have already been migrated include document management, workflow management,
dossier items, and organizations/persons from the CRM product.

However, besides the migration of functionality that is already present in the AFAS Profit Windows
application, the web-based software platform also enables the addition of new functionality. AFAS InSite
puts great emphasis on Self Service. For instance, Employee Self Service (ESS) and Manager Self
Service (MSS). These two concepts enable the vision of capturing information directly at its source (the
employee/manager) and reduces the communication between employees via information carriers such
as email or printed forms.

Define personas

This case study concerns a total of three PERSONAS. The lowest level is that of Employee (Dutch:
Medewerker). An Employee is basically anyone in an organization with an active state of employment.
The other two PERSONAS, Trainer (Dutch: Docent) and Training manager (Dutch: Cursusbeheerder),
inherit the functionality and authorization of the basic PERSONA Employee, as they are also required to
have an active state of employment.

1http://www.adobe.com/software/flash/about
2http://www.microsoft.com/silverlight

117

http://www.adobe.com/software/flash/about/
http://www.microsoft.com/silverlight/

Since an Employee is any person with an active state of employment, we must proceed with
caution when assigning FUNCTIONALITY to a SCENARIO which is based on the PERSONA Employee.
The intention of an Employee in FUNCTIONALITY of Cursusmanagement is often informative, as they do
not need to control or manage the processes that surround Trainings. This means he or she does not
have the intention to add, change or remove data from a Training.

A Trainer inherits all the functionality and authorization of an Employee, and thus also has an
active state of employment. In the case study at AFAS Software, a Trainer is most often a consultant,
and sometimes a product manager. Trainings are provided by one Trainer at the time. Based on their
expertise, a consultant is assigned to a Training on a regular basis. Since consultants are working with
implementations, optimizations and knowledge transfer to customers on a daily basis, they have the
right skills required to educate users and help them getting started with the AFAS Profit product.

A Training manager is not necessarily a Trainer, yet is an Employee. They manage the available
Trainings, publish information about them in the customer portal, and manage subscriptions of Trainees.
They perform administrative functions on Trainings either through AFAS Profit Windows or AFAS InSite.
The main characteristics of the actions they perform are focused on planning, as the operational actions
at the days of the Trainings themselves are handled by the Trainers.

Considering the access rights of an Employee, Trainer or Training manager, AFAS Profit offers
two options of action at the termination of employment. First, when the employment is terminated, the
account’s authorization is automatically reduced to a level where the user can login, but does not have
authority to access any page of InSite. Second, if the user’s account is also locked (Dutch: geblok-
keerd), the user is also not able to login, which locks him/her entirely out of the system. Based on this
observation, we can conclude that any user in AFAS InSite is indeed an employee with an active state
of employment.

Combine personas with software platforms

In this case study, we examine only one SOFTWARE PLATFORM and three PERSONA, which leads to
a total of three combinations, instantiating the concept SCENARIO. The PERSONA Employee is very
generic, and should therefore be treated carefully. The other two PERSONAS are more specific and
can therefore be treated with more certainty. Because the PERSONAS Trainer and Training manager
inherit functionality from the generic PERSONA Employee, any of the three PERSONAS have always got
access to the AFAS InSite SOFTWARE PLATFORM of their organization, as they are in an active state of
employment.

Identify mapping candidates

The activity of the identification of MIGRATION MAPPING candidates focuses on the question whether or
not an instance of FUNCTIONALITY should be present in an instantiated SCENARIO. For this case study,
that means whether or not a set of FUNCTIONALITY should be available for an Employee, Trainer or
Training manager in AFAS InSite. This activity does not concern the assigned priority or rationale of a
MIGRATION MAPPING, even though details about the decision may be captured in a DESIGN RATIONALE.

Looking at the SCENARIO of an Employee in AFAS InSite, we must proceed with caution when we
decide about the MIGRATION MAPPING of FUNCTIONALITY. An Employee is a very generic description
of a PERSONA, and its access rights are inherited by any logged in and employed user in AFAS InSite.

On the other hand, the SCENARIOS with the PERSONAS Trainer and Training manager are more
specific and the activities and goals for the Trainer can be considered operational, while the Training
manager performs more tactical or planning-centered activities.

118

The identification of MIGRATION MAPPING candidates is performed by one individual, Gerard Ni-
jboer, who was identified as Project manager in the STAKEHOLDER matrix. The activity is considered
to be a preparation for the activities followed by the Identify mapping candidates activity, which are Re-
view mapping candidates and Prioritize mapping candidates. These parallel activities are performed in
a group session, as interaction and discussion is required to prepare well enough for the Peer review
activity.

As the selecting of candidates concerns an absolute definition of simply inclusion or exclusion of
FUNCTIONALITY, the activity produces a list of MIGRATION MAPPING candidates which can be used as
input for the next activities. However, it can also be concluded that any FUNCTIONALITY which does not
have a MIGRATION MAPPING assigned, is considered excluded from the SCENARIO. This set of FUNC-
TIONALITY can then also be grouped together in a list of FUNCTIONALITY, which also serves as input for
the parallel group session activities. The list gives a quick overview of the excluded FUNCTIONALITY,
which improves the efficiency of the activity Review mapping candidates, because it provides not only
a list of included FUNCTIONALITY, but also the excluded FUNCTIONALITY.

Review mapping candidates

In a group session with two product managers of AFAS Software, Henk van der Schuur and Mohamed
Amri, this activity and the subsequent activity concerning the prioritization of MIGRATION MAPPINGS
have been performed. This activity has been performed prior to the prioritization activity, even though
we can say the activities run parallel as prioritization was discussed, yet not captured, during the first
activity.

To start the group session, a short presentation of 5 minutes was held in order to create common
ground on which to build the rest of the activity. This included some of the instantiated concepts of the
activities in the method that have already been performed, such as the PERSONAS. Through means of
open discussion, the identified mapping candidates have been discussed. This caused some movement
in the eventual outcome of the MIGRATION MAPPING candidates. Even between both product managers,
some positive discussion was held which caused some shifts in the MIGRATION MAPPINGS.

The changed MIGRATION MAPPINGS have directly been recorded into the database of the project.
This made it possible to change MIGRATION MAPPINGS live on the screen, so that an actual represen-
tation of the project’s progress was shown, which could also directly be validated by the members of
the group session. In total, 32 changes were made to the MIGRATION MAPPINGS, which could either be
a change from inclusion to exclusion or vice versa, or adding an additional MIGRATION MAPPING to the
current list.

Prioritize mapping candidates

Due to a shortage of time, the session in which we had planned to review and prioritize the mapping
candidates, was split into two sessions. In the second session, the mapping candidates of the first ses-
sion were left as they resulted from the previous activity, though some FUNCTIONALITY was eventually
left out, even though they were identified as mapping candidates. This was due to the fact that the
priority was considered too low when assigning a priority.

119

In consultation with the two product managers who were collaborating in the case study, it was
agreed that a priority for a given MIGRATION MAPPING should be any integer number from 0 to 5, where
0 would imply exclusion of the FUNCTIONALITY, 1 is the lowest priority, and 5 is the highest priority.
However, during the execution of the project, it was recognized that we had not created an complete
vision on the meaning of the numbers, as it left room for interpretation. For instance, a MIGRATION MAP-
PING with the highest priority does not imply that it is crucial for the migration project to be successful,
nor does it imply whether it contributes to the minimum viable product, and if that was aimed for in the
project. This is something we should have considered in the initiation phase of the migration project,
where we needed to agree on the precise goal of the project.

In total, 97 mappings of the 135 sets of FUNCTIONALITY in the function group Cursusmanagement
were updated. As with the previous session, this session was also recorded, which did not put too much
pressure on the capturing of DESIGN RATIONALES. Therefore, only one DESIGN RATIONALE was created.
Of the 106 changed DESIGN RATIONALES, 3 were initially identified as a mapping candidate, yet in this
session assigned a priority of 0. Since there were 135 sets of functionality, and 3 PERSONAS and thus 3
SCENARIOS, a total of 405 sets of MIGRATION MAPPINGS could have been assigned. This means that 24
percent (97/405) of the potential MIGRATION MAPPINGS have resulted in an actual MIGRATION MAPPING.
In total, 45 MIGRATION MAPPING candidates are accepted as a result of the activity.

The concept MIGRATION MAPPING has been instantiated in Section D.2.2. It shows only those
combinations of FUNCTIONALITY with SCENARIOS that have been identified as potentials to be migrated
to the SOFTWARE PLATFORM AFAS InSite. The priorities for the SCENARIOS Cursusbeheerder, Docent
and Medewerker are displayed in the last three columns of the table. This is not the final VISUALIZATION,
which is supposed to be tuned to selected STAKEHOLDERS.

Peer review

In order to start the peer review activity, a VISUALIZATION had to be designed to present the outcome
of the case study so far. This included a list of FUNCTIONALITY, with the MIGRATION MAPPINGS in
three columns. To support the integrity of the deliverable we wish to present, we have added multiple
columns. One column sums the three priorities of the MIGRATION MAPPINGS per SCENARIO together,
which implies a maximum of 15 points. The next column counts the number of MIGRATION MAPPINGS
present for the FUNCTIONALITY that is covered in the row. The third added column shows the average
priority for the FUNCTIONALITY, depending on the number of MIGRATION MAPPINGS.

We acknowledge that the resulting average is skewed when there is only one MIGRATION MAP-
PING present, compared to a more diverse set of FUNCTIONALITY with more MIGRATION MAPPINGS.
Another way to calculate the average is taking the sum of the MIGRATION MAPPING priorities and divid-
ing this by the total number of identified SCENARIOS, which is 3 in this case study. However, we have
discussed the preferred calculation of the average with the peers, and we concluded to take the actual
number of applicable SCENARIOS for a set of FUNCTIONALITY to calculate the average with.

Select stakeholder

For this migration project, the STAKEHOLDERS have already been defined in Section D.2.2. Based on
this table of STAKEHOLDERS and their roles, we design a visualization for Henk van der Schuur (product
manager) and Mohamed Amri (manager product management). The other STAKEHOLDERS are not
included in the presentation of the deliverables, since this case study does not concern them at this
moment of time.

120

Design visualization

For the VISUALIZATION of the case study for the selected STAKEHOLDERS, we have reused the VISUAL-
IZATION we designed in the activity Peer review. By exporting the results to Excel, we have been able to
add conditional formatting. The formatting colored the values in the last six columns in the color green.
The intensity of the color is dependent on the value, which means a cell with value 5 is 100% green, and
a cell with value 1 is left white. The rows in the VISUALIZATION have been sorted on the final column, in
descending order. The next ordering takes place on the column Gegeven and Functionaliteit. This was
decided in cooperation with the STAKEHOLDERS in the Peer review activity.

Since the number of STAKEHOLDERS for this case study was limited, we have decided to only
create one VISUALIZATION, represented in Figure D.4.

As described in the Process-Deliverable Diagram and the concept table of the template method,
the VISUALIZATION also includes a summary of the MIGRATION PROJECT DEFINITION. This helps to
identify the case study for which the VISUALIZATION was designed.

D.2.2 Concept instantiations

MIGRATION PROJECT DEFINITION

MIGRATION PROJECT DEFINITION

Code AFAS.Profit.CRM.001

Scope Cursusmanagement

Start date 3 February 2014

Version 1.0

Goal Migration to AFAS InSite

Table D.3: MIGRATION PROJECT DEFINITION

121

STAKEHOLDER

Name Role Classification

Henk van der Schuur Product manager Participant

Gerard Nijboer Project manager Participant

Mohamed Amri Manager product management Informer

Bas van der Veldt Chief executive officer Observer

Dennis van Velzen Chief product development Observer

Table D.4: Stakeholders

PARTICIPATION

Active Passive

INTERACTION
Direct Participant

Gerard Nijboer
Henk van der
Schuur

Observer
Bas van der Veldt
Dennis van Velzen

Indirect Informer
Mohamed Amri

Outsider

Table D.5: Instantiated stakeholder classification matrix

FUNCTIONALITY CLASSIFIER

Create: Creates a single record in the database

Read : Reads one or more records from the database

Update: Updates a single record from the database, adding or replacing properties (Cooper et al., 2010)

Delete: Deletes a single record from the database

122

DOMAIN ONTOLOGY

Figure D.3: DOMAIN ONTOLOGY

123

OBJECT

ID Object

152 Bezettingsoverzicht

877 Cursus

17 Cursussessie

21 Cursusvoorkennis

16 Dagdeel

20 Deelnemer (Cursist)

15 Docent

19 Evenement

878 Presentie

884 Rol

885 Werkgebied

Table D.6: OBJECTS directly within Cursusmanagement

OBJECT TREE

Gegeven Functiegroep

— Bezettingsoverzicht Cursusmanagement

— Cursus Cursusmanagement

—— Administratie Administratie

—— Afbeelding

—— Artikelgroep Item

—— Btw-tariefgroep

——— Land Inrichting

—— Cursusvoorkennis Cursusmanagement

—— Docent Cursusmanagement

——— Organisatie/persoon Organisatie/persoon

124

—— Dossieritem Dossier

—— Eenheid

—— Evenement Cursusmanagement

——— Administratie Administratie

——— Cursussessie Cursusmanagement

———— Dagdeel Cursusmanagement

———— Docent Cursusmanagement

————— Organisatie/persoon Organisatie/persoon

———— Locatie Inrichting

——— Dagdeel Cursusmanagement

——— Deelnemer (Cursist) Cursusmanagement

———— Organisatie/persoon Organisatie/persoon

———— Presentie Cursusmanagement

——— Docent Cursusmanagement

———— Organisatie/persoon Organisatie/persoon

——— Dossieritem Dossier

——— Locatie Inrichting

——— Project Project

——— Projectfase Project

—— Extra barcode Item

—— Kostprijs Prijs/korting

—— Land Inrichting

—— Locatie Inrichting

—— Prijsgroep Prijs/korting

—— Rol Cursusmanagement

—— Verkoopfactuurregel Facturen

—— Verkooporderregel Verkoopproces

—— Verkoopprijs Prijs/korting

125

—— Werkgebied Cursusmanagement

— Cursussessie Cursusmanagement

—— Dagdeel Cursusmanagement

—— Docent Cursusmanagement

——— Organisatie/persoon Organisatie/persoon

—— Locatie Inrichting

— Cursusvoorkennis Cursusmanagement

— Dagdeel Cursusmanagement

— Deelnemer (Cursist) Cursusmanagement

—— Organisatie/persoon Organisatie/persoon

—— Presentie Cursusmanagement

— Docent Cursusmanagement

—— Organisatie/persoon Organisatie/persoon

— Evenement Cursusmanagement

—— Administratie Administratie

—— Cursussessie Cursusmanagement

——— Dagdeel Cursusmanagement

——— Docent Cursusmanagement

———— Organisatie/persoon Organisatie/persoon

——— Locatie Inrichting

—— Dagdeel Cursusmanagement

—— Deelnemer (Cursist) Cursusmanagement

——— Organisatie/persoon Organisatie/persoon

——— Presentie Cursusmanagement

—— Docent Cursusmanagement

——— Organisatie/persoon Organisatie/persoon

—— Dossieritem Dossier

—— Locatie Inrichting

126

—— Project Project

—— Projectfase Project

— Presentie Cursusmanagement

— Rol Cursusmanagement

— Werkgebied Cursusmanagement

Table D.7: Object tree

ID Gegeven Functiegroep

15 Docent Cursusmanagement

16 Dagdeel Cursusmanagement

17 Cursussessie Cursusmanagement

19 Evenement Cursusmanagement

20 Deelnemer (Cursist) Cursusmanagement

21 Cursusvoorkennis Cursusmanagement

39 Land Inrichting

71 Organisatie/persoon Organisatie/persoon

99 Dossieritem Dossier

147 Afbeelding

152 Bezettingsoverzicht Cursusmanagement

264 Btw-tariefgroep

593 Eenheid

628 Verkoopfactuurregel Facturen

640 Artikelgroep Item

654 Extra barcode Item

656 Kostprijs Prijs/korting

659 Prijsgroep Prijs/korting

661 Verkoopprijs Prijs/korting

127

680 Verkooporderregel Verkoopproces

827 Project Project

830 Projectfase Project

877 Cursus Cursusmanagement

878 Presentie Cursusmanagement

882 Administratie Administratie

883 Locatie Inrichting

884 Rol Cursusmanagement

885 Werkgebied Cursusmanagement

Table D.8: Inherited objects in Cursusmanagement

FUNCTIONALITY

Gegeven CRUD Functionaliteit

DAGDEEL C Dagdeel toevoegen

R Dagdeel weergeven

U Dagdeel bewerken

D Dagdeel verwijderen

CURSUSSESSIE C Cursussessie aan cursusevenement toevoegen

R Cursussessie van cursusevenement weergeven

U Cursussessie van cursusevenement bewerken

D Cursussessie van cursusevenement verwijderen

EVENEMENT C Evenement voor cursus toevoegen

R Evenement voor cursus weergeven

U Evenement voor cursus bewerken

D Evenement voor cursus verwijderen

DEELNEMER (CURSIST) C Deelnemer aan evenement toevoegen

R Deelnemers voor evenement weergeven

U Deelnemer voor evenement bewerken

D Deelnemer voor evenement verwijderen

U Deelnemer voor evenement verplaatsen

C Deelnemer voor evenement kopiëren

R Deelnemer per evenement weergeven

CURSUSVOORKENNIS C Cursusvoorkennis toevoegen aan cursus

R Cursusvoorkennis van cursus weergeven

U Cursusvoorkennis van cursus bewerken

128

Gegeven CRUD Functionaliteit

D Cursusvoorkennis van cursus verwijderen

LAND R Land weergeven

U Land bewerken

ORGANISATIE/PERSOON C Organisatie/persoon toevoegen

R Organisatie/persoon weergeven

U Organisatie/persoon bewerken

D Organisatie/persoon verwijderen

U Wijzigen persoon-/organisatiecode

UD Organisatie/persoon samenvoegen met andere Organisatie/persoon

U Omzetten van organisatie naar persoon en vice versa

R Afdrukken stamkaart

C Samenvoegregel toevoegen

U Samenvoegregel uitvoeren

D Samenvoegregel verwijderen

DOSSIERITEM C Dossieritem toevoegen

R Dossieritem weergeven

U Dossieritem bewerken

D Dossieritem verwijderen

D Dossieritem collectief verwijderen

C Subdossier toevoegen aan dossieritem

D Subdossier van dossieritem verwijderen

R Dossieritem afdrukken

C Insturen dossieritem

C Dossieritem op agendaplanning zetten

C E-mail dossieritem

R Bestemmingen van dossieritem weergeven

R Aanleiding van dossieritem weergeven

R Gebruikers per dossieritem weergeven

R Workflowhistorie van dossieritem weergeven

R Reacties van dossieritem weergeven

C Bijlage aan dossieritem toevoegen

R Bijlage van dossieritem weergeven

U Bijlage van dossieritem bewerken

D Bijlage van dossieritem verwijderen

U Bestemming van dossieritem bewerken

U Status “Afgehandeld” van dossieritem opheffen

U Dossieritem collectief bewerken

U Dossier archiveren

AFBEELDING C Afbeeldingen importeren

C Afbeelding toevoegen

D Afbeelding verwijderen

129

Gegeven CRUD Functionaliteit

R Afbeelding weergeven

U Afbeelding bewerken

R Afbeelding opslaan

R Afbeelding kopiëren

CU Afbeelding plakken

U Toelichting van afbeelding bewerken

R Afbeelding tonen in groot formaat

BEZETTINGSOVERZICHT R Bezettingsoverzicht cursussen weergeven

R Bezettingsoverzicht locaties weergeven

BTW-TARIEFGROEP C Btw-tariefgroep toevoegen

R Btw-tariefgroep weergeven

U Btw-tariefgroep bewerken

D Btw-tariefgroep verwijderen

EENHEID R Eenheid weergeven

VERKOOPFACTUURREGEL R Verkoopfactuurregel weergeven

ARTIKELGROEP R Artikelgroep weergeven

EXTRA BARCODE R Extra barcode weergeven

KOSTPRIJS R Kostprijs weergeven

PRIJSGROEP R Prijsgroep weergeven

VERKOOPPRIJS R Verkoopprijs weergeven

VERKOOPORDERREGEL R Verkooporderregel weergeven

PROJECT R Project weergeven

PROJECTFASE R Projectfase weergeven

CURSUS C Cursus toevoegen

R Cursus weergeven

U Cursus bewerken

D Cursus verwijderen

U Wijzigen cursuscode

PRESENTIE R Presentie van deelnemers weergeven

U Presentie van deelnemers bewerken

ADMINISTRATIE R Administratie openen

CR Administratie toevoegen

D Administratie verwijderen

R Administratie eigenschappen weergeven

U Administratie eigenschappen bewerken

R Informatie over Profit weergeven

R Reservekopie maken

CU Reservekopie terugzetten

LOCATIE C Locatie toevoegen

R Locatie weergeven

U Locatie bewerken

130

Gegeven CRUD Functionaliteit

D Locatie verwijderen

ROL U Rol van doelgroep bewerken

C Rol van doelgroep toevoegen

R Rol van doelgroep weergeven

D Rol van doelgroep verwijderen

WERKGEBIED U Werkgebied van doelgroep bewerken

C Werkgebied van doelgroep toevoegen

R Werkgebied van doelgroep weergeven

D Werkgebied van doelgroep verwijderen

Table D.9: Functionality of objects in Cursusmanagement

131

SOFTWARE PLATFORM

AFAS InSite

Functional context

• Online Content Management System allows for website administration without required knowledge
of web programming

• Personal login inherits authorization and personal data and configuration
• Creating documents, pages and other content provides a What You See Is What You Get (WIYSI-

WYG) editor
• Operates in any modern web browser with cookies and Javascript enabled, and is thus platform-

independent
• Changes to the website’s administration can be designed in a conceptual environment, and be

published in a later stage
• Strives for the implementation of AFAS’ vision on Self Service (ESS, MSS)
• Users can login anywhere, at any time, independent of location, operating system or browser
• Cockpits give live insight into the performance of business units

Functional constraints

• Requires authorization for any functionality to be executed
• Requires a working internet connection in order to function
• Does not adjust to the display resolution of mobile devices
• User interface and human-computer interaction is different from the original Windows-interface,

which might feel less natural

PERSONA

Employee An Employee (Dutch: Medewerker) is any person with an active state of employment at
the case company. Any Employee has access to the SOFTWARE PLATFORM AFAS InSite with their per-
sonal credentials and profile. Since the organization does not only employ people who work with the
AFAS Profit software, but, for instance, also employees for cleaning and the restaurant, we can not
assume that any Employee has a technical background, or is familiar with the broad range of function-
ality in AFAS Profit. Therefore, it is hard to make any concrete statements about the competencies,
knowledge, goals, needs, personal profile or constraints of an Employee.

Trainer A Trainer (Dutch: Docent) is often a consultant or a product manager of the case company,
who is also an Employee, so in an active state of employment. The Trainer also inherits functionality
and access rights from the generic Employee PERSONA. The reason why consultants provide trainings
is because they have the necessary skills to educate users and to transfer their knowledge about how to
implement and optimize the system. The competencies and knowledge of a Trainer are often focused on
a specific product within the AFAS Profit software suite. However, a Trainer is always supposed to have
sufficient knowledge about other products within the suite, as they are interlinked into one integrated
software product. A consultant or product manager has commonly a degree in higher education, yet it is
not required that they have completed a curriculum that is focused on software. A constraint of a Trainer
is that none of the Trainers are dedicated Trainers. This means that they do not put their daily effort in
practicing and preparing for trainings. However, since they work with implementations and optimizations
of the software product and their focus product on a daily basis, and they most often give trainings on
only their specific focus product, the fact that they do not extensively prepare for trainings, is not an
issue.

132

Training manager A Training manager (Dutch: Cursusbeheerder) is an Employee with an active state
of employment, and thus also inherits properties from the PERSONA Employee. The Training manager
makes sure that all the information about trainings is correct and available for the customers, so that they
can subscribe for an event. At the case company, this task is accommodated by the business unit entitle
Customer operations. A Training manager does not necessarily need to have in-depth knowledge about
the functioning of the software product, yet they must know what subjects are dealt with in a certain
training. Their competencies focus on communication, as they need to make sure all the necessary data
about trainings is available for customers and partners. Their goals are to sell trainings to customers by
providing clear information about the trainings, and keeping the trainees satisfied. They are constrained
by the fact that they are often not a Trainer themselves, which might cause them to lack insight in the
daily activities of Trainers and their trainees.

SCENARIO

SCENARIO Employee in AFAS InSite

PERSONA Employee

SOFTWARE PLATFORM AFAS InSite

SCENARIO Trainer in AFAS InSite

PERSONA Trainer

SOFTWARE PLATFORM AFAS InSite

SCENARIO Training manager in AFAS InSite

PERSONA Training manager

SOFTWARE PLATFORM AFAS InSite

133

MIGRATION MAPPING

Product Functiegroep Gegeven Functionaliteit C
ur

su
sb

eh
ee

rd
er

D
oc

en
t

M
ed

ew
er

ke
r

Algemeen Afbeelding Afbeelding bewerken 5 5 5

Algemeen Afbeelding Afbeelding toevoegen 5 5 5

Algemeen Afbeelding Afbeelding tonen in groot formaat 5 5 5

Algemeen Afbeelding Afbeelding verwijderen 5 5 5

Algemeen Afbeelding Afbeelding weergeven 5 5 5

Algemeen Inrichting Locatie Locatie weergeven 5 5 5

CRM Cursusmanagement Bezettingsoverzicht Bezettingsoverzicht cursussen weergeven 5 5 2

CRM Cursusmanagement Bezettingsoverzicht Bezettingsoverzicht locaties weergeven 5 5 2

CRM Cursusmanagement Cursus Cursus bewerken 5

CRM Cursusmanagement Cursus Cursus toevoegen 5

CRM Cursusmanagement Cursus Cursus verwijderen 5

CRM Cursusmanagement Cursus Cursus weergeven 5 5 5

CRM Cursusmanagement Cursus Wijzigen cursuscode 2

CRM Cursusmanagement Cursussessie Cursussessie aan cursusevenement toevoegen 5 2

CRM Cursusmanagement Cursussessie Cursussessie van cursusevenement bewerken 5 2

CRM Cursusmanagement Cursussessie Cursussessie van cursusevenement verwijderen 5

CRM Cursusmanagement Cursussessie Cursussessie van cursusevenement weergeven 5 5 5

CRM Cursusmanagement Cursusvoorkennis Cursusvoorkennis toevoegen aan cursus 2

CRM Cursusmanagement Cursusvoorkennis Cursusvoorkennis van cursus bewerken 2

CRM Cursusmanagement Cursusvoorkennis Cursusvoorkennis van cursus verwijderen 2

CRM Cursusmanagement Cursusvoorkennis Cursusvoorkennis van cursus weergeven 2 2 2

CRM Cursusmanagement Dagdeel Dagdeel weergeven 2

CRM Cursusmanagement Deelnemer (Cursist) Deelnemer aan evenement toevoegen 5 2

CRM Cursusmanagement Deelnemer (Cursist) Deelnemer per evenement weergeven 5 5 2

CRM Cursusmanagement Deelnemer (Cursist) Deelnemer voor evenement bewerken 5

CRM Cursusmanagement Deelnemer (Cursist) Deelnemer voor evenement verwijderen 5

CRM Cursusmanagement Deelnemer (Cursist) Deelnemers voor evenement weergeven 5 5 2

CRM Cursusmanagement Evenement Evenement voor cursus bewerken 5

CRM Cursusmanagement Evenement Evenement voor cursus toevoegen 5

CRM Cursusmanagement Evenement Evenement voor cursus verwijderen 5

CRM Cursusmanagement Evenement Evenement voor cursus weergeven 5 5 5

CRM Cursusmanagement Presentie Presentie van deelnemers bewerken 4 4 1

CRM Cursusmanagement Presentie Presentie van deelnemers weergeven 4 4 1

CRM Dossier Dossieritem Bijlage aan dossieritem toevoegen 5 5 3

CRM Dossier Dossieritem Bijlage van dossieritem weergeven 5 5 5

134

Product Functiegroep Gegeven Functionaliteit C
ur

su
sb

eh
ee

rd
er

D
oc

en
t

M
ed

ew
er

ke
r

CRM Dossier Dossieritem Dossieritem bewerken 5 5 3

CRM Dossier Dossieritem Dossieritem toevoegen 5 5 3

CRM Dossier Dossieritem Dossieritem verwijderen 5

CRM Dossier Dossieritem Dossieritem weergeven 5 5 5

CRM Organisatie/persoon Organisatie/persoon Organisatie/persoon bewerken 5 2 3

CRM Organisatie/persoon Organisatie/persoon Organisatie/persoon toevoegen 5 2 0

CRM Organisatie/persoon Organisatie/persoon Organisatie/persoon weergeven 5 5 5

Logistiek Prijs/korting Verkoopprijs Verkoopprijs bewerken 5

Logistiek Prijs/korting Verkoopprijs Verkoopprijs toevoegen 5

Logistiek Prijs/korting Verkoopprijs Verkoopprijs weergeven 5 1 1

135

VISUALIZATION

Product Functiegroep Gegeven Functionaliteit C
ur

su
sb

eh
ee

rd
er

D
oc

en
t

M
ed

ew
er

ke
r

S
um

C
ou

nt

A
ve

ra
ge

Algemeen Afbeelding Afbeelding toevoegen 5 5 5 15 3 5,0

Algemeen Afbeelding Afbeelding verwijderen 5 5 5 15 3 5,0

Algemeen Afbeelding Afbeelding weergeven 5 5 5 15 3 5,0

Algemeen Afbeelding Afbeelding bewerken 5 5 5 15 3 5,0

Algemeen Afbeelding Afbeelding tonen in groot formaat 5 5 5 15 3 5,0

CRM Cursusmanagement Cursus Cursus weergeven 5 5 5 15 3 5,0

CRM Cursusmanagement Cursussessie Cursussessie van cursusevenement weergeven 5 5 5 15 3 5,0

CRM Dossier Dossieritem Dossieritem weergeven 5 5 5 15 3 5,0

CRM Dossier Dossieritem Bijlage van dossieritem weergeven 5 5 5 15 3 5,0

CRM Cursusmanagement Evenement Evenement voor cursus weergeven 5 5 5 15 3 5,0

Algemeen Inrichting Locatie Locatie weergeven 5 5 5 15 3 5,0

CRM Organisatie/persoon Organisatie/persoon Organisatie/persoon weergeven 5 5 5 15 3 5,0

CRM Cursusmanagement Cursus Cursus toevoegen 5 5 1 5,0

CRM Cursusmanagement Cursus Cursus bewerken 5 5 1 5,0

CRM Cursusmanagement Cursus Cursus verwijderen 5 5 1 5,0

CRM Cursusmanagement Cursussessie Cursussessie van cursusevenement verwijderen 5 5 1 5,0

CRM Cursusmanagement Deelnemer (Cursist) Deelnemer voor evenement bewerken 5 5 1 5,0

CRM Cursusmanagement Deelnemer (Cursist) Deelnemer voor evenement verwijderen 5 5 1 5,0

CRM Dossier Dossieritem Dossieritem verwijderen 5 5 1 5,0

CRM Cursusmanagement Evenement Evenement voor cursus toevoegen 5 5 1 5,0

CRM Cursusmanagement Evenement Evenement voor cursus bewerken 5 5 1 5,0

CRM Cursusmanagement Evenement Evenement voor cursus verwijderen 5 5 1 5,0

Logistiek Prijs/korting Verkoopprijs Verkoopprijs toevoegen 5 5 1 5,0

Logistiek Prijs/korting Verkoopprijs Verkoopprijs bewerken 5 5 1 5,0

CRM Dossier Dossieritem Dossieritem toevoegen 5 5 3 13 3 4,3

CRM Dossier Dossieritem Dossieritem bewerken 5 5 3 13 3 4,3

CRM Dossier Dossieritem Bijlage aan dossieritem toevoegen 5 5 3 13 3 4,3

CRM Cursusmanagement Bezettingsoverzicht Bezettingsoverzicht cursussen weergeven 5 5 2 12 3 4,0

CRM Cursusmanagement Bezettingsoverzicht Bezettingsoverzicht locaties weergeven 5 5 2 12 3 4,0

CRM Cursusmanagement Deelnemer (Cursist) Deelnemers voor evenement weergeven 5 5 2 12 3 4,0

CRM Cursusmanagement Deelnemer (Cursist) Deelnemer per evenement weergeven 5 5 2 12 3 4,0

CRM Cursusmanagement Cursussessie Cursussessie aan cursusevenement toevoegen 5 2 7 2 3,5

CRM Cursusmanagement Cursussessie Cursussessie van cursusevenement bewerken 5 2 7 2 3,5

CRM Cursusmanagement Deelnemer (Cursist) Deelnemer aan evenement toevoegen 5 2 7 2 3,5

CRM Organisatie/persoon Organisatie/persoon Organisatie/persoon toevoegen 5 2 7 2 3,5

136

Product Functiegroep Gegeven Functionaliteit C
ur

su
sb

eh
ee

rd
er

D
oc

en
t

M
ed

ew
er

ke
r

S
um

C
ou

nt

A
ve

ra
ge

CRM Organisatie/persoon Organisatie/persoon Organisatie/persoon bewerken 5 2 3 10 3 3,3

CRM Cursusmanagement Presentie Presentie van deelnemers weergeven 4 4 1 9 3 3,0

CRM Cursusmanagement Presentie Presentie van deelnemers bewerken 4 4 1 9 3 3,0

Logistiek Prijs/korting Verkoopprijs Verkoopprijs weergeven 5 1 1 7 3 2,3

CRM Cursusmanagement Cursusvoorkennis Cursusvoorkennis van cursus weergeven 2 2 2 6 3 2,0

CRM Cursusmanagement Cursus Wijzigen cursuscode 2 2 1 2,0

CRM Cursusmanagement Cursusvoorkennis Cursusvoorkennis toevoegen aan cursus 2 2 1 2,0

CRM Cursusmanagement Cursusvoorkennis Cursusvoorkennis van cursus bewerken 2 2 1 2,0

CRM Cursusmanagement Cursusvoorkennis Cursusvoorkennis van cursus verwijderen 2 2 1 2,0

CRM Cursusmanagement Dagdeel Dagdeel weergeven 2 2 1 2,0

137

Figure D.4: VISUALIZATION

138

Appendix E

Case study: Fixed assets in AFAS
InSite

Product Financieel

Function group Vaste activa

Persona Employee
Facility manager
ICT manager
Financial controller
Chief financial officer

Platform AFAS InSite

E.1 Template method

This section explains the method as it was designed before the instantiation of this case study. The
method’s design is frozen during the execution phase of the case study, so that its performance can
be analyzed and method increments can be captured. These method increments serve as feedback
for the method’s design, so that it can be improved. This process is also depicted in Figure 2.3, where
the activity Project performance serves Requests for adaptations to the activity Assembly of method
fragments.

For this case study, the conceptual method in Figure E.1 has been applied.

139

Figure E.1: Template method 2: Process-Deliverable Diagram

140

E.1.1 Activity table

The activities of the method are listed in Table E.1.

Main activity Sub activity Description

Project definition Define migration project The project’s outline is defined, so
that a common understanding of the
project’s goal and properties is set.
This concept is also included in the
VISUALIZATION. The property Scope
of the concept limits the exploration of
ENTITIES and FUNCTIONALITY in the
migration project.

Identify stakeholders Each STAKEHOLDER of the project
is identified and his/her Role in the
project is noted. The person who in-
stantiates the template method is also
a STAKEHOLDER, as well as STAKE-
HOLDERS who are only interested in
the final deliverable as VISUALIZATION.
In Section 4.3.1, a Method Stake-
holder Classification Matrix is pro-
posed, which can help in the iden-
tification of the Role of the STAKE-
HOLDER.

Define domain ontology By analyzing the ENTITIES within the
domain of discourse and how those
ENTITIES are related, a DOMAIN ON-
TOLOGY can be defined (Gruber,
1993). The underlying descriptive
models of the software product can
assist in retrieving an accurate de-
scription of the DOMAIN ONTOLOGY.

Functionality Identify entities within scope Limited by the Scope in the MIGRA-
TION PROJECT DEFINITION, the EN-
TITIES within the migration project’s
Scope are identified. The underly-
ing descriptive models of the software
product can help in the identification of
ENTITIES.

Identify functionality Based on identified the ENTITIES and
an analysis of the software product
in scope, FUNCTIONALITY is identified
and linked to the ENTITIES it corre-
sponds with. Section 4.4.1 describes
different methods on how to identify
FUNCTIONALITY from a functional per-
spective. FUNCTIONALITY can be or-
ganized by a functionality classifier,
as described in Section 4.4.2, which
makes identification of all FUNCTION-
ALITY within the project scope easier.

141

Define entity relationships By defining the relationships amongst
ENTITIES, the concept DATA MODEL
is instantiated. The relationships can
be extracted from underlying descrip-
tive models, and from descriptions
of FUNCTIONALITY, by interpreting on
which ENTITIES the FUNCTIONALITY
acts.

Scenarios Define personas Based on the actual users of the soft-
ware product, PERSONAS are defined
to represent them. A PERSONA can
be both an actual as a potential user
of the software product, which means
that a PERSONA can also represent a
user group from a new market seg-
ment which is about to be explored.
The exploration of PERSONAS is, how-
ever, limited by the Scope and Goal of
the MIGRATION PROJECT DEFINITION.
More about the defining of PERSONAS
is explained in Section 4.5.1.

Define software platforms After the PERSONAS have been iden-
tified, an analysis can be made
of the SOFTWARE PLATFORMS. As
with the PERSONAS, the SOFTWARE
PLATFORMS align with the MIGRA-
TION PROJECT DEFINITION’s Scope
and Goal. Section 4.5.2 explains more
about the analysis of SOFTWARE PLAT-
FORMS from a functional perspective.

Combine personas with software plat-
forms

By combining use cases of PER-
SONAS on the defined SOFTWARE
PLATFORMS, SCENARIOS are defined.

Mapping Identify mapping candidates By iterating over the instantiations of
FUNCTIONALITY for each SCENARIO,
an initial decision is made which de-
fines whether or not it would make
sense to migrate the FUNCTIONALITY
for the SCENARIO. If so, an instanti-
ation of the concept MIGRATION MAP-
PING is made, with an empty Priority
property. If the FUNCTIONALITY should
not be migrated for the given SCE-
NARIO, no MIGRATION MAPPING is in-
stantiated.

142

Review mapping candidates The reviewing of MIGRATION MAP-
PING candidates is performed in a
group session with selected and rel-
evant STAKEHOLDERS. The initial de-
cisions on MIGRATION MAPPINGS are
discussed and MIGRATION MAPPINGS
can be added or removed. No Prior-
ity is yet assigned to the MIGRATION
MAPPING.

Prioritize mapping candidates Parallel with the activity Review map-
ping candidates, the MIGRATION MAP-
PING candidates are reviewed by as-
signing a Priority. The activity is per-
formed in a group session with se-
lected and relevant STAKEHOLDERS.
The complexity of this activity depends
on the complexity of the migration
project, the complexity of the software
product and the depth of the func-
tional analysis of the FUNCTIONALITY.
If the decision of a MIGRATION MAP-
PING is complex or not sufficiently ob-
vious, the decision can be captured in
a DESIGN RATIONALE. More informa-
tion about the prioritization of MIGRA-
TION MAPPINGS is described in Sec-
tion 4.6.1.

Visualization Select stakeholders In order to design and perform the
VISUALIZATION, a selection of STAKE-
HOLDERS for whom the VISUALIZATION
is to be designed, is made.

Design visualization Tuned to the requirements of the se-
lected STAKEHOLDERS, a VISUALIZA-
TION of the migration project’s out-
come is designed. If the STAKE-
HOLDERS can not reach consensus
about the deliverable of the migration
project, a new group session is ini-
tiated to review the MIGRATION MAP-
PINGS. If not all required STAKEHOLD-
ERS are informed yet, another iteration
of the main activity Visualization is in-
stantiated. More information about the
designing of VISUALIZATIONS can be
found in Section 4.7.

Table E.1: Template method 2: Activity table

143

E.1.2 Concept table

Concept Description

MIGRATION PROJECT DEFINITION The MIGRATION PROJECT DEFINITION includes metadata about
the project to be executed. It is included in the VISUALIZATION of
the project’s outcome, and in any other documentation that acts
as a deliverable of the migration project. The concept has some
properties that play an important role in the further instantiation
of the template method, such as Scope and Goal.

STAKEHOLDER A STAKEHOLDER is anyone who plays a significant role in the
project. The STAKEHOLDER has a predefined Role in the mi-
gration project. At least one STAKEHOLDER is the project’s
project manager, who is the individual who instantiates the tem-
plate method and is responsible for the coordination. A STAKE-
HOLDER’s role can be organized as described in Section 4.3.1.

DOMAIN ONTOLOGY An ontology describes the ENTITIES within the domain in dis-
course, and how these ENTITIES are interrelated (Gruber, 1993).
The DOMAIN ONTOLOGY represents the domain in which the soft-
ware product is designed to operate, the domain of discourse. It
is composed of higher-level ENTITIES which are identified in the
product’s functional architecture. The DOMAIN ONTOLOGY helps
in the structuring of the DATA MODEL.

ENTITY An ENTITY represents an object in the software product in scope,
to which FUNCTIONALITY can been applied. It is equal to an EN-
TITY in the UML class diagram (Booch et al., 1999) and can have
different types of relationships with other ENTITIES. The ENTITIES
and their relationships are included in the DATA MODEL.

FUNCTIONALITY FUNCTIONALITY concerns the behavior for which the software
product has been designed to perform, on behalf of the user.
An instance of FUNCTIONALITY acts with at least one ENTITY. To
organize the instances of FUNCTIONALITY, a classification can be
applied, as is described in Section 4.4.2. Techniques to identify
software FUNCTIONALITY from a functional perspective has been
described in Section 4.4.1.

DATA MODEL The DATA MODEL is a formal representation of the ENTITIES, their
FUNCTIONALITY, and how they are interconnected. The DATA
MODEL serves as a basis for the rest of the template method
instantiation and can be included in a VISUALIZATION. A DATA
MODEL can be represented by a UML class diagram (Booch et al.,
1999), but a simple tree diagram can also suffice, depending on
the complexity of the software product and migration project.

PERSONA PERSONAS are defined as representations of the actual users of
a system, defined by the goals they aim to accomplish. They
are hypothetical archetypes of actual users (Cooper, 1999). A
PERSONA appears in at least one SCENARIO, which maps it to
at least one SOFTWARE PLATFORM. More information about the
defining of a PERSONA can be found in Section 4.5.1.

144

SOFTWARE PLATFORM A SOFTWARE PLATFORM defines the environment in which a soft-
ware product is designed to operate. It appears in at least one
SCENARIO as is thereby combined with a PERSONA. Defining
SOFTWARE PLATFORMS is based on the PERSONAS that have
been identified, and their current or expected platforms they (wish
to) use. In Section 4.5.2, more information about the describing
of a SOFTWARE PLATFORM is given.

SCENARIO By combining possible and relevant appearances of PERSONAS
with SOFTWARE PLATFORMS, we create SCENARIOS. A SCE-
NARIO is used to map FUNCTIONALITY in the MIGRATION MAP-
PING. It plays a central role in the VISUALIZATION of the output of
the project.

MIGRATION MAPPING The MIGRATION MAPPING concept plays a central role in the VISU-
ALIZATION of the output of the project. It is formed by the combi-
nation of SCENARIOS with FUNCTIONALITY. If no mapping occurs
at the SCENARIO, meaning that a certain FUNCTIONALITY is ex-
cluded from a SCENARIO, the MIGRATION MAPPING does not exist
(defined in the activities Identify mapping candidates and Review
mapping candidates). The Priority of the MIGRATION MAPPING is
determined based on its importance in the migration project. If
a MIGRATION MAPPING has no Priority assigned, it is considered
to be a candidate. The decision and rationale behind the MIGRA-
TION MAPPING can be captured in a DESIGN RATIONALE. If the
MIGRATION MAPPING changes due to the group sessions or peer
review, another DESIGN RATIONALE can be assigned.

DESIGN RATIONALE A DESIGN RATIONALE captures the decision making arguments
for a MIGRATION MAPPING’s presence and Priority. If the MIGRA-
TION MAPPING changes due to the activities in the Mapping main
activity, another DESIGN RATIONALE can be assigned, which im-
plies that one MIGRATION MAPPING can have multiple DESIGN
RATIONALES. More information about the concept DESIGN RA-
TIONALE can be found in Section 4.6.2.

VISUALIZATION The output of a migration project is communicated to selected
STAKEHOLDERS in a VISUALIZATION, which is designed to suit
the STAKEHOLDER’s interests, for instance by means of the de-
gree of details. Example VISUALIZATIONS include different tech-
nology roadmap types (purpose and format) (Phaal et al., 2004)
or a spreadsheet with SCENARIOS as columns and FUNCTIONAL-
ITY as rows. As the needs of the STAKEHOLDER, and thus the
details of the VISUALIZATION, highly depend on the situation at
hand, we define the VISUALIZATION as a closed concept. A VI-
SUALIZATION incorporates at least one or more instantiations of
the concepts MIGRATION PROJECT DEFINITION, FUNCTIONALITY,
SCENARIO and MIGRATION MAPPING. Section 4.7 describes pos-
sible instantiations of the concept VISUALIZATION.

Table E.2: Template method 2: Concept table

145

E.2 Template method instantiation

DECISION POINT:
We use Dutch terms for entities that are represented in the sotware product. This makes it easier
to link the descriptions with the actual entities and user interfaces of the software products, and
improves consistency. We do, however introduce an English translation for each term the first
time we mention it in the case study. Dutch terms are formatted in italics.

E.2.1 Activity instantiations

Define migration project

The case study is executed at AFAS Software, an ERP software vendor from Leusden, the Netherlands.
The case study aims to migrate software functionality that is associated with Vaste activa (fixed assets)
to any of the two web platforms of the AFAS Profit software suite, AFAS InSite and AFAS OutSite. The
function group Vaste activa is part of the Financieel product (Finance) of AFAS Profit. We initialize the
case study at Monday 7 April 2014. Since this is the first version of an assessment of the migration
of functionality to a next-generation software platform for the function group Vaste activa, we assign the
following code to this case study: AFAS.Profit.ACT.001.

The scope of this case study is aimed at functionality that is related to the entities within the
function group Vaste activa. However, we do not limit ourselves to only those entities that are directly
integrated in the function group. Other entities can be integrated with the entities directly in the function
group, which means they need to be assessed in order to give a complete overview of the entities and
functionality. Because the AFAS Profit software suite is one integrated software product, many direct
relationships exist between entities in different function groups.

For the case study, the goal is set to make an assessment of whether the functionality of the func-
tion group Vaste activa should be migrated to the next-generation software platforms of the AFAS Profit
software suite, which are the web platforms AFAS InSite and AFAS OutSite. The outcome of the case
study can be used to determine whether or not it is worth the effort to migrate Vaste activa to the web
platforms. The case study is an interesting assessment for the product management department of
AFAS Software, because no product manager has explicitly considered the migration of the function
group, just yet. This means that no prejudgments about the outcome can be made, and the outcome is
highly dependent on the instantiation and performance of the Software Functionality Evolution Method.

This activity produces an instantiation of the concept MIGRATION PROJECT DEFINITION, which is
projected in Table E.3.

Identify stakeholders

The STAKEHOLDERS of this case study are identified by means of consultation with the manager of the
department product management. Furthermore, we have consulted formal design documents of the
software product to identify authors who have participated in the design of functionality in the function
group Vaste activa. Also, we include any STAKEHOLDERS who are addressed in research for the case
study in a later stadium of the method instantiation, for instance when more in-depth knowledge needs
to be gathered because the current STAKEHOLDERS can not provide sufficient information about the
question.

We have again used the Method Stakeholder Classification Matrix, as described in Section 4.3.1,
to assign a Role to the identified STAKEHOLDERS. We describe the Role of the STAKEHOLDERS in more
detail in the paragraphs below.

146

Gerard Nijboer [Participant] Project manager, who instantiates the template method in the case study.
He is responsible for the coordination of the project and monitoring its performance. The perfor-
mance acts as feedback for method increments, which improve the template method.

Henk van der Schuur [Participant—Informer] Product manager of the Financieel product of AFAS Profit.
He provides information and domain knowledge where necessary in the case study, such that the
project manager can continue the method instantiation and case study. The domain knowledge
apply to both the software product, as well as the industry at which it is applicable.

Mohamed Amri [Observer—Informer] Manager product management, who has a background in taxes
and accountancy. He is primarily interested in the outcome of the method instantiation, but can
also act as an Informer when other Informers are not available.

Jan Grijzen [Informer] Manager product development, who is responsible for the development of the
Financieel product. He was involved in the initial design and development of Vaste activa in
AFAS Profit, which makes him a valuable asset as an Informer.

Define domain ontology

The AFAS Profit software suite is an integrated software product that comprises different business
software types. The following business software products can be identified within the single software
product, in random order:

• General

• Customer Relationship Management (CRM)

• Logistics

• Projects

• Finance

• Taxes

• Human Resource Management (HRM)

• Payroll

• Subscriptions

• Reporting

The software suite originates as a Windows client, which connects to the AFAS Profit server.
Currently, the software suite has been expanded to also run as a web and mobile application on different
software platforms. The following software platforms are available:

AFAS Profit Windows Windows client application

AFAS InSite Intranet web application

AFAS OutSite Portal web application

AFAS Pocket iOS and Android smartphone application

147

For the continuation of this case study, when we refer to a “product”, we refer to a business
software product within the AFAS Profit software suite. Each product has one or multiple function
groups. A function group is a cohesion of entities and their functionality, which are specific for the
execution of a certain task in the software product. Some entities may not have a function group
assigned, as they are too generic or too specific. An entity can be related to other entities, which
creates relationships and dependencies between different entities. Functionality, on the lowest level of
the DOMAIN ONTOLOGY we define, is related to one or more entities.

The instantiated concept DOMAIN ONTOLOGY is visualized in Figure E.4.

Identify entities within scope

DECISION POINT:
The entity Dagboek is included, as it comes with the process of adding a Vaste activa through
an Inkoopfactuur.

DECISION POINT:
When we speak of an instantiated concept, representing an entity in the software product, we
transform the text into uppercase, as such: VASTE ACTIVA. When we speak of the entity in
general, without the necessity of including its context in the project instantiation, we do not
transform the text.

The Scope of the MIGRATION PROJECT DEFINITION is limited to those entities directly related
to Vaste activa. However, during the identification of entities within the project Scope, we have in-
cluded entities that are not directly related to the main entity VASTE ACTIVA. For instance, the entity
INKOOPRELATIE (supplier) is included in order to be able to add new VASTE ACTIVA through an INKOOP-
FACTUUR (supplier invoice). The entity INKOOPRELATIE inherits the properties and relationships of the
entity ORGANISATIE/PERSOON, which means we need to include this entity as well. However, we limit
ourselves in the level of depth in the relationships when the entity loses its relevance in the Goal of this
migration project.

We have excluded the entities TYPE ACTIEF, TYPE SUBSIDIE and LOCATIE. At first, these ENTITIES
appeared to be actual ENTITIES in the DATA MODEL. However, since these ENTITIES and their values are
controlled via the VRIJ TABEL, we do not include these ENTITIES and their FUNCTIONALITY separately.

148

Identify functionality

DECISION POINT:
During the identification of FUNCTIONALITY, we consulted with the STAKEHOLDER Henk van der
Schuur to determine the relevance of FUNCTIONALITY for the following ENTITIES:

• Crediteur
Read only, as we only need to be able to select the already present Crediteuren in the
Administratie. The maintaining of Crediteuren is not in the scope of this migration project.

• Dagboek
We open the Dagboek in order to be able to add an Inkoopfactuur.

• Grootboekrekening
The Grootboekrekening is necessary to add a Vaste activa through an Inkoopfactuur.

• Inkoopfactuur
An Inkoopfactuur can be used to add new Vaste activa.

• Inkoopfactuurregel
This ENTITY is at a too high level of detail, and is too far beyond the scope of this migration
project.

• Medewerker
We can assign Vaste activa to the ENTITY Medewerker.

• Type actief
This is not an ENTITY which the customer can adjust in the software product.

• Type subsidie
This is an example of an ENTITY which can be maintained in the Vrije tabellen.

Based on the discussion with the STAKEHOLDER, we have determined to exclude the ENTITIES
Inkoopfactuurregel and Type actief and their FUNCTIONALITY in the DATA MODEL.

In order to make the assigning of MIGRATION MAPPING more efficient, we have added descriptions
to the FUNCTIONALITY where relevant and applicable. This helps to understand the precise behavior of
the FUNCTIONALITY and ensures a common ground to rationalize upon.

The identification of FUNCTIONALITY in this case study has focused more on the guidance by
functional processes instead of single items of FUNCTIONALITY. By thinking in processes, we enable
ourselves to identify all relevant FUNCTIONALITY, instead of only the FUNCTIONALITY that is directly
related to an ENTITY in the project’s function group. We use the AFAS Profit Knowledge Base1 and the
training Financieel Procesbeheer provided by AFAS Software as a guidance in the processes that are
commonly performed by users of the software product.

DECISION POINT:
We do not include the ENTITY E-factuur as an ENTITY in the scope of this migration project.
We do, however, include the FUNCTIONALITY to transform the E-facturen in the system into an
instantiation of an INKOOPFACTUUR. Yet, we do not include FUNCTIONALITY on how to get these
ENTITIES into the system.

1http://kb.afas.nl

149

http://kb.afas.nl

During the identification of FUNCTIONALITY, thinking in processes and the consult with the STAKE-
HOLDER, we identified an interesting property of the ENTITIES, concerning the sequentiality of ENTITIES.
By this, we emphasize the position of the ENTITY around the FUNCTIONALITY on the central entity AC-
TIEF.

For instance, looking at the entity MEDEWERKER, we can assign an ACTIEF to a MEDEWERKER
during the creation of a new ACTIEF, as well as assigning an ACTIEF to a MEDEWERKER when the
ACTIEF already exists and is being deprecated. However, from a business process perspective, it does
not make sense to order new phones (ACTIEF) if you are not yet sure to whom you will assign these
phones, and how many you need. Therefore, the entity MEDEWERKER is prior to the process or creating
a new ACTIEF.

Also, it is interesting to see which point of entry users of the software product use to perform a
certain FUNCTIONALITY. For instance, when we assign an ACTIEF to a MEDEWERKER, the point of entry
of the process can be at the ACTIEF, or at the MEDEWERKER, since both entities allow the assignment.
The actual point of entry should play a role during the prioritization of MIGRATION MAPPINGS. The
determination of the common point of entry is supported by the AFAS Knowledge Base documentation
and the STAKEHOLDERS involved in the migration project.

Define entity relationships

We have analyzed the relationships between the entities through means of analysis of the software
documentation and interface. The relationships have been visualized in Figure E.5. We have not
included detail on the specifications of the relationships, such as multiplicity, direction and labeling,
since this does not serve the functional scope of the case study.

In Figure E.7, we present the DATA MODEL as documented in formal design documents of the
case company. This DATA MODEL does show details on the relationships. The figure has been extracted
from an internal document entitled RFI00212 Vaste Activa Optimalisatie.docx, available on the case
company’s SharePoint intranet. Entities and relationships that are colored in red are new tables and
foreign keys which have been added in an optimization project which was described in the document.

Define personas

In this case study, we have used a fictitious organization entitled Clean-X to described personas and
their roles within that organization. Given the fact that the context of the software product is very broad,
based on the variety of applications in different types of organizations, we believed it would be best to
use a fictitious organization which has little to do with software and technology. This is why we have
introduced the organization Clean-X, which specializes in the outsourcing of cleaning activities at office
buildings.

By using a type of organization which has little affection with technology and software, we aim to
prevent bias, based on the definition of personas which are familiar with modern forms of information
and communication technology.

This case study knows the following PERSONAS:

150

EMPLOYEE An EMPLOYEE (Dutch: Medewerker) is the most generic form of the users of an internal
software platform such as AFAS InSite. A requirement for the persona is that the EMPLOYEE is in
an active state of employment at the organization at which the software product is deployed.

Characteristics John Pierson is a 42 years old male and works as a window cleaner at a medium
sized organization called Clean-X. The business specializes in the outsourcing of cleaning activi-
ties at office buildings. John has already worked for this organization for 20 years, and still enjoys
each day he is able to step onto the ladders and leave the area with perfectly clean and transpar-
ent windows. John was born and raised in Belgium, and has moved to the Netherlands when he
found his passion in the cleaning of windows and got employed at Clean-X. John is now married
for 18 years to a Dutch lady called Ellen and together they have one son, Jason, born in 1998.

Needs and goals John’s goal is to maintain the steady pace in his life he is currently following,
without having to change too many things. He does not have any ambition to promote to a man-
agerial function, neither does he wish to become team leader or educate new employees. Simply
put, John is happy with the current work he is doing, and he does not envision a drastic change in
work atmosphere. His needs are therefore focused on retaining the current pace and not having
to change too many things about the way he performs his work. This implies that all too many
technological advancements are hard for John to cope with.

Skills and competencies As John was born in the year 1972, he has not grown up with the affinity
with technology as most youngsters have in this era. He only uses a computer for entertainment
and emailing, and does not need to use a computer for his daily work routine.

Constraints John does not have enough with software products and can thus not rely sufficiently
on his intuition when interacting with user interfaces. He has a long learning curve and struggles
with anything outside of his comfort zone.

FACILITY MANAGER A FACILITY MANAGER (Dutch: facilitair manager) manages the internal facilities and
facility staff of an organization. The manager is responsible for the availability and maintenance of
facilities, and can order materials and inventory to make these activities possible.

Characteristics Coert van Haasteren is facility manager at Clean-X. In contrast to most of his col-
leagues, he is responsible for the facilities inside of their own organization, instead of the cleaning
of facilities at other organizations by means of outsourcing. Coert is currently 53 years old has a
wife and three children. He has studied Facility management at the Hogeschool van Rotterdam
and has worked in facility management for 12 years already.

Needs and goals Coert is looking for ways to make his work easier. Around the millennium, he
has come to the understanding that software products can assist both individuals and organiza-
tions in both effectiveness and efficiency. As he believes facility management is becoming more
technological-centered, his goal is to put this trend to good use. Retirement is not something he
is currently concerned about, he loves what he does and wishes to keep doing it for as long as
possible.

Skills and competencies Coert is a real team player. By delegating tasks to his facility staff,
he gets the most out of his people, and always makes sure everyone is united in the goals they
need to achieve as a team. Also, Coert understands the people-aspect to management, and is
therefore also concerned about the well-being of his staff. Coert is also eager and able to learn
about the technological support in manual labor.

Constraints Coert is constrained by the fact that he can not learn about functionality in a software
product as fast as his younger co-workers can. The younger generation seems to be able to rely
on intuition when discovering new software products or user interfaces, whereas Coert struggles
more with becoming familiar with the interfaces.

151

ICT MANAGER An ICT MANAGER acts as a systems administrator in an organization. He is responsible
for the configuration, maintenance and support for internal information and communication tech-
nology. This includes both overall systems, as well as systems that are facilitated for a particular
individual, such as a smartphone or computer.

Characteristics Niels Hogendorp is an ICT manager at Clean-X, facilitating ICT for the employees
of the organization. Niels is a single 24 year old male, without any children. He has started to
work for Clean-X one year ago. Niels lives close to the head office of Clean-X, which makes him
feel flexible in his working hours. This results in the fact that Niels can often still be found in the
office in the evening, finishing up on projects he is excited about.

Needs and goals In his daily work, Niels’ goal is to empower his colleagues by means of technol-
ogy. However, the ICT landscape of Clean-X has become very diffused over the years. Therefore,
Niels has the urge to reduce the diffusion of technological alternatives and envisions a more stan-
dardized ICT landscape. To increase the efficiency in the work he does, Niels tries to capture
information and knowledge in manuals, such that employees of Clean-X become more able to
perform self-service instead of relying on the ICT manager at all time.

Skills and competencies Niels is an analytic person who works best on an individual basis with
clear goals to achieve. He does not mind working in teams, yet he needs to know what his
responsibilities and tasks are, so that he can work towards those goals on an individual basis.
Niels always takes the time to explain himself and his ideas to others, in order to help others to
proceed. Because Niels has affinity with technology, he is always eager to learn more and new
things. He therefore does not mind to spend his private time on exploring new things, even though
it is work related.

Constraints Niels is not a team player, as he prefers to work on himself on his individual tasks.
Niels is fine with the work he is currently doing, and does not envision to promote to a higher
position in the organization

FINANCIAL CONTROLLER A FINANCIAL CONTROLLER is an expert on finance and economics who sup-
ports the management and directors by planning and controlling the organizational processes.

Characteristics Eva Vogels is a 30 years old female employee at Clean-X who has worked as
a financial controller for over 10 years. Her dedication to her work has never interfered with
her personal situation at home, with her husband and two daughters. Ellen loves working with
numbers and diving deeper into details when something does not add up. Ellen does not mind to
step up in order to reduce the workload on one of her co-workers. She is a true team player.

Needs and goals Ellen’s goals are to provide the financial team of the organization with financial
statistics that are correct, reliable and up-to-date, in a timely manner. This allows the organization
to make strategic decisions based on her data. She strives for the organizational goal of net profit
maximization, while retaining the quality of the work they deliver.

Skills and competencies Ellen is a team player with affinity for numbers and statistics. Nothing
is left to coincidence when she is responsible for the work. Ellen has the potential to grow within
the organization and stand by the greater minds of the strategic decisions.

Constraints Ellen is constrained by the fact that she sometimes struggles with change to her rou-
tines. This causes her to lose control and overview, which makes her feel inconvenient. Therefore,
Ellen prefers for things to remain as they are, rather than to change routines.

152

CHIEF FINANCIAL OFFICER A CHIEF FINANCIAL OFFICER is responsible managing the financial risks of
an organization, in order to make the organization as profitable as possible. The individual is re-
sponsible for the strategic planning, controlling and reporting of the organization’s financial results.

Characteristics Jack van Deur is the chief financial officer (CFO) of the Clean-X organization.
Together with the current CEO, he founded the organization 30 years ago. With the age of 63,
Jack is also the oldest member of the organization’s board. Jack is married, has a son and a
daughter, and one grandson. Jack was born in Germany and moved to the Netherlands when he
decided to start the Clean-X business with the CEO.

Needs and goals Jack’s goal and objective is to keep the organization profitable, and maintain
a steady grip on the financial results of the organization. He wishes to keep gaining more and
more timely insight in the financial performance of the organization, and is exploring technolog-
ical solutions to do so. He needs transparency, not only for himself but also for the rest of the
organization.

Skills and competencies Jack is a real team player and is capable of motivating colleagues to get
their work done on an effective and efficient basis. He is a born leader and also takes a personal
interest in the lives of his employees. He relies on his team of controllers to define and shape
strategy and translate this into tactics and operations.

Constraints Jack is very limited in scope to his financial figures. He does not take an interest in
elaborated situations, as long as the figures turn out positive.

Define software platforms

The AFAS Profit software suite facilitates multiple SOFTWARE PLATFORMS, as follows:

• AFAS Profit Windows
• AFAS InSite
• AFAS OutSite
• AFAS Pocket iOS
• AFAS Pocket Android

We discuss each of these SOFTWARE PLATFORMS and elaborate on their relevance in this case
study. Based on the description, we either include or exclude them from this case study. An important
qualifier for the inclusion of a SOFTWARE PLATFORM is that one of the identified PERSONAS must use
the FUNCTIONALITY from within the scope of this migration project

AFAS Profit Windows This SOFTWARE PLATFORM is the initial platform from which we aim to migrate
the functionality to other platforms. It is therefore central in the migration project. Yet, since we
do not aim to migrate FUNCTIONALITY to this platform, we do not elaborate on the SOFTWARE
PLATFORM in this section.

AFAS InSite The SOFTWARE PLATFORM AFAS InSite is the web application of the AFAS Profit software
suite which enables self service for employees and managers of an organization. By authenti-
cating as an employee of the organization, the user gets access to his personal details in the
AFAS Profit database, and any other shared and authenticated data that is stored about the orga-
nization’s administration.

Platform type In Section 4.5.2, we describe how we apply and extend the software ecosystem
taxonomy by Bosch (2009) in order to design a classification of software platforms. Based on this
classification, we can identify the AFAS InSite software platform as being a web platform. This
implies that from a user’s perspective, the software product can run from a modern web browser,
without the necessity of installing specific components that are not default in modern browsers.

153

A platform typology by Gawer (2009) is also described in Section 4.5.2. This typology classifies
the AFAS InSite software platform as being an internal platform, because it is merely used for
employees within the organization with an active state of employment. No external parties are
involved in the AFAS InSite software platform.
SWOT analysis
– Strengths: A great advantage and thus strength of this software platform is the fact that the soft-
ware application can run in any modern web browser. Web browsers are present in a multitude
of devices, such as computers, laptops, tablets and smartphones, which introduces a widespread
support for the platform. Also, the platform does not require the installation of any third party plu-
gins which are not default in all modern web browsers, such as Adobe Flash, Java or Microsoft
Silverlight. Because, just as most web-applications, AFAS InSite is based on a client-server soft-
ware architecture, a large portion of the computing is performed on the server-side. This reduces
the workload on the client in the web browser. Since the composition and functionality of the
client’s web interface is provided by the server on every request, updates are automatically pro-
vided to the client, without the necessity of updating the client application.
– Weaknesses: Because the client-server software architecture is highly dependent on a stable
connection between the clients and server, an absent or instable internet connection can be fatal
to a correct functioning of the application. The same goes for the fact that the client-server archi-
tecture is highly dependent on the available resources at the server-node. If the workload on the
server becomes too high, all clients are affected, yet none can support the server by taking over
their portion of the workload.
– Opportunities: As the AFAS InSite software platform is supported by any modern web browser,
new devices and types of devices with a web browser are often supported by default. For instance,
an e-reader with web browsing functionality also supports AFAS InSite, as well as a Samsung
Smart TV and Sony PlayStation.
– Threats: The AFAS InSite client depends on the assumption that any modern web browser
supports web standards. If a browser or device does not correctly adhere to the standards, the
web interface could be erroneous. Supporting a multitude of different interpretations of “web stan-
dards” challenges the AFAS InSite designers in providing the same web interface for any device
and browser.
Functional context and constraints The functional context of the AFAS InSite software platform
focuses mainly on the portability of the application that runs in the web browser. Since any modern
web browser can support the web application, many devices support the software by default. This
does not only include computers, laptops and tablets, but also smartphones, e-readers, smart TVs
and gaming consoles. Since the software product does not require the installation of additional
software, the web application can be used at any time, at any place, as long as the device has a
web browser and stable internet connection.
Also, the AFAS InSite software platform required authentication for any user. This implies that the
functionality within the software product can assume an interaction with a trusted and authenti-
cated party at all time. Because the access rights are determined by authentication, functionality
can be made available to specific users and user groups, based on their role within the organiza-
tion.
The software platform’s functionality is constrained by the fact that authentication is required to
visit any page of the system. This means that only the login and “forgot password” page are
available, but not even a “page not found” or “frequently asked questions” page is available. For
non-authenticated users, such as users with no active state of employment, this means they have
no access to their personal data, nor can they read up on additional information about a possible
reason why they have no access to the system.
Technical context and constraints The technical context of the software platform constrains
the interfacing of the web application with peripheral devices of the device that runs the web
browser. Web browsers are by default protected against interfering with any software outside the
browser’s context. This is an obvious security precaution, yet it limits the attachment of peripheral
devices such as handheld barcode scanners, document scanners and webcams microphones.
Luckily, such features and interfaces become more popular, and new technology standards such
as HTML5 support interfacing with such devices.

154

As described in the SWOT analysis of the software platform, the technical context allows updates
to be automatically spread amongst clients, as the server determines the contents and function-
ality of the web interface.

Also, as previously discussed on the SWOT analysis of the software platform, the web application
is highly dependent on the availability and performance of the application server. No computing
of the server can be distributed amongst clients.

AFAS OutSite Of the identified PERSONAS, all individuals are in an active state of employment for
the organization. This means they are able to work with internal systems of the organization.
AFAS OutSite is a portal application for individuals outside of the organization. This means that
the SOFTWARE PLATFORM does not suit the types of PERSONAS of this migration project.

The FUNCTIONALITY in the function group of this case study focuses around Vaste activa. This
ENTITY is purely an internal object of the organization. It is manager by the organization itself, no
users from outside the organization have access to the FUNCTIONALITY of this ENTITY. Therefore,
the SOFTWARE PLATFORM AFAS OutSite does not qualify for FUNCTIONALITY of Vaste activa.

The procurement and divestment of Vaste activa does involve external parties, although these do
not directly act on the ENTITIES within the facilitating organization. The Vaste activa are deliv-
ered by and to external parties, but the maintenance on the ENTITIES in the software is done by
employees.

AFAS Pocket for iOS The AFAS Pocket smartphone application originates from the Employee Self
Service (ESS) philosophy of AFAS Software, where the recording of data is done at its source,
instead of through intermediaries. The application allows an employee to enter worked hours into
the system, to claim declarations for work-related activities, search through the CRM database,
request furlough and submit sick leave.

However, the SOFTWARE PLATFORM does not suit the processes that surround the FUNCTIONALITY
in the function group Vaste activa. The application is designed for common FUNCTIONALITY that
needs to be performed quickly without the need of having to grab a computer with a browser and
going through authentication. The processes an FUNCTIONALITY of Vaste activa does not qualify.
Therefore, this SOFTWARE PLATFORM does not suit this case study.

AFAS Pocket for Android As with the SOFTWARE PLATFORM AFAS Pocket iOS, the AFAS Pocket An-
droid smartphone application does not suit the FUNCTIONALITY of Vaste activa. Therefore, this
SOFTWARE PLATFORM is also excluded from this case study.

Combine personas with software platforms

In the previous sections, we have instantiated the template concepts PERSONA and SOFTWARE PLAT-
FORM. The FUNCTIONALITY in the function group of this case study is focused around an ENTITY which
is primarily handled inside an organization’s administration, without involvement of external parties.
Therefore, only the SOFTWARE PLATFORM AFAS InSite qualifies for this case study. The SOFTWARE
PLATFORM was designed to empower every employee with self service. This implies that any of the
PERSONAS we have identified are combined with this SOFTWARE PLATFORM to create a SCENARIO.

Identify mapping candidates

To provide a user-friendly interface to interact with the FUNCTIONALITY and identify MIGRATION MAPPING
candidates, we designed a user interface which displays a table with all required data. As each row
represented a set of functionality, the columns represented the ENTITY, function group, CRUD-operator,
FUNCTIONALITY, and different SCENARIOS. The cells under the columns of the SCENARIOS represent
the MIGRATION MAPPINGS and candidates.

155

For each row, and thus for each FUNCTIONALITY, we assessed whether the FUNCTIONALITY could
serve as a potential MIGRATION MAPPING in the given SCENARIO. This was done in a closed environ-
ment on an individual basis, as consulting other STAKEHOLDERS would be performed in the upcoming
activities Review mapping candidates and Prioritize mapping candidates.

The creation of the concept MIGRATION MAPPING in this activity means that the FUNCTIONALITY
serves a mapping candidate for the given SCENARIO. No Priority was yet assigned to the instantiated
concept. When relevant, we have also attached a DESIGN RATIONALE to the MIGRATION MAPPING,
which captures the underlying decision made about the MIGRATION MAPPING. Figure E.2 displays the
user interface of the tool we have designed for this activity and case study.

Figure E.2: MIGRATION MAPPING tool

In Figure E.5, we present an example of the MIGRATION MAPPING with preliminary candidates.

156

Figure E.3: MIGRATION MAPPING tool with candidates

Review mapping candidates—Prioritize mapping candidates

In a two hour group session with the stakeholders MOHAMED AMRI and HENK VAN DER SCHUUR, both
a product manager at AFAS Software, we reviewed and prioritized the MIGRATION MAPPING candidates
that were selected in the previous activity. The same tool was used to present the candidates and give
an overview of the progress and results of the group session. The entire session was recorded by audio,
so that the discussions of the group session could be consulted in a later stage.

The input of the group session was a total of 105 sets of FUNCTIONALITY, originating from 33 EN-
TITIES. During discussions in the group session, 5 ENTITIES were excluded, which implied the exclusion
of 26 sets of FUNCTIONALITY. These ENTITIES were excluded because they did not provide significant
relevance to the identified SCENARIOS. Of the remaining 79 sets of FUNCTIONALITY, originating from 28
ENTITIES, 56 sets of FUNCTIONALITY were assigned a priority by means of 131 MIGRATION MAPPINGS.
This means that 23 sets of FUNCTIONALITY have no MIGRATION MAPPING assigned, and are therefore
also excluded from the migration.

These 56 sets of FUNCTIONALITY with a total of 131 MIGRATION MAPPINGS and their priorities are
included as input for the VISUALIZATIONS of the method’s output.

Select stakeholders

The outcome of the group session in which we assigned priorities to the MIGRATION MAPPING instan-
tiations, will be presented to two product managers of AFAS Software. They have also been identified
as stakeholders in Section E.2.2, named MOHAMED AMRI and HENK VAN DER SCHUUR. For now, these
two stakeholders are the only stakeholders for whom we design a visualization of this case study. In
a later stage, for instance during the actual composition of the product roadmap, another visualization
may need to be designed.

157

Design visualization

As with the previous template method instantiation, a matrix of functionality, scenarios and mapping pri-
orities suits the goal of this case study best. The stakeholders request a prioritized list of requirements,
which can act as input for their product roadmap.

Each row of the visualization contains a set of functionality, with its corresponding functionality
classifier, entity and function group. The other columns include the five scenarios of the case study,
the sum of the mapping priorities, and the average priority, based on a division of the sum by the total
number of scenarios.

The spreadsheet has been sorted on the final column at first, which contains the average priority
of the functionality. Second sorting is done by the corresponding entity and CRUD-operator.

To support interpretation by visual aids in the spreadsheet, the variables concerning the mapping
priority are given a background color, depicting its value in correspondence with other values in the
column. The more green a cell is, the higher its value in relation with the other cells in the column.

E.2.2 Concept instantiations

MIGRATION PROJECT DEFINITION

MIGRATION PROJECT DEFINITION

Code AFAS.Profit.ACT.001

Scope Vaste activa

Start date 7 April 2014

Version 1.0

Goal Migration of function group Vaste activa to AFAS InSite

Table E.3: MIGRATION PROJECT DEFINITION

STAKEHOLDER

GERARD NIJBOER

Role Participant

Table E.4: STAKEHOLDER

HENK VAN DER SCHUUR

Role Informer

Table E.5: STAKEHOLDER

158

MOHAMED AMRI

Role Observer—Informer

Table E.6: STAKEHOLDER

JAN GRIJZEN

Role Informer

Table E.7: STAKEHOLDER

DOMAIN ONTOLOGY

Figure E.4: DOMAIN ONTOLOGY

ENTITY

Product Function group ENTITY

Vaste activa Vaste activa AFSCHRIJVINGSMETHODE

Vaste activa Vaste activa ACTIEF

Vaste activa Vaste activa ACTIVA STAMKAART

Vaste activa Vaste activa ACTIVAGROEP

Algemeen Administratie ADMINISTRATIE

Algemeen Algemeen AFBEELDING

Algemeen Algemeen BIJLAGE

Vaste activa Vaste activa COMMERCIËLE AANSCHAFFINGSSTAAT

Vaste activa Vaste activa COMMERCIËLE AFSCHRIJVINGSSTAAT

Vaste activa Vaste activa COMMERCIËLE AFSCHRIJVINGSTERMIJN

159

Product Function group ENTITY

Financieel Crediteur CREDITEUR

Financieel Financieel DAGBOEK

CRM Dossier DOSSIERITEM

Vaste activa Vaste activa FACTUUR

Financieel Financiële mutaties FINANCIËLE MUTATIE

Vaste activa Vaste activa FISCALE AANSCHAFFINGSSTAAT

Vaste activa Vaste activa FISCALE AFSCHRIJVINGSSTAAT

Vaste activa Vaste activa FISCALE AFSCHRIJVINGSTERMIJN

Financieel Grootboek GROOTBOEKREKENING

Logistiek Facturen INKOOPFACTUUR

Vaste activa Vaste activa INVESTERING

Payroll Payroll definitief JOURNAALPOST

CRM Organisatie/persoon MEDEWERKER

CRM Organisatie/persoon ORGANISATIE/PERSOON

Algemeen Inrichting PERIODETABEL

Algemeen Inrichting PERIODEVERDEELTABEL

Vaste activa Vaste activa SUBSIDIE

Vaste activa Vaste activa VERKOOP

Vaste activa Vaste activa VERZEKERING

Algemeen Inrichting VRIJE TABEL

Vaste activa Vaste activa WIJZIGING ACTIEF

Table E.8: ENTITY

FUNCTIONALITY

ENTITY CRUD FUNCTIONALITY

ACTIEF C Actief toevoegen

ACTIEF C Nieuwe Vaste activa importeren

ACTIEF R Actief weergeven

ACTIEF R Rapportage Activa stamkaart raadplegen

ACTIEF R Journaalposten van Actief raadplegen

ACTIEF R Rapportage Controleoverzicht vaste activa boekhouding raadplegen

ACTIEF R Rapportage Gekoppelde activa raadplegen

ACTIEF U Actief bewerken

ACTIEF U Wijzigen activacode

ACTIEF U Herberekenen cumulatieven vaste activa

ACTIEF U Gekoppeld actief aan actief toevoegen

ACTIEF U Activa koppelen aan een verzekering

ACTIEF D Actief verwijderen

ACTIVAGROEP C Activagroep toevoegen

160

ENTITY CRUD FUNCTIONALITY

ACTIVAGROEP C Nieuwe Activagroepen importeren

ACTIVAGROEP R Activagroep weergeven

ACTIVAGROEP R Activa van een Activagroep raadplegen

ACTIVAGROEP U Activagroep bewerken

ACTIVAGROEP U Wijzigen activagroepcode

ACTIVAGROEP D Activagroep verwijderen

AFBEELDING CD Afbeelding toevoegen

AFBEELDING CRUD Afbeelding kopiëren naar ander doel

AFBEELDING C Afbeelding importeren

AFBEELDING R Afbeelding weergeven

AFBEELDING R Afbeelding tonen in groot formaat

AFBEELDING U Toelichting van afbeelding bewerken

AFBEELDING D Afbeelding verwijderen

BIJLAGE C Bijlage toevoegen aan inkoopfactuur

COMMERCIËLE AANSCHAFFINGSSTAAT R (Commerciële) Aanschaffingsstaat raadplegen

COMMERCIËLE AFSCHRIJVINGSSTAAT R (Commerciële) Afschrijvingsstaat raadplegen

COMMERCIËLE AFSCHRIJVINGSTERMIJN R (Commerciële) Afschrijvingstermijn raadplegen

CREDITEUR R Crediteur weergeven

DAGBOEK R Dagboek weergeven en openen

DOSSIERITEM C Dossieritem toevoegen

DOSSIERITEM C Subdossier toevoegen aan dossieritem

DOSSIERITEM C Bijlage aan dossieritem toevoegen

DOSSIERITEM R Dossieritem weergeven

DOSSIERITEM U Dossieritem bewerken

DOSSIERITEM U Bestemming van dossieritem bewerken

DOSSIERITEM D Dossieritem verwijderen

DOSSIERITEM D Subdossier van dossieritem verwijderen

FACTUUR C Factuur aan Actief toevoegen

FACTUUR R Factuur van Actief weergeven

FACTUUR U Factuur van Actief bewerken

FACTUUR D Factuur van Actief verwijderen

FISCALE AANSCHAFFINGSSTAAT R Fiscale aanschaffingsstaat raadplegen

FISCALE AFSCHRIJVINGSSTAAT R Fiscale afschrijvingsstaat raadplegen

FISCALE AFSCHRIJVINGSTERMIJN R Fiscale afschrijvingstermijn

FISCALE AFSCHRIJVINGSTERMIJN U Fiscale afschrijvingstermijn bewerken

GROOTBOEKREKENING C Grootboekrekening toevoegen

GROOTBOEKREKENING R Grootboekrekening weergeven

GROOTBOEKREKENING U Grootboekrekening bewerken

GROOTBOEKREKENING D Grootboekrekening verwijderen

INKOOPFACTUUR C Inkoopfactuur toevoegen via inkoopboeking

161

ENTITY CRUD FUNCTIONALITY

INKOOPFACTUUR C Inkoopfactuur boeken vanuit ingelezen e-factuur

INVESTERING C Investering aan Actief toevoegen

INVESTERING R Investering van Actief weergeven

INVESTERING U Investering van Actief bewerken

INVESTERING D Investering van Actief verwijderen

JOURNAALPOST UD Journalisering van (geselecteerde) Activa terugdraaien

JOURNAALPOST C Journaalposten opnieuw genereren

JOURNAALPOST C Vaste activa journaliseren

JOURNAALPOST C Journaliseren afschrijvingen via kolommenbalans van Verslagleggingscockpit

MEDEWERKER C Medewerker toevoegen

MEDEWERKER R Activa van een Medewerker raadplegen

MEDEWERKER R Medewerker weergeven

MEDEWERKER R Stamkaart medewerker weergeven

PERIODETABEL C Periodetabel toevoegen

PERIODETABEL C Jaren toevoegen aan Periodetabel

PERIODETABEL R Periodetabel weergeven

PERIODETABEL U Periodetabel bewerken

PERIODETABEL U Jaren blokkeren in Periodetabel

PERIODETABEL U Jaren deblokkeren in Periodetabel

PERIODETABEL U Opnieuw opbouwen van Periodetabel

PERIODETABEL D Periodetabel verwijderen

PERIODETABEL D Jaren verwijderen van Periodetabel

PERIODEVERDEELTABEL C Periodeverdeeltabel toevoegen

PERIODEVERDEELTABEL R Periodeverdeeltabel weergeven

PERIODEVERDEELTABEL U Periodeverdeeltabel bewerken

PERIODEVERDEELTABEL D Periodeverdeeltabel verwijderen

SUBSIDIE C Subsidie aan Actief toevoegen

SUBSIDIE R Subsidie van Actief weergeven

SUBSIDIE U Subsidie van Actief bewerken

SUBSIDIE D Subsidie van Actief verwijderen

VERKOOP C Actief verkopen

VERKOOP R Actief verkoop weergeven

VERKOOP U Actief verkoop bewerken

VERKOOP D Actief verkoop verwijderen

VERZEKERING C Nieuwe Vaste activa Verzekeringen importeren

VERZEKERING C Verzekering toevoegen

VERZEKERING R Verzekering weergeven

VERZEKERING U Verzekering bewerken

VERZEKERING D Verzekering verwijderen

VRIJE TABEL C Type subsidie toevoegen

162

ENTITY CRUD FUNCTIONALITY

VRIJE TABEL C Locatie actief toevoegen

VRIJE TABEL R Type subsidie weergeven

VRIJE TABEL R Locatie actief weergeven

VRIJE TABEL U Type subsidie bewerken

VRIJE TABEL U Locatie actief bewerken

VRIJE TABEL D Type subsidie verwijderen

VRIJE TABEL D Locatie actief verwijderen

WIJZIGING ACTIEF R Wijzigingen van een Actief weergeven

Table E.9: FUNCTIONALITY of ENTITIES in Vaste activa

DATA MODEL

Figure E.5: DATA MODEL

163

Figure E.6: DATA MODEL by formal design document

164

PERSONA

JOHN PIERSON

Role Employee

Table E.10: PERSONA

COERT VAN HAASTEREN

Role Facility manager

Table E.11: PERSONA

NIELS HOGENDORP

Role ICT manager

Table E.12: PERSONA

EVA VOGELS

Role Financial controller

Table E.13: PERSONA

JACK VAN DEUR

Role Chief financial officer

Table E.14: PERSONA

SOFTWARE PLATFORM

AFAS INSITE

Platform type
(Bosch, 2009)

Web

Platform type
(Gawer, 2009)

Internal platform

Table E.15: SOFTWARE PLATFORM

165

SCENARIO

EMPLOYEE on AFAS INSITE

Persona EMPLOYEE

Software platform AFAS INSITE

Table E.16: SCENARIO

PROCUREMENT AGENT on AFAS INSITE

Persona PROCUREMENT AGENT

Software platform AFAS INSITE

Table E.17: SCENARIO

FACILITY MANAGER on AFAS INSITE

Persona FACILITY MANAGER

Software platform AFAS INSITE

Table E.18: SCENARIO

ICT MANAGER on AFAS INSITE

Persona ICT MANAGER

Software platform AFAS INSITE

Table E.19: SCENARIO

FINANCIAL CONTROLLER on AFAS INSITE

Persona FINANCIAL CONTROLLER

Software platform AFAS INSITE

Table E.20: SCENARIO

166

CHIEF FINANCIAL OFFICER on AFAS INSITE

Persona CHIEF FINANCIAL OFFICER

Software platform AFAS INSITE

Table E.21: SCENARIO

VISUALIZATION

Figure E.7: VISUALIZATION

167

168

169

170

	Abstract
	Nederlandse samenvatting
	Preface
	Communication
	Table of contents
	Introduction
	Problem statement
	Research objective
	Research questions
	Relevance
	Main deliverables
	Case study company
	Thesis outline
	Glossary

	Research approach
	Literature review
	Method engineering
	Case study
	Design science

	Requirements Management in Software Product Management
	Positioning on the SPM Competence Model

	The Software Functionality Evolution Method
	Method engineering
	Process-Deliverable Diagram
	Project definition
	Functionality identification
	Scenario creation
	Functionality mapping
	Results reporting

	Template method instantiations
	Template method increments
	Case study summaries

	Discussion
	Conclusion
	Future research

	Bibliography
	List of figures
	List of tables
	Appendices
	Paper IWSPM14
	Activity table
	Concept table
	Case study: Course management in AFAS InSite
	Template method
	Template method instantiation

	Case study: Fixed assets in AFAS InSite
	Template method
	Template method instantiation

