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Abstract

In this thesis, I will discuss a clock synchronization thought experiment which models a diffeo-
morphism invariant time delay observable. For calculational purposes, the thought experiment
takes place in an approximately Minkowski spacetime. The time delay observable is expanded to
linear order in the gravitational field and its mean and variance are computed in the Fock vac-
uum of linearized quantum gravity. For the later calculation, we resorted to the use of computer
algebra software due to the large amount of integrals that need to be evaluated. Divergences
are regularized using a smearing procedure, which relies on the detector sensitivity profile. The
results show that the quantum mean is given by se−θ where s and θ are experimental input: s is
the determining length scale and θ the hyperbolic rapidity between the worldlines of the lab and
the probe. The leading order term of the quantum variance is proportional to (s`p/µ)2 where µ
determines the detector resolution. All circumstances alike, the quantum variance increases for
increasing detector sensitivity. Additionally, the quantum variance is heavily influence by θ. The
variance appears to become unbounded for small relative velocities. In particular, it changes by
eight orders of magnitude between typical laboratory velocities and highly relativistic speeds.
The observable was constructed to probe the causal structure of quantum spacetimes as well as
serve as a benchmark to compare different approaches to quantum gravity.
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Chapter 1

Introduction

In modern physics, a fundamental theory of quantum gravity that unifies quantum physics with
general relativity (GR) is still an unsolved problem. Both quantum theory and GR have been
experimentally verified numerous times, however, currently there exists no experimental evidence
that allows us to see quantum gravitational effects. This may lead one to wonder why in the first
place we want to quantize gravity. There are several motivations. First of all, quantum physics
and GR can both be interpreted as “effective” theories: the prediction of experimental outcomes
is limited to a specific physical context. Classical physics serves very well for predictions on
macroscopic scales, but quantum mechanics is needed for an accurate description of nature at
microscopic scales, i.e., atomic scales and smaller. GR is (presumed) to be a theory of the very
large. Unifying both theories could provide us with a description of spacetime on all scales.
Second, a motivation stemming directly from GR also indicates that a more general theory is
needed. In spacetime regions with extreme curvature such as near the singularity inside a black
hole and at scales relevant to early universe cosmology, the description of nature provided by
GR breaks down. This is due to the spacetime singularities that occur in the solutions of GR.
Thus, essential to understanding black holes and the initial state of the universe as described
by cosmology a more general theory for GR is needed. Hopefully, quantum gravity may resolve
these issues. The third motivation to quantize gravity comes from a more fundamental level. Any
force field is partially determined by its sources, and the sources of gravity are matter fields,
which are quantum mechanical. Therefore, gravity should also have a quantum mechanical
nature. One could circumvent this argument by taking the expectation value of the matter
stress-energy tensor, however, this view does not hold under the simplest interpretation of the
observed anisotropies in the cosmic ray microwave background. For an extended explanation,
see a review article by Woodard [1]. Fourth, there is good hope that this new more fundamental
theory may provide us with deeper insights into our universe and may lead to predictions of new
phenomena that may (eventually) be observed.

Many approaches have been developed over the years to find this theory of quantum gravity.
(Super)string theory is one of the popular approaches. Other popular approaches are loop
quantum gravity and asymptotic safety. But the list is much larger; just to name a few: covariant
perturbation theory, canonical quantization method, the path integral approach, supergravity,
twistor approach, causal dynamical triangulations and shape dynamics. A general review article
by Carlip of various of these approaches is a good start [2]. None of these approaches has
obtained the final full theory yet, as each approach has its own issues. However, in general there
are two main problems that make the search for a theory of quantum gravity difficult. One
is the dual role of the metric field gµν : on the one hand it describes the dynamical aspects of
gravity and on the other hand it gives us the background spacetime structure on which all the
matter fields live. This suggests that in order to quantize the dynamical degrees of freedom of
gravity, one also needs a quantum mechanical description of spacetime. There is no analogue
with other quantum field theories that have the same requirement, as all theories are described
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on a fixed background structure. Second, many mathematical problems arise in the search for
a description of quantum gravity. Examples are its non-renormalizability and the difficulty of
relating the mathematical framework with a clear physical interpretation.

In this thesis, the focus is on calculating quantum gravitational effects on a physical observ-
able in the conservative setting of linearized gravity. We have chosen an observable with a clear
physical interpretation and a tractable calculation by modeling a clock synchronization thought
experiment in approximately Minkowski spacetime. The quantum mean and the variance of the
observable are calculated. These results may serve as a benchmark to compare the predictions
of various fundamental approaches to quantum gravity, by comparing how they agree with the
conservative limit of quantum linearized gravity. Additionally, the observable is chosen such that
it can probe the causal structure of spacetime. It should be noted that the work presented here
is a continuation of previous work by Khavkine and builds heavily upon it [3].

The set-up of this thesis is as follows. First, issues related to modeling observables in classical
an quantum physics are discussed in ch. 2. Next, in ch. 3 and 4 the specifics of the thought
experiment are described closely following parts of work by Khavkine [3]. Ch. 5 deals with the
explicit calculations and ch. 6 presents the results. Finally, a conclusion and outlook on possible
future research is given in ch. 7. In the appendices, detailed mathematical derivations and results
are presented that are used in the text.
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Chapter 2

Modelling observables

The aim of physics, to describe the physical world around us and to predict future measure-
ments, requires the pivotal concept of physical observables which are mathematical models of
experimental outcomes. In this chapter, the difficulty of defining observables within the frame-
work of general relativity is discussed first. Next, the requirements for observables in classical
and quantum physics are described. Finally, the approach taken in my thesis is briefly outlined.

2.1 Observables in general relativity

To model a physical observable, there are two possible paths one could take: define a class of
observables as broad as possible and take one observable from this class, or one could construct
an explicit example without having first defined all possible observables.

The first route, to theoretically define a class of observables as general as possible is a difficult
undertaking for GR. This is due to the fact that all observables are required to be invariant under
spacetime diffeomorphisms. One could straightforwardly construct observables of the form∫

M

Vg f(φ, g),

where M is the entire spacetime, Vg is the metric volume and f(φ, g) is a smooth spacetime
scalar depending on the metric g and all other dynamic fields, denoted by φ. However, this class
of observables is not likely to describe the outcome of any experiment that we are to perform
since no experiment is able to take the effects of the entire universe into account. Additionally,
there are some technical issues related to the convergence of such integrals. Another direct
approach to define a class of observables as broad as possible is to take all possible solutions to
the Einstein equations and divide out all solutions that are related by gauge transformations

Γ = S /D,

where Γ is the physical phase space, S is the solution space to Einstein’s equations and D are
all spacetime diffeomorphisms. In this way, the issues of the previous method are resolved,
nonetheless, the class of observables obtained have no obvious physical interpretation. This is
a result of the abstract nature of the construction of these observables. Hence, it is difficult to
take an observable from a larger class of observables and start to do computations with it.

Therefore, in this thesis, we take the second path to model a physical observable: we start
with an experimental set-up, check whether the observable that we are interested in is indeed
spacetime diffeomorphism invariant and model the experimental outcome. This approach is
clearly not as general as possible, but it allows one to study gravitational effects on a case by
case basis. [3]
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2.2 Observables in classical theories

In classical physics1, the definition of observables as mathematical models of experimental out-
comes can be made more rigorously.

Definition 1 Let Γ be the space of initial data, i.e. the phase space. By means of a reduction
procedure obtain the solution space S (which describes all dynamically possible solutions). All
smooth continuous functions on this solution space S form an algebra of observables A over R.
Define Σ to be all normalized, positive linear functionals on this commutative classical algebra
A. Physical states σ are elements of Σ that satisfy the following three conditions

1. linearity σ : A −→ R,

2. positivity σ(f2) > 0 for any observable f ∈ A,

3. normalization σ(1) = 1.

Physical quantities at a given time t are calculated by evaluating the observable at the cor-
responding point in phase space. More concretely, consider a one-dimensional n-particle system,
where the particles are specified at any time by their instantaneous positions and momenta, q
and p, respectively. Thus, the phase space Γ is a 2n-dimensional (smooth) manifold and an ob-
servable is any real-valued function on this phase space Γ. For example, the energy of a system
is an observable. It can be calculated by evaluating the Hamiltonian function H at a given time
at a point xt = (qt, pt)

E =

∫
dq

∫
dpH(q, p)δ(q − qt)δ(p− pt),

where here the states of the system are the Dirac delta functions.
Multiple functions can be defined on a manifold. Two important operations with multiple

functions on a manifold are multiplication and the Poisson bracket. The latter will be shown
to be relevant not only to describe the dynamical evolution of observables, but it will also
play an essential role in defining a class of quantum observables. Multiplication is defined
pointwise fg(x) = f(x)g(x) for f, g ∈ C∞(M), x ∈ M and M a smooth manifold. This
multiplication is commutative, i.e. fg(x) = gf(x). The Poisson bracket can be written as
{f, g}(x) = πij∂if(x)∂jg(x). In canonical coordinates x = (q, p), πij is represented by

πij =

(
0 −In
In 0

)
,

where In is the n× n-identity matrix, and the Poisson bracket reduces to the often encountered
one in classical mechanics

{f, g}(q, p) =

n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)∣∣∣∣
q,p

.

There are three important properties that this Poisson bracket satisfies:

1. antisymmetry {f, g} = −{g, f},

2. Leibniz rule {f, gh} = {f, g}h+ g{f, h},

3. Jacobi identity {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

1Theories with gauge degrees of freedom are not considered here.
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Evolution of a system is governed by the Hamilton equations, which for a general observable
f ∈ A are

ḟ = {f,H},

where the dot on top of f indicates a time derivative and H is the Hamiltonian.
This can all be described in the context of symplectic manifolds or more generally using

Poisson manifolds (M,α), where α is the Poisson tensor. (Symplectic manifolds are a subgroup
of Poisson manifolds for which the Poisson tensor is non-degenerate, i.e. invertible.)

2.3 Observables in quantum theories

To make the step to quantum observables, which we are interested in, there are three possible
roads to take. A common approach is the operator formalism in which quantum observables
are operators in Hilbert space, physical states are linear combinations of the eigenfunctions of
these operators and physical quantities are eigenvalues of these operators. Another method is
the path-integral approach, which is generally used in quantum field theory. We shall follow
the third road: deformation quantization, because it concentrates on “the central concepts of
quantum theory: the algebra of observables and their dynamical evolution” [4, sec. I].

The requirements on the physical states and observables now slightly change.

Definition 2 Let Â be a non-commutative quantum algebra of observables over C, which can be
obtained from all smooth functions on the reduced phase space endowed with a Poisson bracket.
Define Σ̂ to be all normalized, positive linear functionals on this non-commutative quantum
algebra Â. Physical states σ are elements of Σ̂ satisfying the following three conditions:

1. linearity σ : Â −→ C,

2. positivity σ(f∗f) > 0 for any observable f ∈ Â,

3. normalization σ(1) = 1.

In short, to go from the classical picture to the quantum picture we go from a commutative
classical Poisson algebra of observables to a non-commutative quantum Poisson algebra. In the
limit ~→ 0, the classical theory is obtained again.

Two central features of quantum theory are immediately obvious in this approach. First,
the noncommutativity is present from the start and thus ensures that one cannot measure, for
example, both the position and momentum of a particle at the same time to infinite accuracy.
Second, the Heisenberg uncertainty is realized by describing physical states as distributions on
phase space that are not sharply localized, in contrast to the classical case for which we had
Dirac delta functions. To evaluate an observable, not just one point in phase space contributes,
but in fact values of the observable in a whole region of phase space contribute and thus the
resulting observable is an average value of the observable in a given state. [4]

To probe quantum gravitational effects, we need to construct a physical observable that
satisfies all conditions placed on physical states from def. 2. Additionally, it should be invariant
under spacetime diffeomorphisms. This is discussed in the next chapters.
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Chapter 3

Thought experiment set-up

The aim of this project is to model an observable that can probe quantum gravitational effects.
Obviously, we would like to have an experiment for which the effects due to quantum gravity are
large. However, we do not know a priori which experiments will be most sensitive to quantum
gravitational effects as we have no reliable calculation methods for a full theory of quantum
gravity yet. Therefore, we chose a thought experiment that is simple and can be applied to any
scale; from laboratory to cosmological scales. Furthermore, its physical interpretation is clear
and its calculations are tractable. The experimental set-up of this simple thought experiment
is described below and is obviously an idealization of a true experiment. The calculation of the
observable in flat and in approximately flat Minkowski spacetime concludes this chapter.

3.1 Operational description

O

P

Q
s

τ(s)

lab

probe

Figure 3.1: Geometry of the exper-
imental protocol with the synchro-
nization/ejection point O, the signal
emission point P at time τ(s) af-
ter emission and the signal reception
point Q at time s after emission.

Consider two inertially moving, localized systems: the lab
and the probe (see fig. 3.1). The lab and the probe are mov-
ing together, until at a certain moment the lab ejects the
probe with a specified direction and relative velocity, where
the moment, direction and relative velocity are all deter-
mined by the experimenter. Both the lab and the probe carry
their own proper time clock, which at the moment of ejection
O are synchronized to zero. After this moment, the lab and
the probe continue to move inertially along their time-like
geodesics and the probe starts sending time-stamped signals
using an electromagnetic signal. This is done continuously
in all directions. At a proper time interval s after ejection -
determined by the experimenter, the lab records the time-
stamped signal of the probe at time τ(s). The event of
recording is called Q, and the corresponding event at which
the recorded signal was emitted is called P .

The difference between the emission τ(s) and reception s
time is the time delay observable that we seek

δτ(s) = s− τ(s).

In addition to its clean-cut physical interpretation, this ob-
servable has as an additional bonus: it allows one to probe
the causal structure of spacetime. This is because this ob-
servable has to satisfy two important inequalities that are
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closely related to the causal structure of spacetime. One of these inequalities is due to the max-
imality of the speed of light and requires that when the emission time is a smooth function of
the reception time d

dsτ(s) > 0. The second inequality requires δτ(s) ≥ 0 and is due to geodesic
extremality. For proofs of these statements, see sec. IV in [3].

3.2 Mathematical description

In the preceding section, the experimental protocol was outlined. In this section, a mathematical
description of the protocol is given which is taken from sec. III in [3].

Definition 3 A lab-equipped spacetime (M, g,O, eai ) consists of an oriented, Lorentzian, time-
oriented, globally hyperbolic, n-dimensional spacetime (M, g), a point O ∈ M and an oriented
orthonormal frame eai ∈ TOM , with a an abstract tensor index 1 and i = 0, 1, . . . , n, where ea0 is
timelike and future directed.

The lab worldline, Q(s) = expO(su), is the geodesic passing through O with tangent vector
ua = ea0. Here expO : TOM →M is the usual geodesic exponential map.

The probe worldline, P (t) = expO(tv), is the geodesic passing through O with tangent vector
va = vieai , with vi ∈ R1,3 a timelike, future directed, unit vector, chosen independent of the
spacetime geometry.

The signal worldline, Z(t, λ), is the null geodesic emanating from a point on the probe world-
line, Z(t, 0) = P (t), and intersecting the lab worldline, Z(t, 1) = Q(s), with the earliest possible
s (alternatively, if s is fixed, then t is chosen to be the latest possible).

Physically, the point O represents the spacetime event when the probe is ejected from the
lab. The vector ea0 is tangent to the lab’s worldline and eai , i = 1, 2, . . . , n is the oriented spatial
frame carried by the lab. Mathematically, all observables are modeled by a function on the
space of lab-equipped spacetimes. In particular, the time delay observable is obtained from the
functional relationship between the values of t and s when connected by Z:

Definition 4 If t and s are such that P (t) and Q(s) are connected by Z(t, λ), they are referred to
as a pair of emission and reception times. The functional relationship between them is denoted

t = τv(s),

where τv(s) is called the recorded emission time and the difference

δτv(s) = s− τv(s),

is the time delay.

From this point on, we consider a four-dimensional lab-equipped spacetime and when the
context is clear, the explicit dependence of the time delay observable on v and s is omitted.
Furthermore, since s is determined by the experimenter we focus on calculating τ(s).

3.3 Calculation of time delay

Thus far, the time delay observable has been defined only implicitly. Since the time delay observ-
able depends on the worldlines of the lab and the probe, an explicit expression for the time delay
observable varies depending on the spacetime in which the experiment is realized. Calculations

1In the abstract tensor index, if we consider the vector va, the index a of this vector does not indicate a
component of v in a particular basis as the usual coordinate tensor indices do. On the contrary, the index does
not take any values in a set and is simply a label indicating that v is a vector (very similar to the arrow in −→v ).
For more information on the distinction between abstract and coordinate tensor indices, see [5].
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of worldines are difficult for arbitrary spacetimes, but for highly symmetric spacetimes geodesics
can be exactly computed. To make calculations doable, we chose to perform the thought experi-
ment in Minkowski spacetime with some perturbations on top of it. Other spacetimes such as the
Schwarzschild metric or FRW-metric are not considered in this thesis, albeit worth investigation.

The following calculation has been carried out in two ways: using metric variables and
vielbein variables. The results of both method agree. Since the vielbein formalism makes sense
independently of the choice of coordinate chart and allows one to generalize the results more
easily (though not directly relevant for this thesis), the calculation is presented using these
variables. One such generalization is the inclusion of fermions on curved spacetimes, another is
to an improved perturbation technique known as the Magnus expansion. The calculation in this
section is heavily based on sec. V of [3].

3.3.1 Calculation in flat Minkowski spacetime

As a warm-up exercise, the calculation is first carried out in flat Minkowski spacetime. We
consider (M = R4, η, 0, x̂ai ) as our lab-equipped spacetime, where η = diag(−1, 1, 1, 1). Without
loss of generality, we take arbitrary inertial coordinates xi on (M,η) and use their origin as the
moment of ejection and the vectors x̂ai = (∂/∂xi)a as our reference vierbein. The dual vierbein

is x̂ia = (dxi)a and is related to the reference vierbein by the identities x̂ai x̂
j
a = δji and x̂ai x̂

i
b = δba.

The Minkowski metric is defined via the pullback of ηij by the dual vierbeins: ηab = ηij x̂
i
ax̂
j
b.

Now the lab-equipped spacetime is completely specified, we need to construct our experimental
set-up for which we need the worldlines of the lab and the probe in fig. 3.2. We parametrize these
worldlines, respectively, as xi(s) = sui and xi(t) = tvi (i = 0, 1, 2, 3), where ui is the unit vector
in the time direction, i.e. ui = (1, 0, 0, 0), and vi is another time-like unit vector. The tangent
vectors of these worldlines are related by the (positive) hyperbolic rapidity, which is defined in
terms of the relative speed between the two worldlines, i.e. vrel = tanh(θ). Consequently, we
have u · v = ηiju

ivj = − cosh θ. The sides of the triangular set-up are

V i = tvi,

U i = sui,

W i = sui − tvi := wi.

Since W by construction is a light-like segment, we require w2 = 0. This gives

wiwi = ηijw
iwj = ηij(su

i − tvi)(suj − tvj)
= −s2 − 2st(u · v)− t2

= −s2 + 2st cosh θ − t2

= −s2 + 2st(eθ + e−θ)− t2

= −(seθ − t)(se−θ − t) = 0.

Therefore, the retarded functional relation between the emission and reception time is given by

τcl(s) = t = se−θ,

where the subscript refers to classical, as it will serve as the classical background expectation
for quantum fluctuations later on. This relation shows that the causal inequality d

dsτ(s) > 0 is
indeed satisfied. Also the second causal inequality, i.e. the time delay observable is always larger
than or equal to zero, clearly holds since e−θ < 1 for all physically allowed θ.

3.3.2 Calculation in approximately Minkowski spacetime

We now consider Minkowski spacetime with perturbations on it. In accordance with the previous
calculation, we first define our lab-equipped spacetime. Next, we describe our experimental set-
up in this lab-equipped spacetime, after which we determine the functional relation between the
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O

P

Q

V

W

U

u

û

v

Figure 3.2: The set-up of the thought experiment: O denotes the origin (i.e., point of ejection), the
oriented line segment OP is denoted by V , PQ by W and QO by U . The vectors u, û, v are all unit
vectors defined at the origin.

emission and reception time. We keep the same underlying manifoldM with reference vierbein x̂ai
and same point of origin as in the flat case, but take another lab-equipped spacetime (M, g, 0, êai ).
Any other vierbein on this manifold can be obtained by a general linear transformation

eai = T̄ i
′

i x̂
a
i′ , eia = T ii′ x̂

i′

a , (3.1)

where T and T̄ are spacetime dependent invertible matrices such that T̄ = T−1. We take a
transformed vierbein that satisfies

eai e
j
a = δji , eai e

i
b = δba,

and use this new orthonormal frame as the spacetime vierbein at the origin. Since our lab-
equipped spacetime is approximately Minkowski spacetime, the transformation tensor T needs
to be close to the identity matrix. This can be parametrized by T = exp(h) where we take h to
be small (h can be thought of as the gravitational field). A logical choice for the lab-frame would
be the spacetime vierbein at the origin, however, the lab-frame is not uniquely determined and
can be obtained by yet another general linear transformation at the origin. That is,

êai = (TO)i
′

i x̂
a
i′ ,

where the hat indicates the lab-frame vierbein. The possible distinction between this lab-frame
and the spacetime vierbein at the origin is

êai = Li
′

i e
a
i′ with Li

′

i = (TO)i
′

j T
j
i ,

where L is a Lorentz transformation considering it satisfies Li
′

i L
j′

j ηi′j′ = ηij . Using the same rea-
soning as above for the transformation matrix, this Lorentz transformation can be parametrized
as exp(hO), where the subscript O indicates that the gravitational field needs to be evaluated at
the origin. The metric clearly changes with regard to flat spacetime and is now defined via the
pullback of ηij by the spacetime vierbeins in eq. (3.1) (in contrast to the reference vierbeins in
flat Minkowski space). The metric can be written to linear order in the gravitational field using
the expression for the transformation tensor and expanding it

gab = ηije
a
i e
b
j = ηijT

i
i′T

j
j′ x̂

i′

a x̂
j′

b

= ηab + (ηi′jh
i
i′ + ηij′h

j
j′)x̂

i′

a x̂
j′

b +O(h2)

= ηab + h̃ab.
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Note the discrepancy between the deviation from Minkowski spacetime in vierbein (hab) and in
metric (hij) variables

h̃ab = 2h(ij)x̂
i
ax̂
j
b +O(h2), where hij = ηij′h

j′

j . (3.2)

Now the lab-equipped spacetime is completely determined, we need to construct the experi-
mental set-up. This is done by parallel propagating the tangent vector to the probe v along its
timelike geodesic, after which a light-like vector, denoted w, which was also parallel propagated
along this geodesic, is now parallel propagated along its own geodesic. Finally, the tangent vec-
tor to the lab u is parallel propagated along these two geodesics and then parallel propagated
along its own time-like geodesic back to the origin. This experimental protocol requires that we
know how to parallel propagate vectors along time-like and light-like worldlines. For parallel
transportation of a vector va(t) along a worldline γ(t), in addition to knowledge of the geodesic,
we need to know va(0) at γ(0). A geodesic is completely determined given the point of origin
γ(0) and initial tangent vector γ̇(0). Solutions for the geodesic and parallel propagation to linear
order in the gravitational field are derived in app. B and will be used in the remaining part of
this chapter.

In the flat case, the triangle was formed by the line segments (V,W,U) with tangent vectors
(tva, wa,−sua). In the present situation due to the presence of the gravitational field, the line
segments are no longer straight lines but are slightly curved, which we will denote by putting
tildes on all segments: (Ṽ , W̃ , Ũ) and, accordingly, (t̃ṽa, w̃a,−s̃ũa). To be consistent with the
experiment, we keep s̃ = s, ṽ = viêai and ũ = uiêai fixed. Furthermore, w̃a should remain null
and Ũ and Ṽ need to intersect for the triangle needs to close. These first four requirements lead
to the following equations

s̃ = s, (3.3)

t̃ = er̃t, (3.4)

ṽa = viêai = eai exp(hO)ijv
j , (3.5)

ũa = eai [exp(pU ) exp(pW ) exp(pV )]ij(hO)jku
k, (3.6)

w̃a = eai exp(q̃)ijw
j , (3.7)

where we have used exp(pγ) to denote the parallel transport operator along γ as defined in
eq. (A.7), and we parametrized the changes in t̃ and w̃ due to the curvature by exp(r̃), where r̃
is a scalar and exp q̃ is a Lorentz transformation, which both need to be determined yet. Since we
are working at linear order, we only need the leading terms in the expansion of these unknowns

q̃ij = qij +O(h2), r̃ij = r +O(h2).

The only requirement left is the closure of the VWU triangle. Using the perturbative solution of
the geodesic and parallel transport equations in terms of H and J obtained in app. B (eqs. (A.12)
and (A.11))2, at linear order, the triangle closure condition can be written out explicitly as

0 = tvi + rtvi + J iV,∅

+ wi + qijw
j + J iW,V (3.8)

− sui −Hi
jsu

j + J iU,VW

= rtvi + qijw
j −Hi

jsu
i + J i, (3.9)

where we defined H and J in the above equation, analogue to the notation in eq. (A.14), as

ηikH
k
j = Hij = (HV,W,U )ij ,

ηikJ
k = Ji = (JV,W,U )i.

2For definitions of H and J , see app. B eq. (A.9) and eq. (A.13).
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The first term on each line in eq. (3.8) vanishes due to the closure of the zeroth order geodesic
triangle. Contracting the closure condition with wi makes the term with q vanish (due to its
antisymmetry). The solution for the first order correction to the emission time (which is given
by r) is

r = −w
iJi − wiHijsu

j

τcl(s)v · w
, (3.10)

where we substituted the zeroth order solution for t which is τcl.
3 This observable is indeed in-

variant under linearized diffeomorphisms. In particular, H and J are separately gauge invariant.
This is checked in detail in the appendix of [3]. More explicitly, we have

wiHijsu
i =

∑
X=V,W,U

(
swiuj

[
h[ij]

]x2

x1
+ 2sw[iuj]xk

∫
X

dt ∂ih(kj)

)
,

wiJi =
∑

X=V,W,U

(
−wixj

∫
X

dt h(ij) + 2w[ixj]xk
∫ (1)

X

dt ∂ih(kj) +
∑
Y <X

2w[ixj]yk
∫
Y

dt ∂ih(kj)

)
,

where
∫ (1)

indicates that the integral needs to be iterated, for details see app. B. The first term
in the expression for H vanishes since we are working in a symmetric gauge. The more detailed
expression for r is then given by

r =
1

τcl(s)v · w

(
2W [iU j]V k

∫
V

dt ∂ih(kj) + 2W [iU j]W k

∫
W

dt ∂ih(kj) + 2W [iU j]Uk
∫
U

dt ∂ih(kj)

+W iV j
∫
V

dt h(ij) − 2W [iV j]V k
∫ (1)

V

dt ∂ih(kj) +W iW j

∫
W

dt h(ij) +W iU j
∫
U

dt h(ij)

−2W [iU j]Uk
∫ (1)

U

dt ∂ih(kj) − 2W [iU j]W k

∫
W

dt ∂ih(kj) − 2W [iU j]V k
∫
V

dt ∂ih(kj)

)
. (3.11)

Originally, in the part stemming from J there were two terms proportional to W [iW j]. These
are not displayed as they unequivocally equal to zero.

For notational convience, from this point onwards we will use a more dense notation. Since
by construction each term in r is linear in h, we write r as r = rxhx where hx represents the
gravitational field and rx is its tensorial coefficient that can contain vectors, tensors, integrals
and derivatives. The x-index is shorthand for all tensorial indices. Being more specific, we can
write the coefficient rx as

rx =
∑
K,n,X

rKij|K|nX

∫ (n)

X

∇K , (3.12)

where |K| is a multi-index and denotes the number of derivatives (which is either zero or one), n
the number of iterated integrals (which is zero, for a single integral, or one, for a single iterated
integral) and X the line segment along which the integral needs to be evaluated (which is either
V,W or U).

3The previously published expression for r in eq.(44) in [3] has a minus sign missing in front of the term
proportional to H.
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Chapter 4

Quantum effects

The description of the experimental set-up has thus far been completely classical. In this chapter,
the step to quantum theory is made. Three issues related to this are briefly discussed first:
the absence of a theory of quantum gravity, the issue of time observables in quantum physics
and general concerns with regard to modeling measurements in quantum mechanics. Next,
the smearing function is introduced to regularize the divergences that arise. Furthermore, an
expression for the smeared first order corrections to the variance of the time delay observable is
given. Finally, this work is compared to previous research.

4.1 Three issues related to quantum theory

At the moment, there is no full theory of quantum gravity. Since we do not want to assume any
fundamental underlying theory for our results, we use the Fock quantization of the linearized
gravitational field on a Minkowski background as our approximate theory of quantum gravity.
This is reasonable following subsequent arguments. In the classical limit, quantum gravity should
reproduce GR. This idea can be generalized for which we need two combine two ideas. One is
that the dynamics of gravity under general circumstances (e.g., not too strong curvature) is very
closely approximated by the dynamics of linearized gravity (as is the case for our experimental
set-up). And second, there are many examples that show us that for any field theory whose
dynamics is closely approximated by its linear theory, the Fock quantization of this linear theory
is a very good approximation of the full quantum theory. An example of such a field theory,
in elementary particle physics, is the Dirac field whose excitations describe free electrons. The
canonical example in condensed matter physics is the (effective) phonon field. Other examples
are spinons, magnons, exitons and plasmons. Merging these two ideas, we can deduce that in
the appropriate limit and in regions of spacetime where the curvature is not too strong, quantum
gravity should also reproduce quantum linearized gravity. Therefore, we use as our approximate
theory of quantum gravity the Fock quantization of the linearized gravitational field.

Another issue that needs to be addressed is the issue of time in quantum physics. Pauli made
an elegant argument why there exists no operator in quantum mechanics that corresponds to
time [6]. The argument is as follows: imagine a quantum mechanical system with a Hamiltonian
operator Ĥ whose spectrum is bounded from below. Let T̂ be the operator corresponding to a

time observable satisfying the commutation relation
[
T̂ , Ĥ

]
= i~ together with the appropriate

continuity and functional analytic conditions. Then according to the Stone-von Neuman unique-
ness theorem both T̂ and Ĥ need to have an unbounded spectrum. This is in contradiction with
the assumption that Ĥ has a bounded spectrum. Therefore, Pauli stated that no observable
T̂ exists that is related to a time observable. However, this line of reasoning is built on sev-
eral assumptions that do not need to hold for all physical applications. One physical situation
which circumvents this argument is when we have a Hamiltonian Ĥ that is not bounded from
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below (e.g., a linear potential or a harmonic oscillator with an inverted potential—which would
correspond, for instance, to a pen balancing on its top). Another physical application would
be when we relax the commutation relation [T̂ , Ĥ] = i~ to [T̂ , Ĥ] ∼ i~ where the equality may
be restored by higher order corrections in ~ or may be small in other ways when restricted to
physically relevant situations. An example of the latter situation is a particle on a circle. For this
thought experiment, we imagine all clocks to have an unbounded spectrum and, consequently,
Pauli’s argument will not apply. This will clearly lead to stability issues in certain regimes, how-
ever, these are ignored. One could also take a more realistic system by picking a clock valued
on a circle like an actual analog clock, which would put us in the second situation, where the
commutation relation is relaxed [7, 3].

The third issue concerns modeling measurements in quantum mechanics. This requires a
very precise outline of the experimental protocol since many measurements in quantum theory
do not commute. For example, measuring observable A first and next observable B, may yield a
different outcome than measuring observable A and B in the reversed order. Fortunately, there
is a general consensus that these ordering ambiguities are of order ~2 and higher orders in ~.
Thus, they are not relevant for this calculation. For a more detailed discussion, see sec. VI, C
of [3].

4.2 Smearing function

Having addressed these issues, being interested in calculating the emission time (and more
generally, any function thereof), we would like to evaluate

〈ψ|τ̂n(s)|ψ〉, where n ∈ Z

because any function can be approximated by a power series. For the state |ψ〉, we take the
Poincaré invariant Fock vacuum |0〉, since it is a natural choice in Minkowski spacetime and
simplifies the calculations significantly due to its symmetries. The Fock vacuum is a Gaussian
state with respect to each mode of a harmonic oscillator. Considering that any linear field theory
is merely a collection of coupled harmonic oscillators, the Fock vacuum is also Gaussian with
respect to any observable linear in the gravitational field (and, thus, our observable). In light
of the fact that a Gaussian is completely determined by its mean and variance, any moment of
the emission time τ̂(s) can be computed once we know its mean µ and variance σ2. Since by
construction the mean of the Fock vacuum is zero, we have for the mean and the variance of the
emission time

µ = 〈0|τ̃(s)|0〉 = τcl(s)(〈0|1|0〉+ 〈0|r(ĥ)|0〉+O(h2)) = τcl(s) +O(h2), (4.1)

σ2 = 〈0|τ̃(s)2|0〉 − 〈0|τ̃(s)|0〉2 (4.2)

= τ2
cl(s)(1 + 0 + 〈0|r(ĥ)2|0〉+ 〈0|r2(ĥ)|0〉 − 1 +O(h3)) ∼ τ2

cl(s)〈0|r(ĥ)2|0〉, (4.3)

where we expanded the emission time up to linear order in the gravitational field as defined in

eq. (3.4), i.e., τ̃(s) = er̃(ĥ)τcl(s) = τcl(s)(1 + r(ĥ) + r2(ĥ) + O(h3)). It should be noted that
this expansion breaks the Lorentzian signature. This can happen already at the classical level
when the perturbations in the gravitational field are large. However, classically one can restrict
these perturbations to be small and one can keep the Lorentzian signature, whereas quantum
mechanically the perturbations are arbitrary. Therefore, at this point, we are not allowed to
probe the causal structure of spacetime non-perturbatively anymore. A resolution to this may be
an improved perturbation technique that keeps the Lorentzian signature. This could potentially
be done using the Magnus expansion and may be worth investigation [8]. Another important

point is that we neglected the term r2(ĥ). This is yet another simplification and should be
addressed in the future.

From the expression in eq. (4.3), we see that we are left calculating the first order correc-

tions to the variance: r(ĥ)2. This immediately presents a problem, since all terms contain
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〈ĥ(x)ĥ(y)〉 ∼ 1
(x−y)2 which explodes for x −→ y. Fortunately, as a guiding analogy, we can

look at a comparable situation that occurs in QED, where if we were to calculate the expec-
tation value of the electric field at a single spacetime point squared, i.e., 〈E(x)2〉, we would
find out that it diverges. However, any realistic measurement that is carried out by a detec-
tor will have some finite spatial and temporal resolution. No detector is able to measure the
electric field at one single spacetime point. Thus, we must not evaluate the integral at one
single spacetime point but at a small region of spacetime, that is, we need to smear the re-
sult. If this smearing is carried out we find that the result is finite and represents the vacuum
noise in a detector with a certain sensitivity profile (related to how the smearing is performed).

O

P

Q

u

Figure 4.1: Illustration of choice
of smearing: all spacetime intervals
are smeared in the plane orthogonal
to u and the smearing is rotationally
symmetric within this plane.

We will use this regularization method and smear our results
as well. We replace our gravitational field by

ĥ(x) −→ h̃(x) =

∫
dz ĥ(x− z) g(z),

where g(z) is the smearing function and can be interpreted as
the detector sensitivity profile. Incontestably, we would like
to make as little assumptions as possible about the smearing
function, since we would like our final result to be indepen-
dent of our choice of smearing. However, to make calcula-
tions possible, at this stage, we take g̃u(z) ∼ g(z2

⊥)δ(z · u),
where z = −(u·z)u+z⊥. This is illustrated in fig. 4.1. Unfor-
tunately, this choice of smearing breaks Lorentz symmetry.
Up to this point the entire calculation was Lorentz invariant.
Other choices of smearing may be addressed in the future.

The smeared first order correction to the variance is de-
noted by 〈r̃2〉. Similar notation as described at the end of
ch. 3.3 still applies, that is,

r −→ r̃ = rxh̃x =
∑
|K|mX

rKij|K|mX

∫ (n)

dz∇K h̃ij(z).

The first order correction in the gravitational field to the
variance is then

〈r̃2〉 =
1

2
〈{r̃, r̃}〉

=
1

2

∑
|K|mX

∑
|L|nY

rKij|K|mXr
Lkl
|L|nY

∫
dx

∫
dy∇K g̃u(x)∇Lg̃u(y)×

∫ (m)

X

dx′
∫ (n)

Y

dy′ 〈{ĥ(ij)(x
′ − x), ĥ(kl)(y

′ − y)}〉

=
l2P
2π

∑
|K|mX

∑
|L|nY

rKij|K|mX ηij,kl r
Lkl
|L|nY

∫
dx

∫
dy∇K g̃u(x)∇Lg̃u(y)×

∫ (m)

X−x
dx′
∫ (n)

Y−y
dy′ P

1

[y′ − x′]2

=
l2P
2π

∑
|K|mX

∑
|L|nY

rKij|K|mX ηij,kl r
Lkl
|L|nY

∫
dx

∫
dy∇K g̃u(x)∇Lg̃u(y)Imn(X − x;Y − y)

=
l2P
2π

∑
|K|mX

∑
|L|nY

rKij|K|mX ηij,kl r
Lkl
|L|nY

∫
dx

∫
dy∇K g̃u(x)∇Lg̃u(y)Imn(X;Y + x− y)
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=
l2P
2π

∑
|K|mX

∑
|L|nY

rKij|K|mX ηij,kl r
Lkl
|L|nY

∫
dz

∫
dy∇K g̃u(z + y)∇Lg̃u(y)Imn(X;Y + z)

=
l2P
2π

∑
|K|mX

∑
|L|nY

(−)|L|rKij|K|mX ηij,kl r
Lkl
|L|nY

∫
dz Imn(X;Y + z)

∫
dy∇K∪Lg̃u(z + y)g̃u(y)

=
l2P
2π

∑
|K|mX

∑
|L|nY

(−)|L|rKij|K|mX ηij,kl r
Lkl
|L|nY

∫
dz Imn(X;Y + z)∇K∪Lgu(z)

=
l2P
2π

∑
|K|mX

∑
|L|nY

(−)|L|rKij|K|mX ηij,kl r
Lkl
|L|nY Ĩ

mn
K∪L(X;Y ),

where in the first line I used that 〈{hij(x), hkl(y)}〉 = ηij,kl
`2p
π P

[
1

(x−y)2

]
(for a detailed deriva-

tion, see app. B.3, note that the result in there differs by a factor 4 due to eq.(3.2)). The
last expression does not appear to be symmetric under the interchange of the K and L multi-
indices. In fact, the extra (−)|L| factor symmetrizes the interchange property ĨmnK∪L(X;Y ) =
(−)|K|+|L|ĨnmL∪K(Y ;X). Furthermore, the following definitions were used

Imn(X;Y ) =

∫ (m)

X

ds

∫ (n)

Y

dt P
1

[x(s)− y(t)]2
(4.4)

ĨmnK (X;Y ) =

∫
dz Imn(X;Y + z)∇Kgu(z) (4.5)

gu(z) =

∫
dz′ g̃u(z + z′)g̃u(z′) =

∫
dz′ g̃u(z − z′)g̃u(−z′) (4.6)

=

∫
dz′ g̃u(z − z′)g̃u(z′) = (g̃u ∗ g̃u)(z) (4.7)

where in eq. (4.7) the start ∗ indicates convolution and the relation g̃u(−z′) = g̃u(z′) was used to
go from eq. (4.6) to eq. (4.7). The convolved smearing function should have the same properties
as the original smearing function: it is supported in the hyperplane perpendicular to u that
passes through the origin. Within this plane, the function has compact support and depends
only on z2

⊥, i.e., it is rotationally symmetric in this plane. Furthermore, note the translation
invariance Imn(X + z;Y + z) = Imn(X;Y ). The explicit calculation of 〈r̃2〉 is carried out in the
next chapter.1

4.3 Previous work

In the field of quantum gravity, not much research has focused on calculating observables with-
out presupposing any new fundamental physics in addition to the quantization of the metric
field. Previous works that are most similar to this thesis are [10, 11, 12, 13, 14, 15]. The work
in [10] calculates lengths of spacelike line segments in linearized quantum gravity. A drawback
of this work is that these length operators are gauge variant and hence unphysical. Gauge in-
variant quantities were obtained by considering the perimeter of piecewise linear, closed curves.

1It should be remarked that the effects studied are solely due to quantum fluctuations in the gravitational
field. Clearly, there are many other effects that contribute to a change in the variance of the emission time, for
instance, possible jets caused by the probe at the ejection point and the non-zero mass of the lab and the probe.
Quantum and classical effects are distinguishable as quantum effects are expected to only contribute at order ~
whereas any non-quantum effects are expected to be much larger. Quantum fluctuations in time measurements
may come from various sources. Quantum but non-quantum gravitational contributions to the fluctuation of these
measurements have been studied extensively. For example, Salecker and Wigner found that quantum limitations
on the precision of clocks are of the order ~/ε where ε is the energy spread of a pointer indicating the passing
of time [9]. However, these processes are not of interest to us and we focus only on the quantum gravitational
influence on the time delay observable.
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However, a clear physical interpretation of these observables was not given. Our calculation,
on the other hand, is completely gauge-independent and our observable has a clear physical
interpretation, stemming from the associated measurement protocol. The work by Ford and his
collaborators in [11, 12, 13, 14] calculates light-cone fluctuations in linearized quantum grav-
ity. There are two main distinctions between their work and this thesis. First, to regularize
the divergences Ford et al. computed the effects of quantum fluctuations for various scenarios
(finite temperature state, squeezed vacuum, extra compactified dimensions) and subtracted the
divergent Minkowski, Poincaré invariant vacuum result. Consequently, these regularization pro-
cedures all ignore quantum contributions from Minkowski space itself, whereas we have included
these in our calculation. Second, their results are restricted to specific experimental set-up they
considered. As will be discussed in more detail in ch. 7, the calculation carried out in this thesis
is flexible to the experimental set-up and can be easily extended to an arbitrary polygon with
time-like and null-like edges confined to a plane. The research in [15] also aims at defining and
evaluating observables in quantum gravity given by n-point functions determined by geodesic
separation and parallel transport (so-called Mandelstam covariants). The main difference with
this thesis is (again) the method of regularization. In their paper, dimensional regularization
is used whereas we have chosen a physically more intuitive regularization procedure. Moreover,
the physical motivation proposed in [15] (elimination of ultraviolet divergences) is very different
from ours, whose emphasis is on a procedure to construct meaningful physical observables in
gravity. On the other hand, some of the multiple physical motivations proposed in the more
detailed work [16] are very close to ours.
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Chapter 5

Explicit calculation

As shown in the previous chapter, we are left to evaluate

〈r̃2〉 =
l2P
2π

∑
|K|mX

∑
|L|nY

(−)|L|rKij|K|mX ηij,kl r
Lkl
|L|nY Ĩ

mn
K∪L(X;Y ). (5.1)

The bulk of the work lies in evaluating the ĨmnK∪L(X;Y ) integral. Since for each term in r̃2 we
have such an integral, and r̃ consists of ten terms, we have to evaluate 1

2 · 10 · 11 = 55 such
integrals. Additionally, each integral contains 6 − 8 one-dimensional integrals, which makes a
total of integrals ∼ 400 one-dimensional integrals. This is not the entire story yet, looking closer
at the integrals one notices that the singularity structure changes depending on whether the
line segments along which the integral needs to be evaluated are either time-like or null-like
and parallel or non-parallel. Together with some additional technical details to be discussed,
this results in ten different singularity structures. Therefore, no single master equation can be
applied and we resort to hybrid numerical-analytical calculations automated using the computer
algebra software Mathematica 8.0. In this chapter, the evaluation of the integral ĨmnK∪L(X;Y )
and 〈r̃2〉 is discussed. First, the general set-up of the calculation of this integral is outlined
by splitting the computation into two parts. These two parts are discussed next. Lastly, an
overview of the entire procedure for computing 〈r̃2〉 is given.

5.1 General set-up of calculation

The integral in eq. (5.1) is completely determined by the number of derivatives |K| on the
smearing function (|K| = 0, 1, 2) (withK being the multi-index that collects all the corresponding
indices), the number of iterated integrals along the X and Y segments denoted by m and n
(where m = 0, 1 and similarly for n) and the line segments along which the integrals need to be
evaluated. We decompose z = −(u ·z)z+(û ·z)û+w, where û is a space-like unit vector, taken to
be ûi = (0, 1, 0, 0) (hence u · û = 0) and w is orthogonal to the (u, û)−plane. We parametrize z as
z =

(
−u · z, û · z, w1, w2

)
= (T,R cos θ,R sin θ cosφ,R sin θ sinφ) and write the four dimensional

integral over the spacetime separation in ĨmnK∪L(X;Y ) as∫
d4z =

∫
d(u · z)

∫
d(û · z)

∫
d2w

=

∫ ∞
−∞

dT

∫ R

−R
dc

∫ 2π

0

dφ

∫ ∞
0

dRR,

where we defined c = R cos θ and w2 = R2 − c2.
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As discussed in the previous chapter, the smearing function is set to gu(z) = g(z2
⊥)δ(u · z).

The smearing function with any number of derivatives can be written compactly as

∇k gu(z) =
∑

T,d,γ,p

Tkδ
(d)(−T ) g(γ)(R2)Rp PT,γ,p,d(c), (5.2)

where k is a multi-index, the coefficients PT,γ,p,d depend only on c and Tk is a certain tensor
basis consisting of symmetrized products of u, û and δ⊥ = η+ uu. The coefficients are non-zero
only when the indices satisfy the homogeneity constraint d+ 2γ − p = |k|. For the integrals we
are considering, the maximal number of derivatives on the smearing function is two, so Tk is
either {1} for zeroth derivatives, {u, û} for first derivatives, or {uu, ûû, uû+ ûu, δ⊥} for second
derivatives. The maximal power of c in PT,γ,p,d is also two. For later reference, the exact
expression for all the required derivatives of the smearing function can be found in tab. 5.1.
Since the smearing function is independent of the direction of w and since Imn(X;Y ) also only
depends on w2, gu(z) and its derivatives can be independently averaged over the directions of w.
This averaging over the directions of w is indicated in the table by → and the averaged result
in the new variables R and T by ⇒.

gu(z) = g(z2
⊥)δ(u · z)

∇gu(z) = ug(z2
⊥)δ′(u · z) + 2z⊥g

′(z2
⊥)δ(u · z)

= ug(z2
⊥)δ′(u · z) + 2[(û · z)û+ w]g′(z2

⊥)δ(u · z)
→ ug(z2

⊥)δ′(u · z) + 2û(û · z)g′(z2
⊥)δ(u · z)

⇒ ug(R2)δ′(−T ) + 2ûcg′(R2)δ(−T )
∇∇gu(z) = uug(z2

⊥)δ′′(u · z) + 2(z⊥u+ uz⊥)g′(z2
⊥)δ′(u · z)

+[2δ⊥g
′(z2
⊥) + 4z⊥z⊥g

′′(z2
⊥)]δ(u · z)

= uug(z2
⊥)δ′′(u · z) + 2[(uû+ ûu)(û · z) + (wu+ uw)]g′(z2

⊥)δ′(u · z)
+[2δ⊥g

′(z2
⊥) + 4(ûû(û · z)2 + (ûw + wû)(û · z) + ww)g′′(z2

⊥)]δ(u · z)
→ uug(z2

⊥)δ′′(u · z) + 2(ûu+ uû)(û · z)g′(z2
⊥)δ′(u · z)

+
[
2δ⊥g

′(z2
⊥) + 4

(
ûû(û · z)2 + 1

2 (δ⊥ − ûû)w2
)
g′′(z2

⊥)
]
δ(u · z)

⇒ uug(R2)δ′′(−T ) + 2(ûu+ uû)cg′(R2)δ′(−T )
+
[
2δ⊥g

′(R2) +
(
4ûûc2 + 2(δ⊥ − ûû)(R2 − c2)

)
g′′(R2)

]
δ(−T )

Table 5.1: Smearing function with zero, one or two derivatives. Primes denote derivatives with respect
to the argument of the corresponding function. The → indicates averaging over the directions of w in
z-coordinates. The ⇒ signifies the averaged result in (R, T )-coordinates.

The averaging procedure for w is fairly straightforward. For symmetry reasons, all terms
that are odd in w when averaged give zero. Thus, we solely need to consider terms that are even
in w. From tab. 5.1, we observe that only the following averaging is needed∫

|w|=1

d2wwiwj ,

where for clearness of notation we restricted |w| = 1. The integrated result should be symmetric
in the (i, j)−indices. In addition, it needs to be invariant under simultaneous rotation of wi and
wj . The only tensor that allows this is δ⊥ij = ηij + uiuj in combination with ûiûj . Thus,∫

|w|=1

d2wwiwj = C
(
δ⊥ij − ûiûj

)
,

where C is an unknown constant that needs to be determined. This is done by contracting both
sides of the equation by (δ⊥)ij . Making use of the following identities

(δ⊥)ijδ⊥ij = 3,

(δ⊥)ij ûiûj = 1,
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the contraction yields ∫
|w|=1

d2ww2 = 2C =⇒ C =
1

2
2π.

Therefore, the average over wiwj is given by

1

2π

∫
d2wwiwj =

1

2
(R2 − c2)

(
δ⊥ij − ûiûj

)
,

where we took into account that |w| 6= 1, but in fact w2 = R2 − c2.
Substitution of eq.(5.2) into eq.(4.5) gives

Ĩmnk (X;Y ) =
∑

T,d,γ,n′

Tk

∫ 2π

0

dφ

∫ ∞
−∞

dTδ(d)(−T )

∫ ∞
0

dRRpg(γ)(R2)×︸ ︷︷ ︸
part II

(5.3)

∫ (m)

X

ds

∫ (n)

Y

dt

∫ R

−R
dcP

PT,γ,p,d(c)

(y(t)− x(s) + z)2︸ ︷︷ ︸
part I

Since the smearing function depends only on R and T , the evaluation of this integral can be
broken down into two parts: generating tables (indicated by part I) after which the remaining
smearing needs to be performed (indicated by part II). Before starting the calculation, it should
be noted that since g(R2) is expected to be concentrated about R = 0, we only need to expand
the integrand as a series in Rn lnmR and keep the terms with the smallest n that do not vanish
after integration. Thus, we do not need to carry out the calculations in full generality, but we
can significantly simplify the calculations by Taylor expanding the results at an early stage (and
thereby enhance the processing time of the computer).

5.2 Generating tables

The integral that we are concerned with in this chapter is part I of eq. (5.3), i.e.,∫ (m)

X

ds

∫ (n)

Y

dt

∫ R

−R
dc P

cl

z(s, t, c)2
,

where PT,γ,p,d(c) is replaced by cl with l ∈ {0, 1, 2} and we can write the denominator as
z(s, t, c)2 = [y(t)−x(s) +Tu+ cû]2 + (R2− c2), where the appearance of T, c and R is a result of
the smearing previously displayed by z. When we confine the line segments and the displacement
to the (u, û)−plane, this denominator can be rewritten

z(s, t, c)2 = [y(t)− x(s) + Tu]2 + 2c[y(t)− x(s) + Tu] · û+ c2 + (R2 − c2)

= −z2
0 + z2

1 + 2cz1 + c2 + (R2 − c2)

where z0 = −z · u and z1 = z · û when z is shifted only temporally, i.e., z = x − y + Tu. In
this form, we see that the denominator depends only linearly on c, which makes integration
with respect to c rather straightforward. After the c-integration, upon substituting the integral
endpoints c = ±R and rearranging the denominator once more using the following definitions

v± = v · (û± u), (5.4)

zc± = c+ z1 ∓ z0 = c+ z±, (5.5)

we get
z(s, t, c = ±R)2 = −z2

0 + (z1 + c)2 = (c+ z1 − z0)(c+ z1 + z0) = zc+zc−.
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Performing the integration over c in terms of these new variables zc± and z1 yields∫ R

−R
dc

cl

−z2
0 + z2

1 + 2cz1 +R2
=
∑
c=±R

±
(
2P̄1(c, z0; z1) + P2(zc±; z1)[ln |zc+|+ ln |zc−|]

)
=
∑
c=±R

±
∑
±

(P1(c, zc±; z1) + P2(zc±; z1) ln |zc±|) ,

where the ±-symbol following the summation over c matches the sign in this summation. P̄1

and P1, P2 are polynomials in the arguments before the semi-colon and Laurent polynomial in
the arguments after the semi-colon. The first two are related by

P1(c, zc±; z1) = P̄1(c,∓(zc± − z1 − c); z1).

Since z1 appears as a Laurent polynomial, the individual summmands in the result of the c
integral may have poles for z1 = 0. However, the integral we started with was regular for z1 = 0
and thus these singularities need to vanish in the final result. This will serve as a check on our
calculations.

Integration along s and t

The integration over c has been carried out and we are left with the single and iterated integrals
over s and t. However, rather than first parametrizing the spacetime interval over which we
need to integrate and subsequently integrating over it, we perform a change of variables to the
(u, û)−plane, which is spanned by the worldlines of the lab and the probe and perform the
integration there. This change of variables is illustrated for two single integrals in fig. 5.1.

O t

s

1

1

O û

u

z11

z12

z22
z21

Figure 5.1: Illustration of the change of variables from (s, t) to the (u, û)−plane.

The sides of the parallelogram are parametrized by the standard affine parametrization

y(t) = y1 + (y2 − y1)t with y(0) = y1, y(1) = y2

x(s) = x1 + (x2 − x1)s with x(0) = x1, x(1) = x2

and the vertices of the parallelogram are given by

zij = yj − xi.

The normalized, iterated integrals are treated similarly as the single integrals, after they are
reduced to single integrals using Cauchy’s formula for iterated integrals∫ (m)

X

ds =

∫
X

ds
(1− s)m

m!
,

where the integration range is from 0 to 1, and similarly for t-integrals. Thus, after this reduction
procedure and change of variables the integrands are functions of s, t, zc± and z1, which we need
to integrate over zc± and z1.
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There are two different situations to consider: integration along non-parallel and parallel line
segments. This is because in the non-parallel situation zc± and z1 are independent variables and
can be used as alternative integration variables. In contrast, for parallel line segments this is
not true. Hence, we will discuss both cases separately: the non-parallel situation first and the
parallel one next.

Non-parallel line segments

When the line segments X and Y are non-parallel, we can make a change of variables from (s, t)
to (zc±, z1). We let z = z11 when s = t = 0. The relation between the old (s, t) and new (zc±, z1)
variables is

s =
y ∧ (z − z11)

x ∧ y
and t =

x ∧ (z − z11)

x ∧ y
,

where we defined
v ∧ w = −(v · u)(w · û) + (w · u)(v · û)

from which the following identity follows

v ∧ w = ±[(v · û)w± − (w · û)v±].

The differentials are related by

ds ∧ dt = −dz0 ∧ dz1

x ∧ y
= ±dzc± ∧ dz1

x ∧ y
.

So the integral that we are interested in now looks like∫ (m)

ds

∫ (n)

dt (P1(c, zc±; z1) + P2(zc±; z1) ln |zc±|) = (5.6)∫ 1

0

ds

∫ 1

0

dt
(1− s)m

m!

(1− t)n

n!
(P1(c, zc±; z1) + P2(zc±; z1) ln |zc±|) = (5.7)

±
∫ ∫ (

1− y∧(z−z11)
x∧y

)m
m!

(
1− x∧(z−z11)

x∧y

)n
n!

(P1(c, zc±; z1) + P2(zc±; z1) ln |zc±|)
dzc± ∧ dz1

x ∧ y
.

(5.8)

Since any 2-form is closed (being top-dimensional), by the Poincaré lemma, it is also exact,
i.e. we can write the differentials in eq. (5.8) as dQ where Q is some 1-form. Then by Stokes’
theorem, which states that ∫

M

dω =

∫
∂M

ω,

where M is an oriented n-dimensional smooth manifold, ∂M its boundary with the induced
orientation and ω an (n−1)−form with compact support on M , we can reduce the integral in
eq. (5.8) from an integral over the interior to an integral over the boundary of the parallelogram.

The boundary of the st-integration domain is (0, 0)
s−→ (1, 0)

t−→ (1, 1)
−s−→ (0, 1)

−t−→ (0, 0).

In terms of the z-integration domain, it becomes z11
−x−→ z21

y−→ z22
x−→ z12

−y−→ z11. We can
formalize this procedure as follows. We are to integrate an expression of the form P = dQ where
Q is some 1-form. If we pull Q back to any line, then Q is also top-dimensional and therefore
closed. Thus, we can write Qx = dL where the subscript indicates that Q is restricted to the
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line x and L is a 0-form. This gives∫
X∧Y

P =

∫
X∧Y

dQ (5.9)

=

∫
z11
−x−→z21

Q−x +

∫
z21

y−→z22
Qy +

∫
z22

x−→z12
Qx +

∫
z12
−y−→z11

Q−y (5.10)

= [Lx(z21)− Lx(z11)] + [Ly(z22)− Ly(z21)] + [Lx(z12)− Lx(z22)] + [Ly(z11)− Ly(z12)]
(5.11)

=
∑

µ,ν=1,2

(−)µ+ν [Ly(zµν)− Lx(zµν)]. (5.12)

Hence, by applying Stokes’ theorem, we reduced the integral over the interior of the parallelogram
to the edges, which amounts to a sum over the vertices. The subscripts −x and x, as well as −y
and y, are not distinguished in the final formula, since the resulting expressions are identical in
the calculations considered here.

Parallel line segments

When the line segments are parallel, it is no longer possible to construct an invertible transfor-
mation between (s, t) and (z0, z1). On the other hand, this failure indicates that we can write
z0, z1, z(s, t, c)2 or any function F (z0, z1) as a function F (ζ(s, t)) of some single affine-linear
combination ζ(s, t) of s, t with non-zero constants ζs = dζ/ds, ζt = dζ/dt. Each s or t integral
can then be converted into a ζ integral. The iterated integrals are now handled recursively.
Denote ζ = ζ(s, t), ζS = ζ(0, t), ζT = ζ(s, 0) and ζST = ζ(0, 0) and define

Fm,n =
F [m+n+2](ζ)

ζm+1
s ζn+1

t

+

m+n+2∑
k=0

pSm,n;k(s)
F [k](ζS)

ζn+1
t

m+n+2∑
k=0

pTm,n;k(t)
F [k](ζT )

ζm+1
s

+

m+n+2∑
k=0

pSTm,n;k(s, t)F [k](ζST ), (5.13)

where

d

dζ
F [k+1](ζ) = F [k](ζ),

F [0](ζ) = F (ζ),

F−1,−1 = F (ζ),

with p’s being polynomials in their arguments. The form of this expression is preserved under
integrations with respect to s or t∫

0

ds Fm,n = Fm+1,n and

∫
0

dt Fm,n = Fm,n+1.

Setting s = t = 1 in Fm,n yields ĨmnK for a proper choice of F (ζ). Note that the integration
constants are chosen such that Fm,n = 0 whenever either s = 0 or t = 0 for either m ≥ 0 or
n ≥ 0. With the above initial conditions, the polynomial coefficients will satisfy the following
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recurrence relations

pSm+1,n;k(s) =

∫
0

ds pSm,n;k(s)− δk,m+1+n+2

ζm+2
s

,

pSm,n+1;k(s) = pSm,n;k−1(s),

pTm,n+1;k(t) =

∫
0

dt pTm,n;k(t)− δk,m+n+1+2

ζn+2
t

,

pTm+1,n;k(t) = pTm,n;k−1(t),

pSTm+1,n;k(s, t) =

∫
0

ds pSTm,n;k(s, t)−
pTm,n;k−1(t)

ζm+2
s

,

pSTm,n+1;k(s, t) =

∫
0

dt pSTm,n;k(s, t)−
pSm,n;k−1(s)

ζn+2
t

.

The coefficients that are relevant for the integrals we are considering can be found in tab. 5.2.

p pS pT pST

m = 0, n = 0 k = 2 1
ζsζt

− 1
ζsζt

− 1
ζsζt

1
ζsζt

m = 1, n = 0 k = 2 − s
ζsζt

s
ζsζt

k = 3 1
ζ2sζt

− 1
ζ2sζt

− 1
ζ2sζt

1
ζ2sζt

m = 0, n = 1 k = 2 − t
ζsζt

t
ζsζt

k = 3 1
ζsζ2t

− 1
ζsζ2t

− 1
ζsζ2t

1
ζsζ2t

m = 1, n = 1 k = 2 st
ζsζt

k = 3 − s
ζsζ2t

− t
ζ2sζt

sζs+tζt
ζ2sζ

2
t

k = 4 1
ζ2sζ

2
t
− 1
ζ2sζ

2
t
− 1
ζ2sζ

2
t

1
ζ2sζ

2
t

Table 5.2: The polynomial coefficients for the parallel case for different values of m,n and k.

Thus, also for the parallel situation, we are left to evaluate one-dimensional integrals, in
particular, integrals parametrized by ζ(s, t). The case that we are interested in will require 2, 3
and maximally 4 iterated integrals. One can think of these integrals in a similar way as for the
integrals in the non-parallel situation: the ζ(s, t) parametrizes the sides of the parallelogram and
the four terms in eq. (5.13) correspond to the four edges of the parallelogram.

In sum, for both situations, non-parallel and parallel line segments, we are left to evaluate one-
dimensional integrals along the sides of the parallelogram. Evaluation of these one-dimensional
integrals is discussed next. We again need to consider two different situations: one in which the
edge is completely in the direction of u and one in which the edge also has a û−component.
A different parametrization is needed for each case. However, in both cases, each side of the
parallelogram is described by its starting point b and its tangent vector a, which runs from one
vertex to the next. First the procedure for the latter situation, which corresponds to a · û 6= 0 is
outlined and successively the situation in which the edge is entirely in the u−direction, that is,
a · û = 0.

Parametrization of line segments

Case a · û 6= 0. When a · û 6= 0, we parametrize each edge by z(σ) = z0(σ)u+ z1(σ)û with

z0(σ) = B0 − C0σ,

z1(σ) = σ.
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To relate the constants B0 and C0 to the geometry of the parallelogram, we look at the “velocity”
of the edge

d

dσ
z(σ) = Ka,

where K is an unknown constant. If we dot this equation with −u and û, we can compare this
to the derivatives of z0 and z1 to determine C0 in terms of the a and b vectors

−K(a · u)

K(a · û)
=

dz0(σ)
dσ

dz1(σ)
dσ

=
−C0

1
=⇒ C0 =

a · u
a · û

.

From this expression, it is evident that a · û cannot be equal to zero in this parametrization.
However, this could be observed before, because we are integrating over z1 which is in the
û−direction and hence we cannot have a term that is completely independent of û.

To determine B0 in terms of the a and b vectors, we look at the starting point of the edge
which corresponds to σ = 0. At this point z(σ = 0) = b, but also z(σ = 0) = z0(0)u + z1(0)û,
which gives us two equations and one unknown:

a ∧ z|σ=0 = a ∧ b =⇒ B0 = −a ∧ b
a · û

, (5.14)

a ∧ z|σ=0 = B0(a ∧ u) (5.15)

where we used that a∧u = (a · û) (û∧u) = −a · û. After integration along the vertices, the begin
and end point of each segment needs to be inserted (compare eq. (5.10)), therefore, we need to
know the value of σ at each vertex. At each vertex z = b→ z · û = b · û and in general we have
z · û = z1 = σ, therefore at each vertex σ = b · û.

The (zc±,z1) variables are related to these new variables as follows. We already know that
z1 = σ and zc± is obtained by

zc± = c+ z1 ∓ z0

= c+ σ ∓B0 ± C0σ

= Bc± (1− Cc±σ) ,

where we defined Bc± = c∓B0 and Cc± = − 1±C0

c∓B0
. Hitherto, the shift in the u-direction by the

smearing function is not explicitly taken into account. Fortunately, it can be simply reobtained
by absorbing the shift in the b vector: b · u→ b · u− T . This gives

B0 = −a ∧ b
a · û

−→ −a ∧ b
a · û

+ T.

C0 does not change as it does not contain b. Thus, taking the shift by the smearing into account,
we have

Bc± =
(a · û)(c∓ T )± a ∧ b

a · û
,

Cc± = − a±
a · û(c∓ T )± a ∧ b

.

For the parallel case, we identify ζ = σ. The constants ζs and ζt can also be related to this
set-up by ζs = −x · û and ζt = y · û.

Case a · û = 0. The second situation is when a · û = 0 for which a different parametrization of
the edges is needed. This is simply done by reversing the role of z0 and z1

z0 = σ,

z1 = B0 − C0σ.
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Applying the same procedure as for a · û 6= 0, we obtain that in this parametrization zc± =
Bc± (1− Cc±σ) remains the same, but the constants Bc± and Cc± change

B0 = b · û Bc± = c+ b · û

C0 = 0 Cc± =
±1

c+ b · û

and at the starting point of each edge σ = −b · u. When the shift due to smearing is taken into
account, Bc± and Cc± are not altered. In contrast, at each edge σ is shifted to σ → −b · u+ T .
In the parallel case, again, we identify ζ = σ. The constants ζs and ζt in this set-up are

ζs = x · u,
ζt = −y · u.

So in the non-parallel case using these new variables we have∫
dzc±

∫
dz1 (P1 + P2 ln |zc±|)

=

∫
dzc±

∫
dσ (P3 + P4 ln |Bc±|+ P5 ln |1− Cc±σ|)

=

[∫
dσ(P6 + P7 ln |Bc±|+ P8 ln |1− Cc±σ|+ P9L (Cc±σ))

]
zc±

=
[
P̄6 + P̄7 ln |Bc±|+ P̄8 ln |1− Cc±σ|+ P̄9L (Cc±σ)

]
zc±,σ

, (5.16)

where L(x) = Re{Li2(x)} = −
∫ x

0
dt ln |1−t|

t , P1, P2 are as before (Laurent) polynomials in zc±
and z1 and the remaining Pi’s and P̄i’s are (Laurent) polynomials in Bc±, Cc± and σ. Going
from the second to third line corresponds to going from our integral over the interior to the
boundary (equivalently, from integrating over the 2-form to 1-form in eq. (5.10)). The integral
in the third line is to be performed for each side along the parallelogram, resulting in a sum over
2 · 2 · 4 cases, where the first two comes from inserting the zc± boundary conditions, the second
two from the begin point and end point of each line segment and the four from each side of the
parallelogram.

In the end, we are interested in obtaining an asymptotic expansion for small R > 0, with
leading behavior of the form Rn lnmR for n ≤ 0 and m arbitrary, that is, we are interested in
divergent terms. Looking at the resulting expression in eq. (5.16), we see that singularities arise
when the arguments of the logarithms are either zero or ±∞, or when the argument of L(x) is
±∞ or equal to one. The latter function, i.e. the real part of the dilog, can be rewritten using
the following identities such that we can extract its logarithmic singularities

L(1/x) = −L(x)− 1

2
ln2 |x|+ π2

12
+

x

|x|
π2

4
(5.17)

L(1− x) = −L(x)− ln |1− x| ln |x|+ π2

6
(5.18)

for real x [17]. When the argument of L(x) is of the form Rn with n < 0 the first relation is
applied, when the argument is of the form “one plus something small” the second identity is
exploited. The singularities in the expression for 〈r̃2〉, see eq. (5.1), can ultimately be traced
back to the light-cone and coincidence singularities of the graviton two-point function and are,
as mentioned before, affected by the line segments along which is integrated. This information
is now encoded in the a and b vectors of the edges of the parallelogram. For instance, when
a± = 0, the line segment is null-like and has a distinct singularity structure. Knowledge of the
values for a and b vectors is thus important. However, this information becomes only relevant
after all integrations have been carried out. Nonetheless, there is one important exception for
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which we need to know the values of the a and b vectors: this is for integration along σ. This
is an artifact of our computer algebra-software. Mathematica 8.0 considers ‘0 ln 0’ as an infinite
number, consequently, whenever such an expression appears the resulting answer it produces is
bogus. Therefore, in these cases we need to tell Mathematica 8.0 explicitly that this equals zero.
The insertion of the determining features of the a and b vectors is discussed next. The resulting
singularity structure is analyzed for the non-parallel and parallel case separately.

Singularity structures for non-parallel line segments

First note that when we consider non-parallel line segments and a · û = 0, the resulting integral is
zero. This is due to the fact that the integrand is proportional to dz1 and an integral along a line
where z1 is constant automatically gives zero. Second, as mentioned before, we need to be careful
when a term like ‘0 ln 0’ is present. This occurs in two situations: in the overall plus-summation
in combination with a+ = 0 and in the overall minus-summation in combination with a− = 0.
When this happens, the computer routine takes a slightly different route to avoid encountering
‘0 ln 0’. The different cases are illustrated in the decision tree diagram in fig. 5.2, where the
situation a± = 0 with its corresponding overall sign is dubbed ‘special’ and the residual cases
are categorized as ‘generic’.

Non-parallel

a · û = 0 gives zero

a · û 6= 0
generic Table NP1

special Table NP2

Figure 5.2: Decision tree summarizing the various cases for the non-parallel case.

As is indicated in the figure, the integrated results are stored in tables. Each table contains
all integrated results of ‘part I’ for all relevant powers of c and all possible combinations of single
and iterated integrals. To reduce calculation time, the integrated results are stored in expanded
form in the variables R and T . The order of the expansion is not trivial. We want the final
answer for 〈r̃2〉 to zeroth order in µ, which corresponds to a precision in R to second order (to
be discussed in ‘part II’). However, since we still need to take derivatives with respect to R
and T due to the smearing function, the results in the table need to be expanded up to third,
fourth or fifth order depending on whether the integrand in eq. (5.3) is proportional to c0, c or
c2 respectively. 1

Singularity structures for parallel line segments

The parallel situation is very similar to the non-parallel case. The only important difference is
when a · û = 0, because now the resulting integral is not necessarily zero. Thus, this case is
included when generating the tables. However, the situation in which a · û and a · u are both
equal to zero is not considered because it is not physically relevant for our experimental set-up
as it corresponds to a line segment that is of zero size (a point). Furthermore, when generating
the tables, we also treat the case when z1 = σ = b · û = 0 separately. This is done by replacing σ
in all terms by b · û, taking a Taylor series in b · û and keeping only the zeroth order terms. The
higher order terms will obviously vanish when taking b · û → 0. The terms of lower order are
more problematic, as they diverge when b · û→ 0. These terms, however, are checked to vanish

1The Taylor series in R and T are performed simultaneously using a standard trick. First, the variables R and
T are replaced by εR and εT . Subsequently, the entire expression is Taylor expanded in ε to the desired order.
Lastly, ε is set to 1 again.
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in the final answer when all the summations are carried out. Thus, it is sufficient to just take the
zeroth order term of the Taylor series in b · û when b · û = 0. This case should have been treated
separately for the non-parallel case as well. This was not done, however, as doing the expansion
for symbolic expressions of the a and b vectors took too much computer capacity and a standard
computer was not able to successfully finish this calculation. Therefore, for the non-parallel
situation a different route is taken: we look up the relevant integrals, replace all the symbolic
expressions with numerical values, except for σ(= b · û) and b · û, and subsequently perform
the series expansion. Owing to the substitution of the numerical values the series expansion is
now relatively fast. From this point onward, all cases are treated equally again. It should be
noted that precalculating all series expansions and storing the results in tables as is done for the
parallel case is the preferred method, because in principle looking up results in tables is much
faster than performing a series expansion. This is illustrated by the fact that calculating ‘part I’
for parallel line segments with b · û = 0 is much faster than the same calculation for non-parallel
line segments with b · û = 0.

The decision diagram for the parallel case is shown in fig. 5.3. As for the non-parallel
situation, each table contains the results in Taylor expanded form for different powers of c and
for single as well as iterated integrals.

Parallel

a · û = 0

a · u = 0 not considered

a · u 6= 0
b · û = 0 Table P1

b · û 6= 0 Table P2

a · û 6= 0

generic
b · û = 0 Table P3

b · û 6= 0 Table P4

special
b · û = 0 Table P5

b · û 6= 0 Table P6

Figure 5.3: Decision tree summarizing procedure for the parallel case.

5.3 Remaining smearing

Part II of eq. (5.3) is to be performed next. This is done for each tensor basis element of the
smearing function independently. The procedure is as follows.

1. First, the derivatives on the delta-function with argument T are moved onto the remaining
part of the integrand using integration by parts.2 After all derivatives on the delta-function
have been removed, the T -integration is straightforwardly carried out by replacing T → 0.
Note that due to the appearance of L(x) after integration and rewriting this term using
eq. (5.17) or (5.18), sgn(R ± T ) terms may be part of the integrand. When derivatives
are taken with respect to T , these terms give delta-functions and derivatives thereof again.
However, these form no problem as the argument also contains R.

2There are no boundary terms, since the delta-function is a distribution which is defined not to have boundary
terms.
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2. Second, the derivatives on these delta-functions with argument R, when they appear, also
need to be removed. Again, this is done by integration by parts.

3. Third, also all derivatives on the smearing function are moved onto the remaining part
of the integrand using integration by parts unless this results in a derivative on a delta-
function. It should be noted that at this point boundary terms do appear and should be

retained. (Important to observe that g′(R2) = dg(R2)
dR2 = 1

2R
dg(R2)

dR .)

4. Fourth, the resulting integral is expanded to the desired order and the boundary terms of
the integration by parts are handled. The boundary terms need to be evaluated at zero and
infinity and can be divided into three categories. However, first note that all boundary
terms when evaluated at infinity are zero due to the compact support of the smearing
function. The three categories are

• Terms higher order in R: Rn where n > 0

• Constant terms: R0

• Terms singular in R: Rn where n < 0

The first category gives zero when evaluated at the lower boundary. The second category
also poses no problems and is just added to the final result, however the last category is
more delicate. This part is integrated and subsequently subtracted from the bulk term
which is needed for the Hadamard regularization. This regularization procedure was in-
troduced by Hadamard in 1932 and is defined as

P.f.

∫ ∞
0

dxf(x) = lim
ε→0

∫ ∞
ε

dxf(x)− P (ε, ln ε) ,

where P.f. stands for partie finie (finite part) and P is a polynomial of the form∑
n,m

an,mε
n lnm ε,

where an,m are constants that generally depend on the value of f(x) and its derivatives
at x = 0 [18]. Let us consider an example to illustrate how the boundary terms produce
exactly the terms that are needed to make the integral finite (so these boundary terms
correspond to the polynomial P (ε, ln ε) in the above equation). We take two derivatives
on the smearing function and a logarithm, then by continuity we have∫ ∞

0

dx g′′(x) lnx = lim
ε→0

∫ ∞
ε

dx g′′(x) lnx

= lim
ε→0

(
[g′(x) lnx]ε −

[
g(x)

1

x

]
ε

−
∫ ∞
ε

dx g(x)
1

x2

)
= P.f.

∫ ∞
0

dx
1

x2
g(x),

where in the second line we integrate by parts twice. The partie finie is thus defined
in terms of these boundary terms. The boundary terms in the second line need to be
evaluated at ε, however, they can also be integrated and taken under the integral sign so
that all terms are on equal footing. We will use this principle too: all boundary terms that
are singular in R are integrated first and then subtracted from the bulk terms to obtain
the partie finie. This procedure provides us with a check on step two and three where all
integrations by parts are performed: all singular boundary terms will need to be canceled
by the bulk part.
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5. Lastly, the integration over R is carried out according to the following rule∫ ∞
0

dRg(R2)Rn(lnR)m = µn−2
(n,m)(ln |µ̄(n,m)|)m, (5.19)

where the different µ(n,m) and µ̄(n,m) are distinct moments of the smearing function. For
simplicity, we take all µ̄(n,m) = µ(n,m) = µ.

These steps will be summarized in the following master equation. However, we first introduce
the following notation. Observing the tensorial coefficient in the expression for r in eq. (3.11),
we see that we can write this coefficient as

rKijnX = XiAKjnX

where Xi is a vector together with the numerical coefficient in front of each term appearing in
eq. (3.11) and AKjnX is the tangent vector to the line line segment X plus information on the
number of derivatives acting on the gravitational field (K) and the number of iterated integrals
(n). This gives for 〈r̃2〉

〈r̃2〉 =
`2p
2π

∑
KnX

∑
LmY

(−1)|L| rKijnX ηij,kl r
Lkl
mY

∑
T

TK∪L
∑
d,γ,p

Cm,nd,γ,p

=
`2p
2π

∑
KnX

∑
LmY

(−1)|L|XiY kAKjnXB
Ll
mY ηij,kl

∑
T

TK∪L
∑
d,γ,p

Cm,nd,γ,p

=
`2p
2π

∑
n,m

∑
X,Y

∑
T

∑
K∪L

(−1)|L|XiY kAKjnXB
Ll
mY ηij,klTK∪LC

m,n
XY [[T ]]

=
`2p
2π

∑
n,m

∑
X,Y

(∑
T0

ηij,klX
iY kAjnX T0B

l
mY C

m,n
XY [[T0]] + (−1)|L|

∑
T1

∑
a

ηij,klX
iY kAajnX (T1)aB

l
mY C

m,n
XY [[T1]]

−
∑
T2

∑
a,b

ηij,klX
iY kAajnX (T2)abB

bl
mY C

m,n
XY [[T2]]


=
`2p
2π

∑
n,m

∑
X,Y

ηij,klX
iY k

(∑
T0

AjnXT0B
l
mY C

m,n
XY [[T0]] + (−1)|L|

∑
T1

∑
a

AajnX(T1)aB
l
mY C

m,n
XY [[T1]]

−
∑
T2

∑
a,b

AajnX(T2)abB
bl
mY C

m,n
XY [[T2]]


=
`2p
2π

∑
n,m

∑
X,Y

ηij,klX
iY kEjl,

where Ejl is defined implicitly by the last two lines. The coefficient Cm,nd,γ,p corresponds to the

result that is stored in the tables (i.e. the integrated result after ‘part I’), and Cm,nXY [[Tk]] is the
result after both ‘part I’ and ‘part II’ have been performed, where the double square brackets
denote the dependence on the tensor basis element. Going from the third to the fourth equality,
the factor (−1)|L| gives a plus sign for the terms that correspond to all tensor basis elements T0

and a minus sign for T2. For the tensor basis elements T1, it contributes a plus or minus sign
depending on whether AKjnX or BLlmY carries the derivative on the smearing function. The routine
for each term in 〈r̃2〉 is illustrated in the flow-chart in fig. 5.4. This process is repeated for each
term after which the sum over all terms is performed (i.e. the sum over n,m and X,Y in the
equation above) to obtain 〈r̃2〉.
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{K∪L, n,m,X, Y } Cm,nd,γ,p is
looked up

Step 1-5 for each
tensor basis
element Tk

producing Cm,nXY [[Tk]]

Sum over all
tensor basis

elements

ηij,klX
iY kEjl

Figure 5.4: Flow-chart summarizing the process that the computer routine performs for each term in
〈r̃2〉. Step 1-5 refer to the steps outlined in this section. Notation regarding the symbols is explained in
the text. Once all terms are computed, these are added to yield 〈r̃2〉.
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Chapter 6

Results

In this chapter, we will present the result for the variance of quantum fluctuations in observations
of the emission time (from which one can easily obtain the variance of the time delay). As a
sanity check on our result, we first perform a dimensional analysis closely following sec. VII,D
in [3]. In the second part, the result is presented in various forms. The chapter ends with a
presentation of all checks on the result.

6.1 Dimensional analysis

The term that contributes most to the final answer is the most divergent term. As divergences
are worsened by derivatives and softened by integrals, the most divergent term should have the
maximal number of derivatives and minimal number of integrals. Looking at eq. (5.3), we find
that this corresponds to two derivatives on {hX , hY } and two single integrals along the line
segments, i.e. r2 ∼ rXrY

∫
X

∫
Y
∇2hXhY . The derivative operator ∇ has length dimension −1,

the gravitational field and r are both dimensionless and since we have parametrized our line
integrals to run from zero to one

∫
X

is also dimensionless. Therefore, the tensorial coefficient
rX needs to have length dimension +1 and be of order s, where s is the length scale of the
corresponding line segment. The expectation value of the anti-commutator of the gravitational
field is proportional to `2p/z

2, where z is a spacetime interval, thus [`p] = [z] = 1. The only
length scale left is the detector resolution µ which also has length dimension +1. Thus, the most
divergent term in 〈r̃2〉 should be of the form

〈r̃2〉 ∼ 〈rXrY
∫
X

∫
Y

∇2{hX , hY }〉

∼ s2〈
∫
X

∫
Y

∇2
`2p
z2
〉

∼ s2〈
∫
X

∫
Y

`2p
z4
〉

∼ s2〈
`2p
s2z2
〉 ∼

`2p
µ2

where we used that
∫
X
zn ∼ zn+1/s and in this particular case 〈. . .〉 denotes smearing as well as

taking the expectation value. Thus, from this simple dimensional argument we do not expect
terms that are more divergent than 1/µ2. Clear from this expression is that when µ → 0 〈r̃2〉
diverges, as it should because this limit corresponds to not doing any smearing and we already
knew that the unsmeared result should be infinite. Thus, for sharper detector resolution effects
due to quantum fluctuations grow. Such quantum fluctuations are vividly illustrated in the
context of quantum optics in fig. 2.1 of [19].
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6.2 First order quantum corrections to the time delay ob-
servable

The experimental input is completely determined by the length scale set by the reception time
s and the relative speed between the worldlines of the lab and the probe which is related to
the (positive) hyperbolic rapidity by vrel/c = tanh(θ). Given these two numbers s and vrel, the
mean and the variance of the quantum fluctuations in the emission time can be exactly obtained
to linear order in the gravitational field from the computer routine. Let us recall the expansion
in the gravitational field for the emission time as defined in ch. 3

τ̃(s) = er̃(h̃)τcl(s) = τcl(s)(1 + r(h̃) +O(h2)).

From this expression, we defined in ch. 4 the quantum mean and the variance of the emission
time by

µτ = 〈τ̃(s)〉 = τcl(s) +O(h2) = se−θ +O(h2),

σ2
τ ∼ τ2

cl(s) 〈r̃2〉+O(h2) = s2e−2θ 〈r̃2〉+O(h2).

The quantum mean

The quantum mean of the emission time is to linear order the same as τcl, which is

µτ = se−θ = se−arctanh(vrel/c) = s

√
1− vrel

c

1 + vrel
c

. (6.1)

In fig. 6.1, the mean of the quantum fluctuations in the emission time is shown for all physically
allowed relative velocities.
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Figure 6.1: Plot of µτ/s = e−arctanh(vrel/c) versus vrel/c to linear order in the gravitational field.

The quantum variance

The quantum variance of the emission time to linear order in the gravitational field is given by
σ2
τ = 〈τ2〉 − 〈τ〉2 ∼ s2e−2arctanh(vrel/c)〈r̃2〉. The expectation value of r̃2 is shown to be of the

form

〈r̃2〉 =
`2p
µ2

(
ρ0 + ρ1

µ

s
+ ρ2

µ2

s2
+O

(µ
s

)3
)

+O
(
`p
µ

)2

, (6.2)

where the coefficients ρi’s are in general functions of vrel/c and the overall factor 1
2π in eq. (5.1)

is canceled by the 2π from the angular integration. Also note that the result is given to order
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O(`p/µ)2 as we did not include r̃2(h) in our calculation for the variance. Albeit terms pro-
portional to lnµ appear in intermediate results, they are remarkably all canceled in the final
expression for 〈r̃2〉.

In tab. 6.2, numerical values for the root-mean square size of the quantum fluctuations in
observations of the emission time (στ ) are presented for two different experimental settings: a
laboratory one, which is set by a length scale s ∼ 1 m ∼ 10−9 s and a cosmological one, which
has s ∼ 1 Mpc ∼ 1022 m ∼ 1014 s. The spatio-temporal resolution of the detector is taken to
be of the order of X-rays, i.e., µ ∼ 1 nm ∼ 10−18 s, which is realistic for both settings. The
leading order contribution to στ is determined by the Planck length (`p ∼ 10−35 m ∼ 10−44 s)
divided by the detector resolution and is of the order `p/µ ∼ 10−27. The table shows numerical
values for four relative velocities: 1 m/s, the recession time of a distant galaxy (∼ 105 m/s for
a galaxy at 1 Mpc), c/2 and 99c/100. The values presented for the cosmological scale should
be read critically as the validity of the linearized approximation to regimes for large s/µ ratios
is still under investigation. This concern was already raised in [3]. Note that apart from values
corresponding to large s and small vrel/c, which we should be skeptical about, all other values
for the root-mean-square size of the quantum fluctuations are well below the sensitivity or noise
thresholds of the current state of experimental and observational technology. Hence, it is not
surprising that this kind of effect has not yet been observed. Furthermore, there are eight orders
of magnitude difference between the values corresponding to vrel = 1 m/s and vrel = 99c/100.
At the moment, we do not know of an explanation for this huge increase in the root-mean-
square size of the quantum fluctuations. The output for 〈r̃2〉 in terms of symbolic expressions
for vrel/c may shed light on this behavior. Although, it could be possible that the r̃2(h) term
may contribute significantly at this order and change this behavior completely.

vrel 1 m/s 105 m/s c
2

99c
100

s = 1 m 10−18 10−23 10−26 10−26

s = 1 Mpc 104 10−1 10−4 10−4

Table 6.1: The root-mean-square size of quantum fluctuations in observations of the emission time στ
in seconds for a detector sensitivity µ = 1 nm for two different contexts: a laboratory setting (s = 1 m)
and a cosmological setting (s = 1 Mpc).

vrel 〈r̃2〉/(`p/µ)2

c
10

5881
8 − 3366 ln

(
11
9

)
− 2π2 µ

s

2c
10 217− 456 ln

(
3
2

)
− 2π2 µ

s

3c
10

921
8 −

1274
9 ln

(
13
7

)
− 2π2 µ

s

4c
10

2479
32 −

483
8 ln

(
7
3

)
− 2π2 µ

s

5c
10

473
8 − 30 ln(3)− 2π2 µ

s

6c
10

146
3 − 32 ln(2)− 2π2 µ

s

7c
10

16489
392 −

2958
343 ln

(
17
3

)
− 2π2 µ

s

8c
10

4811
128 −

279 ln(3)
32 − 2π2 µ

s

9c
10

7427
216 −

418 ln(19)
243 − 2π2 µ

s

c 1
e−2arctanh(1) (29− π2

4
µ
s )

Table 6.2: This table shows 〈r̃2〉/(`p/µ)2 for various vrel to linear order in the gravitational field. The
dependence on the reception time s is made explicit.
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As noted before, the coefficients ρi in eq. (6.2) are in general functions of vrel/c, however, we
do not have these functions explicitly at the moment, since the computer code computes these
coefficients separately for each input. It should not be too difficult to massage the computer
routine to output symbolic expressions for the ρi’s, however, this is left for future research.1

The expressions for 〈r̃2〉/(`p/µ)2 are shown for various relative velocities between zero and the
speed of light in tab. 6.2. Note that 〈r̃2〉 is dimensionless (and hence also all entries in this table
are). Furthermore, observe that the coefficient ρ1 is −2π2 for all relative velocities (except for
vrel = c, which will be discussed shortly) and all ρ2 coefficients equal zero, consequently, ρ1 and
ρ2 are independent of vrel/c and all dependence on the relative velocity is captured by ρ0. This
behavior was not obvious a priori and one of the motivations for this computation. Additionally,
it should be noted that the factor multiplying the result for vrel = c ( 1

e−2arctanh(1) ) is divergent,

however, when calculating σ2
τ this factor is canceled as it is again multiplied by e−2arctanh(1).

A plot of the coefficient ρ0 versus vrel/c is shown in fig. 6.2. As is clear from the graph
ρ0 diverges for the limit vrel/c → 0 after which it decreases for increasing vrel/c and reaches
a minimum, after this minimum it increases again. In the limit vrel/c → 1 it seems as if
the graph is discontinuous. The lack of continuity could be explained by the fact that one of
the line segments along which we integrate changes from being timelike to null and this may
result in terms with very different singularity structures for the smeared integrals that enter
into the evaluation of 〈r̃2〉. Since we have no reason to expect discontinuous dependence on
vrel/c, such an apparent discontinuity should be resolved into a smooth transition on an interval
of the size vrel/c in [1− µ/s, 1] if we would compute the result exactly. Unfortunately, our
approximation methods (effectively we expand in powers of µ/s) do not allow us to resolve this
smooth transition. A similar argument can be made for the limit in which vrel/c→ 0. Therefore,
the results in the transition regions [0, µ/s] and [1− µ/s, 1] are not reliable at present. (The
numerical values presented in tab. 6.1 fall outside these regions as typically µ/s ≤ 10−9 and
are thus not affected by this point.) In addition, the minimum of ρ0 selects a preferred velocity
between 0 and c, which is at odds with Lorentz invariance. This is not surprising, since our
choice for the smearing function explicitly broke Lorentz invariance. It would be interesting to
see the behavior of ρ0 as a function of vrel/c for a Lorentz invariant smearing function. This
may be addressed by future research.

The coefficient ρ0 in 〈r̃2〉 has exactly the same form as predicted by the dimensional analysis
in the previous section. The coefficient ρ1, which precedes the subleading terms in µ/s, is
negative for all relative velocities, which indicates that larger ratios of µ/s (corresponding to a
less sensitive detector given the same reception time) tend to suppress the quantum fluctuations.
This relation is shown in fig. 6.3, which is a log-log plot of στ/`p versus µ/s for various vrel/c.
It is also clear from this graph that the dominant contribution to the variance changes only for
µ/s > 1.

The calculation time can be divided into two parts, similar to ‘part I’ and ‘part II’ in ch. 5:
generating the tables (which only needs to be done once) and the explicit calculation of 〈r̃2〉. On
a standard computer (AMD 64 Dual Core 2 GHz Processor) the first part takes approximately
45 minutes and the second part takes about 20 minutes. The most time consuming part in this
latter calculation is the expansion in b · û for non-parallel line segments. If this expansion could
also have been tabulated, the calculation time for 〈r̃2〉 would be drastically reduced. For more
details on this expansion, see sec. 5.2 in ch. 5.

6.3 Checks on result

In this section, we will discuss several checks that we implemented to make sure that we can
be confident that the result presented is correct. First of all, as discussed in ch. 2, all physical

1In fact, the computer routine also does not show the explicit dependence on the reception time s, however,
the dependence on s can easily be obtained by comparison of the expressions generated by the computer for
various s while keeping the relative velocity constant and by dimensional arguments.
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Figure 6.2: Plot of ρ0 versus vrel/c. This curve is the same for all values of s. Note the discontinuity
in the plot for vrel/c = 1.
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Figure 6.3: A log-log plot of στ/`p versus µ/s for various vrel/c. The length scale s is set to 1m.

observables need to satisfy the positivity requirement. It is obvious from the graph in fig. 6.2 that
〈r̃2〉 is, fortunately, always positive and this serves as a first check on our result. In addition, as
was remarked in ch. 3, parts of the expression of r, H and J , are independently invariant under
linearized diffeomorphism. These parts turn out to satisfy all other constraints on observables
as well and are thus strictly speaking also observables, although their physical interpretation is
not directly clear. Thus, H2 and J2 and any positive functional thereof should also be equal to
or larger than zero. This was checked by the same routine that was used to calculate 〈r̃2〉 and
indeed it was shown that H2 ≥ 0 and J2 ≥ 0.

Second, the results nicely match the predictions made by the simple dimensional analysis:
no terms more divergent than 1/µ2 appear. In [3], it was noted that detailed calculations reveal
terms with a more divergent scaling behavior (these terms are of the form `2p/µ

2 lnµ/s and
s`2p/µ

3), however, these terms cancel in the final result.
Third, there are two independent parts in our calculation where we expected intermediate

results in the integrals to cancel each other in the final summations over all endpoints of the
parallelogram. One of these expected cancellations was already mentioned in ch. 5: for the case
b · û = 0, we expanded the result in b · û and only retained the zeroth order term, the lower order
terms were not considered. An independent routine checked whether we rightfully had thrown
away the lower order terms: the outcome was positive, all lower order terms vanish in the final
summations over the overall ±-sign, c = ±R and the four vertices. The other part where we
expected calculations to happen was related to the integration over c. This integration may
produce terms that have the ‘wrong’ powers of R, which would eventually lead to terms scaling
as 1/µ4. Fortunately, these terms vanish when the boundaries of the c-summation are taken into
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account (so the summation over the ±-sign and c = ±R is performed).
Fourth, as a check on the internal consistency of the routine that handles all integration

by parts, the boundary terms produced by removing all derivatives from the smearing function
nicely cancel with divergent terms in the bulk. This check is discussed in detail at the end of
ch. 5.

Lastly, the integral ĨmnK (X;Y ) has been calculated by hand for a simple case: m = n = 0
(hence no iterated integrals) and along two parallel null-like line segments. This has been done
for zero, one as well as two derivatives on the smearing function, that is, K = 0, 1, 2. The results
of the calculation by hand match exactly the result produced by the computer routine and can
be found in app. C.

All in all, these partial checks of various aspects of the calculation make us confident that
the result presented is correct.
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Chapter 7

Discussion

In this chapter, a summary of what has been done will be given. Next, recommendations for
future research are discussed.

7.1 Summary

As mentioned before, this work is a follow-up on [3]. In that work, a physical observable in the
context of quantum gravity was defined by means of a clock synchronization thought experiment.
In this thesis, we recapped the set-up of this thought experiment after which we have presented
the explicit calculation, to linear order in the gravitational field, for the variance of the quantum
fluctuations in the emission time. For this calculation, we resorted to the use of computer algebra
software due to the large amount of integrals that needed to be evaluated.

The results show that the quantum mean of the emission time is given by se−arctanh(vrel/c),
where s is the reception time and vrel is the relative velocity between the worldlines of the lab
and the probe. The results for the quantum variance of the emission time are all of the form

σ2
τ = 4s2 exp (−2 arctanh(vrel/c))

`2p
µ2

(
ρ0 + ρ1

µ

s
+O

(µ
s

)3
)

+O

((
`p
µ

)2
)
,

where ρ0 depends on vrel/c and ρ1 = −2π for all physically allowed vrel/c. The behavior of
the coefficient ρ0 is rather surprising: it is very large in the limit vrel/c→ 0, then decreases for
increasing vrel/c until it hits a minimum after which it slowly increases again. This minimum
selects a preferred vrel/c, which breaks Lorentz invariance. This may be due to the fact that
our choice of smearing also broke Lorentz invariance, however, this is speculative and requires
further research. It should be noted that even though ρ0 shows a non-trivial behavior depend-
ing on vrel/c, the total quantum variance only shows a decreasing trend for increasing vrel/c.
Furthermore, given the reception time s, the quantum variance of the emission time increases
when a more sensitive detector is used. Thus, a less sensitive detector suppresses the quan-
tum fluctuations of the gravitational field. This effect also occurs in quantum optics and is not
surprising.

The size of the quantum fluctuations is for most values below current experimental and
observational sensitivity or noise thresholds except for experimental settings corresponding to
cosmological scales and a very small relative velocity between the lab and probe worldline.
These values are possibly not valid due to the limitations of the linear order approximation to
the geodesic equations. Assuming for now that these approximations hold for cosmological scales
with large relative velocities, the quantum fluctuations for the variance of the emission time are
several orders of magnitude below the current detector sensitivity and, thus, with increasing
understanding of observational data the noise threshold may be reduced to a level at which
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this effect may be observed. Clearly, this calculation should be adapted to fit the set-up of the
relevant observations and the validity of the linearized approximation to regimes for large s/µ
should be reassessed.

Two motivations for this calculation were to see whether we can construct physical observ-
ables operationally and to probe the causal structure of spacetime. From this discussion, it is
clear that by ‘working backwards’, i.e., using an experimental protocol, a whole class of physical
observables with manageable calculations can indeed be defined. As was suggested in [3], we
will refer to this class of observables as (quantum) astrometric observables. Unfortunately, due
to the broken Lorentzian signature, we were not able to study the causal structure of spacetime
non-perturbatively.

7.2 Recommendations

Several simplifications were made to make the calculation feasible at this stage. One of them
was already mentioned in ch. 4: we ignored the r2(ĥ) term in our calculation for the variance of
the emission time, while in fact we should have included this term to have a correct expansion
to linear order in the gravitational field. Future research may address this point. Another sim-
plification that was also already mentioned in the same chapter was our choice for the smearing
function. The choice we made breaks background Lorentz invariance, which is unphysical. A
more physical smearing function should be chosen. This should also address the behavior of the
coefficient ρ0 in eq. (6.2) which for our choice of smearing seems to select a preferred relative
velocity. In addition, it may be interesting to see how other choices of smearing affect the final
result. Although it is expected that a kind of universality among all well-behaved localized
smearing functions exists for the leading divergent terms and thus should not affect the final
answer too much.

In addition, the calculation carried out in this thesis was specific for the triangular experimen-
tal set-up. However, the calculation is flexible to an arbitrary polygon restricted to a plane that
consists of time-like and null-like edges. This is because the bulk of the work is concerned with
the evaluation of the integrals ĨmnK . The computer algebra software is able to handle any such
integral, thus, the quantum mean and variance of a ‘time delay’ observable or any other related
observable in an arbitrary 2-dimensional set-up can be straightforwardly computed. One only
needs to calculate the mean and the equivalent expression for 〈r̃2〉 using the closure condition
for the experimental set-up.

Furthermore, the expansion was done to zeroth order in the spatio-temporal resolution of
the smearing function µ. This could be extended to higher order. However, this should not be
of high priority as higher orders do not contribute much.

Additionally, we were not able to study the causal structure of spacetime in a quantum
context as the perturbation technique used breaks the Lorentzian signature. As suggested before,
this issue may be resolved using other perturbation techniques such as the Magnus expansion
[8]. Another solution to this issue could be to resort to situations for which non-perturbative
calculations are possible such as 2+1 gravity.

More generally, we can now model other observables within the field of quantum gravity by
using a similar methodology. Observables that may be of particular interest are those related to
black holes or the early universe as quantum gravitational effects are expected to be largest in
those regimes. For instance, one may want to model the fluctuations of area of the black hole
horizon. This would allow one to study the fluctuations of the size of a black hole, since the
radius of a black hole is defined via its area.

Moreover, in this work, we used Minkowski spacetime as our background, but other metric
such as the Schwarzschild metric or FRW-metric could be considered. This may be interesting for
actual experiments. A hot research area that possibly allows us to probe the quantum nature
of the gravitational field is research concerned with the observation of photons arriving from
distant γ-ray bursts. A similar calculation as ours could model the arrival of these photons and
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compute the quantum effects due to the intrinsic quantum nature of the gravitational field. [20]
Finally, it is often the case that calculations that are simple in one fundamental approach

to quantum gravity are unfeasible in another, which makes comparing different fundamental
approaches difficult. The future may tell whether this observable, or any other quantum as-
trometric observable, will be a useful benchmark for these fundamental approaches to quantum
gravity.
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Appendix A

Perturbative solution of geodesic
and parallel transport equations

In this appendix, we derive the perturbative solution of the geodesic and parallel transport
equations given the lab-equipped spacetime as discussed in ch. 3.3. The set-up of this derivation
will be very similar to the appendix in [3], however, we display more intermediate steps.

For this derivation we need the following two equations [5]

γ̇(t)a = va0 (t), (A.1)

γ̇(t)a∇avcα(t) = 0, (A.2)

where the first equation states that va0 is the tangent vector to the geodesic γ(t) and the second
equation is the geodesic equation, i.e. it describes a curve whose tangent vector vc is paral-
lel propagated along itself. These equations (A.1,A.2) can be expressed in terms of vierbein
components using the relations in chapter 3.3. The first equation gives

γ̇i = γ̇ax̂ia = va0 x̂
i
a

= va0 T̄
i
j e
j
a = T̄ ijv

j
0, (A.3)

where we used that x̂ia = T̄ ij e
j
a. The second equation is first rewritten as

γ̇a∇avcα = 0

va0∇a(ecjv
j
α) = 0

va0e
c
j∇a(vjα) = −va0∇a(ecj)v

j
α,

to obtain in vielbein components

va0∇a(vkα) = −vi0eai ekc∇a(ecj)v
j
α,

v̇kα = −vi0ω k
i jv

j
α, (A.4)

where ω k
i j are the Ricci rotation coefficients (see sec. 3.4b in [5]). These Ricci rotation coefficients

can be expressed in terms of the transformation matrix T ij , which will be done below so that we

can express the Ricci rotation coefficients in terms of the gravitational field. Below, ∂a = x̂ia∂i
denotes the coordinate derivative, ∇a the covariant derivative and Γcab the usual Christoffel
tensor

ωikj = ekce
a
i∇aecj

= ekce
a
i ∂ae

c
j + ekce

a
i Γcabe

b
j

= ekce
a
i ∂ae

c
j + eai e

b
je
c
kΓcab.
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The first term in the equation can be rewritten using eq. (3.1) and gives

ekce
a
i ∂ae

c
j = T̄ i

′

i (∂aT̄
j′

j )T ll′ηlkx̂
l′

c x̂
a
i′ x̂

c
j′

= T̄ i
′

i (∂i′ T̄
l′

j )T ll′ηlk

= −T̄ i
′

i T̄
j′

j (∂i′T
l′′

j′ )T̄ l
′

l′′T
l
l′ηlk

= −T̄ i
′

i (∂i′T
l
j′ηlk)T̄ j

′

j ,

and similarly for the second term

eai e
b
je
c
kΓcab =

1

2
eai e

b
je
c
k(∂agbc + ∂bgac − ∂cgab)

=
1

2
T̄ i
′

i T̄
j′

j T̄
k′

k

× [∂i′gj′k′ + ∂j′gi′k′ − ∂k′gi′j′ ]

=
1

2
T̄ i
′

i T̄
j′

j T̄
k′

k

[
∂i′(T

J
j′ηJKT

K
k′ )

+ ∂j′(T
I
i′ηIKT

K
k′ )− ∂k′(T Ii′ηIJT Jj′)

]
.

Substituting the following definition αikj = T̄ i
′

i (∂i′T
l
j′ηlk)T̄ j

′

j in both equations and adding them
again yields the following expression for the Ricci rotation coefficients in terms of this single
quantity αikj

ωikj = −αikj +
1

2
[αikj + αijk + αjik

+ αjki − αkij − αkji]

=
1

2
[−αikj + αijk + αjik

+ αjki − αkij − αkji]
= −3α[ikj] + 2α[j|i|k]

= −αi[kj] + αj(ik) − αk(ij).

According to standard conventions, square brackets around tensor indices indicate that the tensor
is anti-symmetric with respect to these indices and round brackets indicate that the tensor is
symmetric. Up to linear order in the gravitational field, αikj is given by

αikj = T̄ i
′

i (∂i′T
l
j′ηlk)T̄ j

′

j

= (δi
′

i − hi
′

i )(∂i′h
l
j′ηlk)(δj

′

j − h
j′

j )

= ∂ih
l
jηlk +O(h2) = ∂ihkj +O(h2),

where we used that T = exp(h) and T̄ = exp(−h). Consequently, up to linear order the Ricci
rotation coefficient is given by

ωikj = −∂ih[kj] + ∂jh(ik) − ∂kh(ij).

Looking back at eq.(A.3) and eq.(A.4), we are left with two differential equations. These two
differential equations are of the form

Ẋ(t) = λA(t)X(t),

where |λ| � 1 and X(t) can be any n−column vector and A(t) any n × n−matrix. In the
simple case where A(t) is a constant, i.e. A(t) = A0, the solution to this differential equation is
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X(t) = eλA0tX(0) = X0(t) + λX1(t) + λ2X2(t) +O(λ3). However, if A(t) is not constant, then
the solution is

X(t) = X(0) + λ

∫ t

0

dt′A(t′)X(0) + λ2

∫ t

0

dt′
∫ t′

0

dt′′A(t′)A(t′′)X(0) +O(λ3)

:= T

[
exp

(
λ

∫ t

0

dt′A(t′)

)]
X(0),

where T denotes the time ordered exponential. If A = A(t,X(t)) the above solution still holds,
but now A(t′) should be replaced by A(t′, X(t′)). The solutions to eq. (A.3) and eq. (A.4) are
thus given by

γ(t)i = γ(0)i +

∫ t

0

dt′ T̄ (γ(t′))ijv
j
0(t′), (A.5)

vkα(t) = T

[
exp

(
−
∫ t

0

dt′v0(t′)iω(γ(t′)) ki j

)]
vjα(0) (A.6)

= exp(pγ(t))kj v
j
α(0), (A.7)

where the parallel propagator exp(pγ(t))kj is defined implicitly by the last equation. In this form,
the solution can be directly expanded to any desired order in the gravitational field h and are
parametrized by the initial data γ(0)i and viα(0) with γ̇i(0) = vi0(0).

For our experimental set-up, some vectors will be parallel transported more than once. For
example, consider a geodesic β starting at the origin β(0) = O and a geodesic γ whose starting
point is the end point of β (i.e. βi(1) = γi(0)). If we want to parallel transport some vector
at the origin, say vkO,α, along β and γ, we have for the vierbein components of the parallel
transported vector at the starting and end point of the geodesic γ

viα(0) = exp(pβ)ij exp(hO)jkv
k
O,α,

viα(1) = exp(pγ)ij exp(pβ)jk exp(hO)kl v
l
O,α.

Further note that to linear order in the gravitational field, the parallel propagator is

exp(pγ(t))kj = δkj + (Hγ0(t))kj +O(h2), (A.8)

(Hγ0(t))kj = ηki(Hγ0(t))ij

= −
∫ t

0

dt′ γ̇i0(t′)ω(γ0(t′))ikj . (A.9)

Thus, to linear order the starting and end point of the parallel propagated vector is

viα(0) = viO,α + (hO)ijv
j
O,α + (Hγ0)ijv

j
O,α +O(h2) (A.10)

viα(1) = viO,α + (hO)ijv
j
O,α + (Hβ0

+Hγ0)ijv
j
O,α +O(h2). (A.11)

For the vielbein coordinates of the geodesic curve, the linear order solution is

γi(1) = βi(1) +

∫ 1

0

dt′ exp(−h(γ(t′)))ij exp(pγ(t′))jk exp(pβ)kl exp(hO)lmv
m
O,0

= βi0(1) + βi1(1) +

∫ 1

0

dt′
[
−hij(γ0(t′)) + (Hγ0(t′))ij + (Hβ0

)ij + (hO)ij
]
vjO,0 +O(h2)

= βi0(1) + βi1(1)−
∫ 1

0

dt′hij(γ0(t′))vjO,0 −
∫ 1

0

dt′
∫ t′

0

dt′′γ̇k0 (t′′)ω(γ0(t′′)) i
k jv

j
O,0

+ (Hβ0
)ijv

j
O,0 + (hO)ijv

j
O,0 +O(h2)

= βi0(1) + βi1(1) + (Jγ0,β0
)i +O(h2), (A.12)
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where (Jγ0,β0)i is to linear order

(Jγ0,β0
)i = ηij(Jγ0,β0

)j

= −
∫ 1

0

dt′hij(γ0(t′))vjO,0 −
∫ 1

0

dt′
∫ t′

0

dt′′γ̇k0 (t′′)ω(γ0(t′′)) i
k jv

j
O,0 + (Hβ0

)ijv
j
O,0 + (hO)ijv

j
O,0.

(A.13)

All these integrals need to be evaluated at the zeroth order solution of the geodesic equation.
For our experimental set-up only piecewise geodesics are considered, which to zeroth order are
simply straight lines. Hence, we can use the standard affine parametrization for these geodesics

X(t) = (1− t)x1 + tx2, where X(0) = x1, X(1) = x2

whose tangent vector is Ẋ(t) = x2 − x1 = x. Also note that at zeroth order, the β-parallel
transported image of xi at O is just viO,0 = xi. Now suppose that γ0 is a single line segment X,
whose point of origin is the end point of β0, which is a piecewise linear path Y , whose segments
are indexed by N and denoted YN . Then HX contracted with arbitrary vectors A,B is given by

AiBj(HX)ij = AiBj
∫
X

dt xk[∂kh[ij] − ∂jh(ki) + ∂ih(kj)]

= AiBj [h[ij]]
x2
x1

+ 2A[iBj]xk
∫
X

dt ∂ih(kj).

The expression for HYN
is alike, with the distinction that X is replaced by YN and HY is

(HY )ij =
∑
N

(HYN
)ij . (A.14)

The expression for JX,Y contracted with an arbitrary vector A is

Ai(JX,Y )i = −Ai
∫
X

dt hijx
j +Ai

∫ (1)

X

dt xk[∂kh[ij] − ∂jh(ki) + ∂ih(kj))]x
j +Ai(HY )ijx

j +Ai(hO)ijx
j

= Aixj(hO)ij −Aixjh[ij](x1) +Aixj [h[ij]]
x1

O

−Aixj
∫
X

dt h(ij) + 2A[ixj]xk
∫ (1)

X

∂ih(kj) +
∑
N

2A[ixj]ykN

∫
YN

dt ∂ih(kj)

= Aixj [(hO)ij − h[ij](O)]−Aixj
∫
X

dt h(ij) + 2A[ixj]xk
∫ (1)

X

dt ∂ih(kj) +
∑
N

2A[ixj]ykN

∫
YN

dt ∂ih(kj),

where the following notation for the expressions of the contracted HX ,HYN
and J was applied∫ (n)

X

dtf =

∫ 1

0

dt0

∫ t0

0

dt1 · · ·
∫ tn−1

0

dtn f(X(tn)), (A.15)∫
X

dt f =

∫ (0)

X

dt f, (A.16)

[f ]x2
x1

=

∫
X

dt xi∂if = f(x2)− f(x1). (A.17)
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Appendix B

Calculation expectation value
graviton two-point function

The aim of this appendix is to compute the expectation value of the anti-commutator of the
gravitational field, i.e. 〈{h(x)µν , h(y)κλ}〉, which is related to the Poisson bracket of the grav-
itational field. In order to compute this, we first give a brief, relatively technical overview on
how the physical phase space, on which the Poisson bracket is defined, can be constructed from
the manifold of all field configurations, and we give a definition of the Poisson bracket on this
phase space. Next, given this background knowledge, we give an algorithm for constructing the
Poisson bracket on the physical phase space starting from the Lagrangian density. Finally, the
algorithm is applied to the case we are interested in: the calculation of the expectation value of
the Poisson bracket of the gravitational field from which we obtain the expectation value of the
graviton two-point function.

B.1 Geometrical construction of the physical phase space
from the space of field configurations

In this part, we will describe a geometrical construction of the physical phase space for La-
grangian field theories formulated on an n-dimensional spacetime M . On this spacetime, the
spacetime metric gµν is restricted so that we can choose a time function t and a vector field ta

such that leaves Σt in the foliation R×Σ with constant t are spacelike Cauchy surfaces. It should
be noted that the following description holds for any Lagrangian field theory and thus is not
restricted to general relativity.1 The approach in this part is analogous to that of [21], however,
we do not intend to be as complete and general, since the goal is merely to give a reasonable
background for the algorithm that follows.

First, we need to define fields mathematically. We define a field (or collection of fields) φ
as a map from the initial spacetime M to some other finite-dimensional spacetime M ′, that
is, φ : M → M ′. The manifold of all kinematically allowed field configurations satisfying
appropriate asymptotic boundary conditions is denoted by F so that φ ∈ F .2 In addition, we
assume that there exists a functional S[φ] =

∫
M
L where L is the Lagrangian density which

is of the form L = L(φ,∇φ,∇2φ, . . .) with ∇ denoting the derivative operator on M . The
field equations are obtained by varying this functional called the action and its critical points
determine the physical fields. If we pick a coordinate system for M and vary the Lagrangian

1Albeit that when the theory is background dependent, i.e. the spacetime metric is not a dynamical variable
but part of the background structure, it is also assumed that (M, gµν) is globally hyperbolic.

2Note that φ ∈ F and φ(x) ∈M ′.
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density, we obtain
δL = ‘eom’ +∇µθµ (B.1)

where ‘eom’ is shorthand for ‘equations of motion’ and we will call θµ the symplectic potential
current density on spacetime. The latter is well-defined and while we picked a specific coor-
dinate system to define the variation of the action, the symplectic potential current density is
independent of our choice of coordinates. However, in general, it will depend on the choice for
the covariant derivative operator ∇µ. On the other hand, for a Lagrangian with no derivatives
higher than second order on the field variables – which is often the case in physics – it can be
shown that θµ is also independent on the choice for the covariant derivative operator ∇µ. By
integrating the symplectic potential current density over Σ, which is linear in the field variations
δφ and its derivatives, we obtain the following functional

θ [φ, δφ] ≡
∫

Σ

θµnµ (B.2)

where nµ is the outward pointing unit vector normal to the Cauchy surface Σ such that, if tµ is
tangential to Σ, nµtµ = 0. If we assume that θ is continuous in the field variations of φ on F ,
then θ defines a dual vector field on the cotangent space of F by the following relation

θ(φ, δφ) = θa δφ
a ∀ δφa

where the Roman letters for the indices indicate abstract index notation again. This notation will
be used throughout for fields on F and objects on its tangent and cotangent bundle, respectively,
TF and T ∗F . By taking the exterior derivative of the dual vector θa on T ∗F , we can define an
exact (and thereby closed) 2-form on the cotangent bundle of F

ωab = (dθ)ab. (B.3)

We refer to ωab as the presymplectic form on the space of all kinematically allowed field con-
figurations. There is a reason that this form is called presymplectic and not symplectic: ωab is
degenerate, i.e. not invertible. This is due to the fact that the space of all field configurations
F is unsuitable to serve as our phase space because it is “too large”. Therefore, we will apply
a so-called “reduction procedure” to obtain a space with a well-defined non-degenerate closed
2-form, which may then serve as our extended phase space. Let us denote

ωφ0 : Tφ0F → T ∗φ0
F

φ1 7→ ωφ0
(φ1,−),

where ωφ0 is the symplectic form define in eq. (B.3) evaluated at a given point φ0. Naively
we would like to quotient out the kernel of this map at each point on our manifold to obtain
an injective map and, consequently, on finite-dimensional manifolds an invertible map. More
precisely, if we relate in a point φ0 on our manifold F , φ1 with φ2, then in our cotangent space
we can relate ωφ0

δφ1 = ωφ0
δφ2 using that ωφ0

δφ1 = ωφ0
δ (φ1 − φ2)+ωφ0

δφ2. Thus, given this
equivalence relation in a point on F , on its cotangent space ωφ0 is injective. However, performing
this at each point of our manifold to obtain a globally invertible 2-form does not guarantee
smoothness. Therefore we first define certain objects globally and next, in a similar spirit as
for this simple example, “quotient out the kernel” to obtain a globally well-defined invertible
2-form. For details, see [21], but we will give a rough sketch of the procedure here. We take the
collection of subspaces of the tangent space to F that satisfy ωabφ

a = 0 ∀φa ∈ TF and assume
that this collection of subspaces is a subbundle of the entire tangent space of F . According to
Frobenius theorem, we can define integral submanifolds of these subbundles. Subsequently, we
define an equivalence relation on these integral submanifolds: φ1 ∼ φ2 if and only if φ1 and
φ2 are on the same integral submanifold. We denote the set of equivalence classes of F by Γ.
This quotient space Γ, i.e. F/ ∼, will be the extended phase space of our theory. Note that we
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Figure B.1: The relationship between the presymplectic space of all field configurations (F , ω) and the
symplectic space (Γ,Ω) by the projection map π, and the reduced spaces F̄ and Γ̄ are shown. Taken from
[21] and edited afterwards.

explicitly call this the extended phase space and not the physical phase space, since this space is
also still too large. How to go from this extended phase space to the physical phase space will be
discussed in a bit. Assuming that we can define a manifold structure on Γ, the structure of the
space of all field configurations F is that of a fiber bundle over Γ with its associated projection
map π, where π : F → Γ. We can now relate the presymplectic form ωab on the space of all field
configurations F to a well-defined non-degenerate 2-form Ωab on Γ by

ωab = π∗Ωab

where π∗ is the natural pull-back map taking differential forms on Γ to differential forms on F .
This new 2-form, also known as the symplectic form, is now (by construction) non-degenerate.
Also, as a direct consequence of the fact that ωab is closed, the symplectic form Ωab is. The
property of exactness is not necessarily carried over. So (Γ,Ωab) is a symplectic manifold, which
we take as the extended phase space of our theory. All kinematically possible states of the system
are described by this space. However, we are interested in the physical phase space, which are all
the dynamically possible states of our theory. The physical phase space is obtained by restricting
the extended phase space. More formally, if we denote F̄ as the subset of F consisting of all
solutions to the equations of motion and assume that F̄ is a submanifold of F , we can define a
submanifold Γ̄ of Γ, which will be our physical phase space. The physical phase space is obtained
from F̄ by the same projection map as encountered before, i.e.

Γ̄ = π
(
F̄
)
.

Let π̄ be the projection restricted to F̄ , so π̄ : F̄ → Γ̄, and assume that F̄ also has a fiber bundle
structure over Γ̄, just like F has over Γ. The relations between F ,Γ, F̄ , Γ̄ and their projection
maps are visualized in fig. B.1. Analogously to the symplectic form on the extended phase space,
we can define a symplectic form on the physical phase space via a pullback map;

ω̄ab = π̄∗ Ω̄ab

where ω̄ab is the restriction of ωab to F̄ , and correspondingly for Ω̄ab. Thus, the physical phase
space is given by (Γ̄, Ω̄ab). Interestingly, although (Γ,Ωab) depends on the choice of Cauchy
surface Σ in spacetime via the intermediate integral in eq. (B.2), it can be shown that (Γ̄, Ω̄ab)
does not depend on this choice. Furthermore, it is proven in [21] that this restricted symplectic
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form Ω̄ab is gauge-invariant. In addition, note that since Ω̄ab is invertible, we can define a Poisson
bracket through the following relationship

{φ(x), φ(y)} = Ω̄−1(φ(x), φ(y).

Hence, we can now given the manifold of field configurations relate this to the Poisson bracket.
The method outlined is independent of one’s choice of coordinates and gives a gauge-invariant
result.

B.2 Algorithm to obtain the Poisson bracket on phase
space from the Lagrangian

From the previous description we can construct an algorithm to find the Poisson bracket on the
reduced phase space given a Lagrangian density. Given a finite-dimensional spacetime manifold
M and a field theory whose Lagrangian density is known, the following step-by-step procedure
applies.

1. Starting from the Lagrangian density (or equivalently, the action) derive the symplectic
potential current density θµ, which is defined through eq.(B.1).

2. Obtain the symplectic current density ωµ by

ωµ = dθµ

where d denotes the exterior derivative.

3. The next step is to integrate the symplectic current density over a Cauchy surface Σ in a
direction outward normal to it (denoted by the vector nµ)

Ω =

∫
Σ

nµωµ

where Ω is the presymplectic form. One can choose, for instance, a timelike Cauchy hy-
persurface Σt with its normal tµ = (−1, 0, 0, 0) so that Ω is given by Ω =

∫
t=0

d3~x tµωµ(~x),
where (t, ~x) are the usual time and spatial coordinates.

4. Restrict Ω to a space of solutions by implementing the equation of motions to obtain the
symplectic form Ω̄. Additionally, to simplify the algebra one can fix a convenient gauge
and do the calculations therein as the final result is gauge-invariant.

5. Subsequently, invert the symplectic form to get

Π ≡ Ω̄−1.

6. Finally, the Poisson bracket is obtained by insertion of the relevant fields into Π, e.g.
{φ(x), φ(y)} = Π (φ(x), φ(y)).

B.3 An application: calculation of the Poisson bracket
of the gravitational field and derivation expectation
value of its anti-commutator

For our action we take the Palatini action rather than the standard Einstein-Hilbert action to
simplify the calculations, as they are equivalent [22]. We work in coordinates as the resulting
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Poisson bracket using the algorithm in the previous part is coordinate independent. Thus, in
this part we do not use abstract tensor index notation, instead Greek symbols (µ, ν,etc.) are
used to denote any index that runs from 0 to 3. The Palatini action is given by

S =

∫
d4xR =

∫
d4x g̃µνRµν

=

∫
d4x g̃µν

(
∂αΓαµν − ∂νΓαµα + ΓανµΓβαβ − ΓαβµΓβαν

)
where R is the Ricci scalar, Rµν the Ricci tensor built entirely out of Γαµν , g̃µν is the inverse

densitized metric, gµν g̃
νλ =

√
−gδλµ, g is the determinant of the metric gµν , and Γαµν are the

Christoffel symbols encountered before. The first step is to vary the action, this gives

δS =
δS

δg̃κλ
δg̃κλ +

δS

δΓκλσ
δΓκλσ

= ‘eom’ +

∫
d4x ∂α

(
g̃µνδΓαµν − g̃µαδΓνµν

)
,

thus, θα = g̃µνδΓαµν − g̃µαδΓνµν . Second, we obtain the presymplectic potential current density

ωα = δθα = δg̃µν ∧ δΓαµν − δg̃µα ∧ δΓνµν ,

where the variational derivative δ is applied according to the usual rules of an exterior derivative,
making ωα a spacetime current density and a 2-form on the infinite dimensional space of field
configurations. Third, we find the presymplectic form by integrating over a Cauchy surface. As
our Cauchy surface, we take the timelike hypersurface as suggested in step 3 with the associated
normal vector tµ = (−1, 0, 0, 0).

Ω =

∫
t=0

d3x tµω
µ

=

∫
t=0

d3x (δg̃µν ∧ δΓ0
µν − δg̃µ0 ∧ δΓνµν) (B.4)

Fourth, we need to restrict Ω to an unique space of solutions. Additionally, thus far, we have
taken the spacetime metric gµν to be arbitrary. However, from this point on, we restrict ourselves
to linearized gravity as we are ultimately interested in calculating the expectation value of the
graviton’s two point function, i.e. we take gµν = ηµν + hµν +O(h2) and accordingly

Γαµν =
1

2
ηαβ (∂µhβµ + ∂νhβµ − ∂βhµν) +O(h2), (B.5)

g̃µν = ηµν − hµν +
1

2
ηµνhαα +O(h2), (B.6)

where indices are raised using ηµν . We need to specify a full gauge which is given by the Lorentz,
radiation, trace gauge, i.e. the following restrictions need to hold

hµµ = 0,

tµh
µν = h0ν = 0,

∂ihij = 0.

The equations of motion are ∂λ∂λ hµν = �hµν , whose solutions are

hµν(x) =

∫
d3k

(2π)3
eikx

(
P 1
µν(k){α+

1 (k)e−ikt + α−1 (k)eikt}+ P 2
µν(k){α+

2 (k)e−ikt + α−2 (k)eikt
)
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where α±1/2 are constants depending on k and the polarization factors P 1
µν and P 2

µν need to satisfy

ηµνP iµν = 0,

tµP iµν = P i0ν = 0, (B.7)

kµP iµν = 0,

P iµν(Pµν)j = δij ,

for i = 1, 2. The first three conditions are directly related to the gauge-fixing and the latter is
a result from requiring orthogonality of the polarization factors. In the final expression for the
Poisson bracket, P 1

µνP
1
λκ + P 2

µνP
2
λκ appears, which we will refer to as the projected identity. To

find this tensor, we use all the restrictions above, use as a basis ηµν , tµ, kµ and require that it
is symmetric under exchange of indices (µν) ↔ (κλ), µ ↔ ν and κ ↔ λ. So here we will take
a slight tangent to find the projected identity. Using the basis and symmetry requirements, we
know that the projected identity should be of the following form

P 1
µνP

2
κλ =

1

2
(ηµκηνλ + ηµληνκ) +Aηµνηκλ +B (ηµνkκkλ + ηκλkµknu)

+ C (ηµνkνkλ + ηνκkµkλ + ηµλkνkκ + ηνλkµkκ) +D (ηµνtκtλ + ηκλtµknu)

+ E (ηµνtνtλ + ηνκtµtλ + ηµλtνtκ + ηνλtµtκ) + F (ηµνkκtλ + ηµνkλtκ + ηκλkµtν + ηκλkνtµ)

+G (ηµκkνtλ + ηνκkµtλ + ηµλkνtκ + ηµλkµtκ) +H (ηµκkλtν + ηνκkλtµ + ηµλtνkκ + ηνλtµkκ)

+ I kµkνkκkλ + J (kµkνkκtλ + kµkνkλtκ + kµkκkλtν + kνkκkλtµ) +K (kµkνtκtλ + kκkλtµtν)

+ L (kµkκtνtλ + kµkλtνtκ + kνkκtµtλ + kνkλtµtκ) +M (kµtνtκtλ + kνtµtκtλ + kκtµtνtλ + kλtµtνtκ)

+N tµtνtκtλ

where the capital letters are constants that will be fixed by the restrictions in eq. (B.7). We
have 14 constants; the trace condition gives four independent constraints and projection onto
tµ and kµ each give ten constraints amounting to a total of 24 constraints. Fortunately, some
contraints are redundant and the system is exactly solvable. Having set t2 = 1, we obtain the
following expressions for the constants

A = −1

2
, H =

−kt
2 (k2 + (k · t)2)

,

B =
1

2 (k2 + (k · t)2)
, I =

1

2 (k2 + (k · t)2)
2 ,

C = − 1

2 (k2 + (k · t)2)
, J =

kt

2 (k2 + (k · t)2)
2 ,

D = − k2

2 (k2 + (k · t)2)
, K =

k2 + 2(k · t)2

2 (k2 + (k · t)2)
2 ,

E =
k2

2 (k2 + (k · t)2)
, L = − k2

2 (k2 + (k · t)2)
2 ,

F =
kt

2

1

(k2 + (k · t)2)
, M = − k2(k · t)

2 (k2 + (k · t)2)
2 ,

G = −kt
2

1

(k2 + (k · t)2)
, N =

k4

2 (k2 + (k · t)2)
2 .

The resulting projected identity is rather long and complicated, conveniently, there are some
simplifications that can de made. Since hµν has gauge degrees of freedom of the form k(µζν), all
terms that have a similar form can consequently be gauged away when calculating observables.
Additionally, the projected identity will appear in the graviton two-point function within an
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integral over k together with δ(4)(k2), hence all terms that are proportional to k2 will vanish.
Ergo, the only non-vanishing constant is A = − 1

2 and the projected identity for calculating
observables is

P 1
µνP

1
κλ + P 2

µνP
2
κλ =

1

2
(ηµκηνλ + ηµληνκ − ηµνηκλ) ≡ 1

2
ηµν,κλ (B.8)

If we implement the gauge conditions and substitute the expression for the Christoffel symbol
to linear order into the expression for the presympletic form in eq. (B.4), we get

Ω̄ =
1

2

∫
t=0

d3x δhµν ∧ δ∂0hµν

Inserting the solution for the gravitational field gives

Ω̄ =
1

2

∫
t=0

d3x

∫
d3k

(2π)3

∫
d3k′

(2π)3
δ
(
eikx

(
(P 1)µν(k){α+

1 (k)e−ikt + α−1 (k)eikt}+

(P 2)µν(k){α+
2 (k)e−ikt + α−2 (k)eikt}

)
∧ δ

(
ik′eik

′x
(
P 1
µν(k′){−α+

1 (k′)e−ik
′t + α−1 (k′)eik

′t}

+ P 2
µν(k′){−α+

2 (k′)e−ik
′t + α−2 (k′)eik

′t}
))

Performing the integration over x gives a delta-function δ(k + k′) and the ensuing integration
over k′ yields

Ω̄ =
1

2

∫
t=0

d3k

(2π)3
δ
(
(P 1)µν(k){α+

1 (k)e−ikt + α−1 (k)eikt}+ (P 2)µν(k){α+
2 (k)e−ikt + α−2 (k)eikt}

)
∧ δ
(
P 1
µν(−k){α+

1 (−k)eikt − α−1 (−k)e−ikt}+ P 2
µν(−k){α+

2 (−k)eikt − α−2 (−k)e−ikt}
)

(B.9)

From the requirement that the gravitational field is real, i. e. h∗µν(x) = hµν(x), and the relations

P 1
µν(−k) = P 1

µν(k) and P 2
µν(−k) = −P 2

µν(k),3 we obtain the following identities for α±1 and α±2

α+
1 (k) = α−∗1 (−k),

α−1 (k) = α+∗
1 (−k),

α+
2 (k) = −α−∗2 (−k),

α−2 (k) = −α+∗
2 (−k).

The expression for the symplectic form in eq. (B.9) can now be massaged using the relations for

the α’s above. In addition, to simplify the expression we take ~k in the z-direction and integrate
only over the upper half plane; to obtain the correct result integration over the lower half plane
is added by hand. Furthermore, writing out the wedge-product, applying the orthogonality
conditions of the polarization factors and setting t = 0 everywhere gives

Ω̄ =

∫
R3

+

d3k

(2π)3
ik
(
−δα+

1 ∧ δα
+∗
1 + δα−1 ∧ δα

−∗
1 − δα+

2 ∧ δα
+∗
2 + δα−2 ∧ δα

−∗
2

)
where for notational clarity the k dependence has been omitted since now all dependence is on
+k. The fifth step is to invert the symplectic form, to obtain Π

Π =

∫
R3

+

d3k
(2π)3

ik

(
−∂α+

1 ∧ ∂α
+∗
1 + ∂α−1 ∧ ∂α

−∗
1 − ∂α+

2 ∧ ∂α
+∗
2 + ∂α−2 ∧ ∂α

−∗
2

)
3These relations are obvious if one takes

P 1
µν ∼ “θθ + φφ′′

P 2
µν ∼ “θφ+ φθ′′
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Lastly, the Poisson bracket of the gravitational field is obtained from Π (h(x)µν , h(y)κλ). Apply-
ing the following identities

∂α+
1 (k)α

+
1 (q) = δ(k − q),

∂α+
1 (k) ∧ ∂α+

1 (k)∗

(
α+

1 (p), α−1 (q)
)

= δ(k − p)δ(k + q),

∂α+
1 (k) ∧ ∂α+

1 (k)∗

(
α+

1 (p), α+
1 (q)

)
= 0,

∂α−1 (k) ∧ ∂α−1 (k)∗

(
α+

1 (p), α−1 (q)
)

= −δ(k − p)δ(k + q),

∂α+
2 (k) ∧ ∂α+

2 (k)∗

(
α+

2 (p), α−2 (q)
)

= −δ(k − p)δ(k + q),

∂α−2 (k) ∧ ∂α−2 (k)∗

(
α+

2 (p), α−2 (q)
)

= δ(k − p)δ(k + q),

and properly rewriting gives

{h(x)µν , h(y)κλ} = 2π

∫
d4k

(2π)4

δ(4)(k2)

i

(
P 1
µνP

1
κλ + P 2

µνP
2
κλ

)
eik(x−y)sgn(ω)

=
1

2
2π

∫
d4k

(2π)4

δ(4)(k2)

i
ηµν,κλe

ik(x−y)sgn(ω) (B.10)

where ω = k0 and sgn(x) is the sign-function. The only thing left is to obtain the full expression
for the expectation value of anti-commutator of the gravitational field with respect to the Fock
vacuum. This is done using two relations: (i) [A,B]− = i~ {A,B}, which relates the anti-
commutator with the Poisson bracket, and (ii) a relation between the anti-commutator and
commutator Green functions of quantum simple harmonic oscillators. This second relation is
also applicable for the gravitational field, since, as discussed before, a linear field theory is a
collection of coupled harmonic oscillators. The relation between the two Green functions with
frequency ω > 0 and position operator x̂(t) is

〈[x̂(t), x̂(s)]+〉 = (Ω+ − Ω−)[x̂(t), x̂(s)]− (B.11)

where 〈. . .〉 denotes the expectation value with respect to the ground state, the commutator
and anti-commutator are distinguished by the ±-sign and we defined the positive and negative
frequency projection operators as

Ω+e
−iωt = e−iωt, Ω−e

−iωt = 0,

Ω+e
+iωt = 0, Ω−e

+iωt = e+iωt.

Thus, using relation (i) between the commutator and Poisson bracket and relation (ii) be-
tween the commutator and anti-commutator Green functions, the expectation value of the anti-
commutator of the gravitational field is

〈[h(x)µν , h(y)κλ]+〉 = i~(Ω+ − Ω−){h(x)µν , h(y)κλ}

Inserting eq. (B.10) into this expression kills the sgn(ω) term. Evaluation of the remaining
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integral is carried out below

~
2

2π

∫
d4k

(2π)4
eik·xδ(ω2 − k2) =

~
2

1

(2π)3

∫
dω

∫
d~k e−iωt+i

~k·~xδ(ω2 − k2)

=
1

(2π)2

∫ ∞
0

dk k2 (e−ikt + eikt)

2k

(eikr − e−ikr)
ikr

=
~
2

1

(2π)2

∫ ∞
0

dk
[eik(r−t+i0) + eik(r+t+i0) − e−ik(r−t−i0) − e−ik(r+t−i0)]

2ir

=
~
2

1

(2π)2

(−i)
2r

[
− 1

i(r − t+ i0)
− 1

i(r + t+ i0)
− 1

i(r − t− i0)
− 1

i(r + t− i0)

]
=

~
2

1

(2π)2

1

2r

(
P

[
2

r − t

]
+ P

[
2

r + t

])
=

~
2

1

2π2
P

[
1

−t2 + ~x2

]
,

where it is clear from the context whether k is the four vector or the absolute value of the three
vector. Further note that result of the above Fourier transform is a distribution, namely, the
symbol P shows that we have to use the Cauchy principal value of 1/(x− y)2.

At last, the expectation value of the graviton two-point function is

〈{h(x)µν , h(y)κλ}〉 = ηµν,κλ
4`2p
π
P

[
1

(x− y)µ(x− y)µ

]
= ηµν,κλ

4`2p
π
P

[
1

(x− y)2

]
,

where we changed notation: the anti-commutator is no longer denoted by [. . .]+ but by curly
brackets. This is done to match the notation in the remainder of this thesis. In addition, we
reinserted all dimensionful constants using that originally in the Palatini action there was a
factor ~

16π`2p
.

To find this constant α = ~
16π`2p

in the Palatini action (SP =
∫

dxLP = α
∫

dx
√
−g R), we

used that in the weak field Newtonian limit, the Einstein field equations should reproduce

Gµν = 8πTµν

where Gµν is the Einstein tensor and Tµν the stress-energy-momentum density tensor of matter.
The Einstein field equations are obtained by varying the total action with respect to the inverse
metric, i.e.

δSP
δgµν

= −δSM
δgµν

(B.12)

where subscripts refer to the gravitational and matter action. To fix the constant α let us take a
simple action for matter: we consider the action for a grain of dust whose stress energy-density
is given by Tµν = G

c2 ρuµuν , where ρ is the rest mass density of the grain of dust supported on

its worldline γ(τ) with τ its proper time and uµ is the unit velocity vector d
dτ γ(τ) [5]. The rest

mass density can thus be written as ρ = m
∫

dτ δ4(x−γ(τ)√
−g . The constants in the action for a grain

of dust are fixed by two requirements: (i) it needs to reproduce the known non-relativistic limit
and (ii) the quantum commutation relation [x, p] = i~ which can be obtained from the action
should hold. This gives for the matter action SM

SM = −mc
∫

dτ
√
−γ̇µ(τ)γ̇ν(τ)gµν

= −mc
∫

dx

∫
dτ δ4(x− γ(τ))

√
−γ̇µ(τ)γ̇ν(τ)gµν .
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Varying this action with respect to the inverse metric yields

δSM
δgµν

= −mc
∫

dτ δ4(x− γ(τ))
1

2

−γ̇σγ̇φ√
−γ̇κ(τ)γ̇λ(τ)gκλ

(−gσµgφν)

= − c
2

√
−g ρuµuν = − c3

2G

√
−g Tµν ,

where going from the first to the second line the definition for the mass density is applied.
Variation of the gravitational action gives α

√
−gGµν and in line with eq. (B.12) we obtain

α
√
−gGµν =

c3

2G

√
−g Tµν

‘Newtonian limit’−−−−−−−−−−−→ c3

2Gα
= 8π.

Hence, the constant in front of the Palatini action is indeed given by α = c3

16πG = ~
16π`2p

.
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Appendix C

Explicit calculation by hand

In this appendix, we calculate for a very specific case the smeared integral Ĩ00
0 by hand. In

particular, we consider the integral along two parallel single integrated null-like line segments.
This case is chosen as it is a fairly simple calculation with not too many intermediate steps. We
use the same notation as in ch. 5. This calculation serves as a partial check on our final result
and indeed all results in this appendix are reproduced by our computer calculations.

We are to calculate the following integral along two parallel null-like line segments

Ĩ00
0 =

∫
d4z

∫ 1

0

ds

∫ 1

0

dt P
1

(x(s)− y(t)− z)2 g(z2
⊥)δ(u · z).

For any null-like line segment x(s) confined to the (u, û)−plane, we can take x(s) = s λ(u − û)
with λ denoting the length of the null segment, and similarly for y(t) = t λ(u − û), so that
x2 = y2 = 0. To rewrite the denominator the following identities are useful

z · x = −sλ(c− T ),

((s− t)x− z)2
= z2 + 2(t− s)x · z + (t− s)2x2.

Parametrizing the integral in the same manner as is done in ch. 5 and rearranging the denomi-
nator gives

Ĩ00
0 = −

∫ 2π

0

dφ

∫ ∞
−∞

dTδ(d)(−T )

∫ ∞
0

dRRg(R2)︸ ︷︷ ︸
part II

∫ 1

0

ds

∫ 1

0

dt

∫ R

−R
dcP

1

R2 − T 2 − 2λ(t− s)(c− T )︸ ︷︷ ︸
part I

.

To compute this integral, we follow the same logic that the computer algebra uses. We calculate
‘part I’ first, which amounts to performing the integration over c, s and t, subsequently, we
compute ‘part II’ which entails integration over φ,R and T . Thus, we start by integration over
c ∫ R

−R
dc

1

R2 − T 2 − 2λ(t− s)(c− T )
=

[
− 1

2λ(t− s)
(ln |c− T |+ ln |c+ T − 2λ(t− s)|)

]R
−R

.

(C.1)

In the remaining part, we drop the boundary signs for c. Next, integration along s and t is
performed. The first term in eq. (C.1) gives∫

ds

∫
dt− ln |c− T |

2λ(t− s)
= − 1

2λ
ln |c− T | [[−(t− s) (ln |t− s| − 1)]] ,
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where the square brackets indicate that the boundaries of s and t still need to be inserted. These
boundaries correspond to the four vertices in fig. 5.1. The second term in eq. (C.1) yields∫

ds

∫
dt− ln |c+ T − 2λ(t− s)|

2λ(t− s)
= − ln |c+ T |

2λ

(∫
ds

∫
dt

1

t− s

)
− 1

2λ

∫
ds

∫
dt

ln |1− 2λ(t−s)
c+T |

t− s

= − ln |c+ T |
2λ

[[−(t− s) (ln |t− s| − 1)]]− 1

2λ

[∫
dsL

(
2λ(t− s)
c+ T

)]
= − ln |c+ T |

2λ
[[−(t− s) (ln |t− s| − 1)]]

− 1

2λ

[[
−(t− s) +

(
t− s− c+ T

2λ

)
ln
∣∣∣1− 2λ(t− s)

c+ T

∣∣∣
+(t− s)L

(
2λ(t− s)
c+ T

)]]
.

After combining the two equations again and extracting the logarithmic divergences from the
dilogarithm by applying eq. (5.17), we obtain

− 1

2λ

[[
− (ln |c+ T |+ ln |c− T |) (t− s) (ln |t− s| − 1)− (t− s) +

(
(t− s)− c+ T

2λ

)
ln
∣∣∣1− 2λ(t− s)

c+ T

∣∣∣
−(t− s)L

(
c+ T

2λ(t− s)

)
− t− s

2
(ln | c+ T

2λ(t− s)
|)2 +

π2

12
(t− s) +

π2

4
(t− s)sgn

(
c+ T

2λ(t− s)

)]]
.

Evaluating this result at the boundaries (s, t) = (0, 0) and (s, t) = (1, 1) which correspond to
the z11 and z22 vertices gives zero. The (s, t) = (1, 0) and (s, t) = (0, 1) boundaries which map
to the z12 and z21 vertices give a non-zero result given by

− 1

2λ

(
ln |1 + 2λ

c+T |
ln |1− 2λ

c+T |
+
c+ T

2λ
ln
∣∣∣1− ( 2λ

c+ T

)2 ∣∣∣+ L

(
c+ T

2λ

)
− L

(
−c+ T

2λ

)
− π2

2
sgn

(
c+ T

2λ

))
.

Expanding this for small c+ T yields

− 1

2λ

(
2
c+ T

λ
− c+ T

λ
ln |c+ T

2λ
| − π2

2
sgn

(
c+ T

2λ

))
+O((c+ T )2),

where we recall that the summation over c = ±R still needs to be performed. Now ‘part I’ has
been carried out, we are left to evaluate ‘part II’. Integration over φ and T is trivial and using
the definition in eq. (5.19), the result is

Ĩ00
0 =

π

λ2

(
4− 2 ln |µ|+ 2 ln |2λ| − π2 λ

µ

)
+O(µ0),

where simple sanity checks such as the argument of a logarithm needs to be dimensionless and
each term should have the same length dimension (viz. −2) are satisfied.1

This calculation can also be used to calculate terms with one or two derivatives on the
smearing function. However, these calculations are slightly more involved since now also terms
proportional to c and c2 appear in ‘part I’ and integration by parts needs to be performed in ‘part
II’ (sometimes even multiple times). The results of the calculation for the remaining integrals
are quoted here without any intermediate steps and are also all reproduced by the computer
algebra. The calculation for one derivative on the smearing function gives for tensor basis {u}

1This calculation has also been performed in two different ways (one other in position space and one in
momentum space). The results of all these calculations agree. Thus, we can be confident that this result is
correct.
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and {û} both zero after evaluating the integration over c at its boundaries. The results for two
derivatives on the smearing function for each tensor basis element are

{uu} π

λ2

(
− 2

µ2
+ π2 λ g(0)

)
+O(µ0),

{uû+ ûu} π

λ2

(
− 4

µ2
+

8 ln |µ|
µ2

− 8 ln |2λ|
µ2

+ 2π2 λ g(0)

)
+O(µ0),

{ûû} π

λ2

(
10

µ2
+

12 ln |µ|
µ2

− 12 ln |2λ|
µ2

+ π2 λ g(0)

)
+O(µ0),

{δ⊥}
π

λ2

(
− 4

µ2
+

4 ln |µ|
µ2

− 4 ln |2λ|
µ2

)
+O(µ0).
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