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Abstract

Abstract: Intelligent Tutoring Systems are an artificial-intelligence
approach to computer-assisted learning. Automatic assessment is an
important part of these systems. Keeping track of a student’s knowledge
by means of automatic assessment allows the Intelligent Tutoring System
to grade this student, and find suitable exercises for the student to
practice with. This thesis gives an overview of automatic assessment
within Intelligent Tutoring Systems.
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“Computer presence will enable us to modify the learning environment outside
the classroom so that much, if not all, of the knowledge schools presently try to
teach with such pain, expense and limited success, will be learned as the child
learns to talk, painlessly, successfully and without instruction. Schools as we
know them today have no place in the future.”

Seymour Papert, 1980
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Introduction

Approaches to artificial intelligence can be broadly divided into four groups:
thinking humanly, acting humanly, thinking rationally, and acting rationally [14].
This thesis will adopt the acting-humanly approach, which considers artificial
intelligence to be “the art of creating machines that perform functions that
require intelligence when performed by people” [7]. This thesis will focus on
creating a machine that is able to teach students. Teaching is considered to
require intelligence when performed by people [16], and a teaching machine
may therefore be called an artificial intelligent teacher.

In the field of computer-assisted education, artificial intelligent teachers are
called ‘Intelligent Tutoring Systems’ (itss). One task for which itss may be
used is automatic assessment. The research question of this thesis is: how can
automatic assessment be implemented in itss? This question will be answered
using both literature research, and an abstract implementation of automatic
assessment within an its. The focus will be on an its developed at Utrecht
University and the Open Universiteit [3].

Computer-assisted education focusses on presenting educational material by
means of a computer [5]. itss are based on an artifical-intelligence approach
to computer-assisted education [10]. The idea behind this approach is that the
computer does not only act as a tool to instruct the student, but acts as an
artificial teacher as well. An its analyses interactions between a student and
the system, gives feedback on the student actions, and helps the student make
progress [3].

There are huge differences between the architectures of existing itss, and
therefore it is nearly impossible to describe an architecture which fits all of
these systems. However, most itss have a structure based on the following four
components [10]. This structure is visualised in Figure 1.

The user interface module allows the student to interact with the system.

The tutoring module selects which material will be presented to the student.

The domain reasoner or expert knowledge module is a content data-
base consisting of a collection of exercises within the domain of the
its. The domain reasoner can reason about these exercises and knows
how objects of the domain can be manipulated to solve these exercises [3].

The student model module keeps track of the student’s progress. This mod-
ule infers the student’s knowledge from the interaction between a student
and the system, and represents this knowledge properly.

vii
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Figure 1: Implementation of knowledge

An its as described above acts like an artificial teacher. Among the tasks of
a teacher are grading the student, and offering the student suitable exercises.
For an its to do this, it needs to be able to keep track of the student’s progress.
This is done by automatic assessment.

Automatic assessing is measuring a student’s knowledge about a certain
learning domain by means of a computer [1]. The outcome of this assessment is a
representation of the student’s knowledge. Within an its, automatic assessment
is based on the interactions between the student and the domain reasoner. The
student model receives this information and uses it to update its representation
of the student’s knowledge.

Automatic assessment is highly useful for learning mathematical concepts,
and it can lead to increased flexibility in teaching [12]. It encourages students
to correctly solve problems, and provides teachers easy insight into the progress
of their students [2]. Another useful consequence of automatic assessment is
that it makes it possible to analyse student errors while they are still practicing.
This analysis is for human teachers often more time-consuming than examining
scores, but it can increase the quality of education [13]. Other studies have
shown that the long term use of automatic assessment is relatively cheap [12].

The student’s knowledge obtained by automatic assessment is represented
for different domains. What the relevant knowledge domains are depends on the
learning goal of a student. We assume that the main learning goal of a student
is the ability to solve problems from a certain exercise class. This requires
knowledge about strategies and the efficiency of these strategies. Knowledge
about strategies requires knowledge about the rules used in this strategy, and
the procedure or sequence of these rules. Knowledge about syntax is beyond
the scope of this thesis.
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This thesis is ordered as follows. Chapter 1 gives a brief overview of the
domain reasoner and the information about interactions provided by the domain
reasoner. Chapter 2 focusses on the student model and updating the knowledge
representation. Chapter 3 provides a summary of our findings and suggestions
for further research. The programming language used to implement our approach
is Haskell [6], and the full implementation can be found in Appendix A.



Chapter 1

Diagnosing Using a Domain
Reasoner

A domain reasoner is a component of an its which has knowledge about one
or more exercise domains, and has the ability to reason about these domains.
The domain reasoner is able to diagnose a student’s action. This chapter gives
an overview of this diagnosing by a domain reasoner. The focus will be on the
domain reasoner from the its developed at Utrecht University and the Open
Universiteit [3]. Section 1 will present the possible interactions between the
student and the domain reasoner. In Section 2 the diagnoses from the domain
reasoner and their compatibility with the student model will be discussed.
Section 3 provides a proposal for new diagnoses.

1.1 Interaction

Representation

The representation of a student’s knowledge in the student model is obtained
from the interaction between the student and the domain reasoner, when solving
a stepwise exercise. A step is the rewriting of a term to a new term. For example,
a step may be the rewriting of the term 8x = 16 to the term x = 2. Note
that terms may take other forms, depending on the knowledge domain of the
its. Terms may be a logical expression, or an expression from a programming
language. This thesis will focus on mathematical expressions.

An interaction between the student and the domain reasoner consists of
a request from the student and the response of the domain reasoner to that
request. Bastiaan Heeren et al. states the following request types [3]:

A request for diagnosis of a step The student asks the domain reasoner to
diagnose a step. The domain reasoner will evaluate this step, and provide
information to the student. For example, it may diagnose a step as being
‘correct’ or ‘not equivalent’.

A request to check whether the problem is solved The domain reasoner
will take the last term provided by the student, and respond whether it is
a correct solution.

1



CHAPTER 1. DIAGNOSING USING A DOMAIN REASONER 2

A request for possible next steps The domain reasoner will take the last
term provided by the student, and suggest possible next steps. Each
suggested step will take the term closer to being solved. Only the name
of the step will be suggested; it is up to the student to perform the step.

A request for a worked out next step The domain reasoner will take the
last term provided by the student, determine the best next step and
perform it. The response to the student will be both the name of the step,
and the next term.

A request for the solution for the exercise The domain reasoner will take
the last term provided by the student, and work out the term until it is
solved. The response to the student will be all the taken steps, and all
terms.

The domain reasoner receives extra input with the requests. For all requests,
the domain reasoner receives the type of the exercise the student is trying to
solve. For some requests, the domain reasoner receives the current and previous
terms that are analysed as well. As will be shown in the next section, the student
model only needs information about the student’s request and the exercise type.
Therefore, information about the current and previous terms of an exercise will
be ignored in the automatic assessment.

The response of the domain reasoner is different for each kind of request
and, as with the input, not all information from the output is relevant for the
student model. Specifically, only the diagnosis of a step, and whether a problem
is solved, are relevant information for the student model. Therefore, the other
responses of the domain reasoner will be ignored in the automatic assessment.

Implementation

The request types and relevant feedback from the domain reasoner are modelled
as values of the data type Interaction. This is shown in Figure 1.1. Each
Interaction represents a requests. All Interactions carry information about
the type of the Exercise for which the request was made.

The Interaction representing the CheckStep request also holds information
about the Diagnosis. How this Diagnosis is implemented will be discussed
later in this chapter.

The Interaction representing the CheckSolved request holds extra inform-
ation as well, namely whether or not the exercise is solved. This is represented
as the Boolean Solved, where True indicates that the exercise is solved, and
False indicates that it is not solved.

An Exercise type is represented by the Problem of which this exercise is
an example, the Strategy by means of which this exercise should be solved,
and the Rule the student used to rewrite the term [4]. These are all identified
by a String.
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data Exercise = Exercise Problem Strategy Rule

type Problem = String

type Strategy = String

type Rule = String

data Interaction =

CheckStep Diagnosis Exercise

| CheckSolved Solved Exercise

| NextSteps Exercise

| WorkedOutStep Exercise

| Solution Exercise

type Solved = Bool

Figure 1.1: Implementation of Interaction

The next example illustrates this representation. Consider a quadratic
expression, like x2 + 5x + 6 = 0. This expression can be solved by the simple
factorisation strategy, or the quadratic formula strategy. The latter strategy
consists of the following rules:

1. Rewrite to the correct form: x = −5±
√
52−4·1∗6·
2·1

2. Solve denominator: x = −5±
√
52−4·1·6
2

3. Solve discriminant: x = −5±
√
1

2

4. Solve numerator: x = −6
2 or x = −4

2

5. Solve for x: x = −3 or x = −2.

Suppose a student tries to solve a quadratic expression, using the quadratic
formula strategy. She rewrites a term according to the ‘solve discriminant’-rule.
The information about the type of the Exercise is represented as Exercise

"quadratic expression" "quadratic formula" "solve discriminant".
If this student now makes a request to check whether the term is solved, and

the domain reasoner concludes that the term is not solved, the Interaction is
represented as CheckSolved False (Exercise "quadratic expression"

"quadratic formula" "solve discriminant")

1.2 Existing diagnoses

Bastiaan Heeren et al. states that the domain reasoner may give the following
six diagnoses [3]:

Not equivalent The new term is not equivalent to the old term. It is not
known whether the procedure is followed, and no buggy rule is recognised.

Correct The new term is equivalent to the old term. It is not known whether
the procedure is followed, and no rule is recognised.
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Buggy A certain rule is applied incorrectly. That is, a buggy version of this
rule is applied. It is not known whether the procedure is followed, but the
buggy rule is recognised.

Expected A certain rule is applied correctly, as expected. This rule follows
the procedure, and is recognised.

Detour A certain rule is applied correctly, but was not expected. This rule
does not follow the procedure, but the rule is recognised.

Similar The new term is very similar to the old term (e.g. correct elimination
of brackets).

The student model uses the interaction between a student and the domain
reasoner to deduce information about the student’s knowledge. Some requests
indicate that the student lacks knowledge about a certain domain. Other requests
may indicate that the student does have knowledge about a certain domain.
What each interaction exactly indicates will be explained in the next chapter.

However, the diagnoses described above have some undesirable limitations
with respect to the student model. In the next section, new diagnoses will be
proposed. There are three reasons to prefer the use of these new diagnoses over
the use of the existing diagnoses. These reasons will be explained below. As
will become clear, the proposed diagnoses will be compatible with the existing
diagnoses.

The first reason for changing the diagnoses is emphasising the different parts
of the diagnoses. Except for the ‘similar’ diagnosis, all diagnoses can be split
into two parts: one pertaining to the procedure, and one pertaining to the rule.
A procedure is either followed, not followed, or this is unknown. A rule is either
correctly applied, incorrectly applied, or this is unknown. The student model
will make use of this distinction, since it keeps track of the student’s knowledge
concerning rules and procedures.

The second reason for changing the diagnoses is the distinction between
optimal and suboptimal steps. The student model distinguishes knowledge about
strategies, and knowledge about the efficiency of these strategies. A problem
may be solved by several strategies. Some of these strategies are optimal, and
some may be suboptimal. If a student correctly applies a rule following a certain
strategy, this indicates that the student has knowledge about both the rule and
the strategy. But only if this rule is the next step within an optimal strategy, it
indicates that the student has knowledge about the efficiency of all compatible
strategies. That is, if the rule is the next step within a suboptimal strategy,
the student does not have knowledge about the efficiency of the compatible
strategies, or else she would have followed another (optimal) strategy.

The third reason for changing the diagnoses is the incomplete information
given by the ‘buggy’ diagnosis. This diagnosis does not hold any information
about whether a procedure is followed. If the ‘buggy’ diagnosis is made, the
student model can only deduce that a student does not have knowledge about the
correct rule corresponding to the buggy rule. It can not deduce anything about
the student’s procedure knowledge. However, this is desirable for the student
model. For example, if the next step according to a procedure is ‘addition’, but
if the student applied a buggy addition rule, it is desirable that student model
may still deduce that the student has knowledge about the procedure.



CHAPTER 1. DIAGNOSING USING A DOMAIN REASONER 5

1.3 New diagnoses

Proposal

The three reasons discussed in the previous subsection indicate that the defini-
tions of the existing diagnoses need to be revised. The new diagnoses will differ
from the existing diagnoses in three ways:

• the procedure-rule distinction will be emphasised;

• a distinction between optimal and suboptimal steps will be made; and

• the buggy rule diagnosis indicate whether a strategy is followed.

To emphasise the distinction between a diagnosis about a procedure and
a diagnosis about a rule, the new diagnosis will consist of two parts: the rule-
rewriting diagnosis and the procedure diagnosis. The ‘similar’ diagnosis is an
exception; this remains as it is.

The rewriting diagnosis has two properties: recognition and equivalence.
The rewriting of a term to a new term wiil be diagnosed as either recognised or
unrecognised, depending on whether a (buggy) rule is recognised. It will also
be diagnosed as either equivalent or not equivalent, depending on whether the
old term is equivalent to the new term.

The procedure diagnosis holds information about the optimality of a rewrit-
ing rule in the context of a procedure. A rule may be optimal, suboptimal, a
detour, or – in case the rule is unrecognised – this may be unknown. A rule is
optimal if, according to the domain reasoner, applying this rule is the best step
towards solving the exercise. In case there are multiple rules considered to be
the best step, these rules are all optimal. A rule is suboptimal if it takes the
term closer to being solved, but it was possible to apply a better rule. A rule is
a detour if it does not follow any strategy that solves the exercise.

As a result of these new diagnoses, information about whether a procedure
is followed is available even if a rule is not applied correctly. That is, if a student
applies a rule incorrectly, it can still be diagnosed that the student followed a
procedure. In contrast, the existing diagnoses do not hold information about
the procedure if a rule is applied incorrectly.

As will become clear in the next chapter, the new diagnoses make it easier
to implement the student model. In addition, the more detailed diagnoses will
make it more likely for the student model to be compatible with other, more
detailed domain reasoners.

Implementation

In Figure 1.2 the implementation of the new diagnoses is shown. A Diagnosis is
either Similar when no important changes are made, or a complex Diagnosis

consisting of a RewriteDiag and a ProcedureDiag.
The RewriteDiag is a tuple of two Booleans: Recognised, which is True if

and only if the rule is recognised, and Equivalent, which is True if and only if
the new term is equivalent to the old term.

The ProcedureDiag is either Optimal, Suboptimal, Detour or Unknown.
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data Diagnosis =

Diagnosis RewriteDiag ProcedureDiag

| Similar

type RewriteDiag =

(Recognised , Equivalent)

type Recognised = Bool

type Equivalent = Bool

data ProcedureDiag =

Optimal

| Suboptimal

| Detour

| Unknown

Figure 1.2: Implementation of Diagnosis

Examples

This subsection will provide examples of the new diagnoses. Consider the term
x2+5x+6 = 0. The student may try to solve this term using simple factorisation
(the optimal strategy), the quadratic formula (a suboptimal strategy), or by
multiplying by two (a detour from any strategy). The student may rewrite this
term to the following terms:

x2 + 6 + 5x = 0
The student swapped the 6 and the 5x within the term. The diagnosis
will be:
Similar.

(2 + x)(3 + x) = 0
The student used the optimal simple factorisation strategy. The rule is
recognised and the terms are equivalent. The diagnosis will be:
Diagnosis (True, True) Optimal.

x = −5±
√
52−4·6
2

The student used the suboptimal quadratic formula strategy. The rule is
recognised and the terms are equivalent. The diagnosis will be:
Diagnosis (True, True) Suboptimal.

2x2 + 10x + 12 = 0
The student multiplied the term by two, which is a detour from any
strategy. This rule is recognised and the terms are equivalent. The diagnosis
will be:
Diagnosis (True, True) Detour.

(1 + x)(2 + x) = 0
The student used the optimal simple factorisation strategy. The rule is
recognised, but the terms are not equivalent. The diagnosis will be:
Diagnosis (True, False) Optimal.
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x = −1±
√
22−3·4
2

The student used the suboptimal quadratic formula strategy. The rule is
recognised, but the terms are not equivalent. The diagnosis will be:
Diagnosis (True, False) Suboptimal.

2x2 + 10x + 6 = 0
The student multiplied the term by two, which is a detour from any
strategy. This rule is recognised, but the terms are not equivalent. The
diagnosis will be:
Diagnosis (True, False) Detour.

x(x + 5 + 6
x ) = 0

The student did some rewriting. The rule is unrecognised, but the terms
are equivalent. Since the rule is unrecognised, it is unknown whether a
strategy is followed. The diagnosis will be:
Diagnosis (False, True) Unknown.

8 · 15x = 0
The student did some rewriting. The rule is unrecognised and the terms
are not equivalent. Since the rule is unrecognised, it is unknown whether
a strategy is followed. The diagnosis will be:
Diagnosis (False, False) Unknown.

Translating the existing diagnoses to the new diagnoses

The two ways to diagnose are compatible with each other. For the student model
to be compatible to the domain reasoner described by Bastiaan Heeren et al., it
must be possible to translate the existing diagnoses to the new. Although the
new diagnoses have the potential to hold more information than the existing, it
is still possible the formulate the existing diagnoses in terms of the new:

Not equivalent Some unrecognised rule is applied incorrectly. Both Recognised

and Equivalent will be evaluated as False. It is Unknown whether the
procedure is followed. Therefore, the new diagnosis will be:
Diagnosis (False, False) Unknown.

Correct Some unrecognised rule is applied correctly. Recognised will be eval-
uated as False, and Equivalent as True. It is Unknown whether the
procedure is followed. Therefore, the new diagnosis will be:
Diagnosis (False, True) Unknown.

Buggy A certain rule is applied incorrectly. Recognised will be evaluated as
True, and Equivalent as False. It is Unknown whether the procedure is
followed. Therefore, the new diagnosis will be:
Diagnosis (True, False) Unknown.

Note that a domain reasoner probably is able to determine whether the
correct rule corresponding to a buggy rule follows the procedure. In this
case, the ProcedureDiag may take another value than Unknown.
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Expected A certain rule is applied correctly, as expected. Both Recognised

and Equivalent will be evaluated as True. The procedure is followed.
So in this case both Optimal and Suboptimal are plausible values for
ProcedureDiag. Since no expected rule is better then another, all expected
rules are optimal. Therefore, the new diagnosis will be:
Diagnosis (True, True) Optimal.

Note that a domain reasoner that does make a distinction between optimal-
ity and suboptimality may assign the value Suboptimal to ProcedureDiag.

Detour A certain rule is applied correctly, but it was not expected. Both
Recognised and Equivalent will be evaluated as True. In context of the
procedure, the use of this rule is a Detour. Therefore, the new diagnosis
will be:
Diagnosis (True, True) Detour.

Similar The term has been rewritten, but is very similar (e.g. correct elimina-
tion of brackets). This diagnosis will just be:
Similar.



Chapter 2

Automatic Assessment in a
Student Model

The function of a student model within an its consists of assessing a student,
and providing information about a student’s level. This chapter will give an
overview of automatic assessment [11]. Section 1 will explain how a student’s
knowledge is represented. Section 2 will explain how a student’s knowledge is
updated. Section 3 will discuss some applications of automatic assessment.

2.1 Knowledge Representation

Knowledge Domains

We assume that the main learning goal of a student is the ability to solve
problems from a certain exercise class. This problem solving knowledge, can be
divided into two aspects: knowledge about the strategies, and knowledge about
the relative efficiency of these strategies [15]. That is, a student knows how to
solve a certain problem correctly, if she knows how to apply suitable strategies,
and also knows which of the strategies is most efficient given the problem.

Knowledge about a strategy, in turn, consists of knowledge about the
rewriting rules, and knowledge about the procedure [4]. A procedure of a
strategy is the sequence in which the rules should be applied. So a student
knows how to apply a strategy, if he or she knows both how and in which order
the rules should be applied. Note that procedure knowledge does not include
rule rewriting knowledge. One might know which rule has to be applied next
(procedure knowledge), without being able to correctly apply this rule (rewriting
knowledge).

This hierarchy, visualised in Figure 2.1, shows that both problem solving
knowledge and strategy knowledge can be expressed in terms of other knowledge
domains. Therefore, it is only necessary to keep track of the three knowledge
domains that can not be expressed in terms of other domains, which are:

• the domain of the rewriting of rules,

• the domain of the procedure of strategies, and

• the domain of the efficiency of solving a problem.

9
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Problem solving
knowledge

Strategy
knowledge

Efficiency
knowledge

Rule rewriting
knowledge

Procedure
knowledge

Figure 2.1: The hierarchy of problem solving knowledge

One way of representing the student’s knowledge about a domain is a list of
so called binary experiences. An experience can be qualified as either positive or
negative. Interaction between the student and the its indicating that the student
has knowledge about a certain domain, counts as a positive experience. On the
other hand, interaction indicating that the student does not have knowledge
about a certain domain, counts as a negative experience. What these indications
exactly are will be discussed later in this section.

This knowledge representation is very simple. It can be argued that the
range of binary experiences is too small, and that it is desirable to value an
experience with a number. The time difference between two experiences may be
important as well. However, if one wishes to use a more complex representation
than a list of binary experiences, small adjustments should make this possible.

Implementation

Figure 2.2 shows the implementation of knowledge in the student model module.
The knowledge of a student is implemented as a Map, which maps a certain
knowledge Domain to the student’s Experience within this Domain.

The Domain of knowledge is either the Efficiency of a certain Problem, the
Procedure of a certain Strategy, or the Rewriting of a Rule. Each Problem,
Strategy and Rule is identified by a String.

The student’s Experience is represented as a list of Booleans, where True

represents a positive experience, and False represents a negative experience.
New experiences will be added to the front of the list, so the most recent
experience is the first item in the list.

For example, if a student tries to solve the quadratic expression x2+5x+6 = 0
using the quadratic formula, and just correctly solved the term within the
discriminant, then the three relevant Domains are:

• Efficiency "quadratic expression" for the knowledge about efficiency
of solving quadratic expressions,

• Procedure "quadratic formula" for the knowledge about the procedure
of quadratic formula strategy, and

• Rewriting "solve discriminant" for the knowledge about the rule
rewriting the discriminant.
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type Knowledge = Map Domain Experience

data Domain =

Efficiency Problem

| Procedure Strategy

| Rewriting Rule

Figure 2.2: Implementation of Knowledge

A knowledge map representing these three domains may look like this:

[( Efficiency "quadratic expression", [False]),

(Procedure "quadratic formula", [True]),

(Rewriting "solve discriminant", [True ])]

2.2 Updating Knowledge

Every interaction between the student and the its may contain information
indicating the student’s knowledge about a certain domain. How these interac-
tions are implemented is shown in Figure 1.1. This section will discuss what
information can be deduced from these interactions.

The representation of the student’s knowledge is updated with each interac-
tion by a function called updateK. The implementation of this function is shown
in Figure 2.3. This function takes two arguments: the Interaction and the
Knowledge of the student model. The function returns the Knowledge updated
with information from the Interaction. Recall that the Knowledge type is a
Map from a knowledge Domain to the student’s Experience within this domain.

Before going into detail about the interactions, the function add will be
explained. This function has the following type:

add :: Bool -> Domain -> Knowledge -> Knowledge

That is, the function takes the following three arguments:

• the element (a Boolean) with which the Knowledge should be updated,

• the Domain of which the Experience should be updated, and

• the Knowledge that should be updated.

The function adds a Boolean value to the Experience of a Domain, and
returns the updated Knowledge. That is, if a student correctly applies a rule
called "modulo", the Knowledge k will be updated as follows:

add True (Rule "modulo ") k

The implementation of the function add can be found in Appendix A.
This section will show how the knowledge is updated for the different kind

of interactions. For convenience, the knowledge map that is updated is always
empty within the examples.
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updateK :: Interaction -> Knowledge -> Knowledge

updateK (CheckSolved sd e) =

let Exercise _ s _ = e

in add sd (Procedure s)

updateK (NextSteps e) =

let Exercise _ s _ = e

in add False (Procedure s)

updateK (WorkedOutStep e) =

let Exercise _ _ r = e

in add False (Rewriting r)

updateK (Solution e) =

let Exercise p _ _ = e

in add False (Efficiency p)

updateK (CheckStep d e) =

case d of

Similar -> id

Diagnosis rd pd -> pUpdate pd . rUpdate rd

where Exercise p s r = e

rUpdate (True , e) =

add e (Rewriting r)

rUpdate (False , e) =

add e (Rewriting "unknown ")

pUpdate Optimal =

add True (Procedure s) .

add True (Efficiency p)

pUpdate Suboptimal =

add True (Procedure s) .

add False (Efficiency p)

pUpdate Detour =

add False (Procedure s)

pUpdate Unknown =

id

Figure 2.3: Implementation of the update function
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Request to check whether the problem is solved

If the student requests to check whether the problem is solved, the Interaction
is:
CheckSolved Solved Exercise.

The student’s Experience is updated for the Procedure domain. The
Boolean value added to this Experience has the same value as Solved (sd).

If the exercise is indeed solved (sd), the request indicates that the student
has knowledge about the Procedure, because she apparently understands that
there are no rules left to apply according to the strategy. The knowledge map
will be updated as follows.

updateK (CheckSolved True (Exercise _ "StrategyName" _)) [] =

add True (Procedure "StrategyName ") [] =

[( Procedure "StrategyName", [True ])]

However, if the exercise is not solved, the request indicates that the student
does not have knowledge about the Procedure, because she apparently did not
know there was still a rule to apply according to the strategy. The knowledge
map will be updated as follows:

updateK (CheckSolved False (Exercise _ "StrategyName" _)) [] =

add False (Procedure "StrategyName ") [] =

[( Procedure "StrategyName", [False ])]

Request for next steps

If the student requests possible next steps, the Interaction is:
NextSteps Exercise.

Requesting possible next steps indicates that the student does not know
which rule to apply next. This implies that the student does not have knowledge
about the Procedure. The student’s Experience is updated negatively for the
Procedure domain:

updateK (NextSteps (Exercise _ "StrategyName" _)) [] =

add False (Procedure "StrategyName ") [] =

[( Procedure "StrategyName", [False ])]

Request for worked out next step

If the student requests the next step to be worked out, the Interaction is
WorkedOutStep Exercise.

This request indicates that the student does not know how to apply the rule.
Therefore, the student’s Experience is updated negatively for the Rewrite

domain:

updateK (WorkedOutStep (Exercise _ _ "RuleName ")) [] =

add False (Rewrite "RuleName ") [] =

[( Rewrite "RuleName", [False ])]
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Request for the solution for the exercise

If the student requests the solution for the exercise, the Interaction is:
Solution Exercise.

This request indicates that the student does not know which strategy to apply.
Therefore, the student’s Experience is updated negatively for the Efficiency

domain:

updateK (Solution (Exercise "ProblemName" _ _)) [] =

add False (Efficiency "ProblemName ") [] =

[( Efficiency "ProblemName", [False ])]

Request for diagnosis

If the student requests a diagnosis, the Interaction is:
CheckStep Diagnosis Exercise.

If the student did not make important changes, the Diagnosis will be
Similar. This does not provide any information about the knowledge of the
student, and therefore nothing changes:

updateK (CheckStep Similar _) [] =

id [] =

[]

Otherwise, if the student’s input is diagnosed, information can be deduced
from both the rewrite diagnosis (rd) and the procedure diagnosis (pd). This
means that the variable k, representing the current Knowledge, needs to be
updated twice: once according to RewriteDiag (rUpdate), and once according
to ProcedureDiag (pUpdate).

updateK (CheckStep (Diagnosis rd pd)

(Exercise "ProblemName"

"StrategyName"

"RuleName ")) [] =

pUpdate pd $ rUpdate rd []

Update according to the rewrite diagnosis

The subfunction rUpdate distinguishes the two cases where the rule is either
recognised or not. If the rule is recognised, the Knowledge map is updated
with the new experience. This experience is True if and only if the rule was
applied correctly. The rule is applied correctly if and only if the two terms are
equivalent. So the value added to the Experience list has the same Boolean
value as Equivalent (e).

That is, if a student rewrites a term correctly according to a rule, the rule
diagnosis variable rd will be (True, True) and the knowledge map will be
updated as follows:

rUpdate (True , True) [] =

add True (Rewriting "RuleName ") [] =

[( Rewriting "RuleName", [True ])]
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If a student rewrites a term incorrectly according to a buggy rule, the rule
diagnosis variable rd will be (True, False) and the knowledge map will be
updated as follows:

rUpdate (True , False) [] =

add False (Rewriting "RuleName ") [] =

[( Rewriting "RuleName", [False ])]

If the used rule is not recognised, there is insufficient information to deduce
the student’s knowledge about rewriting rules. However, it may be still be
useful to keep track of how many times a student has (in)correctly applied some
unrecognised rule. Therefore, a rule called "unknown" is updated just like a
recognised rule would be updated.

If a student rewrites a term correctly, but the rule is not recognised, the
rule diagnosis variable rd will be (False, True) and the knowledge map will
be updated as follows:

rUpdate (False , True) [] =

add True (Rewriting "unknown ") [] =

[( Rewriting "unknown", [True ])]

If a student rewrites a term incorrectly and the buggy rule is not recognised,
the rule diagnosis variable rd will be (False, False) and the knowledge map
will be updated as follows:

rUpdate (False , False) [] =

add False (Rewriting "unknown ") [] =

[( Rewriting "unknown", [False ])]

Update according to the procedure diagnosis

The subfunction pUpdate distinguishes four cases, namely the cases where the
procedureDiag (pd) is Optimal, Suboptimal, Detour or Unknown.

The procedure diagnosis variable pd will be Optimal if the student applies
a rule that is, according to the domain reasoner, the optimal step. In this case,
the student has knowledge about both the procedure of the strategy and the
relative efficiency of each suitable strategy. Therefore, the student’s Experience
is updated positively for both the Procedure domain and the Efficiency

domain:

pUpdate Optimal [] =

add True (Procedure "StrategyName ") $

add True (Efficiency "ProblemName" ) [] =

[( Efficiency "ProblemName", [True]),

(Procedure "StrategyName", [True ])]

The procedure diagnosis variable pd will be Suboptimal if the student applies
a rule that is, according to the domain reasoner, a suboptimal step. In this case
the student has knowledge about the procedure of the strategy. However, the
student does not have knowledge about the relative efficiency of each suitable
strategy, because if she had, she would have applied an optimal rule. Therefore,
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the student’s Experience is updated positively for the Procedure domain, but
negatively for the Efficiency domain:

pUpdate Suboptimal [] =

add True (Procedure "StrategyName ") $

add False (Efficiency "ProblemName" ) [] =

[( Efficiency "ProblemName", [False]),

(Procedure "StrategyName", [True ])]

The procedure diagnosis variable pd will be Detour if the student applies a
rule that is, according to the domain reasoner, not following any of the suitable
strategies. This implies that the student does not have knowledge about the
strategy, because if she had, she would have applied a suitable rule. Therefore,
the student’s Experience is updated negatively for the Procedure domain:

pUpdate Detour [] =

add False (Procedure "StrategyName ") [] =

[( Procedure "StrategyName", [False ])]

The procedure diagnosis variable pd will be Unknown if the student applies
an unrecognised rule. Unfortunately, nothing can be said about the student’s
knowledge concerning the student’s procedure knowledge or efficiency knowledge.
Therefore, the knowledge is not updated:

pUpdate Unknown [] =

id [] =

[]

2.3 Applications of Automatic Assessment

Now that it is possible keep track of a student’s knowledge, this knowledge can
be used by the its. Two possible uses for this knowledge map are task selection
and grading. Both of these can be based on the chance that a student will give
a correct answer to an exercise from a certain domain.

The chance that a student will answer a certain exercise correctly can be
obtained using Bayesian statistics. This method is based on the item response
theory, which uses a number of variables characterising the knowledge of a
student to calculate the chance of a correct answer [9]. In the presented student
model, these variables are the experience lists of the knowledge domains. Note
that this method does not necessarily use the student’s experiences within just
one domain. This method can base the chance on all domains. This makes it
possible to, for example, predict the chance that a student will correctly apply a
strategy, based on the student’s knowledge about the rules used by this strategy.

Assessment is critical to the selection of a suitable next learning task [8].
The its can base this selection on the knowledge map within the student model
to select a suitable exercise for the student. It could, for example, prefer to
present an exercise from an exercise class of which the student model has the
least information [17]. That is, the its will prefer to present an exercise where
the student has a chance of nearly .5 to give a correct answer. Once the model
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contains enough information, exercise could be chosen based on the chance that
a student will answer an exercise from a certain domain incorrectly.

Grading the student’s knowledge of a certain domain may also be based on
the student’s chance that the next experience will be positive. For example, if
this chance is .8 for a certain domain, the student may receive an 8 out of 10
grade.

Implementation of these applications should be done within the Tutoring
Module of the its, and requires more research on task selection and grading
based on a list of experiences.



Chapter 3

Conclusion and Future Work

This thesis answered the question: how can automatic assessment be imple-
mented in itss? It described how diagnoses from the domain reasoner can
contribute to automatic assessment. New diagnosis types were proposed to
improve compatibility with this automatic assessment. This thesis discussed
how the knowledge in a student model is represented and updated according to
the diagnoses.

Further research may build upon this thesis by actually implementing
automatic assessment within an its based on the proposed structure. For the
best result, the diagnoses provided by the domain reasoner need to be adjusted
accordingly.

Other research may determine what the best knowledge representation is.
In this thesis, knowledge about a certain domain is represented as a chronolo-
gical list of experiences with a binary domain. However, this is a very simple
representation. It can be argued that the binary domain is too small, or that
the time difference between experiences should be taken into account as well.

A last suggestion for further research is the implementation of the uses of
automatic assessment. The applications described in this thesis are automatic
grading and task selection. These two tasks should be performed by the tutoring
module of an its.

18



Appendix A

Implementation of the Student
Model

module StudentModel where

import Data.Map

import Data.Maybe (fromMaybe)

data Exercise = Exercise Problem Strategy Rule

type Problem = String

type Strategy = String

type Rule = String

data Interaction =

CheckStep Diagnosis Exercise

| CheckSolved Solved Exercise

| NextSteps Exercise

| WorkedOutStep Exercise

| Solution Exercise

type Solved = Bool

data Diagnosis =

Diagnosis RewriteDiag ProcedureDiag

| Similar

type RewriteDiag =

(Recognised , Equivalent)

type Recognised = Bool

type Equivalent = Bool

data ProcedureDiag =

Optimal

| Suboptimal

| Detour

| Unknown

type Knowledge = Map Domain Experience

19
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data Domain =

Efficiency Problem

| Procedure Strategy

| Rewriting Rule

deriving (Eq, Ord)

type Experience = [Bool]

updateK :: Interaction -> Knowledge -> Knowledge

updateK (CheckSolved sd e) =

let Exercise _ s _ = e

in add sd (Procedure s)

updateK (NextSteps e) =

let Exercise _ s _ = e

in add False (Procedure s)

updateK (WorkedOutStep e) =

let Exercise _ _ r = e

in add False (Rewriting r)

updateK (Solution e) =

let Exercise p _ _ = e

in add False (Efficiency p)

updateK (CheckStep d e) =

case d of

Similar -> id

Diagnosis rd pd -> pUpdate pd . rUpdate rd

where Exercise p s r = e

rUpdate (True , e) =

add e (Rewriting r)

rUpdate (False , e) =

add e (Rewriting "unknown ")

pUpdate Optimal =

add True (Procedure s) .

add True (Efficiency p)

pUpdate Suboptimal =

add True (Procedure s) .

add False (Efficiency p)

pUpdate Detour =

add False (Procedure s)

pUpdate Unknown =

id

add :: Ord k => a -> k -> Map k [a] -> Map k [a]

add b = alter (Just . (b:) . fromMaybe [])
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