
Master Thesis

The predictive power of tweets
an exploratory study

Hannah Tops
3279421

October 2013

Supervisors:
Alexis Dimitriadis (Universiteit Utrecht)
Antal van den Bosch (Radboud Universiteit Nijmegen)

Utrecht University
Faculty of Humanities

Cognitive Artificial Intelligence

Radboud Universiteit Nijmegen
Faculty of Arts

Communication and Information Sciences

Abstract

We describe a system that estimates when an event is going to happen from a
stream of microtexts on Twitter referring to that event. Using a Twitter archive of
60 known football events, this problem is transferred into a classification problem.
Different training procedures were followed, such as varying the training data and
hierarchical classification. The best performing method was on average 52.3 hours
off, and especially the tweets that referred to an event that was still far away
appeared to be hard to predict. Comparing the performance of the system to
the performance of humans on the same task, it appeared that there is room for
improvement for the system.

i

ii

Acknowledgments

In Utrecht as well as in Nijmegen some people have played an important role in
the process of writing my thesis. First of all I would like to thank my supervisors,
Alexis Dimitriadis and Antal van den Bosch. Alexis always made me think of why
I was doing things the way I did, and, seeing things from a different perspective,
he came up with some fresh ideas. With Antal I had nice discussions about the
steps that I had taken or about further steps I had to take. He also made me
wiser about subjects outside the scope of my thesis. Second, my roommates in
Nijmegen. Florian Kunneman was always very helpful to me, and he always made
time to answer my questions. Ali Hürriyetoglu was funny to work with, especially
on rainy days. Third I would like to thank Sophia Katrenko for helping me finding
a subject for my thesis, and pointing me to the work done in Nijmegen. I also
would like to thank how helped me with my experiment.

Last but not least I would like to thank my friends and family for giving me
great support and some necessary distraction from thesis-writing. Special thanks
to Sabine Oudt, Otto Rottier and my parents, who looked over my thesis, advised
me and created a perfect study climate for me, especially in the last weeks.

iii

iv

Contents

1 Introduction 1
1.1 Research question . 2
1.2 Relevance to CAI . 2

1.2.1 Position in the field of CAI 2
1.3 Outline . 3

I Twitter 5

2 Twitter characteristics 6

3 Research 8
3.1 Tweets as (real-time) sensors of events 8

3.1.1 Detecting sport games . 9
3.1.2 Obtaining breaking news . 9
3.1.3 Earthquake detection . 10
3.1.4 Augmenting information about planned events with Twitter 10

3.2 Predicting popularity and outcomes 11
3.2.1 Box-office revenues . 11
3.2.2 Election prediction . 11

3.3 Future events . 12
3.3.1 Predicting popular events in the near future 12
3.3.2 Open domain event extraction 13
3.3.3 Predicting time-to-event . 14

3.4 Summary . 15

II Technical overview 16

4 Text classification 17

v

5 Feature selection 18
5.1 Information Gain . 18
5.2 Chi Squared . 19

6 Classification methods 20
6.1 Naive Bayes . 20
6.2 k-nearest neighbors . 22
6.3 Support Vector Machines . 23

6.3.1 Introduction . 23
6.3.2 Formal definition . 24

6.4 Summary . 26

III Experimental set up 27

7 Data collection 28
7.1 Data representation . 29

8 Categorization 30
8.1 Left branching . 31
8.2 k-means clustering . 32

9 Features 34
9.1 Number of selected features . 35

10 Evaluation 36
10.1 RMSE . 36
10.2 Standard deviation . 37
10.3 F1-score and distance error . 38

10.3.1 F1-score . 38
10.3.2 Distance error . 39

10.4 Baseline . 40

11 Software 41

IV Results 42

12 Main experiment 43
12.1 Left branching . 44

12.1.1 k-nearest neighbors . 45
12.2 k-means clustering . 46

vi

12.3 Comparison . 47
12.4 Conclusions . 50

13 Using less data 52
13.1 Using less instances . 52

13.1.1 Using one third of the training set 52
13.1.2 Using only one thirtieth . 54
13.1.3 Conclusions . 54

13.2 Using less features . 55
13.2.1 Left branching . 56
13.2.2 k-means . 56
13.2.3 RMSE . 57
13.2.4 Conclusions . 59
13.2.5 Clarification lower RMSE 100 features 59

14 Hierarchical classification 62
14.1 First layer of classification . 62
14.2 Second layer of classification . 63
14.3 Conclusion . 65

15 Characters as features 66
15.1 Results . 66

15.1.1 F1-score and distance error 66
15.1.2 RMSE . 68

16 Humans vs computer 69

V Conclusion 71

17 Discussion 72
17.1 Future research . 75

18 Main conclusions 78

VI Appendices 79

A Tables 80

Bibliography 83

vii

Chapter 1

Introduction

Text classification studies are gaining in importance recently because of the avail-
ability of an increasing number of electronic documents of a variety of sources.
Analyzing these large data sets can lead to new insights that otherwise will not be
discovered [18]. In this thesis we focus on one of those sources of electronic docu-
ments, namely Twitter. Twitter1 is a microblogging service for posting messages,
called tweets, with a maximum length of 140 characters. Like other social media,
it has acquired immense popularity in recent years. Users of Twitter often commu-
nicate what they did in the past, are doing at the moment, or will be doing in the
future. In other words, they often refer to an event. In this research anticipatory
tweets that refer to a future event will be studied, in order to estimate the point in
time at which the referred to event will take place. Such estimates, in combination
with some aggregation or ranking, could be used to generate a forecast of future
events. There are several reasons why we should want to do this. Firstly, a system
like this could assist journalists, the police, and the public in being prepared for
events that are several days or weeks in the future. For journalists as well as for the
news-reading public this is interesting, as they both wish to be on top of the news
as it happens. Nowadays, journalists are often overtaken by the public reporting
on events. The massive amount of short messages posted via Twitter provide a
potentially valuable source of information for this task, outperforming newswire
articles in terms of dynamics and pluralism. The same goes for the police; if they
know of some irregularities in advance, they can be better prepared. Secondly, and
this applies to predictions in general, automatic prediction with machines has a
lower cost than with humans, they are objective and can process greater amounts
of data.

1http://twitter.com

1

http://twitter.com

1.1 Research question

The primary goal of this thesis is to provide insight into what extent machine-
learning classifiers can predict the time-to-event of a tweet, in relation to the event
it refers to, based on the text in this tweet. In this study the problem of predicting
the time-to-event is transformed into a classification problem, by splitting the data
into discrete time periods. First, tweets are collected that contain events of which
we know when they happened, i.e. football matches. Then we train a machine-
learning classifier to map those events onto discrete time periods. Several methods
will be tried, in order to investigate the best training regime to do the prediction.
In order to evaluate the outcomes, we compare the performance of the system with
the performance of humans on the same task.

The main research questions of this thesis will thus be the following: How
accurately can we predict the time-to-event of events mentioned in tweets? How
do following different procedures influence the performance?

1.2 Relevance to CAI

Cognitive Artificial Intelligence is an inter-disciplinary science leaning on, and in-
tegrating four disciplines: philosophy, psychology, language and computer science.
This thesis integrates two of the four mentioned disciplines: language and com-
puter science. We enable computers to derive meaning from natural language in-
put, using statistically based algorithms, where rules are are automatically learned
through the analysis of large corpora of typical real-world examples.

1.2.1 Position in the field of CAI

With the increasing availability of electronic documents from a variety of sources,
the automatic processing of documents is gaining more importance and has be-
come one of the key methods for the organization of information and discovery of
knowledge [2]. One of those resources are social media, such as Twitter. Twit-
ter aggregates opinions and feelings of diverse groups of people at low cost, and
gives an opportunity to discover, for example, the characteristics of informal lan-
guage or social structures [38]. Unique advantages of Twitter are the timeliness of
tweets, their rich meta data (on user, time, and optionally location), their large
quantity, they are multilingual, the fact that many people are using them and
their information-rich communicative conventions such as hashtags. On the other
hand, Twitter is highly fragmented into short, often noisy messages carrying a
large amount of redundant information. Tweets also have the tendency to be self-
contained, which means they usually only have a simple discourse and pragmatic

2

structure [24]. Besides that, the huge amounts of tweets can sometimes be hard
to handle and bring a redundancy of information as well.

Previous work in event extraction has focused largely on news articles, as this
genre of text once was the best source of information on current events. Twitter has
become an important complementary source of such information, outperforming
news articles in terms of dynamics and pluralism, and several studies noticed this.
Ritter et al. [24] train on annotated open-domain event mentions in tweets in
order to create a calendar of events based on explicitly dates and words typical
of the event, such as named entities. While Ritter et al. focus on the extraction
of events, the study by Weerkamp and De Rijke [34] focuses on the prediction of
events that are likely to become popular in the very near future, such as ‘watching
a specific television programme’ or ‘going to bed’. Closest to the current study are
the studies by Kunneman et al. [13] and Hurriyetoglu et al. [11]. The first study
showed that tweets posted before event start time can accurately be distinguished
from tweets during and after an event. However, a classification with a higher
specificity than ‘before’ needs to be made in order to estimate the time-to-event.
In the study by Hurriyetoglu et al. the time-to-event in hours was estimated using
regression-based methods, resulting in a performance that was at best 43 hours off
on average. In contrast, current thesis investigates the performance of predicting
the time-to-event in hours using classification-based methods.

1.3 Outline

First, tweets about events that have already happened, and of which we know
when, were collected. We chose to collect football matches, because they occur
frequently, we know their dates and they generate a sufficient amount of data. For
each tweet we identify its time of posting relative to the event and then train a
machine-learning classifier to map unseen tweets onto discrete time periods. Each
time period will be given a temporal value (e.g. -10, thus 10 hours before event)
and this value will be assigned to each tweet that is classified in that period. In
the end, for each tweet the number of hours that this classification is off will be
calculated for evaluation. Creating the discrete time periods is thus a necessary
step in order to do the classification, and many segmentations will be possible.
Given the imbalanced distribution of tweets referring to an event over time (the
large majority of tweets is posted right before, during or right after an event), the
segmentation of time categories is not a trivial matter. Therefore, two different
segmentation methods will be compared: left branching and k-means clustering,
and for each segmentation method various ways to classify the data are investi-
gated. In summary:

• We train with three different classifiers; Naive Bayes, k-nearest neighbors

3

and Support Vector Machines.

• We try two different feature selection methods: Information Gain and Chi
Squared (χ2).

• We vary the number of features and the number of instances used to train
with.

• We apply hierarchical classification: firstly, the tweets are classified as before
the event. or during or after the event. Then the tweets within the ‘before’
class are divided into smaller time categories.

• Besides using words as features, we will investigate how the use of character
n-grams effects the performance.

• In the end, we compare the best performing system to the performance of
humans for this task.

Before turning to the experiments, we provide an overview of the relatively large
body of recent work on Twitter. This in order to gather some knowledge about
the opportunities and challenges with this social medium.

4

Part I

Twitter

5

Chapter 2

Twitter characteristics

Twitter is an on-line microblogging service that enables its users to send and read
text-based messages. It asks one question, namely “What’s happening?”, and
answers are limited to a maximum of 140 characters. Those messages are called
tweets and the core functionality is to easily and quickly share messages. A user
is identified by a unique user name, and if user a decides to receive all the tweets
from another user b, then b is a friend of a and, conversely, a became a follower of
b. It is not uncommon for users, such as celebrities, to have millions of followers.
This asymmetrical relationship between friends and followers is said to be one of
the reasons for the popularity of Twitter.

Figure 2.1: Example of a tweet

Figure 2.1 above shows an example of a tweet, with some of the typical things
you find in a tweet:

• Other users can be mentioned or replied to by their Twitter user name, which

6

is preceded by the @ sign. User names can contain up to 15 characters.

• Tweets beginning with the expression ‘RT’ are called ‘retweets’. If people like
a tweet, they copy the tweet preceded by ‘RT’, which is called ‘retweeting’.

• Words within a message that are preceded by a ‘#’, called ‘hashtag’, are
used to assign the message to a topic, or to indicate that the word is a
keyword. Clicking on a hashtag shows all other tweets marked with that
hashtag. Hashtags can also be used in a different way; to express a feeling,
sarcasm or side mark: “Off the drink and back in the gym for January. Can’t
wait! #CrappyNewYear” [19].

• The short allowance on tweet size means that users sometimes have to resort
to phrase abbreviations. Interestingly enough, there is a pretty rich and well
understood set of abbreviations which is surprisingly consistent. Even with
the use of abbreviations it is often not possible to post verbose tweets. This
is one of the reasons that tweets often contain a URL link to a related web
site, video, etc.

• Tweets often contain spelling errors or they are grammatically incorrect,
which is one of the challenges of doing research on tweets.

The first version of Twitter was introduced in 2006 as an internal service for
Odeo employees, it spun of into its own company in 2007. Growing from 400,000
tweets posted per quarter in 2007 to 400 to 500 million each day nowadays [10],
it is one of the most popular social media. Estimates are that in the Netherlands
alone each day over 3 million tweets are posted [22].

An important common characteristic among microblogging services such as
Twitter is its real-time nature. Blog users typically update their blogs once every
several days, whereas Twitter users often write tweets several times a day. They
report what they are doing or are thinking right now, and other users often check
Twitter to see what other people are doing. In such a manner, numerous updates
results in numerous reports related to events. They include social events, such as
soccer games, and presidential campaigns, and disastrous events such as riots and
earthquakes [26].

7

Chapter 3

Research

Twitter is only about five years old, but in spite of it being relatively young it
has become a popular domain in text mining, on different subjects. Authorship
analysis is one of those subjects, where among others gender and age of the person
who posted the tweet are detected [20, 4, 21]. This could be used to improve tar-
geting of advertisements or marketing, and can offer new insights in how different
groups of people use language. Other subjects are the detection of sarcasm [16]
and emotions [25], the recognition of threatening tweets [22] and many more.

Closer to our study are the studies about the detection of events, and in this
domain research is already done as well. An overview of these studies will be given
now. Only the studies about the detection of events using Twitter will be reported
here, because Twitter is a unique medium due to for example its real-time nature
and the shortness of the tweets. In this way the reader becomes familiar with the
challenges and opportunities that Twitter offers.

3.1 Tweets as (real-time) sensors of events

Since tweets can be posted easily and quickly using apps and are limited to 140
characters, they are an ideal way for people to publish things spontaneously. As
a consequence, there are short delays in reflecting what Twitter users perceive,
compared to for example blogs. As a result, events that just started can be shared
quickly. Several papers investigated how Twitter can be employed as real-time sen-
sor of events, from major events such as celebrity deaths [29], to natural disasters,
to less significant events, such as sport games [39]. Zhao et al. [39] believe that
if it is possible to sense such small, more frequent events, then new innovations
will arise that use humans as sensors of what is happening in the world through
Twitter.

8

3.1.1 Detecting sport games

To investigate if Twitter can detect these frequent events, Zhao et al. first moni-
tored the US National Football League games, and tried to recognize the games as
soon as they happen. They demonstrated that these games can be fairly reliably
recognized around 40 seconds after the event has started. On average it takes 1) 17
seconds for a Twitter user to report a game event, 2) 15 seconds to do the analysis
they used, 3) 5 seconds to do the computing tasks and 4) 1 second to obtain the
tweet from Twitter. A drawback of their work is that it is limited to events for
which keywords can be predetermined.

3.1.2 Obtaining breaking news

Sankaranarayanan et al. [29] used Twitter to build a news processing system,
called TwitterStand. In their paper they demonstrated how Twitter can be used
to automatically obtain breaking news from tweets and to automatically obtain
the opinions on current news. As a measure for determining the importance of a
news topic they kept track of the number of tweets on the same news topic. Since
users have some meta-data information (gender, location, friends, etc), Twitter
can aid in finding users that are most likely to belong to a particular geographic
region and news topics can be broken down into topics that are interesting for a
special group, based on their gender, interests, location, etc.

Aggregating news from Twitter differs from conventional news aggregators in
several ways. First of all, not all tweets posted are related to news, so first this
has to be determined. Secondly, the brevity of the tweets often leads to a lack
of context. Thirdly, Twitter breaks down communication barriers, so almost any
action in the real word is reported on Twitter, and there is very little lag between
the event happening and the time of posting of the tweet. This is illustrated by the
death of Michael Jackson, where tweets about his illness and death were reported
more than an hour before conventional news media reported it [29]. On top of that,
Sankaranarayanan et al. claim that Twitter has a wider diversity of opinions on
a news topic. Lastly, Twitter has the disadvantage that not all tweets are equally
credible, which can result in misinformation being put out as news.

The idea of TwitterStand is to capture tweets that correspond to late breaking
news, so the large stream of tweets first has to be labeled as either ‘news’ or
‘junk’. Therefore Sankaranarayanan et al. introduced seeders: 2,000 handpicked
users that are known to publish news, such as newspapers that publish news in
tweets, or bloggers. To distinguish news from noise, a Naive Bayes classifier is
used that is trained on a training corpus of tweets that has already been marked
as either news or junk. This corpus has both a static and a dynamic component.
The static component is made up of a large collection of labeled tweets, and the

9

dynamic corpus contains recent news tweets. The idea here is that the static corpus
aids in identifying news tweets on topics that we have not encountered previously,
while the dynamic corpus aids us in identifying tweets about current events. Their
main goal is to automatically group the tweets labeled as ‘news’ tweets into sets
of tweets, called clusters, where each cluster has a specific topic. What makes it
hard is that TwitterStand does not know the identity of the topics beforehand.
To solve this, they used a clustering algorithm which allows for clustering in both
content and time and maintains a list of active clusters.

3.1.3 Earthquake detection

Several papers analyzed Twitter messages to investigate if tweet messages can
be used for monitoring and reporting earthquakes [26, 6]. Most research on this
subject is done in Japan, because Japan has numerous earthquakes and numerous
(geographically dispersed) Twitter users. An earthquake propagates at about 3-7
km/s, so a person who is 100 km distant from an earthquake is able to act for
about 20 seconds. Moreover, strong earthquakes regularly cause a tsunami, which
are often more catastrophic. Therefore, prompt notification of an earthquake is
very important to decrease damage, particularly by the tsunami.

First, the tweets about the event have to be detected, which is in this case an
earthquake. Earle et al. crawl all tweets containing the word “earthquake” or its
equivalents [6]. Then Earle et al. detected a rapid increase in earthquake tweets,
using a customized version of the so called ‘short-term-average over long-term-
average’ algorithm [7], which was already developed in the nineties. The system
detected 48 earthquakes, with only two false triggers. This number is small com-
pared to the more than 5,000 earthquakes noticed in the earthquake catalog, but
the majority of these earthquakes are too small to produce perceivable shaking or
they occurred outside populated areas. The detections on Twitter are of more im-
mediate interest for humans. Twitter detected 75% of the earthquakes within two
minutes of the origin time, and this is considerably faster than the seismographic
detections in poorly instrumented regions of the world. So, Twitter earthquake
detection could be a helpful support for conventional earthquake detection systems.

3.1.4 Augmenting information about planned events with
Twitter

In the paper by Becker et al. a system for augmenting information about planned
events with tweets is demonstrated, using a set of automatic query building strate-
gies. They consider a tweet to be related to an event if it provides a reflection
on the event before, during or after the event occurs. The keywords connected to

10

events were based on information from sites such as upcoming.com. In order to
collect the right tweets, keywords are restricted to a location and specific words
describing the event. Additionally, the results from over 50 event queries were
labeled by hand, and high precision tweets were used to define new queries and
retrieve additional event messages. In this way, a system is build which automat-
ically displays tweets related to an upcoming known event.

3.2 Predicting popularity and outcomes

The study by Yu et al. [38] gives a survey of predictions made using social media
in general. They claim that, if extracted and analyzed properly, the data on social
media can lead to useful predictions of certain events, for example in the realm
of finance, product marketing or politics. Predictions should be done on human
related events, otherwise, like in the case of an eclipse, the development of the
event occurs irrespective of people’s thoughts about it. Besides that, the involved
events should be easy to be talked about in public, and the composition of involved
persons on social media should be similar to that in the real world. Examples they
give of events that meet these criteria are product marketing, macroeconomics and
politics.

3.2.1 Box-office revenues

Predicting box-offices revenues with Twitter is a well studied area [38]. Reasons
for this are that there is a large number of users discussing movies, there is a
substantial variance of opinions, there are many different movies, the real-world
outcomes can be easily observed and it is of course commercially interesting. Asur
et al. [1] investigated if box-office revenues of movies can be predicted in advance
of their release. They showed that the rate at which movie tweets are generated
can be used to build a powerful model. Moreover, their predictions are consis-
tently better than the predictions produced by the traditional prediction market,
the Hollywood Stock Exchange. In addition they studied how positive and nega-
tive opinions are distributed and how they influence people. They found that the
sentiment content in tweets can only improve box-office revenue predictions based
on tweets that are posted after the movies are released.

3.2.2 Election prediction

Election prediction is another hot topic in the area of predicting outcomes with
Twitter. Traditionally, election polls are done via surveys, but this is time con-

11

suming and can lead to high costs. Twitter (and other social media) provide an
opportunity to overcome these problems [38]. In the paper by Tumusjan et al.
[32] it was shown that mere the number of messages mentioning a party reflected
the outcome of the German federal election in 2009. They also found that joint
mentions of two parties are in line with the political coalitions in the real world.
The study by Sanders et al. [27] showed that counts of mentions of political party
names are strongly correlated with the polls and the election results, but that polls
remain more accurate as a predictor of the outcome. The tweet mention counts
thus could form a good complementary basis for predicting election results

There is however an ongoing debate whether social media are effective in pre-
dicting the outcomes of elections. The study by Tumasjan et al. [32] for example
did not take into account the smaller parties running for the elections, and the
results depended on the time window used to compute them. Jungherr et al. [12]
argue that the inclusion of an extra party (the Pirate Party), would have had a
large negative effect on the accuracy of the predictions. Tjong Kim Sang et al.
[28] show that only counting tweets that mention political parties is not sufficient
to obtain good predictions. Gayo-Avello [8] goes even further and reasons in his
paper that predicting elections from Twitter in this way is impossible. Motives
are that not everybody is using Twitter and not every Twitterer is tweeting about
politics, not all tweets are trustworthy and politics is plagued with humor and
sarcasm.

3.3 Future events

The studies about future events are closest to this thesis. Research on this subject
can be roughly split into two kinds: studies that predict which events will happen
in the (near) future, or the prediction of when an event will take place given a tweet
(about an event). The first study is about the first kind, the second combines them,
and we will end with the second kind of studies, which are closest to this thesis.

3.3.1 Predicting popular events in the near future

Weerkamp et al. [34] tried to establish a set of activities that are likely to be-
come popular at the upcoming evening, using Dutch Twitter data. They selected
tweets referring to tonight by looking for tweets containing the words “vanavond”
(tonight) or “vnvnd” (2nite). Then they performed a small-scale experiment; they
selected three days (June 3-5, 2012) for which they extracted activities mentioned
in the tweets. They used a method proposed by Sharifi et al. [31] for automat-
ically creating summaries from a set of tweets related to the same topic. Then
those activities were judged by two Dutch assessors, who were asked whether the

12

suggested activity was 1) really an activity , 2) properly summarized and 3) could
be a popular activity for that evening. Some of the activities predicted were ‘I’m
going to bed early tonight’, ‘tonight squad training’ and ‘final episode of’. The
results show the following:

• Spam can be mistaken for activities.

• Properly summarizing the activities is very important, but hard due to a
relatively small number of tweets.

• Popularity is hard to estimate and evaluate.

So predictions are possible, but there is much room for improvement. The
work especially identifies several issues that need further research. One of the
issues is that much of the previously done work in text mining struggles with the
limited number of tweets. Another thing is the time indication, because in the
current experiment, only the tweets containing ‘vanavond’ or ‘vnvnd’ are used,
but people use various ways to refer to tonight. Finally, the evaluation of this
activity prediction is hard, because it needs to be done in three levels. A (semi)
automatic evaluation would be welcome.

3.3.2 Open domain event extraction

Ritter et al. [24] propose a system that can extract and categorize open-domain
events from Twitter. Previous work focused largely on newswire text and Twitter’s
unique characteristics present new challenges and opportunities for event extrac-
tion, of which some of them we already saw in previously mentioned studies. They
have to deal with the mundane events frequently mentioned on Twitter about
users’ daily lives, which are not considered interesting as they do not matter to
a sufficiently large group of people. Furthermore, because Twitter users can talk
about whatever they choose, it is unclear in advance which set of event types
are appropriate. In contrast to newswire, the complex reasoning about relations
between events is absent.

Ritter et al. proposed that important events are those events whose mentions
are strongly associated with references to a unique date, as opposed to dates which
are evenly distributed across the calender. To address the diversity of events they
came up with an approach based on latent variable models, that uncovers an
appropriate set of types which match the data. Given a raw stream of tweets, the
system extracts named entities in association with event phrases and unambiguous
dates which are involved in significant events. First the tweets are part-of-speech
(POS) tagged, then named entities and event phrases are extracted, temporal
expressions resolved, and the extracted events are categorized into types. Next

13

they measured the strength of association between each named entity and date,
based on the number of tweets they co-occur in, in order to determine whether an
event is significant.

Current tools developed for natural language processing can perform poorly
when applied to Twitter text, due to its noisy and unique style. To address these
issues, they utilized a named entity tagger trained on in-domain Twitter data, that
was presented in an earlier study.

The results of the experiment show that accurately extracting an open-domain
calendar of significant events from Twitter is indeed feasible. The approach the
authors used achieved a 14% increase in F1-score1 over a supervised baseline.
Looking at the 100 highest ranked calendar entries over a two-week date range in
the future, the precision of extracted (entity, date) pairs was 90%. A continuously
updating demonstration of this system (an open domain event calendar) can be
viewed at http://statuscalendar.com.

3.3.3 Predicting time-to-event

The studies by Kunneman et al. [13] and Hurriyetoglu et al. [11] are closest
to our study. They both investigated how to predict the time-to-event of tweets
(using football matches as events), but in different ways. The first study trained a
classifier to distinguish ‘before’ tweets from ‘during’ or ‘after’ tweets. The second
uses regression methods to assign to each test tweet the number of hours still
remaining to the event.

Phase classification of events The study by Kunneman et al. [13] investigates
if it is possible to discriminate between tweets referring to upcoming events and
tweets that refer to past football matches, both for scheduled and unscheduled
events. In the first experiment, different supervised machine-learning classifiers
are trained to distinguish before-match tweets from tweets generated during or
after a match. They classified league matches, play-off matches and tweets about
the Champions League final only using tweets about league matches to train with.

The classifications reveal that ‘before’ tweets can be distinguished from ‘not
before’ tweets reasonably accurately, regardless of the slight event type variations.
The best performing classifier had the following F1-scores: 0.88 for the league
matches, 0.79 for play-off matches and 0.74 for the Champions League final. Doing
the same experiment for unscheduled events (football transfers), the performance
was poor. None of the classifiers had a better F1-score than baseline performance.

1In statistics, the F1-score is a measure of the accuracy of the classifier. It is the harmonic
mean of precision and recall, see Chapter 10.3 for a more detailed explanation.

14

http://statuscalendar.com

They conclude that the presumed similarity between anticipating tweets, regardless
of the event type, is not apparent.

Extracting of events continuously Hurriyetoglu et al. [11] investigated three
regression methods that estimate the time-to-event of a series of tweets that refer
to a future event. Sets of tweets are represented as a feature vector (where each
word occurring in the set of tweets is a feature) and then the task to predict the
time to event is seen as a regression problem: the feature vector is mapped onto a
continuous numeric output, which represent the time to event.

This study did not take into account tweets that were posted during and after
matches, and for both training and test sets, tweets were kept within eight days
before the event (which contains 98% of the tweets). The events they used were
football matches (as in the previously mentioned study), although they only used
matches that had the same starting time (Sunday, 2:30 PM).

They evaluated their numeric predictions by computing the Root Mean Squared
Error2. They calculated the RMSE scores for each of the methods and for each
event separately. The results showed that the best performing method was on
average (taking all events together) 43 hours off, which is better than baseline
methods. However, per event the best performing method differed. Moreover,
looking per hour, there were differences between the methods as well; one method
was the best in predicting events that are still far away, but its performance for
events that are almost happening was worst, and vice verse. Unfortunately, none
of the tested systems had a consistently strong performance.

3.4 Summary

In sum, the studies described above show that Twitter indeed can be used as
a new source of the prediction and extraction of events for all kinds of research
areas. Especially the study about the real-time extraction of events revealed great
results. The studies about whether or not it is possible to make predictions out
of the stream of tweets has brought out contradictory positions. At least in the
realm of politics this is not a foregone conclusion. The extraction and prediction
of future events had some good results, but much room is left for improvement. In
the study by [11] it appeared that there is not a single method that consistently
performs the best. In the upcoming experiments we will investigate the weaknesses
and strengths in the prediction of the time-to-event of tweets, and test several
methods in order to obtain the optimal classification procedure.

2The Root Mean Squared Error, or RMSE, is a frequently used measure of the differences
between values predicted by a model or an estimator and the values actually observed. For a
detailed explanation see Chapter 10.1.

15

Part II

Technical overview

16

Chapter 4

Text classification

Text classification is the problem of automatically assigning texts (news articles,
tweets, emails, etc) to some predefined classes. This can be done by hand, like
assigning books to a specific category in the library, according to certain rules.
A rule, which captures a certain combination of keywords that indicates a class,
must be known beforehand. However, finding these rules is not trivial and can
be labor intensive. That is why people came up with statistical text classification:
the set of rules is learned automatically from training data. The need for manual
classification is not eliminated, because the training documents have to be labeled1,
in other words each training document has to be annotated with its class. The
next chapter will give a short introduction into three of the algorithms that are
commonly used in statistical machine learning, and that will be used in this study
as well.

To improve the efficiency and performance of these algorithms, a technique
called feature selection is commonly applied in text classification. A short intro-
duction in two of these feature selection methods will be given first.

1There exists a subject within the field of machine learning where this is not necessary, called
unsupervised learning, that tries to find hidden structures in unlabeled data.

17

Chapter 5

Feature selection

Feature selection is the process of selecting a subset of the terms occurring in
the training set, and using only this subset as features in the text classification.
This procedure serves two main purposes. First, by decreasing the vocabulary
size training will be more efficient. This is especially important for classifiers that
are expensive to train, such as the Support Vector Machine, which is one of the
classifiers that we will be using. Second, by selecting a subset of features often the
classification accuracy can be increased, because noise features will be eliminated.
A noise feature can be a rare term, that for example happens to occur in all tweets
that are posted in the class ‘during the event’, but that has no information about
that class (for example ‘laptop’). Then the classifier might incorrectly classify
(called ‘overfit’) a test tweet containing this feature as ‘during the event’ [17, 15].
Some classification algorithms suffer more from overfitting than others, for example
the k-nearest neighbors classifier is usually not robust against overfitting. Next an
explanation of two often-used feature selection methods will be given.

5.1 Information Gain

Information Gain is a common feature selection method [17], which computes the
mutual information of each feature in isolation. The Information Gain of term
t measures how much information the term contributes to making the correct
classification. In other words, it measures the decrease in uncertainty (entropy)
in making the correct classification when the value of the term (its presence or

18

absence) is known. The Information Gain of term t is defined to be [37]:

IG(t) =−
m∑
i=1

P (ci) logP (ci) + P (t)
m∑
i=1

P (ci|t) logP (ci|t)

+ P (t̄)
m∑
i=1

P (ci|t̄) logP (ci|t̄)
(5.1)

where m is the number of classes, P (ci) the probability of class ci and P (t) and
P (t̄) the probabilities of the presence and absence of a term, respectively. The
Information Gain is computed for all terms and ranked from highest to lowest.

5.2 Chi Squared

White et al. [35] proposed a feature selection measure that is based on the Chi
Squared (χ2) statistic. In statistics, the χ2 test is used to examine the independence
of two events. Two events, X and Y are independent if:

P (X ∩ Y) = P (X)P (Y) (5.2)

In text feature selection, these two events correspond to the occurrence of a
particular term and class. Assuming that there is no predictive association between
term t and class c, the χ2 information can be computed using the following formula
[17]:

χ2(t, c) =
∑

et∈{0,1}

∑
ec∈{0,1}

(Netec − Eetec)
2

Eetec

(5.3)

where et = 1 if the training instance contains term t and 0 otherwise, and ec = 1
if the training instance is in class c, and 0 otherwise. N is the observed frequency
and E the expected frequency. For example, E11 is the expected frequency of t and
c occurring together in the data, assuming that they are independent. In formula:
E11 = N × P (t)× P (c).

A high value of χ2 indicates that the hypothesis of independence, which implies
that expected and observed counts are similar, is incorrect. If the two events are
dependent, the occurrence of the term makes the occurrence of the class more
likely and consequently, the term is relevant as a feature. Whether or not to reject
the null hypothesis can be read from the χ2 distribution with ν degrees of freedom,
with ν = (m− 1)(k− 1), with m the number of classes and k the amount of terms
[35].

19

Chapter 6

Classification methods

To investigate what would be the best method to approach our problem, we train
with different classification techniques and compare their performances. The tech-
niques we use are Naive Bayes, k-nearest neighbors (k-NN) and Support Vector
Machines (SVM). These classifiers are widely known and they belong to the most
influential data mining algorithms in the research community [36]. Besides that,
these three classifiers are shown to be most appropriate in the existing literature
about text classification [2]. Naive Bayes is a rather simple classifier, easy to im-
plement and very fast. k-nearest neighbors classifies test data based on the closet
training examples. The training phase is very short, but the classification time is
long and it is difficult to find the optimal value for k. The SVM classifier is seen
as one of the most effective classifiers [2], but the trainig of the classifier takes long
and this classifier is somewhat harder to understand. In the upcoming sections
a short and concise introduction to the central notions of these classifiers will be
given, for a more thorough account the reader is asked to consult [17, 9] or one of
the many other good text books on Machine Learning.

6.1 Naive Bayes

The Naive Bayes classifier is based on the so-called Bayesian theorem and it greatly
simplifies learning by assuming that features in each class are independent. Despite
its simplicity, Naive Bayes often competes well with more sophisticated classifiers
[23]. Bayesian classifiers assign the most likely class to a given example (tweet)
described by its feature vector. Bayes’ theorem gives the relationship between the

20

probabilities of class c and feature vector x, and the conditional probabilities1 of
c given x (P (c|x)) and c given x (P (c|x)):

P (c|x) =
P (x|c)P (c)

P (x)
(6.1)

The Naive Bayes assumption states that each feature is conditionally indepen-
dent of every other feature, in formula: P (x1 . . . xn|c) =

∏
i P (xi|c). Using Bayes

rule and the independence assumption, the probability of an example x being in
class c is computed as:

P (c|x1 . . . xn) =
1

P (x1 . . . xn)
P (c)

n∏
i=1

P (xi|c) (6.2)

Since the fraction does not depend on c and the values of the features xi are given,
the fraction is effectively constant. So the equation can be rewritten as:

P (c|x1 . . . xn) ∝ P (c)
n∏

i=1

P (xi|c) (6.3)

Our goal is to find the most likely class, or maximum a posteriori (MAP) class
cmap, for the instance x:

cmap = arg max P̂ (c|x) = arg max P̂ (c)
n∏

i=1

P (xi|c) (6.4)

The prior P̂ (c) is the relative frequency of c, which can be computed by dividing
the number of instances belonging to class c by the total number of instances. The
conditional probability estimates P (xi|c) are weights that indicate how suitable
an instance xi is for a class c. This probability can be estimated as the relative
frequency of term xi in instances belonging to class c. So we do not take into
account the position of the feature xi (i.e. we do not take into account the place
of the feature in the training data). There is one problem left, namely that the
estimate is zero for a feature-class combination that did not occur in the training
data. Since we are multiplying, the conditional probability for that class will then
be zero. To eliminate zeros, often add-one smoothing is used. This can be seen
as a uniform prior, where each term occurs once for each class, so there is no
multiplying by zero possible anymore [17].

1A conditional probability is the probability that an event will occur, when another event is
known to occur or to have occurred

21

6.2 k-nearest neighbors

The k-nearest neighbors (k-NN) classifier assigns the majority class of the k-nearest
neighbors to a test instance. The k-NN classifier is memory-based and requires no
explicit training, it can use the unprocessed training set directly in classification.

(a) 1-nearest neighbor (b) 15-nearest neighbors

Figure 6.1: k-nearest neighbors classification [9]. These figures illustrate how the
classification is influenced by the choice of k.

Given an instance, we find the k training instances closest in distance to that
instance, and then classify the instances based on the class with the majority vote
among the k neighbors. As distance measure we use the Euclidean distance, that
is the “ordinary” distance between two points that one would measure with a
ruler. Tied majorities are broken at random. k-nearest neighbors classification is
often successful where each class has many possible prototypes and the decision
boundary is very irregular [9].

The choice of k is very important. Taking k = 1, each training point is a
prototype, the incorrectly labeled or atypical training points as well. So k = 1 is
not always robust and often k = 3 or k = 5 is used, but much higher values are also
possible. Figures 6.1(a) and 6.1(b) illustrate how the classification is influenced
by the choice of k. Figure 6.1(a) shows the k-NN classification applied to binary
data for k = 1 and figure 6.1(b) for k = 15. The decision boundary for k = 15 is
fairly smooth compared to the decision boundary for k = 1.

22

6.3 Support Vector Machines

6.3.1 Introduction

Figure 6.2: Support vectors, decision boundary and margin.

Support Vector Machines (SVMs) were introduced by Boser, Guyon and Vapnik
in 1992 [3]. SVMs are developed from Statistical Learning Theory from the sixties,
so they are theoretically well motivated, and since their introduction they became
rather popular.

SVM is a vector spaced machine learning method that tries to find a decision
surface between two classes that is maximally far from any point in the data set,
where sometimes points may be discounted as outliers. The distance from this
surface to the closest data point determines the margin of the classifier, and those
points are called the support vectors (see Figure 6.2). The margin of the classifier
should be as wide as possible. Since we are only looking at the closest data points,
the position of the separator is specified by an (often small) subset of the training
data, and the other data points play no part in determining the surface.

Why do we want to maximize the margin? Firstly, a classifier with a large
margin does not make classification decisions with low certainty, so an error in
measurement or an outlier will not lead to a miss-classification. Secondly, because
we are seeking for a large surface instead of just a (thin) decision boundary, there
are fewer options to put the surface, and therefore the classification will be faster.
This is illustrated in Figure 6.3.

23

Figure 6.3: Illustration of the large-margin classification. The range of angles at
which the decision surface (green, dotted line) can be placed is much smaller than
for a decision line (blue).

6.3.2 Formal definition

We will give a formal definition for two-class, linearly separable data sets, in order
to make the explanation manageable. The two classes are always named +1 or
−1 (not 0 and 1). A decision boundary (or decision hyperplane) can be defined

by a normal vector ~β that is perpendicular to the hyperplane, and an intercept
term β0. The training data consists of N pairs (x1, y1), (x2, y2), . . . (xN , yN), with
xi ∈ Rn (with n the number of features) and yi ∈ {−1, 1}. All points ~x on the

hyperplane satisfy ~βT~x + β0 = 0, because the hyperplane is perpendicular to ~β.
The classification rule can then be stated as follows:

f(~x) = sign(~βT~x+ β0) (6.5)

We could now define the functional margin of a data point ~xi with respect to
a hyperplane < ~β, β0 > as yi(β

T ~xi + β0). The functional margin of the data set
with respect to a decision surface is then twice the functional margin of any of
the points that are closest to the decision boundary, which are the points with
the smallest functional margin (see Figure 6.4). However, using this definition
we can always make the functional margin bigger by scaling up β and β0 by the
same number. So we need a constraint on the size of the vector β, for which we
need to do some geometry. The shortest distance from a point ~x to the decision
boundary is perpendicular to that boundary, and hence parallel to β. Let us call
this distance r (see Figure 6.4), and its direction can be described with the unit
vector β/‖β‖. The point ~x′ on the hyperplane closest to ~x can then be described

24

Figure 6.4: The geometric margin.

by:

~x′ = ~x− yr β

‖β‖
(6.6)

where multiplying by y changes the sign for being ~x on either side of the decision
boundary. Since ~x′ lies on the decision boundary, it satisfies βT~x′ + β0 = 0.
Replacing the definition of ~x′ in (6.6) in this equation gives:

βT (~x− yr β

‖β‖
) + β0 = 0 (6.7)

Using the fact that ‖β‖ =
√
βtβ, this can be rewritten as:

βT~x− yr‖β‖+ β0 = 0 (6.8)

Solving for r gives2:

r = y
βT~x+ β0
‖β‖

(6.9)

Again, the points closest to the separating hyperplane are support vectors. The
geometric margin of the classifier is defined as the maximum width of the band
that can be drawn separating the support vectors of the two classes. That is,
the maximal width of one of the fat separators in Figure 6.3, or, in formula,

2Recall that y = {−1, 1}

25

twice the minimum value over data points for r given in Equation 6.9. Scaling the
parameters ~β and β0 does not influence the geometric margin, because it will always
be normalized by ‖~β‖, the length of ~β. So we can impose any scaling constraint on
~β, without affecting the geometric margin, and we will require that ~β = 1. This
has the effect of making the geometric margin the same as the functional margin.

As said before, we can scale the functional margin as we please, so we can
assume that the functional margin of all training data points is at least 1 and that
it is equal to 1 for at least one data vector. So for all data points i it holds that
yi(β

T ~xi + β0) ≥ 1, and the points for which the inequality is an equality are the
support vectors. In equation (6.9) the distance from the decision boundary to each
data point is given, and the geometric margin can then be defined as ρ = 2/‖β‖.
We still want to maximize this margin, so we want to find β and β0 such that:

• ρ = 2/‖β‖ is maximized

• for all training data (xi, yi), 0 ≤ i ≤ N, yi(β
T ~xi + β0) ≥ 1

This can be more conveniently rephrased as:

Find β and β0 such that:

• 1
2
βTβ is minimized

• for all (xi, yi), yi(β
T ~xi + β0) ≥ 1

We now try to solve a quadratic optimization problem, and those problems are a
well-studied class of mathematical optimization problems, and there exist many
algorithms to solve them. Solving them involves the introduction of Lagrange
multipliers, but the details will not be presented now.

6.4 Summary

In this chapter we gave a short theoretical introduction to the techniques that will
be used for the classification. We saw two different methods to select the most
informative features, and then described three different algorithms to classify the
test data. During our experiments we will investigate these methods and discover
which training regime will be the best.

26

Part III

Experimental set up

27

Chapter 7

Data collection

To be able to do the classification, appropriate data must first be collected. For
this study we focus on tweets about football matches played in the Eredivisie (the
highest-level Dutch football league) as events. They usually generate a sufficient
amount of tweets; thousands to several tens of thousands per match. Moreover,
they occur frequently and they are referred to by a distinctive hashtag by con-
vention (#ajapsv for a match between Ajax and PSV). Finally, for any selected
football match the date of the match is known. To collect the tweets, we search
for tweets containing the hashtag belonging to that event. Although in this way
we will not find every tweet referring to the event, the training data is at least
trustworthy and still generates enough data. The tweets were queried via twiqs.nl.

We selected the top 6 teams of the league in 2011, which were at that moment
Ajax, PSV, Feyenoord, FC Utrecht, FC Twente and AZ, and queried tweets refer-
ring to all matches played between them in the years 2011 and 2012, which resulted
in 60 matches. As mentioned before, we searched for the tweets by hashtag, and
to ensure that the tweets were referring to that particular match - and not to an
earlier or later match with the same clubs and the same home and away team - we
only collected the tweets three weeks before or after the event. We ended up with
a collection of 703,767 tweets. The event most tweeted about (62,003 tweets) is the
match between Ajax and FC Twente in the spring of 2011, which is not surprising
since in that match the champion (Ajax or FC Twente) of that year was decided.
The match between FC Utrecht and AZ, in the spring of 2011 as well, generates
the fewest tweets (716), and on average 11,730 tweets were collected per match.

In Table 7.1 two examples of collected tweets are shown. For each tweet we have
the event it is referring to (first column), the ID of the tweet (second column), the

28

Table 7.1: Examples of the collected tweets

Event ID User name Date Time Message
ajaaz s11 43401817899536384 Maxiecosy 2011-03-03 21:06:14 haha zondag

naar #ajaaz

psvfey s12 173759034179059712 Luccpeeterss 2012-02-26 14:19:16 nu gaat het

echte werk

beginnen

#psvfey

user name (third column), the time and date of posting (fourth and fifth column)
and the content of the tweet (last column).

Further investigation of the data reveals that no less than 42% of the tweets are
retweets, and we decide to remove these tweets. They are primarily removed be-
cause they can be posted several days after the original tweet was posted while
containing the same words. Another reason is that it is often a marketing stunt
that receives a lot of retweets and therefore can mislead the classifier. An example
of such a marketing stunt is shown below, which received almost 200 retweets.

rt @psv wat moet je doen rt dit bericht van @psv en maak daarmee kans

op een van de twintig gratis kijkcodes voor #feypsv op psv tv on

7.1 Data representation

The tweets are put into a sparse binary format. Each tweet is converted into
a vector, containing the numbers of the features that the tweet contained. Each
feature has a index, and if a tweet contains a certain feature then the related index
is added to the vector. At the end we add the temporal value, based on the time
of posting relative to start time of the match they were referring to. An example:

features︷ ︸︸ ︷
4, 54, 152, 918, 8281, 10659, 20990, 63791

time︷ ︸︸ ︷
,−460

29

Chapter 8

Categorization

We build a classification-based system, in contrast to a regression based system.
We thus map unseen tweets onto discrete time segments, and in order to do that
we have to distribute the continuous stream of the time in tweets between several
time categories. Since the creation of the time categories is just a necessary step
in order to be able to do the classifications, we can choose them any way we want,
as long as we think that it will yield a good time-to-event prediction in the end.

Figure 8.1: Average number of tweets per hour before and after the event starting
time. Y-axis is logarithmic.

30

At the most general level, tweets referring to an event can be divided into the
categories ‘before’, ‘during’ and ‘after’. As we are interested in estimating the
time-to-event for each tweet at some resolution, the ‘before’ category needs to be
divided into more specific time categories. These time categories, as said before,
are just a step that is necessary in order to be able to do classifications, and we
should investigate which distribution of time categories gives best results in the
end. One of the most straightforward ways to do this would be to distinguish time
categories by a fixed length of time. However, as can be seen in Figure 8.1, the vast
majority of the ‘before’ tweets is posted during the hours right before the start
of an event (note that the y-axis of the figure is logarithmic). Taking all events
together, we see that in the final hour before the events started, 62,000 tweets
are posted, compared to fewer than 7,500 during the sixth hour before the events.
Thus, when splitting the data into fixed time segments longer than a few hours,
almost all tweets would be residing the category closest to event time, and it can
be expected that such a distribution will not lead to good predictions of the time
to event. Another straightforward way would be to distinguish time categories
by a fixed number of tweets. This again does not seem the right way because of
the highly skewed distribution of the tweets over time. For example, dividing the
‘before’ category in 7 classes, where each class contains an equal amount of tweets,
would give us 5 classes that contain only the 24 hours closest to event, and there
will be two classes left for the remaining tweets. Therefore we experiment with
two alternative division schemes: ‘left branching’ and ‘k-means’ clustering.

8.1 Left branching

Applying the left branching scheme, the data is split into progressively longer time
categories, where each split breaks the remaining tail in two. Starting from the
‘before’ category as a whole and moving from the start of the events backwards,
categories are split at the hour where the amount of tweets on both sides is ap-
proximately equal. After each split, the category on the right (closer to event start
time) is fixed and another split is performed on the category on the left (see Figure
8.2). This process is repeated until the most distant time category is more than
10 days before the start of an event. Splitting further would give classes with too
little instances to train on. This resulted in seven ‘before’ categories.

This division scheme takes the imbalanced temporal distribution of the data
into account by making splits based on frequency. The time segments closer to
the event will still represent shorter time spans than the time segments further
away, but in this way large variations of time segment lengths are restricted by
only making splits in a left branching fashion. The time categories that resulted
from this division scheme are displayed in the upper rows of Table 8.1.

31

Figure 8.2: Schematic diagram of the left branching method.

8.2 k-means clustering

For the k-means clustering division scheme we selected the time categories with
the smallest Sum of the Squared Error (SSE) with respect to their centroids. In
order to compare k-means clustering to the left branching approach, we fixed the
number of time categories to 7. These seven categories each contained an equal
amount of tweets. Then for each time category the centroid was computed, and for
each instance the Euclidean distance to the centroids is computed. Instances are
assigned to the category with the nearest centroid, and then the SSE with respect
to the new centroids is recomputed for the new division. This process is repeated
until the SSE stops decreasing. The result of this division scheme is displayed in
the lower rows of Table 8.1.

In comparison to the left-branching scheme, k-means clustering takes both the
content and the distribution of tweets into account. This way, time segments that
are more coherent (possibly in a contextually meaningful way) will be favored.
As can be seen from Table 8.1, k-means clustering leads to more compact time
categories close to event start time and less compact time categories further away
from an event, in comparison to the left-branching approach.

32

Table 8.1: The two categorization schemes. The upper row gives the categorization
in hours, the middle row in days, and the lower row the number of tweets (round
to hundredths) in each category.

Category 0 1 2 3 4 5 6 7 8

Left 504− 298 297− 219 218− 151 150− 79 78− 32 31− 5 4− 1
during after

Branching 21− 12 12− 9 9− 6 6− 3 3− 1 1− 0 0− 0
2,300 2,500 4,800 9,700 19,400 39,100 79,700

k-means 504− 267 266− 132 131− 69 68− 34 33− 13 12− 4 3− 1
during after

21− 11 11− 6 5− 3 3− 1 1− 1 1− 0 0− 0
2,100 7,200 9,700 12,400 22,600 32,300 71,300

33

Chapter 9

Features

As features we extract all uni-, bi- and trigrams of words from the tweets. By
combining the three sorts of n-grams, bonuses are awarded to matchings on longer
n-grams, on top of the weights that their underlying unigrams already represent.
We mark the beginning and end of each tweet as well, as extra bi- and trigrams
(for example ’start, goal’, means that the tweet started with ‘goal’). This results
in a huge amount of potential features; almost 4 million (see Table 9.1). As we
explained in Chapter 5, such a giant vocabulary can decrease the classification
performance. So we will have to reduce the amount of features that we use in
our classification. First we perform a selection based on frequency; only those
unigrams that appear more than 10 times, and those bi- and trigrams that appear
more than 40 times are selected. This reduces the amount of features to a little
more than 60,000 features (see Table 9.1). Additionally the length of the tweet,
rounded at a step size of five words, is encoded as an extra feature.

Table 9.1: Number of features with and without frequency based feature selection
(FS).

unigrams bigrams trigrams total
without FS 209,738 1,227,256 2,507,746 3,944,740
with FS 18,768 25,599 19,422 63,789

Then we select those features from the remaining 64 thousand that are most
relevant, with the two feature selection methods Information Gain and χ2 (see
Chapter 5). To have a clue how the two feature selection methods differ, and what
kind of features are selected, the top 30 of each of the four combinations (two
segmentation and two feature selection methods) are shown in appendix A.

34

9.1 Number of selected features

Applying the feature selection methods gives a ranking from features containing
the highest amount of information to the lowest. The number of features that will
be used by the classifiers has to be decided. We varied this number from 10,000
in the main experiment, to 1,000 and 100 in the additional experiments. By using
small amounts of features, (a lot of) information will be thrown away, and some
tweets will even have no features at all. Using a large amount of features will
make the classifier less efficient, and at some point using more features does not
(significantly) attribute to the performance of the classifier anymore, and may even
lead to worse performance due to overfitting. Table 9.2 shows the percentage of
tweets that only have a few (zero or one) features, for different amounts of selected
features. The amount of instances that does not contain any feature at all appears
to be approximately equally distributed in relation to the classes. The classifiers
will classify these tweets as ‘during’, being the largest class (and hence the largest
probability that the instance will belong to that class). Selecting 10,000 features
ensures that all tweets are represented by one or more features. Interestingly, using
χ2 feature selection always entails a higher percentage of tweets containing only a
few features.

Table 9.2: Percentage of tweets with 0 or 1 features

selected features #features in each tweet IG χ2

100 0 1.94% 5.43%
100 1 14.95% 25.22%
1,000 0 0.01% 0.05%
1,000 1 0.43% 0.04%
10,000 0 0% 0%
10,000 1 0.03% 0.04%

Once the features are selected, the three classifiers will classify the test data
into the classes.

35

Chapter 10

Evaluation

10.1 RMSE

To test the performance of our systems, we performed ‘leave-six-events-out’ cross-
validation. This method approximates 10-fold cross-validation, and involves re-
peated splits between 6 events as test data and 54 as training data (remember
that there are 60 events in total). This is repeated ten times such that each event
is used once as test data. Folds were split at the event level because it is unrealistic
to both train and test on tweets referring to the same event.

In order to score the amount of time in hours that a system is off in its esti-
mations, we calculated the Root Mean Squared Error (RMSE), a common metric
for evaluating numeric predictions. The sum of the squared differences between
the actual value vi and the predicted value ei of all predictions is calculated, their
mean is computed, and then the square root is taken to produce the RMSE (see
equation 10.1).

RMSE =

√√√√ 1

N

N∑
i=1

(vi − ei)2 (10.1)

As predicted value for each tweet we took the mean, median, first and last element
of the predicted class, in order to investigate what would be the best value to take
as predicted value. For example, when a tweet is posted 78 hours before an event
and the system classifies the tweet in a category that ranges from 266 to 132 hours
before event time, the squared errors are given in Table 10.1.

As only the seven ‘before’ categories can be expressed as numeric values, as
opposed to the nominal ‘during’ and ‘after’ categories, the RMSE can only be

36

Table 10.1: Example of Squared Errors for a tweet that is posted 78 hours before
the event, and is classified in a category that ranges from 266 to 132 hours before
event

Predicted value cate-
gory (−266,−132)

Squared Error

first element −266 (78− 266)2 = 35, 344
last element −132 (78− 132)2 = 2, 916
mean −173.8 (78− 173.8)2 = 9, 177.64
median −163 (78− 163)2 = 7, 225

calculated when both the classification and the true label are one of these seven
categories. On top of that, if we would include the calculation of the RMSE of the
‘during’ and ‘after’ classes, it would be harder to correctly interpret the evaluation.
Firstly, the ‘after’ class is not further divided into classes, so the RMSE of instances
will still be high, even if they are classified correctly. Besides that, it is harder to
know what caused the better (or worse) RMSE. Is it because the large (and rather
small in terms of the distribution of hours) ‘during’ class was better classified?
That is not what we are primarily interested in.

Only reporting the RMSE of the ‘before’ classes is not sufficient, because then
we are not informed about the amount of tweets that is classified as ‘during’ or
‘after’. Therefore, in addition to their RMSE we measured the responsiveness of
each system: the relative number of occasions where the classifier generated a
‘before’ classification (classifying with one of the categories 0-6) when it should
have. A system with a low RMSE and a high responsiveness is to be favored over
a system with a low RMSE and a low responsiveness.

10.2 Standard deviation

We are calculating the mean RMSE of the 10 folds of the ‘leave-six-events-out’
cross validation. In order to express the variability in RMSE of the 10 folds and
to measure the confidence of our conclusions, we calculate the standard deviation.
The standard deviation σ is calculated as follows:

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (10.2)

with N the number of folds, µ the mean RMSE of the folds and xi the RMSE of
fold i.

37

The certainty with which these averages are measured are expressed in the
standard deviation. To be able to compare the analytic results obtained with two
different methods on the same sample, we apply a significance test; a two-tailed
paired t-test. The t-test gives the probability that the difference between the
means of the classification with two different methods is caused by chance. It is
customary to say that if this probability is less than 0.05, that the difference is
‘significant’, and the difference is not caused by chance [14].

10.3 F1-score and distance error

10.3.1 F1-score

Apart from RMSE rates, we calculated the F1-score [33] and distance error for each
separate category. The F1-score is the harmonic mean of precision and recall. The
precision of the classifier is the proportion of retrieved material that is relevant
(classified correctly), recall is the proportion of relevant material actually retrieved.
Recall and precision attempt to measure the ability of the classifier to retrieve
relevant documents while at the same time holding back non-relevant one. In
formula:

precision =
tp

tp+ fp

recall =
tp

tp+ fn

F1-score = 2× precision× recall

precision + recall

(10.3)

where tp = true positives, fp = false positives and fn = false negatives as
defined in Figure 10.1. For example, computing the F1-score for class 1, a tweet
that belongs in class 1 but is predicted as another class (even as ‘during’ or ‘after’),
is a false negative. The F1-score is indicative of the correct classification of each
category taken individually. Besides calculating the F1-score for each separate
category, we calculated the average F1-score as well. Apart from calculating the
average of the F1-scores, we also calculated the average F1-scored according to
the MICRO-average method. For the last method, the precision and recall, for a
system with n classes, are calculated as follows [30]:

precision =
tp1 + · · ·+ tpn

tp1 + . . . tpn + fp1 + · · ·+ fpn

recall =
tp1 + · · ·+ tpn

tp1 + . . . tpn + fn1 + · · ·+ fnn

(10.4)

38

The MICRO-F1 score can now be calculated in the same way as the F1-score.
We chose to calculate the MICRO-F1 scores as well, since the micro-averaging is
more suitable when a dataset varies in size [30], giving each instance the same
weight, which is the case in our experiments. For the F1-scores we calculate the
standard deviations as well.

Figure 10.1: Confusion matrix

10.3.2 Distance error

The distance error takes into account the sequential ordering of the categories
by executing higher penalties for estimations further off from the actual category.
When a tweet should be classified as class 0 but is classified as class 2, it receives
2 penalty points. This is calculated for each class, and then averaged by the total
amount of tweets in that class. The distance error is an approximation of the
RMSE error, but still has an intuitive meaning as indicating how ‘off’ a classifier
is in identifying the correct segment in the array of segments.

While the ultimate goal is to minimize the RMSE, the latter two evaluation
measures can inform us whether there are substantial differences in the classifica-
tion performance between the different classes. RMSE is the most relevant metric,
since the target of the developed system is to be as accurate as possible in estimat-
ing the time-to-event. The question which classification system is best can only
be valued by its effect on lowering RMSE on unseen data.

In this way an in-depth analysis is given of the performance of the classifiers,
such that we understand the strengths and weaknesses of the system.

39

10.4 Baseline

A baseline provides a starting point from which a comparison of the performances
of the classifiers can be made. Baselines are the most often forgotten component
within design monitoring and evaluation [5], yet they are key to proving some
improvement has actually been achieved. So we computed two baselines, called
the ‘6-class’ baseline and the ‘informed’ baseline.

The ‘6-class’ baseline refers to the baseline strategy of labeling all tweets as
belonging to class 6. The informed baseline consists of manually creating a set of
words or expressions that are expected to be typical (temporal) words for specific
classes. For example, all tweets that contain the word ‘vanavond’ (tonight), are
classified as belonging to class 5 for both segmentation methods. The set of words
we used is displayed in Table A.2. The tweets that did not contain a word of the
manually selected set are given the label ‘class 6’. The outcomes of these baselines
will be displayed in the results of the main experiment.

40

Chapter 11

Software

We used different sources of software in order to do the classifications. We cal-
culated the classes for the two categorizations (left branching and k-means) with
R, a free software environment for statistical computing and graphics (see http:

//www.r-project.org/). To extract the uni-, bi- and trigrams, to transfer the
tweets into a sparse binary format with the selected features, and to evaluate the
classifications we used Python, a widely used general-purpose, high-level program-
ming language (see http://www.python.org). For the feature selection we made
use of TiMBL1. For the classification we used stimbl, which is a version of TiMBL
that is faster and can better handle sparse vectors.

1The Tilburg Memory-Based Learner, see http://ilk.uvt.nl/timbl/

41

http://www.r-project.org/
http://www.r-project.org/
http://www.python.org
http://ilk.uvt.nl/timbl/

Part IV

Results

42

Chapter 12

Main experiment

Investigating what would be the best method to predict the time-to-event, we train
and test tweets using different classifiers (SVM, k-NN, Naive Bayes), using different
feature selection methods (Information Gain and χ2) and using different clustering
methods (k-means and left branching). In this chapter the results of the main
experiment will be shown, using all available training data and 10,000 features to
train with. First, the results of the left branching classification will be shown, then
of the k-means, and then the performances of the different classification procedures
will be compared.

Table 12.1: F1-scores of the left-branching categorization method. ‘Avg.F1’ reveals
the ‘average F1’, M-F1 the MICRO-F1 and ‘Inf. bl.’ the ‘informed baseline’. The
small numbers represent the standard deviations.

before during after Avg.F1 M-F1
Alg. FS 0 1 2 3 4 5 6 7 8

k-nn IG .10 .03 .04 .02 .23 .08 .17 .02 .22 .02 .38 .02 .53 .02 .63 .03 .41 .02 .30 .02 .48 .02

k-nn χ2 .10 .04 .04 .03 .23 .08 .17 .03 .22 .02 .38 .02 .52 .02 .63 .03 .41 .03 .30 .02 .48 .02

NB IG .17 .04 .05 .02 .28 .10 .21 .02 .27 .04 .48 .02 .58 .01 .52 .02 .54 .03 .35 .02 .51 .02

NB χ2 .16 .04 .04 .03 .27 .11 .20 .02 .26 .04 .48 .02 .54 .01 .58 .02 .53 .03 .35 .03 .49 .02

SVM IG .21 .07 .05 .03 .36 .11 .25 .05 .38 .06 .50 .03 .60 .03 .72 .05 .56 .04 .40 .03 .56 .03

SVM χ .23 .07 .07 .03 .36 .10 .26 .05 .38 .03 .50 .03 .60 .02 .72 .03 .56 .03 .41 .03 .55 .02

6-class bl. .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .41 .04 .00 .00 .00 .00 0.04 .00 .36 .04

Inf. bl. .02 .02 .01.03 .40 .08 .32.05 .02 .01 .44 .03 .36 .04 .24 .02 .04 .01 0.21 .03 .39 .03

43

Figure 12.1: The distance errors for each class of the left-branching method. The
x-as represents the classes, the y-as the distance errors.

12.1 Left branching

The F1-scores for each of the three classifiers k-NN (with k = 1), Naive Bayes
and SVM for the left-branching categories are shown in Table 12.1. The results
show that making the correct classification is harder if the event is further away,
although categories 0 to 4 do not show a linear pattern, with the absolute worst
performance for category 1. Especially class 2 has a high F1-score compared to the
scores of class 1 and class 3, but the standard deviations of this class are high as
well. The ‘during’ category has the highest F1-score (0.72), which is likely to be at
least partly due to the fact that the majority of tweets is posted during the event.
The performance of the different systems shows that SVM consistently achieves
the highest F1-score for every category, while Naive Bayes outperforms k-NN for
every category but ‘during’. This pattern is also reflected in the MICRO-F1 score.

Compared to the informed baseline, the MICRO-F1 scores improved with an
increase varying from 0.09 (k-NN) to 0.17 (SVM). Noteworthy, looking per class,
in case of classes 2 and 3 (3 to 9 days before the event) the informed baseline has
higher F1-scores. The best MICRO-F1 score is 0.56, which is not really high.

Taking a look at the distance errors (see Figure 12.1), we see that the classifica-
tion is skewed to the ‘during’ class. Interestingly, the Naive Bayes classifier seems
to be less skewed; this classifier has the best (lowest) distance errors for the first 6
classes, whereas for class 6, 7 and 8 they are the worst (highest). Not surprisingly,

44

all distance errors are improved compared to the 6-class baseline except for class 6.
However, compared to the informed baseline not all classes improved. The lower
distance errors for class 5 and 6 can be expected (because all instances that do not
contain any of the selected features are assigned to class 6), but for class 2 and 3
they can not. The F1-scores of the informed baseline of these classes outperformed
the other classifications as well. The words chosen for the informed baseline can
apparently better recognize these two classes than the classification algorithms.

12.1.1 k-nearest neighbors

Figure 12.2: k-NN distance errors for k = 1, 3, 5, 7 applied to the left branching
categorization method. The x-as represents the classes, the y-as the distance
errors.

In terms of distances errors k-NN is again outperformed by SVM. In Section 6.2
we saw that the choice of k is important, so we increase this parameter in steps of
2 until k = 7. A plot of the average distance error for each k per category (Figure
12.2) shows that performance does not improve by increasing k. With higher
k relatively more instances are classified as belonging to the majority ‘during’
category. For k = 7 there is almost a one-to-one mapping of the distance of each
class to the ‘during’ class and the distance error. This tendency is also reflected in
the F1-scores (see Table 12.2). For k = 7 the scores are below 0.07 for all ‘before’
classes, except the class closest to the event. k = 3 is compelling with k = 1, with
a surprisingly high F1-score for class 2, but the F1-scores for class 0 and 1 are
lower.

45

Table 12.2: F1-scores of the k-nearest neighbors classification, using the left-
branching method and Information Gain as feature selection. ‘Avg.F1’ reveals
the ‘average F1’, and M-F1 the MICRO-F1. The small numbers represent the
standard deviations.

before during after Avg.F1 M-F1
k 0 1 2 3 4 5 6 7 8

k-NN 1 .10 .03 .04 .02 .23 .08 .17 .02 .22 .02 .38 .02 .53 .02 .63 .03 .41 .02 .30 .02 .48 .02

k-NN 3 .06 .03 .01 .01 .38 .12 .15 .04 .21 .04 .36 .03 .56 .02 .65 .04 .41 .03 .31 .02 .50 .03

k-NN 5 .00 .01 .00 .00 .28 .09 .08 .04 .08 .05 .20 .03 .49 .02 .61 .05 .28 .02 .23 .02 .40 .04

k-NN 7 .00 .00 .00 .00 .06 .03 .04 .03 .03 .05 .07 .02 .37 .03 .57 .05 .11 .02 .14 .01 .26 .03

Thus, increasing the parameter k does not improve the results of the k-nearest
neighbors classifier. Moreover, it has the opposite effect. Although the MICRO-F1
score is a little bit higher for k = 3 than for k = 1, we decide to use k = 1 for the
other experiments, because this method produced slightly better F1-scores for the
first two classes and it produced better distance errors.

12.2 k-means clustering

Table 12.3: F1-scores of the k-means categorization method. ‘Avg.F1’ reveals the
‘average F1’, M-F1 the MICRO-F1 and ‘Inf. bl.’ the ‘informed baseline’. The
small numbers represent the standard deviations.

before during after Avg.F1 M-F1
Alg. FS 0 1 2 3 4 5 6 7 8

k-NN IG .11 .04 .23 .06 .20 .02 .18 .03 .34 .03 .33 .02 .48 .01 .63 .03 .41 .02 .32 .02 .44 .02

k-NN χ2 .11 .04 .23 .06 .20 .02 .18 .03 .34 .03 .33 .02 .48 .01 .63 .03 .41 .03 .32 .02 .44 .02

NB IG .21 .05 .27 .08 .24 .03 .21 .04 .45 .05 .45 .03 .49 .01 .59 .02 .54 .04 .38 .02 .47 .02

NB χ2 .21 .06 .27 .09 .24 .03 .21 .04 .44 .05 .45 .03 .48 .01 .58 .02 .53 .04 .38 .03 .46 .02

SVM IG .25 .06 .35 .07 .30 .03 .29 .03 .56 .05 .43 .03 .55 .02 .72 .03 .56 .03 .45 .02 .52 .02

SVM χ2 .25 .06 .35 .07 .30 .03 .30 .05 .57 .06 .43 .04 .55 .02 .72 .03 .56 .03 .45 .02 .52 .02

6-class bl. .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .37 .04 .00 .00 .00 .00 .04 .00 .32 .03

Inf. bl. .02 .02 .40 .07 .35 .07 .02 .01 .57 .05 .39 .05 .33 .04 .24 .02 .04 .01 .26 .04 .37 .02

The per-category F1-scores for k-means clustering are given in Table 12.3.
Again we see that making the right classification is harder if the event is further

46

away, but this effect is less than for the left branching clustering; the F1-scores for
the first 5 ‘before’ classes are better, and for the last two a bit worse. There is
no category that performs poorly, like it was the with class 1 in the left branching
segmentation. Again, the MICRO-F1 and average F1-scores of the classification
algorithms are always better than baseline performance, and again for two classes
(class 1 and 2, which amounts to 11-3 days before the event) the informed baseline
scored the best. The highest standard deviation is found in class 1.

Looking at the distance errors, we see again that Naive Bayes has the lowest
scores for the classes furthest away from the event, and this time they are always
better than the informed baseline. The other patterns are similar to the left
branching method as well.

Figure 12.3: The distance errors for each class of the k-means method. The x-as
represents the classes, the y-as the distance errors.

12.3 Comparison

Left branching vs. k-means To see how off the estimation of the time-to-event
is and to compare the performance of the two segmentation systems, the RMSE1

1In Section 10.1 we described that the RMSE is computed using different numbers (repre-
senting the hours before event time) that represent the classes (the first, last, mean or median
of each class). It appeared that using the last number (closest to event for each class) always
produced the best RMSE, so only this RMSE will be reported.

47

Table 12.4: RMSE (hours) for the left branching and k-means segmentations. The
responsiveness is given in brackets. Diff. is the difference in RMSE, calculated
as left branching - k-means. For each RMSE score the Standard Deviation (σ) is
calculated.

Alg. FS Left branching σ k-means σ Diff.

k-NN IG 62.7 (.78) 7.1 60.5 (.77) 6.6 2.2
k-NN χ2 62.1 (.78) 6.8 60.6 (.77) 6.6 1.5
NB IG 58.9 (.81) 5.2 56.6 (.81) 5.3 2.3
NB χ2 61.0 (.82) 4.8 58.4 (.82) 4.8 2.6
SVM IG 54.8 (.75) 5.3 53.3 (.74) 5.3 1.5
SVM χ2 54.2 (.74) 6.0 52.3 (.73) 6.4 0.9

6-class baseline 67.9 (1.00) 7.4 67.9 (1.00) 7.4 0.0
Informed baseline 61.3 (.89) 6.2 61.5 (.89) 6.3 0.2

and responsiveness are given in Table 12.4. The best scoring method has an RMSE
of 52.3 hours, with a responsiveness of 73%. All RMSE scores of the classification
algorithms are better than both baseline performances, except for the combination
k-NN and left branching. In contrast, the responsiveness is significantly worse in
all cases.

Comparing the two segmentation schemes we see that, while the responsiveness
is a little bit higher for systems applied to the left-branching segmentation scheme,
segmenting the ‘before’ classes by k-means clustering leads to a better RMSE for
every system, achieving improvements of up to 2.6 hours. The differences between
the two segmentation methods are highest for the Naive Bayes classifier and lowest
for SVM.

The standard deviations are about 10 percent of the RMSE score and, although
they are pretty high, performing a paired t-test reveals that the differences between
the two segmentation methods are significant for all six classifications (p < 0.01).

Looking at the performances of the two classification methods at the level of
identifying the right segment, we see that the left branching method consistently
achieves better MICRO-F1 scores. This may seem odd, since the RMSE rates are
consistently better in the case of k-means clustering. Taking a closer look at the F1-
scores and distance errors per category reveals that this worse overall performance
is due to the lower scores for the ‘before’ categories closest to event time and those
categories contain the most instances. This can also be seen from the average F1
scores, which show the opposite effect. The better RMSE is reflected in the higher
F1-scores and lower distance errors for the categories far before event time. There

48

is especially a high improvement in the k-means clustering for categories 1 and 4.

Classifiers The SVM classifier outperforms k-NN and Naive Bayes by several
hours, with the lowest RMSE of 52.3. The responsiveness for SVM is the worst,
however, indicating that this classifier has a higher tendency to over-predict the
‘during’ and ‘after’ categories. Naive Bayes (with χ2) has the best responsiveness
of 82%. k-nearest neighbors has a better responsiveness of 3 to 4 absolute percent
compared to SVM, but the RMSE is increased by 7 or more hours, which leads to
an RMSE higher than the informed baseline in case of left branching.

The standard deviation is highest for k-nearest neighbors, and lowest for Naive
Bayes, for both segmentation methods. The k-NN classifier thus performs differ-
ently across the 10 folds. Compared to the 6-class baseline, the RMSE scores of
the six classifications are significantly different (p < 0.01). However, compared to
the informed baseline, only the RMSE scores of SVM (in all cases) and of Naive
Bayes with k-means clustering and Information Gain show a significant difference
(p < 0.01). For the other classifications the paired t-test revealed that p > 0.1,
except for Naive Bayes with k-means clustering and χ2 (p = 0.07). Compared to
both baselines all responsiveness results are significantly worse (p < 0.01).

Table 12.5: RMSE (hours) for the k-nearest neighbors classifier using left branching
and Information Gain. The responsiveness is given in brackets.

Alg. k RMSE σ

k-NN 1 62.7 (.78) 7.5
k-NN 3 55.8 (.69) 7.3
k-NN 5 56.1 (.51) 7.2
k-NN 7 55.1 (.30) 8.8

Looking at the RMSE by increasing k for k-NN in Table 12.5, we see a decreas-
ing RMSE compared to k = 1, but this is greatly a the expense of the responsive-
ness, which is only 30% for k = 7. This affirms our choice for k = 1.

Per segment, the F1-scores of SVM are always the best, for both left branching
and k-means. Naive Bayes scores better than k-NN for all ‘before’ classes. The
distance errors show that for both segmentation methods Naive Bayes has the
lowest errors for the first 5 ‘before’ classes, and then SVM takes over.

Feature selection methods Alternating the Information Gain and χ2 feature
selection method is most influential in the case of Naive Bayes, and significant

49

with p < 0.01. The RMSE of Information Gain is 1.1 (left branching) and 1.8 (k-
means) hours better than the RMSE of χ2, with only a 0.01 worse responsiveness.
However, the distance errors of χ2 are slightly lower for the first 5 classes. The
differences of the two feature selection methods are negligible and not significant
(p > 0.1) for the other classifiers, both for k-means and left branching.

Development of RMSE over time For the combination Naive Bayes and
Information Gain and for the combination SVM and χ2 for k-means clustering,
the RMSE per hour2 is plotted in Figure 12.4. In this graph the development
of the RMSE over time can be read, and we indeed see that the RMSE of events
further away is much higher. Besides that, we see that Naive Bayes has a tendency
to have lower RMSE than SVM for tweets further away from the event.

Figure 12.4: RMSE per hour for the k-means segmentation method. The x-as
reveals the hour that the tweet should be classified as.

12.4 Conclusions

In sum, this experiment shows that it is hard to predict an event that is still far
away; the best prediction was 52.3 hours off. There is a tendency to classify tweets
with the most frequent ‘during’ class, which is reflected in the increasing distance
error for tweets posted longer before the event. The standard deviation appeared
to be around 6 hours, which reveals that performance across the 10 different folds
is not consistent, especially for k-NN.

2The average of every 5 hours is taken.

50

The method of time segmentation and the chosen algorithm is important. We
saw that the categorization using the k-means method produces better results than
the left branching method. This can be explained by the fact that the clustering
for the k-means method takes into account content-based characteristics of event-
related tweets over time. In contrast, the left branching clustering assumes some
mathematical distribution of occurrences, by dividing the clusters in two. Looking
at the clusters in Table 8.1, we see therefore a, for humans, more natural clustering
scheme for the k-means clustering than for the left branching. For example, class
1 for left branching has the 12-9 days before the event, and for k-means the 11-6
days. Given that the football matches are played on Friday, Saturday or Sunday,
the ‘11-6’ category contains roughly the class for which the event will take place
‘next week’. The ‘12-9’ category, however, partly contains tweets for which the
event will take place ‘next week’, but class 2 (‘9-6’ days) has some tweets of this
sort as well. In sum, there is no explicit temporal word for this relatively small
class, that is far away of the event. Something similar shows up if you compare
class 5 (5 to 31 hours before event) of left branching, with class 4 and 5 (33-13
and 12-4 hours before event) of the k-means clustering. Actually, all classes of the
k-means clustering algorithm are pretty natural divisions to humans, whereas this
is thus not the case for the left branching scheme.

Investigating the different classifiers we see that k-nearest neighbors has an
overall worse performance. SVM has lowest RMSE and best MICRO-F1 scores,
but Naive Bayes has a better responsiveness. Furthermore, the distance errors
and RMSE per hour shows that Naive Bayes has better results for the classes that
contain tweets that are furthest away of the event. Since we ware most interested
in these tweets, Naive Bayes should definitely not be ignored. The different feature
selection methods do not really differ from each other.

51

Chapter 13

Using less data

In this chapter, we explore the results of the classification using less data, i.e. using
1) less data instances and 2) less features. The first investigation is interesting for
real-world situations where there is less data available. The second is interesting
because, as explained in Section 9, the choice of features for the classification is
very important , and it is not always the case that more means better. On top of
that, using less data generally will make the training and classification faster.

13.1 Using less instances

13.1.1 Using one third of the training set

In this part we investigate how results are influenced using only one third of the
data set to train on. We choose to randomly select a third of the training data
set, which gives us a set of 135,506 tweets. Then we repeat all the classifications
that were done in the previous section. To avoid an overload of data we will now
only give a short description of the evaluation in terms of F1-scores and distance
errors.

Left branching The F1-scores for the left branching segmentation show small
declines (most below 0.03) for each class and classification method. The MICRO-
F1 scores only dropped by 0.01 or 0.02. Looking at distance errors we again
see minor differences, especially for the three classes closest to the event and the
‘during’ class (classes 4-7). Taking a closer look per classifier, we see that Naive
Bayes is mostly affected; where training with all data leads to the best distance

52

errors for the first 5 classes for Naive Bayes in comparison to the other classifiers,
this difference is now almost gone.

k-means Investigating the F1-scores of the k-means segmentation, we find a
similar pattern. Looking at distance errors we see again that the scores of Naive
Bayes dropped the most, but only for the first two classes and the differences are
less. k-NN and SVM both show minor differences.

RMSE

The RMSE is given in Table 13.1. Comparing this with the RMSE using all in-
stances, we see that the performance is a bit worse, with on average a decline of
the RMSE of 1.9 hours. There is not much difference between the two segmenta-
tion methods, on average k-means is effected more by just 0.2 hours. Of the three
classifiers, k-NN is most effected. In contrast, the combination Naive Bayes and
Information Gain is hardly effected. Table 13.2 reveals that the differences clas-
sifying with k-NN are significant in all cases, with Naive Bayes only for k-means
clustering and with SVM only for Information Gain. Again, the best RMSE is
gained using k-means as categorization, using χ2 and SVM to train and the best
responsiveness is gained using Naive Bayes and χ2.

The responsiveness is not really influenced by the smaller data set, with differ-
ences below 0.03, but some of the differences are significant (see Table 13.2). We
see that the standard deviations, compared to training with the whole data set,
are larger for Naive Bayes and SVM, but lower for k-NN.

Table 13.1: RMSE (hours) for the left branching and k-means segmentations, using

all, one third and 1
30

th
of the training data. The responsiveness is given in brackets.

left branching k-means

all 1
3

th 1
30

th
all 1

3

th

Alg. FS RMSE σ RMSE σ RMSE σ RMSE σ RMSE σ

k-NN IG 62.7 (.78) 7.1 64.4 (.77) 6.8 67.9 (.75) 6.1 60.5 (.77) 6.6 62.7 (.76) 6.3

k-NN χ2 62.1 (.78) 6.8 65.0 (.77) 6.3 68.3 (.76) 6.3 60.6 (.77) 6.6 62.9 (.77) 6.3

NB IG 58.9 (.81) 5.2 59.3 (.80) 6.0 61.6 (.75) 6.6 56.6 (.81) 5.3 57.7 (.79) 5.7

NB χ2 61.0 (.82) 4.8 63.2 (.81) 6.1 62.5 (.76) 6.3 58.4 (.82) 4.8 60.8 (.81) 5.9

SVM IG 54.8 (.75) 5.3 56.6 (.75) 6.0 57.1 (.72) 7.3 53.3 (.74) 5.3 55.3 (.74) 6.4

SVM χ2 54.2 (.74) 6.0 55.7 (.74) 6.3 56.4 (.71) 7.3 52.3 (.73) 6.4 54.2 (.73) 6.4

53

Table 13.2: Results of the two tailed paired t-test, comparing RMSE and respon-

siveness (in brackets) using the whole data set with using 1
3

th
or 1

30

th
of the data.

If p > 0.05, results are shown in bold.

Left branching k-means
1
3

th 1
30

th 1
3

th

k-NN IG .000 (.000) .000 (.000) .000 (.000)

k-NN χ2 .000 (.000) .000 (.000) .000 (.001)

NB IG .819 (.000) .094 (.000) .044 (.000)

NB χ2 .127 (.080) .558 (.000) .010 (.286)

SVM IG .013 (.056) .097 (.000) .009 (.002)

SVM χ2 .173 (.305) .055 (.000) .141 (.059)

Summary As expected, the use of only one third of the training data worsened
the performance, but not very dramatically, and not all differences were significant.
The RMSE dropped between 0.4 and 2.9 hours, and the responsiveness was not
greatly affected. Looking at distance errors and F1-scores, Naive Bayes was mostly
affected for the first few classes.

13.1.2 Using only one thirtieth

To know how well the classifiers would be perform using only a small subset of
the training data, we did a short experiment for the left branching categorization

using only 1
30

th
of the training data (13,550 instances). The RMSE scores are

shown in Table 13.1, and we see that now results are getting worse; the RMSE
dropped by a couple of hours, but the difference, except for k-nearest neighbors,
is not statistically significant (see Table 13.2). The standard deviations are larger
as well, so the differences in performance between the folds are pretty high. The
responsiveness is significantly affected, by 0.02 to 0.06 percent. The F1-scores and
distance error show a similar effect; the F1-scores and distance errors dropped 3
to 4 times as much as they did going from all data to one third.

13.1.3 Conclusions

It can be concluded that using one third of the training data that was available
in this experiment, is sufficient. The additional 2/3 of the training data leads
to improvement, but not a dramatic one, and the improvements are not always
significant. The differences are rather small (0.4 to 2.9 hours) and they did not
contain any spikes. The responsiveness hardly increases using more data. On

54

average k-NN benefits the most of using more data.
Comparing the classification times (see Table 13.3), we see that it takes more

than 10 times as long to train the SVM classifier with the complete data set than
with 1

3
, and more than 5 times for k-nearest neighbors. So in experiments where a

small amount of data or less time is available, this classification is possible without
any large consequences.

Using a very small training set (of about 15,000 instances) has a greater impact
on the scores. The RMSE scores are 1.5 to 6 hours worse, and we see a significant
decline in responsiveness.

The classification time of SVM drops to 1 minute, SVM shows the smallest
declines and still scored better than baseline. So for fast experiments or to have
an indication about the classification using the SVM classifier this could be an
option.

Table 13.3: Classification times (in hours) of the three classifiers. The percentages
denote the percentage of the classification time of the main experiment.

SVM KNN NB
features # instances Time Percentage Time Percentage Time

10,000 all 13:19 100% 1:27 100% <0:01
1,000 all 5:18 39.8% 0:48 55.2% <0:01
100 all 0:54 6.8% 0:20 23.0% <0:01
10,000 1/3 1:08 8.5% 0:17 19.5% <0:01
10,000 1/30 0:01 .1% 0:01 1.1% <0:01

13.2 Using less features

It seems reasonable that the performance of the system will decrease using less
features to train with, like it was the case in the previous section using less training
instances. However, as explained in Chapter 5, using more features does not always
entails a better classification, due to overfitting. In the next section we will see how
the classification is influenced using only 1,000 or even 100 features to train with.
Again, we only give a short description of the evaluation in terms of F1-scores
and distance errors. We first provide the results of these evaluation measures for
left branching and k-means clustering for both 1,000 and 100 features, and then
compare the RMSE scores.

55

13.2.1 Left branching

1,000 features Investigating the F1-scores using 1,000 features to train with,
reveals that the differences with the main experiment are somewhat more capri-
cious then the differences were using less training instances. The scores now even
improve for some classes, namely for the classes 2 and 4. Still, the changes are not
very big. Comparing classifiers we see that the classification using SVM and χ2

has a larger decline than the classification using the other algorithms and feature
selection methods, which is reflected in a decrease in MICRO-F1 of 0.09. k-NN
seems to be least effected by the decrease in features.

Looking at distance errors, the errors of classes that are furthest away grew the
most, up to differences of 0.7. The k-NN classifier is hardly affected, whereas SVM
now follows a path more similar to that of k-nearest neighbors. The classification
using the Naive Bayes algorithm has again lowest distance errors for the classes
furthest away from the event. Remarkably, where the performances of χ2 and
Information Gain were very similar for all classifiers using 10,000 features, they
are now more disassociating from each other, with χ2 performing slightly better.

100 features In terms of F1-scores we see larger differences, up to declines of
0.29 and even some improvements of up to 0.12. Again, k-NN is least influenced
by the decrease in features, and the results for SVM generally decreased the most.
Looking per class, we see that the F1-scores of class 1, 3 and the ‘during’ class
dropped a lot and, in contrast, the scores of class 2 and 4 improved. The improve-
ments and losses of the k-NN and Naive Bayes algorithms are averaging, which
is reflected in the MICRO-F1 scores, whereas the MICRO-F1 score of the SVM
algorithm is a lot worse.

The first thing to notice when looking at the distance errors is that the slope
is much more steeper from class 0 to class 4, indicating that the classifiers are
heavily influenced by the large ‘during’ class. Furthermore, looking at the first
classes, we see that the differences between the algorithms are very small, but
this time differences between the feature selection methods have emerged. The
χ2 feature selection method has lower distance errors. This is in contrast with
the distance errors of the classification with 10,000 features, where the differences
between the distance errors of the classifiers were large, and not the differences
between the features selection methods.

13.2.2 k-means

1,000 features Exploring the F1-scores, we see improvements of up to 0.07
for class 1 and 4. Again, the SVM classifier has largest drops, where for the

56

other classifiers most of the F1-scores only changed by 0.01 (both positively and
negatively). The distance errors once again show that the performance of the SVM
classifier degrades to the performance of the k-NN classifier.

100 features The F1-scores of the k-means categorization show again, even
bigger, improvements for class 1 and class 4, whereas the F1-scores of class 0, 6
and the ‘after’ class decreased a lot. The SVM classifier has the worst scores for
each class compared to its performance with 10,000 features, which is mirrored in
the low MICRO-F1 scores.

The graph of the distance errors of the k-means segmentation shows similar
effects as the graph of the left branching segmentation.

So, in contrast with the decrease in training instances, a decrease in features
does not lead to a consistent worse performance for all classes.

13.2.3 RMSE

The RMSE in hours for the left branching and k-means segmentations using
10, 000, 1, 000 and 100 features are given in Table 13.4. Comparing 10, 000 fea-
tures with 1, 000 for the left branching method, we see that the RMSE is improved,
especially for Naive Bayes, for which the improvements are significant (see Table
13.5).

However, the responsiveness is now worse in all cases, and this difference is sig-
nificant (p < 0.01 in all cases). Especially the responsiveness for SVM decreases a
lot. The standard deviation scores are lower for k-NN, higher for SVM with Infor-
mation Gain as feature selection method, and for the other classification methods
it stayed almost the same.

Doing the same for the k-means method, we see a similar pattern. All RMSE
scores are again a bit lower than the RMSE scores of the main experiment, but for
k-NN and SVM with Information Gain this difference is not significant. For k-NN
responsiveness is least effected, whereas for the SVM classifier the responsiveness
of the SVM classifier is very negatively influenced by the decrease in features. All
differences in responsiveness are significant.

Using 100 features lowers the RMSE compared to the main experiment. How-
ever, this is at the expense of a big drop in responsiveness. For k-NN they drop
with around 0.1, and for Naive Bayes and SVM they even drop with around 0.2.
Where classification using the features selected by the χ2 algorithm often was the
best using 10,000 features, we now see that Information Gain has the best RMSE
scores. This can be surprising, because the distance errors were better for χ2, but
it can be explained by the fact that χ2 has a better responsiveness.

57

Table 13.4: RMSE (hours) for the left branching and k-means segmentations, given
for 100, 1, 000 and 10, 000 features. The responsiveness is given in brackets. Each
second row reveals the standard deviations.

Left branching k-means
Alg. FS 10,000 1,000 100 10,000 1,000 100

k-NN IG 62.7 (.78) 60.4 (.77) 56.5 (.67) 60.5 (.77) 59.4 (.76) 54.0 (.62)

σ 7.1 5.2 5.3 6.6 5.3 5.2

k-NN χ2 62.1 (.78) 60.0 (.76) 57.2 (.66) 60.6 (.77) 58.3 (.75) 54.3 (.60)

σ 6.8 5.9 5.2 6.6 5.6 5.4

NB IG 58.9 (.81) 55.9 (.78) 53.8 (.67) 56.6 (.81) 54.0 (.76) 50.7 (.64)

σ 5.2 5.6 6.1 5.3 5.3 4.6

NB χ2 61.0 (.82) 57.2 (.78) 59.2 (.63) 58.4 (.82) 54.2 (.76) 51.3 (.62)

σ 4.8 4.9 5.7 4.8 5.0 6.0

SVM IG 54.8 (.75) 53.8 (.66) 50.6 (.53) 53.3 (.74) 51.4 (.64) 49.6 (.53)

σ 5.3 6.7 6.3 5.3 7.0 6.7

SVM χ2 54.2 (.74) 52.3 (.64) 54.3 (.53) 52.3 (.73) 50.3 (.63) 51.1 (.51)

σ 6.0 6.0 6.0 6.4 5.9 7.9

Table 13.5: Results of the two tailed paired t-test, comparing the RMSE using
10,000 features to train with 1,000 and 100 features to train. If p > 0.05, results
are shown in bold. The results of the t-test for responsiveness show that p < 0.01
in all cases.

Left branching k-means
1000 100 1000 100

k-NN IG 0.158 0.002 0.124 0.000
k-NN χ2 0.015 0.002 0.009 0.000
NB IG 0.002 0.005 0.002 0.029
NB χ2 0.002 0.014 0.000 0.060
SVM IG 0.270 0.020 0.105 0.038
SVM χ2 0.217 0.734 0.036 0.442

58

The standard deviations for SVM and Naive Bayes are on average 1 to 2 hours
higher, whereas they are 2 to 5 hours lower for k-NN, and for this classifier all
differences are significant with p < 0.01. For SVM with χ2 the differences are
not significant (p > 0.1). Apparently the SVM with χ2 classification is not very
consistent across the folds.

13.2.4 Conclusions

Training with less features does not result in an overall worse performance, like
it was the case in the experiment where less data instances were used. The F1-
scores of some classes improved, of some lowered and of some stayed almost the
same. Often the RMSE score improved by a few hours, whereas the responsiveness
lowered, especially in cases of 100 features.

The choice of the feature selection method becomes more important; Informa-
tion Gain produces better RMSE scores and responsiveness.

The differences in standard deviations reveal that for k-NN the folds are per-
forming more consistent using less features, whereas for the other two classifica-
tion algorithms the performance is evidently generally less consistent and showing
higher standard deviations.

The influences of the decrease in features is different for the three classifiers.
For k-nearest neighbors it seems better to use 1,000 than to use 10,000 features,
especially bearing in mind the reduction in classification times (see Table 13.3).
In contrast, the SVM classifier produces very bad results (even if you bear in
mind that the classification time is reduced by more than 50 percent). Since the
classification times of Naive Bayes are very low in all cases, we do not have to take
them into account. Looking at responsiveness it is always better to use 10,000
features. However, except for the combination left branching and χ2, all RMSE
scores are better with smaller numbers of features. For Naive Bayes one thus has
to make a well-considered decision if one plans to use less features.

13.2.5 Clarification lower RMSE 100 features

Even with the decrease in responsiveness it still seems odd that the RMSE is
decreased using less features. Is it the case that, if we could improve the respon-
siveness (for example by hierarchical classification, see next chapter), the system
will produce better results in cases of training with less features? To answer this
question, we take a closer look at the classifications. For left branching, we calcu-
late the proportion of tweets in class 0 that is classified as ‘during’ or ‘after’, and
we calculate the same proportion for the classes 1 to 6 taken together. For the
k-means clustering we do the same, except that we take the proportion of class 0
and 1, and of 2-6 (because class 0 is smaller for k-means clustering). These will

59

be called ‘class Zero’ and ‘class One’ respectively (for both segmentation meth-
ods), and the results can be found in Figures 13.1(a), 13.1(b) (left branching) and
13.1(c) and 13.1(d) (k-means). The first thing which strikes one is that generally
the error of class Zero grows faster than the error of class One. This is already
an explanation for the decrease in RMSE: we saw that on average the RMSE of
the first classes is much higher than the RMSE of the classes closest to event (see
Figure 12.4). So, if relatively more instances that belong to the classes furthest
away of the event are classified as ‘during’ and ‘after’, and thus not included in
the calculation of the RMSE, the RMSE will decrease automatically. Since we are
most interested in the classes that are 1 or 2 weeks away of the event, this lower
RMSE is not very satisfying.

The fact that Information Gain has lower RMSE in all cases can be explained
by these graphs as well: we see that for class Zero, for each classifier the amount
of cases that is classified as ‘during’ or ‘after’ is higher for Information Gain than
for χ2, whereas for class One it is the opposite, except for k-NN. But there we see
that the difference in RMSE between the two feature selection methods is only
0.3.

Moreover, taking a closer look at the Naive Bayes classification for the left
branching segmentation and using 100 features, we see, in the case of using In-
formation Gain as feature selection method, that more instances are classified as
‘during’ or ‘after’ than in the case of using χ2 for class Zero, whereas for class One
we see an opposite effect. If we now compare the RMSE scores, we see that the
RMSE using Information Gain is much lower than the RMSE of χ2 (53.8 vs 59.2).
A similar pattern is found generally: in cases were relatively more instances that
belong to class Zero are classified as ‘during’ or ‘after’ and relatively less instances
that belong to class One, the RMSE improves.

In sum, it does not seem to be the case that in case of using only 100 features,
once instances are classified as ‘before’, the classification will be better. Instead,
the instances that are harder to predict, in other words the instances that had
high RMSE in the main experiment, are dismissed.

60

(a) Left branching, class Zero

(b) Left branching, class One

(c) k-means, class Zero

(d) k-means, class One

Figure 13.1: Proportion of tweets that is classified as ‘during’ and ‘after’

61

Chapter 14

Hierarchical classification

One of the major issues of the classification is the large ‘during’ class, which bi-
ases all classifiers. Hierarchical classification might offer a solution, where we first
use a classifier that separates ‘before’ tweets from ‘during’ and ‘after’ tweets, and
then further classify these ‘before’ tweets. The obvious advantage is that during
the second step the large ‘during’ class cannot influence the results anymore. The
disadvantage is that tweets that are wrongly classified in the first layer of classifica-
tion as ‘during’ or ‘after’ are discarded, and some tweets will be wrongly classified
as ‘before’ in this first step. Another disadvantage of hierarchical classification is
that it takes more effort. To restrict the amount of data, we confined ourselves to
the k-means segmentation, using only the Naive Bayes and SVM classifier, since
these showed the best results in the main experiment.

14.1 First layer of classification

Table 14.1: Responsiveness and F1-scores of the first step of hierarchical classifi-
cation.

Responsiveness F1-score
Alg. FS before during & after before during & after

NB IG .83 .76 .78 .79
NB χ2 .83 .75 .78 .79
SVM IG .75 .86 .78 .83
SVM χ2 .75 .86 .78 .83

62

The responsiveness and F1-scores of this classification are given in Table 14.1.
Looking at responsiveness, we see that Naive Bayes performed better for the ‘be-
fore’ class, and SVM for the other class. Looking at F1-scores there is no difference
between the two classifiers for the ‘during’ class, but SVM has the best scores of
0.83 for the ‘during’ and ‘after’ class. The differences between the two feature
selection methods are negligible.

14.2 Second layer of classification

Figure 14.1: Distance errors of the hierarchical classification.

After the first step we further classify the ‘before’ class into the (to us) familiar
seven categories. Besides using the same classifier for each of the two layers, we
also investigate how the performance would be using Naive Bayes for the first layer
and SVM for the second layer. The responsiveness of Naive Bayes was highest in
the previous experiments, and the SVM classifier had best RMSE scores. So in
this way we hope to combine the advantages of the two classification algorithms1

which we write as ‘NB,SVM’. The F1-scores are given in Table 14.2. All F1-scores
of the before categories improved slightly (between 0.02 and 0.06), compared to
their equivalent of the main experiment.

We see in Figure 15.1 that the distance errors reduced compared to the dis-
tance errors of the main experiment, and that the improvements were biggest for
class 0 and class 1 (0.6 - 0.7). For the other classes, the improvement decreases

1We also did this the other way around, and indeed the scores (especially responsiveness) were
worse compared to using the same classifier for both layers, and will therefore not be presented.

63

Table 14.2: F1-scores of the second step in hierarchical classification. The small
numbers reveal the standard deviations.

before during after
0 1 2 3 4 5 6 7 8 M-F1

NB IG 0.24 .06 0.32 .07 0.27 .02 0.24 .05 0.48 .05 0.47 .04 0.54 .02 0.10 .01 0.34 .03 0.46 .01

NB χ2 0.24 .07 0.31 .08 0.27 .03 0.24 .04 0.48 .05 0.47 .03 0.54 .02 0.10 .02 0.33 .02 0.46 .01

SVM IG 0.28 .07 0.40 .06 0.33 .03 0.32 .03 0.61 .05 0.46 .04 0.61 .02 0.52 .03 0.38 .04 0.53 .02

SVM χ2 0.28 .07 0.40 .07 0.33 .03 0.33 .05 0.61 .06 0.46 .04 0.61 .02 0.52 .03 0.38 .03 0.53 .02

NB, SVM IG 0.29 .07 0.41 .07 0.35 .03 0.34 .04 0.62 .05 0.47 .04 0.65 .02 0.29 .03 0.31 .02 0.56 .02

NB, SVM χ2 0.28 .07 0.41 .07 0.35 .03 0.34 .05 0.63 .06 0.47 .04 0.65 .02 0.30 .03 0.29 .02 0.56 .02

continuously from class 2 in steps of about 0.15 to 0.1 for the last ‘before’ class.
We again see that Naive Bayes has the best distance errors for the first 5 classes.
For class 4 and 5 they are similar for all the classifications, and then the NB,SVM
path has the best scores.

Looking at the RMSE for the NB and SVM classification, we see that all
RMSE scores improved by approximately 1 hour compared to their equivalents
in the main experiment, but that the responsiveness decreased by 0.4%, both
significantly (p < 0.01). However, the standard deviations are a bit lower in the
main experiment.

For the hierarchical classification using both Naive Bayes and SVM, we see
almost the same scores as in the case training with SVM in both layers. Comparing
these RMSE scores to the SVM and Naive Bayes scores of the main experiment,
reveals that (although the differences are rather small) they are significant in all
cases, except comparing with SVM in case of Information Gain (p = 0.119). The
differences in responsiveness are always significant.

Table 14.3: RMSE and responsiveness for the hierarchical classification. Respon-
siveness is given in brackets.

Algorithm FS RMSE k-means σ RMSE k-means main experiment σ

NB IG 55.5 (.78) 5.5 56.6 (.81) 5.3
NB χ2 57.3 (.78) 5.1 58.4 (.82) 4.8
SVM IG 52.5 (.70) 5.6 53.3 (.74) 5.3
SVM χ2 51.4 (.69) 6.6 52.3 (.73) 6.4
NB, SVM IG 52.0 (.70) 6.0
NB, SVM χ2 51.7 (.70) 6.4

64

14.3 Conclusion

For the F1-scores and especially the distance errors of the ‘before’ classes, the
results were better. In terms of RMSE and responsiveness, the hierarchical classi-
fication did not make great improvements. The RMSE was somewhat better, but
the results of the responsiveness were slightly worse. The scores of the responsive-
ness are mostly decided in the first layer of classification. If we can improve this
layer of classification, then it might become useful to do the hierarchical classifi-
cation.

65

Chapter 15

Characters as features

Unfortunately, the hierarchical classification did not lead to great improvements.
So we start to think about other changes that we could make to the classifica-
tion, that possibly could improve the classifications. In Twitter messages the use
of acronyms, emoticons and misspellings is ubiquitous, so maybe we should not
choose words as features. Instead, we could utilize character-based n-grams [20].
In order to do this, we extract all 2-,3-,4- and 5-grams that appear more than 50
times, which gives us 81,444 features. Then we apply the same procedure as with
the ‘normal’ features, using the k-means segmentation with χ2, and classifying
with all three algorithms.

15.1 Results

Sadly, the training with the SVM classifier took over a month, and then we stopped
it. Given that the other classifications never took more than 2 days, this was
really surprising. Apparently, the SVM classifier could not find support vectors
that could properly distinguish the classes. These problems did not arise for Naive
Bayes and k-nearest neighbors.

15.1.1 F1-score and distance error

The F1-scores of the Naive Bayes and k-nearest neighbors classification are dis-
played in Table 15.1. The scores are worse for all classes (except for the ‘during’
class with k-NN). Moreover, the results for the ‘during’ and ‘after’ class are really
bad in case of the Naive Bayes classifier. The distance errors for the k-nearest

66

neighbors classification display a similar result as in the main experiment. How-
ever, the distance errors for Naive Bayes are totally different; we no longer see the
big influence of the ‘during’ class. Instead, all distance errors are around 2 for the
classes at the edges, and around 1 for the middle classes.

Figure 15.1: Distance errors of the classification using characters as features.

Table 15.1: F1-scores training with characters as features. The first and third row
reveal the scores using characters as features, the second and fourth row the scores
using words as features (as in the main experiment). The small numbers reveal
the standard deviation.

before during after M-F1
Alg. FS 0 1 2 3 4 5 6 7 8

NB χ2 .10 .04 .17 .07 .11 .02 .09 .02 .40 .05 .41 .04 .23 .02 .12 .01 .29 .04 .25 .01

NB χ2 .21 .06 .27 .09 .24 .03 .21 .04 .44 .05 .45 .03 .48 .01 .58 .02 .53 .04 .46 .02

k-NN χ2 .10 .04 .18 .05 .16 .03 .16 .03 .28 .04 .30 .03 .40 .01 .68 .02 .32 .02 .42 .02

k-NN χ2 .11 .04 .23 .06 .20 .02 .18 .03 .34 .03 .33 .02 .48 .01 .63 .03 .41 .03 .44 .02

67

15.1.2 RMSE

The RMSE score for k-nearest neighbors actually improved, with only a small, but
significant, decrease in responsiveness. However, the improvement is not signifi-
cantly different (p = 0.380). In contrast, the responsiveness of the Naive Bayes
classifier (significantly) increased to 0.89, bringing along a (significant) increase in
the RMSE of 15.6, more than half a day.

Table 15.2: RMSE of the k-means segmentation with χ2 as feature selection
method, using characters as features.

Alg. RMSE σ RMSE main experiment σ

k-NN 57.3 (.75) 8.7 60.6 (.77) 6.6
NB 74.0 (.89) 6.3 58.4 (.82) 4.8

Adding up these results we see that k-nearest neighbors performs almost the
same as in the main experiment, even having a slightly better RMSE, but this dif-
ference is not significant and the standard deviation is higher. In contrast, Naive
Bayes performed totally different. The classifier is not skewed by the ‘during’ class
anymore, instead it seems to have distributed the tweets approximately equally
between the classes. Unfortunately, this did not results in a better RMSE, but in
a much worse RMSE (74.0), although the responsiveness is higher (89%).

How can the scores be explained? The k-NN classifier finds the nearest neigh-
bors of a test instances. Using characters as features, each instance will have more
features. It could be the case that in this way k-NN classification can be improved,
because better prototypes can be find in the training data.

On the other hand, because each tweet has so many overlapping features, the
features are rather dependent instead of independent, which could be an expla-
nation of the worse Naive Bayes scores. Naive Bayes is known to perform poorly
when features are highly correlated.

68

Chapter 16

Humans vs computer

In earlier chapters we saw how the classification results are changed using different
classification procedures. The best results in the main experiment were better
than baseline results, but still not very satisfying. To be able to better judge
the outcomes of the experiments, we investigate how well our systems perform in
comparison to human judgments on estimating the time-to-event of single tweets.
To have an indication, we carry out a small-scale experiment. We extract 500
tweets randomly, and from those we pick 80 tweets spread more or less realistically
in time, with at least 9 instances in each of 6 selectively chosen categories: 7 days
or more before event time, 4 to 7 days before event time, 3 to 1 days before event
time, the day of the event, during the event and after the event. We choose these
day-based categories because they would better align with human intuition. For
example, a category like 9 to 12 days does not have any general temporal words in
the Dutch language, whereas the category ‘more than 7 days’ has (f.e. next week).

The 9 participants1 have to decide for each tweet to which of the 6 categories
it belongs. We exclude one man of the participants because his answers do not
adhere to the required format. We additionally ask the participants how certain
they were about their answer on a scale from 0 (certain) to 2 (uncertain).

The human performance is scored by calculating the average percentage correct
judgments for each category, the F1-score (based on the majority category given
to each tweet), the distance error and average certainty of the participants for each
category. Results are listed in Table 16.1.

The results show that humans have more difficulties (like computers) and are
less certain in predicting the time-to-event when the event is still far away, espe-

1The group participants consisted of 5 men and 4 women, with an average age of 28 and
median age of 24.

69

Table 16.1: Comparing the prediction accuracy of humans vs. the best system

> 7 4-7 1-3 0 during after average

Humans Percentage correct .56 .30 .61 .74 .80 .65 .64
F1-score .56 .38 .64 .56 .77 .67 .69

Distance error .93 1.27 .53 .33 .22 .61 .58
Certainty 1.22 1.14 .76 .37 .22 .43 .62

SVM,χ2 Percentage correct .27 .30 .46 .50 .96 .56 .51
F1-score .40 .32 .56 .62 .68 .56 .58

Distance error 2.27 1.90 .73 .56 .04 .56 .84

cially for the penultimate time category. The distance errors are all below 1.3,
which means that on average the predictions are maximally one category away
from the correct category. Comparing the results to SVM with χ2 feature selec-
tion (the best system in the main experiment) applied to these broad categories
and tested on the same 80 tweets, we see that humans almost always outperform
this system in terms of F1-score and distance error. Especially the category > 7
days before event time is better predicted by humans.

Looking at Table 16.2 and comparing human predictions to the predictions of
our best system we can see that the RMSE of the human performance is con-
siderably worse than the performance of the system, but that the responsiveness
is much higher. Thus, humans are able to distinguish ‘before’ tweets from ‘dur-
ing’ and ‘after’ tweets more accurately than SVM, which overpredicts the ‘during’
class. The worse RMSE does not automatically mean that humans did much
worse. They classified the category > 7 days before event time more accurately,
but this class has a very broad range (all tweets before 7 days or 168 hours) so the
RMSE remains high.

Table 16.2: RMSE and responsiveness of the human experiment

RMSE responsiveness

SVM, χ2 62.1 .58
Humans 95.6 .92

Summarizing, the results of this experiment show that there is much room left
for computers to improve their responsiveness, and their predictions of the tweet
posted long before the event.

70

Part V

Conclusion

71

Chapter 17

Discussion

From the results presented in previous chapters we can conclude that our approach
to the classification of tweets over time outperforms baseline methods, but that
there still is much room for improvement. The best RMSE in the main experiment
is 52.3 hours, which amounts to just over two days. To predict an event with an
error of 2 days that is still far away is pretty good, but for an event that starts
within a couple of hours (which most event mentions in the tweets did) this RMSE
is not useful. We will now discuss some points that emerged from the investiga-
tions.

It is hard to predict an event that is still far away, which is indicated
by the evaluation measures. This can be explained in several ways. One is the
fact that there is considerably less training data for these categories, which may
bias the classifier to opt for the majority classes. Second, these tweets may be
more diverse in content. Third, temporal words are less precise when they refer to
longer time spans.

The regression-based study by Hürriyetoglu et al. [11] found a best
RMSE of 43 hours, which is almost 10 hours better than the RSME of 52.3 hours of
our study. However, Hürriyetoglu et al. only used events (football matches) with
the same starting day and time, whereas our football matches started at different
days (Friday, Saturday and Sunday), and times (from 12:30 pm to 8:45 pm). On
top of that, only the tweets of 8 days or less before the event were collected. This
could explain the better RMSE. All in all, both a regression based as the classifi-
cation based procedure applied in our thesis are interesting for further research.

72

The calculation of the RMSE that excludes from the RMSE calculation
of tweets classified as ‘during’ or ‘after’ is a decision we made, and we had some
clear reasons therefore. First of all, we wanted to predict the time-to-event, and
this study was not interested in the hours that the classification of the ‘during’
and ‘after’ tweets is off. Secondly, the ‘after’ class is not further divided into
classes, so the RMSE of instances will still be high, even if they are classified
correctly. Thirdly, it is harder to know what caused the better (or worse) RMSE.
Is it because the large (and rather small) ‘during’ class was better classified? That
is not what we are primarily interested in. Next to the RMSE we introduced
the responsiveness, since only reporting the RMSE of the ‘before’ classes is not
sufficient, because then we are not informed about the amount of ‘before’ tweets
that is classified as ‘during’ or ‘after’.

However, classifying a tweet from 1 week before the event as ‘during’ is worse
than doing so for a tweet from 1 hour before the event, but these tweets are
‘punished’ equally in this way.

Current study was an exploratory study, and for this purpose current evalu-
ation is sufficient to give a general view of the performance of the classification
procedures. For a deeper analysis other or adapted evaluation measures should be
thought of.

The standard deviations revealed that not all 10 folds performed equally.
We chose to create the folds based on, as we called it, ‘leave-six-events-out’ cross-
validation. As a result not every training and test fold had an equal amount of
tweets, because not every match produced an equal amount of tweets. This fact
can explain the differences in the evaluation, knowing that the amount of training
data has influence on the results.

The performance of the informed baseline suggests that if real effort
is put into the selected features and accompanied categories, it could be compet-
itive with the fully automatic methods discussed above. Especially compared to
the Naive Bayes and k-nearest neighbors classifications, the RMSE is less than 5
hours off, combined with a better responsiveness. However, the informed base-
line has some drawbacks. Firstly, improving the performance of this classifier (i.e.
selecting more and better features), will cost a lot of time and effort of human
labor. Secondly, possibly underlying characteristics that are hard for humans to
discover can be missed. Thirdly, the better responsiveness is mostly explained by
our choice of classifying all tweets that do not contain any of the selected features
as class 6. Lastly, it is expected to generalize poorly to new event domains.

73

The method of segmentation of the tweets over time can make big dif-
ferences. The k-means segmentation has a significantly better RMSE for all pro-
cedures, with roughly the same responsiveness for both segmentation methods. It
appeared that this was mainly due to the better classifications of the tweets posted
far away from the event.

Training with different classifiers reveals that the choice of classification
algorithm is important. The SVM classifier, which has been recognized as one of
the most effective for text classification, had generally lowest RMSE rates. On
the other hand, the Naive Bayes algorithm - although being a relatively simple
algorithm - shows pretty good results as well, separating the best ‘before’ tweets
from ‘during’ and ‘after’ tweets. On top of that, Naive Bayes generally had lower
RMSE scores for tweets that are posted far away of the event, and is really fast.
The k-nearest neighbors classifier showed worst performance, indicating that this
classifier is not appropriate for this high-dimensional classification. Using less data
to train with, similar patterns were observed. In contrast, using less features, the
decrease in responsiveness for SVM is higher than for the other two classifiers, and
k-NN has much lower RMSE scores than in the main experiment. Thus, especially
SVM cannot handle classification with few features.

Training with less data showed that a training database of 140 thousand
tweets is sufficient, but more data will aid the classifier in making better classi-
fications, as we saw in the main experiment using 400 thousand tweets to train
with. Using less than 20 thousand tweets is not sufficient. In general, the per-
formance will plateau at some amount of data, which appears to be somewhere
below a training set of 140 thousand tweets. After the plateau is reached, (small)
improvements can still be made by only using more data.

Training with less features results in a big drop in responsiveness, and this
went, surprisingly, hand in hand with better RMSE scores. However, analyzing
these RMSE scores revealed that this was mostly due to the fact that relatively
more tweets of the classes furthest away from the event were classified as ‘during’
or ‘after’, and in this way not included in the calculation of the RMSE.

Training with different feature selection methods has a mild influence
on results. Training with 10,000 features, Information Gain gives better results
if trained with Naive Bayes, whereas χ2 gives slightly better results for the other
two classifiers, and this pattern is observed for both segmentation methods. How-
ever, the differences between the feature selection methods are maximal 2 hours

74

only. Thus, our approach in the main experiment to the classification seems to be
robust against these feature selection methods Investigating the same experiment
and training with less features reveals that the choice of feature selection becomes
more important, which is not surprisingly. It was however not the case that one of
the feature selection methods consistently achieved the best results both in terms
of RMSE and responsiveness.

The hierarchical classification was promising, but unfortunately results
did not greatly improve. The best RMSE was lowered to 51.4, but this was at the
cost of the responsiveness. The largest reduction in responsiveness emerged in the
first step of the classification. If we can improve this layer of classification, then it
might become useful to do the hierarchical classification. The study by Kunneman
et al. [13] showed better results in the separation of the before tweets, so this is
feasible if put more effort to it.

Using character n-grams as features caused opposite effects: the perfor-
mance of the k-nearest neighbors classifier increased, whereas for Naive Bayes the
RMSE worsened by more than 15 hours, but at the same time the responsiveness
improved to 0.89. Thus, especially for the (first step of) hierarchical classification,
the use of these features can be promising in combination with the Naive Bayes
classification. Furthermore, a classification with a combination of the two kinds of
features would be interesting to investigate.

17.1 Future research

Altogether, this thesis prepared the way for the adoption of further investigations,
and pointed out which directions to take and which not. Some ideas for further
studies will be presented.

Diverse events In order to be used in practice, more diverse events should be
considered. In this thesis, only tweets that mentioned events that refer to football
matches played in the Eredivisie are used to train and test with. The next step
would be to test the system at different kinds of events, and ultimately at unsched-
uled events, in order to assist journalist, the police, etc. Classifying unscheduled
events gives rise to the problem of collecting tweets about events. We collected
tweets that referred to a specific hashtag, but then that is of course not possible
anymore. In the section about related research the article about ‘obtaining break-
ing news’ a method is described to do this (or see article [29]).

75

Optimizing k-means clustering The k in k-means clustering was chosen so
that both the left branching and the k-means clustering would have the same num-
ber of classes. This of course does not have to be the optimal k. Maybe it is better
to segment the tweets in more, or indeed less segments. Having more classes can
decrease the RMSE for the classes furthest away of the event, but then it can be
expected that the F1-scores and distance errors will decrease. A proper balance
between these two considerations must be stricken. Another point in optimizing
the k-means clustering could be to begin the calculation of the clusters with dif-
ferent starting points, and see what kind of clusters then will be produced.

Hierarchical classification The influence of the ‘during’ class was very high
in the experiments. A solution we came up with is the hierarchical classification.
Indeed, the per class analysis showed an improvement, and the RMSE was lowered
as well. Sadly, this was at the cost of the responsiveness, which is mostly decided
in the first step of hierarchical classification. As the study by [13] showed, this
responsiveness can at least be improved up to 0.88.
Another layer of classification could be a processing module that extracts spe-
cific date mentions. The inaccuracy of temporal words referring to longer periods,
makes that people will use exact dates (4th of November) instead of phrases like
next week. Besides that, in the data base we found some tweets containing mes-
sages like ‘nog 15 uur en 17 minuten tot #psvaja’ (still 15 hours and 17 minutes to
go till #psvaja). Seeing this tweet, humans know exactly when the event will take
place, but the computer does not, unless language-specific rules are created that
extract these time expressions and normalize them to a time-to-event estimate..

Evaluation in terms of RMSE As said in the discussion, an RMSE of two days
can be pretty good in cases of events far away, whereas it is not useful for events
that happen within a few hours or days. The introduction of a relative RMSE, that
in some way gives higher punishments to events that are closest to event, could
be a better evaluation measure. This has the further advantage that the RMSE
cannot simply be lowered by classifying relatively more tweets that are far away
of the event as ‘during’ or ‘after’. As we saw for 100 features, this decreases the
RMSE (since these are not counted anymore in current calculation of the RMSE).
This is not what we want to achieve, since in many real-world applications the
prediction of events some time ahead (weeks or more) will be of special interest,
more than events that are about to happen. Besides that, as said in the discussion,
the current calculation of the RMSE fails to give higher penalties in some cases.
So for a more fine-grained analysis this should be taken into account to improve
the evaluation.

76

Features One of the characteristics of words in tweets is that they often con-
tain misspellings, abbreviations, etc. In the experiments we just used all words
as features, without applying tokenizaton. So for example the features ‘vnvnd’
and ‘vnvd’ (both meaning 2nite), are treated as two different features, whereas
they actually mean the same. However, we should not ‘overfit’ the tokenization:
it could, for example, be possible that tweets that are posted further away of the
event contain less misspellings than tweets that are posted right before the event,
because people have more time to write the tweet. Apart from that, a combina-
tion of the bag-of-words features and character features could be used to train the
classifier. As an extra feature the frequency of a character in a tweet could be
added, because for characters it is more plausible that certain features will appear
more than once in a tweet.

Individual tweets Even improving the classification, it seems reasonable that
there will always be tweets that do no contain any information – in whatever form –
about the time-to-event. Instead of classifying individual tweets, classifying groups
of tweets that are posted in the same time span could circumvent this problem.

77

Chapter 18

Main conclusions

The scores for the different classes indicate that it is hard to predict an event that is
still far away. There is a tendency to classify tweets with the most frequent ‘during’
class, which is reflected in the increasing distance error with tweets posted longer
before the event. There may be several factors at play. First, the fact that there is
considerably less training data for these categories hinders their learnability and
may bias the classifier to opt for the majority class in case of doubt. Second,
earlier tweets may be more diverse in content. Tweets posted closer to the match
often focus on the match, whereas tweets posted earlier deal with various other
aspects of the event, such as buying tickets, logistics, inviting friends, etc. Third,
temporal words are less precise when they refer to longer time spans.

The method of time segmentation is important. We saw that the categorization
using the k-means method produces better results than the left branching method.
We explained this by the fact that k-means clustering takes into account content-
based characteristics of event-related tweets over time, instead of assuming some
mathematical distribution of occurrences. On top of that, the distance errors of
the experiment with humans showed that there is room for improvement for these
tweets long before the event. The k-NN classification algorithm is not appropriate
for current experiments. On the other hand, SVM performs the best in terms of
RMSE, but Naive Bayes has a better responsiveness.

As expected, a decrease in training instances leads to an overall lower perfor-
mance, whereas using less features generally leads to a better RMSE. However,
this better RMSE is mainly due to the fact that relatively more instances of the
classes longer before the event are classified as ‘during’ or ‘after’, and therefore
not included in the calculation of the RMSE. Hierarchical classification and the
use of characters as features are methods beginning to address improvements to
the system, but work in these methods should be fine-tuned.

78

Part VI

Appendices

79

Appendix A

Tables

80

Table A.1: Top 30 of selected features for each of the two segmentation and
the two feature selection methods. The features ‘@omaamomentjes hoeveel’ and
‘@omaamomentjes’ for the χ2 feature selection method are very surprisingly. The
other features seem to be very reasonable.

ranking Left branching IG Left branching χ2 k-means IG k-means χ2

1 morgen zondag morgen morgen
2 zondag volgende week zondag zondag
3 volgende week volgende volgende week volgende week
4 volgende morgen vandaag volgende
5 naar week naar week
6 week kaarten volgende vandaag
7 kijken was kijken vanavond
8 was zaterdag week was
9 vandaag naar was naar
10 1-0 kijken vanavond kaarten
11 6-10 woorden vanavond 1-0 zaterdag
12 vanavond @omaamomentjes

hoeveel
vanmiddag kijken

13 wat een @omaamomentjes 6-10 woorden vanmiddag
14 1-5 woorden 1-0 wat een 1-0
15 uur vandaag 1-5 woorden voor morgen
16 straks weken straks matchday
17 vanmiddag 6-10 woorden uur morgen naar
18 rust slapen 21-25 woorden @omaamomentjes

hoeveel
19 21-25 woorden voor zondag rust @omaamomentjes
20 klaar matchday klaar 6-10 woorden
21 klaar voor wat een matchday straks
22 zin in straks klaar voor weken
23 zin hoeveel word zin in voor zondag
24 slapen uur zin slapen
25 matchday rust zaterdag wat een
26 zaterdag 21-25 woorden slapen uur
27 16-20 woorden klaar 16-20 woorden klaar
28 van 1-5 woorden van klaar voor
29 kaarten kaarten voor kaarten 1-5 woorden
30 wat vanmiddag wat 21-25 woorden

81

Table A.2: Words selected for the informed baseline.

Feature Translation Class Left branching Class k-means
morgen tomorrow 5 4
overmorgen the day after tomorrow 3 3
straks later 5 5
zo soon 6 6
zometeen in a little while 6 6
gisteren yesterday 8 8
volgende week next week 2 1
vanavond tonight 5 5
vandaag today 5 5
vanmiddag this afternoon 6 5
nu now 7 7
begonnen started 7 7
klaar ready 6 6
zondag Sunday 3 2
zaterdag Saturday 3 2
vrijdag Friday 3 2
komend weekend this weekend 2 1
volgend weekend this weekend 2 1
zodirect in a little while 6 6
1 (een) dag 1 (one) day 4 4
2 (twee) dagen 2 (two) days 4 3
3 (drie) dagen 3 (three) days 3 2
4 (vier) dagen 4 (four) days 3 2
5 (vijf) dagen 5 (five) days 3 2
6 (zes) dagen 6 (six) days 2 1
10 (tien) dagen 10 (ten) days 1 1
twee weken two weeks 0 0
een week one week 2 1
2 uur 2 hours 6 6
1 uur 1 hour 6 6
dag van day of 24 5
spannende dag exciting day 5 5
paar dagen couple of days 3 2
afgelopen finished 8 8
kaarten tickets 2 1
kaartje ticket 2 1
kaartjes tickets 2 1
tickets tickets 2 1
kijken watching 7 7
naar huis going home 8 8

82

Bibliography

[1] Sitaram Asur and Bernardo A. Huberman. Predicting the future with social
media. Computing Research Repository (CoRR), abs/1003.5699, 2010.

[2] Baharum Baharudin, Lam Hong Lee, and Khairullah Khan. A review of
machine learning algorithms for text-documents classification. Journal of Ad-
vances in Information Technology, 1(1), 2010.

[3] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training
algorithm for optimal margin classifiers. In Proceedings of the fifth annual
workshop on Computational learning theory, COLT ’92, pages 144–152, New
York, NY, USA, 1992. ACM.

[4] John D. Burger, John Henderson, George Kim, and Guido Zarrella. Dis-
criminating gender on twitter. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP ’11, pages 1301–1309,
Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.

[5] Cheyanne Church and Mark M. Rogers. Designing for results. Search for
Common Ground, Washington, 2006.

[6] Paul Earle, Daniel Bowden, and Michelle Guy. Twitter earthquake detection:
earthquake monitoring in a social world. Annals of Geophysics, 54(6):708–715,
2012.

[7] Paul Earle and Peter Shearer. Characterization of global seismograms using an
automatic-picking algorithm. Bulletin of the Seismological Society of America,
84:366–376, 1994.

[8] Daniel Gayo-Avello. “I wanted to predict elections”. Computing Research
Repository (CoRR), abs/1204.6441, 2012.

83

[9] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Prototype meth-
ods and nearest-neighbors. In The Elements of Statistical Learning, Springer
Series in Statistics, pages 459–483. Springer New York, 2009.

[10] Richard Holts, mar 2013. http://www.telegraph.co.uk/technology/

twitter/9945505/Twitter-in-numbers.html.

[11] A. Hürriyetoglu, F. Kunneman, and A. van den Bosch. Estimating the time
between twitter messages and future events. In Proceedings of the 13th Dutch-
Belgian Workshop on Information Retrieval (DIR 2013), number 986, pages
20–23, 2013.

[12] Andreas Jungherr, Pascal Jürgens, and Harald Schoen. Why the pirate party
won the German election of 2009 or the trouble with predictions: A response
to Andranik Tumasjan, Timm Sprenger, Philipp Sandner and Isabell Welpe:
Predicting elections with Twitter: “What 140 characters reveal about political
sentiment”. Social Science Computer Review, 30(2):229–234, 2012.

[13] F. Kunneman and A. Van den Bosch. Leveraging unscheduled event pre-
diction through mining scheduled event tweets. In Proceedings of the 24th
Benelux Conference on Artficial Intelligence, pages 147–154, Maastricht, The
Netherlands, 2012.

[14] S. Landau and B. Everitt. A Handbook of Statistical Analyses Using SPSS.
Statistics (Chapman & Hall/CRC). Chapman & Hall/CRC, 2004.

[15] Shoushan Li, Rui Xia, Chengqing Zong, and Chu-Ren Huang. A framework of
feature selection methods for text categorization. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of the AFNLP, volume 2
of ACL ’09, pages 692–700, Stroudsburg, PA, USA, 2009. Association for
Computational Linguistics.

[16] Christine Liebrecht, Florian Kunneman, and Antal Van den Bosch. The per-
fect solution for detecting sarcasm in tweets #not. In Proceedings of the 4th
Workshop on Computational Approaches to Subjectivity, Sentiment and So-
cial Media Analysis, pages 29–37, Atlanta, Georgia, June 2013. Association
for Computational Linguistics.

[17] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to Information Retrieval. Cambridge University Press, New York,
NY, USA, 2008.

84

http://www.telegraph.co.uk/technology/twitter/9945505/Twitter-in-numbers.html
http://www.telegraph.co.uk/technology/twitter/9945505/Twitter-in-numbers.html

[18] Viktor Mayer-Schonberger and Kenneth Cukier. Big Data: A Revolution That
Will Transform How We Live, Work, and Think. Houghton Mifflin Harcourt,
Boston, 2013.

[19] Simon McEvoy, jan 2013. http://www.relativelystraightforward.com/

post/40175883025/are-hashtags-the-new-sarcasm-mark-yeahright.

[20] Z. Miller, B. Dickinson, and W. Hu. Gender prediction on twitter using
stream algorithms with n-gram character features. International Journal of
Intelligence Science, 2(4A):143–148, 2012.

[21] D. Nguyen, R. Gravel, D. Trieschnigg, and T. Meder. “How old do you think
i am?”; a study of language and age in Twitter. In Proceedings of the Seventh
International AAAI Conference on Weblogs and Social Media, 2013.

[22] Nelleke Oostdijk and Hans van Halteren. N-gram-based recognition of threat-
ening tweets. In Conference on Computational Linguistics and Natural Lan-
guage Processing (CICLing) (2), pages 183–196, 2013.

[23] Irina Rish. An empirical study of the Naive Bayes classifier. In First Inter-
national Joint Conference on Artificial Intelligence workshop on “Empirical
Methods in AI”, 2005.

[24] Alan Ritter, Mausam, Oren Etzioni, and Sam Clark. Open domain event
extraction from twitter. In Proceedings of the 18th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, KDD ’12, pages
1104–1112, New York, NY, USA, 2012. ACM.

[25] Kirk Roberts, Michael A. Roach, Joseph Johnson, Josh Guthrie, and
Sanda M. Harabagiu. Empatweet: Annotating and detecting emotions on
twitter. In Proceedings of the Eight International Conference on Language
Resources and Evaluation (LREC’12), Istanbul, Turkey, may 2012. European
Language Resources Association (ELRA).

[26] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Tweet analysis for real-
time event detection and earthquake reporting system development. IEEE
Transactions on Knowledge and Data Engineering, 25(4):919–931, 2013.

[27] Eric Sanders and Antal Van Den Bosch. Relating political party mentions
on twitter with polls and election results. In Proceedings of the 13th Dutch-
Belgian Workshop on Information Retrieval (DIR), number 986, pages 68–71,
2013.

85

http://www.relativelystraightforward.com/post/40175883025/are-hashtags-the-new-sarcasm-mark-yeahright
http://www.relativelystraightforward.com/post/40175883025/are-hashtags-the-new-sarcasm-mark-yeahright

[28] Erik Tjong Kim Sang and Johan Bos. Predicting the 2011 dutch senate elec-
tion results with twitter. In Proceedings of the Workshop on Semantic Analysis
in Social Media, pages 53–60, Stroudsburg, PA, USA, 2012. Association for
Computational Linguistics.

[29] Jagan Sankaranarayanan, Hanan Samet, Benjamin E. Teitler, Michael D.
Lieberman, and Jon Sperling. Twitterstand: news in tweets. In Proceed-
ings of the 17th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, GIS ’09, pages 42–51, New York, NY,
USA, 2009. ACM.

[30] Rushdi Shams, aug 2011. http://rushdishams.blogspot.nl/2011/08/

micro-and-macro-average-of-precision.html.

[31] Beaux Sharifi, Mark-Anthony Hutton, and Jugal Kalita. Summarizing mi-
croblogs automatically. In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computa-
tional Linguistics, HLT ’10, pages 685–688, Stroudsburg, PA, USA, 2010.

[32] Andranik Tumasjan, Timm Sprenger, Philipp Sandner, and Isabell Welpe.
Predicting elections with Twitter: What 140 characters reveal about political
sentiment. International AAAI Conference on Weblogs and Social Media,
2010.

[33] C.J. Van Rijsbergen. Information Retrieval. Buttersworth, London, 1979.

[34] W. Weerkamp and M. de Rijke. Activity prediction: A twitter-based explo-
ration. In SIGIR 2012 Workshop on Time-aware Information Access, aug
2012.

[35] Allan P. White and WeiZhong Liu. Technical Note: Bias in information-based
measures in decision tree induction. Machine Learning, 15(3):321–329, 1994.

[36] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang,
Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S. Yu,
Zhi-Hua Zhou, Michael Steinbach, David J. Hand, and Dan Steinberg. Top
10 algorithms in data mining. Knowl. Inf. Syst., 14(1):1–37, December 2007.

[37] Yiming Yang and Jan O. Pedersen. A comparative study on feature selection
in text categorization. In Proceedings of the Fourteenth International Con-
ference on Machine Learning, ICML ’97, pages 412–420, San Francisco, CA,
USA, 1997. Morgan Kaufmann Publishers Inc.

86

http://rushdishams.blogspot.nl/2011/08/micro-and-macro-average-of-precision.html
http://rushdishams.blogspot.nl/2011/08/micro-and-macro-average-of-precision.html

[38] Sheng Yu and Subhash Kak. A survey of prediction using social media. Com-
puting Research Repository (CoRR), abs/1203.1647, 2012.

[39] Siqi Zhao, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. Human
as real-time sensors of social and physical events: A case study of twitter and
sports games. Computing Research Repository (CoRR), abs/1106.4300, 2011.

87

	Introduction
	Research question
	Relevance to CAI
	Position in the field of CAI

	Outline

	I Twitter
	Twitter characteristics
	Research
	Tweets as (real-time) sensors of events
	Detecting sport games
	Obtaining breaking news
	Earthquake detection
	Augmenting information about planned events with Twitter

	Predicting popularity and outcomes
	Box-office revenues
	Election prediction

	Future events
	Predicting popular events in the near future
	Open domain event extraction
	Predicting time-to-event

	Summary

	II Technical overview
	Text classification
	Feature selection
	Information Gain
	Chi Squared

	Classification methods
	Naive Bayes
	k-nearest neighbors
	Support Vector Machines
	Introduction
	Formal definition

	Summary

	III Experimental set up
	Data collection
	Data representation

	Categorization
	Left branching
	k-means clustering

	Features
	Number of selected features

	Evaluation
	RMSE
	Standard deviation
	F1-score and distance error
	F1-score
	Distance error

	Baseline

	Software

	IV Results
	Main experiment
	Left branching
	k-nearest neighbors

	k-means clustering
	Comparison
	Conclusions

	Using less data
	Using less instances
	Using one third of the training set
	Using only one thirtieth
	Conclusions

	Using less features
	Left branching
	k-means
	RMSE
	Conclusions
	Clarification lower RMSE 100 features

	Hierarchical classification
	First layer of classification
	Second layer of classification
	Conclusion

	Characters as features
	Results
	F1-score and distance error
	RMSE

	Humans vs computer

	V Conclusion
	Discussion
	Future research

	Main conclusions

	VI Appendices
	Tables

	Bibliography

