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4 CONTENTS

Abstract

This thesis is an elaborate account of the theory of partial combinatory algebras (pcas) and their
associated categorical structures called categories of assemblies and realizability toposes. From the
viewpoint of “abstract Turing machines”, we build up the theory of pcas, generalizing some con-
structions from ordinary recursion theory, such as relative computability in an oracle (of type 1 and
higher). In later chapters, we show how this notion of generalized relative computability can be used
to study realizability toposes, with special attention to the effective topos. We also treat geometric
morphisms between realizability toposes, and fill in a gap in the theory of applicative morphisms
(morphisms between pcas) in relation to geometric morphisms.



Chapter 1

Introduction

This thesis contains a detailed account of the research that I have been doing for the past year as part of
my Master’s programme in Mathematical Sciences. In one sentence, I have studied certain categorical
structures that are associated to fundamental notions of computation. This short chapter serves as a
brief introduction to the material.

Mathematical notions of computation, or rather of computability, were first studied in a field
called computability theory, or recursion theory. It was founded around 1936 by work of Alonzo Church,
Alan Turing, Stephen Kleene, Emil Post and Kurt Gödel. Independently, they proposed several mathe-
matical models of computation, which were all found to produce the same set of computable functions.
Consequently, they established the first undecidability results, by showing the existence of problems
that “cannot be solved by mechanical computation”.

Intuitively, their notion of a computation coincides with “abstractly running a computer program”
written in a programming language like C or Python. With “abstractly”, we mean that one should
not worry about the amount of memory or any other physical constraint. Imagine such a computer
program: it takes an input, runs some algorithm, and either it eventually produces an output or it
keeps running forever. Both input and output are basically a string of 0’s and 1’s in the computer’s
memory, which is nothing more than just a number. Therefore, a computer program can be viewed as
a function N→N.

The set of those functions that can be computed by a computer program are called the recursive, or
computable functions. A function need not be defined on every number (on a certain input, a program
might loop forever), so such functions can also be partial. A result in computability theory defines this
set of functions independently of any notion of computation. It is the smallest set that includes the
basic arithmetical functions and is closed under composition, definition by recursion and unbounded
search.

One can view the above as an arithmetical or numerical approach to defining a computable func-
tion. However, a lot of the theory of computable functions, computability theory, or recursion theory, is
developed from another approach, which is rather combinatorical. Observe that computer programs
are also just strings of 0’s and 1’s stored in memory, so basically numbers. We can view computer
programs as numbers acting on numbers, yielding a number, or looping forever. Mathematically, this
is just a partial map N×N→ N. Therefore, computable functions “act on themselves”, whence the
name recursion theory. A good reference for classical recursion theory, which is worthwhile studying,
is [Rog87].

To define the above partial maps, one first needs to establish a notion of computation. One may
wonder whether we can provide axioms for them instead, yielding a recursion theory that is code-free.
This is one of the motivations behind the notion of a partial combinatory algebra (pca) , which we will
study in chapter 2. The definition of a pca is very simple, but very powerful: every non-trivial instance
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6 CHAPTER 1. INTRODUCTION

of such a pca computes all classical recursive functions N→N for some suitable coding. The account
presented here is based on the treatment in [vO08].

Several theorems and notions in classical recursion theory can be generalized to the theory of pcas.
For example, we can describe relative recursion (section 2.6), and effective operations (section 2.7). In
this thesis, we will also generalize a theory of recursive functionals due to Kleene to pcas (section
2.8.1).

We will also look at morphisms of pcas, and present a new definition of an important kind of mor-
phism: that of a computationally dense morphism. It turns out that there is connection between this
type of morphisms and relative recursion that we can describe in a process called lifting .

In chapter 3 we embark on more complicated structures that arise from pcas. There is a great sim-
ilarity between programming language semantics and those structures. Anyone who has ever learned
a programming language knows that data can have different types, for example one can deal with in-
tegers, floats, strings and even functions. A lot of programming languages admit the creation of new
types. The compiler of such a language then deals with the translation of these data types to numbers
on which we can perform computations and back. A mathematical analogue of this is the notion of
an assembly . It consists of a set X , to be viewed as “elements of type X ”, and a total relation E ⊆ X ×A,
where A is a partial combinatory algebra. So to each element of x, one or more elements of a pca are
associated on which we can perform computations. They are “representatives” of x in A. A function
f : X → Y that takes elements of type X and yields elements of type Y is then computable with respect
to A if it is computable on the underlying representatives.

The set of all such assemblies, together with the “computable” morphisms, form a category of as-
semblies on A, which we will define in section 3.1. It turns out that this category has a very rich and
interesting structure. Moreover, there is an interplay between morphisms of partial combinatory al-
gebras and functors between the corresponding categories of assemblies. This is studied in section
3.3.

A category of assemblies can be extended to a topos by completing it in a universal way. Toposes are
categories that provide enough constructions for “doing mathematics”, like the category of sets. They
are models of higher-order logic, and it is possible to define for example the real numbers, continuous
functions, etc. Different toposes give rise to different such models. For example, there are toposes in
which every function from the reals to the reals is continuous, but this is not true in every topos. It
makes them interesting to study from a logical viewpoint. Toposes have a strong geometrical nature,
so they establish a connection between geometry and logic in a very natural way (here [MLM94] is an
excellent introduction).

In chapter 4, we will describe the toposes that arise from categories of assemblies, called realiz-
ability toposes. The first-order logic of realizability toposes coincides with realizability , which is an
interpretation of constructive proofs based on partial combinatory algebras, and already described by
Kleene for ordinary recursion theory. A good reference for most of the theory on realizability and the
derived categorical-theoretic constructions is [vO08]. In this thesis, we give an extensive presentation
of the construction of a realizability topos on a partial combinatory algebra, and state the main results
on the connection between morphisms of partial combinatory algebras and morphisms between the
corresponding toposes. A recent result by Peter Johnstone [Joh13] is also included in this account.
Using our new definition of computationally dense morphisms, we can present these results in an
elegant way.

We will describe the connection between relative recursion as defined in section 2.6 and the cor-
responding realizability toposes. The notion of lifting allows us to partially characterize geometric
inclusions of certain realizability toposes (theorem 5.6.3), and especially subtoposes of the effective
topos (corollary 5.6.4).

This research project started with a question about a set of N-indexed functions defined in [vO],
called J -representable functions for a specific local operator J . We will show in theorem 5.5.4 that
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this set has a structure slightly weaker than that of a partial combinatory algebra. However, our theory
of recursion in a type 2 functional allows us to prove that it is isomorphic to a partial combinatory
algebra that happens to consist of precisely the hyperarithmetical functions (corollary 5.5.7).

This thesis is intended for someone with an interest in mathematical logic who already has some
acquaintance with category theory and foundations of mathematics. I hope it serves as a first intro-
duction to the theory of pcas, realizability and especially realizability toposes. Also, I hope that some
of my own ideas and viewpoints provide a lead for further research.





Chapter 2

Partial Combinatory Algebras

In this chapter, we start by defining the notion of a partial combinatory algebra and state the main
results that we will need. A lot of notation that is used in later sections is defined here.

One of the motivations for defining partial combinatory algebras is to axiomatize basic recursion
theory to some extent, in a code-free way. We’ll see that a lot of basic results, such as the recursion
theorem, can be shown in a more general setting. However, we’ll also see that a lot of the fine structure
of ordinary recursion is not captured by a partial combinatory algebra.

In section 2.5, we will discuss a notion of morphism between pcas called an applicative morphism.
Many properties of such morphisms that we will need in later chapters are introduced here. We also
suggest a generalization of applicative morphisms that fills a gap in the existing theory. This will turn
out to be useful in section 5.1.

Lastly we discuss a generalization of relative recursion for pcas in section 2.6. We will apply this
to effective operations in section 2.7. In section 2.8, we apply it to define a notion of computable
functionals for pcas, analogous to Kleene’s computable functionals.

2.1 History

Partial combinatory algebras are first described by Moses Schönfinkel in [Sch24]. It was an attempt
to resolve an issue in logic that arose from the use of variables and substitution. It is well-known that
naive set theory gives rise to paradoxes (like Russel’s paradox) that can only be resolved by looking
closely at the very foundations of set theory, or mathematics in general, and providing strict rules
(axioms) for the construction of sets.

In the same way, the “naive” use of variables and the concept of “substituting a variable by a value”
gives rise to paradoxes and problems in logic. The solution of Moses Schönfinkel, and also of Alonzo
Church with hisλ−calculus, was basically to eliminate them by defining a certain pre-logic, consisting
of terms that are combined using combinators that satisfy certain axioms. This leads to a very primitive
idea of what a function is. Substitution of a variable is replaced by application to another function.
Anyone familiar with a functional programming language might recognize this. There, “everything is
a function” by default, and there are no variables in a certain sense.

Church’s λ-calculus was invented around the time that his student, Alan Turing, defined the math-
ematical notion of a computation with what is now known as a Turing machine. Surprisingly, it turned
out that any function that was computable in Turing’s sense, was also computable in the λ−calculus.
In de 50s and 60s, it was Haskell Curry and his students who combined this fact with the work of Moses
Schönfinkel, giving birth to the field of combinatory logic. This ultimately led to the invention of func-
tional programming languages (that nowadays become increasingly useful). One of the most famous
of these is, historically sound, named Haskell.

9



10 CHAPTER 2. PARTIAL COMBINATORY ALGEBRAS

For the rest of this thesis, we will view partial combinatory algebras as “generalized Turing ma-
chines”, or very elementary programming languages. For more on combinatory logic and its origins, I
refer to [CF68].

2.2 Partial Applicative Structures

We start by defining a partial applicative structure, analogous to the treatment in [vO08].

Definition 2.2.1. Let A be a set. A partial applicative structure on A is a partial function A × A → A,
written (a,b) 7→ ab. Whenever ab is defined, we say that ab denotes, or write ab ↓.

If A is endowed with a partial applicative structure, we can define a set of terms T (A) . For V an
infinite set of variables, T (A) is the smallest set such that:

• A∪V ⊆ T (A)

• Whenever t , s ∈ T (A), (t s) ∈ T (A).

For t a term, write FV(t ) for the set of free variables in t . Whenever we write t (x1, . . . , xn) for t a term,
we mean FV(t ) ⊆ {x1, . . . , xn} and the substitution t (a1, . . . , an) has the obvious meaning and is a term.

Terms without free variables are called closed and can denote an element of A: for t ∈ T (A), we
write t ↓ a to express that t denotes the element a ∈ A. It is defined by:

• For all a ∈ A, a ↓ a.

• For terms t , s, if t ↓ b and t ↓ c, and bc ↓ in the applicative structure, then (t s) ↓ (bc).

Whenever there is an a such that t ↓ a, we write t ↓ to say that the term t denotes. For a closed term t ,
we write t ↑ if t does not denote.

Terms without free variables are just compositions of the applicative map. To improve readability,
I’ll write down explicit terms using the convention of associating to the left:

abc := ((ab)c).

For terms t , s, we write t ' s if t ↓ a iff s ↓ a for any a ∈ A. We write t - s if s ↓ a ⇒ t ↓ a. Also,
whenever we write t = s for closed terms t , s, we usually mean that there exists a such that t ↓ a and
s ↓ a.

Terms become interesting when we have combinatory completeness of the applicative structure.

Definition 2.2.2. A partial combinatory algebra, or pca, is a set A endowed with an applicative struc-
ture, such that there are k,s ∈ A with the following properties: for all a,b,c ∈ A:

(i) sab ↓

(ii) kab ↓ a

(iii) sabc ' ac(bc).

When the above is the case, we say that the partial applicative structure is combinatory complete .
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Examples

(i) Any singleton {∗} with the trivial applicative structure ∗∗ ↓ ∗ is a pca. One can show that any pca
with k= s is trivial in this sense.

(ii) Ordinary recursion theory gives an applicative structure on N:

ab :=ϕa(b)

where ϕa is the partial recursive function N→ N with index a ∈ N for some model of computa-
tion. This pca is known as Kleene’s first model and denoted by K1.

(iii) Any term model of untyped λ-calculus (modulo β-equality) yields a total pca.

(iv) There is a general method of constructing a total pca from a directed complete partial order
(DCPO), which yields several examples. See [Hof] for a short description.

Note Partial combinatory algebras are also called “Schönfinkel Algebras” (at least by Peter Johnstone
in [Joh13]), and in [Wag69] a theory on “Uniformly Reflexive Structures” is developed. The latter de-
scribes precisely the pcas that are decidable, which we will define below.

Every pca allows for abstraction, similar to abstraction of λ-terms in λ-calculus:

Lemma 2.2.3. Let A be a pca. Then for any term t (x, x1, . . . , xn) there is a term 〈x〉t (x1, . . . , xn) such that
every substitution instance of 〈x〉t denotes, and for all a, a1, . . . , an ∈ A

(〈x〉t )(a1, . . . , an)a ' t (a, a1, . . . , an).

Conversely, if A has a partial applicative structure for which the above holds, then A is a pca.

Proof. We define 〈x〉t according to the recursive definition of terms.
If t is a constant or a variable y different from x, let 〈x〉t = kt .
If t = x, let 〈x〉x = skk.
If t = t1t2, let 〈x〉t = s(〈x〉t1)(〈x〉t2).
One can check that every substitution instance of 〈x〉t denotes, and the fact that

(〈x〉)t (a1, . . . , an)a ' t (a, a1, . . . , an)

is also easily verified by induction.
For the converse, we can take:

k= 〈x〉(〈y〉x)

s= 〈x〉(〈y〉(〈z〉xz(y z))).

One can verify that these terms satisfy the conditions in 2.2.2.

The above lemma gives us a tool to define a lot of terms and operations in pcas. The following
will be an overview for this, for most proofs I’ll refer to [vO08]. In what follows I’ll often abbreviate
〈x1〉(〈x2〉(· · · (〈xn〉t ) · · · )) by 〈x1 · · ·xn〉t , and we work in a pca A.

Another characterisation of pcas is given by the following proposition.

Proposition 2.2.4 (Feferman). A pas A is a pca if and only if for any n ∈N, and any term t (x1, . . . , xn+1)
there is an element a ∈ A such that for all a1, . . . , an+1 ∈ A the following holds:

(i) aa1a2 · · ·an ↓
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(ii) aa1a2 · · ·an an+1 ' t (a1, . . . , an+1)

Proof. Assume A is a pca. Define, by lemma 2.2.3:

a = 〈x1x2 · · ·xn+1〉t (x1, . . . , xn+1).

By the lemma, aa1 · · ·an = (〈xn+1〉t )(a1, . . . , an) ↓ and

aa1 · · ·an an+1 = (〈xn+1〉t )(a1, . . . , an)an+1 ' t (a1, . . . , an , an+1).

Conversely, if the latter statement holds, we can define k ∈ A as the element corresponding to the
term t (x1, x2) = x1 and s ∈ A as the element corresponding to t (x1, x2, x3) = x1x3(x2x3). Then k,s satisfy
the properties of definition 2.2.2.

Remark For a pca A, every element a ∈ A defines a partial function A → A given by x 7→ ax whenever
ax is defined. When there is no chance of confusion, I might call this a partial recursive function with
index a. Sometimes I might even write “the partial recursive function a” whenever the behaviour of a
as a partial function is of particular importance.

The following corollary corresponds to theorem 2.6 in [Wag69] and should remind the reader of
the Sm

n −theorem.

Corollary 2.2.5 (Wagner). Let A be a pca. For each n > 0, there exists sn ∈ A such that for all a ∈ A,
a1, . . . , an ∈ A, m > 0 and b1, . . . ,bm ∈ A

sn aa1 · · ·an ↓
and

sn aa1 · · ·anb1 · · ·bm ' aa1 · · ·anb1 · · ·bm .

Proof. Let sn be the element as in proposition 2.2.4 corresponding to the term

t (x, x1, . . . , xn , y) = xx1 · · ·xn y.

2.3 Basic Constructions in Partial Combinatory Algebras

This section will be an overview of several constructions that can be done in any partial combinatory
algebra. It will provide us with a great set of tools to work with later on.

2.3.1 Booleans, Pairing and Natural Numbers

We have an identity element in A, given by i= skk. For any a ∈ A, it satisfies ia = a. Now observe that
for any a,b ∈ A:

kiab = ib = b.

We define k := ki. The elements k and k will often act as boolean values for true and false respectively.
For instance, for any two closed terms u, v we can define t such that for all q ∈ A:

t q ' if q then u else v

In fact, let:
t := 〈q〉q(〈w〉u)(〈w〉v)k.
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Then tk' u and tk' v . We can also define the term:

t ′ := 〈qx y〉qx y.

Such that for all a,b ∈ A:

t ′qab = if q then a else b.

Whenever we write if . . . then . . . else . . . we mean a term as one of the above. We often write T and
F for the elements k (true) and k (false), as well as Not for the the index that yields the negations:

Notv = if v then F else T.

We define the pairing combinator p by:

p := 〈x y z〉zx y.

Then we have that for all a,b ∈ A, pabk= a, and pabk = b. Therefore we have projections:

p0 := 〈w〉wk

p1 := 〈w〉wk

that satisfy p0pab = a, p1pab = b.

Simulation of ordinary recursion It turns out that every non-trivial partial combinatory algebra can
“simulate” the partial combinatory algebra K1. We first need to define representatives of the natural
numbers.

Definition 2.3.1 (Curry numerals). Let A be a non-trivial pca. Then we define for every n ∈ N the
Curry numeral n ∈ A as follows:

• 0 = i= skk

• n +1 = pkn.

Observe that if k 6' k, then p01 = k 6' k= ik= p00, hence 0 6= 1. The former holds for any non-trivial
pca, since kks = k 6= s = kks in that case. One can now easily show by induction that in a non-trivial
pca, the Curry numerals are all distinct elements.

The following propositions can be found in section 1.3 of [vO08], for a proof I refer to that source.

Proposition 2.3.2. For a non-trivial pca A, there are S,P, Z ∈ A such that for all n ∈N:

Sn = n +1

P0 = 0

Pn +1 = n

Z 0 =T

Z n +1 =F.

In every pca A, we can make definitions by recursion:
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Proposition 2.3.3. For every a,R ∈ A, there is an f ∈ A such that

f 0 = a

f n +1 = Rn( f n).

Moreover, we can obtain f recursively in a,R, i.e. there is an R ∈ A such that for all a,R ∈ A, f :=RaR
satisfies the above.

Proposition 2.3.4 (Recursion theorem). There are are y, z ∈ A such that for all f ∈ A:

1. y f ' f (y f )

2. z f ↓ and for all x ∈ A: z f x ' f (z f )x.

Proposition 2.3.5. For every pca A, there is for every partial recursive function F of k-variables an
element f ∈ A such that for all n1, . . . ,nk ∈N:

f n1 · · ·nk ' F (n1, . . . ,nk ).

Note that the right hand side is defined if and only if F (n1, . . . ,nk ) is defined.

Coding of finite sequences We use the Curry numerals to code finite sequences in a convenient way.
We assume that A is a non-trivial pca. We can define for any n ∈N the functions J n : An → A by:

• J 0(a) = a

• J n+1(a0, . . . , an) = pa0 J n(a1, . . . , an).

For any n elements a0, . . . , an−1 ∈ An , we can define the tuple [a0, . . . , an] ∈ A by:

• [] = p00 (the case n = 0)

• [a0, . . . , an−1] = pn J n(a1, . . . , an).

Many operations on such tuples are recursive. As an example, I’ll show that there is t ∈ A such that
for all u = [u0, . . . ,un−1], i < n:

tui = [ui , . . . ,un−1]. (2.1)

Suppose u = [u0, . . . ,un−1]. Then by proposition 2.3.3, there is f ∈ A such that:

f 0 = u

f i +1 = p(P (p0( f i )))(p1(p1( f i ))).

In fact, we have f = RuR where R = 〈x y〉p(P (p0(y)))(p1(p1 y)). One can now verify that for t =
〈x y〉RxR y , (2.1) holds for all u = [u0, . . . ,un−1], i < n.

Using the same methods, one can prove that there are lh,b,c ∈ A such that for all tuples u =
[u0, . . . ,un−1], i < n, j ≤ n:

lhu = n

bui = ui

cu j = [u0, . . . ,u j−1].



2.4. DECIDABLE, TOTAL, AND ALMOST TOTAL PCAS 15

We can also concatenate two tuples u = [u0, . . . ,un−1], v = [v0, . . . , vm−1], that is, there is d ∈ A such
that for every such pair of tuples, we have:

duv = [u0, . . . ,un−1, v0, . . . , vm−1].

To improve readability, we will often write u< j for [u0, . . . ,u j−1] and u ∗ v for

[u0, . . . ,un−1, v0, . . . , vm−1]

.

2.4 Decidable, Total, and Almost total PCAs

An important property that not all pcas share is decidability. Informally, a pca is decidable if it is able
to distinguish its own elements.

Definition 2.4.1. A partial combinatory algebra A is called decidable if there exists d ∈ A such that for
all a,b ∈ A:

d ab =
{
T if a = b

F otherwise .

Clearly, the pca K1 is decidable, as well as the trivial pca. We have the following proposition, I
adapted the proof from theorem 3.1 in [Wag69].

Proposition 2.4.2. Suppose A is a non-trivial decidable pca. Then there exists q ∈ A such that qq is
undefined.

Proof. Pick any a,b ∈ A with a 6= b (since A is non-trivial, we can pick k and s). For d as in definition
2.4.1, let q = 〈x〉d(xx)bab. Then:

qx ' d(xx)bab =


b if xx 6= b and xx ↓
a if xx = b

↑ if xx ↑

Then qq = a implies that d(qq)bab ↓= b, but that implies qq = b, which is contradictory. Conversely,
qq = b implies that d(qq)bab ↓= a, which is again a contradiction.

Since the right hand side is a or b whenever it denotes, qq is undefined.

Consider the following definition.

Definition 2.4.3. A pca A is total if for all a,b ∈ A, ab ↓.

Then the proposition above has an immediate corollary:

Corollary 2.4.4. A non-trivial decidable pca is never total.

One may wonder if a pca is non-total, but still able to decide whether ab is defined for arbitary
elements a,b. It turns out that this is not the case:

Proposition 2.4.5. A pca A is total if and only if there exists H ∈ A such that

H ab =
{
T if ab ↓
F otherwise .
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Proof. 1 “⇒”: If A is total, let

H = 〈x y〉T.

“⇐”: Suppose there exists such H ∈ A. Assume that A is not total, i.e. there are a,b ∈ A such that
ab is undefined. I’ll derive a contradiction. Let u be such that for all x ∈ A:

ux = ( if H xx then (〈x〉ab) else (〈x〉T))k.

Then ux is defined if and only if xx is undefined. But then uu is defined if and only if uu is undefined,
a contradiction.

Lastly, I define the notion of an almost total pca. It will turn out that totalness is not a categorical
property of pcas, but almost totalness is.

Definition 2.4.6. A partial combinatory algebra A is called almost total if every partial recursive func-
tion can be extended to a total function, i.e., for every e ∈ A, there is g ∈ A such that g x is defined for
all x ∈ A, and

g x - ex.

The following lemma shows that in an almost total pca, we can in fact extend every partial function
to a total one in a recursive way.

Lemma 2.4.7. Let A be an almost total pca. Then there exists g ∈ A such that for all e ∈ A, g e is such
that g ex is defined for all x ∈ A and

g ex - ex for all x.

Proof. Define f by:

f = 〈y〉(p0 y)(p1 y).

Since A is almost total, there is h ∈ A such that h defines a total function and extends the partial
function defined by f . Now define g = 〈x y〉h(px y). Then for e ∈ A arbitrary, if ex is defined we have:

g ex = h(pex) = f (pex) = ex

and g ex = h(pex) denotes for all x since h is total.

Observe that every total pca is almost total. By the following proposition, a non-trivial decidable
pca is never almost total:

Proposition 2.4.8. Suppose A is a non-trivial decidable pca. Then there is e ∈ A such that ex is unde-
fined for some x, and for which there is no g ∈ A such that g x is always defined and

g x - ex

for all x.

Proof. Let a,b ∈ A be such that a 6= b. Let e be an index such that for all x:

ex ' xk

1This proof occurred to me while reading the proof of theorem 3.4 in [Wag69].
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Assume that g ∈ A is such that g x ↓ for all x and g x - ex. I’ll derive a contradiction. By the recursion
theorem, there is h ∈ A such that hy ' d(g h)aba, so that for all y ∈ A:

hy =
{

b if g h = a

a otherwise .

Observe that h is total, so eh = hk ↓. Then we have:

eh = hk=
{

b if g h = a

a if g h 6= a
=

{
b if eh = a

a if eh 6= a.

which is a contradiction.

2.5 Morphisms between PCAs

In the following we will define an applicative morphism as in definition 1.5.3 of [vO08]. The notion
is due to John Longley and was first defined in his thesis [Lon95]. For γ : A → B a relation, we define
γ(a) := {b | (a,b) ∈ γ}.

Definition 2.5.1. Let A and B be pcas. A total relation γ : A → B is an applicative morphism if there
exists r ∈ B , such that whenever a, a′ ∈ A and aa′ ↓, we have for all b ∈ γ(a), b′ ∈ γ(a′) that

r bb′ ↓ and r bb′ ∈ γ(aa′)

The applicative morphism γ is said to be realized by such an element r .

There is a composition of morphisms: For γ : A → B and δ : B →C , the composition of γ and δ can
be defined by:

δγ(a) = ⋃
b∈γ(a)

δ(b).

One can verify that this is indeed an applicative morphism, i.e. that it has a realizer. There is an identity
morphism ι : A → A for every pca A, it is given by ι(a) = {a} and realized by i .

We can define a binary relation ¹ on the set of applicative morphisms A → B . For δ,γ : A → B
applicative morphisms, δ¹ γ when there is r ∈ B such that for all a ∈ A,b ∈ δ(a), r b ↓ and r b ∈ γ(a).

A proof of the following proposition can be found in [vO08]:

Proposition 2.5.2. The relation ¹ defined above is a preorder, and this order is preserved by composition
on both sides. Therefore, partial combinatory algebras together with applicative morphisms form a pre-
order enriched category, denoted PCA.

The category PCA does not have much categorical structure. A lot of properties of pcas are not
preserved under isomorphism or equivalence. However, the category behaves well with correspond-
ing structures called assemblies and realizability toposes, which we will see below. We will see that
totalness is not preserved under isomorphism of pcas. However, almost totalness (definition 2.4.6) is:

Proposition 2.5.3. Suppose A,B are isomorphic partial combinatory algebras, i.e. there are applicative
morphisms γ : A → B, δ : B → A such that

γ◦δ= ιB , δ◦γ= ιA ,

where ιB , ιA are the identity morphisms on B and A. If A is almost total, then B is.
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Proof. Let b ∈ B be arbitrary. We will find an index g such that g x is defined for all x ∈ B and

g x - bx

for all x.
Suppose γ is realized by r and δ is realized by t . Take a ∈ δ(b). Then for all b′, and a′ ∈ δ(b′):

bb′ ↓⇒ t aa′ ↓, t aa′ ∈ δ(bb′).

Since A is almost total, there is h ∈ A such that hy is defined for all y ∈ A and

hy - t ay

for all y ∈ A. Now take f ∈ γ(h) arbitrary. For all b′ ∈ B , we have that b′ ∈ γ◦δ(b′). So b′ ∈ γ(a′) for some
a′ ∈ δ(b′). Therefore:

r f b′ ↓,r f b′ ∈ γ(ha′).

Moreover, if bb′ ↓, then:
r f b′ ∈ γ(ha′) = γ(t aa′) ⊆ γ◦δ(bb′) = {bb′}

hence r f b′ = bb′. So if we define g = r f , then it defines an extension of b to a total function.

The following proposition shows that in the category PCA, a total pca is the same thing as an almost
total pca.

Proposition 2.5.4. Every almost total pca is isomorphic to a total pca.

Proof. Let A be an almost total pca. We’ll define a total pca Atot as follows. Let g ∈ A be as in lemma
2.4.7, i.e. for every e ∈ A, we have that g e is total and extends the partial function indexed by e.

Define an applicative structure ∗ on the set A as follows:

a ∗b = g ab.

Then Atot is the total applicative structure defined by ∗ on A. Observe that

k∗a ∗b = g (gka)b = kab = a.

Now let s′ := 〈x y z〉g (g xz)(g y z). Then:

s′∗a ∗b ∗ c := g (g (g s′a)b)c = g (〈z〉g (g az)(g bz))c = g (g ac)(g bc) = a ∗ c ∗ (b ∗ c).

Therefore Atot is a total pca. Now γ : A → Atot defined by γ(a) = {a} is an applicative morphism realized
by the identity i ′ = s′ ∗k∗k of Atot, and δ : Atot → A defined by δ(a) = {a} is an applicative morphism
realized by g .

Therefore Atot and A are isomorphic.

We can summarize the above in the following lemma:

Lemma 2.5.5. A pca is almost total if and only if it is isomorphic to a total pca.

Decidability is preserved under equivalence of pcas.

Theorem 2.5.6 ([Lon95]). Suppose A,B are equivalent partial combinatory algebras. Then if A is de-
cidable, B is.
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Proof. Assume A,B are equivalent partial combinatory algebras with A decidable. Let d ∈ A be the
witness for decidability. There are applicative morphisms γ : A → B , and δ : B → A, realized by r, t
respectively, such that

ιA ' δ◦γ and ιB ' γ◦δ.

First, let t ∈ δ(TB ) and f ∈ δ(FB ). Pick v ∈ γ(〈x y〉dx y t f ). Let a, a′ ∈ A be arbitrary. Then for b ∈
γ(a),b′ ∈ γ(a′), we have:

r (r vb)b′ ∈ γ(daa′t f ) =
{
γ(t ) if a = a′

γ( f ) if a 6= a′

⊆
{
γ◦δ(TB ) if a = a′

γ◦δ(FB ) if a 6= a′.

Let g be a realizer of γ◦δ¹ ιB . Define e ∈ B by e = 〈x y〉g (r (r v x)y). Then for all a, a′ ∈ A, b ∈ γ(a),b′ ∈
γ(a′), we have:

ebb′ =
{
TB if a = a′

FB if a 6= a′.

Claim. For b,b′ ∈ B, we have that b 6= b′ ⇒ δ(b)∩δ(b′) = ;. Similarly, for a, a′ ∈ A, we have a 6= a′ ⇒
γ(a)∩γ(a′) =;.

Proof of claim. Suppose b 6= b′, but there exists a ∈ δ(b)∩δ(b′). Then γ(a) ⊆ γ◦δ(b) and γ(a) ⊆ γ◦δ(b′).
Pick c ∈ γ(a). Then with g as above, g c ∈ {b} and g c ∈ {b′}, a contradiction.

The statement for A follows analogously, since we also have δ◦γ¹ ιA .

Let h be a realizer of ιB ¹ γ◦δ. It is easy to see that for all b,b′ ∈ B , b = b′ if and only if hb = hb′. For
each b, hb ∈ γ(a) for some a ∈ δ(b). By the claim above, such a is unique. Using the claim again, we
can conclude that for all a, a′ ∈ A, b,b′ ∈ B , if hb ∈ γ(a), hb′ ∈ γ(a′), then hb = hb′ if and only if a = a′.

So define d ∈ B by d = 〈x y〉e(hx)(hy). Then for all b,b′ ∈ B :

dbb′ =
{
TB if hb = hb′

FB if hb 6= hb′ =
{
TB if b = b′

FB if b 6= b′.

So d is a witness for decidability of B .

2.5.1 Computational Density and Decidability

An important special case of an applicative morphism is a computationally dense applicative mor-
phism. It was discovered by Hofstra and van Oosten in [HvO03]. Intuitively, an applicative morphism
γ : A → B is computationally dense if any computation in B on elements of A (so elements in the
image of γ) can be done in A. For readability, we introduce some notation; for B a pca, and P ⊆ B a
subset, we define for all b ∈ B :

bP =
{

{bb′ |b′ ∈ P } if (∀b′ ∈ P )bb′ ↓
undefined otherwise

We write bP ↓ whenever (∀b′ ∈ P )bb′ ↓. When making statements about bP , we usually mean bP ↓ as
well.
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Definition 2.5.7 ([HvO03]). An applicative morphism γ : A → B between pcas is called computation-
ally dense if there exists m ∈ B such that:

(∀b ∈ B)(∃a ∈ A)(∀a′ ∈ A) : if bγ(a′) 6= ;
then aa′ ↓,mγ(aa′) ↓, and mγ(aa′) ⊆ bγ(a′).

For γ a computationally dense applicative morphism, we letΛ : B → A denote a function such that

(∀b ∈ B)(∀a′ ∈ A) : if bγ(a′) ↓
thenΛ(b)a′ ↓,mγ(Λ(b)a′) ↓, and mγ(Λ(b)a′) ⊆ bγ(a′).

Unless otherwise stated, we pick thisΛ using the axiom of choice on Set.

Computationally dense applicative morphisms express a strong relation between the computa-
tional nature of the pcas. This has a deep consequence for their realizability toposes that we will see
later.

The following proposition is a recent result by P. Johnstone in [Joh13]. I included an adapted proof
here, for the notation in [Joh13] is quite different.

Proposition 2.5.8 ([Joh13]). An applicative morphism γ : A → B is computationally dense if and only
if there exists r ∈ B such that for all b ∈ B, there exists a ∈ A so that rγ(a) = {b}.

Proof. We assume that γ is realized by t ∈ B .
“⇒”: Assume that computational density is realized by m, and let Λ : B → A be as in definition

2.5.7. Let b ∈ B be arbitrary, and let a =Λ(〈x〉b). Then aa ↓ and:

mγ(aa) = mγ(Λ(〈x〉b)a) ⊆ (〈x〉b)γ(a) = {b}

and mγ(aa) ↓. So r = m satisfies the statement.
“⇐”: Let r ∈ B be as on the right hand side of the equivalence. Let q0 ∈ γ(p0), q1 ∈ γ(p1) and define

m = 〈x〉r (t q0x)(t q1x). Let b ∈ B be arbitrary. Let h ∈ A be so that whenever b′ ∈ γ(h), we have r b′ = b,
and define a = ph.

Suppose a′ is such that bγ(a′) ↓. Then whenever c ∈ γ(aa′) = γ(pha′), we have:

mc = r (t q0c︸︷︷︸
∈γ(h)

)(t q1c︸︷︷︸
∈γ(a′)

) ∈ bγ(a′).

So m witnesses computational density.

Peter Johnstone calls the property on the right hand side of the equivalence “quasi-surjective”. A
strengthening of this notion is the following:

Definition 2.5.9. An applicative morphism γ : A → B is effectively quasi-surjective if there exists e,r
such that

(∀b ∈ B)(∃a ∈ A)eb ∈ γ(a)∧ rγ(a) = {b}.

Clearly, if e,r realize that an applicative morphism if effectively quasi-surjective, then r realizes
that it is quasi-surjective.

We will need the following proposition later on, but here is the best place to state it:

Proposition 2.5.10. An applicative morphism is effectively quasi-surjective if and only if there exists
e,m such that m realizes computational density as in definition 2.5.7 and:

(∀b ∈ B)(∃a ∈ A)eb ∈ γ(a)∧mγ(a) = {b}.



2.5. MORPHISMS BETWEEN PCAS 21

Proof. We assume that γ : A → B is an applicative morphism realized by t ∈ B . The “⇐” direction is
trivial.

For “⇒”: Let e,r be as in 2.5.9. Take m = 〈x〉r (t q0x)(t q1x) as in the proof of 2.5.8. Take q ∈ γ(p),
f ∈ γ(F) Let e ′ = 〈y〉t (t q(e(〈x〉y))) f . Then for all b ∈ B , e ′b ∈ γ(paF) for some a such that e〈x〉b ∈ γ(a)
and rγ(a) ⊆ {〈x〉b}.

From the latter, we have for all b′ ∈ γ(paF):

mb′ = r (t q0b′)(t q1b′) = (〈x〉b) f = b.

Therefore e ′,m are witnesses for the statement on the right-hand side.

In 5.1, we will see that geometric inclusions of realizability toposes correspond precisely to effec-
tively quasi-surjective applicative morphisms. In corollary 2.5.17 we give another characterisation of
these applicative morphisms.

Another special case of an applicative morphism that expresses a deeper relation in the computa-
tional nature of pcas is a decidable applicative morphism:

Definition 2.5.11. Let A,B be pcas. Denote their canonical boolean values by TA ,FA and TB ,FB . An
applicative morphism γ : A → B is called decidable if there is d ∈ B (a decider for γ) such that for all
b ∈ γ(TA), db =TB , and for all c ∈ γ(FA), dc =FB .

Decidable applicative morphisms play an important role in general relative recursion. We also
have the following proposition:

Proposition 2.5.12 ([vO08]). Suppose γ : A → B is computationally dense. Then γ is decidable.

Proof. Suppose γ is realized by t ∈ B . We take r ∈ B as in proposition 2.5.8. Take a, a′ ∈ A such that
rγ(a) = {TB } and rγ(a′) = {FB }. Define c ∈ A by c := 〈v〉vaa′, take e ∈ γ(c) and define d := 〈x〉r (tex).

Then for u ∈ γ(TA), v ∈ γ(FB ):

du = r (teu) ∈ rγ(a) = {TB } , d v = r (tev) ∈ rγ(a′) = {FB }

so d realizes decidability of γ.

2.5.2 Adjoint Pairs of Applicative Morphisms

The pre-order ¹ gives rise to the notion of an adjoint pair of applicative morphisms.

Definition 2.5.13. Let A,B be partial combinatory algebras, with γ : A → B , δ : B → A applicative
morphisms. We say that γ is left-adjoint to δ, δ is right-adjoint to γ or γa δ, when γδ¹ ιB and ιA ¹ δγ.

Definition 2.5.14 ([Lon95]). (i) We call an applicative morphism γ : A → B projective if there is an
applicative morphism γ′ : A → B such that γ' γ′ and γ′ is single valued, i.e. for each a ∈ A, γ′(a)
is a singleton set.

(ii) We call an applicative morphism δ : B → A discrete if δ(b)∩δ(b′) =; whenever b 6= b′.

The following theorem is a result by Longley (Theorem 2.5.3 in [Lon95]), and will come in handy.

Theorem 2.5.15. Let γ : A → B, δ : B → A be applicative morphisms. Then the following holds:

(i) If γδ¹ ιB , then δ is discrete.

(ii) If γa δ, then γ is projective.
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The following theorem is an observation of mine that I have not encountered in any literature.

Theorem 2.5.16. Let γ : A → B be an applicative morphism. Then γ is computationally dense if and
only if there exists an applicative morphism δ : B → A such that γδ¹ ιB .

Moreover, such γ is projective if and only if it has a right adjoint.

Proof. “⇒” Suppose m andΛ : B → A are as in definition 2.5.7. Assume γ is realized by t .
Define δ : B → A by

δ(b) = {a ∈ A |mγ(a) = {b}}.

Observe that for every b ∈ B , δ(b) is non-empty, since for any a′ ∈ A,Λ(〈x〉b)a′ ∈ δ(b):

mγ(Λ(〈x〉b)a′) = 〈x〉bγ(a′) = {b}.

We have to show that δ has a realizer.
Define m′ = 〈x〉m(t q0x)(m(t q1x)) where qi ∈ γ(pi ). Then whenever a ∈ δ(b), we have: for all b′, a′

such that bb′ ↓, mγ(a′) = {b′}, c ∈ γ(paa′):

m′c = m(t q0c)(m(t q1c)) = bb′.

Now let g =Λ(m′). Then for all a′ ∈ A, if m′γ(a′) is defined, then:

mγ(g a′) ⊆ m′γ(a′).

For a ∈ δ(b), a′ ∈ δ(b′), we have mγ(a) ⊆ {b} and mγ(a′) ⊆ {b′}. Hence if bb′ ↓:

mγ(g (paa′)) = m′γ(paa′)
⊆ m(t q0γ(paa′))(m(t q1γ(paa′))) ⊆ mγ(a)(mγ(a′)) ⊆ {bb′}.

It follows that g (paa′) ∈ δ(bb′) (whenever bb′ ↓), so 〈x y〉g (px y) realizes δ : B → A.
It is easy to see that m realizes γδ¹ ιB .
“⇐”: Suppose we have such δ : B → A, and suppose γδ ¹ ιB is realized by r . Then for b ∈ B , take

a ∈ δ(b). Then:
rγ(a) = {b}

hence γ is computationally dense by proposition 2.5.8.
For the last statement, we can assume that γ is single-valued. Let j =Λ(i). Then for all a′ ∈ A:

mγ( j a′) ⊆ iγ(a′) = γ(a′).

Hence j a′ ∈ δ(b′) for the unique b′ ∈ γ(a′), hence j a′ ∈ δ◦γ(a′), therefore j realizes ιA ¹ δγ. So δ is a
right adjoint.

Conversely, if γ has a right adjoint, it is projective by theorem 2.5.15.

Corollary 2.5.17. An applicative morphism γ : A → B is effectively quasi-surjective if and only if there
exists an applicative morphism δ : B → A such that γδ' ιB .

Proof. “⇒”: By proposition 2.5.10, we have e,m ∈ B such that m witnesses computational density in
the sense of definition 2.5.7 and

(∀b ∈ B)(∃a)eb ∈ γ(a),mγ(a) = {b}.

By the proof of theorem 2.5.16,
δ(b) = {a |mγ(a) = {b}}

is an applicative morphism B → A, and m realizes γδ¹ ιB . It is easy to see that e realizes ιB ¹ γδ.
“⇐”: If r realizes γδ¹ ιB and e realizes ιB ¹ γδ, then e,r realize that γ is effectively quasi-surjective

in the sense of definition 2.5.9.
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One may wonder whether we can strengthen theorem 2.5.16 by proving that every computation-
ally dense morphism has a right adjoint. It turns out that this is not the case. We’ll sketch a coun-
terexample here (thanks to Jaap van Oosten for pointing this out). We denote by K2 the pca known as
Kleene’s second model . It has as underlying set the set of functions NN and application is defined by:

α ·β' γ ⇐⇒ (∀n)(∃k)(∀l < k)α(〈n,β(0), . . . ,β(k)〉) = γ(n)+1∧α(〈n,β(0), . . . ,β(l )〉) = 0

Where 〈. . .〉 denotes some effective coding of tuples. The proof that this yields a pca is a tedious exer-
cise and can be found in [vO08], section 1.4.3. It turns out that the restriction of the above applicative
structure to the subset NNrec ⊂NN consisting of the computable functions is also a pca, that we denote
by K2rec.

Example 2.5.18. The relation γ :K2rec →K1 defined by:

γ( f ) = {e |e is an index for f }

is a computationally dense applicative morphism. Moreover, γ is not projective.

Proof. The fact that γ is an applicative morphism is an easy programming exercise.
Let us prove that it is computationally dense. Let r ∈K1 be such that:

r e ' e0.

Then it is easy to see that for every b ∈K1, there exists f ∈K2rec such that

rγ( f ) = {b}

(take f any computable function such that f (0) = b). Then r satisfies the statement in proposition
2.5.8, so γ is computationally dense.

To show that γ is not projective, we will assume it is and derive a contradiction. So suppose γ′ :
K2rec →K1 is a single valued applicative morphism and γ' γ′.

Since γ¹ γ′, there is an index r ∈K1 such that:

(∀ f )(∃e)e ∈ γ( f )∧ rγ( f ) = {e}.

Let t be an index of Kleene’s T−predicate, i.e. for all e, a ∈K1, tea is total and:

(∃s)teas 6= 1 ⇐⇒ ea ↓ .

Then:
ea ↓⇐⇒ r (tea) 6= r (〈x〉1).

This is in contradiction with undecidability of the halting problem.

In the above we have found a computationally dense applicative morphism that is not projective,
hence by theorem 2.5.16, it does not have a right adjoint.

2.5.3 Proto-applicative Morphisms

Theorem 2.5.16 and the discussion below it show that computationally dense applicative morphisms
correspond to “semi-adjoint” pairs of applicative morphisms. We would like to present this type of
applicative morphisms as an actual adjoint pair of some sorts. In this section we introduce a new
notion that does exactly that. For a pca A, we write P∗(A) for the set of non-empty subsets of A, and
for α,β ∈P ∗ (A) we define

αβ= {ab |a ∈α,b ∈β}

whenever (∀a ∈α)(∀b ∈β)ab ↓.
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Definition 2.5.19. A proto-applicative morphism Γ : A → B is a function

Γ :P∗(A) →P∗(B)

together with an element r ∈ B that satisfies:

rΓ(α)Γ(β) ⊆ Γ(αβ)

for all α,β ∈P∗(A) such that αβ is defined. Again we say that r realizes Γ.

One can verify that proto-applicative morphisms are closed under composition. We therefore ob-
tain a category PCAproto, with pcas as objects and proto-applicative morphisms as arrows.

We order proto-applicative morphisms analogous to applicative morphisms; for

Γ,∆ : A → B

proto-applicative morphisms, we say Γ¹∆ if there exists t ∈ B such that for all α ∈P∗(A):

tΓ(α) ⊆∆(α).

Again we say that t realizes Γ ¹ ∆. This defines a preorder on proto-applicative morphisms. The
identity function on P∗(A) is a proto-applicative morphism that we denote by I A . We similarly define
an adjoint pair of proto-applicative morphisms:

Γa∆ : B → A ⇐⇒ Γ◦∆¹ IB and I A ¹∆◦Γ.

Any applicative morphism γ : A → B gives rise to a proto-applicative morphism P(γ):

P(γ)(α) = ⋃
a∈α

γ(a).

Observe that I A =P(ιA). We now have the following theorem:

Theorem 2.5.20. An applicative morphism γ : A → B is computationally dense if and only if P(γ) has
a right adjoint.

Proof. First, suppose P(γ) has a right adjoint ∆ : B → A. Define

δ(b) =∆({b}).

Then δ is an applicative morphism B → A, and

γ◦δ(b) = ⋃
a∈∆{b}

γ(a) =P(γ)◦∆({b})

Since P(γ)◦∆¹ IB , γ◦δ¹ ιB , hence γ is computationally dense.
Conversely, suppose γ : A → B is computationally dense, witnessed by m ∈ A as in definition 2.5.7.

Define ∆ : B → A by:
∆(β) = {a ∈ A |mγ(a) ⊆β}.

The fact that ∆ is a proto-applicative morphism, and that P(γ)◦∆¹ IB can be shown in the same way
as in the proof of theorem 2.5.16. To prove I A ¹∆◦P(γ), we take j =Λ(i) as defined in the last part of
the same proof. Then for α ∈P∗(A), we have for all a′ ∈α:

mγ( j a′) ⊆ iγ(a′) = γ(a′) ⊆P(γ)(α)

so j a′ ∈∆◦P(γ)(α), whence we see that j realizes

I A ¹∆◦P(γ).
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Remark The above fits in a theory about order pcas , which are generalizations of pcas. These were
introduced in [HvO03]. The category of pcas and applicative morphisms turns out to be a full subcat-
egory of the Kleisli 2-category of a certain monad in the category of order pcas. For pcas, this monad
corresponds to the operation A 7→P∗(A), where P∗(A) has the structure of an order-pca. The above
can therefore be viewed as an additional motivation to study order pcas instead of pcas. However, in
this thesis we will only consider pcas, and for those the above picture is somewhat simpler and easier
to keep in mind. Still, the above generalizes to order-pcas, which has interesting consequences for the
study of assemblies and realizability toposes. For more details on order-pcas, see [HvO03] or [vO08],
section 1.8.

2.6 Relative Recursion in PCAs

In this section we will exhibit a method to construct from a pca A and a function f : A → A a pca A[ f ]
that contains precisely the partial recursive functions “computable” from f . The construction was
introduced in [vO06] and generalizes ordinary relative recursion, where for each f : N→ N there is a

pca K f
1 with applicative structure defined by:

en =Φ f
e (n)

where Φ f
e is the partial function with index e and oracle f for some model of computation with or-

acle. We first define what it means for a function to be representable with respect to an applicative
morphism.

Definition 2.6.1. Let γ : A → B be an applicative morphism. Then a partial function f : A → A is
representable with respect to γ if there is r f ∈ B such that for all a ∈ A, whenever f (a) is defined we
have for all b ∈ γ(a)

r f b ↓ and r f b ∈ γ( f (a)).

We say a partial function f : A → A is representable (in A) if it is representable with respect to the
identity morphism ι : a 7→ {a}.

With the above definition, we have the following properties:

• For γ : A → B an applicative morphism, any representable total function f : A → A is repre-
sentable with respect to γ.

• If γ : A → B , δ : B → A are such that δγ= ι, then any total f : A → A representable with respect to
γ is representable in A.

Note that for total functions, a representable function is the same thing as a recursive function. For
partial functions, this is not the case!

The construction of A[ f ] in [vO06] uses dialogues to model a computation where the pca A “inter-
rogates” the function f .

Definition 2.6.2. Let A be a pca. For f : A → A a partial function, an f -dialogue between a and b is an
element u = [u0, . . . ,un−1] of A, such that for all i < n, there is a vi ∈ A that satisfies

a([b]∗u<i ) = pFvi and ui = f (vi )

where ∗ and u<i refer to the operations on tuples defined in section 2.3.1.
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We say that an f −dialogue u terminates if

a([b]∗u) = pTc for some c ∈ A.

Now a partial applicative structure A[ f ] with applicative map · f : A × A → A is defined as follows: for
a,b ∈ A, a · f b = c if and only if there is a terminating f −dialogue u such that

a([b]∗u) = c.

A proof of the following theorem can be found in [vO06] and [vO08].

Theorem 2.6.3. For every non-trivial pca A and every partial endofunction f on A, the partial applica-
tive structure A[ f ] is a pca.

Moreover, there is a decidable applicative morphism ι f : A → A[ f ], given by a 7→ {a}, such that

1. f is representable with respect to ι f

2. For every decidable applicative morphism γ : A → B such that f is representable with respect to γ,
there is a decidable applicative morphism γ f : A[ f ] → B such that γ f ι f = γ, and γ is unique with
this property. Moreover, if δ : A[ f ] → B is such that δι f

∼= γ, then δ∼= γ f .

The following corollary is also formulated:

Corollary 2.6.4. (i) If f is representable in A, then A and A[ f ] are isomorphic.

(ii) For partial functions f , g : A → A, we have that A[ f ][g ] and A[g ][ f ] are isomorphic. therefore we
can write A[ f , g ] for such a pca.

(iii) For K1, the construction agrees with ordinary relative recursion, i.e. K f
1 and K1[ f ] are isomorphic.

(iv) Every total pca is isomorphic to a nontotal one.

One fact about the proof of theorem 2.6.3 that needs to be pointed out is that the elements k,s that
witness combinatory completeness of A[ f ] can be chosen independently of f . So for every f , k,s are
the same elements of A, only the applicative map is different. This can be understood in the same
way as in ordinary recursion theory, where the indexing (i.e. the code of a program) does not depend
on the oracle itself. In fact coding could never depend on the oracle, since the programmer does not
know the oracle. We will now wrap this up in a proposition for easy reference. First we introduce some
notation. For a term t (x1, . . . , xn), and a1, . . . , an ∈ A, we write t f (a1, . . . , an) for the interpretation of
the closed term t (a1, . . . , an) in A[ f ]. It may or may not be defined, whenever it is we say t (a1, . . . , an)
denotes with oracle f , or t f (a1, . . . , an) ↓.

Proposition 2.6.5. For any term
t (x, x1, . . . , xn)

there is a term
〈x〉(−)t (x1, . . . , xn)

such that for all a, a1, . . . , an ∈ A, f : A → A:

(〈x〉(−)t )(a1, . . . , an) ↓ (in A)

t f (a, a1, . . . , an+1) ' 〈x〉(−)t (a1, . . . , an) · f a
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Proof. Let k,s ∈ A witness combinatory completeness of A[ f ], for every f . Using primitive recursion,
one can show that there is a term C (x, y) of A such that (x, y)([c]∗u) is given by the following instruc-
tions:

C (x, y)([c]∗u) '
{

x([y]∗u) if (∀i ≤ lhu)Notp0x([y]∗u<i )

p1(x([y]∗u<i ))([c]∗u≥i ) for i least s.t. p0(x([y]∗u<i )), otherwise

Then for a,b,c ∈ A, C (a,b) · f c first computes a · f b, and whenever that finishes it goes on to compute
a · f b · f c. In fact we have

C (a,b) · f c ' a · f b · f c.

We now follow the proof of 2.2.3:
If t is a constant or a variable y different from x, let 〈x〉(−)t =C (k, t ).
If t = x, let 〈x〉(−)t =C (C (s,k),k).
If t = t1t2, let 〈x〉(−)t =C (C (s, (〈x〉(−)t1)), (〈x〉(−)t2)).
One can now verify the statement by induction.

2.7 Forcing Effective Operations of Type 2

In this section we will present a new application of generalized relative recursion as defined above. We
will specify a method to construct from a partial combinatory algebra A and a functional F : A A → A,
a pca A[F ] in which F is an effective operation of type 2.

We will very quickly define a type structure for any pca A. The set of elements of type σ will be
denoted by Aσ. We define the pure types as follows:

• Elements of A have pure type 0.

• Elements of A An have pure type n +1.

One could also define functionals of composed type, for example the functionals A A × A → A. We
can however always (using constant functions and pairing), code those into functionals of pure type.
Therefore, whenever I refer to a type, I usually mean pure type. Also, I might not always write a bar
above the type of a functional (e.g. Let F be a type-2 functional). I mean the same thing, but the bar is
basically there when we need later on that the types can be seen as elements of the pca A, i.e. they are
coded as the Curry numerals. In that case, indeed, the types have a type themselves.

We now define the effective operations:

Definition 2.7.1 (Effective Operation). For a pca A, n ∈N, we define a set Qn of effective operations of
type n, and a total relation In : Qn → A by induction:

• Q0 = A, I0(a) = {a}.

• In+1(F ) = {e ∈ A |F : Qn → A and (∀ f ∈Qn)(∀a ∈ In( f ))ea = F ( f )}

• Qn+1 = {F | In+1(F ) 6= ;}.

We also define effective operations relative to an applicative morphism γ : A → B .

Definition 2.7.2 (Relative Effective Operation). For an applicative morphism γ : A → B between pcas,
n ∈N, we define a set Qγ

n of effective operations of type n relative to γ, and a total relation Iγn : Qγ
n → A

by induction:

• Qγ
0 = A, Iγ0 = γ.
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• Iγn+1(F ) = {e ∈ B |F : Qn → A and (∀ f ∈Qn)(∀b ∈ In( f ))eb ∈ γ(F ( f ))}

• Qγ
n+1 = {F | In+1(F ) 6= ;}.

Remark Observe that effective operations for a pca A are the same as effective operations relative
to the identity ιA . We will often write Q A

n instead of Q ιA
n . Also note that a representable total function

f : A → A as in definition 2.6.1 is the same thing as an effective operation of type 1. In fact, we can
rewrite theorem 2.6.3 for total functions as follows:

Theorem 2.7.3. For every non-trivial pca A and every endofunction f on A, there is a pca A[ f ] and an
applicative morphism ι f : A → A[ f ] given by a 7→ {a} such that:

(i) f ∈Q A[ f ]
1 =Q

ι f
1

(ii) For every decidable applicative morphism γ : A → B such that f ∈Qγ
1 , there is a decidable applica-

tive morphism γ f : A[ f ] → B such that γ f ι f = γ, and γ is unique with this property. Moreover, if
δ : A[ f ] → B is such that δι f

∼= γ, then δ∼= γ f .

The construction presented in this section will allow us to prove the type 2 analogue of theorem
2.7.3. We define A[F ] as A[g ], where g : A → A is defined as a union of a family {gα}α of compatible
partial functions indexed by the ordinals. This family is defined by transfinite induction as follows:

• g0 =;
• gα+1(a) = b if a is an index for a total function f : A → A in A[gα] and F ( f ) = b.

• gλ =⋃
α<λ gα if λ is a limit ordinal.

Of course one has to check that the above yields a well-defined family of compatible functions {gα},
this is not hard. Now we let g =⋃

α gα and define A[F ] := A[g ]. We have the following theorem:

Theorem 2.7.4. For every non-trivial pca A and every total functional F : A A → A, let ιF : A → A[F ] be
the applicative morphism given by a 7→ {a}. Then:

(i) F ∈Q A[F ]
2 =Q ιF

2

(ii) For every decidable applicative morphism γ : A → B such that F ∈Qγ
2 , there is a decidable applica-

tive morphism γF : A[F ] → B such that γF ιF = γ, and γ is unique with this property. Moreover, if
δ : A[F ] → B is such that διF ∼= γ, then δ∼= γF .

Proof. Part (i) is easy to check.
For part (ii): Suppose γ : A → B is a decidable applicative morphism such that F ∈ Qγ

2 . Let rF ∈
Iγ2 (F ). Denote the realizer for γ by r . Let d be the decider for γ. Let c be such that for all x ∈ γ(a),
v ∈ γ(u), cx y ∈ γ([a]∗u). Let c′ be such that for all y ∈ γ(a), x ∈ γ(u), c′x y ∈ γ(u∗[a]). Let q0,q1 be such
that for all x ∈ γ(a), q0x ∈ γ(p0a), q1x ∈ γ(p1a). By the recursion theorem, let e ∈ B be such that

exv ' if dq0(r e(cxv)) then q1(r e(cxv))

else ex(c′v(rF (r (q1(r e(cxv)))))).

Then one can verify that for v ∈ γ([]), we have for all e ∈ γ(a), x ∈ γ(a′) such that a · f a′ ↓:

exv ∈ γ(a · f a′).

Essential is that if a ∈ I A[F ]
1 ( f ), then for b ∈ γ(a), r b ∈ Iγ1 ( f ).
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So by the above, 〈x y〉x y v realizes γ as an applicative morphism γF : A[F ] → B , and the fact that
γ= γF ◦ ιF is obvious.

The other statements are easy to check.

In the above theorem, we needed that F is total to guarantee that in A[F ], F will be an effective
operation (so it is defined on all total functions in A[F ]). However, one could also relax the definition of
an effective operation to also include partial functionals. It is not hard to see that the above definition
also holds for this definition, but for our purposes (in the next section, and section 5.3 and 5.4), we do
not bother with it.

Question It is not known to me whether the above theorem holds for higher types, especially type 3.
I strongly feel that it does not hold for type 3, but I haven’t been able to come up with a counterexample
yet.

2.8 A Generalization of Kleene’s Computable Functionals

In this section we discuss another application of generalized relative recursion for pcas. We present
a way in which it can be used to generalize a notion of computable functionals defined by Kleene
in [Kle59]. As opposed to ordinary computable functions, computable functionals can take non-
computable higher type objects as input. Note that in that way they also differ from effective oper-
ations, that only take computable objects as input. Higher-type recursion theory is a difficult subject
and has been studied by a lot of recursion theorists. In contrast to ordinary recursion theory, there is
no Church’s thesis for computable functionals. In fact, various notions of higher-type computability
have been studied, and they have been shown to be inequivalent. A great historical survey can be
found in [Lon05]. Here we will focus on Kleene’s notion, but several connections can be made to other
notions, for example the Hereditarily Effective Operations (HEOs).

In Kleene computability, recursive functionals are N−indexed functions that, besides type 0 argu-
ments, also take arguments of higher types. As an example, imagine a “computable” partial functional
ϕ that takes a single type 2 functional as its input. For a functional F :NN→N, the value ϕ(F ) is deter-
mined by a procedure that can plausibly be called “algorithmic”. In [Kle59], Kleene puts it as follows:

“For a function ϕ(F ) of a type-2 variable F , it seems natural to image similarly an ‘or-
acle’ for F who at any step in the computation can be called upon to supply the value of
F (β) when a procedure for β(y) for any y has arisen. (. . . ) When the oracle for F is used,
if the computations of β(y) for each y = 0,1, . . . are considered to be parts of the computa-
tion of ϕ(F ), that computation for the given F will not be a finite object (. . . ).”

One might already observe the analogy with the construction of A[F ] for an arbitrary pca. We con-
structed A[F ] as A[g ] where g satisfies:

g (a) = b if a is an index for f in A[g ] and F ( f ) = b.

In other words: in A[g ], we can ask for values of g at any step in the computation (using dialogues),
which are values of F for functions f for which a “procedure has arisen”, that is: we have an index of
f in the pca A[g ] itself. It is this analogy that we use to generalize Kleene’s notion of computability.
The philosophy is that every pca defines a notion of what we consider “algorithmic”, and the use of
higher-type oracles is added on top of that.

Kleene defines his partial recursive functionals inductively in nine clauses that he named S1-S9.
The definition below is taken from [Lon05], but essentially the same as in [Kle59]. Every partial re-
cursive function has an index e, and the corresponding functional is denoted {e}. The arguments of a
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partial recursive functional are tuples of functionals of a certain pure type. We write X for the disjoint
union of these tuples. We will denote arbitrary tuples (x1, . . . , xn) ∈ X by x , and for σ = (σ1, . . . ,σn) a
tuple of pure types we write x :σ to denote that xi :σi for each 1 ≤ i ≤ n. Forσ= (σ1, . . . ,σn) a tuple of
pure types, we write #σ for the coded sequences 〈s1, . . . , sn〉 ∈N, where σi = si . For e, f ∈N, we again
write

{e}(x) ' { f }(x), resp. {e}(x)- { f }(x)

to express that the left hand side is defined if and only if, (resp. if) the right hand side is, and in that
case they are equal. Lastly, we use λ−notation to functionals: if y has type t −2, then λy : t −2.{h}(y, x)
denotes the (partial) type t −1 functional y 7→ {h}(y, x), for any x . We now have the following defini-
tion:

Definition 2.8.1 (Kleene’s S1-S9). The partial map {−}(−) : N×X → N is defined by the following in-
ductive clauses, that only apply when the expression is well-typed:

S1: Successor function: {〈1,#σ〉}(x :σ) = x1 +1

S2: Constant functions: For any q ∈N, {〈2,#σ, q〉}(x :σ) = q

S3: Projection: {〈3,#σ〉}(x :σ) = x1

S4: Composition: For g ,h ∈N:

{〈4,#σ, g ,h〉}(x :σ) ' {g }({h}(x), x)

S5: Primitive recursion: For any g ,h ∈N, if m = 〈5,#σ, g ,h〉, then for all n ∈N:

{m}(0, x) ' {g }(x)

{m}(n +1, x) ' {h}(n, {m}(n, x), x).

S6: Permutation of arguments: For any g ∈N and 1 ≤ k < n:

{〈6,#σ,k, g 〉}(x :σ) ' {g }(xk+1, x1, . . . , xk , xk+2, . . . , xn).

S7: Type 1 application: if σ1 = 1 and σ2 = 0:

{〈7,#σ〉}(x :σ) = x1(x2).

S8: Higher type application: For h ∈N and t ≥ 2:

{〈8,#σ, t ,h〉}(y : t , x :σ) ' y(λz : t −2.{h}(y, z, x))

S9: Index vocation:
{〈9,#σ,#τ〉}(n : 0, x :σ, y :τ) ' {n}(x).

Observe that the closure rules S1-S8 yield a set of total computable functionals, which contains
all primitive recursive functions. It is only due to S9 that partiality comes in.

We will state a couple of basic results on Kleene’s functionals that we will need later on. They
correspond to XIII-XV in [Kle59].
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Theorem 2.8.2 (Sm theorem). For each m ≥ 1 there is a primitive recursive function Sm in m +1 vari-
ables such that whenever z is an index for a recursive functional ϕ(y1 : 0, . . . , yn : 0, x :σ), then

{Sm(z, y1, . . . , ym)}(x) ' {z}(y1, . . . , ym , x) =ϕ(y1, . . . , yn , x).

Theorem 2.8.3 (Recursion theorem/Fixed-point theorem). Supposeψ(z : 0, x :σ) is a partial recursive
functional, then the equation

{z}(x) 'ψ(z, x)

has a solution for z.

Theorem 2.8.4 (Definition by cases). If

ψ0(x :σ),ψ1(x :σ)

are partial recursive functionals and Q(x :σ) is a partial recursive predicate (it takes values in {0,1}),
then the functional ψ defined by

ψ(x) '
{
ψ0(x) if Q(x)

ψ1(x) if ¬Q(x)

is partial recursive.

2.8.1 Kleene Computability for Pcas

We now proceed to define a notion of “computable functional” for an arbitrary pca A. The indices of
computable functionals are elements of A. In contrast to Kleene’s S1-S9, we don’t need to define ex-
plicit coding for the indices. The applicative structure on A will be enough to show that our functionals
are closed under the analogues of S1-S9.

The goal is to define for any a,b ∈ A, and any tuple (x1, . . . , xk ) of functionals the application of a to
(b, x1, . . . , xk ), which we will denote by a ·x1,...,xk b. By convention, we always require a type 0 argument,
and insert T as a dummy whenever no such argument is provided. Again denote the type of each xi

by σi , and we work only with pure types, i.e. σi = ni for some ni ∈N. We write a ·x1,...,xk b ↓ to denote
that a ·x1,...,xk b is defined, a ·x1,...,xk b = c to denote that a ·x1,...,xk b is defined and has value c.

We start by defining a family of functions gα,σ1,...,σk : Aσ1 × . . . Aσk ×A → A, whereα ranges over the
ordinals. We usually omit the subscript σ1,...,σk since that can be read-off from the arguments, i.e. we
assume that

gα(x1, . . . , xk , a) = gα,σ1,...,σk (x1, . . . , xk , a)

in such a way that the expression is well-typed. For (x1, . . . , xk ) ∈ Aσ1 × . . . Aσk , a ∈ A, 1 ≤ i ≤ k, let:

• g0 =;

• gα+1(x1, . . . , xk ,pi a) = xi (a) if σi = 1

• gα+1(x1, . . . , xk ,pi a) = xi (y) if σi = 2, where y =λz.a ·λv.gα(x1,...,xk ,v) z is total

• gα+1(x1, . . . , xk ,pi a) = xi (y) if σi = n for some n ≥ 3, where y =λz.a ·λv.(gα(x1,...,xk ,z,v)) T is total.

• gλ =⋃
α<λ gα for λ a limit ordinal.

One should of course check that the above inductive definition actually works, and that for each
σ1, . . . ,σk , {gα,σ1,...,σk }α is a compatible family of functions. It implies that the following is well-defined:
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Definition 2.8.5. For all tuples of pure types σ1, . . . ,σk , The associate of type σ1, . . . ,σk is the function
gσ1,...,σk defined by:

gσ1,...,σk =⋃
α

gα,σ1,...,σk .

We will often write g (x1, . . . , xk , v) instead of

gσ1,...,σk (x1, . . . , xk ),

and write g (x1, . . . , xk ) for λv.g (x1, . . . , xk , v).

We now define:

a ·x1,...,xn b = a ·g (x1,...,xn ) b.

Clearly, if a ·x1,...,xn b ↓, then there is some α such that

a ·λv.gα(x1,...,xn ) b ↓ .

Clearly, the set of such α is upward closed.

Definition 2.8.6. For x :σ a tuple of functionals, we say that a halts on b at stage α if α is the least
such that

a ·λv.gα(x1,...,xn ) b ↓ .

We will often need proofs by induction over the stage on which a term halts.
The following shows how Kleene’s S1-S9 fits within the above model:

S1-S3: Successor function, Constant function, projection: Easy to see. Application in A has an index in
A[g ], independent of g . In fact we gain something here: the indices of A−computable functions
are independent of any higher type arguments that are also given.

S4: Composition: it is not hard to see that there is an index c ∈ A such that for any g : A → A:

(cae) ·g b = a ·g (e ·g b).

Then cae satisfies for all tuples (x1, . . . , xn):

cae ·x1,...,xn b = a ·x1,...,xn (e ·x1,...,xk b).

S5: Primitive recursion: one should verify that there is R ∈ A such that for all a,R ∈ A, if we let
f =RaR, then for all g : A → A, n ∈N:

f ·g 0 = a

f ·g n +1 ' R ·g n ·g ( f ·g n).

This is easy using the proof of 2.3.3 in [vO08] (proposition 1.3.5 in that source). The definition
of R only depends on the elements s,k in A[g ], which are independent of g . So R is defined by
some term in which only the constants s,k appear, therefore we can apply proposition 2.6.5 to
define R independent of g .

S6: Permutation of arguments: easy to see
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S7: Type 1 application: If x1 is of type 1, then if we let a ∈ A be such that for all b ∈ A, g : A → A:

a([b]) = pF(p1b)

a([b,u0]) = pTu0

Then a ·g b = g (p1b). Hence for such A:

a ·x1,...,xk b = x1(b).

S8: Higher type application: Suppose we want to compute xi (λz.e ·x1,...,xk ,z T), and we are given that
λz.e ·x1,...,xk ,z T is total. Let a ∈ A be such that for all b ∈ A, g : A → A:

a([b]) = pF(pi b)

a([b,u]) = pTu

Then by the above definitions:

a ·x1,...,xk e = xi (y) where y =λz.e ·x1,...,xk ,z T

S9: Index invocation: easy to see.

The above tells us that any Kleene computable functional is computable with respect to the newly
defined notion of “computable functional”. The converse is also true:

Theorem 2.8.7. For A = K1, the above defined notion of computability coincides with Kleene com-
putability. In other words, for every a ∈ A, there is an index n such that for all b ∈ A and functionals
(x1 :σ1, . . . , xk :σk ):

{n#σ}(b, x1, . . . , xk )- a ·x1,...,xk b.

Here σ= (σ1, . . . ,σk ).

Proof. We have to check that the partial map

(a,b, x1, . . . , xk ) 7→ a ·x1,...,xk b

is computable in Kleene’s sense. We therefore have to find an index n such that for any x :σ = (x1 :
σ1, . . . , xk :σn):

{n#σ}(a,b, x) ¹ a ·x1,...,xk b

This will just be a tedious exercise. First, let χ be the following partial recursive function:

χ(e,#σ, i ,b, x1, . . . , xk ) =
xi (b) if σi = 1

xi (λz.{e}(#σ,b, z, [], x1, . . . , xk )) if σi = 2

xi (λz.{e}(#(σ1, . . . ,σk ,σi −2),b,T, [], x1, . . . , xk , z)) if σi = n

for some n ≥ 3.

Convince yourself that χ is partial recursive by S7,S8,S9 and theorem 2.8.4.
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Define the partial recursive function ψ as follows:

ψ(e,#σ, a,b,u, x1, . . . , xk ) '
p1(a([b]∗u)) if p0(a([b]∗u))

{e}(#σ, a,b,u ∗ [w], x1, . . . , xk ) else if (∃i ≤ k, v)s.t. p1(a([b]∗u)) = pi v

where w =χ(e,#σ, i , v, x1, . . . , xk )

Again, convince yourself that ψ is indeed partial recursive.
By theorem 2.8.3, there is an index app ∈N such that:

{app}(#σ, a,b,u, x1, . . . , xk ) 'ψ(app,#σ, a,b,u, x1, . . . , xk ).

I’ll now prove by induction on α that for all (x1 :σ1, . . . , xk :σk ):

a ·gα(x1,...,xk ) b ↓⇒ {app}(a,b, [], x1, . . . , xk ) = a ·gα(x1,...,xk ) b.

Here we write gα(x1, . . . , xk ) for λv.gα(x1, . . . , xk , v).
Recall that a ·g0(x1,...,xk ) b ↓ implies that a([b]) = pTc for some c. In that case:

ψ(app,#σ, a,b, [], x1, . . . , xk ) =ψ(app,#σ, a,b, [], x1, . . . , xk ) = c.

Now suppose the statement holds for all β < α. Then a ·gα(x1,...,xk ) b = c implies that there is a
gα(x1, . . . , xk )-dialogue u = [u0, . . . ,un] between a and b such that a([b]∗u) = pTc. By reverse induc-
tion, I’ll show that for all 0 ≤ i ≤ n +1

ψ(app,#σ, a,b,u<i , x1, . . . , xk ) = c

For i = n+1 this is clear, since a([b]∗u) = pTc. Now suppose i < n+1. Then p1(a([b]∗u<i )) = p j v for
some v,1 ≤ j ≤ k, and:

ψ(app,#σ, a,b,u<i , x1, . . . , xk ) =
{app}(#σ, a,b,u ∗ [w], x1, . . . , xk ) where

w =χ(app,#σ, i , v, x1, . . . , xk ).

We know that ui = gα(x1, . . . , xk ,p j v). We now have three cases:

• σ j = 1, then w = x j (a) = gα(p j v) = ui .

• σ j = 2, then w = x j (λz.{app}(#σ, v, z, [], x1, . . . , xk ))

• σ j = n for some n ≥ 3, then

w = x j (λz.{app}(#(σ1, . . . ,σk ,σ j−2), v,T, [], x1, . . . , z, . . . , xk )).

In the third case, we know that gα(x1, . . . , xk ,p j v) is defined, whence we deduce thatλz.v ·gβ(x1,...,xk ,z)T
is total for some β<α. By induction hypothesis, we have that for all z:

v ·gβ(x1,...,xk ,z) T= {app}(#(σ1, . . . ,σk ,σ j−2), v,T, [], x1, . . . , z, . . . , xk )).

So w = gα(x1, . . . , xk ,p j v) = ui , hence

ψ(app, a,b,u<i , x1, . . . , xk ) = {app}(#σ, a,b,u ∗ [ui ], x1, . . . , xk ) = a ·gα(x1,...,xk ) b
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by the reverse induction hypothesis.
For the second case we have roughly the same argument and the first case is clear. Hence it follows

that
{app}(#σ, a,b, [], x1, . . . , xk ) = a ·gα(x1,...,xk ) b

whenever the right hand side is defined. This finishes the inductive step.
It then follows that for all (x1 :σ1, . . . , xk :σk ):

{app}(#σ, a,b, [], x1, . . . , xk )- a ·x1,...,xk b.

By theorem 2.8.2 we can find for every a an index n such that

{n#σ}(b, x1, . . . , xk )- a ·x1,...,xk b.

One may wonder whether we can obtain the above result with “'” instead of “-”. This is a very
subtle issue, and to be able to prove such a thing we would have to look at the definition of Kleene’s
functionals a bit more carefully. However, it is not very important for the rest of this thesis. What is im-
portant here is that either system can simulate the other, and that therefore the set of total computable
functionals is the same in either case.

2.8.2 Relative Recursion and Hierarchies

In Kleene computability, a function f : N→ N is computable with respect to the functionals x :σ if
there exists e ∈N such that:

(∀n){e}(n, x) = f (n).

Sets of functions computable from certain functionals are also known as (recursive) hierarchies . Us-
ing the previous section, we can define hierarchies for any partial combinatory algebra A. In fact,
if we denote by A[x1, . . . , xn] the partial combinatory algebra with applicative map ·x1,...,xn , then the
computable functions in A[x1, . . . , xn] are precisely the functions computable from x1, . . . , xn . We have
immediately obtained the additional result that all hierarchies are pcas. In the rest of this section we
will look closely at a specific hierarchy that we will need later on.

The first was already described by Kleene in [Kle59]. Define the type 2 functional E : NN → N as
follows:

E( f ) =
{

0 if (∃m) f (m) = 0

1 otherwise
.

Definition 2.8.8. A total functionalΦ :N×Nσ1 ×Nσ2 × . . .×Nσk ×N→N is a predicate if it takes values
in {0,1}. Here we take 0 to represent the truth value “true”, and 1 “false”.

A recursive predicate is a predicateΦ :Nσ1 ×Nσ2 × . . .×Nσk ×N→N for which there exists an index
e ∈N, so that for all x :σ:

e ·x1,...,xn v =Φ(x1, . . . , xn , v).

With the above definition we might as well define E as:

E( f ) = (
(∃m) f (m) = 0

)
.

Kleene has shown that the total functions computable from E are precisely the ∆1
1 functions. We

define this set of functions as part of the Analytical Hierarchy :
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Definition 2.8.9 (Analytical Hierarchy). Let k ≥ 0. Let F :Nσ1 × . . .Nσk ×N→ {0,1} be predicate. Then
we define inductively for all n ≥ 1:

• We say that F isΠ1
1 if there exists e ∈N such that e is an index for a recursive predicate and

F (n, x1, . . . , xk ) = (∀g :NN)(∃y)e ·g ,x1,...,xn [y,n].

• Similarly, F is called Σ1
1 if there exists e ∈N such that e is an index for a recursive predicate and

F (n, x1, . . . , xk ) = (∃g :NN)(∀y)e ·g ,x1,...,xk [y,n].

• F isΠ1
n+1 if there exists a Σ1

n predicate G :NN×Nσ1 × . . .Nσk ×N→N such that

F (n, x1, . . . , xk ) = (∀g :NN)G(n, g , x1, . . . , xk ).

• F is Σ1
n+1 if there exists aΠ1

n predicate G :NN×Nσ1 × . . .Nσk ×N→N such that

F (n, x1, . . . , xk ) = (∃g :NN)G(n, g , x1, . . . , xk ).

• F is ∆1
n if it is bothΠ1

n and Σ1
n .

Call a subset A ⊆ N Π1
n ,Σ1

n resp. ∆1
n if its characteristic function is given by a Π1

n ,Σ1
n resp. ∆1

n
predicate. We call a partial function f : N→ N Π1

n ,Σ1
n resp. ∆1

n if its graph, coded as a subset of N, is
Π1

n ,Σ1
n , ∆1

n .
We call a set, or function analytical if it isΠ1

n or Σ1
n for some n.

Remark It is an easy exercise to show that a total function f : N→N is Π1
n (or Σ1

n) if and only if it is
∆1

n .

Theorem 2.8.10. The total functions in K1[E ] are precisely the total ∆1
1 functions.

Proof. See [Kle59], XLVIII (and theorem 2.8.7). An alternative approach is given in [Hin78], theorem
VI.1.8.

In [Hin78], Peter Hinman proves a stronger result than the above theorem. Namely, he shows that
the domains of the partial functions recursive in E (in his sense, but they are essentially the same), are
precisely the Π1

1 sets. I will state his result here, formulated in way that I consider more appropriate
for this context. Recall the following definition from ordinary recursion theory:

Definition 2.8.11. A set C ⊆ N is Π1
1-complete if it is Π1

1 and for every Π1
1 set X ⊆ N, there is a total

computable function F :N→N such that

x ∈ X ⇐⇒ F (x) ∈C .

An example of aΠ1
1 complete set is the following:

W = {z |ϕz codes a well-ordering on N}. (2.4)

Where ϕz denotes the partial computable function with index z for some model of computation, and
a total function f :N→N codes a well-ordering if the ordering

n ≤ m ⇐⇒ f (〈n,m〉) = 0

is a well-ordering on S = {n ∈N | (∃m) f (〈n,m〉) = 0∨ f (〈m,n〉) = 0}.
I now wrap up Hinman’s result in the following theorem:
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Theorem 2.8.12. The partial function (a,b) 7→ a ·E b (the application in K1[E ]) isΠ1
1-complete.

Proof. I’ll show here that the application function is Π1
1, since that does not follow immediately from

Hinman’s results. Let r ∈N be the uniform index for f in K1[ f ], for any f . Recall that K1[E ] =K1[g ],
where we defined g in stages. I’ll show that g is Π1

1. Let e be an index such that whenever F is the
characteristic function of the graph of a partial function f : A → A, then for all b, x ∈K1:

eb ·F x ' b · f x.

Convince yourself that such e exists; sinceN is enumerable, we can just “wait” for values of f to appear
in the graph.

Define the following predicate:

Φ([b, i ], X ) =(∀s∃t∀y) :
(
eb ·X s ↓ ∧(eb ·X t = 0∨ i = 1)∧ (eb ·X y 6= 0∨ i = 0).

)
It is not hard to see that Φ is Π1

1 (in fact it is arithmetical) (to work out the details, one needs to use
Kleene’s T−predicate and existential quantification over dialogues). Let G be the characteristic func-
tion of the graph of g . Now I claim:

G([b, i ]) ⇐⇒ (∀X )(∃p, j )(Φ([p, j ], X ) ⇒ X ([p, j ])) ⇒ X ([b, i ]). (2.5)

Proof of claim. First, observe:

Φ([b, i ],G) ⇔ (∀s)(∃t∀y)eb ·G s ↓ ∧(eb ·G t = 0∨ i = 1)∧ (eb ·G y 6= 0∨ i = 0)

⇔ (∀s)(∃t∀y)b ·g s ↓ ∧(b ·g t = 0∨ i = 1)∧ (b ·g y 6= 0∨ i = 0)

⇔G([b, i ]).

This proves the “⇐” direction of (2.5) (we substitute G for X ).
Now assume G([b, i ]), that is:

(∀s)(∃t∀y)b ·g s ↓ ∧(b ·g t = 0∨ i = 1)∧ (b ·g y 6= 0∨ i = 0).

Suppose we have X such that
(∀p, j ) :Φ([p, j ], X ) ⇒ X ([p, j ]).

We need to prove that X ([b, i ]). I’ll prove this by showing that

(∀p, j ) : G([p, j ]) ⇒ X ([p, j ]). (2.6)

This is done by induction. Recall that g is constructed as g =⋃
α gα. Denote the corresponding graphs

by Gα. Then for α= 0,
(∀p, j ) : G([p, j ]) ⇒ X ([p, j ])

clearly holds, since g0 =;. If it holds up to α, then:

Gα+1[p, j ] ⇒ (∀s)(∃t∀y)p ·gα s ↓ ∧(p ·gα t = 0∨ j = 1)∧ (p ·gα y 6= 0∨ j = 0)

⇒ (∀s)(∃t∀y)ep ·X s ↓ ∧(ep ·X t = 0∨ j = 1)∧ (ep ·X y 6= 0∨ j = 0)

⇒Φ([p, j ], X )

⇒ X ([p, j ]).

For limit ordinals λ, Gλ[p, j ] ⇐⇒ Gα[p, j ] for some α<λ so that follows trivially.
Hence we have shown (2.6), from which X [b, i ] follows by assumption.
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Since the right-hand side of (2.5) isΠ1
1, we are done.

To see that the application is Π1
1 complete, see [Hin78], section VI.1. There one can find a proof in

which the set W from (2.4) is reduced to a semi-recursive set computable from E in Hinman’s sense.
This proof is easily adopted to a proof ofΠ1

1-completeness for our case.

Another hierarchy is given by E ’s bigger brother of type 3:

E(F ) =
{

0 if (∃α)F (α) = 0

1 else .

Hinman studies this functional in more detail. For now I’ll leave it at the following proposition:

Proposition 2.8.13 (Hinman). E forces the analytical hierarchy. That is, every analytical set is com-
putable in K1[E].

Proof. First, E computes E since for any function f , we can define the functional

F : g 7→ f (g (0)).

computable from f . So then
E( f ) = E(F ).

It follows that E is an effective operation in K1[E]. By theorem 2.7.4, n 7→ {n} is a decidable applicative
morphism

K1[E ] →K1[E]

hence K1[E] computes all ∆1
1 sets.

Now suppose e is an index of a recursive predicate NN→N. Then

(∀y)e ·g [y,n]

is ∆1
1 so there is f such that

f n ·E,g T= (∀y)e ·g ,E [y,n]

But then
(∃g )(∀y)e ·g [y,n] ⇐⇒ rE ·E ( f n)

where rE represents E in K1[E]. It follows that Σ1
1 predicates are computable in K1[E ], and, by comple-

mentation,Π1
1 predicates as well.

The inductive step is similar.

2.9 Lifting Applicative Morphisms

In this section I’ll describe a procedure that I call lifting. For the remainder of this section, γ : A → B
is a computationally dense, discrete applicative morphism A → B . Note that if A is decidable, any
computationally dense applicative morphism γ : A → B is discrete. By theorem 2.5.16, there exists
δ : B → A such that γδ¹ ιB (so by theorem 2.5.15, δ is also discrete).

Now define a partial function fδ : A → A by:

fδ(a) = a′ ⇐⇒ a ∈ δγ(a′).

Since γ is discrete, fδ is well-defined. Since γδ ¹ ιB , fδ is representable with respect to γ. Since γ is
decidable (proposition 2.5.12), γ is realized as applicative morphism A[ fδ] → B . By composition with
ι f : A → A[ fδ], we can view δ as an applicative morphism B → A[ fδ].

Suppose fδ is represented by r ∈ A[ fδ]. Then r realizes δγ¹ ιA[ fδ]. But then by theorem 2.5.16, δ is
computationally dense!



2.9. LIFTING APPLICATIVE MORPHISMS 39

Definition 2.9.1. Define the lift of γ with respect to δ to be γ viewed as morphism A[ fδ] → B .

In [Lon95], an applicative morphism γ : A → B is an inclusion if there exists δ : B → A such that
γa δ and γδ' ιB . Similarly, γ : A → B is a retraction if γa δ and δγ' ιA .

The theorem below tells us that we can lift a discrete inclusion to an equivalence.

Theorem 2.9.2. Suppose γ : A → B is discrete, and δ : B → A is such that γa δ and γδ' ιB . Then lift of
γ with respect to δ is an equivalence.

Proof. Observe that we get γ : A[ fδ] → B , γδ ' ιB still holds, and ιA[ fδ] ¹ δγ also still holds since this
had a realizer in A. If r represents fδ in A[ fδ], then r realizes δγ¹ ιA[ fδ].

Hence this lift is an equivalence.

Effectively quasi-surjective applicative morphisms (corollary 2.5.17) lift to retractions (if they are
discrete):

Theorem 2.9.3. Supposeγ : A → B is a discrete applicative morphism and δ : B → A is such thatγδ' ιB .
Then the lift of γ with respect to δ yields a discrete retraction δ : B → A[ fδ].

Proof. For the lift γ : A[ fδ] → B , δγ¹ ιA , so δ is computationally dense and γδ' ιB still holds. There-
fore δa γ, so δ is a discrete retraction.





Chapter 3

Assemblies

In the introduction, we have informally described a category of assemblies. In this chapter, we will give
a definition and exhibit the structure of such a category. It turns out that they are very rich categories
with interesting properties. Assemblies are also studied in computer science, for example in domain
theory.

3.1 The Category of Assemblies

Every partial combinatory algebra gives rise to a category of assemblies. Informally, it looks like the
category of sets, but we require the morphisms to be representable functions of A in a certain sense.
We start with the definition of an assembly:

Definition 3.1.1. An assembly on a pca A is a pair (X ,E), where X is a set and E : X → A is a total
relation. We write E(x) for the set {a ∈ A | (x, a) ∈ E }.

A morphism between assemblies (X ,E) → (Y ,F ) is given by a map f : X → Y for which there is an
a ∈ A such that:

∀x : ∀b ∈ E(x), ab ↓ and ab ∈ F ( f (x)).

For an assembly (X ,E) and x ∈ X , we can view E(x) as the set of representatives of the element x
in A. Note that an assembly is basically just a map E : X →P(A). We therefore refer to the underlying
set X of an assembly (X ,E) as the domain of (X ,E).

A morphism of assemblies (X ,E) → (Y ,F ) given by a map f : X → Y is then a representable func-
tion of A that maps every representative of x to a representative of f (x). In other words, there is an
element a ∈ A such that for all a′ ∈ E(x), aa′ ∈ F ( f (x)). The element a is also said to track f .

It is easy to check that morphisms between assemblies are closed under composition. Therefore
assemblies on a pca A form a category, denoted Ass(A). From the proposition below we can already
see that the category Ass(A) has a lot of nice properties.

Definition 3.1.2. A category C is called regular if the following conditions hold:

1. C is finitely complete

2. We have coequalizers of kernel pairs, i.e. for any arrow f : C → D whenever we have a pullback
diagram

E ×D E C

C D

e1

e0

f

f

41
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then the coequalizer of 〈e0,e1〉 : E ×D E →C ×C exists.

3. Regular epimorphisms (i.e. epimorphism that are coequalizers) are stable under pullback. That
is, whenever e : C → D is a regular epimorphism and

E ×D C C

E D

e ′ e

f

is a pullback diagram, e ′ is regular epi.

Regular categories are very important in logic. In such categories, the collection of subobjects
has a well-behaved structure that allows for an interpretation of a fragment of first-order logic (called
regular logic), and often more than that. One important property of regular categories is that every
arrow f : C → D has a regular epi-mono decomposition. This means that every such f decomposes
as:

f = me

with e regular epi, and m mono. One can show that such a decomposition is unique (up to isomor-
phism), and we call the subobject associated to m the image of f . In what follows, we will make
extensive use of regularity of certain categories. For more on regular categories, see [BGO71].

Next, we recall the definition of a cartesian closed category.

Definition 3.1.3. A category C is cartesian closed if it has binary products and for every X ∈ C, the
product functor (−)×X : C→ C has a right adjoint (−)X : C→ C.

For any Y , the object Y X behaves like the object of “morphisms from X to Y ”. In what follows, we
will often explicitly compute these objects, that are also called exponentials.

The following proposition summarizes some properties of a category of assemblies that are im-
portant for the rest of this chapter. For a proof of the following I refer to [vO08] or [Lon95].

Proposition 3.1.4. For a pca A, the category Ass(A) is regular, cartesian closed and has finite colimits.

We will see in section 3.1.1 that Ass(A) is also equipped with a natural numbers object. For more
categorical properties of Ass(A), see section 4.1.

Instead of proving the above proposition, I’ll quickly sketch some constructions that we will need
later. For (X ,E), (Y ,F ) ∈ Ass(A), we can form the product by the assembly (X ×Y ,E ∧ F ) where we
denote by E ∧F the map

(x, y) 7→ {pab |a ∈ E(x),b ∈ F (y)}).

It is easy to see that any singleton set {∗}, together with any nonempty subset of A yields a terminal
object.

The coproduct of (X ,E), (Y ,F ) is given by ({0}×X ∪ {1}×Y ,E ∨F ) where

E ∨F (0, x) = {pTa |a ∈ E(x)} and E ∨F (1, x) = {pFb |b ∈ F (y)}

Note that the use of T and F is purely to be able to tell what kind of element the representative repre-
sents, so an element from X or from Y . We can use any pair of elements here that we can distinguish
in A.

Exponentials can be defined as follows. For assemblies (X ,E), (Y ,F ), the exponential (Z ,G) =
(Y ,F )(X ,E) has as domain Z the set of morphisms f : X → Y in Ass(A), and G : Z → A is defined by:

G( f ) = {a |a tracks f }.
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For P,Q ⊆ A, we define a set P →Q by:

P →Q = {a ∈ A | (∀p ∈ P )ap ↓ ∧ap ∈Q}.

For instance, the function G can be written as:

G( f ) = ⋂
x∈X

E(x) → F ( f (x)).

Similarly, we define analogously to the above:

P ∧Q = {ppq |p ∈ P, q ∈Q}

and:
P ∨Q = {pTp |p ∈ P }∪ {pFq |q ∈Q}.

The following two propositions are useful to keep in mind and easy to prove.

Proposition 3.1.5. A morphism m : (X ,E) → (Y ,F ) is a monomorphism if and only if it is injective as a
function X → Y .

Proposition 3.1.6. A morphism e : (X ,E) → (Y ,F ) is an epimorphism if and only if it is surjective as a
function X → Y .

3.1.1 Natural Numbers Object

We recall the definition of a natural numbers object (nno) in a category with a terminal object:

Definition 3.1.7. Let C be a category with terminal object 1. A natural numbers object in C consists of

an object N ∈ C, and arrows 1
0−→ N

S−→ N such that whenever we have arrows 1
x0−→ X

f−→ X , there exists
a unique ϕ : N → X that makes the following diagram commute:

1 N N

X X

0

x0

S

ϕ ϕ

f

.

In the above definition, one can view ϕ : N → X as being defined by induction. It is easy to check
that a natural numbers object is unique up to isomorphism.

For a non-trivial pca A, we can define the assembly (N, N ) by N (n) = {n}, where n is defined as in
definition 2.3.1. The map S :N→N given by S(n) = n+1 can be realized as a morphism (N, N ) → (N, N )
by proposition 2.3.5.

Proposition 3.1.8. (N, N ), together with the morphisms 0 : 1 → (N, N ) given by 0(∗) = 0 and S, is a
natural numbers object.

Proof. Let (X ,E) be an assembly with maps x0 : 1 → (X ,E) and f : (X ,E) → (X ,E). By induction, there
is a map ϕ :N→ X such that

ϕ◦S(n) =ϕ(n +1) = f (ϕ(n)).

Let a0 ∈ E(x0(∗)). Suppose f is realized by e ∈ A. Now if we let R ∈ A be such that

Rx y = e y,
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then g :=Ra0R for R the recursion operator from 2.3.3 satisfies:

g 0 = a0

g n +1 = e(g n).

Therefore g realizes ϕ as a morphism (N, N ) → (X ,E). Uniqueness of ϕ is clear, therefore (N, N ) is a
natural numbers object.

Proposition 3.1.9. There are at most |A| many arrows (X ,E) → (N, N ) for any (X ,E) ∈ Ass(A). Therefore,
if A is countable, the N−fold coproduct of 1 does not exist. In general, the |A|-fold coproduct of 1 does
not exist.

Proof. A morphism f : (X ,E) → (N, N ) is fully determined by its realizer e ∈ A, since f (x) = n ⇐⇒
(∀a ∈ E(x))ea = n. Therefore there are at most |A| many such arrows.

Now suppose that A is countable. If the N−fold coproduct of 1 would exist, then for every map
f :N→N there is a unique morphism ∐

n∈N
1 → (N, N )

sending the i−th summand to f (i ). In that case there would be uncountably many arrows
∐

n∈N 1 →
(N, N ). The general statement is similar.

3.2 The Constant Objects Functor

The following definitions turn out to be useful later on.

Definition 3.2.1 (∇−category). A ∇-category is is a category C together with a regular functor

∇ : Set → C.

A ∇-functor between ∇-categories (C,∇C ) and (D,∇D ) is a functor F : C → D such that there is an
isomorphism

F ◦∇C
∼=∇D .

We write ∇Cat for the sub 2-category of Cat consisting of ∇−categories, ∇-functors and natural trans-
formations. We write∇Reg for the sub 2-category of Cat consisting of∇−categories, regular∇-functors
and natural transformations.

Definition 3.2.2 (Γ-category). A Γ-category is is a category C together with a regular functor

Γ : Set → C.

A Γ-functor between Γ-categories (C,ΓC ) and (D,ΓD ) is a functor F : C →D such that there is an iso-
morphism

F ◦ΓC
∼= ΓD .

We write ΓCat for the sub 2-category of Cat consisting of Γ−categories,Γ-functors and natural trans-
formations. We write ΓReg for the sub 2-category of Cat consisting of Γ−categories, regular Γ-functors
and natural transformations.
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Definition 3.2.3 (Γ∇−category). A Γ∇-category is is a category C together with an adjoint pair of func-
tors Γa∇ such that (C,∇) is a ∇−category, (C,Γ) is a Γ-category and

Γ◦∇∼= Id.

A Γ∇-functor F between Γ∇-categories (C,∇C ,ΓC ) and (D,∇D ,ΓD ) is both a ∇-functor F : (C,∇C ) →
(D,∇D ) and a Γ-functor F : (C,ΓC ) → (D,ΓD ).

We write Γ∇Cat for the sub 2-category of Cat consisting of Γ∇−categories, Γ∇-functors and natural
transformations. We write Γ∇Reg for the sub 2-category of Cat consisting of Γ∇−categories, regular
Γ∇-functors and natural transformations.

There exists an embedding Set → Ass(A): the constant objects functor. The proof of the following
proposition is easy.

Proposition 3.2.4 (Constant objects functor). Let ∇ : Set → Ass(A) be the map such that for X ∈ Set,

∇(X ) = (X ,E)

where E(x) = A for all x ∈ X .
Then for f : X → Y a map of sets, f is realized as a morphism ∇(X ) →∇(Y ). Therefore ∇ is a full and

faithful functor between categories. Moreover, ∇ is regular.
Therefore every category of assemblies is an ∇-category in a canonical way.

Proposition 3.2.5. The functor Γ : Ass(A) → Set, given by Γ(X ,E) = X , is a regular functor and left
adjoint to ∇. Hence every category of assemblies is a Γ∇-category in a canonical way.

Proof. Let (X ,E) ∈ Ass(A). Every function f : X → Y is realized as a morphism (X ,E) →∇(Y ), by any
total element of A. Naturality is easy to check.

Remark Whenever there is a chance of confusion, we denote ∇ : Set → Ass(A), Γ : Ass(A) → Set by
∇A ,ΓA .

3.3 Morphisms Between Categories of Assemblies

In this section, we study the relation between the category of partial combinatory algebras and the
full subcategory of ΓCat (definition 3.2.2) consisting of the assemblies. The idea is that on the level
of sets, a Γ-functor is equivalent to the identity. Therefore a Γ-functor expresses a relation between
the underlying pcas, rather than the sets represented in them. It turns out that it is exactly that what
characterises Γ-functors between categories of assemblies; we will see below that up to isomorphism,
they arise from applicative morphisms.

The following lemma by Jaap van Oosten ([vO08], proposition 1.6.1) makes this even more explicit.
We start with a definition.

Definition 3.3.1. An functor F : Ass(A) → Ass(B) is called an S−functor if it is the identity on the level
of sets, i.e.

ΓB ◦F = ΓA .

The following lemma shows that up to natural isomorphism, we can work with only S−functors.

Lemma 3.3.2. (i) Any Γ−functor F : Ass(A) → Ass(B) is naturally isomorphic to an S−functor F ′.

(ii) Suppose F,G : Ass(A) → Ass(B) are S−functors, and µ : F →G is a natural transformation. Then µ
is the identity on the level of sets.
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Proof. (i) Let µ : ΓB ◦F → ΓA , ν : ΓA → ΓB ◦F be natural transformations such that µ◦ν= 1, ν◦µ= 1.

Let (X ,E) ∈ Ass(A) be arbitrary. By definition F (X ,E) = (ΓB ◦F (X ,E),E ′) for some E ′. Now µ(X ,E)

is a morphism (ΓB ◦F (X ,E),E ′) → (X ,E ′ ◦ν(X ,E)) realized by the identity, and similarly, ν(X ,E) is a
morphism (X ,E ′◦νX ,E ) → (ΓB ◦F (X ,E),E ′). So we have an isomorphism (X ,E ′◦ν(X ,E)) ∼= F (X ,E).

Now define F ′(X ,E) = (X ,E ′◦ν(X ,E)) for all (X ,E) ∈ Ass(A) (where F (X ,E) = (ΓB ◦F (X ,E),E ′)), and
for f : (X ,E) → (Y ,F ) a morphism, define F ′( f ) = f .

Since f = µ(Y ,F ) ◦F ( f )◦ν(X ,E), it is realized as a morphism F ′(X ,E) → F ′(Y ,F ). Therefore, F ′ is a
functor that satisfies the statement.

(ii) Recall that 1 = ({∗},E), with E(∗) any nonempty set of A is the terminal object of Ass(A). Let
(X ,E) ∈ Ass(A) with x0 ∈ X be arbitrary. I’ll prove that µ(X ,E)(x0) = x0.

Define the arrow x̂0 : 1 → (X ,E) by x̂0(∗) = x0. It is easily seen that this is a morphism in Ass(A).

Since F,G are S−functors, they preserve the terminal object, i.e. F (1) = ({∗},T ) = 1 and G(1) =
({∗},T ′) = 1. Hence µ1 : {∗} → {∗} is the identity function. Also, F (x̂0) = ΓB ◦F (x̂0) = ΓA(x̂0) = x̂0.

By naturality, we now have

µ(X ,E)(x0) =µ(X ,E) ◦ x̂0(∗) = F (x̂0)(∗) = x0.

Since x0 ∈ X was arbitrary, this means that µ is the identity on the level of sets.

The following lemma corresponds to lemma 1.6.3 in [vO08], the proof can be found there.

Lemma 3.3.3. Every S−functor F : Ass(A) → Ass(B) is a ∇-functor.

Working with S−functors makes the proofs of the following propositions a little easier. The first
proposition is a new result that generalizes the next, which is due to Longley in [Lon95]. For Γ : A → B
a proto-applicative morphism (see definition 2.5.19), define an S−functor Γ∗ : Ass(A) → Ass(B) by:

Γ∗(X ,E) = (X ,Γ◦E).

For an S−functor F : A → B , we define a proto-applicative morphism F̃ as the unique F̃ :P(A) →P(B)
that satisfies:

F (P(A),1P(A)) = (P(A), F̃ ).

Of course we have to check that Γ∗ is a functor and F̃ is an applicative morphism. We now have the
following proposition.

Proposition 3.3.4. Let A,B be partial combinatory algebras.

(i) Every proto-applicative morphism Γ : A → B gives rise to a left-exact S−functor Γ∗ : Ass(A) →
Ass(B). Moreover, for ∆ another proto-applicative morphism, Γ¹∆ implies that there is a unique
natural transformation Γ∗ ⇒∆∗.

(ii) Every left-exact S−functor F : Ass(A) → Ass(B) defines an applicative morphism F̃ : A → B. If
G : Ass(A) → Ass(B) is another left-exact S-functor and there is a natural transformation F ⇒ G,
then F̃ ¹ G̃.

(iii) For every Γ,F as above, (̃Γ∗) = Γ and (F̃ )∗ ' F . Therefore, there is a biequivalence between the
2-categories PCAproto and the subcategory of Cat with categories of assemblies as objects and left-
exact S−functors as morphisms.
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Proof. (i) We will first check that Γ∗ is a functor. Suppose Γ is realized by r ∈ B . Let (X ,E), (Y ,E ′) ∈
Ass(A). Suppose f : (X ,E) → (Y ,E ′) is tracked by t ∈ A. Then

rΓ({t })(Γ◦E(x)) ⊆ Γ(tE(x)) ⊆ Γ(E ′( f (x)))

So f : (X ,E) → (Y ,E ′) is tracked by some element of rΓ{t }. Hence Γ∗ is an S−functor. It remains
to show that Γ∗ preserves the terminal object, binary products and equalizers.

It is easy to see that Γ∗ preserves the terminal object. For (X ,E), (Y ,E ′) ∈ Ass(A), their product is
given by (X ×Y ,E ∧E ′) where

E ∧E ′(x, y) = pE(x)E(y)

We claim that the identity map yields an isomorphism

(X ×Y ,Γ◦ (E ∧E ′)) ∼= (X ×Y ,Γ◦E ∧Γ◦Y ).

Since the RHS is a binary product (and we have projection maps),

1X×Y : (X ×Y ,Γ◦ (E ∧E ′)) → (X ×Y ,Γ◦E ∧Γ◦Y )

is a morphism in Ass(B). For the converse, observe that for any z ∈ Γ({p}):

r (r zΓ(E(x)))Γ(E(y)) ⊆ Γ(pE(x)E(y))

so 〈x〉r (r z(p0x))(p1x) ∈ B tracks 1X×Y in the other direction (here p0,p1 are the projections for
the pairing combinator in B). So we have an isomorphism.

Any regular monomorphism in Ass(A) is a strong subobject and these are all of the form

m : (X ′,E � X ′)� (X ,E)

where X ′ ⊆ X (see proposition 4.1.5). It is now easy to see that the corresponding equalizer dia-
gram is preserved (e.g. use the strong subobject classifier in Ass(A), see the proof of proposition
4.1.8). Therefore Γ∗ preserves finite limits.

Now suppose Γ≤∆ is realized by t ∈ B . Then for (X ,E) ∈ Ass(A), the identity function on X yields
a morphism

(X ,Γ◦E) → (X ,∆◦E)

tracked by t . This gives a natural transformation Γ∗ ⇒∆∗.

(ii) We first show that F̃ is a proto-applicative morphism. Let (P,E) be a subobject of (P(A),1P(A))×
(P(A),1P(A)) defined by:

P = {(α,α′) ∈P(A)×P(A) |αα′ ↓}

with
E(α,α′) = pαα′ = 1P(A) ∧1P(A)(α,α′)

where p is the pairing combinator in A. Then

(P,E)� (P(A),1P(A))× (P(A),1P(A))

is a regular mono, so since F is left-exact and by the characterisation of regular monos in Ass(B),
we have that

F (P,E) ∼= (P, F̃ × F̃ � P ).
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Now the application map app : (P,E) → (P(A),1P(A)) sending (α,α′) to αα′ yields a morphism

F (app) : F (P,E) ∼= (P, F̃ × F̃ � P ) → (P(A), F̃ )

realized by some r in B . This r then realizes F̃ as proto-applicative morphism A → B .

For a natural transformation α : F ⇒ G, α is the identity on the level of sets (lemma 3.3.2(ii)).
Therefore, the identity map on P(A) gives a morphism

(P(A), F̃ ) → (P(A),G̃)

hence F̃ ≤ G̃ .

(iii) It is easy to see that (̃Γ∗) = Γ. Also (Γ◦∆)∗ = Γ∗ ◦∆∗ for any ∆ : C → A, and (1P(A))
∗ = 1Ass(A). So if

we define Ass(Γ) = Γ∗, then we have a 2-functor

Ass(−) : PCAproto → Cat.

We still have to show that for any F : Ass(A) → Ass(B):

(F̃ )∗ ∼= F.

Let η : 1 ⇒ ∇AΓA be the unit of the adjunction ΓA a ∇A . Then by uniqueness of the natural
transformation of S−functors F ⇒ F∇AΓA (they are the identity on the level of sets, ), we have
that F (η(X ,E)) = ηF (X ,E) for all (X ,E) ∈ Ass(A).

Now for (X ,E) an assembly, E is a morphism (X ,E) → (P(A),1P(A)). Moreover, we have a pullback
diagram:

(X ,E) (P(A),1P(A))

∇A(X ) ∇A(P(A))

E

η η

∇E

The above observations and the fact that F is left-exact yield a pullback diagram:

F (X ,E) F (P(A),1P(A))

∇B (X ) ∇B (P(A))

F (E)=E

η η

∇E

.

But we have that F (P(A),1P(A)) = (P(A), F̃ ). It is also easy to see that the following is pullback:

(X , F̃ ◦E) (P(A), F̃ )

∇B (X ) ∇B (P(A))

E

η η

∇E

.

Therefore (X , F̃ ◦E) ∼= F (X ,E) and we have obtained the equivalence F ∼= (F̃ )∗.

We have thus obtained a biequivalence Ass((−)) between the categories PCAproto and the subcat-
egory of Cat consisting of categories of assemblies and left-exact S−functors.

The following corollary is immediate from lemma 3.3.2
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Corollary 3.3.5. For all pcas A,B, we have a natural equivalence of categories:

PCAproto(A,B) ∼= Γ∇Cat(Ass(A),Ass(B)).

For an applicative morphism γ : A → B , the proto-applicative morphism P(γ) gives rise to a left-
exact functor P(γ)∗ : Ass(A) → Ass(B). John Longley had already shown in [Lon95] that the functors
corresponding to applicative morphisms in this way are precisely the regular Γ-functors Ass(A) →
Ass(B). We therefore have the below result. A proof using S−functors can be found in [vO08].

Proposition 3.3.6 (Longley). Let A,B be partial combinatory algebras.

(i) Every applicative morphism γ : A → B gives rise to a regular Γ−functor P(γ)∗ : Ass(A) → Ass(B).
For δ : A → B another applicative morphism such thatγ¹ δ, there is a (necessarily) unique natural
transformation P(γ)∗ ⇒P(δ)∗.

(ii) Every regular Γ−functor F : Ass(A) → Ass(B) defines an applicative morphism F̃ : A → B. If there is
a natural transformation F ⇒G, then F̃ ¹ G̃.

(iii) We have that P(F̃ )∗ ∼= F and �P(γ) ' γ. Therefore there is a natural equivalence of categories

PCA(A,B) ∼= Γ∇Reg(Ass(A),Ass(B)).

Corollary 3.3.7. The map γ 7→ P(γ) restricts to a 1-1 correspondence between computationally dense
applicative morphisms and proto-applicative morphisms that have a right adjoint.

Proof. Suppose Γ a ∆ : B → A is an adjoint pair of proto-applicative morphisms. Then Γ∗ a ∆∗ :
Ass(B) → Ass(A) is an adjoint pair of left-exact functors. So Γ∗ : A → B preserves finite limits, but it
preserves colimits since it is a left adjoint. Therefore Γ∗ is regular, whence we see from proposition
3.3.6 that Γ ∼= P(γ) for some applicative morphism γ : A → B . This γ is computationally dense by
theorem 2.5.20.

The other directions follows directly from theorem 2.5.20.

The following is a nice property of regular functors between categories of assemblies to keep in
mind. Again, for a proof I refer to [Lon95], propositions 2.3.2/2.3.3, or [vO08]. Note that one part is
implied by lemma 3.3.3.

Proposition 3.3.8. For every regular functor F : Ass(A) → Ass(B), F is a ∇-functor or Γ-functor if and
only if F is a Γ∇-functor.





Chapter 4

Realizability toposes

One of the greatest papers in the field of realizability is [Hyl82], in which the effective topos is con-
structed. The Effective Topos is the archetype of a realizability topos. Its internal logic is the same as
Kleene’s original notion of realizability.

In this chapter, we will describe the construction of a realizability topos for arbitrary partial com-
binatory algebras. It will arise as a universal completion of the category of assemblies on a pca. The
fact that this gives a topos is not immediate! After that, we will look at subobjects and the constant
objects functor, the latter will turn out to be a geometric inclusion of the category of sets.

4.1 How Much of a Topos is Ass(A)?

In this section we will show to what extent the category Ass(A) is already a topos. We start by defining
what a topos is.

Definition 4.1.1. In a category C with finite limits, a subobject classifier is an arrow t : 1 →Ω such that
for every subobject U� X , there exists a unique map χ : X →Ω such that the following is a pullback
square:

U 1

X Ω

t
χ

.

Here 1 is the terminal object andΩ is some object, sometimes called an object of truth values. We say
that the map χ characterises U� X .

We can now give the definition of a topos:

Definition 4.1.2. A category E is called a topos if it is finitely complete, cartesian closed and has a
subobject classifier t : 1 →Ω.

One of the motivations of studying toposes is that “essentially any categorical construction that
can be done in Set can be done in an arbitrary topos”. If you want to learn more about what this
exactly means, [MLM94] is an excellent introduction. Otherwise, one could also step into the monu-
mental [Joh02a] which covers everything in great detail. For now I will wrap up a couple of results in a
proposition.

Proposition 4.1.3. Let E be a topos. Then E is regular, balanced and finitely cocomplete. Moreover,
for any object X ∈ E , the lattice of subobjects Sub(X ) has the structure of a Heyting algebra, and for

51
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f : Y → X an arrow, pullback of subobjects: f ∗ : Sub(X ) → Sub(Y ) is a functor that preserves the Heyting
structure and has both a left- and right adjoint.

From proposition 3.1.4, we see that Ass(A) has a lot of the properties of a topos. However, it is not
a topos. For instance, it is not balanced: If we look at the map (N, N ) →∇(N) given by the identity, then
this both epi and mono (see propositions 3.1.5, 3.1.6), but clearly not an isomorphism.

It turns out that it does have a little more topos-like structure than proposition 3.1.4 tells us. We
start by defining strong subobjects.

Definition 4.1.4. In a category C, a subobject m : U � X is called strong if for every commutative
square

V Y

U X

∃
m

where V � Y is an epimorphism, there exists an arrow Y →U such that the diagram commutes.

The following characterises the strong subobjects of Ass(A):

Proposition 4.1.5. A subobject (U ,F )� (X ,E) in Ass(A) is strong if and only if it is isomorphic to a
subobject of the form (X ′,E � X ′) where X ′ ⊆ X , with the inclusion map.

Proof. “⇒”. Let X ′ = m(U ). Since (U ,E) is a strong subobject, there exists h : (X ′,E � X ′) → (U ,F ) such
that the following diagram commutes:

(U ,F ) (X ′,E � X ′)

(U ,F ) (X ,E)

e

1(U ,F ) i
h

Therefore h ◦e = 1(U ,F ) and e ◦h ◦e = e, hence e ◦h = 1(X ′,E�X ′), so e is an isomorphism.
“⇐”: For any commutative square as in definition 4.1.4 for the subobject (X ′,E � X ′) → (X ,E), it is

easy to see that the morphism V → (X ,E) is in fact also a morphism V → (X ′,E � X ′).

A weaker notion than that of a subobject classifier is the notion of a strong subobject classifier.

Definition 4.1.6. In a category C finite limits, an arrow t : 1 →Ω is a strong subobject classifier if we
have for every strong subobject U� X a unique map χ : X →Ω such that the following is a pullback
square:

U 1

X Ω

t
χ

.

We say that the map χ characterises U� X .

Definition 4.1.7. A quasi-topos is a category with finite limits, and finite colimits that is locally carte-
sian closed and admits a strong subobject classifier.

Proposition 4.1.8. For any pca A, Ass(A) is a quasi-topos.
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Proof. We have to prove that Ass(A) admits a strong subobject classifier. DefineΩ=∇{0,1} and define
t : 1 →∇{0,1} by t (∗) = 0.

Let (X ,E) ∈ Ass(A) with X ′ ⊆ X be arbitrary. Then it is easy to see that (X ′,E � X ′)� (X ,E) is
characterized by χ : (X ,E) →Ω defined as:

χ(x) =
{

0 if x ∈ X ′

1 if x ∉ X ′.

By proposition 4.1.5, we are done.

There are many other examples of quasi-toposes. A brief motivation for the definition of a quasi-
topos can be found in [Joh02a], and [Men00] provides a lot of examples. In section 4.3, we see how a
category of assemblies Ass(A) can be “completed” to a topos: the realizability topos RT(A).

4.2 Relations in a Regular Category

Preliminary to our construction of a realizability topos, we need to discuss relations in regular cate-
gories. Relations can be used to generalize a lot of constructions from set theory, for example where
one takes the quotient of a set with respect to some equivalence relation.

For E a category with finite limits, we call a subobject of a product X ×Y a relation from X to Y . If

E is regular, we can define the composition RS� X ×Z of two relations R
(∂X ,∂Y )
� X ×Y , S

(εY ,εZ )
� X ×Z

by the image of R ∗S
(∂X ◦πR ,εZ ◦πS )→ X ×Z in the following diagram:

R ∗S S Z

R Y

X

πS

πR εY

εZ

∂X

∂Y

where the square is pullback. One can check that composition of relations is associative.

Definition 4.2.1. Let E be a category with finite limits, and X ∈ E an object. A subobject R
(∂0,∂1)
� X ×X

is called an equivalence relation, if the following axioms hold:

1. (reflexivity) The diagonal ∆ : X → X ×X factors through (∂0,∂1)

2. (symmetry) The map (∂1,∂0) factors through (∂0,∂1).

3. (transitivity) If the following diagram is pullback:

R ∗R R

R X

π2

π1 ∂0

∂1

then (∂0π1,∂1π2) factors through (∂0,∂1).

I adopted the notation from [MLM94]. Observe that the transitivity condition just means that the
composition of R with itself is R.
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Every equivalence relation R
(∂0,∂1)
� X×X on an object X ∈ E induces a relation R ′ on the sets E(Y , X )

for every Y ∈ E by:
R ′ = {(∂0 ◦ f ,∂1 ◦ f ) | f : Y → R}.

One can check that this induced relation is an equivalence relation in the usual sense, i.e. in Set.
Conversely, if such an induced relation for a subobject (∂0,∂1) : R� X ×X is an equivalence relation,
it is an equivalence relation in the sense of definition 4.2.1.

Definition 4.2.2. An equivalence relation R
(∂0,∂1)
� X ×X is called effective if it arises as a kernel pair of

some arrow f : X → Y .

It is easy to see that any kernel pair is an equivalence relation. We can now define what an exact
category is:

Definition 4.2.3. A category E is called exact if it is regular and if every equivalence relation is effective.

If E is regular, we can take the quotient of an equivalence relation as their coequalizer. It is the cat-
egorical analogue of the “equivalence classes modulo R”. Since in a regular category, every coequalizer
is the coequalizer of its kernel pair, each equivalence relation factors through an effective equivalence
relation, and their quotients are the same.

If a regular category E is not exact, this means that there are equivalence relations for which either
the quotient does not exist, or the quotient is the quotient of a bigger effective equivalence relation.
In other words, in taking the quotient, we have to divide out a little bit too much (or we cannot do it at
all).

For a partial combinatory algebra A, the regular category Ass(A) is not in general exact. Therefore,
not all equivalence relations have “exact” quotients. Note that they always have quotients, since Ass(A)
has all finite colomits. In the following, we present a construction, called the exact/regular completion
of a regular category, which extends a regular category by adding “exact” quotients. In the case of
Ass(A), this completion not only yields an exact category, but even a topos. For more on completions,
an accessible treatment is given in [Men00].

4.2.1 Functional Relations

Suppose we have X ,Y ∈ E , with equivalence relations R� X × X , S� Y ×Y . We can distinguish a
specific relation F� X ×Y that we call a functional relation. Intuitively, one can view it as a function
from the equivalence classes of X modulo R to the equivalence classes of Y modulo S. For a relation

F
(∂X ,∂Y )
� X ×Y , we define the relation F tw� Y × X by the composition of (∂X ,∂Y ) with the twist map

tw : X ×Y → Y ×X .

Definition 4.2.4. For R� X ×X , S� Y ×Y equivalence relations, a relation F� X ×Y is a functional
relation from R to S if the following conditions hold:

(i) (relational) RF ≤ F and F S ≤ F

(ii) (single-valued) F twF ≤ S

(iii) (total) R ≤ F F tw.

One can show that the composition of two functional relations is again a functional relation. Since
composition is also associative, this establishes the resemblance between functional relations and
functions.
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4.3 The Exact/Regular Completion of Ass(A)

For a regular category E , the exact/regular completion Eex/reg is the category that has the equivalence
relations of E as objects, and functional relations between them as morphisms. We define y : E →
Eex/reg by y(X ) =∆X , where ∆X is the diagonal ∆X � X ×X , and morphisms f : X → Y are mapped to
the functional relation y( f ) between y(X ) and y(Y ) given by (1X , f ).

We have the following theorem:

Theorem 4.3.1. Eex/reg is exact, the functor y : E → Eex/reg is regular, full and faithful, and surjective on
subobjects, and every object of Eex/reg is a quotient of some object in the image of y.

The following theorem characterizes the exact/regular completion of E .

Theorem 4.3.2. Let Φ : E →D be a regular functor from a regular category E to an exact category D.
Then the following are equivalent:

(i) There is an equivalence of categories K : Eex/reg →D that makes the following diagram commute:

E Eex/reg

D

y

Φ
K

(ii) Φ is full, faithful, surjective on subobjects and every object in D is a quotient of an object in the
image ofΦ.

For a proof, see [vO08], lemma 2.4.4.
A similar result is the following:

Proposition 4.3.3. ForΦ : E →D a regular functor from E to an exact category D, there exists a unique
(up to natural isomorphism) regular functorΨ : Eex/reg →D such that the following diagram commutes:

E D

Eex/reg

Φ

y Ψ

A proof can be found in [FS90], 2.169, but the notation they use is quite different.
We will now proceed to give an explicit description of Ass(A)ex/reg. Let (X ,D) be an assembly. We

will denote an equivalence relation on X as (R,∼)� (X ,D)× (X ,D), where we write [x ∼ y] instead of
∼ (x, y). Up to isomorphism, R ⊆ X × X and the diagonal map X → X × X factors through (R,∼), by
reflexivity. A witness for symmetry is an element σ ∈ A such that:

σ ∈ ⋂
x,y∈X

[x ∼ y] → [y ∼ x]

(recall the notation introduced in the beginning of chapter 3). Also, we use the convention that for
(x, y) ∉ R, [x ∼ y] =;. Similarly, transitivity is witnessed by some τ ∈ A such that:

τ ∈ ⋂
x,y,z∈X

(
[x ∼ y]∧ [y ∼ z]

)→ [x ∼ z].

So (R,∼) is an equivalence relation if R ⊆ X ×X , the diagonal map factors through (R,∼),and there are
σ,τ as above.
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Now suppose (R,∼) and (S,∼) are equivalence relations on assemblies (X ,D), (Y ,E) respectively.
Then a functional relation from (R,∼) to (S,∼) is a map F : X ×Y → P(A), together with witnesses
rl,sv,tl ∈ A such that:

(i) rl ∈⋂
x,x′∈X ,y,y ′∈Y

(
[x ∼ x ′]∧ [y ∼ y ′]∧F (x, y)

)→ F (x ′, y ′)

(ii) sv ∈⋂
x∈X ,y,y ′∈Y

(
F (x, y)∧F (x, y ′)

)→ [y ∼ y ′]

(iii) tl ∈⋂
x∈X

(
[x ∼ x] →⋃

y∈Y F (x, y)
)

where one should observe that (i)-(iii) correspond to (i)-(iii) in definition 4.2.4.
Since in Ass(A)ex/reg the objects are equivalence relations in Ass(A), and the morphisms are (equiv-

alence classes of) functional relations, the above gives an explicit description of Ass(A)ex/reg. We have
the following theorem:

Theorem 4.3.4. Ass(A)ex/reg is a topos. We denote this topos by RT(A), the realizability topos on A. The
inclusion I : Ass(A) → RT(A) sends assemblies (X ,E) to (X ,∃δE) where δ : X → X × X is the diagonal,
and the equivalence relation ∃δE is given by:

(∃δE)(x, x) = E(x).

I is regular, full and preserves exponentials, finite sums and the natural numbers object.

Most proofs are given for K1 and are generalized in a straightforward way. See for example [Hyl82].
In the following, we denote objects of RT(A) by (X ,∼), where X is a set and ∼ is an equivalence

relation on some assembly with domain X . Note that since the diagonal factors through this equiv-
alence relation, that assembly is isomorphic to (X ,D) where D(x) = [x ∼ x]. Therefore (X ,∼) deter-
mines a unique equivalence relation on some unique assembly in Ass(A). We will treat ∼ as a map
X ×X →P(A), where the image of (x, y) is denoted [x ∼ y].

Sometimes it will be convenient to denote an object (X ′,∼) by (X ,∼) where X ′ ⊆ X and

X ′ = {x ∈ X | [x ∼ x] 6= ;}.

So [x ∼ x] need not be non-empty on X . This notation will be useful when treating subobjects, for
instance we will look at subobjects of the form (X ,∼K )� (X ,∼), where∼K really defines the subobject,
but denoting X as its underlying set makes it clear that we are dealing with elements of “type” X . It
also improves readability since we don’t have to restrict the domain all the time 1.

For morphisms f : (X ,∼) → (Y ,∼), we will treat the functional relation that represents f as a map
F : X ×Y →P(A).

4.4 The Lattice of Subobjects in RT(A)

We wish to develop some theory on the structure of RT(A). Of great importance is understanding
subobjects, especially when interested in the logic of a topos. In the following, we will describe a
semantics for talking about subobjects and relations in RT(A).

For an object (X ,∼) ∈ RT(A), we view ∼: X × X →P(A) as a 2-ary predicate on X , where P(A) is a
set of truth values. In general, we view the set P(A)X as a set of predicates on the set X . We endow
P(A)X with a pre-order as follows: for K ,L ∈P(A)X , let

K ≤ L ⇐⇒ (∃a ∈ A)(∀x ∈ X )a ∈ K (x) → L(x)

1In most treatments of realizability toposes, the objects (X ,∼), where ∼ is an equivalence relation on X ′ for some X ′ ⊆ X
are in fact all objects of the topos, which is not the case here. Actually, it suffices for ∼ to be just symmetric and transitive, so it
need not be reflexive. However, one should observe that (X ,∼) is just notation and the only real objects are actual equivalence
relations, so we will also just consider those (X ,∼) elements of RT(A).
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where we recall that for P,Q ⊆ A,

P →Q = {a ∈ A | (∀b)b ∈ P ⇒ (ab ↓ ∧ab ∈Q)}.

The poset reflection of this preorder turns out to be a complete Heyting Algebra. We can define oper-
ations ∧,∨ and elements >,⊥ in P(A)X by:

K ∧L(x) = {pab |a ∈ K (x),b ∈ L(x)}

K ∨L(x) = {pTa |a ∈ K (x)}∪ {pFa |a ∈ L(x)}

>(x) = A

⊥(x) =;.

For f : Y → X a map between sets, we have a pullback operation:

f ∗ :P(A)X →P(A)Y

defined by precomposition with f . It turns out that f ∗ has a left- and right adjoint with respect to the
preorder structure, denoted by ∃ f and ∀ f respectively. For every K ∈P(A)Y , they are given by:

∃ f (K )(x) = {a ∈ A | (∃y) f (y) = x ∧a ∈ K (y)}

∀ f (K )(x) = {a ∈ A | (∀y) f (y) = x ⇒ a ∈ K (y)}.

For π : X ×Y → X a projection, we will denote ∃π by ∃y and ∀π by ∀y . Now for K ∈P(A)X , we write

a K (x) ⇐⇒ a ∈ K (x) for every x.

and
K (x) if a K (x) for some a.

Now one can verify that ∼: X ×X →P(A) expresses an equivalence relation if and only if

∀x[x ∼ x]

∀x∀y[x ∼ y] → [y ∼ x]

∀x∀y∀z
(
[x ∼ y]∧ [y ∼ z]

)→ [x ∼ z]

where ∀x[x ∼ x] should be interpreted as (∀x)δ∗ ∼ (x), for δ : X → X × X the diagonal. Using similar
formulas, we can express that F : X ×Y → P(A) is a functional relation. For f : (X ,∼) → (Y ,∼) and
g : (Y ,∼) → (Z ,∼) morphisms represented by F and G , the composition g ◦ f is given by the functional
relation FG , which satisfies:

∀x∀zFG(x, z) ↔ (∃yF (x, y)∧G(y, z)
)

.

This yields a convenient way to represent compositions of morphisms.

Definition 4.4.1. A map K : X →P(A) is called a strict relation for an object (X ,∼) ∈ RT(A) if:

∀x(K (x) → [x ∼ x])

∀x∀y(K (x)∧ [x ∼ y]) → K (y)

The first formula expresses that K is strict, the second that K is relational.
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If K : X → P(A) is a strict relation, let X ′ = {x ∈ X |K (x) 6= 0}. Define ∼K : X ′ × X ′ → P(A) by the
predicate

[x ∼K x ′] ↔ K (x)∧x ∼ x ′.

Then the following proposition is easy:

Proposition 4.4.2. (X ′,∼K ) is a well defined object of RT(A). Moreover, ∼K represents a monomorphism
m : (X ′,∼K )� (X ,∼).

Using the following proposition, it is readily verified that for K ∈P(A)X a strict relation, ∼K : (X ′,∼K

) → (X ,∼) is a monomorphism:

Proposition 4.4.3. A morphism f : (X ,∼) → (Y ,∼) in RT(A) represented by F : X × Y → P(A) is a
monomorphism if and only if

∀x∀x ′∀y
(
F (x, y)∧F (x ′, y)

)→ [x ∼ x ′].

The proof is a nice exercise.
Following the discussion above, we will denote (X ′,∼K ) by (X ,∼K ).
We call monomorphisms given by

∼K : (X ,∼K ) → (X ,∼)

for some strict relation K standard monomorphisms . The following propositions tells us that these
are all:

Proposition 4.4.4. Every monomorphism f : (X ,∼) → (Y ,∼) is isomorphic to a standard monomor-
phism.

Sketch of proof. It comes down to the fact that if f is represented by F : X ×Y →P(A), then

(X ,∼) ∼= (Y ′,∼F )

where Y ′ = {y ∈ Y | (∃x)F (x, y) 6= ;} and

y ∼F y ′ ↔ y ∼ y ′∧ (∃xF (x, y)).

It is then clear that ∼F represents a standard mono (Y ′,∼F )� (Y ,∼).

4.4.1 The Subobject Classifier of RT(A)

By the above, the lattice of subobjects of an object (X ,∼) in RT(A) is isomorphic to the lattice of (equiv-
alence classes of) strict relations in P(A)X .

Define (Ω,⇔) ∈ RT(A) byΩ=P(A), and:

A ⇔ B := (A → B)∧ (B → A) .

We can define a map T : 1 →Ω by the functional relation 1P(A) ∈P(A)1×P(A) ∼=P(A)P(A). This map is
clearly a monomorphism.

For every strict relation K on an object (X ,∼), we have a map χK : (X ,∼) → (Ω,⇔) represented by
the functional relation

[x ∼ x]∧K (x) ⇔ A.
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Proposition 4.4.5. For every strict relation K , χK is the unique morphism such that we have a pullback
square

(X ,∼K ) 1

(X ,∼) (Ω,⇔)

T
χK

.

Therefore T : 1 → (Ω,⇔) is a subobject classifier in RT(A).

The equivalence classes of strict relations on an object (X ,∼) form a Heyting algebra. However,
one should note that one cannot just take the Heyting structure from P(A)X , since the strict relations
need not be closed under those binary operations. Without proof, I’ll just give the operations for the
strict relations. Whenever I refer to the Heyting structure of the sublattice of strict relations, I enlose
the expression by double brackets J. . .K (as a reference to the subobject it represents). For K ,L ∈P(A)X

strict relations, we have:

JK ∧L(x)K= K (x)∧L(x)

JK ∨L(x)K= K (x)∨L(x)

J(K → L)(x)K= [x ∼ x]∧ (K (x) → L(x))

So in fact, only in the case of the Heyting implication we had to do something more to guarantee that
the resulting relation is strict. We have top and bottom elements T,⊥, given by T(x) = A, ⊥(x) =; for
all x ∈ X . Negation is, as always, defined by:

J¬K (x)K= J(K →⊥)(x)K= x ∼ x ∧ (K (x) →;)

4.4.2 Some More Objects in RT(A)

We will give a quick description of some more objects in RT(A).

Powerobject There is a convenient representation of the power object of an object (X ,∼) in terms of
strict relations on X . Define the following relation on P(A)X :

K ∼ L :=∀x∀y (K (x) → [x ∼ x])∧ (
(K (x)∧ [x ∼ y]) → K (y)

)︸ ︷︷ ︸
K is strict and relational

∧[x ∼ x] → (K (x) ↔ L(x)) .

Then one can verify that (P(A)X ,∼) is a powerobject.

Pullback of Subobjects Suppose f : (Y ,∼) → (X ,∼) is a morphism represented by F ∈P(A)Y ×X . This
morphism gives rise to a functor f ∗ : Sub(X ) → Sub(Y ) by pullback; for (X ,∼K )� (X ,∼) we have the
pullback squares:

f ∗(X ,∼K ) (X ,∼K ) 1

(Y ,∼) (X ,∼) (Ω,⇔)
f χK

The characteristic map of f ∗(X ,∼K ) is therefore represented by

(∃x)F (y, x)∧ [x ∼ x]∧ (K (x) ⇔ A).

this can be easily seen to be equivalent to

[y ∼ y]∧ (∃xF (y, x)∧K (x) ⇔ A)
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so f ∗(X ,∼K ) is given by the strict relation JK ( f (y))K = ∃xF (y, x)∧K (x), which is the pullback of K
along F .

This pullback operation has left and right adjoints, denoted ∃ f ,∀ f defined on the strict relations
on (Y ,∼) by:

J(∃ f L)(x)K := (∃y)L(y)∧F (y, x)

J(∀ f L)(x)K := [x ∼ x]∧∀y
(
F (y, x) → L(y)

)
Epimorphisms Similar to monomorphisms, a morphism f : (X ,∼) → (Y ,∼) represented by F is an
epimorphism if and only if

∀y
(
[y ∼ y] → (∃xF (x, y))

)
.

4.5 The Inclusion Set → RT(A)

Recall the constant objects functor ∇ : Set → Ass(A). By composing this with the inclusion I : Ass(A),
we can view the constant objects functor as a functor ∇ : Set → RT(A) given by:

∇(X ) = (X ,∃δ(T))

where T is the top element in P(A)X (the constant map with value A) and δ : X → X ×X is the diagonal
embedding. Concretely, ∃δ(T)(x, x ′) = A if x = x ′ and ; otherwise. Since I : Ass(A) → RT(A) is regular,
we find that RT(A) is a ∇−category in a canonical way (definition 3.2.1).

In the same way, we have a functor Γ : RT(A) → Set given by Γ(X ,∼) = RT(A)(1, (X ,∼)) or:

Γ(X ,∼) = {x ∈ X | [x ∼ x] 6= ;}.

In the same way as before, we have an adjunction Γ a ∇, and Γ preserves finite limits. So RT(A) is a
Γ∇-category. Since ∇ is full and faithful, ∇ : Set → RT(A) is an embedding of toposes. In the rest of the
section, I’ll show that this coincides with the subtopos of ¬¬−sheaves in RT(A).

Recall the following definitions:

Definition 4.5.1. Let E be a topos. An operator (·) : Sub(X ) → Sub(X ), defined for every object X ∈ E is
a closure operator if it commutes with pullback and satisfies for all X , A ∈ Sub(X ):

(i) A ≤ A

(ii) A ∼= A

(iii) A∧B ∼= A∧B

A subobject A� X is called dense with respect to the closure operator whenever A ∼= X .

Definition 4.5.2. For a closure operator (·) in a topos E , an object F ∈ E is a sheaf with respect to (·) if
for all dense monomorphisms m : A� X , precomposition with m yields a bijection

m∗ : E(X ,F ) → E(A,F ).

When m∗ is only a monomorphism, we say that F is separated.



4.6. ASSEMBLIES VERSUS TRIPOSES 61

In any topos, the subobjects of an object form a Heyting algebra, and the map ¬¬ : A →¬¬A is a
closure operator. For RT(A), this is easily seen since we can just work with strict relations, and observe
that for a strict relation K : X →P(A) on (X ,∼):

¬¬K (x) '
{

[x ∼ x] if K (x) 6= ;
; otherwise

Therefore, a strict relation is ¬¬−dense if and only K (x) 6= ; whenever [x ∼ x] 6= ;. We have the
following proposition:

Proposition 4.5.3. An object (F,∼) of RT(A) is a ¬¬−sheaf if and only if (F,∼) ∼=∇Γ(F,∼).

Proof. Let (F,∼) ∈ RT(A) be a ¬¬−sheaf. Consider the monomorphism m : (F,∼)�∇Γ(F,∼) given by
the strict relation K ( f ) := [ f ∼ f ], which is ¬¬-dense.

Therefore, there is an arrow g : ∇Γ(F,∼) → (F,∼) such that g m = 1(F,∼) whence we can deduce that⋂
f ∈F

[ f ∼ f ] 6= ;.

It is now easy to show that (F,∼) ∼=∇Γ(F,∼).
The converse is also not hard.

Corollary 4.5.4. The subtopos of ¬¬-sheaves in RT(A) is equivalent to Set.

Lastly, we have another way of characterizing the assemblies in RT(A):

Proposition 4.5.5. The full subcategory of assemblies in RT(A) is equivalent to the full subcategory of
¬¬-separated objects.

Proof. Since the inclusion of assemblies Ass(A) → RT(A) is surjective on subobjects, every subobject
of an assembly in RT(A) is an assembly (this is also not hard to see directly). It is easy to see that every
assembly (X ,∼) is a subobject of ∇Γ(X ,∼). Since the latter is a sheaf, so especially separated, every
assembly is separated.

Conversely, if (X ,∼) is a separated object, then by standard topos theory, it embeds into a sheaf
(see for example [MLM94], section V.3). Therefore it is a subobject of an assembly, so it must be an
assembly too.

4.6 Assemblies versus Triposes

An alternative approach to the construction of a realizability topos uses the notion of a tripos . This
construction is due to Hyland, Pitts and Johnstone in [HJP80] and stretches beyond realizability. An-
drew Pitts further elaborates on tripos theory in his thesis [Pit81], where he also treats realizability
triposes in depth. The book [vO08] also uses triposes.

The starting point of the construction is basically section 4.4. The pre-order we described, or more
accurately the functor P(A)(−) is an instance of what is called a tripos. Any tripos gives rise to a similar
semantics, and the category consisting of equivalence relations as objects, and functional relations as
morphisms (according to that semantics) turns out to be a topos.

The advantage of the approach is that it is more general, and the language is convenient. We have
experienced that ourselves since we used strict relations to describe subobjects, so we were using
triposes all along. However, for the special case of realizability toposes, the abstraction is often too
much and not needed.
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However, assemblies are much easier to understand, and contain as much information as the cor-
responding realizability topos. Also, assemblies have more of a computational nature to them (recall
the similarity with programming languages in the introduction). For developing intuition on realiz-
ability toposes, I would say that assemblies are indispensable. So for someone who wishes to really
understand the subject, I would advice to study both approaches, but that is something that applies
to all of mathematics, really.



Chapter 5

Subtoposes of RT(A)

In this chapter we discuss subtoposes of a realizability topos on a partial combinatory algebra. We
have already seen that Set is such a subtopos. It turns out that the theory of subtoposes of RT(A) is
closely related to many constructions on pcas from chaper 2. First, we will quickly review geometric
morphisms between realizability toposes.

5.1 Geometric Morphisms between Realizability Toposes

Here, we extend the theory of morphisms between categories of assemblies to morphisms between
the corresponding realizability toposes. I will just state the main results that we need without proof.
We will not need much of this treatment in detail. For proofs, I refer to [vO08], [Lon95] and [Joh13].
Let us recall what a geometric morphism between toposes is.

Definition 5.1.1. Let E ,F be toposes. A geometric morphism f : F → E is a pair of adjoint functors
f ∗ a f∗ where f∗ :F → E , f ∗ : E →F and f ∗ preserves finite limits.

We write Top for the category consisting of toposes as objects and geometric morphisms as arrows.

In the above, we have already seen the geometric morphism ∇ : Set → RT(A).
Recall definition 3.2.1. The following corresponds to Lemma 2.3.5 in [Lon95]:

Lemma 5.1.2. Let A,B be pcas, let IB : Ass(A) → RT(B) be the canonical inclusion. Then

IB ◦ (−) : ∇Reg(Ass(A),Ass(B)) →∇Reg(Ass(A),RT(B))

is a natural equivalence of categories.

Theorem 5.1.3. There is a natural equivalence of categories

∇Reg(RT(A),RT(B)) ∼= PCA(A,B).

Proof. By 4.3.3, the inclusion I A : Ass(A) → RT(A) gives an equivalence

(−)◦ I A : ∇Reg(RT(A),RT(B)) →∇Reg(Ass(A),RT(B)).

So we can apply lemma 5.1.2. Combining this lemma with propositions 3.3.6 and 3.3.8 yields the
theorem.

63
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Under the above equivalence, an applicative morphism γ : A → B corresponds to the morphism
P(γ)∗ : RT(A) → RT(B) given by

P(γ)∗(X ,∼) = (X ,P(γ)◦ ∼)

A result by Hofstra and van Oosten [HvO03] is that geometric morphisms f : RT(B) → RT(A) for
which f ∗ ◦∇B

∼= ∇A correspond precisely to functors P(γ)∗ : RT(A) → RT(A) for which γ is compu-
tationally dense, which is the case if and only if P(γ) has a right adjoint ∆ as proto-applicative mor-
phisms.

It is a recent result by Peter Johnstone in [Joh13] that for every geometric morphism f : RT(A) →
RT(B), we have in fact that f ∗◦∇A

∼=∇B . So if PCAcd denotes the category of pcas and computationally
dense morphisms, we get:

Theorem 5.1.4. There is a natural equivalence of categories

Top(RT(B),RT(A)) ∼= PCAcd(A,B).

From lemma 2.1 in [Joh13] we know that also the direct image functor f∗ is a Γ∇-functor. Since
assemblies are all subobjects of objects of the form ∇X , and f∗ preserves regular monomorphisms, f∗
restricts to a limit-preserving functor

f∗ : Ass(B) → Ass(A).

So by proposition 3.3.4, it is induced by some proto-applicative morphism ∆ : B → A. Note that also
f ∗ restricts to a functor on the level of assemblies, left-adjoint to f∗. It now follows by uniqueness of
adjoints that P(γ) a∆. We therefore immediately know how f∗ acts on assemblies (X ,E) ∈ Ass(B):

f∗(X ,E) ∼= (X ,∆◦E).

For arbitrary objects (X ,∼) ∈ RT(B), giving an expression for f∗(X ,E) in terms of ∆ is a little bit more
subtle. The equivalent of equation 5.1 for f∗ need not hold (yet it does for assemblies). If you are
interested in an explicit expression, see section 2.5.2 of [vO08].

Remark We have shown here that every geometric morphism f ∗ a f∗ : RT(B) → RT(A) is induced
by a unique adjoint pair of proto-applicative morphisms Γ a ∆. This result (using Johnstone’s result)
can already be deduced from the fact that every geometric morphism of such toposes is induced by
a geometric morphism of triposes (see the discussion in section 4.6). The proof of this can be found
in [Pit81] or [vO08]. However, working with assemblies is easier, and proposition 3.3.4 actually gives a
little more information about the nature of these proto-applicative morphisms.

5.2 Local Operators

Recall that a geometric morphism of toposes f : F → E is an embedding if the direct image functor
f∗ is full and faithful. We also say that F is a subtopos of E . One of the results in topos theory is that
subtoposes correspond precisely to Lawvere-Tierney topologies, or local operators in the topos.

Recall that for any object X ∈ E , where E is a topos, the lattice Sub(X ) of subobjects of X is a Heyting
algebra. Moreover, the isomorphism

E(X ,Ω) ∼= Sub(X )

is natural in X , from which we obtain unique operations ∧,∨,→:Ω×Ω→Ω that give Ω the structure
of an internal Heyting algebra. For the conjunction ∧ :Ω×Ω→Ω, this is derived as follows: we start
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with a commutative diagram

Sub(X )×Sub(X ) Sub(X )

E(X ,Ω×Ω) E(X ,Ω)

'

∩

'
∧X

.

Now for every f ∈ E(X ,Ω×Ω), we have a natural transformation (−) ◦ f : E(Ω×Ω,−) → E(X ,−), so
by naturality, ∧X = ∧Ω×Ω(1Ω×Ω)◦ f . So if we define ∧ :Ω×Ω→Ω as ∧Ω×Ω(1Ω×Ω), then ∧◦ (−) is the
natural transformation ∧(−) : E((−),Ω×Ω) → E((−),Ω). By the Yoneda lemma, ∧ is the unique map
Ω×Ω→Ω such that

∧◦ (−) ∼=∧(−).

Hence ∧ is uniquely defined.
The same goes for the operations ∨,→, and this gives Ω the structure of an internal Heyting alge-

bra. We can now define what a local operator is:

Definition 5.2.1. Let E be a topos, with subobject classifier T : 1 →Ω, and meet operation ∧ :Ω×Ω→
Ω. A local operator on E is an arrow j :Ω→Ω such that:

(i) j ◦T=T

(ii) j ◦ j = j

(iii) j ◦∧=∧◦ ( j × j ).

The internal Heyting structure onΩ induces an order on local operators:

j ≤ j ′ ⇐⇒ ∧◦ ( j × j ′) = j .

Local operators give rise to a closure operator (−) : Sub(X ) → Sub(X ) as in definition 4.5.1, by the
map j ◦ (−) : E(X ,Ω) → E(X ,Ω). The fact that this defines a closure operator follows easily from the
definition. By proposition V.1 in [MLM94], we have in fact that every closure operator gives rise to
a local operator in a topos. A subobject A� X is called j -closed (resp. j -dense) if it is closed (resp.
dense) with respect to the closure operator defined by j . The definition of a j−sheaf is now the same
as definition 4.5.2 for the closure operator defined by j , as is the definition of a j−separated object.

We now state some results on j−sheaves, for the proofs I refer to chapter V of [MLM94].

Theorem 5.2.2. Let j be a local operator on a topos E . Then the full subcategory Sh j (E) of j−sheaves is
a topos and the inclusion Sh j (E) → E preserves finite limits and exponentials.

Theorem 5.2.3. Let j be a local operator on a topos E . Then the inclusion i : Sh j (E) → E has a left
adjoint a : E → Sh j (E). Moreover, a preserves finite limits.

The above theorem shows that a local operator gives rise to a geometric inclusion a a i . The func-
tor a is called the associated sheaf functor, or sheafification functor. For an object X ∈ E , we call a(X )
its sheafification. The following theorem corresponds to corollary VII.4.7 in [MLM94].

Theorem 5.2.4. For a geometric morphism f :F → E , the following are equivalent:

(i) f is an embedding (i.e. f∗ is full and faithful)

(ii) The counit εF : f ∗ f∗F → F is an isomorphism for every F ∈F
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(iii) There is a topology j on E and an equivalence of categories e : F → Sh jE such that the following
diagram of geometric morphisms commutes:

F Sh jE

E

e

f
i

where i : Sh jE → E is the inclusion.

5.2.1 Local Operators in RT(A)

Local operators in RT(A) can be presented in a particular nice way. Recall from section 4.4 that sub-
objects of an object (X ,∼) in RT(A) are given by strict relations on X . A local operator

j : (P(A),⇔) → (P(A),⇔)

determines a unique subobject of (P(A),⇔), which is in turn defined by a strict relation J : P(A) →
P(A). One can verify that local operators are in one-to-one correspondence with equivalence classes
of maps (or strict relations) J :P(A) →P(A) such that:

(i)  (∀P )P →J P

(ii)  (∀P )JJ P →J P

(iii)  (∀P,Q) (P →Q) → (J P →JQ).

In what follows, we will say that j is represented by J . In the below, J is often just called a local
operator .

We will first exhibit some results on these local operators by Andrew Pitts, taken from his thesis
[Pit81]. After that, we will be able to see what subtoposes induced by a local operator J look like.

Recall that every map P(A) → P(A) is a strict relation on (P(A),⇔). We call M : P(A) → P(A) a
monotone operator if

 (∀P,Q) (P →Q) → (M(P ) → M(Q)) .

Observe that any local operator is monotone. For M a monotone operator, we define JM as follows:

JM (P ) := (∀Q)((M(Q) →Q)∧ (P →Q)) →Q.

We have the following proposition, which corresponds to lemma 5.4 in [Pit81]

Proposition 5.2.5. (i) For any monotone operator M, JM is a local operator, andJM is the least local
operator such that

 (∀P )M(P ) →JM (Q).

(ii) Let (X ,∼) ∈ RT(A), and R : X → P(A) a strict relation. Then the least local operator that makes
(X ,∼R )� (X ,∼) dense is JM where

M(P ) := J(∃x)(R(x) → P )K.

The ordering on local operators in the above representation coincides with the induced order on
the strict relations on (Ω,⇔). Concretely, we have that J ≤J ′ if and only if

 (∀Q)JQ →J ′Q.
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We have a smallest local operator J⊥ that does nothing:

J⊥(P ) = P

and a biggest J>:
J>(P ) = A.

Recall the closure operator defined in section 4.5 corresponding to the ¬¬-sheaves. We denote the
strict relation representing this local operator also by ¬¬, and it is defined by:

¬¬(P ) =
{
; if P =;
A otherwise.

The following corresponds to lemma 5.5 in [Pit81]. Strictly speaking, it is only proven for the ef-
fective topos. However, the proof still works. Note that one has to be careful here, because there are
similar topos-theoretic properties that hold for the effective topos, but not for just any pca. In corol-
lary 5.5.10, we will see an example of this.

Proposition 5.2.6. Let M be a monotone operator. Then the following are equivalent:

(i) JM <J>

(ii) JM ≤¬¬
(iii) M(;) =;

Moreover, we have:

(iv) J⊥ <JM if and only if ⋂
P⊆A

M(P ) → P =;

(v) ¬¬≤J if and only if ⋂
a∈A

J {a} 6= ;.

The following lemma is easy, yet useful.

Lemma 5.2.7. Every local operator J on RT(A) is isomorphic to one that preserves inclusions.

Proof. We can define J ′ as:
J ′P := ⋃

Q⊆P
JQ.

Then the identity i ∈ A together with an index a such that

a  (∀P,Q)(Q → P ) → (JQ →J P )

yields that
ai (∀P )J ′P →J P.

The other direction is realized by i.

For subobject (X ,∼K )� (X ,∼) of an object (X ,∼) ∈ RT(A), and a local operator j on RT(A) repre-
sented by J , the j -closure is given by (X ,∼J ◦K ). First, I’ll show that above ¬¬, there are no interesting
local operators.
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Proposition 5.2.8. Let j be a local operator on RT(A), represented by J . Then J > ¬¬ if and only if
J; 6=;, and in that case the subtopos defined by J is degenerate.

Proof. By the lemma we may assume that J preserves inclusions.
Suppose J; 6=;. Since we have that:

 (∀P )(;→ P ) → (J;→J P ).

and for every P , ;→ P = A, it follows that ⋂
P 6=;

J P 6= ;.

Now ¬¬≤J by proposition 5.2.6(v), but we do not have equality since ¬¬;=;.
Conversely, assume that ¬¬ ≤ J . Then by proposition 5.2.6(v) (and the fact that J preserves

inclusions): ⋂
P 6=;

J P 6= ;.

Because of this, we might as well assume that J P = A for all P non-empty. Now if J;=;, it follows
easily that ¬¬∼=J , because

¬¬P =
{

A if P 6= ;
; otherwise

Therefore we must have J; 6=;.
In this case, it is easy to see that for (X ,∼) ∈ RT(A), every subobject is dense, even the empty sub-

object, which is an initial object. Therefore the only sheaves are terminal objects, hence the subtopos
defined by j is trivial.

For any local operator J ≤ ¬¬, the objects ∇(X ), for ∇ the constant objects functor, are sheaves,
since they are precisely the ¬¬-sheaves. Therefore, to see what the sheafification of an assembly
(X ,E) ∈ RT(A) is, we just have to define its J -closure as a subobject of ∇X , which is given by the
assembly (X ,J ◦E).

Definition 5.2.9. We define define a subcategory AssJ (A) of Ass(A), called the J−assemblies on A,
as the full subcategory of objects of the form (X ,J ◦E).

One can check that AssJ (A) is cartesian closed, it is also proven in [vO]. Moreover, AssJ (A) in-
herits regularity and finite colimits from Ass(A), since sheafification preserves those. Therefore the
sheafification functor restricts to a full, faithful and regular functor Ass(A) → AssJ (A). Moreover:

Proposition 5.2.10. The full subcategory RT(A)J of J -sheaves is equivalent to AssJ (A)ex/reg.

Proof. The embedding
AssJ (A) → RT(A)J

is regular, full, faithful and surjective on subobjects. Because the sheafification functor is a left adjoint,
it preserves colimits, so every object in RT(A)J is a quotient of a J−assembly. By theorem 4.3.2, we
must have an equivalence of categories AssJ (A)ex/reg ' RT(A)J .

Hence, we obtain a full description of the subtopos of J -sheaves by just looking at J -assemblies.
For a specific local operator (that we will discuss below), the category of J -assemblies was studied in
[vO].
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5.2.2 Embeddings of Realizability Toposes

Recall from theorem 5.1.4 that geometric morphisms between realizability toposes correspond to
computationally dense applicative morphisms. A natural question is, what do geometric inclusions
correspond to? For γ : A → B computationally dense, P(γ) has a right adjoint ∆. For (X ,F ) ∈ Ass(B),
we have by the discussion in section 5.1:

P(γ)∗∆∗(X ,F ) = (X ,P(γ)◦∆◦F )

where for P ⊆ A:

P(γ)◦∆(P ) = ⋃
a∈A

{γ(a) |mγ(a) ⊆ P }.

It is now not hard to see that we have a natural transformation 1 →P(γ)∗∆∗ if and only if we have an
e ∈ B such that

e ∈ ⋂
P⊆B

(
P → ⋃

a∈A
{γ(a) |mγ(a) ⊆ P }

)
.

In other words, for every b ∈ B , there is an a ∈ A such that eb ∈ γ(a) and mγ(a) = {b}. By proposition
2.5.10 and 2.5.17, we obtain:

Theorem 5.2.11. Geometric inclusions

RT(B) → RT(A)

correspond precisely to effectively quasi-surjective applicative morphisms A → B, which correspond pre-
cisely to adjoint pairs of proto-applicative morphisms Γa∆ such that Γ∆' IB .

5.3 Relative Recursion and Local Operators

In chapter 2, we have seen a lot of effectively quasi-surjective applicative morphisms; namely, for every
partial function f : A → A, we had a decidable applicative morphism ι : A → A[ f ] given by ι f (a) = {a},
which is clearly effectively quasi-surjective. The same thing holds for the pcas A[F ], where F : A A → A
is a functional.

By the above, these constructions all give rise to subtoposes of RT(A). In this section, we will ex-
plore these subtoposes. Already in [Hyl82] there is given an embedding of the Turing degrees in the
local operators, by defining for a total function f :N→N, the least local operator j f that “forces f to
be recursive”. To be precise, it is the least local operator that forces the subobject of (N, N ), given by
the strict relation R(n) = { f (n)} to be dense. Here (N, N ) is the natural numbers object of RT(K1) = Eff,
with N (n) = {n}. We can easily present this local operator using proposition 5.2.5. In [Pho89], it is

shown that this subtopos, given by a local operator j f , is equivalent to RT(K f
1 ). Here, we will carry out

the same result for RT(A[ f ]). Recall the definition of a local operator JM for a monotone operator M :

JM (P ) := (∀Q)((M(Q) →Q)∧ (P →Q)) →Q.

The following lemma is due to Andrew Pitts [Pit81], but the formulation and the proof below is taken
from [LvO13].

Lemma 5.3.1. The operator JM is isomorphic to L(M) where:

L(M)(P ) =⋂
{Q ∈P(A) | {T}∧P ⊆Q and {F}∧M(Q) ⊆Q}.
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Proof. Now let e ∈ JM (P ), and let a = 〈x〉pTx, b = 〈x〉pFx. Then if {T}∧P ⊆ Q and {F}∧M(Q) ⊆ Q,
then a ∈ P → Q and b ∈ M(Q) → Q. Therefore, e(pab) ∈ Q, and hence 〈e〉e(pab) ∈JM (P ) → L(M)(P )
for all P , so we have JM ≤ L(M).

Conversely, since (∀P )P →JM (P ) and (∀P )M(JM (P )) →JM (P ), we can take elements

k ∈ ⋂
P∈P(A)

P →JM (P )

l ∈ ⋂
P∈P(A)

M(JM (P )) →JM (P ).

Since M is a monotone operator, we can define d ∈ A such that:

d ∈ (∀P )(∀Q)P →Q → (M(P ) → M(Q)) = ⋂
P,Q∈P(A)

P →Q → (M(P ) → M(Q))

By the recursion theorem, let c be such that:

ct ' if p0t then kp1t else l (dc(p1t )).

Let P be arbitrary. Let S = {z |cz ∈ Jm(P )}. Then clearly {T}∧P ⊆ S. Furthermore, c : S →JM (P ), hence
dc : M(S) → M(JM (P )). So for y ∈ M(S), c(pFy) ∈JM (P ). Hence also {F}∧M(S) ⊆ S.

By definition of L(M) it know follows that c ∈ L(M)(P ) →JM (P ) for all P (since L(M)P ⊆ S). There-
fore L(M) ≤ JM .

We write A for the assembly (A, a 7→ {a}). The following proposition then generalizes the result in
[Pho89] to arbitary pcas:

Proposition 5.3.2. Let A be a pca, and f : A → A be a total function. Let (A,R)� A be the subobject of
A given by the strict relation

R(a) = { f (a)}.

Then the local operator given by the inclusion RT(A[ f ]) → RT(A) is the least local operator that makes
R dense.

Proof. The local operator that arises from the incusion RT(A[ f ]) → RT(A) is represented by

J P = {x |m · f x ∈ P }

where m realizes computational density of the applicative morphism A → A[ f ]. Let r f be an index for
f in A[ f ]. Then by definition of m, there exists a′ ∈ A such that for all a ∈ A:

m · f (a′a) ' r f · f a = f (a).

Then a′  (∀x : A)J (R(x)), hence R is J -dense.
Note that,by proposition 5.2.5 and the lemma 5.3.1, the least local operator that makes (A,R)�A

dense is isomorphic to L(M), where:

M(P ) = ⋃
a∈A

{a}∧ (R(a) → P ) = ⋃
a∈A

{a}∧ ({ f (a)} → P )

and
L(M)(P ) =⋂

{Q ∈P(A) | {T}∧P ⊆Q and {F}∧M(Q) ⊆Q}.

We have to show that J ≤ L(M).
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Let P be arbitrary. Then if x ∈J (P ), m · f x ∈ P . Let u be the maximal dialogue between m and x,i.e.

m([x]∗u) = pTc with c = m · f x.

In other words:
m([x]∗u) ∈ {T}∧P ⊆ L(M)(P ).

Using the recursion theorem, define m′ such that for all x, z:

m′([x]∗ z) ' if p0m([x]∗ z) then m([x]∗ z) else pF(p(p1(m([x]∗ z))〈w〉m′([x]∗ z ∗ [w]))).

I’ll prove that 〈x〉m′([x]) :J P → L(M)(P ) for all P . Clearly m′([x]∗u) ∈ L(m)(P ). Now suppose that for
some 0 < i ≤ lhu, m′([x]∗u<i ) ∈ L(M)(P ). Then:

m([x]∗u<i−1) = pFvi

and ui = f (vi ). We know that m′([x]∗u<i−1 ∗ [ui ]) = m′([x]∗u<i ) ∈ L(M)(P ), so

〈w〉m′([x]∗u<i ∗ [w]) ∈ { f (vi )} → L(M)(P ).

But then:

pF(p(p1(m([x]∗u<i−1))〈w〉m′([x]∗u<i−1 ∗ [w]))) ∈ {F}∧ ({vi }∧ ({ f (vi )} → L(M)(P )))

⊆ {F}∧M(L(M)(P )) ⊆ L(M)(P ).

hence we see that
m′([x]∗u<i−1) ∈ L(M)(P ).

Therefore (by reverse induction) we deduce that

m′([x]∗u<0) = m′([x]) ∈ L(M)(P ).

This all being uniform in P and x shows that 〈x〉m′([x]) ∈J (P ) → L(M)(P ) for all p.
Therefore J and L(M) are isomorphic.

For functionals, we can show a similar result. Recall that AA = (Z ,E) where Z is the set of total
recursive functions A → A, and E( f ) = {a |a is an index of f }. It is easy to see that a functional F :
A A → A is an effective operation of type 2 (definition 2.7.1) if and only if its restriction to Z is realized
as a morphism AA → A.

For a local operator j represented by J : P(A) → P(A), write A j for the sheafification of A with

respect to j , which is just the J -assembly (A, a 7→ J {a}). Then A
A j

j
∼= (Z ,J E) where Z is the set of

morphism A j → A j in AssJ (A) and

E( f ) = ⋂
a∈A

J {a} →J { f (a)}.

Note that AA
j
∼= A

A j

j . We now have the following theorem:

Theorem 5.3.3. Let JF be the local operator induced by the inclusion RT(A[F ]) → RT(A). Suppose j is
a local operator, represented by J such that the restriction of F to the domain of A j

A j can be realized as
a morphism of J−assemblies

A j
A j → A j .

Then it follows that JF ≤J .
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Proof. Recall that we can assume that J preserves inclusions.
Since a 7→ {a} is a computationally dense applicative morphism A → A[F ], there exists t ∈ A such

that for all v, x ∈ A:
m ·F (t v x) ' v ·F x.

Since m is independent of F , we also know that if the right side halts at some stage (see definition
2.8.6), the left hand side also halts at that stage.

Pick e such that:

e ∈ ⋂
P,Q⊆A

(P →Q) → (J P →JQ) .

Let c be such that:
c ∈ ⋂

P,Q⊆A
(P →JQ) → (J P →JQ).

Moreover, we let j ∈ A be such that for all u, v :

j ∈J {u} → (J {v} →J {u ∗ [v]}).

Suppose that F : A j
A → A j is tracked by r as morphism of J -assemblies. Here A j

A is represented
by the assembly (Z ,E), where Z is the set of morphisms A → A j in Ass(A)J , and

E( f ) = ⋂
a∈A

{a} →J { f (a)}.

We write a =J b to express that if there is c such that b ∈ J {c}, then a ∈ J {c}. Convince yourself
that there exists m ∈ A that satisfies for all x, w :

mxw =J


e(〈y〉p1(m([x]∗ y)))w if e(〈y〉p0(m([x]∗ y)))w ∈J {T}

mx( j w((c(〈z〉r (〈y〉(m(t z y)l ))))v)) if e(〈y〉p0(m([x]∗ y)))w ∈J {F}

where v = e(〈y〉p1(m([x]∗ y)))w

Let l ∈J {[]}. We will prove by induction on the stage at which m ·F x ↓ (see definition 2.8.6) that for
all x,

mxl ∈J {m ·F x}.

Stage 0: in that case m([x]) = pTc for some c. Then

〈y〉p0(m([x]∗ y)) ∈ {[]} → {T} so

e(〈y〉p0(m([x]∗ y))) ∈J {[]} →J {T} thus

mxl = e(〈y〉p1(m([x]∗ y)))l ∈J {c}.

Stage λ > 0: Let u = [u0, . . . ,un] be the halting dialogue between m and x. We know that for each
0 ≤ i ≤ n:

m([x]∗u<i ) = pFvi

where vi is such that at some stage α<λ, for each y , vi ·F y ↓. So for each y , also m ·F (t vi y) ↓ at stage
α. Let fi be the function y 7→ vi ·F y . By induction hypothesis,

m(t vi y)l ∈J {vi ·F y}

for each y , so 〈y〉m(t vi y)l tracks fi as morphism of J−assemblies. So

r (〈y〉(m(t vi y)l )) ∈J {F ( fi )}.
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Hence
c(〈v〉r (〈y〉(m(t v y)l ))) ∈J {vi } →J { fi }

for all i . It follows that for all 0 ≤ i ≤ n

mxJ {u<i } ⊆mx( j w((c(〈z〉r (〈y〉(m(t z y)l ))))J {vi })) ⊆mxJ {[u0, . . . ,ui ]}.

One can now prove (use reverse induction on i ) that

mxl ∈J {m ·F x}.

Therefore
〈x〉mxl ∈ ⋂

P⊆A
JF P →J P.

Hence JF ≤J .

5.4 The Local Operator L(F )

In this section, we turn to a local operator in the effective topos defined by Andrew Pitts in [Pit81] and
also studied in [vO]. It is defined as the least local operator that makes the subobject of ∇(N) defined
by R(n) = {m ∈N |m ≥ n} dense. Combining proposition 5.2.5 and 5.3.1, we see that this local operator
is isomorphic to L(F ) where F is the monotone operator defined by:

F (P ) = ⋃
n∈N

(R(n) → P ) .

In the following, we will denote the corresponding local operator L(F ) byJ . An explicit description
of J is given by:

J (P ) =⋂
{B ⊆N | {0}∧P ⊆ B , {1}∧F (B) ⊆ B}.

Note we took 0,1 instead of T,F, which makes no difference and is the convention in [vO].
We will first prove a result in [vO] as a corollary of theorem 5.3.3. Recall the functional E :NN →N

defined in section 2.8.2, it is given by:

E(α) =
{

0 if (∃m)α(m) = 0

1 otherwise .

Denote by NJ the assembly with domain N defined by the map n → J {n}. We now have the
following proposition:

Proposition 5.4.1. There is an index rE ∈N that tracks E as morphism of J -assemblies NJ
NJ → NJ .

Proof. Pick elements

a ∈ ⋂
A⊆N

A →J A

b ∈ ⋂
A,B⊆N

(A → B) → (J A →J B)

d ∈ ⋂
A⊆N

JJ A →J A

By corollary 1.6 of [vO], there is a partial recursive function G such that for all

x0 ∈J {a0}, . . . , xn−1 ∈J {an−1},
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we have

G(〈x0, . . . , xn−1〉) ∈J {0} if for some i < n, ai = 0

G(〈x0, . . . , xn−1〉) ∈J {1} otherwise

Now let tE be an index in K1 defined by:

tE en =G(〈e(a0), . . . ,e(an)〉)

Then whenever e realizes a total function f : NJ → NJ , we (∃n) f (n) = 0 if and only if (∃n)e(an) ∈J {0},
which holds if and only if there is n such that

tE e ∈ {m |m ≥ n} →J {0}

since otherwise
tE e ∈ {m |m ≥ 0} →J {1}.

By definition of J , we have in the first case that tE e ∈J {0}, and in the latter case tE e ∈J {1}. Now
rE = 〈x〉c(brE x) tracks E as morphism of J−assemblies NJ

NJ → NJ .

The following corollary corresponds to theorem 2.2 in [vO].

Corollary 5.4.2. The morphisms of J -assemblies NJ → NJ are precisely the hyperarithmetical func-
tions.

Proof. Let JE be the local operator defined by the inclusion RT(K1[E ]) → RT(K1). By theorem 5.3.3,
we have JE ≤J . It is easily seen that a totalΠ1

1 function is hyperarithmetical. Using theorem 2.8.10, it
follows that every hyperarithmetical function is representable as a morphism NJ → NJ .

For the converse, observe that every morphism f : NJ → NJ isΠ1
1 since:

f (n) = m ⇐⇒ (∀B){〈0,m〉} ⊆ B ∧ {1}∧F (B) ⊆ B → e(an) ∈ B

where e is a realizer for f as a morphism NJ → NJ . Notice that the above expression isΠ1
1 since F (B)

is arithmetical in B .
Therefore the morphisms NJ → NJ are precisely the hyperarithmetical functions.

5.5 Partial J -representable Functions

In [vO], corollary 5.4.2 was actually proven for the so called total J−representable functions (these

are the elements of N N
J , which is isomorphic to N

NJ
J ). We have the following definition:

Definition 5.5.1. A partial J -representable function F is a partial function such that there exists an
index e for which:

n ∈ domF if and only if (∃m)en ∈J {m}, and in that case F (n) = m. Since such an m is necessarily
unique we can index these functions by e and we say F =ψe .

This definition makes sense for any local operator J on a realizability topos such that:

J {a}∩J {b} =; for all a,b such that a 6= b. (5.1)

It is easy to see that this is true only if J {T}∩J {F} =; (so, 1+1�∇(2) is not J -dense). For decidable
pcas, it is equivalent to it.
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Martin Hyland showed in [Hyl82] that in the effective topos RT(K1),⋂
n
J {n} =; ⇐⇒ J {0}∩J {1} =;.

By proposition 5.2.6(iv) and the above, it follows that (5.1) holds for any local operator J < ¬¬ on
RT(K1). One may wonder whether what Hyland showed is true for any partial combinatory algebra. In
corollary 5.5.10 below, I show that this is not the case and provide a necessary and sufficient condition
for this property, generalizing Hyland’s result.

In what follows, we will assume that J is a local operator on RT(A) such that (5.1) holds. Note that
the set of such local operators is downward closed.

First, the above definition induces an applicative structure ∗ on A, by defining:

a ∗a′ ↓, a ∗a′ = c ⇐⇒ ψa(a′) = c.

We will call this partial applicative structure J1. The natural question is whether J1 is a partial com-
binatory algebra. We cannot prove this in general, however, we can prove that J1 is a weak pca:

Definition 5.5.2. A partial applicative structure A is a weak partial combinatory algebra if there exists
k,s ∈ A such that for all a,b ∈ A:

(i) sab ↓
(ii) kab = a

(iii) sabc ¹ ac(bc).

Where we recall that for terms t (x), s(x), t (c) ¹ s(c) means that if s(c) ↓, then t (c) ↓ and t (c) = s(c).
A lot of properties of pcas can be proven for weak pcas, where in most cases one should replace ' by ¹.
However, this is not a general rule and one should be careful. The most important fact is the analogue
of lemma 2.2.3, which I’ll state here (the proof is analogous).

Proposition 5.5.3. Let A be a weak pca. Then for any term t (x, x1, . . . , xn) there is a term 〈x〉t (x1, . . . , xn)
such that every substitution instance of 〈x〉t denotes, and for all a, a1, . . . , an ∈ A

(〈x〉t )(a1, . . . , an)a ¹ t (a, a1, . . . , an).

Conversely, if A has a partial applicative structure for which the above holds, then A is a weak pca.

The notion of applicative morphisms for weak pcas is the same. I’ll now present a proof that every
presentation J of a local operator yields a weak pca J1. After that, it is easy to see that isomorphic
local operators yield isomorphic weak pcas, that is, the weak pca J1 is independent of the choice of
presentationJ . Lastly, we will see that in fact these weak pcas are isomorphic to a partial combinatory
algebra.

Theorem 5.5.4. For J be a presentation of a local operator on RT(A) that satisfies (5.1), the partial
applicative structure J1 is a weak pca.

Proof. We have to find elements k,s ∈N as in definition 5.5.2. We denote the applicative structure on
A as usual (just as terms), and the applicative structure on J1 by ∗

First, pick
a ∈ ⋂

P⊆A
P →J P.

We have for all a′ that aa′ ∈ J {a′}. Let k0 ∈ A be such that k0ab = a for all a,b ∈ A. Then k =
〈x〉a(k0(ax)) satisfies (ii) in 5.5.2.
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It remains to define s. Let a,b,c be arbitrary indices. We assume that ac(bc) ↓, so there are u, v,m
such that

ac ∈J {u}

bc ∈J {v}

uv ∈J {m}

and ac(bc) = m.
Take the following elements:

r ∈ ⋂
P,Q⊆A

J P ∧JQ →J (P ∧Q)

p ∈ ⋂
P⊆JQ,P,Q⊆A

J P →JQ

t ∈ ⋂
P,Q⊆A

(P →Q) → (J P →JQ)

As to the element p, we know that any local operator J is isomorphic to a local operator I that pre-
serves inclusions. Taking such a local operator, we have the following elements:

α ∈ ⋂
P⊆A

J P → IP , β ∈ ⋂
P⊆N

IP →J P , γ ∈ ⋂
P⊆A

IJ P → IP.

Then p = 〈x〉β(γ(αx)) works.
Now, let h = 〈y x〉p(p0x y)(p1x y). Then

hc ∈ {a}∧ {b} →J {u}∧J {v}.

Now let g = 〈x〉p0x(p1x) and h = 〈zx〉t g (r (hzx)). Then

p(hc) ∈ {a}∧ {b} →J {m}

since:

{a}∧ {b}
hc−→J {u}∧J {v}

r−→J {〈u, v〉} t g−→J {uv}︸︷︷︸
⊆J {m}

p−→J {m}

Now if we let f = 〈z y x〉p(hz)(px y) then for all a′,b′ ∈ A, f a′b′ ↓ and

f ab ∈ {c} →J {m}.

Now define s= 〈x〉a(〈y〉a( f x y)). Then

s ∈ {a} →J {〈y〉a( f ay)}

and since

〈y〉a( f ay) ∈ {b} →J { f ab}

We can see that s∗a∗b∗c = f ab∗c = m. Since s is defined uniformly in a,b, this finishes the proof.

Corollary 5.5.5. Up to isomorphism of weak pcas, J1 does not depend on the choice of presentation J
for a local operator.
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Proof. Suppose J ∼=J ′, we want to show that J1
∼=J ′

1 as weak pcas. Take

a ∈ ⋂
P⊆A

P →J ′A

r ∈ ⋂
P⊆A

J P →J ′P

Then a 7→ {a} is realized as applicative morphism J1 →J ′
1 by

〈x〉a(〈y〉r (x y))

and the other direction is symmetric.

Theorem 5.5.6. For every local operator J for which (5.1) holds, we have that J1
∼= A[ f ] where

f (a) =
{

b if a ∈J {b}

undefined otherwise

Proof. First, let r ∈ A such that for all a,b ∈ A:

r a([b]) = pF(ab)

r a([b,c]) = pTc

Then if r ′ is an index such that r ′ · f a = r a, then r ′ realizes a 7→ {a} as an applicative morphism J1 →
A[ f ].

The converse can be seen by generalizing theorem 2.6.3 to weak pcas, which can be done, a corol-
lary is then that a 7→ {a} has a realizer as morphism A[ f ] → J1 since in J1, f is represented by the
identity i= skk, and it is decidable.

One can also give a direct proof by simulating computations in A[ f ], just like in the proof theorem
2.7.4.

Let us apply the above to the local operator J = L(F ) from section 5.4.
By theorem 5.5.6, J1

∼=K1[ f ] where f is defined by:

f (n) =
{

m if n ∈J {m}

undefined otherwise.

From section 5.4, we can infer that the functional E is representable with respect to K1 →K1[ f ] de-
fined by n 7→ {n}. By theorem 2.7.4, n 7→ {n} factors through as an applicative morphism K1[E ] →
K1[ f ]. Conversely, f is a Π1

1 function, so it is representable with respect to n 7→ {n} : K1 →K1[E ] (as
a consequence of theorem 2.8.12). Hence n 7→ {n} is also realized as applicative morphism K1[ f ] →
K1[E ] (theorem 2.6.3). We have the following corollary:

Corollary 5.5.7. For J = L(F ) defined as above, the weak pca J1 of partial J -representable functions
is isomorphic to K1[E ].

5.5.1 When does Forcing ∇ to Preserve Coproducts Collapse the Topos to Set?

Here, I wish to elaborate on the remark that I made about the condition (5.1). The question is, when
does it hold for all local operators J < ¬¬? In other words, when does, when we try to force 1+1�
∇(2) isomorphic, the topos collapse to Set?
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In RT(A), 1+1 may be represented by the assembly ({0,1},E) where E(0) = {T}, E(1) = {F}. The least
local operator that forces 1+1�∇(2) dense is L(M) (section 5.3.1) where

M(P ) = ({T} → P )∪ ({F} → P ) .

Let’s see what L(M)(P ) looks like for P ⊆ A:

L(M)(P ) =⋂
{Q ⊆ A | {T}∧P ∈Q and {pFe |e ∈ ({T} →Q)∪ ({F} →Q)} ⊆Q}

Define a family of sets Vi (P ), i ∈N as follows:

V0(P ) = {T}∧P

Vn+1(P ) =Vn(P )∪ {F}∧ (({T} →Vn(P ))∪ ({F} →Vn(P )))

Now let V (P ) =⋃
n∈NVn(P ). It is not hard to see that for all P ⊆ A, V (P ) ⊆ L(M)(P ). Moreover:

{F}∧M(V (P )) ⊆V (P ).

Hence we have that V (P ) = L(M)(P ).
So pFe ∈ L(M)(P ) if and only if there is some finite sequence of T’s and F’s such that

eTF . . .TF= pTa for some a ∈ P.

We have achieved already one thing here; if
⋂

a∈A L(M){a} is non-empty, then A must be countable!
But there is more.

We start with two lemmas:

Lemma 5.5.8. Define a map I :P(A) →P(A) by:

IP = ({T}∧P )∪
(

{F}∧ (
⋃

u=[u0,...,un ],ui∈{T,F},n∈N
{u} → {T}∧P )

)
.

Then I is a local operator and I ∼= L(M).

Proof. Convince yourself that there is an index g ∈ A such that for all m ∈N:

g (pFe)[u0, . . . ,um] = eu0 . . .um

g (pTe) = e

Then 〈x〉p(p0x)(g x) realizes L(M) ≤ I .
Let S ∈ A be a successor function, i.e. S(n) = n +1 for all n ∈N. By the recursion theorem, there is

t ∈ A be such that:

t x ' 〈v〉v x(t (Sx)) = if v then x else t (Sx)

Then for each n ∈N:
tn ' if v then n else tn +1.

So for each n ∈N, tnT= n, and
tn ∈ {F} → ({T} → n +1).

It is now not hard to see that for all m ∈N:

t0FF . . .F︸ ︷︷ ︸
m times

T= m.



5.5. PARTIAL J -REPRESENTABLE FUNCTIONS 79

Using the above, it is easy to see that there is an index r ∈ A such that for all m ∈N,e ∈ A:

r (pFe)FF . . .F︸ ︷︷ ︸
m times

Tu0 . . .um ' e[u0, . . . ,um]

r (pTe) = e

so 〈x〉p(p0x)(r x) realizes I ≤ L(M). We have also proven that I is a local operator.

Lemma 5.5.9. Define a map J :P(A) →P(A) by:

J P = ({T}∧P )∪ (
⋃

n∈N
{n} → {T}∧P ).

Then J ∼= L(M).

Proof. It is enough to show that J ∼= I for I as in the above lemma.
Again, convince yourself that we have an index h ∈ A that enumerates all tuples [u0, . . . ,um] where

ui ∈ {T,F}. This is not hard to see because it involves checking on the length of the tuple, checking all
values, and binary addition with 1:

h0 = [F]

h1 = [T]

h2 = [F,F] etcetera.

Moreover, since we can “wait for a tuple to appear”, there is an index g such that for all n,m ∈ N,
ui ∈ {T,F}:

g [u0, . . . ,un] = m where hm = [u0, . . . ,un].

We do not need decidability for this!
Now let r ∈ A be such that:

r (pFe) = pF(〈y〉e(hy))

r (pTe) = e

and t ∈ A such that:

t (pFe) = pF(〈y〉e(g y))

t (pTe) = e

Then 〈x〉p(p0x)(r x) realizes I ≤J , and 〈x〉p(p0x)(t x) realizes J ≤ I .

Corollary 5.5.10. For RT(A) a realizability topos on a pca A, ¬¬ is the least local operator that forces
1+1� ∇(2) dense if and only if there is an A-computable partial surjection N→ A; that is, an index
g ∈ A such that for all a ∈ A, there is n ∈N such that

g n = a.

Proof. The least local operator that forces 1+1�∇(2) dense is L(M) above, and it is isomorphic to ¬¬
if and only if

⋂
a∈A L(M){a} 6= ; by 5.2.6(v). Let J be as in the above lemma. Then

⋂
a∈A L(M){a} 6= ; if

and only if
⋂

a∈A J {a} 6= ;. The latter holds if and only if there exists h ∈ A such that for all a ∈ A, there
is an n ∈N with:

hn = pTa.

Of course this implies the right hand side, and the converse.
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Remark Jaap van Oosten attended me on the fact that “existence of a partial computable surjection”
N→ A is the same as the property that

n 7→ {n} :K1 → A is quasi-surjective (equivalently, computationally dense).

The following lemma (due to Longley) shows that this condition is equivalent to the existence of any
computationally dense applicative morphism K1 → A.

Lemma 5.5.11. If γ :K1 → A is computationally dense, then γ' ν, where ν(n) = {n}.

Proof. By proposition 2.5.12, γ is decidable. Now it follows from proposition 2.4.18 in [Lon95] that γ
is equivalent to ν.

Using the lemma, we could reformulate the above result as:

Theorem 5.5.12. For RT(A) a realizability topos on a pca A, there is a geometric morphism RT(A) →
RT(K1) if and only if ¬¬ is the least local operator that forces 1+1�∇(2) dense (in RT(A)). Moreover,
such a geometric morphism is unique up to equivalence.

So for a pca A that does not admit a geometric morphism RT(A) → RT(K1), we can force ∇ : Set →
RT(A) to preserve finite coproducts without collapsing RT(A) to Set. In the resulting subtopos of RT(A),
the natural numbers object is isomorphic to ∇(N), so all functionsN→N exist. It would be interesting
to construct a countable such pca A; its realizability topos must have remarkable properties.

The following is the analogue of proposition 3 in [Pho89]. For a pca A, denote the local operator
corresponding to the inclusion RT(A[ f ]) → RT(A) for some f : A → A by J f .

Theorem 5.5.13. Let J be a local operator on RT(A) such that J ≥J f for all total f : A → A. Then

J {T}∩J {F} 6= ;.

Proof. Suppose that J {T}∩J {F} =;, I’ll derive a contradiction. Define g : A → A by:

g (a) =
{
T if a ∈J {T}

F otherwise .

By assumption, g is a function.
Pick a total function f : A → {T,F} such that f is not computable in A[g ], this can be done for

cardinality reasons.
Then f is representable as a morphism A j → A j by proposition 5.3.2. We can infer that there is

e ∈ A such that for all a ∈ A:
ea ∈J { f (a)}

But then f is clearly computable in A[g ], which is contradictory.

The exact statement of proposition 3 in [Pho89] is that, under the assumptions, we have in fact
that J ≥¬¬, or equivalently: ⋂

a∈A
J {a} 6= ;.

We can prove this in the countable case:

Corollary 5.5.14. Let A be a countable pca. Let J be a local operator on RT(A) such that J ≥J f for all
total f : A → A. Then J ≥¬¬.
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Proof. Let g : A → A be a total function such that for all a ∈ A, there is n ∈N such that g (n) = a. Since
A is countable, there is such a map. It is now not hard to see that A[g ] satisfies the right hand side
in the statement of corollary 5.5.10. Since J ≥ Jg by assumption, the J−sheaves are a subtopos of
RT(A[g ]) and by corollary 5.5.10, J ≥¬¬.

I leave it as an open question whether this holds in the uncountable case.

5.6 Lifting Geometric Morphisms of Realizability Toposes

In this short section, we will apply the notion of lifting from section 2.9 to geometric morphisms of
realizability toposes. Recall from theorem 5.1.4 that a geometric morphism f : RT(B) → RT(A) is in-
duced by some computationally dense morphism γ : A → B . Since we can only lift discrete such mor-
phisms, we will assume from now on that A is decidable, so that any computationally dense γ : A → B
is discrete. It may be interesting to find out what geometric morphisms are induced by discrete com-
putationally dense morphisms in the case that A is not decidable.

Definition 5.6.1. A geometric morphism f :F → E between toposes is a surjection if the inverse image
f ∗ is faitful.

Definition 5.6.2. A geometric morphism f : F → E between toposes is exact if the direct image f∗ is
exact (i.e. regular).

Theorem 5.2.11 and 2.9.3 yield an interesting result:

Theorem 5.6.3. Let i : RT(B) → RT(A) be a geometric inclusion. Then there is a geometric surjection
RT(A[ f ]) → RT(B) for some f . If i is exact, then RT(B) ' RT(A[ f ]).

Proof. By theorem 5.2.11, i is induced by an applicative morphism γ : A → B for which there is a
δ : B → A with γδ ' ιB . By theorem 2.9.3, γ lifts to a retraction δ : B → A[ f ], so that δ induces a
geometric surjection

RT(A[ f ]) → RT(B).

If i is exact, then it was induced by a pair γa δ such that γδ' ιB . By theorem 2.9.2, the lift of γ is
an equivalence, so RT(B) ' RT(A[ f ]).

For the effective topos, this theorem has an important consequence:

Corollary 5.6.4. For RT(A) → RT(K1) any geometric inclusion, RT(A) ∼= RT(K1[ f ]) for some (partial) f .

Proof. By lemma 5.5.11 and theorem 5.5.12, any geometric inclusion RT(A) → RT(K1) is induced by
the computationally dense morphism ν : K1 → A. Since this morphism is projective, ν has a right
adjoint δ : A →K1 (theorem 2.5.16). So f ∗ a f∗ is induced by the pair ν a δ, which implies that f∗ is
regular. So f is exact, and by theorem 5.6.3 RT(A) ∼= RT(K1[ f ]).

Note that the property that every inclusion RT(A) → RT(K1) is exact is a specific property of the ef-
fective topos. Recall from example 2.5.18 that there is a computationally dense applicative morphism
γ : K2rec →K1 that sends each function to its set of indices. It is not hard to see that this is in fact an
inclusion, i.e. it is effectively quasi-surjective. So we have a geometric inclusion

RT(K1) → RT(K2rec)

that is not exact, since γ does not have right adjoint as applicative morphism.
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Conclusions

Code-free recursion and realizability

The notion of a partial combinatory algebra is an interesting attempt to describe abstract or code-free
recursion theory. Or, since it is not very clear what we mean by that, it is at least an interesting attempt
to describe what one could mean by code-free recursion theory. It yields a powerful mathematical
theory that is worthwhile investigating. Its connections to category theory, mathematical logic and
also to branches in theoretical computer science support this viewpoint.

At least for me, a problem with partial combinatory algebras is a lack of examples, especially in the
case of decidable pcas. In fact, some result of this thesis (e.g. corollary 5.6.4) are evidence that up to
equivalence and adjoining a partial function, there might be only a few examples, or at least a few that
can be presented in a nice way. However, there are still several examples of total pcas, and there are
pcas of higher cardinality.

The justification of applicative morphisms is their correspondence to exact functors between cat-
egories of assemblies, or realizability toposes. However, they do make sense from a computational
point of view. In that light, the correspondence between computationally dense morphisms and ge-
ometric morphisms is remarkable. This correspondence has also been studied using triposes. I have
shown in this thesis that if one wants to use assemblies instead, proto-applicative morphisms can be
useful since they basically play the role of morphisms between triposes. Moreover, computationally
dense applicative morphisms have an easy description using proto-applicative morphisms. Still, the
old definition as discovered by Hofstra and van Oosten has been very useful in many proofs.

I hope to have shed some light on the importance of relative recursion in the study of realizability
toposes. For instance, we have corollary 5.6.4 that classifies all geometric inclusions RT(A) → RT(K1).
Using relative recursion one is able to clearify the relations between different pcas and realizability
toposes. This realization might help to understand realizability toposes, and with it the mystical idea
of abstract recursion theory.

This also motivates the new notion of recursive functionals as defined in section 2.8.1, and the re-
lated theory on effective operations in section 2.7. This theory generates new pcas from old ones with
a very interesting and easy description. In this way we obtain insightful presentations of subtoposes
that are realizability toposes themselves. Such a presentation is desirable to, for example, understand
the logic of a subtopos. We have seen that a description of a subtopos using a functional allows us to
determine its complexity, which has a lot of implications for its logic. There is a connection to local
operators (section 5.3) that goes beyond the embedding of the Turing degrees in the lattice of local
operators that was already described in [Hyl82]. This connection still needs some clarification. I es-
pecially hope to find something that also relates functionals of higher type (type 3 and up) to local
operators.

83
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Where to go from here

There is a lot left to explore. For instance, a lot of subtoposes of the effective topos are not realizability
toposes. However, they still have a computational nature to them. What characterizes this computa-
tional nature?

We have shown that one can express computational density by just using morphisms, so without
explicit reference to the combinatorial structure. A lot of examples of pcas, especially total pcas, arise
from a retraction of a certain partial order into the space of continuous automorphisms (see [Hof]). It
might be that a theory on pcas can be built up by mostly looking at morphisms. For example, certain
functions can be computable with respect to an applicative morphism. When lifting an applicative
morphism, one basically translates this added complexity back to the partial combinatory algebra.

Another direction is the possible generalizations of pcas. There is the notion of an order pca (in-
troduced in [HvO03]), which has a slightly more general definition but also gives rise to assemblies
and realizability toposes. A stronger notion than that, but weaker than a pca is the weak pca from
definition 5.5.2. I have the feeling that every weak pca is isomorphic (or equivalent) to a pca (like the
weak pcas in theorem 5.5.6), since applicative morphisms “are not able to tell them apart”. However,
this remains a mere conjecture since I haven’t been able to prove nor refute this. 1

The more categorical approaches to the study of realizability toposes are topos theory in general,
but also the theory of triposes. Another interesting approach is to look at exact/regular completions
of categories. Here I find [Men00] to be an excellent source, it treats assemblies in detail.

Lastly, I think there can be made improvement in code-free recursion theory by restricting to par-
ticular partial combinatory algebras. A lot of the structure in ordinary recursion theory does not gen-
eralize to pcas. However, it seems to me that some results of ordinary recursion theory do generalize
to, for instance, pcas that satisfy the statements in corollary 5.5.10. The corollary then serves as a
categorical motivation for this restricted definition. For now, I leave this idea for future research.

Acknowledgement

I owe much gratitude to Jaap van Oosten for his patience and for giving me so much freedom while
working on this thesis. Thanks to several valuable discussions and his contributions, I have been able
to work out ideas of my own, which has been a great experience. He has also been a great mentor for
the past years, allowing me to fiddle about, but giving me honest advise whenever I needed it.

1Update (June 10, 2014): In fact, I now claim to have a proof of this.



Bibliography

[BGO71] M. BARR, P. GRILLET, and D. V. OSDOL, Exact Categories and Categories of Sheaves, Lecture
Notes in Mathematics 236, Springer-Verlag, 1971.

[CF68] H. B. CURRY and R. FEYS, Combinatory logic. Vol. I, With two selections by William Craig.
Second printing. Studies in Logic and the Foundations of Mathematics, North-Holland Pub-
lishing Co., Amsterdam, 1968.

[FS90] P. J. FREYD and A. SCEDROV, Categories, allegories, North-Holland Mathematical Library 39,
North-Holland Publishing Co., Amsterdam, 1990. MR 1071176 (93c:18001).

[Hin78] P. G. HINMAN, Recursion-theoretic hierarchies, Springer-Verlag, Berlin, 1978, Perspectives
in Mathematical Logic. MR 499205 (82b:03084).

[Hof] P. HOFSTRA, Partial combinatory algebras and realizability toposes, Lecture notes for a tu-
torial at FMCS 2004 in Kananaski.

[HvO03] P. HOFSTRA and J. VAN OOSTEN, Ordered partial combinatory algebras, Math. Proc.
Cambridge Philos. Soc. 134 (2003), 445–463. MR 1981211 (2004e:03103). http://dx.
doi.org/10.1017/S0305004102006424. Available at http://dx.doi.org/10.1017/
S0305004102006424.

[Hyl82] J. M. E. HYLAND, The effective topos, in The L.E.J. Brouwer Centenary Symposium (Noord-
wijkerhout, 1981), Stud. Logic Foundations Math. 110, North-Holland, Amsterdam, 1982,
pp. 165–216. MR 717245 (84m:03101).

[HJP80] J. M. E. HYLAND, P. T. JOHNSTONE, and A. M. PITTS, Tripos theory, Math. Proc. Cambridge
Philos. Soc. 88 (1980), 205–231. MR 578267 (81i:03102). http://dx.doi.org/10.1017/
S0305004100057534. Available at http://dx.doi.org/10.1017/S0305004100057534.

[Joh13] P. JOHNSTONE, Geometric morphisms of realizability toposes, Theory Appl. Categ. 28 (2013),
No. 9, 241–249. MR 3065947.

[Joh02a] P. T. JOHNSTONE, Sketches of an elephant: a topos theory compendium. Vol. 1, Oxford Logic
Guides 43, The Clarendon Press Oxford University Press, New York, 2002. MR 1953060
(2003k:18005).

[Joh02b] P. T. JOHNSTONE, Sketches of an elephant: a topos theory compendium. Vol. 2, Oxford
Logic Guides 44, The Clarendon Press Oxford University Press, Oxford, 2002. MR 2063092
(2005g:18007).

[Kle59] S. C. KLEENE, Recursive functionals and quantifiers of finite types. I, Trans. Amer. Math. Soc.
91 (1959), 1–52. MR 0102480 (21 #1273).

85

http://www.ams.org/mathscinet-getitem?mr=1071176 (93c:18001)
http://www.ams.org/mathscinet-getitem?mr=499205 (82b:03084)
http://www.ams.org/mathscinet-getitem?mr=1981211 (2004e:03103)
http://dx.doi.org/10.1017/S0305004102006424
http://dx.doi.org/10.1017/S0305004102006424
http://dx.doi.org/10.1017/S0305004102006424
http://dx.doi.org/10.1017/S0305004102006424
http://www.ams.org/mathscinet-getitem?mr=717245 (84m:03101)
http://www.ams.org/mathscinet-getitem?mr=578267 (81i:03102)
http://dx.doi.org/10.1017/S0305004100057534
http://dx.doi.org/10.1017/S0305004100057534
http://dx.doi.org/10.1017/S0305004100057534
http://www.ams.org/mathscinet-getitem?mr=3065947
http://www.ams.org/mathscinet-getitem?mr=1953060 (2003k:18005)
http://www.ams.org/mathscinet-getitem?mr=1953060 (2003k:18005)
http://www.ams.org/mathscinet-getitem?mr=2063092 (2005g:18007)
http://www.ams.org/mathscinet-getitem?mr=2063092 (2005g:18007)
http://www.ams.org/mathscinet-getitem?mr=0102480 (21 #1273)


86 BIBLIOGRAPHY

[LvO13] S. LEE and J. VAN OOSTEN, Basic subtoposes of the effective topos, Ann. Pure Appl. Logic
164 (2013), 866–883. MR 3056301. http://dx.doi.org/10.1016/j.apal.2013.04.001.
Available at http://dx.doi.org/10.1016/j.apal.2013.04.001.

[Lon95] J. R. LONGLEY, Realizability Toposes and Language Semantics, Ph.D. thesis, University of
Edinburgh, 1995.

[Lon05] J. R. LONGLEY, Notions of computability at higher types. I, in Logic Colloquium 2000,
Lect. Notes Log. 19, Assoc. Symbol. Logic, Urbana, IL, 2005, pp. 32–142. MR 2143877
(2006e:03062).

[MLM94] S. MAC LANE and I. MOERDIJK, Sheaves in geometry and logic, Universitext, Springer-Verlag,
New York, 1994, A first introduction to topos theory, Corrected reprint of the 1992 edition.
MR 1300636 (96c:03119).

[Men00] M. MENNI, Exact completions and toposes, Ph.D. thesis, University of Edinburgh, 2000.
Available at http://www.lfcs.inf.ed.ac.uk/reports/00/ECS-LFCS-00-424/.

[vO] J. VAN OOSTEN, Realizability with a Local Operator of A.M. Pitts, Theoretical Computer Sci-
ence, To appear.

[vO06] J. VAN OOSTEN, A general form of relative recursion, Notre Dame J. Formal Logic 47 (2006),
311–318 (electronic). MR 2264700 (2007j:03022). http://dx.doi.org/10.1305/ndjfl/
1163775438. Available at http://dx.doi.org/10.1305/ndjfl/1163775438.

[vO08] J. VAN OOSTEN, Realizability: an introduction to its categorical side, Studies in Logic
and the Foundations of Mathematics 152, Elsevier B. V., Amsterdam, 2008. MR 2479466
(2010c:03044).

[OM07] J. V. OOSTEN and I. MOERDIJK, Topos Theory, Lecture notes to a master class course, 2007.
Available at http://www.staff.science.uu.nl/~ooste110/syllabi/toposmoeder.
pdf.

[Pho89] W. PHOA, Relative computability in the effective topos, Math. Proc. Cambridge Phi-
los. Soc. 106 (1989), 419–422. MR 1010365 (90h:18004). http://dx.doi.org/10.1017/
S0305004100068146. Available at http://dx.doi.org/10.1017/S0305004100068146.

[Pit81] A. PITTS, The Theory of Triposes, Ph.D. thesis, Cambridge University, 1981. Available at
http://www.cl.cam.ac.uk/~amp12/papers/thet/thet.pdf.

[Rog87] H. ROGERS, JR., Theory of recursive functions and effective computability, second ed., MIT
Press, Cambridge, MA, 1987. MR 886890 (88b:03059).

[Sch24] M. SCHÖNFINKEL, Über die Bausteine der mathematischen Logik, Math. Ann. 92 (1924),
305–316. MR 1512218. http://dx.doi.org/10.1007/BF01448013. Available at http://
dx.doi.org/10.1007/BF01448013.

[Wag69] E. G. WAGNER, Uniformly reflexive structures: On the nature of gödelizations and relative
computability, Trans. Amer. Math. Soc. 144 (1969), 1–41. MR 0249297 (40 #2543).

http://www.ams.org/mathscinet-getitem?mr=3056301
http://dx.doi.org/10.1016/j.apal.2013.04.001
http://dx.doi.org/10.1016/j.apal.2013.04.001
http://www.ams.org/mathscinet-getitem?mr=2143877 (2006e:03062)
http://www.ams.org/mathscinet-getitem?mr=2143877 (2006e:03062)
http://www.ams.org/mathscinet-getitem?mr=1300636 (96c:03119)
http://www.lfcs.inf.ed.ac.uk/reports/00/ECS-LFCS-00-424/
http://www.ams.org/mathscinet-getitem?mr=2264700 (2007j:03022)
http://dx.doi.org/10.1305/ndjfl/1163775438
http://dx.doi.org/10.1305/ndjfl/1163775438
http://dx.doi.org/10.1305/ndjfl/1163775438
http://www.ams.org/mathscinet-getitem?mr=2479466 (2010c:03044)
http://www.ams.org/mathscinet-getitem?mr=2479466 (2010c:03044)
http://www.staff.science.uu.nl/~ooste110/syllabi/toposmoeder.pdf
http://www.staff.science.uu.nl/~ooste110/syllabi/toposmoeder.pdf
http://www.ams.org/mathscinet-getitem?mr=1010365 (90h:18004)
http://dx.doi.org/10.1017/S0305004100068146
http://dx.doi.org/10.1017/S0305004100068146
http://dx.doi.org/10.1017/S0305004100068146
http://www.cl.cam.ac.uk/~amp12/papers/thet/thet.pdf
http://www.ams.org/mathscinet-getitem?mr=886890 (88b:03059)
http://www.ams.org/mathscinet-getitem?mr=1512218
http://dx.doi.org/10.1007/BF01448013
http://dx.doi.org/10.1007/BF01448013
http://dx.doi.org/10.1007/BF01448013
http://www.ams.org/mathscinet-getitem?mr=0249297 (40 #2543)


Index

analytical hierarchy, 35
applicative morphism, 17
assembly, 6, 41

category of assemblies, 6, 41

cartesian closed, 42
closure operator, 60
combinatory complete, 10
computability theory, 5
computable, 5
computable functional, 29
computation, 5
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