
Connect the dots puzzles with direction indicators
On the generation and evaluation of a new type of connect the dots puzzle.

Master program Game and Media Technology

Faculty of Science

Department of Information and Computing Sciences

Gerwin Klappe (3734676)

June 2, 2014

Utrecht University
Faculty of Science

Figure 1: Example of a generated puzzle

Abstract

Traditionally line puzzles or ’connect the dot’ puzzles are solved by connecting numbered dots. These
puzzles are solved by connecting points in a specific order indicated by numbers. These puzzles are
handmade by placing dots on the outline of a drawing or line drawing. However there are some
limitations and problems with this type of puzzle.

For this thesis we researched an alternative puzzle type and propose an algorithm to extract a line
puzzle from a given input, such as a line drawing. We researched the different aesthetics in this type
of puzzle and a number of visual variations. Also we developed a proof of concept of an environment
in which the algorithm can run. Using this proof of concept we processed a dataset with the algorithm
and evaluate the resulting data and drawings.

We conclude that there is a viable alternative for numbered ’connect the dot’ puzzles that does
not use numbered labels. For this alternative it is possible to generate puzzles by an algorithm that
produces solvable and recognizable line puzzles with a running time of O(n2 log3 n).

2

Acknowlegdements

The puzzle mechanics and the algorithm were developed in collaboration with Marc van Kreveld,
Maarten Loffler and Frank Staals. The proposed algorithm that achieves O(n2 log3 n) running time
was proposed by Marc van Kreveld. The dataset used for the experiment contains SVG drawings
traced from reference images, drawings supplied by Mira Kaiser and free available SVG drawings from
the internet.

3

Contents

1 Puzzle design 5
1.1 Traditional line puzzles . 5
1.2 Puzzle idea and applications . 6
1.3 Criteria . 7
1.4 Specific criteria . 7
1.5 Goals . 9

2 Related work and literature 10
2.1 Line simplification . 10
2.2 Partially drawn graphs . 10
2.3 Graph orientation . 11

3 Algorithm design 12
3.1 Subdivide graph . 12
3.2 Line simplification . 12
3.3 Heuristics . 13
3.4 Orient graph . 14

4 Algorithms 17
4.1 Subdivide graph . 17
4.2 Line simplification . 17
4.3 Dijkstra, shortest path . 20
4.4 Evaluation . 20

5 Implementation 24
5.1 Data structure . 24
5.2 Loading and saving data . 24
5.3 Calculations . 25
5.4 Algorithm . 25
5.5 Interface, editor . 25

6 Experiment 27
6.1 Setup . 27
6.2 Puzzle observations . 27
6.3 Performance . 31

7 Conclusion 33

8 Future work 34

A Impact of input parameters 36

B Visual variations 38

C Data set 40

D Generated puzzles 41

4

1 Puzzle design

Our puzzle is based on traditional connect the dot puzzles with numbers. We take a look at the
specifics of these puzzles and the existing variations. We propose an alternative puzzle and explain
the specifics of this alternative puzzle and possible variations.

1.1 Traditional line puzzles

Traditional line puzzles are composed of a sequence of points drawn as dots with numbers. These
points are to be connected with line segments according to the sequence as indicated by the numbers.
Numbers can be coloured to indicate a different colour for the following stroke. Also multiple sequences
can be used to add flexibility by replacing a dot with a symbol to specify the sequence the point belongs
to. When the dots are correctly connected a figure can be recognized in the collection of drawn lines.
The puzzle mechanics are intuitive and the challenge is to find the next dot that can lie anywhere
within the puzzle. Because the dots are numbered a line can easily cross the puzzle from side to side
without creating confusion.

However there are a number of disadvantages to this type of puzzle. The sequence must follow a
path, similar to an Euler path, however points cannot be visited multiple times. This is often solved
by backtracking over the original line and through previous points. To solve the puzzle a person has to
have the ability to understand the numbers. There are people that are unable to understand numbers,
either they are too young or incapable. The labels for the numbers is unwanted visual clutter that
doesn’t add anything to the solved puzzle, it only aids to solving the puzzle. Once the puzzle is solved
it can distract from the resulting figure.

Figure 2: Input drawing and output puzzle

(a) Input drawing, Openclipart.org (b) Solved output puzzle

5

http://www.openclipart.org

1.2 Puzzle idea and applications

Our new puzzle also consists of a collection of dots that needs to be connected. However the method
in connecting the dots is different. Instead of using numbered labels to indicate which dots are to be
connected, the points have one or multiple direction vectors. In our case this is represented by a line
which links the point to another point in the puzzle. Between these points the player must draw a
line.

This approach requires no labels, therefore visual clutter is reduced and a player does not need
the ability to understand numbers. Also this approach is not restricted to sequences, and intersection
points with 3 or more lines is a possibility. Since a direction is given in which the target point lies, the
game of searching for the next point is less challenging. This was part of the fun and frustration of
the numbered line puzzles therefore these puzzles could be a bit less challenging. Instead our puzzle
gives an estimate direction in which to search for the next point.

1.2.1 Structure

Our puzzle consists of dots with an indication to a dot to which a line has to be drawn. We refer to
these dots as points. The indication to where a line has to be drawn is called a link, because it links
a point to another. The points to which links can be attached are called the puzzle points. Our final
puzzle consists of puzzle points where each puzzle point has a number of associated links. The number
of links attached to a point can vary from zero to many depending on the puzzle type.

1.2.2 Visual variations

We explored a number of visual variations, namely symmetric or asymmetric placement of links and
the visual representation of the links. In symmetric link placement, as illustrated in figure 3a, two
links are placed for each edge, while in asymmetric link placement, illustrated in figure 3b, only one
link is placed on either one of the two points of a line segment. Additionally we explored a number
of visual representations for the link. The goal was to minimize recognizability of the unsolved puzzle
to the drawing and maximize solvability. In this case this means that the link should give as little
information about the puzzle as possible while the direction of the link should be as clear as possible.

• Line
This variation is easy to understand. A link is represented by a line that points to the next
point and the player has to draw the missing line in between. This line includes some visual
information about the solved puzzle, in that sense the links are actually partially drawn edges.

• Variable line
A variation on the line is one in which the length of the line gives an indication of the distance
to the associated point. When the distance increases the line length also increases, as illustrated
in figure 3d. This way other points can be placed closer together with less chance of causing
confusion. However this eliminates another search element of the puzzle and therefore could be
less challenging. The length of the lines would have to be larger to allow for the variable length
and therefore it could become easier to guess the original drawing from the unsolved puzzle.

• Point wise
This method of link representation, as illustrated in figure 3c, includes the smallest amount of
visual information, but is harder to solve without additional tools besides a pen, such as a ruler.
A link is represented by a smaller point in the neighbourhood of its associated puzzle point. The
line from the puzzle point to the smaller point represents the direction to the area where the
next point lies. To further distinguish the smaller point or link from the puzzle point, the smaller
point can be presented in a different colour.

6

We find the line representation to be the most intuitive and most easy to solve without any tools.
We prefer the asymmetric variation since this allows for more flexible link placement and reveals less
of the solved puzzle. Point wise links reveals even less of the solve puzzle, since the outline of the figure
is more difficult to perceive from a collection of points. However we use asymmetric lines for our case
due to its intuitive nature and flexibility.

1.3 Criteria

The puzzle must obey a set of general criteria, which defines a puzzle as a good puzzle. From this we
extract a set of quantifiable specific criteria which we use as input for our algorithm design. In general
our puzzle must obey the following rules: it must be solvable without any tools other than a pen, the
unsolved puzzle should not be recognizable as the input drawing, and the solved puzzle must resemble
the original line drawing.

• Solvability
It must be clear which lines have to be drawn between points, i.e. the destination point must be
distinguishable from other points in the area of the direction.

• Recognizability
The collection of links and points, i.e. the unsolved line puzzle, must not be clearly recognizable
as the solution to the drawing.

• Resemblance
The solved line puzzle must have a recognizable resemblance the original line drawing.

1.4 Specific criteria

From the general criteria we formulate a number of specific criteria, that we can use as a set of rules
to determine the effectiveness of the algorithm.

• Multiple links on one point must be distinguishable from each other.
When multiple links exist on a point the angle should be large enough so that a link does not
overlap with other links on the same point and the direction they are oriented in is clearly visible.

• Two connected points must be at least three link lengths from each other.
The distance of two points which we connect with a link should be at least three link lengths
apart, including the link itself. Therefore the empty space is at least two times the link length.

• A point in the line puzzle should be on a line of the line drawing.
Each point that we use in the line puzzle must lie on a line in the original line drawing.

• Lines cannot intersect other lines
Our assumption is that our input drawing is planar, and we require our output to be planar as
well.

• Links from different points cannot overlap each other.
One link cannot overlap another link in our resulting line puzzle. This criterion is in compliance
with the criteria that our output is planar since our input is planar as well.

• The solved puzzle must resemble the input drawing.
The puzzle resembles the input drawing within the allowed maximum error specified in the input.

7

Figure 3: Visual variations of the links

(a) Symmetric (b) Asymmetric

(c) Pointwise (d) Variable length

8

1.5 Goals

Besides our specific criteria we also defined a number of goals for our algorithm, to optimize the visual
properties of the puzzle and include the general criteria that cannot be specified in specific criteria.

• Minimize the number of points in the puzzle
We want to include the smallest number of points in the puzzle to minimize recognizability. We
aim for a near optimum solution, which is the minimum number of points in the simplification
within the maximum error that is valid with respect to our criteria.

• Minimize the maximum outbound degree of points in the puzzle
We can define the optimum solution for this problem without any additional criteria. However
the optimal solution may not be valid with respect to our criteria. Therefore we minimize the
maximum outbound degree with respect to our criteria.

9

2 Related work and literature

Our puzzle design requires us to solve a number of problems in different areas of geometric algorithms
research. Our first step is to simplify a subdivision while taking the surrounding environment into
account. During this process we minimize the recognizability of the graph as unsolved puzzle without
losing visual relevance because the simplification process attempts to minimize the number of points
in the output. Finally we need to orient an undirected graph to a directed graph. Line simplification
and graph orientation problems are well known research topics in algorithms and graph theory, but
we also take a look at partially drawn graphs, which is similar to our link representation.

2.1 Line simplification

Line simplification or generalisation is well-known topic of research within computational geometry.
There are a number different approaches to this problem, each have been improved since their original
proposal. Whether a method is suited depends on the type of application and requirements to the
output. A well-known simplification algorithm is Douglas and Peucker [1], which uses a distance
measure to add points to the simplification until no points fall outside this distance measure. This is
one of the best known and utilized line simplification algorithms and is very straightforward. Further
work has been done on this algorithm by Hershberger and Snoeyink [2] to improve running time
from O(n2) to O(n log2 n). This algorithm is also known as Ramer-Douglas-Peucker, since a similar
algorithm has been suggested in 1972 by Ramer [3].

Another approach to line simplification was proposed by Imai and Iri [4] to achieve an optimum
solution with respect to the minimum number of points. The proposed algorithm runs in O(n2 log n)
but later research by Chan and Chin [5] showed that this could be improved to achieve O(n2) running
time. The versatility of this approach was demonstrated by Berg et al [6]. They propose a line
simplification algorithm which is an extension to Chin and Chan’s implementation [5] of Imai and Iri’s
algorithm. This algorithm includes an efficient way to determine any intersections of lines and shifting
interior points for subdivision simplification. The proposed algorithm has a O(n(n+m) log n) running
time, where n is the number of points in a polyline subdivision of a graph and m is the number of
extra points that cannot cross the polyline in the simplification.

An area based approach was proposed by Visvalingam and Whyattl [7] to define the most signif-
icant features of a line. This is in particular useful for mapping and geographic data simplification.
Depending on the desired granularity, small enclaves or other geographic features do not need to be
visible. With angle and distance based simplification methods these narrow features are still consid-
ered significant. This is solved by determining eliminating points based on the area they form with
surrounding points. This way the method has a stronger preference for larger global features.

2.2 Partially drawn graphs

Our puzzle is in essence a graph with a different representation for the edges. In the line representation
these are actually partially drawn edges. Various studies have been performed on this subject. The
goal of these studies is to improve graph navigation in cluttered non-planar graph representations.
The problem is that in a non-planar graph with high level of connectivity a lot of visual clutter can
occur. These studies aimed to reduce this visual clutter and therefore improve usability. The user
studies that were performed focused on task completion and navigation problems. Our problem is
related but also inherently different. We also need to perform navigational tasks, however we do not
want maximize the usability, there has to be a challenge. Also we want to minimize recognizability
of the input drawing in contrast to related studies, which focused on maximizing overall usability and
recognizability of the graph.

10

Burch et al [8] have evaluated partial drawn links in two variations, a straight line and a tapered
variation. The link distance that is drawn is relative to its length and expressed in percentages. They
use 5 different step sizes and for the tapered variation 100% link length is also used. For the user
study they used a task based approach and divided three different types of tasks. Two task consisted
of evaluating navigation, e.g. is it possible to go from one point to another, and the third task was to
determine the point with the highest outbound degree. It showed that accuracy in the graph navigation
tasks tends to suffer from partial drawn links. In the third task the error rate decreased when as the
link length was reduced.

Didimo and Patrignani [9] focussed on a method to maximize the fraction of the distance with the
edges of a partial edge drawing can be drawn. They focus on a symmetric model, in which two parts
of the edge must be drawn of equal length. They propose different solutions for graphs of different
planarity.

2.3 Graph orientation

We want to orient our graph to determine the placement of links on the puzzle points in our puzzle.
Since we want to minimize the number of links on a single puzzle point, we want to minimize the
outgoing edges on a single point in the oriented graph. This is known as a graph orientation problem
and has been researched extensively.

Chrobak and Eppstein [10] studied the orientation problem for planar graphs. They give proof
for the boundedness of certain orientations. That is, every planar graph has a 3-bounded orientation
and a 5-bounded acyclic orientation. Algorithms to calculate these orientations are given which run
in linear time. Additionally they address a parallel method that can compute a 3-bounded orientation
and a 6-bounded acyclic orientation in O(log n log∗ n) parallel time with O(n log n log∗ n) processors.

Asahiro et al [11] studied the problem of orienting a graph with weighted while minimizing the
maximum out-degree of the vertices, i.e. the sum of the weights of the outbound edges. They give a
proof that this problem is NP-Hard and propose an approximation algorithm with an approximation
guarantee of 2 − ε. However ε is highly dependent on the average weight of the edges as it is defined
as 1 divided by the average weighted out-degree of the graph.

11

3 Algorithm design

In this section we analyse the different algorithmic problems we need to tackle to incorporate the
criteria in our proposed method. We propose a number of methods and strategies to achieve the
criteria and goals as stated in the design.

3.1 Subdivide graph

We need to subdivide the graph to create the subdivisions on which we apply line simplification. Our
input is planar so all subdivisions, apart from isolated cycles, are the lines that go from one end point
or intersection point to another. We simply take these points and traverse them until we reach another
endpoint or intersection. Finally we detect any un-traversed points, these are isolated cycles and are
split on an arbitrary point.

3.2 Line simplification

Line simplification is applied to reduce the number of points required for our puzzle. Currently there
are a number of line simplification algorithms researched, best known is the Ramer-Douglas-Peucker
algorithm. We evaluate a number of existing algorithms to see if any specific characteristics would
make it appropriate to our needs. Each of these algorithms employ different strategies to preserve the
most significant properties of a line.

• Algorithms for the reduction of the number of points required to represent a digi-
tized line or its caricature, Ramer-Douglas-Peucker
This is a selection based algorithm [1], which selects furthest points from in between line as most
significant and adds these points to the simplification. This is repeated until no points from
the input fall outside of the distance measure with respect to the simplification. This is a very
straightforward line simplification algorithm but does not always provide the simplification with
the lowest possible number of points.

• Line Generalisation by repeated elimination, Visvalingam and Whyatt
Rather than selecting a point that is the furthest away from the line, thereby indicating it would
be the most significant feature, this method [7] uses an area based approach. They use the area
that is covered by the face that is created by connect two points on the line, like a cut-off from the
original line. In this way this method discriminates against small narrow features, and considers
them insignificant. This is very practical for map generalization in which depending on the scale,
the focus has to shift from narrow features to global features.

• Computational-Geometric Methods for Polygonal Approximations of a Curve,
Imai and Iri
This method [4] calculates all possible shortcuts and builds a graph on which the shortest path
is calculated, i.e. the minimum number of points. Since it employs Dijkstra’s shortest path
algorithm to find the simplification with minimum number of points and the possibility to apply
different heuristics during graph build-up makes this a very versatile method. This is demon-
strated by Berg et al [6] who extended this algorithm to prevent intersections and border crossings
from occurring in the simplification.

We want to simplify a line, not a surface, therefore the method proposed by Vislingam and Whyatt
would not be the most straightforward approach since their method is surface based. The Ramer-
Douglas-Peucker approach is very good in line simplification while keeping the most significant features,
however we also want to minimize the number of points and apply different heuristics based on our

12

Figure 4: Ambiguity check

(a) area check α and β (b) partial valid (c) invalid

criteria during the simplification process. Therefore the method proposed by Imai and Iri is the one
we use as a base for our algorithm.

3.3 Heuristics

Based on our criteria we define a number of heuristics that need be incorporated in the shortcut
selection of the line simplification algorithm. Often there are multiple allowed simplifications, therefore
we include these additional heuristics to steer the simplification process to the solution that would be
the most optimal for our case. This could mean that there is a trade-off between number of points
and puzzle quality. Sometimes a simplification that incorporates these additional heuristics will have
more points than the optimal minimum point simplification.

3.3.1 Solvability

Our puzzle needs to be solvable, which in our case means it must be clear to which point a link indicates
the line that needs to be drawn. For this we devised an ambiguity check to determine whether a link
can be seen to direct to more than one point. We define an area in which there cannot be any other
part of a line except the part that is eliminated by the candidate shortcut. This is illustrated in figure
4a. The area has two parameters, namely α and β, these are the angles with respect to the line of
shortcut, in which the area spans. This is done for both directions. When only one direction is invalid
the shortcut is still allowed, since we only need one valid direction to orient the edge.

3.3.2 Recognizability

When the puzzle is solved, it must resemble the puzzle as closely as possible. Since there is a possibility
that for a single segment there is more than one simplification with an equal number of points, we
want to choose the simplification that is in our case the best fit. Since a simplification reduces the
length of the line, i.e. curvy lines become straight lines, we choose the simplification with highest
length. This metric can be included in the shortest path algorithm in the Imai and Iri approach when
the shortest path is computed from the graph of valid shortcuts. Figure 5a illustrates the way this
method emphasizes the more significant features. In this simplified example both shortcuts would fall
within in the ε distance, but it is clear that the longest route is preferred over the shorter route.

3.3.3 Minimum edge length

We specified a minimum edge length in our criteria. If an edge is too small it would not make sense
draw a link, because it would either fill up the gap, overshoot or leave a small gap. Instead we use

13

Figure 5: Additional heuristics

(a) longest simplification (b) minimum edge length

the original curve and draw this instead of a link. However this increases the recognizability of the
unsolved puzzle, so we want to avoid this whenever we can. This is illustrated in figure 5b. We can
observe that even though there is a more optimal simplification, there is also a simplification with one
point more where we don’t have to pre-draw a part of the puzzle. Since we want to avoid this as much
as we can this trade-off makes sense.

Therefore we defined a minimum edge length parameter. Shortcuts are not allowed if they do
not meet this requirement. However this would mean that the original route is not allowed since the
high detail polyline approximation has very short edge lengths. This could result in an unsolvable
shortest route problem in the graph of shortcuts, meaning there is no possible route from start to end.
Therefore we have a fall-back method that reduces the minimum edge length by 10% of the original
value until it reaches 0, in which case all original edges are allowed and therefore the shortest route
problem in the graph of shortcuts becomes solvable.

3.4 Orient graph

The result of the line simplification process is an undirected graph, we need to direct this graph so all
the edges are one way. This determines the link placement in the puzzle. Since we want to minimize
the number of links placed on a point we want to achieve to lowest maximum out-degree across the
graph. To achieve this we want to minimize the maximum degree of outbound edges on a point in the
directed graph. The outbound edges will be used for the placement of the links.

The minimum value we can achieve for the maximum out-degree depends on the structure of the
graph. In some cases we can always achieve an out-degree of 1 or 2 and in worst case this is 3. This
is without the constraints as formulated in the criteria. Due to these constraints parts of the graph
may already be oriented. Furthermore we assume the input graph is connected, if not we treat each
disconnected part of the graph as a separate connected graph.

• Out-degree of one
For a graph that is a path we can always achieve a maximum out-degree of 1. This is intuitively
determined, since a point only links to two nodes we can easily choose a direction along the path
to orient all points in. The last point does not need a link. Similarly trees can be drawn with
maximum out-degree 1. We choose a root node arbitrarily and orient all edges towards the root.

For a graph with a single cycle we can always achieve a maximum out-degree of 1. Our links

14

Figure 6: Example graphs and their out-degree bounds

(a) Out-degree one graphs (b) Out-degree two graph (c) Out-degree three graph

just indicate a direction in which the cycle ’rotates’. All points have a degree of 1. If there are
trees lines attached to this cycle we could treat the cycle and trees as separate cases. Since we
can do a single cycle with an out-degree of one and trees with an out-degree of 1, we can orient
the attached trees towards the cycle. These types of graphs are illustrated in figure 6a.

• Out-degree of two
For a graph with two cycles or more in a single connected component we need at least an out-
degree of 2, this is illustrated in figure 6b. We need to connect the cycles, since the points in the
cycles all have an out-degree of at least one, we need an additional link for connecting the cycles.
Cycles can be only be created by adding a additional edge, as illustrated by Euler’s formula and
every additional face can be created with only one additional edge, no points have to be added.
This increases the number of links, without adding points to place them on.

• Out-degree of three
Since we stated as a requirement that lines do not intersect, our graph is planar, therefore
our worst case would be a complete planar graph. A maximum out-degree of 3 can always be
achieved on any planar graph as proven by Chrobak and Eppstein [10], they call this a 3-bounded
orientation and show that they can achieve a 3-bounded orientation or less in linear time. We
can be certain we need a 3-bounded orientation if the number of edges is larger than two times
the number of points as illustrated in figure 6c. This figure illustrates the most basic graph where
we need at least a 3-bounded orientation.

Depending on the number of cycles in a graph we can determine if we can achieve a maximum
out-degree of 1 or 2 and higher. Whether we need a maximum degree of 2 or 3 is dependent on the
structure in a graph. However if a graph is evenly connected, i.e. each point has a degree of 2, 4 or
6, there must be an Euler path. If we compute the Euler path then we can use this to achieve an
outbound degree of 1, 2 or 3. We could use Fleury’s algorithm to compute the Euler path, only if
there are only points with an even degree. The highest degree divided by half will be the maximum
outbound degree. However this can potentially be very high and therefore is not a desirable solution
in most cases.

We can easily test whether it is possible to get a maximum outbound degree of 1. For this each
connected component of the graph can only have one cycle. If a connected component has more than
2 cycles we have at least a maximum outbound degree of 2. When we want to test if we can handle
a graph with an outbound degree of maximum 2 this becomes more difficult. We do have an initial
indication that is if the average degree is higher than 4 a maximum outbound degree of 3 is necessary.
However even with a lower average an embedded sub graph of the graph could cause potential problems,
i.e. there are points with a degree higher than 4. Therefore we propose two methods, one that uses

15

a divide and conquer approach and one that orients the graph by orienting the points that have the
lowest risk of becoming high outbound degree points first.

We take the graph and select all points with a degree of 1 and 2. We oriente the associated edges
from these points with the points as origin and remove these from the graph. We repeat this step with
the resulting graph until there are no points left or that every point has a degree of 3 or more. If there
any points of the graph left, this graph can be oriented using the algorithm proposed by Asahiro et al
[11] to calculate the maximum 3-bounded orientation in linear time.

Our second approach is very simple and straightforward. In this approach we iterate through the
collection of points until no edge is undirected involves a priority queue and a calculated value. For
each point in the graph we define a value that indicates the risk of the point becoming a point with a
high number of links, we call this the LinkRisk. This value is calculated by the number of connected
undirected edges E and the number of attached links with the point as the source. When calculating
this value for the first time we include the already orient edges due to the constraints from the criteria.

Linkrisk is then calculated as LR = e
2 + L. These points are put in a priority queue, with the

points with the lowest LinkRisk are given the highest priority. When a point has no more undirected
edges left it is removed from the priority queue. This is done until the priority queue is empty and all
the undirected edges are directed. This way only points with low connectivity are preferred and local
hotspots, i.e. points with high connectivity, are avoided. Additionally we could make this method
more versatile, by introducing a value that is based on an additional heuristic that determines which
points are the most preferable to place links on. LinkRisk is then calculated as LR = e

2 + L+H.

16

4 Algorithms

Our algorithm is divided in a couple of steps, where the output is passed on as input to the next step.
In the GUI our algorithm is meant to assist the user and all of these steps can also be individually
executed, in which case the user decides what calculation to perform on a data collection. The first
step is to import the drawing to our graph data structure. This graph is then pre-processed to ensure
there are no long edges, these are cut in smaller edges. Also this step ensures that the graph is made
planar if it was not already planar. The simplification step can be performed multiple times, set by
the parameter Passes. This creates a cleaner output, since in certain cases the ambiguity check can
be too restrictive, because it only should prevent placement of confusing points, these points are not
there yet in the first pass. After the first pass the influence of ε is minimized, since the curves are
already simplified.

After the simplification passes have been completed we rebuild the graph from the simplified poly-
lines. This is necessary due to the step where we replace the edges with shortcuts and original edges
area lost. However we still have a point ID and for each connected endpoint of the polylines this must
be the same, therefore we can easily rebuild the graph. After this the graph is directed to determine
link placement for the asymmetric variation. Algorithm 1 breaks down the global algorithm and the
order of the specific steps that need to be executed transform a line drawing into a graph that can be
used to render a connect the dots puzzle with our renderer. The renderer determines the style and the
visual representation of the links and the puzzle.

Algorithm 1 Process drawing

Input: Drawing D
Output: DirectedGraph DG

Import D to Graph G
PreProcess(G)
P ← Subdivide(G)
for i← 1 to Passes do
S ← Simplification(G, P)

end for
DirectedGraph DG ← DirectGraph(G)
Return DG

4.1 Subdivide graph

We need to subdivide the given graph into polylines because each polyline is processed individually
during the simplification pass. To do this we search for the endpoints of a polyline, i.e. any node with
a degree other than 2. Then we simply traverse the connected edges and report each point of each
traversed edge until another endpoint has been found. If there are any nodes left we consider these to
be isolated cycles and pick an arbitrary point on the cycle and let this be the end and start point of
the polyline.

4.2 Line simplification

For our line simplification we use a modified Imai and Iri’s algorithm. This algorithm determines the
valid shortcuts from the points on the polyline, from which it builds a graph and employs Dijkstra’s
shortest path algorithm to find the optimal line simplification. We process each polyline individually
and all the operations and queries are performed on the input, results are stored separately and the
input graph remains intact until all polylines are processed, after which the graph is rebuilt from the

17

result. Our implementation focuses on finding the simplification with the smallest number of points
within our criteria.

Algorithm 2 Simplification

Input: Polylines P
Output: Polylines R

for all Polyline p in P do
R ← simplify(p, DefaultMinLength)

end for

We prefer a simplification that has only edges longer than our minimum link length, this is used in
our edge evaluation. However this can lead to unsolvable graphs, therefore when Dijkstra does not find
any path, we recursively simplify the original polyline with a lower minimum length until this value
becomes 0, in which case the original polyline is considered valid and therefore Dijkstra’s shortest path
always returns a result. When we have our simplified polyline we post-process to detect edges that
are too short to place links on. At those edges we insert the points from the original polyline chain,
so the original detailed outline is preserved on the predrawn lines in the puzzle.

Algorithm 3 Simplify

Input: Polyline p, MinLength
Output: Polyline r
g′ ← FindShortcurts(p, MinLength)
g′′ ← FindShortcurtsReversed(p, MinLength)
g ← g′ ∩ g′′
r ← DijkstraShortestPath(g)
if r is nil then
r ← Simplify(p, MinLength - 10%)

end if
PostProcess(r, p)
return r

As stated before we can easily modify and extend this algorithm to suit our needs by introducing
additional criteria. In our case we use the default epsilon based distance measure that defines the
maximum error a simplification is allowed have to the original polyline and a minimum distance for
a shortcut. Additionally we check the ambiguity of a candidate shortcut by checking an area for any
points that are ambiguous to the candidate shortcut. We do this by building a search tree in which
we put all other points sorted on their angle with respect to pi. This approach and its running time
is further discussed in the evaluation section. We base our algorithm on the algorithm as proposed by
Chan and Chin[5]. We explain their method briefly.

Consider a polyline p with n points. A graph g with valid shortcuts is constructed. A shortcut pi,j
is only allowed when the maximum induced error is below the given value ε. The error of a shortcut
is defined as the maximum error of the halflines hi,j and hj,i, therefore we iterate through the input
forwards and backwards, giving g′ and g′′. The intersection of g′ and g′′ results in g. When iterating
through p for each point at a wedge W is constructed by the point pi and a disk of the size ε centered
at pj . Foreach following pj the shortcut pi,j is only accepted if the point lies within W . W is updated
after each evaluation of Pi,j as the intersection of the wedge W and the wedge formed by pi and the
disk pj . When W becomes empty any following point cannot be valid within ε and further evaluation
for pi is terminated. With g being the intersection of the edges of the graphs g′ and g′′, the optimal
simplication is found by calculating the shortest path within g for p1 and pn.

18

When an edge is accepted with respect to ε distance and the minimum edge length, we evaluate
the ambiguity of the edge with procedure 5. This is done by looking for any other points that could
create confusion when this shortcut is used in the puzzle. We do this by checking the surrounding area
of the edge in which there should be no points other than the points that the shortcut would exclude
from the polyline. This area is defined by two angles, α and β, beginning from the source point and
ending at the destination point of the edge as illustrated in figure 4a. If there are any points in that
specific area the shortcut is considered invalid. Since the simplification algorithm iterates through the
polyline in both directions this check is also performed in both directions. For a candidate shortcut to
be valid, at least one of the directions has to be valid, since we only need one valid direction to place
a link in the asymmetric link placement and exclude all invalid edges. Therefore a shortcut is tagged
on its ambiguity instead of being excluded and this value is evaluated during the calculation of the
intersection. In short this means that a shortcut is valid, when it is within ε error, longer than the
minimum length and has at least one of the two directions being valid on its ambiguity.

Algorithm 4 FindShortcurts

Input: Polyline p with n points, Graph G, MinLength
Output: Graph g with valid shortcuts

for i ← 0 to n− 2 do
g.Pointsi ← pi
T = BuildAngleSearchTree(pi, G)
j ← i+ 1
T .Remove(pj)
W ← Wedge(pi, pj)
while W 6= ∅ and j < n do

if pj ∈ W then
if Eucladian(pi,pj) < MinLength then
e = Edge(pi,pj)
e.Ambiguity ← EvaluateAmbiguity(e,T)
gi.Edges ← e

end if
end if
W ← W ∩ Wedge(pi, pj)
s ← s+ 1
T .Remove(ps)

end while
end for
return g

Procedure 5 EvaluateAmbiguity

Input: Edge e, Tree T
Output: true or false

Define 2 halfplanes S along the e with α and β
if T .Empty(S) = false) then

return false
end if
return true

19

4.3 Dijkstra, shortest path

When we have built the graph with all the valid shortcuts, we perform a slightly altered version of
Dijkstra’s shortest path algorithm to determine the shortest path, which results in our simplification.
The number of steps per point is our first weight, which results in the path with the lowest number of
points. However, often there are many different paths, with an equal number of steps, since the graphs
are often very dense and highly connected. In the case that a path is found with a an equal number of
steps to a point we compare a second metric. This is the total Euclidean distance of the path. In our
case we maximize this component. So the path with the longer Euclidean distance is preferred over
the shorter path. The reason for this is that the longer path must have placed its points more in the
curves and therefore contain more of the more significant features of the line.

4.3.1 Direct graph

Since the output is an undirected graph and we only place one link for each edge, we direct the graph
to determine the link placement with algorithm 6. In the input each undirected edge is represented
by two directed edges. First we remove all directed edges that are invalid for that direction, since a
shortcut is allowed in the previous step when only one of the directed edges was valid. We add the valid
directed edge as link. Then we calculate the LinkRisk value for each point and store the points in a
priority queue according to the LinkRisk value, with the lowest LinkRisk given the highest priority.
Then we process the points with the highest priority until there are no more points left. Processing
a point is assigning a single link and updating the LinkRisk of the affected points or removing them
from the queue. When a link is assigned, the edge and the corresponding edge in the opposite direction
are removed from the graph. If a point has no more edges we remove the point from the priority queue.

4.4 Evaluation

4.4.1 Intersections

We do not provide a definitive method to prevent a polyline simplification from self-intersecting and
intersecting with other simplified polylines. However since we assume our input is high in detail,
i.e. the interdistance between points on the polylines is small, we reduce the chance of intersections
to a minimum. This is due to our ambiguity check, which requires some distance between polylines
and eventually defaults to the original polyline which cannot intersect since our input is planar. To
eliminate the chance of intersections entirely, we should extend our method to incorporate the method
proposed by Berg et al [6] in our modified Imai and Iri’s simplification algorithm. This can easily be
done since their approach is similar to our approach and therefore our method only has to be extended
to incorporate their method.

4.4.2 Angular distance

A link should be clear and not overlapping to be able to indicate a direction to the next point. For
this a certain angular distance between links incident on a single point is required. In our algorithm
our ambiguity check ensures this angle is at least α. When a link is placed on a point, the ambiguity
check is performed with this point as origin. Therefore this point must have a wedge shaped area with
angle α in the direction of the destination point that is clear of other points.

Lemma 4.1. The angle between links incident on a point is at least α.

Proof. Consider an puzzle point p with two or more connected lines. Any link placed on p must have
a wedge shaped area with α that is clear of any other lines. Therefore a link placed on p will have an
angular distance of at least α to any other link incident on p.

20

Algorithm 6 DirectGraph

Input: Undirected Graph G
Output: Directed Graph DG

for all DirectedEdge e in G do
if EvaluateEdge(e) = false then

AddLink(G.FindOpposingEdge(e))
end if

end for
PriorityQueue Q
for all Point p in G.Points do
Q ← p
p.LinkRisk ← q.Edges.Count / 2 + p.Links.Count

end for
while Q 6= ∅ do
p ← q.Top
e ← p.Edges.First
AddLink(he)
if p.Edges = ∅ then
Q.Remove(p)

else
p.LinkRisk ← p.Edges.Count / 2 + p.Links.Count

end if
if e.Destination.Edges = ∅ then
Q.Remove(e.Destination)

else
e.Destination.LinkRisk ← e.Destination.Edges.Count / 2 + e.Destination.Links.Count

end if
end while
for all Point p in G.Points do
DG.AddPoint(p)
DG.AddEdges(p.Links)

end for
return DG

21

4.4.3 Output size

The size of our output is not bounded by a multiplication or factor of a constant c to the input n,
because the number of extra points we place in the output is dependent on the interdistance of the
lines in the input. The number of nodes of a subdivision simplification in the output is relative to the
interdistance between the lines in the input. Since this is valid for a single subdivision simplication, this
is valid for the complete output. Our output is the graph composed from the subdivision simplifications.

Lemma 4.2. Let n be the number of points in the input graph and n′ the number of points in the
output. There is no constant c so that the product or factor n and c defines the upperbound of puzzle
points n′ in the output.

Proof. Consider three parallel lines with interdistance d, for every x distance on each line there must

be a point. With d defined as d =
1
2 sin 2a

x . 12 , which can be written as d = sin 2a
4x .

Lemma 4.3. The number of points in a simplication depends on the interdistance of the line and
other polylines in the input.

Proof. Consider line L with length l and interdistance d to other elements e, then the number of added
points n on L is at most n = d lxe with x defined as x = d

sin a . cos a− d
sin b . cos b

However, since we have a minimum length and ensure the edge distance of the input is smaller than
this minimum length our output is at most our input. In this worst case example, the drawing would
be entirely pre-drawn. However if we would not have the minimum distance requirement and not
default to the input, then the algorithm had to add intermediate points until the other requirements
have been met. So when we do enforce the minimum length of a shortcut, then we can say there is no
constant c lower than 1 that defines the upper-bound of our output to the input n and m.

4.4.4 Running time

Given a graph with n points and m edges we can easily detect the subdivisions in linear time, by
iterating over n and m. This results in the linear running time of O(n + m). Our simplification
algorithm for a polyline is not as straightforward and has multiple steps, which are computationally
more intensive. This is largely due to the ambiguity check, which checks a potentially large number of
shortcuts on ambiguity, which includes simplex queries on a two dimensional plane. The large number
is a result of the use Imai and Iri’s simplification algorithm [12], which results in a possible quadratic
number of shortcuts. As demonstrated by Chin en Chan [5], Imai and Iri’s can be performed in O(n2)
time worst case, resulting in O(n2) shortcuts.

For the ambiguity check we need to query 2 simplexes for each shortcut in both directions. However
we need to exclude the points that a candidate shortcut would bypass. For this we need a search
structure with which we can do fast counting queries and fast updates. For this we could combine
a partition and a cutting tree to create a trade-off between storage space, update- and query time.
This trade-off is proposed by Agarwal and Erickson [13]. With this structure we can achieve with

m1+ε storage for any n ≤ m ≤ n2 a query time and update time O(1
εn

1
3). If we choose for storage

m1+ε = n
4
3+ε we can achieve O(1

εn
1
3) query and update time, which results in O(n

1
3) time for every

ambiguity check.
For every subdivision with n points and at most n2 shortcuts we need to check 4 simplex counting

queries and 2 updates against a search tree of O((n+m)
4
3) storage, with m being the other points of

the graph in the plane. Each query and update costs O((n + m)
1
3) time. This results in the running

time of O(n2(n+m)
1
3) for the simplifcation of a polyline subdivision.

However we could achieve a faster running time. To do this we construct a search structure in
which we sort all other points on angle around pi. This search structure only works for pi and is built

22

for every pi instead of once for every subdivision. For this we use a balanced binary search tree. At
each node a subset with nodes is stored for a particular angular interval. For the associated structure
in which the subset is stored we use a data structure for half plane emptiness querying as proposed
by Chazelle et al [14]. This structure allows for O(log2 n) time to decide whether the area is empty or
not and has a size of O(n log n). We do need to make the structure dynamic, because for each possible
shortcut we need to delete a point from the search structure. We do this by standard methods as
proposed by Overmars [15], resulting in a search structure with O(log3 n) update and query time.

Now for every subdivision with n points and n2 possible shortcuts and m other points, we need to
perform a query and deletion in the search structure in O(log3(n + m)) time. This is done for every
possible shortcut resulting in a running time of O(n2 log3(n + m)). Our worst case is that the entire
graph is only a single line, since n and m are both a subset of the graph and both are bounded by
the points in the graph. In this case n is equal to n + m, with m being 0. This results in worst case
running time of O(n2 log3 n) time, where n is the total number of points in the graph.

23

5 Implementation

We propose a multithreaded user assisted environment where each step of the algorithm is executed
individually and from each step the result can be evaluated. The user can use this to make changes in
the parameters or alter the data with the editor.

5.1 Data structure

We use a custom data structure that consists of points and edges. A point holds a collection of all
outgoing edges. An edge has a source point and a destination point. When our graph is undirected,
a directed edge exists in both directions. Additional values can be added to both objects during
calculation. For example length, distance metrics, if traversed and other flags. These are stored in
a tag library. This makes the objects easy to use and algorithms can be implemented or extended
quickly without having to overhaul the data structure. These tags are not saved, since they are only
used during calculation. However some additional properties are saved, such as whether points only
need to be drawn for detail and are not puzzle points. These points are used for the detail lines that
are pre-drawn in the puzzle.

5.2 Loading and saving data

We use a custom XML schema to serialize and deserialize our internal data structure, which uses points
and edges. The reason we use XML is that we can ignore or persist properties of our data structures
and it is very easy to use. Another reason is that this is a readable format, this way output values
can be read and evaluated. During the processing of a file, the data is saved so we can evaluate the
raw data if any anomalies occur in the final puzzle. A puzzle can also be exported to a BMP image.
During the export the selected renderer with its parameters is used and an image with the size of the
canvas is produced.

5.2.1 Image importing

An image can be imported into the program and the lines can be manually traced to create a graph.
Since this is painstaking work to achieve a high level of detail, additional points can be added during
the segmentation step. However these are simple linear interpolated points and do not increase the
level of detail, but do increase the number of possible shortcuts. This is a useful method to draw a
fast test case, but for a more complex drawing or test case the use of a third party SVG editor is
recommended since this method is otherwise very time consuming.

5.2.2 SVG importing

Since there is a wide variety of SVG drawings available and proper editors such as Inkscape are
available to use, we implemented an SVG importer to import SVG drawings and convert Bezier curves
and other shapes to a polyline graph. We use a method from the Microsoft WPF library to convert
the curves to a polyline. This method requires a tolerance value and results in high detail polyline
approximation of the curve. However long edges are still possible, this is the case when the line is
straight. Therefore during post processing these long edges are cut in smaller edges with the length of
the maximum allowed edge length to get an even spread of points across the drawing.

Not every SVG drawing is immediately fit for importing. In some cases drawings have to be
prepared manually. This can be the removal of details, such as drop shadows and highlights or in
some cases duplicate lines. The importer is able to fix some aspects, such as scaling to a bounding
box, adding borders and repositioning. After the import is done, the drawing is post processed. As

24

http://www.inkscape.org

Figure 7: Implementation, GUI

(a) Multiple visible layers (b) Puzzle renderer

mentioned before during this step longer edges are cut in smaller edges but it also ensures that the
input is a planar graph, because the SVG input is not necessarily a graph but merely a collection of
shapes and lines. First we check for intersecting edges and remove all these intersections by replacing
the two edges with an intersection point and four new edges. Endpoints that are close together are
joined into a single intersection point. Noise such as single points, and very small lines are removed.
All these operations have tolerances that can be adjusted.

5.3 Calculations

Calculations can be run synchronously and asynchronously. Most of the calculations run asyn-
chronously and the progress can be monitored by the user. When the calculation finishes an event is
launched and the output is processed or presented to the user. When multiple calculations have to be
run, a parent calculation is defined, which runs the calculations synchronously and passes the data, the
output and the input from the calculations, along to the next calculation. This parent calculation can
still be run asynchronously. In each calculation a set of parameters is required. These are presented
to the user when the button associated the calculation is clicked. When an iteration is performed over
an input parameter these values are set by a parent calculation.

5.4 Algorithm

We implemented both Douglas-Peucker’s algorithm as well as Imai and Iri’s algorithm. However
we continued development on Imai and Iri’s algorithm and halted further development on Douglas-
Peucker’s algorithm. While our implementation of Imai and Iri’s algorithm includes our additional
criteria, our implementation of Douglas-Peucker’s algorithm is based on the standard proposed imple-
mentation with no additional criteria. While we propose an efficient algorithm, we mainly focused on
implementing the different criteria and creating an algorithm that creates a solvable and aesthetically
appealing puzzle. Our implementation has a cubic running time, because we linearly evaluate all the
other points in the plane, with our ambiguity check for at most a quadratic number of shortcuts to
the input.

5.5 Interface, editor

We provide a basic editor for our graph data structure, in which points can be added, selected and
removed. The editor can contain multiple data items, which are presented as layers. Each layer has a

25

visibility toggle. Only the selected data item is active for editing, but the user can easily switch layers
by clicking on one of them. Also other data is presented as a layer, such as intermediate data from a
calculation, but they are presented read only. The editor also supports basic navigational operations
such as zooming and panning.

By combining different layers, a simplification can be evaluated to the input drawing, as illustrated
in figure 7a. This useful to observe where the algorithm placed the points on the lines and whether the
resulting simplification is complete. For each layer a different renderer can be assigned, with different
settings. This way it is possible to compare different styles of puzzle or the computed puzzle with the
original input.

5.5.1 Renderers

For a data type multiple renderers can be defined, for example in case of a graph we have a simple
renderer, an evaluation renderer and a final renderer. The evaluation renderer incorporates the area
check so we are able to evaluate whether the area check has performed correctly. The final renderer
is used to render the final puzzle. We incorporated different visual variations and parameters, such
as link size, link type, pre-drawn line width, link width and point size. These can be evaluated in
real-time and when a user modifies a parameter the visual representation is updated instantly. Figure
7b illustrates the different render options and shows an example of a puzzle renderer.

26

Figure 8: Observations ε

(a) Conservation of curves with low ε (b) Loss of detail

6 Experiment

We have processed a set of drawings with various characteristics by our algorithm. These drawings
differ in density, connectivity and in shapes, namely curved, straight or a combination of both. We
evaluate different values for the parameters of the algorithm and evaluate which values from the range
provides the most suitable line puzzles.

6.1 Setup

For our evaluation we collected data by running the algorithm over a set of SVG files. A visualisation
and a table with the specifics of this dataset is provided in appendix C and D. These files are imported
and processed automatically. During this process the drawings are scaled to a bounding box to make
a comparable case. During these runs we iterated a single parameter over a range with intervals. We
have chosen parameters that would likely have the most impact on the simplification and would make
sense to alter in practical terms depending on the input or desired level of detail in the output.

The first parameter controls the maximum error for the Imai and Iri’s line simplification algorithm,
namely ε. We iterate from 2.5 to 52.5 with a step size of 2.5. The second parameter is the α angle that
defines the area that is used in the ambiguity check. We use a range from 2.5, to 35 with a step size
of 2.5. We don’t use 0 values, because for ε this would mean no simplification takes place and for α it
results in intersections and other artefacts which would make the use of the resulting data difficult.

6.2 Puzzle observations

We generated a set of images based on the dataset and the iterations over the parameters. We take a
closer look to see how these parameters impact the different aspects of the puzzle. When the parameters
are in the upper or lower range some visual artefacts can occur. We look how our algorithm performs at
these values and what kind of artefacts occur. Furthermore we look at the resemblance and solvability
or in other words the overall usability of the puzzles. From this we conclude an ideal range of values
for the parameters and suggest a default value.

27

Figure 9: Observations α

(a) Influence of interdistance (b) Increase in degree

6.2.1 Parameter ε

If we look at ε we observe that this value has a great influence on the overall simplification of the
drawing. Low values result in detailed curves, as illustrated in figure 8a, with the drawback that a
puzzle becomes easy recognizable. Since our implementation defaults to the original line when it is
not possible to draw a link, large parts of the original drawing are pre-drawn, in particular the curvy
parts. When we use a high value for ε then certain details are lost. Global curves are often mostly
maintained but small features and texture-like patterns, as illustrated in figure 8b are lost. In high
density areas our ambiguity check enforces a level of detail and is the impact of high ε value limited.
The most optimum value for our set of data, which is dependent on the type of drawing and scale, is
between 10 and 30. We have chosen 15 as a default value.

6.2.2 Parameter α

When the value of this parameter increases, the angle and therefore the surface of the area check
increases and it becomes more likely a link is not valid due to confusing points of lines outside the
shortcut segment. This results in a puzzle with a higher level of detail, since points have to be closer
together. At first this becomes clear in high density areas, this is an area with high number of lines
close together. Therefore the effect of this parameter is heavily influenced by the interdistance of
surrounding lines. This is illustrated in figure 9a. Because of this increased point placement the
drawing becomes more easily recognizable, especially when the length of pre-drawn lines increases.
From 20◦ and up most of the finer details are pre-drawn instead of being represented by links.

A greater angle of α can also result in a higher maximum degree. Since all invalid half edges are
removed before orienting the graph, this can result that in some cases we only have one option for link
placement. The chance for this increases when α increases. This can lead to a point that has only
directed edges with and therefore all links must be placed on that point. This is illustrated in figure
9b, where all the surrounding points prevent the orientation from any other point. However it should
be noted that this only occurred on occasion with large angles for α, i.e. greater than 25◦. Depending
on the difficulty level that is desired a viable value for α would be between 5◦ and 17.5◦, as default
value we choose 10◦.

28

Figure 10: Puzzle points

(a) Iterating over ε

(b) Iterating over α

29

Figure 11: Pre-drawn length

(a) Iterating over ε

(b) Iterating over α

30

6.3 Performance

When evaluating the simplification we look at the relative number of points that remain in the puzzle
with respect to the original drawing. In this we identify two different aspects, puzzle points, which
are the points on which links are placed, and pre-drawn line length, this is the part of the puzzle that
is pre-drawn from the input drawing. This is an important factor in the quality of the puzzle. We
want to minimize this as much as possible, since this can easily give away the solution of an unsolved
puzzle. Also we look at the length of the simplification with respect to the original drawing. We want
to maximize this value, since we want the solved puzzle to look as much as possible to the input.

6.3.1 Puzzle points and pre-drawn length

The charts for the number of puzzle points, in figure 10, are the average percentages of puzzle points
with respect to the input. The pre-drawn length, in figure 11, is the percentage of the input drawing
that is pre-drawn in the puzzle. When we look at ε we see a very steep initial decline in the length of
pre-drawn lines and a steady decline in puzzle points. A low ε will result in short distances between
points and therefore a lot of puzzle points have to be placed or lines have to be pre-drawn. However
the length of pre-drawn lines steadily rises again at about ε = 30. After visual inspection this is caused
by certain isolated features in the drawing that are formed by cycles, for example the eyes. When
ε is large enough, that is larger than the diameter of the cycle, the cycle ’collapses’ and loses visual
relevance with the original feature. It is then represented by a line or a dot. We prevent this from
happening, by replacing collapsed features with the original polyline. This explains the increase in
length of pre-drawn lines.

If we look at α we see initially a very stable trend, even though the point placement differs. This
suggests that there are still enough alternatives to place a puzzle point instead of having to place a lot
of additional puzzle points or pre-draw lines. Only after α = 20◦ we see a negative impact on the length
of pre-drawn lines and number of puzzle points. Both these number continue to rise steadily. This
indicates that more puzzle points are placed closer together as well as more of the puzzle is pre-drawn.
When lines are pre-drawn, then it consumes space on which otherwise puzzle points were placed. This
explains the steeper rise of the pre-drawn lines in comparison to the puzzle points.

6.3.2 Conservation of length

We use the conservation of length as a measure to evaluate the resemblance of the puzzle to the original
drawing as shown in figure 12. With parameter ε we see a steady decline as detail is reduced. We do
see some fluctuations in the decrease at ε values higher then 30. However this can be attributed to our
observation earlier, when certain features, for example the eyes, lose visual relevance to the input and
is replaced by the input.

When we look at the influence of α on the length of the puzzle, we see the same as with point
reduction. At lower values, that is below 20◦, α mainly influences point placement and has not a large
impact on the length. However when α increases and the simplification becomes more constrained, we
see a relative steep rise in length. We would expect this to continue to rise until the resulting puzzle
is almost completely pre-drawn. From α ≥ 22.5◦ every increase has dramatic consequences for the
evaluated area of the ambiguity check and therefore constrains the possible simplification severely.

31

Figure 12: Conservation of length

(a) Iterating over ε

(b) Iterating over α

32

7 Conclusion

We explored a viable alternative to numbered connect the dots puzzles and a number of visual vari-
ations. We identified the criteria for a good puzzle and proposed an algorithm that includes these
criteria to create a puzzle that is solvable without additional tools. We implemented this algorithm
in a proof of concept of a production environment with a GUI. We evaluated our implementation on
a dataset with a wide variety of types of drawings and a range of parameters. We can conclude that
there is a range of parameters that results in solvable puzzles within our criteria while remaining a
strong resemblance to the input drawing. We can also conclude that for the default values we have
selected, the algorithm will generate a solvable puzzle for a wide range of input.

33

8 Future work

Even though we propose a complete implementation there are still areas to do relevant research con-
cerning our approach. These vary from user studies to additional theoretical research on the algorithm.
We suggest a couple of possible targets that could be studied to improve our method.

Additional heuristics could be applied during the orientation of the graph. Our goal was to minimize
the number of links placed on a point with respect to our criteria, this being the ambiguity. However
there could be cases where a higher degree would be preferable over the link placement on a different
point. For example a pre-drawn line with a point at the end, the links placed on that point are visually
less appealing then links placed on other points. This and other factors could influence the preference
to place a link on a point, even if there are other links placed on the same point. This could very well
be an optimization problem depending on the applied heuristics.

Our orientation of the graph is not the most optimum, this is partly due to our criteria. However
after the criteria are applied and some edges are oriented we still do not find the optimum solution.
This problem could be defined as orienting a partial undirected graph. A deterministic approach could
be applied to find the optimum solution with respect to our criteria. A different approach could be that
we distribute weights on the edges, depending on an aesthetical criteria. Then solve the orientation
for the lowest outbound degree based on this weight.

The simplification algorithm could still be improved and extended with additional criteria. Different
distance measures could be applied in the simplification algorithm. We still have situations that are
problematic, for example an intersection with outgoing lines with an angle lower than α. In that case
link placement is not possible and the original line will be pre-drawn. Our current algorithm only
places points on the original line, however in these cases a solution could be found outside of the
original lines.

We also observed that the optimal values for the parameters differs for each type of drawing. We
have a range of generally good values, but it could be possible to determine a best setting within this
range depending on the input. Interdistance of lines, the curviness of the drawing, scale, intersections
and crowdedness could play a role in determining these values. But in what way these factors influence
the parameter values has to be determined. Another approach would be to set the parameter values
depending on a difficulty level. This is even more complex when taking the input into account. Another
approach would be to run the algorithm with different sets of parameter values and classify the resulting
output to a certain difficulty level.

A digital variation of this puzzle could be studied. In a digital environment the interaction would
be different. With a touch screen we could drag a line from one point to another. The line could
then be matched with the link line which should make it easier to solve the puzzle, similar as a ruler
could contribute in solving the puzzle in the physical variation. This could possibly allow for lower
tolerances for the ambiguity parameter.

Further research could be done in the human experience of the puzzles. When does a point become
confusing? When does an unsolved puzzle become easily recognizable? To answer these questions a
user study should be done. For example results from different iterations over algorithmic or visual
parameters could be presented to the participant, such as link length. Then we can evaluate whether
the participant is able to recognize the object from the input and if so in which timeframe he or she is
able to do so. The results from this user study could be used to specify the set of optimal values for
the parameters.

34

References

[1] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of points required
to represent a digitized line or its caricature,” Cartographica: The International Journal for
Geographic Information and Geovisualization, vol. 10, pp. 112–122, 1973.

[2] J. Hershberger and J. Snoeyink, “Speeding up the douglas-peucker line-simplification algorithm,”
in Proc. 5th Intl. Symp. on Spatial Data Handling, pp. 134–143, 1992.

[3] U. Ramer, “An iterative procedure for the polygonal approximation of plane curves,” Computer
Graphics and Image Processing, vol. 1, no. 3, pp. 244 – 256, 1972.

[4] H. Imai and M. Iri, “Computational-geometric methods for polygonal approximations of a curve,”
Comput. Vision Graph. Image Process., vol. 36, pp. 31–41, Nov. 1986.

[5] W. S. Chan and F. Chin, “Approximation of polygonal curves with minimum number of line
segments,” in Proceedings of the Third International Symposium on Algorithms and Computation,
ISAAC ’92, (London, UK, UK), pp. 378–387, Springer-Verlag, 1992.

[6] M. de Berg, M. van Kreveld, and Schirra, “S.: A new approach to subdivision simplification,” in
In: Twelfth International Symposium on Computer Assisted Cartography, pp. 79–88, 1995.

[7] M. Visvalingam and J. D. Whyatt, “Line generalisation by repeated elimination of points,” The
Cartographic Journal, no. 30, pp. 46–51, 1993.

[8] M. Burch, C. Vehlow, N. Konevtsova, and D. Weiskopf, “Evaluating partially drawn links for
directed graph edges,” in Graph Drawing (M. Kreveld and B. Speckmann, eds.), vol. 7034 of
Lecture Notes in Computer Science, pp. 226–237, Springer Berlin Heidelberg, 2012.

[9] T. Bruckdorfer, S. Cornelsen, C. Gutwenger, M. Kaufmann, F. Montecchiani, M. Nllenburg, and
A. Wolff, “Progress on partial edge drawings,” in Graph Drawing (W. Didimo and M. Patrignani,
eds.), vol. 7704 of Lecture Notes in Computer Science, pp. 67–78, Springer Berlin Heidelberg,
2013.

[10] M. Chrobak and D. Eppstein, “Planar orientations with low out-degree and compaction of adja-
cency matrices,” Theor. Comput. Sci., vol. 86, no. 2, pp. 243–266, 1991.

[11] Y. Asahiro, E. Miyano, H. Ono, and K. Zenmyo, “Graph orientation algorithms to minimize the
maximum outdegree,” in Proceedings of the 12th Computing: The Australasian Theroy Symposium
- Volume 51, CATS ’06, (Darlinghurst, Australia, Australia), pp. 11–20, Australian Computer
Society, Inc., 2006.

[12] H. Imai and M. Iri, “Polygonal approximations of a curve—formulations and algorithms,” 1988.

[13] P. K. Agarwal and J. Erickson, “Geometric range searching and its relatives,” in Advances in
Discrete and Computational Geometry, 1999.

[14] B. Chazelle, L. J. Guibas, and D. T. Lee, “The power of geometric duality,” BIT, vol. 25, pp. 76–
90, June 1985.

[15] M. Overmars, The Design of Dynamic Data Structures. Lecture Notes in Computer Science,
Springer, 1983.

35

A Impact of input parameters

Left to right α and top to bottom ε

36

37

B Visual variations

Symmetric

38

Pointwise

39

C Data set

Input drawings

40

D Generated puzzles

Drawing0number Points Length Degree Puzzle0points Detail0points Degree Length Predrawn0length

1 1798 10507.2892 3 65 0 2 10331.371 0

2 1576 8399.2462 4 81 137 2 8254.4534 451.7616

3 2398 13024.1583 3 103 0 2 12756.0977 0

4 1951 8671.5475 3 84 362 2 8465.613 298.8972

5 1599 9011.9212 3 59 0 2 8796.6859 0

6 1398 7468.4429 3 45 32 2 7328.0893 91.4347

7 1123 5956.1985 3 42 0 2 5776.6106 0

8 2155 10819.0164 4 113 24 2 10522.2396 84.8388

9 1733 8271.5718 3 61 17 2 8070.5268 40.7191

10 2788 14255.3803 3 108 8 2 13774.6797 44.7035

11 2305 9681.3258 3 123 0 2 8860.1345 0

12 1764 9207.452 3 74 15 2 9029.9206 74.7723

13 1191 9444.6653 3 82 61 2 9325.0937 371.9483

14 3733 18197.7939 2 174 24 2 17113.3195 78.5602

15 2664 13031.419 3 126 4 2 12495.7883 18.764

16 2852 14947.2466 3 111 19 2 14626.8052 102.4524

17 2072 10232.4094 3 108 248 2 9721.6736 558.8031

18 2048 11504.2221 4 82 8 2 11313.4308 24.1098

19 963 7807.7873 3 79 64 2 7653.1226 396.5878

20 2072 12291.4777 4 97 2 2 12037.4406 17.6676

Input Generated0puzzle,0default0α(10)0and0ε(15)

Input properties and output at default values

41

Puzzle 1, ε = 15, α = 10

42

Puzzle 2, ε = 15, α = 15

43

Puzzle 3, ε = 15, α = 10

44

Puzzle 4, ε = 15, α = 25

45

Puzzle 5, ε = 15, α = 10

46

Puzzle 6, ε = 15, α = 10

47

Puzzle 7, ε = 15, α = 10

48

Puzzle 8, ε = 15, α = 10

49

Puzzle 9, ε = 15, α = 20

50

Puzzle 10, ε = 15, α = 10

51

Puzzle 11, ε = 15, α = 10

52

Puzzle 12, ε = 15, α = 10

53

Puzzle 13, ε = 15, α = 10

54

Puzzle 14, ε = 15, α = 10

55

Puzzle 15, ε = 15, α = 20

56

Puzzle 16, ε = 15, α = 15

57

Puzzle 17, ε = 15, α = 10

58

Puzzle 18, ε = 15, α = 15

59

Puzzle 19, ε = 15, α = 10

60

Puzzle 20, ε = 15, α = 10

61

	Puzzle design
	Traditional line puzzles
	Puzzle idea and applications
	Criteria
	Specific criteria
	Goals

	Related work and literature
	Line simplification
	Partially drawn graphs
	Graph orientation

	Algorithm design
	Subdivide graph
	Line simplification
	Heuristics
	Orient graph

	Algorithms
	Subdivide graph
	Line simplification
	Dijkstra, shortest path
	Evaluation

	Implementation
	Data structure
	Loading and saving data
	Calculations
	Algorithm
	Interface, editor

	Experiment
	Setup
	Puzzle observations
	Performance

	Conclusion
	Future work
	Impact of input parameters
	Visual variations
	Data set
	Generated puzzles

