
Master thesis

Arithmetical conservativity
results, a theory of operations

and Goodman’s theorem

Author:
Lotte van Slooten

Supervisor:
Benno van den Berg

UU supervisor:
Jaap van Oosten

UU second reader:
Albert Visser

May 28, 2014

1

Abstract

We present a new theory of operations HAPε and show that it is a conservative
extension of Heyting Arithmetic. An important property of HAPε is that in
this system all arithmetical formulas are self-realising. This will allow us to
give a new proof of Goodman’s theorem. Our proof of Goodman’s theorem
uses the proof interpretations realizability and forcing and is inspired by the
work of Michael Beeson [?] and Gerard Renardel de Lavalette [?]. In contrast
to their proofs, we broke up the proof of Goodman’s theorem into four steps,
making sure we only use one proof interpretation at the time. This makes each
step easier to understand.

Contents

2

Introduction

This thesis is about conservativity results for some constructive systems. We
will explain these notions below.

Conservativity results and Proof interpretations

In logic if one asks the question: Is φ valid?, a natural response would be: In
which theory or system do you want to know this? Suppose one comes up
with the answer φ is valid in a theory T . A next question would be: But is it
also valid in another theory T1? This way a study arises of comparing logical
systems. If a system T proves the same formulas as system T1 we say that T
is conservative over T1. A formal definition is the following.

Definition 1. Let T1 be a theory in the language L1, T2 a theory in the language
L2 and L ⊆ L1 ∩ L2. Then T1 is L-conservative over T2 if for all formulas φ
in the language L the following holds: T1 ` φ⇒ T2 ` φ.

If it is proven that T1 ⊃ T2 is L-conservative over T2, we get extra axioms
from T1 to come up with interesting results about L-formulas in T2. So we
would have extra tools to prove the same things; the lengths of proofs might
become shorter and we might come up with results we did not come up with
when we had just our system T2.

A neat way to prove these conservativity results is with a proof interpreta-
tion

Definition 2 (Proof interpretation). A proof interpretation consists of a trans-
formation ()∗ with the two properties listed below. The transformation sends
an L1-formula A to an L2-formula A∗ and the two properties are the following:

1. T1 ` φ⇒ T2 ` φ∗ for all L1-formulas φ

2. T2 ` φ↔ φ∗ for all L-formulas φ

In this thesis these steps will be proven several times.

Constructive systems and Goodman’s theorem

In this thesis we will be talking about constructive systems. In order to get a
feeling for constructivism, we will first explain what the ideas behind construc-
tivism are.

INTRODUCTION 4

In constructivism there are many different ’schools’. A basic idea they all
agree on is that a statement is true if we have a proof for it and false if we
can show that the assumption that there is a proof for the statement leads to
a contradiction. Thus for an arbitrary statement we can not say if it is either
true or false. In order to get a better feeling for this concept we will get into
constructivsm a bit more.

For a constructivist the meaning a formula has is different than for most
people, especially when we are talking about ∃x.A(X) or A∨B. Constructively
these statements should be read as ’we can construct an x such that A(x)’ and
’we can decide between A and B’. Constructivists are not satisfied knowing
that somewhere there is an x, but they really want to know which one.

In general we can ask which objects exist as contructions. Natural numbers
are usually viewed as unproblematic and are used by constructivists. Classically
one can define a natural number like this

n =

{
1 if A holds
2 otherwise

In this definition, A might be a statement which has neither been proved nor
refuted. Constructively this is unacceptable as the description of a natural
number, since we can not identify n until the truth of A has been decided.

One school in constructive mathematics is intuitionism, which is the ap-
proach in the spirit of Brouwer and Heyting. Formally, intuitionistic logic is a
restriction of classical logic in which the law of excluded middle (A ∨ ¬A) and
double negation eliminination (¬¬A→ A) are not admitted as axioms. Espe-
cially for the law of excluded middle, it makes sence that it is not an axiom
in intuitionism, since in general we can not always decide whether A is true or
refutable.

A basic example of a formal system based on intuitionistic logic is Heyting
Arithmetic:

The system Heyting Arithmetic (HA). Heyting Arithmetic is an axiom-
atization of arithmetic in accordance with the philosophy of intuitionism. Our
definition of HA comes from [?]. The language L(HA) contains the constant
0, a unary function symbol S, function symbols for all primitive recursive func-
tions and the relation symbol ′ =′. The logical basis will be intuitionistic
predicate logic with equality.

Terms:
i) The constants and variables.
ii) If t, t′ are terms then so is St, t+ t′ and t · t′.

Formulas:
i) The atomic formulas are expressions of the form t1 = t2 , where t1, t2 are
terms.
ii) Formulas are built from other formulas with the logical operators→,∧,∨,∀x,∃x.

INTRODUCTION 5

Axioms:
The axioms of the logical basis, intuitionistic predicate logic are

(A ∧B) → A, (A ∧B) → B,

A→ (B → (A ∧B)),
A→ (A ∨B), B → (A ∨B),
(A→ C) → ((B → C) → ((A ∨B) → C)),
A→ (B → A),
(A→ (B → C)) → ((A→ B) → (A→ C)),
∀x(B → A) → (B → ∀x.A) (x 6∈ FV (B)),
∀x.A→ A(t/x),
∀x(A→ B) → (∃x.A→ B) (x 6∈ FV (B)),
A(t/x) → ∃x.A,
⊥ → A.

And we have the modus ponens rule.
As equality axioms we get

x = x, x = y → y = x, x = y ∧ y = z → x = z.

The defining equations for all primitive recursive functions, such as

x+ 0 = x,

x+ Sy = S(x+ y),
x · 0 = 0,
x · Sy = x · y + x.

Finally we have axioms defining the successor and induction

(Sx = Sy) → (x = y),
¬0 = Sx,

(A(0) ∧ ∀x (A(x) → A(Sx))) → ∀y A(y).

Here ⊥ := (0 = S0) and ¬A := A→ ⊥.

Definition 3. A is a arithmetical sentence if A ∈ L(HA)

In HA we speak of primitive recursive functions, here we give the precise
definition of these functions.

Definition 4. The class of primitive recursive functions is generated by the
following clauses

1. 0 is a 0-ary primitive recursive function

2. Z = λx.0 is a primitive recursive function

INTRODUCTION 6

3. S = λx.x+ 1 is a primitive recursive function

4. Πki = λx1, . . . , xk.xi (for 1 ≤ i ≤ k) are primitive recursive

5. the primitive recursive functions are closed under composition and defi-
nition by primitive recursion

These primitive recursive functions are computable functions. Later on we
will need an application in HA. To be able to work with an application we will
define the relation T by

T (e, ~x, y) holds if and only if e is the code of a program and y is the code for
a terminating computation with P and input ~x.

There is a primitive recursive function U which extracts the result from the
code for a terminating computation (U(y)). As an application we will use the
notation of the kleene-brackets {e}(x), this is the output of the program with
code e and input x, if defined.

An extension of HA we will use in this thesis is the typed system HAω:

The system HAω. The language L(HAω) contains an unary function sym-
bol S, the relation symbols =σ for all types σ, an application operator Apσ,τ

and the constants 0, pσ,τ , pσ,τ
0 , pσ,τ

1 , kσ,τ , sρ,σ,τ , rσ. Apσ,τ (t, t′) will just be
written as tt′.

Terms:
i) The constants and variables of type σ are terms of type σ.
ii) If t is a term of type 0, then so is St.
iii) If t is a term of type σ → τ and t′ a term of type σ then Apσ→τ,σ(t, t′) is a
term of type τ .

Formulas:
i) The atomic formulas are expressions of the form t1 =σ t2, where t1, t2 are
terms of type σ.
ii) Formulas are built from other formulas with the logical operators→,∧,∨,∀xσ,∃xσ.

We have the same axioms for the logical basis and equality as in HA, but
also some additional axioms for equality

y = z → xy = xz,

x = y → xz = yz.

INTRODUCTION 7

The axioms defining the constants are

p0(pxy) = x,

p1(pxy) = y,

p(p0z)(p1z) = z,

kxy = x,

sxyz = xz(yz),
rxy0 = y,

rxy(Sz) = x@z@(rxyz).

Finally we have the arithmetical axioms

(Sx = Sy) → (x = y),
¬0 = Sx,

(A(0) ∧ ∀x (A(x) → A(Sx))) → ∀y A(y).

There are two variants of HAω, the extension with the intensionality axiom
I or with the extensionality axiom E.

I :eσxy = 0 ∨ eσxy = 1, here e is an equality functional
eσxy = 0 ↔ x =σ y

E :∀yσ→τ , zσ→τ (∀xσ(yx =τ zx) → y =σ→τ z)

We write I-HAω for HAω together with the axiom I and E-HAω for HAω

together with the axiom E. The last common axiom we will use in this thesis
is the axiom of choice (AC).

AC : ∀xσ∃yτA(x, y) → ∃fσ→τ∀xσA(x, f(x))

Now we have the needed information to get into Goodman’s theorem. In
1976 Nicholas Goodman published a paper [?] in which he proved a theorem
which would later be known as Goodman’s theorem.

Theorem 1 (Goodman’s theorem). HAω +AC is HA-conservative over HA.

The theorem itself sparked interest with the people who work with con-
structive mathematics and some tried to make better or clearer ways to prove
this theorem. The proof interpretations forcing and realizability became the
key-methods to prove Goodman’s theorem. Studying these proofs and proof in-
terpretations we introduced our own system HAPε which is conservative over
HA and is self-realising for all arithmetical formulas. In this thesis we will
write ”conservative” instead of ”HA-conservative” for convenience. When we
look at the definition of a proof interpretation we see that in this thesis L will
be L(HA), since we will prove the conservativity results for all arithmetical
formulas.

Literature

Over the years Nicholas Goodman and several other people worked on Good-
man’s theorem. Here will be given a brief overview of there work, for a more
detailed discussion and comparison to our work see chapter ??.

INTRODUCTION 8

It all started of course with Nicholas Goodman himself, he introduced his
theorem and wrote two papers [?, ?] in which he proved his theorem in two
different ways. His first proof [?] was based on the interpretation of HAω in his
arithmetical theory of constructions. In his second paper [?] he used the more
modern techniques realizability and forcing, which were used by other people as
well to prove his theorem, we will mention their papers below. In Goodman’s
paper, forcing and realizability were both part of one proof interpretation, he
called it relativised realizability.

After that, Micheal Beeson came with an article [?] in 1979 on the subject
and a book [?] in 1985 in which again he proved Goodman’s theorem. From
Beeson’s work we got most inspiration for our own work in this thesis. Beeson
gave mostly an outline on how he wanted to prove this theorem and let the
details up to the reader, focussing only on one or two parts. He did use realiz-
ability and forcing as two techniques instead of one, but he still used forcing to
prove a result about realizers. Our goal in this thesis will be to really separate
them.

In 1990 Gerard Renardel de Lavalette published a paper [?] on the subject.
The first part of his proof has the same ideas as Beeson’s proof. In the second
part he moved away from the direct approach which was used so far, but used
an interpretation in a modal theory with modal logic to finish his proof instead.

In 2012 Thierry Coquand published a paper [?] with as a goal to clarify
the proofs which were presented so far. He did this by proving the theorem
for a specific arithmetical formula. He made the proof almost as an algorithm,
which made some of the steps more clear.

The last paper we want to mention is a paper of Ulrich Kohlenbach [?], in
which he did not prove a conservativity result. On the contrary, he proved that
(E-)HAω + ACar is not conservative over HA , where (E-)HAω is (E-)HAω

with induction restricted to quantifier-free induction and HA is HA with
induction restricted to quantifier-free induction. Quantifier-free induction is
induction over a quantifier free formula A. ACar is the axiom of choice with
all the quantifiers restricted to type 0. He proved this by building a specific
arithmetical formula A such that (E-)HAω + ACar ` A and HA 0 A.

This thesis

In this thesis we will prove that (E-)HAω + AC and (I-)HAω + AC are con-
servative over HA. We will prove this by introducing the new systems HAP
and HAPε. HAPε has the interesting properties that every arithmetical for-
mula is self-realising and that HAPε is conservative over HA. We will prove
these properties in chapter 4 and 5.

With these extra systems we are able to break the proof of Goodman’s
theorem up in four parts. In every step we use a different proof interpretation.
We will use the Kleene brackets, realizability, forcing, and we will change the
application. For example, with forcing we will construct approximations to an
oracle function which can answer our constructive questions. Since every step
is a separate proof we will never use two proof interpretations at the same time.
This makes our proof of Goodman’s theorem a lot easier to understand.

Chapter 1

Formal systems

In this section we will introduce two formal logical systems. A logical system
starts with a language L consisting of constants, function symbols, and relation
symbols. From that language we can make terms, and formulas. These are the
things we will work with. Then in the end we get a number of axioms from
which we can determine whether a formula is valid in this system or not.

1.1 The system HAP

We will start with a system HAP, which is quite similar to APP.
APP is a type-free system with a partial application and a predicate N .

A partial application is a partial binary function, which we call an application.
This predicate N says whether x is a natural number or not. APP has as
constants zero, the successor, the predecessor, pairing and unpairing opera-
tors, constants for the combinators and the numerical definition by cases. The
system is based on logic with partial terms with equality. (See [?] for a better
description.)

We can see that APP has a lot of similarities with HAω. The main differ-
ence is that HAω is typed and that the operation of APP is partial, where in
HAω Apσ,τ (t, t′) is always defined if t is a term of type σ → τ and t′ a term of
type σ. The smaller differences are that HAω does not have a predecessor or
a predicate N , has a recursor instead of a constant for the numerical definition
by cases and is based on intuitionistic predicate logic with equality.

Just like APP, HAP is a type-free system with a partial application. The
first difference is that in HAP we do not have this predicate N , but everything
is a natural number. This is why we need a ’new’ successor constant Succ. The
second difference is that HAP is based on intuitionistic predicate logic with
equality, just like HA and HAω. We have chosen for this logical basis for
HAP, since the proofs in this thesis will work better with the axioms of HAP
similar to the axioms of HA. The language L(HAP) contains a unary function
symbol S (the successor), a ternary relation symbol hap and the binary relation
symbol ′ =′. Furthermore it contains the following constants, 0, Succ, p, p0,
p1, k, s, d.

In appendix ?? we explain how to use a binary partial function symbol @
instead of the ternary relation symbol hap. In order to do that we have to

9

CHAPTER 1. FORMAL SYSTEMS 10

figure out how we work with things like t@t′, which formally are not terms.
We call these things we want to work with semiterms. In the appendix we give
a formal definition for these semiterms and how we can work with them, but
basically they are the terms of L(HAP)∪@, and we work with @ as if it were
a binary function symbol. So we have x@y = z → hap(x, y, z). Note that the
operation @ does not need to be associative. To reduce the amount of brackets,
we use the convention of association to the left: we write a@b@c, instead of
(a@b)@c.

The symbol ↓ is used below. This symbol can be read as ’is defined’. The
definition is t@t′ ↓:= ∃z(t@t′ = z), with t, t′ terms.

Terms:
i) The constants and variables.
ii) If t is a term then so are St.

Formulas:
i) The atomic formulas are expressions of the form t1 = t2 or hap(t1, t2, t3),
where t1, t2, t3 are terms.
ii) Formulas are built from other formulas with the logical operators→,∧,∨,∀x,∃x.

Axioms:
The axioms of the logical basis are the same as for HA, but with some addi-
tional axioms for equality

y = z → x@y = x@z,
x = y → x@z = y@z.

The axioms defining the constants are

Succ@x = Sx

p0@x↓, p0@(p@x@y) = x,

p1@x↓, p1@(p@x@y) = y,

p@x@y↓, p@(p0@z)@(p1@z) = z,

k@x↓, k@x@y = x,

s@x@y↓, s@x@y@z = x@z@(y@z),
t 6= t′ → d@t1@t2@t@t′ = t1 ∧ d@t1@t2@t@t = t2,

hap(x, y, z) ∧ hap(x, y, z′) → z = z′.

Finally we have the arithmetical axioms

(Sx = Sy) → (x = y),
IND: A(0) ∧ ∀x (A(x) → A(Sx) → ∀y A(y).

CHAPTER 1. FORMAL SYSTEMS 11

The combinators k, s permit us to have λ-abstraction defined by induction
on the construction of semiterms. We do this similar to how it was done in [?]
for HAω.

λx.t := k@t if x 6∈ FV (t),
λx.x := s@k@k,

λx.t@x := t if x 6∈ FV (t),
λx.t@t′ := s@(λx.t)@(λx.t′) if x ∈ FV (t) or x ∈ FV (t′) and t′ 6= x,

λx.St := λx.Succ@t.

For this definition, t[x] is any term of HAP and x is free in t, then the following
holds.

(λx.t(x))(t′) = t(t′), λx.(t@x) = t if x 6∈ FV (t),
x 6∈ FV (t′) ∪ FV (t′′) ⇒ t′ = t′′ → λx.t(y/t′) = λx.t(y/t′′).

1.1.1 HAPε

The system HAPε is the system HAP extended with a constant ε. The
constant ε will act as an oracle to give answers to the following constructive
questions; If ∃x.A(x) and B∨D are valid, then for which x is A(x) valid and is
B or D valid. To make ε work as an oracle the following two axioms are added
to the system HAPε for arithmetical formulas B,D:

∃x.B(x, y) → (ε@p∃x.B(x, z)q@y↓ ∧B(ε@p∃x.B(x, z)q@y, y),

B(y) ∨D(y)) →
(
ε@pB(z) ∨D(z)q@y↓

∧ ((ε@pB(z) ∨D(z)q@y = 0 ∧B(y)) ∨ (ε@pB(z) ∨D(z)q = 1 ∧D(y)))
)
.

Here pAq codes A, by asigning to A its Gödel number. A Gödel numbering is
a function which assigns to each formula a unique natural number, its Gödel
number. So basically it is an encoding which allows ε to interact with it.

1.2 Properties of HAP

To get some interesting results we need to get to know our system HAP a
bit better. That is what this chapter is for, we will prove that there are fixed
point operators and a primitive recursor operator, to come to the conclusion
that there is recursion in our system HAP. In [?], and [?] similar results have
been shown for APP and PCA’s.

Proposition 1.2.1. There are semiterms g, h ∈ L(HAP), called fixed point
operators, such that for all semiterms x:

1. (g@x↓↔ x@(g@x)↓) ∧ (g@x↓→ g@x = x@(g@x)

CHAPTER 1. FORMAL SYSTEMS 12

2. h@x↓ and for all y, h@x@y = x@(h@x)@y

Proof. Let a = λz.x@(z@z), b = λcy.x@(c@c)@y, g = λx.a@a, h = λx.b@b.
Then:
g@x = a@a, x@(g@x) = x@(a@a). So g@x↓ ∧x@(g@x)↓
g@x = a@a = x@(a@a) = x@(g@x)
h@x = b@b. So h@x↓
h@x@y = x@(b@b)@y = x@(h@x)@y

Proposition 1.2.2. In HAP there is a semiterm rec such that for all x, y, z

rec@x@y@0 = y,

rec@x@y@(Sz) = x@z@(rec@x@y@z).

Proof. Use the fixed point operator h, then we can take h@ρ for rec@x@y such
that

ρ@f@0 = y, ρ@f@(Sz) = x@z@(f@z).

Then we have

h@ρ@0 = ρ@(h@ρ)@0 = y, h@ρ@z = ρ@(h@ρ)@(Sz) = x@z@(h@ρ@z)0.

So put
ρ := λf, z.d@(k@y)(λu.x@(Pu)@(f@(Pu)))@z@0@z,

rec := λx, y.h@ρ.

If we fill everything in we get:

rec@x@y@0 = h@ρ@0 = ρ@(h@ρ)@0
= d@(k@y)(λu.x@u@(h@ρ@u))@0@0@0 = k@y@0 = y

And for Sz

rec@x@y@Sz = h@ρ@0 = ρ@(h@ρ)@0
= d@(k@y)(λu.x@u@(h@ρ@u))@Sz@0@Sz
= (λu.x@u@(h@ρ@u))@Sz
= x@z@(h@ρ@z) = x@z@(rec@x@y@z)

Note that the P mentioned in this proof is the predecessor which can be
recursively defined from S.

Px =

{
0 if x = 0
z if x = Sz

Proposition 1.2.3 (Basic functions in HAP). There are semiterms in L(HAP)
for the basic partial recursive functions:

• 0, a 0-ary function,

CHAPTER 1. FORMAL SYSTEMS 13

• the zero function Z(x) = 0,

• the successor function S(x) = x+ 1,

• the projection functions Πn
i (x1, . . . , xn) = xi (for 1 ≤ i ≤ n).

Proof. The semiterms are

• 0 is the constant 0,

• Z = λx.0,

• S = λx.x+ 1,

• Πn
i = λx1, . . . , xn.xi.

With these three propositions we have the needed tools to come to the
interesting result that there is recursion in our system HAP. This means
that for every partial recursive function there is an combinator in HAP which
represents this function.

Theorem 1.2.4 (Recursion in HAP). In L(HAP), we can make for every
partial recursive function f a semiterm af such that ∀x1, . . . , xn ∈ N
af@x1@, . . . ,@xn ↓ if and only if f(x1 . . . , xn) ↓ and are equal if this is the
case.

Proof. A partial recursive function f is constructed from the basic functions
using primitive recursion, minimalization and composition. Such an af can be
constructed using the previous propositions.

The recursor rec can be used to define af for an f which is defined by primitive
recursion.

If f and g are partial recursive and there are af , ag ∈ HAP then af(g) =
λx.af@(ag@x) works for composition.

The last thing to check is minimalization. The formula g = µy.(f(y) = 0)
is said to be defined from f by minimalization. So if we have af , we must be
able to make ag. Let h be the fixed point operator. Then we need to define
ãg such that ãg = λy.d@(ag@Sy)@y@(af@y)@0 and ag = ãg@0. Then the
following would happen

ãg@0 =

{
0 if f(0) = 0
ãg@1 otherwise

ãg@1 =

{
1 if f(1) = 0
ãg@2 otherwise

...

CHAPTER 1. FORMAL SYSTEMS 14

So if we are able to define ãg in this way, this ag works for minimalization.
Define ãg := h@σ and σ := λb, c.d@(b@Sc)@c@(af@c)@0. Then we get

ãg@y = h@σ@y
= σ@(h@σ)@y
= d@((h@σ)@Sy)@y@(af@y)@0
= d@(ãg@Sy)@y@(af@y)@0

This means that every partial recursive function is represented by an ele-
ment of L(HAP).

Chapter 2

HAPε is conservative over
HAP

In this chapter we will prove that the system HAPε is conservative over HAP.
In order to do that we will introduce another system HAPE and a proof
interpretation called forcing. Then we will prove that HAPε is conservative
over HAPE and that HAPE is conservative over HAP.

2.1 HAPE

The system HAPE is the system HAP extended with a ternary relation sym-
bol E. We add the axiom E(x, y, z) ∧ E(x, y, z′) → z = z′. With this axiom,
we can use E as a binary partial function symbol, like we did for the relation
symbol hap and the function symbol @. The system HAPE is also extended
with the following two axioms for all arithmetical formulas B,D:

∃x.B(x, y) → (E(p∃x.B(x, z)q, y)↓ ∧B(E(p∃x.B(x, z)q, y), y)

(B(y) ∨D(y)) → (E(pB(z) ∨D(z)q, y)↓
∧ (E(pB(z) ∨D(z)q, y) = 0 ∧B(y) ∨ E(pB(z) ∨D(z)q) = 1 ∧D(y))

2.2 Forcing

Forcing was introduced by Cohen in the sixties [?] for proving consistency and
independence results in set theory. Later it was modified to a method which
is really useful in recursion theory and logic. With this method we try to
build conditions with a relation to a sentence in the language we are working
in. Intuitively our conditions are approximations to some object, later called
E. So if p and q are conditions and p is stronger then q, then p agrees with
everything q is saying about our object but also has some new information.

We have HAPE for a partial function symbol E. Now we want to associate
to each formula A of HAPE a formula p f A of HAP. The forcing conditions
will be in a set C with an ordering (C,⊂). The forcing conditions will be finite
partial functions p, q. Here we use q ⊂ p as q extends p. This means that q is

15

CHAPTER 2. HAPε IS CONSERVATIVE OVER HAP 16

defined wherever p is, and agrees with q on the domain of p, but q may have a
bigger domain. We use p, q, s, t as variables ranging over C.

First we have to formalise these notations because at the moment p, q,
and the notation ⊂ are not part of L(HAP). These forcing conditions can be
coded as sequences such that we can work with them as finite partial functions.
q : N× N −→ N.

By theorem ??, all partial recursive functions can be represented by ap-
propriate conbinators in HAP. So we in particular there are combinators in
HAP who represent the needed operations to code sequences.

We will need a primitive recursive bijection j : N×N −→ N with primitive
recursive projection functions j1, j2, such that:

j1j(x, y) = x, j2j(x, y) = y, j(j1z, j2z) = z.

From these j, j1, j2 we can construct a coding of sequences.⋃
n≥0

Nn −→ N

(x1, . . . , xn) 7−→< x1, . . . , xn >

With this coding of sequences the following functions are primitive recursive
as well.

lh(σ) the length function, such that

{
lh <>= 0
lh < x1, . . . , xn >= n+ 1,

σ ∗ τ the concatenation function, such that
< x0, . . . , xi > ∗ < xi+1, . . . , xi+j >=< x0, . . . , xi+j >,

(σ)i the decoding function, such that

(< x0, . . . , xn >)i =

{
xi if i < n+ 1
undefined otherwise .

Now a finite partial function N × N −→ N can be taken to be a coded
sequance σ.

σ codes the function n,m 7−→ (σ)j(m,n). So if we are working with a forcing
condition q, q(m,n) means (q)j(m,n)

Now the last thing to define is q ⊂ p

q ⊂ p := p(m,n)↓→ (q(m,n)↓ ∧ q(m,n) = p(m,n)).

With these operations and definitions in HAP we can work with our forcing
conditions as finite partial functions. With that stated, we are ready to define
the proof interpretation forcing.

CHAPTER 2. HAPε IS CONSERVATIVE OVER HAP 17

Definition 2.2.1.

p f A is A if A is atomic and E is not a part of A ,

p f E(x, y, z) is (x, y) ∈ dom(p) ∧ p(x, y) = z,

p f A→ B is ∀q ⊂ p(q f A→ ∃s ⊂ q s f B),
p f A ∧B is p f A ∧ p f B,

p f A ∨B is p f A ∨ p f B,

p f ∀xA(x) is ∀x∀q ⊂ p∃s ⊂ q s f A(x),
p f ∃xA(x) is ∃x p f A(x).

p f A can be read as p forces A. The definition is arranged such that the
monotonicity property holds

p ⊂ q ∧ q f A→ p f A.

Remark that the formula saying that E is total, ∀x, yE(x, y) ↓, will be forced
if and only if ∀x, y∀q ⊂ p∃s ⊂ q.s(x, y) ↓. We can not guarantee this for all
the forcing conditions q, we will need to prove that HAPE is conservative over
HAP. So E must be partial.

We will now prove a basic result of HAP about forcing which we will later
use in some other results.

Lemma 2.2.2. If A is arithmetic, then HAP ` (∀p∃q ⊂ p.q f A) ↔ A.

Proof. We shall prove the lemma by induction on the complexity of A. Note
that A is arithmetic, so E does not occur in A.
A is atomic;

HAP ` ∀p∃q ⊂ p.q f A

↔ ∀p∃q ⊂ p.A

↔ A

A is B → C;

HAP ` ∀p∃q ⊂ p.q f A

→ ∀p∃q ⊂ p∀s ⊂ q(s f B → ∃t ⊂ s.t f C)
→ ∀p∃s ⊂ p(s f B → ∃t ⊂ s.t f C)
→ B → C by the induction hypothesis

HAP ` B → C

→ (∀p∃q ⊂ p.q f B → ∀s∃t ⊂ s.t f C)
→ ∀p∃q ⊂ p∀v ⊂ q(v f B → ∃t ⊂ v.t f C) by monotonicity
→ ∀p∃q ⊂ p.q f B → C by the induction hypothesis

A is B ∧ C;

HAP ` ∀p∃q ⊂ p.q f A

↔ ∀p∃q ⊂ p.q f B ∧ ∀p∃q ⊂ p.q f C

↔ B ∧ C by the induction hypothesis

CHAPTER 2. HAPε IS CONSERVATIVE OVER HAP 18

A is B ∨ C;

HAP ` ∀p∃q ⊂ p.q f A

↔ ∀p∃q ⊂ p.q f B ∨ ∀p∃q ⊂ p.q f C

↔ B ∨ C by the induction hypothesis

A is ∀xB(x);

HAP ` ∀p∃q ⊂ p.q f A

→ ∀p∃q ⊂ p∀x∀s ⊂ q∃t ⊂ s.t f B(x)
→ ∀x∀s∃t ⊂ s.t f B(x)
→ ∀x.B(x) by the induction hypothesis

HAP ` ∀x.B(x)
→ ∀x∀p∃q ⊂ p.q f B(x)
→ ∀s∃t ⊂ s∀x∀p ⊂ t∃q ⊂ p.q f B(x) we restricted p to p ⊂ t

→ ∀s∃t ⊂ s.t f ∀x.B(x)

A is ∃xB(x);

HAP ` ∀p∃q ⊂ p.q f A

↔ ∀p∃q ⊂ p∃x.q f B(x)
↔ ∃xB(x) by the induction hypothesis

2.3 HAPE is conservative over HAP

In this chapter we will prove that HAPE is conservative over HAP. In order
to do that we will need te use forcing, which we introduced above. We will
use forcing to get partial functions which are approximations of E. By making
better approximations we can force the ’oracle’ axioms which were added to
HAP and then we will be able to prove that HAPE is conservative over HAP.

Theorem 2.3.1. HAPE is conservative over HAP

Proof. If HAPE ` A, then in the proof of HAPE ` A we need only a finite
amount of instances of the extra axioms of HAPE . Namely for a finite amount
of arithmetical formulas. Let us call γ a finite collection of instances of the
extra axioms of HAPE . Then it suffices to prove that HAP−

E = HAP + γ +
E(x, y, z) ∧ E(x, y, z′) → z = z′ is conservative over HAP. We need to work
with HAP−

E instead of HAPE , because of how we want to define the forcing
conditions. In the definition of the forcing conditions we will quantify over
the arithmetical formulas for which there are instances of the extra axioms in
γ. If we were still working in HAPE we would have to quantify over all the
arithmetical formula in order to define the forcing conditions. THhis is not
possible in HAP, so that would not work. Let us now turn to the familiar
steps of the proof.

1. HAP−
E ` A⇒ HAP ` ∀p∃q ⊂ p.q f A for all HAPE-formulas A.

CHAPTER 2. HAPε IS CONSERVATIVE OVER HAP 19

2. HAP ` ∀p∃q ⊂ p.q f A↔ A for all arithmetical formulas A.

Note that we proved part two in lemma ??. To prove step one, we have to
check this for all the axioms of HAP−

E . Let us check the interesting axioms
first, the axioms which were added to HAP.

In order to prove that the axioms of γ are forced, we first have to define
the forcing conditions C. Let C consist of all partial functions q with finite
domain, with the following conditions. We do not have these conditions for
all arithmetical formulas, just for the arithmetical formulas for which there are
instances of the extra axioms in γ.

1) (∃x.B(x, y) ∧ q(p∃x.B(x, z)q, y)↓) → B(q(p∃x.B(x, z)q, y), y)

2) (B(y) ∨ D(y) ∧ q(pB(z) ∨ D(z)q, y) ↓) → (q(pB(z) ∨ D(z)q, y) = 0 ∧
B(y) ∨ q(pB(z) ∨D(z)q, y) = 1 ∧D(y))

Now it becomes clear what was meant by approximations of E. The forcing
conditions work just like E, as an oracle, but only when they are defined. E
on the other end is defined if it needs to work as an oracle.

First look at the axiom (∃x.B(x, y)∧q(p∃x.B(x, z)q, y)↓) → B(q(p∃x.B(x, z)q, y), y).
Suppose ∀p∃q ⊂ p.q f ∃x.B(x, y), then we need to find an s such that

s ⊂ q.s f (E(p∃x.B(x, z)q, y)↓) ∧B(E(p∃x.B(x, z)q, y), y)

This means that we need to find an s such that it is an approximation of E
which is defined at ∃x.B(x, y), written down explicitly this gives:

s f E(p∃x.B(x, z)q, y)↓ is s(p∃x.B(x, z)q, y)↓

s f B(E(p∃x.B(x, z)q, y), y) is B(s(p∃x.B(x, z)q, y), y)

If q(p∃x.B(x, z)q, y)↓ then choose s = q. If q(p∃x.B(x, z)q, y) is undefined then
we can extend q to a forcing condition s by defining s(< ∃x.B(x, y) >, y) = x.
Then by 1) we automatically get B(s(p∃x.B(x, z)q, y), y). So s does what it is
supposed to do, and ∀p∃q ⊂ p such that q forces the axiom.

Now look at the second axiom (B(y) ∨ D(y) ∧ q(pB(z) ∨ D(z)q, y) ↓) →
(q(pB(z) ∨D(z)q, y) = 0 ∧B(y) ∨ q(pB(z) ∨D(z)q, y) = 1 ∧D(y)).
Suppose ∀p∃q ⊂ pq f B(y) ∨D(y), then we need to find an s such that

s ⊂ q.s f E(pB(z) ∨D(z)q, y)↓
∧ ((E(pB(z) ∨D(z)q, y) = 0 ∧B(y)) ∨ (E(pB(z) ∨D(z)q, y) = 1 ∧D(y)))

Which means

s f E(pB(z) ∨D(z)q, y)↓ is s(pB(z) ∨D(z)q, y)↓

s f (E(pB(z) ∨D(z)q, y) = 0 ∧B(y)) ∨ (E(pB(z) ∨D(z)q, y) = 1 ∧D(y))

is (s(pB(z) ∨D(z)q, y) = 0 ∧B(y)) ∨ (q(pB(z) ∨D(z)q, y) = 1 ∧D(y))

If q(pB(z) ∨D(z)q, y)↓ then choose s = q. If q(pB(z) ∨D(z)q, y) is undefined
then we can extend q to a forcing condition s by defining

s(pB(z) ∨D(z)q, y) =

{
0 if B(y)
1 otherwise

CHAPTER 2. HAPε IS CONSERVATIVE OVER HAP 20

Then s ∈ C and by 2) we automatically get (s(pB(z)∨D(z)q, y) = 0∧B(y) ∨
s(pB(z) ∨ D(z)q, y) = 1 ∧ D(y)). So s does what it is supposed to do, and
∀p∃q ⊂ p such that q forces the axiom.
Now look at the less interesting extra axiom which makes sure that E acts like
a function. E(x, y, z) ∧ E(x, y, z′) → z = z′. Let ∀p∃q ⊂ p.q f E(x, y, z) ∧
E(x, y, z′) this is ∀p∃q ⊂ p.q(x, y) = z ∧ q(x, y) = z′. But q is a function so
this gives z = z′, which is an atomic function. So q forces z = z′ and as a
consequence ∀p∃q ⊂ p such that q forces the axiom.

To finish step one we will have to check the rest of the axioms as well. They
are listed below. It is a bit more of a routine work to check these axioms then
the axioms above. For a logical axiom T we will prove that ∀p.p f T and hence
∀p∃q ⊂ p.q f T .

Logical axioms

A ∧B → A, Suppose p f A ∧B, then p f A.

A ∧B → B, Suppose p f A ∧B, then p f B.

A→ (B → A ∧B), Let p f A and q ⊂ p with q f B.

Then by monotinicity q f A ∧B.
A→ A ∨B, Suppose p f A, then p f A ∨B.
B → A ∨B, Suppose p f B, then p f A ∨B.
(A→ C) Suppose p f A→ C. Let q ⊂ p and q f B → C.

→ ((B → C) → (A ∨B → C)), Let t ⊂ q and t f A ∨B.
Case one: t f A. We have t ⊂ p,

so by monotonicity t f A→ C.

Hence some extension of t forces C.
Case two: t f B. We have t ⊂ q,

so by monotonicity t f B → C.

Hence some extension of t forces C.
A→ (B → A), Suppose p f A. Let q ⊂ p and q f B.

Then by monotonicity q f A.

(A→ (B → C)) Let p f A→ (B → C). Let q ⊂ p and q f A→ B.

→ ((A→ B),→ (A→ C)) We will show q f A→ C. Let r ⊂ q.r f A.

By monotonicity r f A→ B,

this means ∃s ⊂ r s f B. We also have
s f A→ (B → C) ∧ s f A, since s ⊂ r ⊂ p.

So ∃v ⊂ s.v f B → C.

But by monotonicity v f B.

So ∃w ⊂ v ⊂ q.w f C.

This establishes q f A→ C

CHAPTER 2. HAPε IS CONSERVATIVE OVER HAP 21

∀x(B → A) → (B → ∀x.A) Suppose p f ∀x(B → A). This means
x 6∈ FV (B), ∀x∀q ⊂ p∃s ⊂ q∀t ⊂ s(t f B → ∃v ⊂ t.v f A).

Let a ⊂ p and a f B.

Now we need to derive a f ∀x.A(x).
By monotonicity we have ∀b ⊂ a.b f B.

This gives us
∀x∀b ⊂ a ⊂ p∃s ⊂ b∀t ⊂ s(t f B → ∃v ⊂ t.v f A(x)).
So we have ∀x∀b ⊂ a∃v ⊂ b.c f A(x).
This is a f ∀x.A(x).

∀xA(x) → A(t), Suppose p f ∀xA(x) this is
∀x∀q ⊂ p∃s ⊂ q.s f A(x).
Using the axiom we have to force, we get
∀q ⊂ p∃s ⊂ q.s f A(t).
So there is a s ⊂ p such that s f A(t).

∀x(A→ B) → (∃x.A→ B) Suppose p f ∀x(A→ B).
x 6∈ FV (B), Let q ⊂ p.q f ∃xA(x), this is ∃x.q f A(x).

By monotonicity q f .∀x(A→ B)(x),
this is ∀x∀v ⊂ p∃w ⊂ v.w f (A→ B)(x).
Using the axiom we have to force we get
∃x∀v ⊂ p∃w ⊂ v.w f A(x) → B.

So there is a s ⊂ w ⊂ q such that s f B.

A(t) → ∃xA(x). Let p f A(t) → (p f A)(t) → ∃x.p f A(x) → p f ∃xA(x).

The rule that is left is modus ponens. Suppose we have ∀p∃q ⊂ p.q f A, and
∀s∃t ⊂ s.t f A→ B this is ∀s∃t ⊂ s∀v ⊂ t(v f A→ ∃w ⊂ v.v f B). Fill in t for
p and v for q and we get ∀s∃w ⊂ s.s f B.

Non-logical axioms
Just like for the logical axioms are all the equations, and implications between
atomic formula forced by all the forcing conditions.
The last axiom to check is induction, (A(0) ∧ ∀x(A(x) → A(Sx))) → ∀y.A(y).
Let q f (A(0) ∧ ∀x(A(x) → A(Sx))). This means

q f A(0),

∀x∀t ⊂ q∃s ⊂ t.s f A(x) → A(Sx).

Then prove by induction on y that there is an extension of q that forces A(y).
Case A(0). This extension is just q.
Case A(Sy). Suppose y is given and r ⊂ q with r f A(y). Now r has an exten-
sion s forcing A(y) → A(Sy). By monotonicity s f A(y), so s has an extension
that forces A(Sy). That extension is the desired extension of q.

This finishes step one. Since we already proved part two, this also finishes
the proof.

CHAPTER 2. HAPε IS CONSERVATIVE OVER HAP 22

2.4 HAPε is conservative over HAPE

To finish our proof of HAPε is conservative over HAP we need to prove that
HAPε is conservative over HAPE . We will apply the idea which was presented
in [?] to our situation, but where [?] was about PCA’s, is our situation about
the syntactical case.

We will first prove in general a theorem stating that if there is in L(HAP)
a relation symbol F which acts as a function like in appendix ??, and there
is an application, then we can construct a new application and a constant f
that ’does the same’ as F . At the same time interpreting the constants such
that their interpretations act the same with this new application. The idea
will be that this function F is an oracle function and when we make an new
application we use F in the definition. This definition will enable us to ”talk”
to our function F in order to extract the information we need to build the
constant f .

Afterwards we will apply this theorem to our situation which then allows
us to present a simple proof.

Theorem 2.4.1. Let F be a relation symbol with F (x, y) ∧ F (x, y′) → y = y′

and @ an application. We can define an interpretation (·)F such that we can
define a constant f with the following property, ∀x.f@Fx = F (x). We also
have that A↔ AF holds for arithmetical A.

Proof. First define AF for all HAP-formulas A. The atomic formula (t = s)F

is interpreted as (t)F = (s)F and (t@t′)F = (t)F @F (t′)F . The interpretation
for the constants and S are listed below, the notation is explained afterwards:

0F := 0,
SF := S,

SuccF := λx.x+ 1,
kF = λx.p@k@(λy.p@k@x0),
sF := sF = λx.p@k@(λy.p@k@t(x, y)),
pF = λx.p@k@(λy.p@k@(p@x@y),
p0,F = λx.p@k@(p0@x),

p1,F = λx.p@k@(p1@x),

dF = λx.p@k@(λy.p@k@(λv.p@k@(λw.p@k@(d@x@y@v@w)))).

Here the constants, which are terms, are interpreted as semiterms. In appendix
?? it is explained what happens to the formulas if one maps terms to semiterms.
The conclusion is that we can work with AF as a formula if A is a formula.

For these constants the same axioms need to hold as in HAP only now
with application @F . Here will be explained how the application @F works,
why the axioms still holds, what t is, really everything we need to make this
interpretation work:

CHAPTER 2. HAPε IS CONSERVATIVE OVER HAP 23

To define @F we need an F -dialogue between a, b ∈ L(HAP). This is a
code of a sequence u = [u0, . . . , un] such that for all i < n there is a HAP-term
vi such that

a@([b] ∗ u<i) = p@k@vi and F (vi) = ui

Now a@F b is defined with value c if there is a F -dialogue between a, b such
that

a@([b] ∗ u) = p@k@c

Here u<i denotes [u0, . . . , ui−1], i≤u<j denotes [ui, . . . , uj−1] and k = λx, y.y,
where k and k work as booleans. With this definition is λx.p@k@x the lambda-
abstraction of our new application. This explaines the definitions of the inter-
pretations of the constants, only a part of sF is not yet defined. Now we can,
by primitive recursion, construct the term t(x, y) of HAP. We can in fact con-
struct this such that for all u the application t(x, y)@u is given by the following
instructions, here Not@k = k:

t(x, y)@u =

x@u if ∀i ≤ lhu Not@(p0@(x@u<i))

If i is minimal such that p0@(x@u<i), let α = p1@(x@u<i)

and output y@([u0] ∗ u≥i) if

∀j(i ≤ j < lhu→ Not@(p0@(y@([u0] ∗i≤ u<j)))

If j is minimal such that p0@(y@([u0] ∗i≤ u<j)),

let β = p1@(y@([u0] ∗i≤ u<j))and output α@([β] ∗ u≥j)

if ∀k(j ≤ k < lhu→ Not@(p0@(α@([β] ∗j≤ u<k)))

If k is minimal such that p0@(α@([β] ∗j≤ u<k)),

output p1@(α@([β] ∗j≤ u<k)).

This is an algorithm that follows an F -dialogue and says what it should do with
it, to make sure that sF works how it should work. sF @Fx@F y@F z of course
should work like this (x@F z)@F (y@F z). When we look at the alqorithm the
first thing to observe is that u0 is z. And u>0 are the dialogues which occur
when calculating sF @Fx@F y@F z. Since we want this to be sF @Fx@F y@F z,
the algorithm first looks at the dialogue for calculating x@F z, if that ends we
put α = x@F z. Then it looks at y@F z, if that ends as well we put β = y@F z.
Lastly it looks at α@Fβ if that dialogue ends as well it outputs the correct value
for sF @Fx@F y@F z. So note that t(x, y)@F z = (x@F z)@F (y@F z). Therefore
sF works how it should work.

The last thing to define is f . f is a constant such that f@Fx = F (x). f
can easily be defined with the new application @F since you can ask for the
value of the function F at x.

f@x =

p@k@x if x is a code of sequence of length one, say x = [v]
p@k@v1 if x is a code of a finite sequence of length greater then one,

say x = [v0, . . . , vn]
↑ otherwise

CHAPTER 2. HAPε IS CONSERVATIVE OVER HAP 24

This way if one wants to calculate f@Fx, one first looks at the dialogue f@[x] =
p@k@x and our oracle F gives the value u0, F (x) = u0. Then f@([x] ∗ u0) =
p@k@u0, so f tracks F : f@Fx = F (x) = u0. As a last remark we should note
that the logical operators stay the same. So the only things that have changed
are the constants and the application, both do not occur in the arithmetical
formulas, so:

A↔ AF for arithmetical formula A .

We will apply this more general case to our specific situation.

Theorem 2.4.2. HAPε is conservative over HAPE

Proof. We will prove this with the following two steps

1. HAPε ` A⇒ HAPE ` AE for all HAPε-formulas A,

2. HAPE ` AE ↔ A for all arithmetical formulas A.

Use the previous theorem, let F := E and f := e, where e is the constant
which tracks E. The interpretations stay the same we just add εE = e. To
prove step one, we have to check this for all the axioms of HAPε. Since we do
not change the logical operators, but only the constants, and the application, a
lot of the axioms simply just stay the same. The only axioms that might have
changed from HAP are the axioms for the constants. But the new constants are
constructed to make sure these axioms hold, like we saw for sF . For example,
clearly kE@Ex@Ey = (λy.p@k@x)@Ey = x.
Now all that is left are the extra axioms from HAPε. But these will exactly
be interpreted as the extra axioms from HAPE as we will show for the first
one.

(∃x.B(x, y) → (ε@p∃x.B(x, z)q@y↓ ∧B(ε@p∃x.B(x, z)q@y), y)E

=∃x.B(x, y) → (e@Ep∃x.B(x, z)q@Ey↓ ∧B(e@Ep∃x.B(x, z)q@Ey, y)
=∃x.B(x, y) → (E(p∃x.B(x, z)q, y)↓ ∧B(E(p∃x.B(x, z)q, y), y)).

To prove step two we have to prove that HAPE ` AE ↔ A, for all arith-
metical formulas A. But the only things that are changed in the (·)E interpre-
tation are the constants and the application. So AE = A, for all arithmetical
formulas A. This finishes the proof.

Chapter 3

HAPε and self-realising
formulas

In this chapter we will give the definition of realizability and try to give an
intuitionistic explanation and what it means to be self-realising. Then we will
give our result that our system HAPε has the interesting property that all
arithmetical formulas are self-realising.

3.1 Realizability

In 1945 Kleene introduced realizability. To a constructivist or an intuitionist
the things like existential, universal statements and the implication have a
different meaning then for most people who practise classical logic. For example
∀n.P (n) would mean something like: There is an effective method for any n to
obtain the information that n has the property P . Kleene defined, with some
notions from recursion theory, which items of information realizes a certain
statement. The property of realizability will then be an intuitionistic truth
notion.

This method ended up connecting intuitionism and recursive function the-
ory.
With realizability we start with a PCA and define realizers for it, for the def-
inition of a PCA see appendix ??. Kleene gave his realizability originally for
the PCA K1, the definition of K1 is also in appendix ??. Kleene’s definition
of realizability specifies what it means for a natural number n to realize a for-
mula A. Here we will give the definition of ’n realizes A’ by induction on the
complexity of A:

1. n realizes (t = s) iff ”t = s” is true.

2. n realizes A ∧B iff n = 〈m, k〉, and m realizes A and k realizes B.
(〈·, ·〉 denotes a primitive recursive bijection from N× N to N.)

3. n realizes A ∨B iff either n = 〈0,m〉 and m realizes A or n = 〈1,m〉 and
m realizes B.

4. n realizes A→ B iff for each m realizing A, {n}(m) is defined and realizes
B.

25

CHAPTER 3. HAPε AND SELF-REALISING FORMULAS 26

5. n realizes ∃xA(x) iff n = 〈m, k〉 and m realizes A(k̄).
(k̄ is a term which denotes k.)

6. n realizes ∀xA(x) iff for all m, {n}(m) is defined and realizes A(m̄).

This way n is a coding for all the information constructivists need for A.
Realizability can be formalised in HAP with respect to the application @.

We shall associate to each formula A of HAP another formula e r A.

Definition 3.1.1.

e r A is A if A is atomic,
e r A→ B is ∀q(q r A→ e@q↓ ∧ e@q r B),
e r A ∧B is p0@e r A ∧ p1@e r B,

e r A ∨B is p0@e = 0 → p1@e r A ∧ (p0@e 6= 0 → p1@e r B),
e r ∀xA(x) is ∀x(e@x↓ ∧ e@x r A(x)),
e r ∃xA(x) is p0@e r A(p1@e).

e r A can be read as e realizes A.

Theorem 3.1.2 (Soundness of realizability). If HAP ` A then HAP `
∃e.e@y r A. Here y are the free variables of A.

Proof. To prove the soundness of realizability, you have to find a realizer for
all the axioms of the system HAP.

Logical axioms

(λy, x.p0@x)@y r A ∧B → A, λy, x.p1@x r A ∧B → B,

(λy, x, z.p@x@z)@y r A→ (B → (A ∧B)),
(λy, x.p(0, x))@y r A→ A ∨B; λy, x.p(1, x) r B → A ∨B,
(λy, x, w, z.(1− sg(p0@z))(x(p1@z)) + sg(p0@z)(w(p1@z)))@y r

(A→ C) → ((B → C) → (A ∨B → C)),
(λy, x, z.x)@y r A→ (B → A),
(λy, x, a, z.x@z@(a@z))@y r (A→ (B → C)) → ((A→ B) → (A→ C)),
(λy, q, s, x.q@x@s)@y r ∀x(B → A) → (B → ∀x.A) x 6∈ FV (B),
(λy, q.q@t)@y r ∀x.A→ A(t),
(λy, q, s.(q@(p0@s))@(p0@s))@y r ∀x(A→ B) → (∃x.A→ B) x 6∈ FV (B),
(λy, q.p@q@t)@y r A(t) → ∃x.A.

Here sg is the sign-function which is partial recursive:

sg(x) =

{
1 if x > 0
0 otherwise .

The last one to check is modus ponens. If e r A and f r A→ B then f@e r B.

Non-logical axioms
All the equations are realized by 0. Implications between atomic formulas

CHAPTER 3. HAPε AND SELF-REALISING FORMULAS 27

are realised by λx.0. So the only axiom that is left is induction, I: (A(0) ∧
∀x (A(x) → A(Sx))) → ∀y A(y). To prove that an e realizes induction we have
to prove that e@q r ∀y A(y) if q r A(0) ∧ ∀x(A(x) → A(Sx)). Let this be the
case for q then

p0@q r A(0),
∀x(p1@q@x↓ ∧ ∀a(a r A(x) → p1@q@x@a r A(Sx))).

Then define, by using the recursion combinator defined in HAP, a term t(q),
such that

t(q)@0 = p0@q,
t(q)@Sx = p1@q@x@(t(q)@x).

Then prove by induction on x, t(q)@x r
¯
A(x).

x = 0; t(q)@ = p0@q and p0@q r A(0)
For Sx; t(q)@Sx = p1@q@x@(t(q)@x), by the induction hypothesis t(q)@x r A(x).
So with the information we have of q, given by the fact that q r A(0) ∧
∀x(A(x) → A(Sx)) we have t(q)@Sx r A(Sx).
So e r (A(0) ∧ ∀x(A(x) → A(Sx))) → ∀xA(x) with e = λq.t(q)

If one thinks of being realizable as a truth notion it is natural to ask which
formulas have the property ∃e.e r A. Then one comes to the following definition

Definition 3.1.3. A formula A is self-realizing if there is a closed semiterm
jA@y such that HAP proves

i) A→ jA@y r A,

ii) (e r A) → A.

Here y = y1, . . . , yn are the free variables of A.

The previous classical realizers do not take into account their functional
behaviour. When we will prove Goodman’s theorem for the extensional case
we will need this. The following definition of extensional realizability does take
their functional behaviour into account, this definition comes from [?]:

CHAPTER 3. HAPε AND SELF-REALISING FORMULAS 28

Definition 3.1.4.

e re A is A if A is atomic,
a =A b is a = b ∧A,
e re A→ B is ∀b, b′(b =A b′ → (e@b↓ ∧e@b′ ↓ ∧e@b =B e@b′)),
a =A→B b is a re A→ B ∧ b re A→ B ∧ ∀c(c re A→ a@c =B b@c),
e re A ∧B isp0@e re A ∧ p1@e re B,

a =A∧B b isp0@a =A p0@b ∧ p1@a =B p1@b,
e re A ∨B is p0@e = 0 → p1@e re A ∧ p0@e 6= 0 → p1@e re B,

a =A∨B b is p0@a = p0@b ∧ p0@a = 0 → p1@a =A p1@b
∧ p0@a 6= 0 → p1@a =B p1@b,

e re ∀xA(x) is ∀x(e@x↓ ∧ e@x re A(x))),
a =∀x.A b is ∀x(a@x =A(x) b@x′),
e re ∃x.A(x) is p0@e re A(p1@e),
a =∃x.A(x) b is p1@a = p1@b ∧ p0@a =A(p1@a) p0@b.

Here a =A b can be read as a and b are equal as realizers for A. With this
definition we have e =A e↔ e re A.

Theorem 3.1.5 (Soundness of extensional realizability). If HAP ` A then
HAP ` ∃e.e@y re A. Here y are the free variables of A.

Proof. The same realizers, as in the proof of the soundness of realizability
above, can be used for the axioms of HAP to prove this theorem.

3.2 Self-realising formulas

In HA all negative formulas are self-realising, a negative formula is a formula
with no occurrence of ∨ or ∃. A problem arises when we try to make a positive
formula self-realising, since we do not know for which x specifically ∃x.A holds,
and we do not know if A holds or B when we have A∨B. In HAPε there is a
solution for this problem since we can ask our oracle ε these questions. Below
we will give a proof that has as a corollary that in HAPε all arithmetical
formulas are self-realising. This proof holds in HA for negative formulas A as
well. We will do this by giving a specific realizers e for which A↔ e r A holds,
we will call these realizers canonical realizers.

CHAPTER 3. HAPε AND SELF-REALISING FORMULAS 29

Definition 3.2.1. The canonical realizers jA for the arithmetical formulas A
are:

jA := λy.0 If A is atomic ,
jA∧B := λy.p(jA@yA, jB@yB),
j∀x.A := λyλx.jA@y@x,
jA→B := λyλx.jB@yB ,

j∃x.A := λy.p@(jA@y@(ε@ < ∃x.A > @y))@(ε@ < ∃x.A > @y),
jA∨B := λy.p@(ε@(< A ∨B >)@y)@α.

α =

{
jA@y if ε@(< A ∨B >)@y = 0
jB@y if ε@(< A ∨B >)@y = 1.

Here y = y1, . . . , yn are the free variables of A. If it is not clear that the free
variables belong to formula A we will write yA.

Lemma 3.2.2. Let A be an arithmetical formula in L(HAPε) then

HAPε `A
↔∃e.e r A

↔jA@y r A

↔∃e.e re A

Proof. We will first prove HAPε ` ∃e.e r A → A → jA@y r A → ∃e.e r A by
induction on the structure of A. Here the last implication is trivial.
Let A be atomic

HAPε ` ∃e.e r A

→∃e.A
→A

→0 r A

→∃e.e r A

Look at A ∧B

HAPε ` ∃e.e r A ∧B
→∃e.p0@e r A ∧ p1@e r B

→A ∧B
→jA@yA r A ∧ jB@yB r B

→jA∧B@y r A ∧B
→∃e.e r A ∧B

Look at ∀x.A

HAPε ` ∃e.e r ∀x.A
→∃e.∀x(e@x↓ ∧e@x r A)
→∀x.A
→∀x(jA@y@x↓ ∧jA@y@x r A)
→j∀x.A@y r ∀x.A
→∃e.e r ∀x.A

CHAPTER 3. HAPε AND SELF-REALISING FORMULAS 30

Look at A→ B

HAPε ` ∃e.e r A→ B

→∃e.∀q(q r A→ e@q↓ ∧e@q r B)
→A→ B

→∀q(q r A→ jB@yB ↓ ∧jB@yB r B) since q r A→ A and A→ B

and B → jB@yB r B

→jA→B@y r A→ B

→∃e.e r A→ B

Look at ∃x.A(x, y). Use the extra axioms in HAPε, the induction hypothesis
for A(x, y), and the definition of realizability.

HAPε ` ∃e.e r ∃x.A(x, y)
→∃e.p0@e r A(p1@e, y)
→A(p1@e, y)
→∃x.A(x, y)
→ε@p∃x.A(x, z)q@y↓ ∧A(ε@p∃x.A(x, z)q@y, y)
→jA@y@(ε@p∃x.A(x, z)q@y) r A(ε@p∃x.A(x, z)q@y, y)
→ j∃x.A(x,y)@y r ∃x.A(x, y)
→ ∃e.e r ∃x.A(x, y)

Look at A(y)∨B(y). Use the extra axioms in HAPε, the induction hypothesis
for A(y) and B(y), and the definition of realizability.

HAPε ` ∃e.e r A(y) ∨B(y)
→(p0@e = 0 → p1@e r A(y)) ∧ (p0@e 6= 0 → p1@e r B(y))
→p1@e r A(y) ∨ p1@e r B(y)
→A(y) ∨B(y)
→ε@(pB(z) ∨D(z)q)@y↓ ∧((E@(pB(z) ∨D(z)q)@y = 0 ∧B(y)

∨ ε@(pB(z) ∨D(z)p)@y = 1 ∧D(y)))
→ jA∨B@y r A(y) ∨B(y)
→ ∃e.e r A(y) ∨B(y)

Now what is left to prove is that ∃e.e re A is equivalent to the other state-
ments. We will prove this by proving the following, jA@y r A→ jA@y re A→
∃e.e re A→ ∃e.e r A. The second implication is trivial, the first and last impli-
cation can be proven by induction on the structure of A. The only interesting
case is the implication so look at A→ B.

HAPε `jA→B@y r A→ B

→∀q(q r A→ jB@yB ↓ ∧jB@yB r B)
→∀q(q r A→ jB@yB ↓ ∧jB@yB re B) ∧ (∀b, b′(b =A b′ → b =A b→ b r A)
→∀b, b′(b =A b′ → (jB@yB ↓ ∧jB@yB =B jB@yB))
→jA→B@y re A→ B

CHAPTER 3. HAPε AND SELF-REALISING FORMULAS 31

HAPε ` e re A→ B

→∀q, q′(q =A q′ → e@q↓ ∧e@q′ ↓ ∧e@q =B e@q′

→∀q((q =A q → e@q↓ ∧e@q =B e@q
→∀q(q re A→ e@q↓ ∧e@q re B

→∀q(q r A→ e@q↓ ∧e@q r B

This proves the original statement

Corollary 3.2.3. In HAPε every arithmetical formula is self-realizing.

Corollary 3.2.4. In HA every negative arithmetical formula is self-realizing.

Chapter 4

Application: Goodman’s
theorem

In this chapter we will give a proof for the fact that E-HAω + AC and I-HAω + AC
are conservative over Heyting Arithmetic. The results from the previous chap-
ters already did the hardest part of the work for this result. What is left
is to prove that HAP is conservative over HA and that E-HAω + AC and
I-HAω + AC are conservative over HAPε. We will be able to prove the second
part by choosing the appropriate notion of realisability and build realisers for
the axiom of choice and the extensionality axiom. Then we will use the fact
that in HAPε all arithmetical formulas are self-realising to complete the proof.

4.1 HAP is conservative over HA

Theorem 4.1.1. HAP is conservative over HA

Proof. This can be proven with the following proof interpretation. We need a
proof for

1. HAP ` A⇒ HA ` [A] for all HAP-formulas A.

2. HA ` [A] ↔ A for all arithmetical formulas A.

We need to define the interpretion [·]. We will do this by defining the inter-
pretation for all the constants, functions and the application which were added
to the language HAP. We do this by using the interpretation of APP in the

32

CHAPTER 4. APPLICATION: GOODMAN’S THEOREM 33

partial recursive operations (PRO) from [?].

[hap(x, y, z)] := {[x]}([y]) = [z],
[0] := 0,
[S] := S,

[Succ] := λx.Sx,

[p] := λx, y.j(x, y),
[pi] := λx.ji+1x (i = 0, 1),
[k] := λx, y.x,

[s] := λx, y, z.{{x}(z)}({y}(z)),
[d] := λx, y, u, v.x · (1− sg)|u− v|+ y · sg|u− v|.

Here sg is again the sign function. Under the interpretation the logical opera-
tors will stay the same.

First note that step two is trivial, since the interpretian [·] only changes the
things which were added to L(HA) to make L(HAP). So for all arithmetical
A, [A] = A.

Step one can be proven by checking this for all the axioms of HAP. Step
one is also trivial for the logical axioms, since the interpretation does nothing to
the logical symbols and the logical basis of HA and HAP are the same. Then
we have left the axioms defining the constants and the arithmetical axioms.
The interpretation [·] is defined in a way such that the axioms defining the
constants stay valid in HA.
For example

[p0@(p@x@y)] = {[p0]}([p@x@y])
=j1(j(x, y))
=x.

The arithmetical axioms from HAP are also axioms of HA and the interpre-
tation [·] does not change them.
This proves step one and hence the theorem.

4.2 E-HAω + AC and I-HAω + AC are conserva-
tive over HAPε

In this section we will prove that both I-HAω + AC and E-HAω + AC are
conservative over HAPε. The difference between the two proofs is that in the
first proof everything is intensional and in the second everything is extensional,
which means we have to realize the intensionality axiom or the extensionality
axiom. In order to realise these axioms and AC we will need two different
notions of realisability. But first of all before we can get to those proofs, we
have to define a type structure over HAP since HAω has a type structure.
This will help us to define the notion of realizability we need.

CHAPTER 4. APPLICATION: GOODMAN’S THEOREM 34

4.2.1 Finite type structures over HAP

In order to define our finite type structures we will use sets to write down
what we mean instead of the HAP-formulas needed for the formal definition,
because this way it is a lot clearer what is meant. Later on we will also use
x ∈ Iσ as an abbreviation for the formal HAP-formula.

An intensional finite type structure over HAP which associates to any type
σ a set Iσ is as follows:

I0 = {a|a = a},
Iσ→τ = Iσ ⇒ Iτ

= {a|∀b ∈ Iσ(a@b↓ and a@b ∈ Iτ)}.

An extensional finite type structure will be defined recursively, simultaneously
with the symmetric transitive relation ∼σ:

E0 = {a|a = a}, a ∼0 b↔ a = b,

Eσ→τ = {a|∀x ∈ Eσ(a@x↓ ∧a@x ∈ Eτ) ∧ ∀x, y ∈ Eσ((x ∼σ y),
→ (a@x ∼τ a@y))},

a ∼σ→τ b↔ ∀x, y ∈ Eσ(x ∼σ y → a@x↓ ∧b@y↓ ∧a@x ∼τ b@y).

4.2.2 I-HAω + AC is conservative over HAPε

Here we will take the last step towards proving Goodman’s Theorem. We will
’replace’ the axiom of choice by our oracle ε and get rid of the types. We will
do this by finding realisers for all the formulas which are valid in I-HAω + AC.
This sounds like a lot of work but all we have to do is find realizers for the
basis of I-HAω + AC, for the axioms. Since the rest of the formulas valid
in I-HAω + AC follow from the axioms is this enough to prove that we have
realizers for all the formulas. Then we will use the fact that all the arithmetical
formulas are self-realising in HAPε to finish the proof.

Theorem 4.2.1. I-HAω + AC is conservative over HAPε

Proof. We will prove this with the following steps

1. I-HAω + AC ` A⇒ HAPε ` ∃e e r
¯

[A] for all HAω-formulas.

2. HAPε ` ∃e e r
¯

[A] ↔ A for all arithmetical formulas A.

First define the formula e r
¯

[A] ∈ HAPε for every HAω-formulas A

Definition 4.2.2.

e r
¯

[A] is [A] if A is atomic,
e r
¯

[A→ B] is ∀q(q r
¯

[A] → e@q↓ ∧ e@q r
¯

[B]),
e r
¯

[A ∧B] is p0@e r
¯

[A] ∧ p1@e r
¯

[B],
e r
¯

[A ∨B] is (p0@e = 0 → p1@e r
¯

[A]) ∧ (p0@e 6= 0 → p1@e r
¯

[B]),
e r
¯

[∀xσ A(x)] is ∀x(x ∈ Iσ → (e@x↓ ∧ e@x r
¯

[A(x)])),
e r
¯

[∃xσ A(x)] is p1@e ∈ Iσ ∧ p0@e r
¯

[A(p1@e)].

CHAPTER 4. APPLICATION: GOODMAN’S THEOREM 35

Note that we integrated the intentional type structure Iσ into our notion
of realizability, this ensures we do not lose the meaning of the types in the
quantifiers.

The atomic formulas [t =σ s] are interpreted as [t] = [s] and [Ap(t, t′)] as
[t]@[t′]. The constants are interpreted as follows

[0] := 0 (both zero’s are the zero from HA),
[S] := S (both S’s are the S from HA),
[kσ,τ] := k,

[sρ,σ,τ] := s,

[pσ,τ] := p,

[pσ,τ
i] := pi (i = 0, 1) ,

[rσ] := rec.

Note that k, s,p,pi are in the appropriate Iσ. For example ∀σ, τ(k ∈ Iσ→(τ→σ)):
∀x ∈ Iσk@x↓ and k@x ∈ Iσ→τ , since ∀y ∈ Iτ .k@x@y = x ∈ Iσ.
For step one we need to find for all the axioms A of I-HAω + AC a realizer e
such that e r

¯
[A].

Let us look at the most important axiom first, the axiom of choice.

AC : ∀xσ∃yτA(x, y) → ∃fσ→τ∀xσA(x, f(x)).

We show that the realizer t works as a realizer for AC, where t is:

t := λq.p@(λx.p0@(q@x))@(λx.p1@(q@x)).

First we assume that q r
¯

[∀xσ∃yτ A(x, y)] this is

∀x(x ∈ Iσ → q@x↓ ∧ p1@(q@x) ∈ Iτ ∧ p0@(q@x) r
¯

[A(x,p1@(q@x))]).

For t r
¯

[AC] we need to prove t@q r
¯

[∃fσ→τ∀xσA(x, f(x))], which means we
need to prove:

t@q↓ ∧ p1@(t@q) ∈ Iσ→τ ∧ ∀x(x ∈ Iσ → p0@(t@q)@x r
¯

[A(x,p1@(t@q)@x)])

By the construction of t; p1@(t@q) = λx.p1@(q@x), where x ∈ Iσ and
p1@(t@q) ∈ Iτ . So by definition p1@(t@q) ∈ Iσ→τ . p0@(t@q)@x = p0@(q@x)
and p1@(t@q)@x = p1@(q@x). This gives, since q r

¯
[∀xσ∃yτ A(x, y)], that

∀x(x ∈ Iσ → p0@(t@q)@x r
¯

[A(x,p1@(t@q)@x)]. Putting these things to-
gether and one gets, t r

¯
[AC].

Now let us look at the intensionality axiom

I :eσxy = 0 ∨ eσxy = 1 here e is an equality functional ,
eσxy = 0 ↔ x =σ y.

The two axioms defining the equality functional are both really easy to realise
since both are not much more then atomic formulas. So we get

p@0@0 r
¯

(eσ@x@y = 0 ∨ eσ@x@y = 1) ∨ p@1@0 r
¯

(eσ@x@y = 0 ∨ eσ@x@y = 1),
p@λq.0@λq.0 r

¯
(eσ@x@y = 0 → x = y ∧ x = y → eσ@x@y = 0).

CHAPTER 4. APPLICATION: GOODMAN’S THEOREM 36

Now look at the rest of the axioms of I-HAω + AC .

Logical axioms

λx.p0@x r
¯

[A ∧B → A]; λx.p1@x r
¯

[A ∧B → B],
λx, y.p(x, y) r

¯
[A→ (B → A ∧B)],

λx.p(0, x) r
¯

[A→ A ∨B]; λx.p(1, x) r
¯

[B → A ∨B],
λx, y, z.(1− sg(p0@z))(x(p1@z)) + sg(p0@z)(y(p1@z)) r

¯
[(A→ C) → ((B → C) → (A ∨B → C))],

λx, y.x r
¯

[A→ (B → A)],
λx, y, z.x@z@(y@z) r

¯
[(A→ (B → C)) → ((A→ B) → (A→ C))],

λq, s, x.q@x@s r
¯

[∀xσ(B → A) → (B → ∀xA)] x 6∈ FV (B),
λq.p0@q@t r¯

[∀xσ.A→ A(tσ)],
λq, s.(q@(p1@s))@(p0@s) r

¯
[∀xσ(A→ B) → (∃xσ A(x) → B)] x 6∈ FV (B),

λq.p(q, t) r
¯

[A(tσ) → ∃xσ A(x)].

The last one to check is modus ponens. If e r
¯

[A] and f r
¯

[A → B] then
f@e r

¯
[B].

Non-logical axioms
All the equations are realized by 0. Implications between atomic formulas
are realised by λx.0. So the only axiom that is left is induction, I: (A(0) ∧
∀x0(A(x) → A(Sx))) → ∀x0A(x).
Suppose q r

¯
[A(0)∧∀x0(A(x) → A(Sx))], then we will construct an e such that

e@q r
¯

[∀x0A(x)]. This means that we have

p0@q r
¯

[A(0)],
∀x(p1@q@x↓ ∧ ∀a(a r

¯
[A(x)] → p1@q@x@a r

¯
[A(Sx)]),

and we need to prove

∀x(e@q@x↓ ∧e@q@x r
¯

[A(x)].

Define a term t(q), by using the recursor combinator rec, such that

t(q)@0 = p0@q,
t(q)@Sx = p1@q@x@(t(q)@x).

Then prove by induction on x, ∀x(t(q)@x↓ ∧t(q)@x r
¯

[A(x)].
x = 0; t(q)@0 = p0@q and p0@q r

¯
[A(0)]

For Sx; t(q)@Sx = p1@q@x@(t(q)@x), by the induction hypothesis t(q)@x r
¯

[A(x)].
So t(q)@Sx r

¯
[A(Sx)].

So λq.t(q) r
¯

[(A(0) ∧ ∀xσ(A(x) → A(Sx))) → ∀xA(x)].

This finishes step one.

For step two we should realise that for all arithmetical formulas A we only
have variables of type 0. Then a ∈ Iσ always means a ∈ I0, but everything is

CHAPTER 4. APPLICATION: GOODMAN’S THEOREM 37

in I0. So for arithmetical A, e r
¯

[A] = e r A. Together with lemma ?? this
gives the following result

HAPε ` ∃e e r
¯

[A] ↔ ∃e e r A↔ A.

4.2.3 E-HAω + AC is conservative over HAPε

To prove that E-HAω + AC is conservative over HAPε we have to do the same
steps as above only now we have to realize the extensionality axiom as well. In
order to make that possible we need a different notion of realizability. Namely
a notion which makes it possible to find realizers for the extensionality axiom
and the axiom of choice. With this notion a fixed arithmetical formula A still
needs to be self-realising. The extensional realisability with the addition of the
extensional finite type structure makes this possible. In the second step there
could arise a problem with the realizer for an implication. Since that is where
the two types of realizability really differ, but this is not a problem for the
reason that we proved in lemma ?? that the canonical realizers can be used as
self-realizers in the extensional realisability as well as the normal variant. This
can be done since in the canonical realizer for the implication the hypothesis
is ignored.

Theorem 4.2.3. E-HAω + AC is conservative over HAPε

Proof. We will prove this with the following steps

1. ` A⇒ HAPε ` ∃e e r
¯e [A] for all HAω-formulas.

2. HAPε ` ∃e e r
¯e [A] ↔ A for all arithmetical formula A.

First define the HAP formula e r
¯e [A] for every HAω-formula A

Definition 4.2.4.

e r
¯ e [A] is [A] if A is atomic,
a =[A] b is a = b ∧ [A],
e r
¯ e [A→ B] is ∀b, b′(b =[A] b

′ → (e@b↓ ∧e@b′ ↓ ∧e@b =[B] e@b′)),
a =[A→B] b is a r

¯ e [A→ B] ∧ b r
¯ e [A→ B] ∧ ∀c(c re [A] → a@c =[B] b@c),

e r
¯ e [A ∧B] is p0@e r

¯ e [A] ∧ p1@e r
¯ e [B],

a =[A∧B] b is p0@a =[A] p0@b ∧ p1@a =[B] p1@b,
e r
¯ e [A ∨B] is p0@e = 0 → p1@e r

¯ e [A] ∧ p0@e 6= 0 → p1@e r
¯ e [B],

a =[A∨B] b is p0@a = p0@b ∧ p0@a = 0 → p1@a =[A] p1@b
∧ p0@a 6= 0 → p1 =[B] p1@b,

e r
¯ e [∀xσ A(x)] is ∀x(x ∈ Eσ → (e@x↓ ∧ e@x r

¯ e [A(x)])),
a =[∀xσ.A] b is ∀x(x ∈ Eσ → b@x′ ↓ ∧a@x =[A(x)] b@x′),
e r
¯ e [∃xσ.A(x)] is p1@e ∈ Eσ ∧ p0@e r

¯ e [A(p1@e)],
a =[∃xσ.A(x)] b is p1@a ∼σ p1@b ∧ p1@a ∈ Eσ ∧ p0@a =[A(p1@a)] p0@b.

CHAPTER 4. APPLICATION: GOODMAN’S THEOREM 38

Remember that with this definition we have e =[A] e ↔ e r
¯e [A]. The

atomic formula [t =σ s] is interpreted as [t] = [s] and [Ap(t, t′)] as [t]@[t′]. The
constants are interpreted as follows

[0] := 0 (both zero’s are the zero from HA),
[S] := S (both S’s are the S from HA),
[kσ,τ] := k,

[sρ,σ,τ] := s,

[pσ,τ] := p,

[pσ,τ
i] := pi (i = 0, 1),

[rσ] := rec.

Note that just like in the intensional case the k, s,p,pi are in the appropriate
Eσ. For the example of k we now have to add a few things to show that
∀σ, τ.k ∈ Eσ→(τ→σ):
∀x, x′ ∈ Eσ((x ∼σ x

′ ∧ k@x↓) → (k@x′ ↓ ∧k@x ∼τ→σ k@x′)). k@x is always
defined so that leaves us to prove k@x ∼τ→σ k@x′. This is ∀y, y′ ∈ Eτ (y ∼τ

y′ → k@x@y ↓ ∧k@x′@y′ ↓ ∧)k@x@y ∼σ k@x′@y′. We know k@x@y = x so
it is defined and k@x@y ∼σ k@x′@y′ is x ∼σ x

′, which is also given.
In the definition of the extensional realizability the case of the existential

quantifier seems a bit asymmetrical, since in the definition of a =∃xσ.A(x) b it
is only required that p0@a =A(p1@a) p0@b and not p0@a =A(p1@b) p0@b. This
second requirement would be trivial because of the next lemma.

Lemma 4.2.5. Given a formula A(xσ1
1 , . . . , xσn

n) in the language of HAP. If
HAP ` a =A(u

σ1
1 ,...,uσn

n) b ∧ ∀i(ui ∼σi
vi). Then HAP ` a =A(v

σ1
1 ,...,vσn

n) b

Proof. This can be proven by a simple induction on the structure of A. The
least trivial step is A = B → C.

a =A(u1,...,un) b

is a re (B → C)(uσ1
1 , . . . , uσn

n) ∧ b re (B → C)(uσ1
1 , . . . , uσn

n)∧
∀c(c re B(uσ1

1 , . . . , uσn
n) → a@c =C(u

σ1
1 ,...,uσn

n) b@c)

is ∀d, d′(d =B(u
σ1
1 ,...,uσn

n) d
′ → (a@d↓ ∧a@d′ ↓ ∧a@d =C(u

σ1
1 ,...,uσn

n) a@d
′

∧ b@d↓ ∧b@d′ ↓ ∧b@d =C(u
σ1
1 ,...,uσn

n) b@d
′)

∧ ∀c(c re B(uσ1
1 , . . . , uσn

n) → a@c =C(u
σ1
1 ,...,uσn

n) b@c))

Then if ∀i(ui ∼σi
vi) by induction

∀d, d′(d =B(v
σ1
1 ,...,vσn

n) d
′ →

(a@d↓ ∧a@d′ ↓ ∧a@d =C(v
σ1
1 ,...,vσn

n) a@d
′ ∧ b@d↓ ∧b@d′ ↓ ∧b@d =C(v

σ1
1 ,...,vσn

n) b@d
′)

∧ ∀c(c re B(vσ1
1 , . . . , vσn

n) → a@c =C(v
σ1
1 ,...,vσn

n) b@c))

is a =A(v1,...,vn) b.

For step one we need to find for all the axioms A of E-HAω + AC a realizer
e such that HAPε ` e r

¯e [A].

CHAPTER 4. APPLICATION: GOODMAN’S THEOREM 39

For the axioms of HAω the same realizers can be used as in the proof of ??.
Now look at the axiom of choice. If e realizes AC we get

e r
¯e [∀xσ∃yτA(x, y) → ∃fσ→τ∀xσA(x, f(x))]

this is ∀b, b′(b =[∀xσ∃yτ A(x,y)] b
′ → e@b↓ ∧e@b′ ↓ ∧e@b =[∃fσ→τ∀xσA(x,f(x))] e@b′)

this is ∀b, b′(∀x
(
x ∈ Eσ →

(p1@(b@x) ∼τ p1@(b′@x) ∧ p1@(b@x) ∈ Eτ

∧ p0@(b@x) =[A(x,p1@(b@x))] p0@(b′@x))
)

→
(
e@b↓ ∧e@b′ ↓ ∧p1@(e@b) ∼σ→τ p1@(e@b′) ∧ p1@(e@b) ∈ Eσ→τ∧

∀x(x ∈ Eσ → (p0@(e@b)@x =[A(x,p1@(e@b)@x)] p0@(e@b′)@x′))
)
).

Use e = λb.(λx.p0@(b@x), λx.p1@(b@x)).
If you fill in this e then p1@(e@b) ∼σ→τ p1@(e@b′) becomes λx.p1@(b@x) ∼σ→τ

λx.p1@(b′@x). This follows precisely from ∀x(x ∈ Eσ → p1@(b@x) ∼τ

p1@(b′@x) ∧ p1@(b@x) ∈ Eτ)
Secondly p1@(e@b) ∈ Eσ→τ becomes λx.p1@(b@x) ∈ Eσ→τ . This follows also
from ∀x(x ∈ Eσ → p1@(b@x) ∼τ p1@(b′@x) ∧ p1@(b@x) ∈ Eτ).
Lastly, if you fill in this e then p0@(e@b)@x =[A(x,p1@(e@b)@x)] p0@(e@b′)@x
becomes exactly

p0@(b@x) =[A(x,p1@(b@x))] p0@(b′@x′).

So for this e it is valid that e r
¯e [∀xσ∃yτA(x, y) → ∃fσ→τ∀xσA(x, f(x))].

This leaves the extensionality axiom.

E :∀yσ→τ , zσ→τ (∀xσ(yx =τ zx) → y =σ→τ z).

If e realizes the extensionality axiom we get

e r
¯e [∀yσ→τ , zσ→τ (∀xσ(yx =τ zx) → y =σ→τ z)]

is ∀y(y ∈ Eσ→τ → (e@y↓ ∧∀z(z ∈ Eσ→τ → (e@y@z ↓ ∧∀b, b′(∀x(
x ∈ Eσ → (e@y@z@b@x = e@y@z@b′@x′ ∧ y@x ∼τ z@x)

)
→

(
e@y@z@b↓ ∧e@y@z@b′ ↓ ∧e@y@z@b = e@y@z@b′ ∧ y ∼σ→τ z

)
))))).

So we have y, z ∈ Eσ→τ , x ∈ Eσ y@x ∼τ z@x to prove y ∼σ→τ z.
y, z ∈ Eσ→τ → ∀a, b ∈ Eσ(a ∼σ b ∧ y@a ↓ ∧z@a ↓→ (y@b ↓ ∧z@b ↓ ∧y@a ∼τ

y@b ∧ z@a ∼τ z@b)) So ∀a, b ∈ Eσ(a ∼σ b → y@a ∼τ y@b ∼τ z@b). This is
equivalent with y ∼σ→τ z.
The last thing to check is whether e@y@z@b = e@y@z@b′, if we set e =
λy, z, b, x.0 then e@y@z@b = λx.0 = e@y@z@b′ This means the extensional
axiom is realized by e = λy, z, b, x.0. This finishes step one.

For step two use lemma ?? and the fact that if A is arithmetic then
∃e.e r

¯e [A] ↔ ∃e.e re A. Then we have

HAPε ` ∃e.e r
¯e [A] ↔ ∃e e re A↔ A.

Chapter 5

Literature

In 1976 Nicolas Goodman introduced his theorem. Over the years Goodman
and several other people worked on this theorem and on some extensions. In
this chapter the ideas of the mathematicians who have worked on this problem
will be presented.

5.1 Nicholas Goodman

Goodman started in [?] with a proof based on the interpretation of HAω in his
arithmetic theory of constructions (ATC). He had already shown that ATC is
conservative HA via an argument resembling a bit of forcing. Nowadays ATC
is no longer used, so we will not get into ATC here. With this interpretation
he did use a technique which resembles realizability quite a bit. He assigns a
term |φ| to every φ. And intuitively |φ|y ≡ T means that y is a proof of φ. This
does remind us of realizability. The difference is mostly in the definitions of
|φ∨ψ|y ≡ T and |∃x.φ|y ≡ T. Other than that all the definitions Goodman uses
are similar to our definition of realizability, but written down more complicated
with a lot more variables and constants, which makes it a lot less pleasant to
read.

In 1978 Goodman wrote another paper [?] in which he addresses his theo-
rem. This time his paper was mostly about a new kind of realizability. He calls
it relativised realizability, this is a combination of realizability and forcing, also
he includes types. Goodman gave an intuitive explanation for his notion. It
is a notion in which he uses indices of partial recursive functions relative to a
partial function p. This p is thought of as growing in time. Then let T be a set
of partial functions, the partial ordering of T will play the role of a partially
ordered set in a Kripke structure. Then we do not attach a model to each node,
but rather realize sentences by indices of partial functions, recursive relative to
the functions in T . This means that by building these p in time we are building
our mathematical ability. So it is a combination of classical realizability, and
forcing conditions in T which allowed Goodman to prove his theorem again.

40

CHAPTER 5. LITERATURE 41

5.2 Michael Beeson

In 1979 Michael Beeson wrote an article [?] in which he also proved Goodman’s
theorem and mentioned some extensions of the theorem like the extensional
case. Later he wrote a book [?] in which both were incorporated again. His
method was the one which is the most similar to the method which was used
here and was a natural consequence of Goodman’s proof. He made two separate
definitions, one for realizability and one for forcing. His plan of attack was the
following. First prove HA ` A⇒ HA ` e r A and extend this notion to HAω

by using hereditarily recursive operations (HRO). Then the axiom of choice
is realized, so what is left to prove is HAω ` e r A → A. It is easy to prove
that HAω is conservative over HA, see chapter ??. The only thing that has
to be changed in chapter ?? is that we need to use the interpretation in HRO
instead of PRO. The problem with this paper is that Beeson leaves out a lot
of the details, he explains no more then was stated here except for the proof
of HAω ` e r A → A. Also in that proof some details are left out as will be
mentioned later. It did leave a good framework to work with and get inspiration
from for our proof. A big difference is that we did not use realizability and
forcing together in the same proof. We either used realizability or forcing
to prove something. Where Beeson introduced a theorem using forcing to
prove something about realizers, we broke our proof into parts introducing
HAP, HAPε and HAPE . This gave us a new theory HAPε in which all
arithmetical formulas are self-realising. This also made every step a lot simpler
to understand, when there is always just one thing going on at the time.

To prove HAω ` e r A→ A Beeson introduces forcing, a partial function a
(which is to act as an oracle) and the system HAωa. This partial function is
supposed to be generic with respect to a suitable set of forcing conditions and in
HAωa, a added to HAω. What that means and how it should work remains a
bit vague. We tried to make this precise in chapter ??. Furthermore he proved
Goodman’s theorem by stating that if A is arithmetic then HAω ` (A↔ p f A)
and HAωa + AC ` A ⇒ HAωa ` ∃e.e r A. With his key lemma to proving
Goodman’s theorem he did work out the details, the lemma says:

Fix an arithmetical A. Then there is a set C of forcing conditions
such that HAω ` ∀p∃q ⊂ p(q f (e r A→ A)).

In his proof for this lemma he defined the forcing conditions and used the
canonical realizers to prove his lemma. In his proof it is hidden that he proves
that the arithmetical formula A he fixed is self-realising. Then putting this
all together he gets his proof of Goodman’s theorem: Fix A arithmetic with
HAω + AC ` A. This gives HAωa ` e r A for some e. This again gives
HAω ` ∃p(p f (e r A)). Then by his key lemma HAω ` ∃q(q f A), hence
HAω ` A.

Beeson also states the extensional case, he explained that the problem is
that we need to use a notion of realizability such that

1. A arithmetical formula still needs to be self-realising.

2. The extensional axiom and AC are both realised.

In order to make this both possible he states that one has to use extensional
realisability. The only problem could arise in the implication, but with the

CHAPTER 5. LITERATURE 42

canonical realizers this will not be a problem. Trying to prove this ourselves,
we came to the same conclusion that the extensional realisability is the best
solution. A bonus with our proof was that when we wanted to prove the
extensional variant, we only had to change the part, HAω +AC is conservative
over HAPε, and the rest could just stay the same.

5.3 Gerard Renardel de Lavalette

In 1990 Gerard Renardel de Lavalette proved in his paper [?] that TAPP +
EAC is conservative over HA. Here TAPP is a type-free theory with a total
application. Just like in APP there are elements which are natural numbers
and elements which are not. EAC is the following choice principle

∀x(A(x) → ∃y.B(x, y)) → ∃f∀x(A(x) → B(x, fx)), here is A negative .

At this stage we introduced our ε and the axioms that come with that. Lavalette
did something similar. He defined a theory TAPPε by adding some constants
εA and the following axiom schema εAX(A) for every arithmetical formula
A(m,n) to TAPP

∀m(∃n.A(m,n) → ∃n(A(m,n) ∧ n = εAm)).

Note that the m,n are natural numbers. So ∀n.A(n) actually means ∀n(n ∈
N → A(n)). This new theory TAPPε also turned out te be a theory where
all arithmetical formula are self-realising, since he proved that TAPPε ` A↔
∃x.x r A ↔ τA r A. Here the terms τA are his canonical realizers, which
look a bit different but are similar to the canonical realizers presented in our
proof. This allowed him to prove that for arithmetical A TAPP + EAC `
A ⇒ TAPPε ` A. Of course now the thing to prove is that for arithmetical
A, TAPPε ` A ⇒ TAPP ` A. But if TAPPε ` A, then a finite amount of
axioms of the form εA have been used in the proof. So also TAPP+εAX(B) `
A where B = (n = 0∧A0)∨. . .∨(n = k∧Ak). Call this new theory TAPPε(B).
To eliminate the ε from this theory he defined forcing over a monoid M instead
over a poset. A monoid M is defined as a formula of TAPP with the following
conditions.

TAPP ` λx.x ∈M,

TAPP ` f, g ∈M → λx.f(gx) ∈M.

Here x ∈M is written for M(x). The thing to do now is to prove the soundness
of forcing as an interpretation of TAPPε(B) in TAPP. Unfortunately that
does not work, there is not a monoid to get both TAPP and εAX(B) forced.
The problem lies in quantification over terms containing ε. So also in this
proof we need to go via a weaker theory TAPPε(B)−. This weaker theory is
TAPPε(B), but with the axioms ∀x.A → A(t/x), A(t/x) → ∃x.A restricted
to t not containing ε and the equality axioms and the axioms for the constants
written with terms (which can contain ε) instead of variables. Proving that
TAPPε(B) is conservative over TAPPε(B)− is pretty easy. With the mapping
ε : TAPPε(B) → TAPPε(B)− where the only interesting definition is xε =
xε. It can be proven that TAPPε(B)− ` Aε ↔ A and TAPPε(B) ` A ⇒

CHAPTER 5. LITERATURE 43

TAPPε(B)− ` Aε. Now it is time to prove the soundness of forcing. This was
done by Lavalette in two steps first for the theory Tε = TAPPε(B)−−εAX(B).
Instead of doing this directly Lavalette chose to use an interpretation in an
modal theory with modal logic. The second step was to define the monoid in
order to get εAX(B) forced. The monoid he used was

M0 := {f |∀m(∀x(fxm = xm) ∨ ∃n(B(m,n) ∧ ∀x(fxm = n)))}.

Here f can be seen as an approximation of εB , just like the forcing conditions
we used were an approximation of E. With this monoid it can be proven that
TAPP ` ∃p.p f εAX(B). As a corollary this gives us that TAPP + EAC is
conservative over TAPP.

5.4 Thierry Coquand

In 2012 Thierry Coquand presented a paper [?] to clarify the papers which
were presented on Goodman’s theorem so far. Only Coquand’s proof is again
a bit different from all of the other papers. An important difference is that by
proving the theorem for an specific formula, his proof is written down almost
like an algortihm. What is interesting about that, is that he writes down the
specific formulas which need to be forced. Which are exactly the extra axioms
from our system HAPε for each subformula B,D from the specific formula A.
Just like Gerard Renardel de Lavalette, Coquand used the system TAPP in
between HAω + AC and HA to construct his proof.

5.5 Ulrich Kohlenbach

In 1997 Ulrich Kohlenbach puplished a paper [?] in which he proved a contrast-
ing result. He proved that (E-)HAω + ACar is not conservative over HA ,
where (E-)HAω is (E-)HAω with the restriction to quantifier-free induction
and HA is HA with the restriction to quantifier-free induction. The schema
of quantifier-free induction:

QF-IND : A ∧ ∀x0(A(x) → A(Sx)) → ∀x0A(x).

where A is quantifier free, instead of the constants of (E-)HAω we only have 00

and symbols for every primitive recursive function plus their defining equations.
ACar is the arithmetical axiom of choice:

∀x0∃y0A(x, y) → ∃f0(0)∀x0A(x, fx).

where A contains only quantifiers of type 0 and HAω + ACar − qf is HAω +
ACar with the restriction for A to the quantifier-free formulas.

We will give a overview of his proof for HAω+ACar−qf is not conservative
over HA . We will do this be showing that there is an Ã such that HAω +
ACar − qf ` Ã and PA 0 Ã and hence HA 0 Ã.

We will start with the fact (see [?]) that there is an instance of the collection
principle

Ã := ∀a, b̄(∀x < a∃y.A0(x, y, a, b̄) → ∃y0∀x < a∃y < y0.A0(x, y, a, b̄)).

CHAPTER 5. LITERATURE 44

where A ∈ Π0
0 of the arithmetical hierarchy and is quantifier free, such that

PA 0 Ã.
At the same time we do have HAω + ACar ` Ã:
First we will fill in ∀x < a∃y.A(x, y) in the arithmetical axiom of choice this
gives a function f such that ∀x < aA(x, fx). Now we can construct a y0 by
putting y0 = max(f0, . . . , f(a − 1)) + 1. Except of course when a = 0 then
y0 = f0 + 1.

Now in HA Ã can be rearranged to the form

∀a(∀x∃y.A0(x, y, a) → ∃y.B0(y, a)).

Here are A0, B0 quantifier-free as well. Now the expression of the axiom
of choice needed to prove Ã in HAω + ACar is quantifier-free, since A0 is
quantifier-free.
So HAω + ACar − qf ` Ã and PA 0 Ã. This completes the proof.

His proof is completely different from the proofs mentioned so far.

Appendix A

Appendix

A.1 Partial function symbols

We have a language L a system T and a n+ 1-ary relation symbol F . And the
axiom in the system T

∀x1, . . . , xn, y, y
′.F (~x, y) ∧ F (~x, y′) → y = y′.

We will construct a way to use a n-ary partial function symbol f instead of
the relation symbol F . First define semiterms; these are the constants and
variables of L closed under the function symbols of L and f . These are terms
in the language L′ = L ∪ f . Now define for all the semiterms t a formula
Dt(~x, y) in L with free variables ~x, y. We can read this as t is defined on ~x as
y. Here FV (t) ⊆ {x1, . . . , xn}.

Dc(y) := c = y,

Dx(x, y) := x = y,

Dg(t1,...,tm)(~x, y) = ∃z1, . . . , zm.Dt1(~x, z1) ∧ . . . ∧Dtm(~x, zm) ∧ y = g(z1, . . . , zm),
g is a function symbol in L

Df(t1,...,tn)(~x, y) = ∃z1, . . . , zn.Dt1(~x, z1) ∧ . . . ∧Dtn(~x, zn) ∧ F (z1, . . . , zn, y).

Then we define for a semiterm t, t↓:= ∃y.Dt(~x, y).
We translate the formulas φ ∈ L′ by defining a map (·)∗. For this map φ means
intuitively the same as φ∗ ∈ L. We just have to give the definition of this map
for the atomic formulas since the map leaves the logical operators the same.

φ∗ 7−→ φ,

R(t1, . . . , tn)∗ 7−→ ∃z1, . . . , zn.Dt1(~x, z1) ∧ . . . ∧Dtn
(~x, zn) ∧R(z1, . . . , zn),

(s = t)∗ 7−→ ∃y.Ds(~x, y) ∧Dt(~x, y).

This also means that if we have a map which projects terms on semiterms. Say
t 7−→ [t], where t is a term in L and [t] is a semiterm. Then this map extends
to formulas; φ 7−→ [φ] with φ ∈ L, [φ] ∈ L′. Just like above, there is for every
[φ] ∈ L′ a [ψ]∗ ∈ L such that the intuitively mean the same.

45

APPENDIX A. APPENDIX 46

A.2 Partial Combinatory Algebras

This section is about Partial Combinatory Algebras (PCA). This notion was
defined by Feferman in 1975 [?], he generalized the notion of total combinatory
algebras which was introduced by M. Schönfinkel around 1920. We can think
of a PCA as a model of a computation. The general idea is to consider a set A
with an application for every pair of elements a, b ∈ A, a · b. This application
can of course be partial. See [?] for more information.

A.2.1 Basic Definitions

Definition A.2.1. A partial applicative structure (pas) is a pair (A, ·). Where
A is a nonempty map and we have a partial map from A×A to A denoted by
(a, b) 7→ a · b. This map is called the application.

Since it is shorter we will often just write ab instead of a ·b. The application
does not have to be associative. So to avoid a lot of brackets we will adopt the
usual association to the left. Which means we write (ab)c as abc.

Let (A, ·) be a pas and V a set of infinite variable. The set E(A) of terms
over A is the least set such that the following holds:

1. A ⊆ E(A)

2. V ⊆ E(A)

3. if s, t ∈ E(A) then ts ∈ E(A)

We will write ab↓ to say ab denotes or is defined.

Definition A.2.2. A pas (A, ·) is combinatory complete if for any n ∈ N
and any term t(x1, . . . , xn+1) there is an element a ∈ A such that for all
a1, . . . , an+1 ∈ A the following holds:

1. aa1 · · · an ↓

2. aa1 · · · an+1 w t(a1, . . . , an+1)

Where t w s means that if t or s denotes then they both denote and t = s.

A pas is a PCA if it os combinatory complete.

Theorem A.2.3. Let (A, ·) be a pas. A is a PCA if and only if there are
k, s ∈ A satisfying for all a, b, c ∈ A:

1. sab↓

2. kab = a

3. sabc w ac(bc)

Proof. ” ⇒ ” Choose for k, s an element satisfying definition ?? for the terms
t(x1, x2) = x1 and t(x1, x2, x3) = x1x3(x2x3) respectively. Then 2) is clear,
1) follows from 1) in and 3) also holds. ” ⇐ ” Assume k, s satisfying 1)-3) of
the theorem. Then we can just as in section 3.3 have λ-abstraction defined by
induction on the terms t.

Then we can set a = λx1, . . . , xn+1.t.

APPENDIX A. APPENDIX 47

A.2.2 Kleene’s first model

The best known PCA is Kleene’s first model (K1). It is the set N with partial
recursive application. The partial recursive application is a, b 7→ {a}(b).

