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Abstract

In this thesis, I study an open problem in the current philosophy of
science: should countable additivity be an axiom of probability? We say
that a probability function is finitely additive if the probability of a union
of two (or any finite number of) events is equal to the sum of the single
probabilities of each event. This accepted by all schools of thought on
probability. Countable additivity just extends this property to countably
infinite unions of events. That this should hold is a hotly debated is-
sue. In mathematics, probability is defined axiomatically, its properties
prescribed without need of justification. Countable additivity is used in
almost all modern mathematical probability, because of the powerful in-
tegration technique, and convergence theorems it makes possible. Many
philosophers object that it is hard to justify this adoption, and that the
principle makes it impossible, amongst other things, to model a Humean
scepticism towards induction, and impossible to follow some very basic in-
tuitions which regard uniform distribution of probability over all possible
events. Having examined the available philosophical arguments, I reach
the conclusion that they all, on both sides of the debate, sometimes openly
but sometimes not, crucially rely on two deep intuitions which are simply
incompatible: one regards additivity, the other regards (the possibility of)
uniformity between probability values. Given that any argument for or
against the principle of countable additivity must contrast one of these
two intuitions, this explains why the debate is still open, and will most
likely stay that way. Finally, I examine a recent attempt at solving the
deadlock, which makes use of non-standard analysis, at the price of losing
real-valued probabilities and our usual idea of sum.
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1 Introduction

The debate which I explore in my thesis touches upon a number of different areas
of mathematical and philosophical reasoning. The dilemma around which it is
centred, however, is very simple. As many have done before, I present it by an
idealised example first introduced by Bruno de Finetti, a pioneer of probability
theory, active from the late 1920s to the 1980s, who discussed it in many of his
works. Strikingly, solutions to this example are still sought to this day: I present
in Chapter 6 an approach to it published in 2013. The idealised scenario is often
known as the ‘de Finetti lottery’, and it is as follows. Let us imagine a lottery
over all the natural numbers, each number representing a ticket. We know
that one, and only one, ticket will be picked, but of course we do not know
which one. What are the chances of one given ticket of winning? We would
obviously say the chances are very small. We might even say each ticket has,
in fact, no chances of winning. Let us represent these chances numerically, as is
convention in probability, with 1 for events which are certain, or almost certain,
and 0 for events which are impossible, or almost impossible.1 Informally, the
commonly accepted axioms, or rules that govern probability, are the following.
For now, let E represent a proposition whose truth value is uncertain, or an
event whose occurrence is uncertain, and interpret P as an informal measure
of this uncertainty; let A ∪B be the union of two events, or disjunction of two
propositions: this represents the event that A is the case, or that B is the case,
or that both are, if this is possible. We have:

(1) P (E) ≥ 0, with P (E0) = 0 if E0 is an (almost) impossible event or
proposition;

(2) P (E1) = 1, if E1 is an (almost) certain event or proposition;

(3) If A and B are two mutually exclusive events, or incompatible proposi-
tions, then

P (A ∪B) = P (A) + P (B).

The first two rules are just the convention that certainty is represented by 1,
impossibility by 0, and all other uncertain values are somewhere in between.
Note also the following: suppose we have an uncertain event H1 which ‘includes’
another one, H2; these could be, for example, the event that the roll of a die will
result in an even number, compared to the event that exactly 2 will be the result.
Then in general P (H1) = P (H1 ∪H2) = P (H1 \H2) + P (H2) ≥ P (H2), since
all probabilities are non-negative.2 Hence we also see from the rules that an
event or proposition which encompasses more than another event, is also more
likely than it. This seems common sense. We obtained it by using rule (3).
This rule is called finite additivity, and is accepted as a desirable feature of
probability by all schools of thought on the matter. It says that the probability
of two mutually exclusive events is the sum of their probabilities. For example,
if the number 2 has probability 1

6 of resulting from the roll of a die, and 5 has
the same probability, then the event that either 2 or 5 will come out is 2

3 . This
extends easily to any finite number of events: indeed, now consider the event
that ‘2 or 5’ will come out, together with the event that 3 will. We already

1We will see in Chapter 2 why we introduce the ‘almost’.
2The set H1 \H2 is the set of all events, or elements, which are in H1 but not in H2.
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know the probability of the first event, and also know that it is incompatible to
the second, so we use rule (3) again. These matters will be treated in a more
complete manner below. For now, let us return to our lottery.

Suppose we attach a probability to each number in the infinite lottery. What
should it be? Should all numbers be considered equally probable? Suppose
we answer yes to the second question. The problem is that any real number
is too big. Recall rules (3) and (2) above: the sum of any finite number of
probabilities should be less than 1. But however small we choose these positive
probabilities, by summing them we will eventually, in a finite number of steps,
achieve a number greater than 1. So, if we want to preserve the fact that all
numbers are equally probable, they must all be assigned probability 0. This
is fine by the three rules above: nowhere do they state that an infinite union
of exclusive events must have the same probability as the infinite sum of the
probabilities of the single events. But precisely such a rule is adopted in all
modern mathematical probability: it is called countable additivity. We write
it as follows:

(4) Let {An}∞n=1 be an infinite sequence of mutually exclusive events, all of
which have a well-defined probability value; then:

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P (An).

The immediate consequence of adopting countable additivity is that any uni-
form distribution of probabilities over all tickets in the infinite lottery is now
impossible. As above, any small number is too large; and now a uniform distri-
bution of 0s is also ruled out, for their countable sum is just 0, when this value
should be 1: all tickets together make up the certain event, because one ticket
will be picked. For an infinite number of probabilities to add up to 1, they must
form a convergent series. This means that the probabilities must form a se-
quence converging to 0. This in turn means that, whatever sequence we choose
to adopt, we will always have the vast majority of the probability assigned to
a finite set of numbers in the lottery. This contradicts this seemingly obvious
intuition:

“We should be able to assign equal probability to all events, including in
an infinite setting”

On the other hand, it is also clear that the solution of assigning 0 probability to
all events, when their union has probability 1, is also highly counter-intuitive:
we lose the idea that the total probability is the sum of its composing parts;
and we would have a sum of impossible events making up a certain event. The
intuition it contradicts can be expressed thus:

“The probability of a union of events, should be equal to the sum of the
probability of each event, including in an infinite setting”

These two intuitions are plainly in contrast: if we have a countably infinite
number of events, they cannot be both valid at the same time. Hence we must
choose which one to adopt and which one to drop. Perhaps the most influential
writer on this subject was Bruno de Finetti (1906-1985), who was a firm, vocal
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and life-long opponent of adopting countable additivity as an axiom. His main
motivation in this was his belief in the first intuition above, and the solution to
the infinite lottery which this allows. More discussion of his work and ideas is to
come. In the chapters that follow, I explore some consequences of adopting or
not adopting countable additivity, and what the philosophical foundations can
tell us about this choice. By philosophical foundations I mean, broadly speak-
ing, what we understand probability to be: for example, (i) the frequencies of
successes of an experiment in the long run; (ii) a personal expression of ignorance
or uncertainty; (iii) something which derives directly from intuitive axioms and
logic; (iv) or something really existing in the world. Interpretations (ii) and (iii)
will be treated in some detail, because they have the potential to shine a light on
the matter. We can ask, for example: if probabilities are nothing but an agent’s
degrees of uncertainty, should they then be countably additive? If probability
derives somehow from logic, should it be countably additive? These questions
are addressed in Chapter 4 and Chapter 5 respectively. Chapter 2 serves as
a more general background to the issue, where we see just why countable ad-
ditivity is so important for mathematics, we briefly address interpretation (i)
above, and we study some immediate consequences of the axiom, together with
some proposed solutions; in Chapter 3 we see the consequences that adopting
the axiom can have in epistemology; and Chapter 6 contains a recent proposal
on how to solve the deadlock surrounding the adoption of countable additivity.
My conclusions are in Chapter 7. I can anticipate, at the cost of ruining the
surprise at the end of what I hope is an interesting and wide-ranging debate,
that I found the available foundational arguments, for and against the adoption
of the principle, unable to decide the case. What is more, I found the two in-
tuitions outlined above to be ever-present, as an implicit or explicit backdrop
to nearly all arguments. Therefore, I conclude that the very structure of the
problem does not allow for a solution which will satisfy both intuitions.
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2 Mathematical probability and immediate con-
sequences of countable versus finite additivity

2.1 Setting

This chapter collects information about the discussion surrounding the axiom,
as a preliminary of sorts to the rest of the discussion I present. It forms an
extended ‘setting of the scene’ for the problem I address in my work. The
chapters that follow contain a more detailed analysis of some of the perceived
problems in adopting the axiom, some foundational arguments for or against
it, and a proposed way out of the deadlock. Before this, however, I think it is
good to know the following: why the axiom is so important for mathematical
probability; some immediate consequences of the adoption of the axiom for an
intuitive property of probability, and an intuitive understanding of probability;
and why it is relevant to think about the consequences of the axiom when we
consider a probabilistic view of induction. These matters are treated in this
order in the sections below.

2.2 Measure-theoretic probability, countable additivity and
integration

In this section, I outline some basics of measure-theoretic probability, which is
by far the dominating approach in modern mathematical probability (see Bing-
ham in [7], or the textbooks used in the present work, [3] and [9], but in general
most graduate texts on the subject). Far from aiming at formal completeness,
I just wish to explain why countable additivity is so fundamentally important
for this discipline. In this section I follow a recent textbook by Cohn [9]. (For
a full treatment, I refer the reader to the textbooks just cited, or any other
on measure theory or measure-theoretic probability.) As we will see, if we give
up on countable additivity, it is not only advanced applications that we must
forsake: the principle is needed for the very definition of Lebesgue integral. Most
often, the role of countable additivity is not highlighted—simply because the
principle is given in the axiomatic definition of probability, and holds no ‘special’
position with respect to the other axioms. In the context of my thesis, follow-
ing the thread of countable additivity in the foundations of measure-theoretic
probability will help explain why the vast majority of mathematicians adopt
the principle, and why the finitely additive probability demanded by de Finetti
has not achieved a great deal of success. De Finetti’s own position with re-
gards to integration, however, helps put his position into perspective: he was
not against countably additive probability; he merely thought finitely additive
measure should be considered probability measures too. In this section I first
give some definitions which are needed for the general discussion; then I explain
why the definition of integral does not make sense without countable additivity;
finally, I give de Finetti’s view on integration.

Definitions. The following are all taken from [9]. Here is the definition of
σ-algebra. This is a collection A of subsets of an arbitrary set S, such that:

1. S ∈ A;
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2. If A ∈ A, then AC ∈ A, where AC is the complement of A;

3. For any infinite sequence {An} ∈ A, we have that the union of all the sets

in the sequence is also in the σ-algebra:
∞⋃
n=1

An ∈ A.

An important σ-algebra for probability theory is the Borel σ-algebra in R.
It is the σ-algebra generated by the collection of open sets of R (where the σ-
algebra ‘generated by G’ is the smallest σ-algebra which contains the collection
of sets G).

A measure is a function µ which maps sets of the σ-algebra A to values in
[0,∞], has µ(∅) = 0, and is countably additive, which means

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An), (1)

for any sequence of disjoint sets {An} ∈ A. A measure space is (S,A, µ), or: a
set S, a σ-algebra defined upon the subsets of S, and a measure µ defined upon
the sets of such σ-algebra. A probability space is a measure space (Ω,A, P )
such that P (Ω) = 1. A set E with E ∈ A is called an event, and P (E) is
called the probability of such event. Because, in this context, an event with
probability 0 need not be an empty set, we call such event ‘almost impossible’.
Similarly, we call en event having probability 1 ‘almost certain’, as it need not
be the whole sample space. A measurable function, is a function f between
two measurable spaces (S1,A1) and (S2,A2) (sets which are associated with
a σ-algebra of their subsets), such that for all sets E2 ∈ A2, we have that
f−1(E2) ∈ A1. In the context of probability, such functions are called random
variables, and are the functions X : Ω → R, where the σ-algebra associated
to R is the Borel σ-algebra defined above. This is actually intuitive: a random
variable can be understood as a numerical observation (it has values in R),
whose probability we know because each observation can be mapped back to a
set which has a probability value. The distribution of a random variable X is a
probability measure defined directly on the Borel sets B of R by taking directly
P (X−1[B]) as a value [9, pp.307-308]. Next I will describe finite additivity, and
the common attitude taken by mathematicians towards the issue of finite versus
countable additivity. After that, an outline of Lebesgue integration will follow,
to explain how this relies on countable additivity.

Finite additivity. Finite additivity is the following property, valid for any
finite N ∈ N:

µ

(
N⋃
n=1

An

)
=

N∑
n=1

µ(An). (2)

Any countably additive measure is also finitely additive: we simply take the
finite sequence {An}Nn=1 and extend it by an infinite sequence of empty sets;
the measure of an empty set is 0, so the countable sum will be just be µ(A1) +
· · · + µ(AN ) + 0 + 0 + . . . . However, a finitely additive probability might not
be countably additive. Suppose the mutually exclusive sets {An}∞n=1 form a
partition of the set S (upon which the σ-algebra is defined). Then if µ is only
finitely additive, we can consistently have that for each i, µ(Ai) = 0, so that for
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any finite N ,

µ

(
N⋃
n=1

An

)
=

N∑
n=1

µ(An) = 0 (3)

while if we take a countable union we have

µ

( ∞⋃
n=1

An

)
= 1. (4)

This particular aspect of finite additivity can be said to be at the centre of the
philosophical debate on which I focus in my thesis. The question is whether we
should allow measures that are only finitely additive to be considered ‘proba-
bilities’ or not. Cohn exemplifies what I found to be the typical response of
mathematicians toward the issue:

Finite additivity might at first seem to be a more natural property
than countable additivity. However, countably additive measures on
the one hand seem to be sufficient for almost all applications and, on
the other hand, support a much more powerful theory of integration
than do finitely additive measures. Thus we will follow the usual
practice and devote almost all of our attention to countably additive
measures [9, p.7].

Here is Halmos, in his classical textbook on the subject:

Countable additivity is [. . . ] a restriction without which modern
probability theory could not function. It is a tenable point of view
that our intuition demands infinite additivity just as much as finite
additivity. At any rate, however, infinite additivity does not contra-
dict our intuitive ideas, and the theory built on it is sufficiently far
developed to assert that the assumption is justified by its success
[24, p. 187].

It was perhaps put most succinctly and famously by Kolmogorov, who was
among the first to provide measure-theoretic axioms for probability, and is con-
sidered the father of such approach in mathematics; we will discuss his view in
more detail in Section 5.4, so we omit it here.

Integration. Integration has a fundamental importance in probability theory,
and perhaps the main reason probability is studied as a part of measure theory,
is that we can use the powerful technique of Lebesgue integration, which I
will outline below. Integration is used to calculate the expected value of a
random variable (indeed, the expectation is defined as the Lebesgue integral of
a random variable (as defined above), with respect to the measure given by its
distribution), and related values such as the variance. Lebesgue integration of
measurable functions is defined in a natural way, starting from the concept of
measure we described above. Here is a brief outline, mostly taken from [3]. We
start from the integral of a simple function, which is a function that only
assumes a finite number (say n) of values. A simple function can be written as

g(x) =

n∑
k=1

yk1Ak(x),
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where 1Ak(x) is the indicator, or characteristic, function of the set Ak, defined
as

1Ak(x) =

{
1 if x ∈ Ak
0 if x 6∈ Ak

and yk are the values assumed by the function g. The Lebesgue integral of such
a function, with respect to the probability measure µ, is defined as follows:∫

g dµ =

n∑
k=1

ykµ(Ak).

This is a natural definition, which preserves the intuition that the integral is
the area under the graph of a function: we are multiplying the values assumed
by the function g, by the measure of the intervals over which these values are
assumed. The Lebesgue integral of a non-negative measurable function f is the
following:∫

f dµ = sup

{∫
g dµ : g ≤ f and g is a non-negative simple function

}
(5)

The integral of a general measurable function is the integral of the positive part
of the function, minus the integral of the negative part (if such an expression
makes sense, i.e. if they are not both infinite).

Continuity and countable additivity. How does the above rely on count-
able additivity? As we shall see shortly, definition 5 needs a property sometimes
called continuity of measures in order to make sense. This is equivalent to
countable additivity. I show a proof for this, before going on to explain how
it is used in the definition of integral. We are again working in the measure
space (S,A, µ). The continuity of measures is defined as follows: let {Ak} be
an increasing sequence of sets in the σ-algebra A. This means that for all k,

Ak ⊂ Ak+1, and so lim
k→∞

Ak =
∞⋃
k=1

Ak. By definition of σ-algebras,
∞⋃
k=1

Ak ∈ A.

Continuity is the following property:

µ

( ∞⋃
k=1

Ak

)
= lim
k→∞

µ(Ak). (6)

We now show it is equivalent to countable additivity. The proof is similar in
[9], [24] and [33].

Countable additivity ⇒ continuity. Define the sequence of sets {Bi} as
follows: B1 = A1, and Bi = Ai −Ai−1 for i > 1. Then the sets Bi are disjoint,

and are in A. We have that Ak =
k⋃
i=1

Bi, and so
∞⋃
k=1

Ak =
∞⋃
i=1

Bi. Therefore we
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can write:

µ

( ∞⋃
k=1

Ak

)
= µ

( ∞⋃
i=1

Bi

)

=

∞∑
i=1

µ(Bi) by countable additivity

= lim
k→∞

k∑
i=1

µ(Bi)

= lim
k→∞

k⋃
i=1

Bi (by finite additivity)

= lim
k→∞

µ(Ak).

Continuity⇒ countable additivity. Now let {En} be a disjoint sequence

of sets in A. Of course,
∞⋃
n=1

En ∈ A. Now define Fn =
n⋃
i=1

Ei. This is an

increasing sequence of sets, and so we can apply continuity:

µ

( ∞⋃
i=1

Ei

)
= lim
n→∞

µ(Fn) by continuity

= lim
n→∞

n∑
i=1

µ(Ei) (by finite additivity)

=

∞∑
i=1

µ(Ei).

This shows that continuity implies countable additivity, and vice versa. We now
go back to the definition of integral to see why this is relevant.

Integration and continuity of measures. As I anticipated above, hidden
in the definition of integral (5) is the requirement for continuity. I now explain
why this is the case: suppose, in that definition, that f is also a simple function.
But we already had a definition of integral of a simple function, and here we
are claiming that this integral is equal to the following: the largest integral
of a non-negative simple function g, such that g ≤ f . In particular, suppose
{gn} is a non-decreasing sequence of non-negative simple functions, such that
lim
n→∞

gn = f . By a property of integrals of simple functions (which I do not

prove here), we have that gn ≤ gn+1 implies
∫
gn dµ ≤

∫
gn+1 dµ. Therefore, in

this case definition 5 dictates that
∫
f dµ = lim

n→∞

∫
gn dµ. That this is the case

is guaranteed by continuity of the measure µ, and hence countable additivity.
We see this in the proof of the following theorem, which Cohn introduces before
giving the full definition of Lebesgue integral, explaining it is necessary for
such definition. It is Proposition 2.3.2 in Cohn’s book [9, pp.54-55]. With
all premises and notation of this paragraph, the theorem says the following:
if lim
n→∞

gn = f , meaning gn converges to f point-wise for each x ∈ S, then

indeed
∫
f dµ = lim

n→∞

∫
gn dµ. The proof by Cohn is as follows: because of
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the property of integrals mentioned above, we know that, since {gn} is a non-
decreasing sequence,

∫
gn dµ ≤

∫
gn+1 dµ ≤ · · · ≤

∫
f dµ. Hence lim

n→∞

∫
gn dµ ≤∫

f dµ. If we prove that the reverse inequality is also true, then equality must
hold between the two expressions. This is what we prove now. We want to
construct another sequence of non-negative simple functions, {hn}, such that
for all n it holds that hn ≤ gn, and with lim

n→∞
hn = (1 − ε)

∫
f dµ, where ε is

an arbitrary number number in (0, 1). Because
∫
hn dµ ≤

∫
gn dµ, we will have

(1 − ε)
∫
f dµ ≤ lim

n→∞

∫
gn dµ, and this in turn means

∫
f dµ ≤ lim

n→∞

∫
gn dµ,

because ε is arbitrary. We now need to construct such sequence {hn}. Recall
that f is a non-negative simple function, and suppose a1, . . . , ak are the non-zero
values that f assumes. Suppose it takes on these values in the sets A1, . . . , Ak

respectively. Then we can write f =
k∑
i=1

ai1Ai . Now for each n and i we define:

A(n, i) = {x ∈ Ai : gn(x) ≥ (1− ε)ai}

Each set A(n, i) ∈ A, and for each i the sequence {A(n, i)} is non-decreasing,
meaning that we have A(n, i) ⊆ A(n + 1, i). This is because gn converges to f
point-wise at each x ∈ S, and so for each i, gn reaches the value ai in the limit.
But this just means that, because (1− ε)ai < ai, eventually gn(x) ≥ (1− ε)ai.
This is true at all points x ∈ S, and so

∞⋃
n=1

A(n, i) = Ai. And now we recognise

that we have the necessary conditions to apply the continuity of the measure µ
to the sequence {A(n, i)}.3 We will indeed apply continuity shortly. First we
need to define the elements of the sequence {hn}:

hn =

k∑
i=1

(1− ε)ai1A(n,i).

This is a non-negative simple function, and we clearly have that hn ≤ gn for
each n. Finally, we have that:

lim
n→∞

∫
hn dµ = lim

n→∞

k∑
i=1

(1− ε)aiµ(A(n, i)) by definition of integral

=

k∑
i=1

(1− ε)ai lim
n→∞

µ(A(n, i)) because the sum is finite

=

k∑
i=1

(1− ε)aiµ(Ai) applying continuity of µ to {A(n, i)}

= (1− ε)
∫
f dµ.

This completes the proof. Summing up, we saw that for a consistent defi-
nition of Lebesgue integral we need continuity of the measure with respect to
which we integrate, and we showed that continuity is equivalent to countable
additivity. Hence we can conclude that, given the importance of integration in
probability, measure-theoretic probability relies heavily on countable additivity.

3The sequence of sets defined for equation 6 was actually increasing, rather than non-
decreasing; it is simple, however, to re-label a non-decreasing sequence of sets so that it
becomes increasing.
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De Finetti’s integration and countable additivity. For de Finetti’s full
outline of integration see his [14, pp.115-128]. Here I only remark that he draws
an informal parallel between the usual continuous functions of analysis, and the
special interest they have there, and random variables which have the property
above with respect to Lebesgue integration. He shows that such property is
equivalent to continuity of the measure, which in turn is equivalent to countable
additivity. Hence the random variables for which the theorem above holds,
could be called ‘continuous’. De Finetti suggests then, that we consider these
random variables, the ones that induce a measure which is countably additive, as
a special class, but not the only one. He explains that of the various properties
such random variables have, continuity would be the most important. By not
enforcing that all probability measures be countably additive, we avoid the
counter-intuitive aspects that countable additivity brings [14, p.121]. From this
point of view, it could seem that the disagreement is purely a matter of terms and
names: measure-theoretic probability could be seen as studying a certain class
of probability measures, which is the most important one, but not the only one.
However, this leaves open some difficult questions, such as if we should accept all
the results obtained through Lebesgue integration, or if we should consider the
powerful convergence results of measure theoretic probability as true in general.
If we claim that all relevant probabilities are countably additive, and use the
results that this gives, we should come up with some convincing explanation
of why we ignore probabilities which do not have this property. On the other
hand, if we limit ourselves to finitely additive probabilities, we should accept
some seemingly paradoxical results as being genuine characteristics of what
‘probability’ is. We see here at play the contrast between the two intuitions I
outlined in the introduction. The rest of this chapter is devoted to exploring
some characteristics and consequences of finite versus countable additivity.

2.3 Conglomerability

Conglomerability is a long name to describe a very natural characteristic of
probabilities, if we write them as weighted averages: namely, that the weighted
average is always within the range defined by the smallest and the largest value
in the average. What follows is a more careful definition. Below, I will follow
the definition and example given in [31], who in turn attribute it to [14]. I also
critically examine a possible solution to nonconglomerability, or the failure of
this natural property, given by Jaynes in his [30]. We have an event space S
and a finitely additive probability measure P defined on it; suppose we have an

exhaustive partition of S into n mutually exclusive subsets,
n⋃
i=1

hi = S. Then

we can write any event E as

E =

n⋃
i=1

E ∩ hi,

and by finite additivity of P

P (E) =

n∑
i=1

P (E ∩ hi).
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Now, the conditional probability of E, given hi is defined, if the denominator is
non-zero, as follows:

P (E|hi) =
P (E ∩ hi)
P (hi)

,

and so we can write P (E ∩ hi) = P (E|hi)P (hi), so that now we indeed have a
weighted average expression for P (E):

P (E) =

n∑
i=1

P (E|hi)P (hi).

Conglomerability is just the natural property of P (E), the weighted average,
to be within the range of the members P (E|hi) of the sum. Since the coefficients
P (hi) of the weighted average sum up to 1, this is actually a special kind of
weighted average known as convex combination. We express conglomerability
as the following property: for all constants k1, k2, if k1 ≤ P (E|hi) ≤ k2 for all
hi, then k1 ≤ P (E) ≤ k2.

Here is a practical, albeit completely fictional, example, to ground the idea
that this is a very natural and intuitive property for probabilities. Suppose we
are estimating how likely it is to have an accident, if we go through a busy
crossing without paying any attention to the traffic lights. In this fictional
scenario, the light stays red (event R) for 60% of the time, green (G) for 30% of
the time, and yellow (Y ) for 10% of the time; we write P (R) = 0.6, P (G) = 0.3,
P (Y ) = 0.1. We give the chances of being in an accident (A), if it happens
that we cross with a red light, as P (A|R) = 0.7; for the other lights we give
P (A|G) = 0.01, and P (A|Y ) = 0.05. Then the overall probability of being in an
accident if we go through this crossing while paying no attention to the lights,
is

P (A) = P (A|R)P (R) + P (A|G)P (G) + P (A|Y )P (Y ) = 0.428

A failure of conglomerability in this context (although we would never really
have it in a finite case such as this) would mean that: either we would affirm
that the overall risk of being in accident at that crossing is higher than the
specific probability of crossing when it is most dangerous, namely when the light
is red; or that the overall risk is lower than crossing when it is safest, when the
light is green. Neither option makes any sense. Unfortunately, as anticipated
above, there exist known failures of conglomerability, cases which are allowed
by a merely finite probability measure, but not by a countably additive one. If
we only impose that probabilities be finitely additive, we must accept that they
might fail on conglomerability.

A finitely additive probability measure which is not conglomerable
over all partitions. Here is the example given in [31]. Let P be a finitely
additive probability measure, defined over all sets of couples of positive integers,
i.e. the set {(i, j) : i, jare positive integers}. This is also the set of integer
coordinate points of the first quadrant. We define

P ((i, j)) = 0

for all single points (this is allowed by finite additivity), and

P ((i, j)|B) = 0
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if B is an infinite set. We now want to look at the probability of the set
A = {(i, j) : j ≥ i}, or the set of all points above the diagonal line i = j,
including the diagonal itself. We first define the partition π1 of the first quadrant
as follows, for all finite i, j:

π1 = {hi : hi = {(i, j)}} .

So hk is just the set of all points with i-coordinate equal to k: the vertical
line of points at i = k. It is clear that π1 is an exhaustive partition of the
first quadrant, made of mutually exclusive subsets. Hence by conglomerability,
P (A) must be within whatever constants constrain all values P (A|hi). We note
the following, however. For any i, P (A|hi) +P (AC |hi) = 1, by finite additivity.
But we also know that:

P (AC |hi) = P ((i, 1)|hi) + P ((i, 2)|hi) + · · ·+ P ((i, i− 1)|hi) = 0

where the first equality is true by finite additivity of P , and the second one by
the definition of P and the fact that we only ever have a finite number of points
(i, 1), . . . , (i, i−1) under the diagonal line i = j, and so not in A. It follows that
we have:

P (A|hi) = 1

for all finite i, and so, by conglomerability, P (A) = 1, since P (A) must be within
any constant which constrain the values P (A|hi).

We now partition the first quadrant in horizontal lines, rather than vertical
ones:

π2 =
{
h′j : h′j = {(i, j)}

}
.

We still have for all j that P (A|h′j) +P (AC |h′j) = 1, but this time, by the same
reasoning as above, we see that

P (A|h′j) = 0

for all j, and so, again by conglomerability, we see that P (A) = 0. But P (A)
cannot be 0 and 1 at the same time; and hence, over one of the two partitions,
conglomerability must fail.

A suggested solution for the nonconglomerability example. This has
been the argument above: one partition imposes a certain value for P (A), while
another partition imposes a different one. P is single-valued and so we must
choose which value of P (A) applies. Having made this choice, it must result
that with respect to one of the two partitions, P is no longer conglomerable,
since the value for P (A) will now be out of the range of the values of P (A|hn).
I repeat it here because I think it will make clearer my criticism of the solution
proposed by Jaynes to this example, in [30, pp.453-455]. I present this solution
below, with some slight modifications in order to adapt it to the example I
described just above.

The idea, in this solution, is to start from a finite M × N array of points
in the first quadrant, deduce an explicit expression for P (A) in the finite case,
and then observe the behaviour in the limit of this expression. What we will
see, is that, having obtained an explicit formula for P (A), it is absurd to think
that this could change according to how we partition the first quadrant; it
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can only change according to how the limit is approached, or how the M ×N
arrays increase in size as M and N go to infinity. Moreover, we will see that
the expression for P (A) is bounded by the expressions P (A|hn) both in the
case of horizontal partitions, and of vertical partitions, for all finite M and N .
Hence it will be bounded by these expressions in the limit too. Jaynes claims
he has solved the riddle, and that it arose simply from a bad understanding of
mathematical infinity and of limits. We should never operate on infinite sets
directly, but only on finite sets, and then observe the limiting behaviour. I think
Jaynes misses the point in two ways. The first is that it is pointless to show, as
he does, that P (A) is conglomerable with respect to one or another partition,
because even in the example above this was trivially the case. The problem was
that the two resulting probabilities were in disagreement with each other. Here
this cannot happen, since we have an explicit expression for P (A). The second
way Jaynes, in my opinion, misses the point, is contained in how he concludes
the section on this example:

Thus, nonconglomerability on a rectangular array, far from being a
phenomenon of probability theory, is only an artifact of failure to
obey the rules of probability theory as developed in Chapter 2 [30,
p.455].

Jaynes’ Chapter 2 in [30], is the derivation of quantitative probability rules from
qualitative axioms, following Cox’s [10]. As I will discuss in detail in my Chapter
5, there is nothing in that derivation which includes countable additivity. Hence
the point here is that probability theory as developed in Jaynes’ approach does
permit examples of nonconglomerability, and this is what is problematic. In
order to solve this example Jaynes must modify it. I give this attempted solution
in what follows.

We start from a finite M × N array in the first quadrant, and we take
A = {(i, j) : j ≥ i} as before (this is a very slight deviation from Jaynes, who
takes the set of points with j > i; it is not a substantial difference, of course).
We assume now that each point (i, j) has probability 1

MN . This fundamental
assumption changes the whole nature of the example, because in the case above,
all points had individual probability of 0. I will take Jaynes’ point through
anyway, and display the necessary calculations, for completeness, and in order
to explore whether we have any insights into the example above. By counting,
we see that the following holds:

P (A) =


N+1
2M if M ≥ N

1− M−1
2N if M ≤ N

(7)

We also calculate the probabilities over the vertical and horizontal partitions
of the first quadrant. The notation is like above. For the vertical partitions we
have:

P (A|hi) =

 1− i−1
N for 1 ≤ i ≤M ≤ N and 1 ≤ i ≤ N ≤M

0 for N ≤ i ≤M
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Whereas for the horizontal partitions we have:

P (A|h′j) =

 1− j
M for 1 ≤ i ≤M ≤ N and 1 ≤ i ≤ N ≤M

1 for N ≤ i ≤M

We can now check if the extreme values of P (A|hi) and P (A|h′j) include all
possible values of P (A), for all finite M and N . In other words, we are checking
conglomerability. This indeed holds, because for the vertical partitions we have
the following:

Vertical partitions, case M ≥ N . The upper bound of P (A|hi), with
1 ≤ i ≤ N ≤M , is 1. The lower bound is 0. Taking the relevant expression from
equations 7, we see that indeed conglomerability holds, because when M ≥ N :

0 ≤ N + 1

2M
≤ 1

Vertical partitions, case M ≤ N . Here the upper and lower bounds for
P (A|hi) are, respectively, 1 and 1− M−1

N . Hence, with M ≤ N , we indeed have
conglomerability:

1− M − 1

N
≤ 1− M − 1

2N
≤ 1.

For the horizontal partitions equivalent reasoning show that conglomerability
holds in all finite cases. I only write the expressions for the lower and upper
bounds on P (A|h′j), to show how they indeed constrain the value of P (A), given
in the relevant expression from equations 7.

Horizontal partitions, case M ≥ N .

1

M
≤ N + 1

2M
≤ N

M

Horizontal partitions, case M ≤ N .

1

M
≤ 1− M − 1

2N
≤ 1

I showed the solution displayed by Jaynes because, I believe, it has some
appeal. It seems that we have solved the issue of nonconglomerability by just
being careful with how we approach infinity. However, as I pointed out above,
we now see that the problem is not really solved at all. In fact, if we take
the same finitely additive probability measure as was in the original example
by [31], which is the one Jaynes is actually replying to, we simply end up in
the same situation, since for all finite arrays M ×N , P (A) would be zero, and
we could attach a different value to an infinite union of points, because finite
additivity, which is all Jaynes has proved, does not forbid this. I also mentioned
the superfluousness of showing that P (A) is conglomerable with respect to both
partitions, and we see this now explicitly. We have an expression for P (A), so
it is impossible that with the lower and upper bounds of P (A|hi) and P (A|h′j)
we can ‘bound values of P (A) away from each other’, which is what happened
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in the first problematic example. However, Jaynes had to modify the problem
in order to solve it, and his own rules allow such problems as the original to
exist—therefore, on this evidence, nonconglomerability must be accepted as a
possible phenomenon if we accept finitely additive probability.

Admissibility. As is explained in [31, pp.213-214], we see that nonconglom-
erability leads to a failure of a principle of decision theory called admissibility.
Without delving into decision theory, we can simply say the following: suppose
we have an event space partitioned into sub-events, and we have to make a
decision on which action to take. Suppose we can take either of two options,
each of which has a cost, associated to which event in the partition occurs. If
one action has a better cost profile over all possible events (represented by the
partitions of the event space), then this action is strictly preferred to the other
one, which is called inadmissible [31, p.214]. Suppose, however, that we take
this reasoning and apply it to the first example above. If we partition the event
space over the vertical lines, we would bet on A in all partitions, since it has
probability 1. However, if we partition the event over horizontal lines, we would
bet against A, since it now has probability 0 in all sub-events (the partitions).
Hence betting for and against A can both be either the preferred option or in-
admissible, according to which partition of the event space we consider. Briefly
put: finite additivity permits failures of admissibility. Next, we will see the
relation between a popular way to view chance, and countable additivity.

2.4 Frequency interpretation of probability

Perhaps the most intuitive understanding of probability is gained by thinking
of it as a frequency: in a repeated experiment, we count how many instances
of a certain event occurred, and we take the ratio of that number over the
total number of experiments. This, then, will perhaps give us an indication of
how likely an event is to occur in the future. For the ‘true’ probability of a
certain phenomenon, we can take the limit, for the number of trials going to
infinity, of the finite ratios of number of successes over number of trials. We
could see two potential problems here, in the context of countable additivity:
(1) the argument that sustains the claim that through a large number of trials
we will reach the true probability of a phenomenon is often based on ‘laws of
large numbers’, of which there exist many kinds, but in many cases they rely
on countable additivity. This is only really a potential issue because of problem
(2), which is, very simply, that limiting frequencies, as we will see again in
Chapter 6, are not countably additive. We readily see this with the infinite
lottery example: each ticket has, in the limit, a frequency of 0, and yet their
probabilities must add up to 1. Different authors have positioned themselves
differently with respect to this issue. Van Fraassen simply asserts that, since
limiting relative frequencies fail countable additivity, they cannot be considered
a suitable definition of probability [19, pp.133-135]. Others, such as Schurz and
Leitgeb [34, pp.257-259], suggest that this might mean that countable additivity
is too strong a requirement, since it deprives us of an intuitive and seemingly
well-grounded understanding of probability. They underline that abandoning
countable additivity can pave the way for the “[d]evelopment of a genuinely
frequentistic probability theory” [34, p.259] [emphasis in the original]. De Finetti
is opposed to the interpretation of probabilities as limiting relative frequencies,
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but still points out that on this interpretation, as well as on his own, countable
additivity is not a valid requirement [14, pp.89-90].

2.5 The infinite lottery and Humean scepticism towards
induction

In [34, p.258], Schurz and Leitgeb explain that “a Humean skeptical view of
induction requires a non-[countably-additive] probability measure” (emphasis
in original). This is closely linked to the argument by Kelly which I explore
in Chapter 5, so I will not go over the general claim. Here I go back to the
infinite lottery, to see in practice what this claim means. To make the link with
induction, we take an infinite lottery ‘in time’ (this is in some respects similar
to the example by Howard in [26, pp.133-134]). Thus we imagine a situation in
which we start examining the tickets one by one, starting from tickets 1, 2, 3, . . . ,
and we check whether each one is a winning ticket. We can visualise this as
an (infinite) urn containing numbered balls. However, in order to have two
simple hypotheses to compare, we further modify the infinite lottery scenario:
now we do not know whether we are in one of the following two situations:
(1) either all balls are black, and there is no winning number, or (2) there is
exactly one white ball, which represents the winning number. As we examine
one ball after another, we must decide whether we are in situation (1) or (2). We
model this example as it would be viewed by a Bayesian observer, which in one
case will employ countable additivity, and in the other only finite additivity.
The observer will update her degrees of belief according to the evidence she
has seen up to a given moment, and decide which hypothesis, (1) or (2), she
deems more likely. How do we represent Humean scepticism towards induction,
in this context? A Humean sceptic will refuse to predict the future according
to the necessarily finite number of balls she has examined. Hence, as we will
see in this example, she will need to adopt finite additivity only. Note that in
the countable additivity case, this is a numerical example, to see in practice
the effect of the principle, but the result is general, as stressed throughout my
thesis: for a countable sum of probabilities to converge to 1, the individual
probabilities must, from some finite point onwards, form a decreasing sequence.
Hence I show also the general result (general insofar as the two hypotheses we
consider are equi-probable to start with).

These are the two possibilities in the situation described above, and labelled
with the letter we will adopt for them:

• B := all balls are black,

• W := there is one white ball.

As our observer takes balls from the urn, she records their colour in the following
way: she writes 1 if the ball is black, and 0 if the ball is white. Hypothesis B is
made true by an infinite sequence of 1s. All sequences that end in a 0 make W
true. We assume that the lottery ends if the winning ticket is picked. P (10),
for example, is the probability of picking first a black ball, then the white one.
P (10|B) is the probability of observing such a sequence, given that hypothesis
B is true. I assume throughout finite additivity of this kind:

P (1) = P (10) + P (11).
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Note that in the distribution of probabilities P (·|W ), or the probability of a ball
being black or white given that there exists one white ball, we are back to the de
Finetti infinite lottery. I give simple numerical examples of what happens when
we impose that these conditional probabilities add up to 1 (respecting countable
additivity) and what happens if we apply a de Finetti-style fix to the problem,
i.e. assign 0 to all these conditional probabilities. In what follows I suppose
the prior probabilities for B and W are the same, namely P (B) = P (W ) = 1

2 .
Clearly, we also have P (1 . . . 0|W ) = 1, P (1 . . . 0|B) = 0. Lastly, I will write
1(n) for a sequence of n 1s.

First case: imposing countable additivity. Suppose the probabilities
P (·|W ) follow this sequence: P (0|W ) = 1

2 , P (10|W ) = 1
4 , P (110|W ) = 1

8 ,

and so on: P
(
1(n−1)0|W

)
= 1

2n . These values add up to 1 because
∞∑
n=1

1
2n = 1,

so countable additivity is ensured. First I explain a numerical example, then I
show the general case. We want to know:

P
(
B|1(n)

)
=
P (B)P

(
1(n)|B

)
P
(
1(n)

) (8)

and

P
(
W |1(n)

)
=
P (W )P

(
1(n)|W

)
P
(
1(n)

) , (9)

since if the white ball is extracted there is no uncertainty over which hypothesis
is correct. Suppose we extracted 2 balls. We have

P (11|W ) + P (10|W ) + P (0|W ) = 1

and P (10|W ) = 1
4 , and P (0|W ) = 1

2 , so P (11|W ) = 1
4 . We also can find P (11):

P (11) = P (B)P (11|B) + P (W )P (11|W ) =
1

2
+

1

8
=

5

8
.

Also, P (11, B) = 1. Then we get P (B|11) = 4
5 and P (W |11) = 1

5 . This suggests
that the probabilities for B being true will converge towards one as we extract
more black balls. This is what Kelly points out, and it is indeed the case. For a
general number n of balls extracted we have (I omit calculations since they are
entirely similar to the simple 2-ball case just seen):

P
(
B|1(n)

)
=

2n

2n + 1
,

and

P
(
W |1(n)

)
=

1

2n + 1
.

We also have, as expected, P
(
W |1(m)0

)
= 1 and P

(
B|1(m)0

)
= 0. As we see,

the probability of hypothesis B, that there is no winning ticket, increases as we
observe more black balls, whereas hypothesis W becomes less probable on this
evidence. Away from this numerical example, we can show that this is the case
in general. Suppose that for M > N we have that P

(
1(M)|W

)
≤ P

(
1(N)|W

)
;

note that it must be possible to find such a case, since

P (1(n)|W ) + P (1(n−1)0|W ) + · · ·+ P (0|W ) = 1,
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and countable additivity imposes that the values P (1(m)0|W ) cannot all be 0.
If we show that it follows that

P
(
1(M)|W

)
P
(
1(M)

) ≤
P
(
1(N)|W

)
P
(
1(N)

) ,

then we are done, because we would have P
(
W |1(M)

)
≤ P

(
W |1(N)

)
by equa-

tion 9. Now, we know that

P
(

1(M)
)

= P (B)P
(

1(M)|B
)

+ P (W )P
(

1(M)|W
)

=
1

2
+

1

2
P
(

1(M)|W
)
,

and similarly for P
(
1(N)

)
. So in fact,

P
(
1(M)|W

)
P
(
1(M)

) =
2P
(
1(M)|W

)
P
(
1(M)|W

)
+ 1

.

Let x := P
(
1(M)|W

)
and note that 2x

x+1 has derivative 2
(x+1)2 and thus is an

increasing function on (0, 1). Therefore, we can conclude that P
(
1(M)|W

)
≤

P
(
1(N)|W

)
implies that

2P
(
1(M)|W

)
P
(
1(M)|W

)
+ 1
≤

2P
(
1(N)|W

)
P
(
1(N)|W

)
+ 1

,

and this in turn means that P
(
W |1(M)

)
≤ P

(
W |1(N)

)
. So we see that because

of countable additivity, seeing a larger number of black balls implies that we
must assign a lower probability to the hypothesis that there a white ball in the
urn. This could be seen as a Bayesian solution to the problem of induction:
but the role of countable additivity in this solution is what many authors find
suspect.

Second case: de Finetti-style solution Now suppose P (0,W ) = P (10,W ) =
· · · = 0. This is de Finetti’s desired distribution for the ‘infinite lottery’. Having
extracted two balls, we have

P (11,W ) + P (10,W ) + P (0,W ) = P (11,W ) + 0 = 1

and

P (11) = P (B)P (11, B) + P (W )P (11,W ) =
1

2
+

1

2
= 1.

This stops the convergence which Kelly and other authors find suspect, since we
see plugging in these values that P (B, 11) = 1

2 and P (W, 11) = 1
2 . This could

represent Humean scepticism towards induction. It is also obviously true for
any finite number of extracted balls:

P
(
B|1(n)

)
=

1

2
,

and

P
(
W |1(n)

)
=

1

2
.
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Unfortunately, however, if we try to evaluate P
(
W, 1(m)0

)
and P

(
B, 1(m)0

)
,

which should be 1 and 0 respectively, we immediately see we would need to
divide by 0, since P

(
1(m)0

)
= 0:

P
(

1(m)0
)

= P (B)P
(

1(m)0|B
)

+ P (W )P
(

1(m)0|W
)

= 0 + 0.

This is quite strange: Bayesian updating would fail upon viewing the white ball,
just when the hypothesis W would be confirmed as true.

Summing up: (i) we saw in practice how countable additivity can give con-
vergence in a somewhat artificial way; (ii) we saw that finite additivity has the
means to stop any sort of convergence, but also has some disconcerting aspects,
like not being able to compute, in our example, the probability of there being a
winning ticket, upon having seen such winning ticket.

2.6 Remarks

I conclude this chapter by summing up what we saw so far, and adding some
brief remarks. Firstly, countable additivity is an essential part of modern math-
ematical probability, in which this is defined as a measure. This view made
the study of probability a fully formal branch of mathematics, and has dom-
inated, indeed defined, this branch since its axiomatisation by Kolmogorov in
1933 in [33] (see [37, pp.1-26, 198-199]). We will have occasion to comment on
the consequences of this throughout this text. Secondly, we saw that the failure
of countable additivity can have very counter-intuitive consequences (noncon-
glomerability), and that a fix to this does not really seem possible. Thirdly, we
also saw how the adoption of countable additivity can have counter-intuitive
properties, namely that we cannot think of probabilities as long-run relative
frequencies of experiments. Lastly, we witnessed how the adoption of the axiom
is relevant in a probabilistic treatment of induction: because of the convergence
it enforces, a universal hypothesis (all balls are black) became more likely than
its existential complement (in the context, that there exist one white ball), the
more positive instances we saw. We keep with the scenario of the infinite lottery
in time in the next chapter, in which we examine hypotheses more complex than
those seen here, W and B.
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3 Countable additivity and Kelly’s Formal Learn-
ing Theory

3.1 Setting

We are in the scenario described in Chapter 2: an agent is extracting balls from
an urn, and writing a 0 or a 1 if the ball is respectively white or black. We
noted in that chapter that countable additivity gave us a tangible ‘advantage’,
or bias, towards one of the two hypotheses. Kelly, in his 1996 book [32], has
been a vocal critic of just this characteristic, and has been influential in keeping
open the debate surrounding countable additivity. He is mentioned by most
of the contemporary authors I cite in this text, whether they agree with his
conclusions or not. Kelly’s book is on formal learning theory, a kind of formal
epistemology. One of the reasons his arguments have been so influential in the
debate on countable additivity, is that, in his framework, we see explicitly just
what epistemological advantage countable additivity gives us.

3.2 Convergence-to-the-truth theorems

We could describe Kelly’s argument schematically thus: countable additivity is
crucial to the mathematics which underpins a class of results known as conver-
gence to the truth theorems (or convergence of opinion theorems), which could
be perceived as important for Bayesian philosophy of science. But countable
additivity is a suspect principle, because it gives an epistemological advantage
(because of its convergence properties) which finite additivity does not. Hence,
it is not an innocuous technical assumption, but one of utmost philosophical rel-
evance: if we adopt the principle to obtain convergence theorems, we should be
prepared to somehow defend this adoption on philosophical grounds. Broadly
speaking, a convergence of opinion theorem is a kind of theorem which ensures
that, as evidence accumulates, degrees of belief converge towards the confir-
mation of a correct hypothesis and refutation of fallacious ones. I give some
more detail about subjective Bayesianism in Chapter 4. Briefly put, according
to this influential school of thought, probability is a personally held degree of
belief in a hypothesis, or occurrence of an event, or the like. Coherent agents
must have degrees of belief that respect the rules of probability calculus, or they
could suffer certain loss from betting (or perhaps relying) on their beliefs. A
possible problem with this view could be how to explain convergence of opinion
in science, and the objectivity of science: after all, rational agents are free to
choose any coherent collection of degrees of belief. And a possible answer to
this problem, is a convergence of opinion theorem: whatever the starting degree
of belief of different rational agents, as they see more and more of the same ev-
idence, they will converge to the same, correct, hypothesis. Kelly takes explicit
aim at this kind of theorem. In the opening of his chapter in [32] on probability,
he says:

Of particular interest are the limiting reliability claims made for
probabilistic methods. For example, it is often said that the pro-
cess of updating probabilities by Bayes’ theorem will almost surely
approach the truth in the limit [. . . ]. In the light of the many neg-
ative results in the preceding chapters [of [32]], such claims sound
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too good to be true. Are they? Or do they illustrate the triumph of
modern, probabilistic thinking over scepticism?

Kelly’s book is relatively recent, but there seems to be some consensus now
that this sort of confirmation of a hypothesis is no longer considered important
or worthy of exploring. Weisberg (in 2011) [38, p.23], says: “Many do not
think these theorems provide any real vindication, and would not miss them
if they were lost”. There existed misgivings about such theorems already, for
example, in the earlier works of Glymour (1980) [21, pp.72-74] and Earman
(1992) [18, pp.147-149]. It may well be that Kelly’s was a decisive blow for
such interpretation of probabilistic convergence theorems as convergence-to-the-
truth. In the positions above, however, the characteristics most criticised of
these theorems is that they are true in the limit, which means, to put it crudely,
when we are all dead; and that, as Weisberg puts it,

the theorems only show that the convergence will happen “almost
everywhere” i.e. on a set of models with probability 1, where that
certainty is judged by the probability function whose success is in
question. From an impartial perspective, one that does not assume
that the agent’s initial probabilities have any bearing on the truth,
this guarantee is no guarantee at all [38, p.23].

We should note that these perceived problems do not depend on countable ad-
ditivity. Weisberg mentions a convergence theorem by Hawthorne, presented
in [25], that uses only finite additivity, but comments that in it too the con-
vergence is relative to the probability function we start out with. Furthermore,
although we mentioned in Chapter 2 that countable additivity is adopted for its
convergence properties, versions of some of the convergence theorems (versions
of the strong law of large numbers, for example) exist also in finitely additive
setting (see [8]). Obviously, being limit theorems, they are open to the first
criticism above, if we wish to interpret them as applicable to human agents.

Here is an example of a theorem which can be interpreted as a convergence to
the truth theorem, which is cited by Kelly. It is in Halmos’ textbook on measure
theory [24, p.213]. Its proof makes use, of course, of countable additivity. I do
not wish to write it out completely formally, as this would require introducing
a lot of notation for which we will have no further use. We can explain it
thus: suppose we have an infinite sequence of sets {Xi}, and we take as our
event space their Cartesian product, which we call X. This is the set of all
the points x = (x1, x2, . . . ) such that x1 ∈ X1, x2 ∈ X2, and so on. Then
for any measurable set E ∈ X (a measurable set is a set in the σ-algebra—
see Chapter 2), we consider the probability of such set E, conditional on the
first n coordinates of a point in x ∈ X (this point is an infinite sequence of
coordinates). As n → ∞, this conditional probability converges to either 0 or
1, according to whether x is in E or not; this convergence is valid for all x ∈ X,
except for on a subset of X of measure 0. The interpretation as ‘convergence
to the truth’ is clear: suppose E is our hypothesis—that all balls in the urn
are black, say; interpret x as the infinite sequence of balls which in principle we
could extract from the urn; we modify our probability for E by conditioning on
the first n balls we have seen. Then, as n→∞, we see that our hypothesis will
converge to having probability 1 or 0 according to whether the sequence of balls
is one that, at infinity, makes the hypothesis E true, or not. (The sequence of
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balls in question is the uninterrupted sequence of black balls.) It will converge,
that is, except for on a set of sequences of measure 0. From this example we see
both why it is tempting to give a real-world interpretation to such a theorem,
and its clear shortcomings in this. I believe the scepticism towards such an
interpretation expressed in the remarks in the last paragraph, are enough to
conclude that countable additivity need not even enter in the discussion of
these theorems. Attacking convergence to the truth theorems now would even
seem pointless. Nonetheless, I think Kelly’s remarks on countable additivity
are interesting in themselves, because they allow us another perspective on the
issue, from an epistemological point of view. I sketch his approach in what
follows.

3.3 Kelly’s framework

I give a sketch of Kelly’s framework, enough to understand his point about
countable additivity. We keep working with our running example of an infinite
urn containing black balls and, perhaps, a white one. But now we generalise this
situation by stating that there need not be only one white ball. We just know
there are white balls and black balls in the urn. Our hypothesis, previously, was
that either all balls are black, or there exists one white ball. Now we wish to
study two more generalised hypotheses:

W′: there exist only a finite number of black balls, meaning after a certain
point, all balls in the infinite sequence will be white;

B′: there exist an infinite number of black balls, meaning there is no such last
black ball.

As in the previous treatment of the example, our agent writes down 0 when she
encounters a white ball, and 1 when she encounters a black one. I will mostly
talk of these sequences of numbers directly, as they allow an easier treatment
than constantly mentioning coloured balls. We can visualise the situation as in
Figure 1 below.

0

0

0

0

00 0 1

1

1

0 1

111 0

0

0

1

00 0 1

1

1

0 1

111

Figure 1: Possible sequences of 0s and 1s. In this example the agent picked balls
of colours: black, white, black.

Now, we interpret what she is writing as the initial segment of an infinite se-
quence of 0s and 1s. We have no further information about the contents of the
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infinite urn, so in principle all infinite sequences of 0s and 1s are possible. The
set of all infinite sequences of 0s and 1s is called the Cantor space. If we un-
derstand the finite sequences that our agent writes down as the initial segments
of infinite sequences, then we see that in fact the sequence could continue in
any direction after the initial one registered (i.e. it could continue as any com-
bination of 0s and 1s). We call fan the set of all infinite sequences that share
the same finite initial sequence. Hence what our agent records is always a fan.
We can see a fan represented in 1 as a thicker line, which could then continue
in any direction. Kelly characterises hypotheses as open, closed and clopen
(both open and closed) sets of the Cantor space. In the topology defined on the
Cantor space, the open sets are arbitrary unions of fans, and the closed sets are
just the complements of such open sets.

We associate hypotheses to types of sets as follows. The simple hypothesis
that there exists (at least) one white ball is made true by all the sequences that
contain at least one 0. That is, all fans which contain at least a 0 confirm our
hypothesis. This is clearly an infinite collection of fans, and hence it is an open
set of the Cantor space. Because it is possible to verify this hypothesis with a
finite number of observations (we just need to see a 0), we call such a hypothesis
verifiable with certainty. The complementary hypothesis to this is that all
balls are black. This is made true by an infinite, uninterrupted sequence of 1s.
This is a closed set, being the complement of the open set which made true
its complementary hypothesis. Because it is possible to prove this hypothesis
wrong with a finite number of observations (we just need to see a 0), we call
such hypotheses refutable with certainty.

So far we have established these connections:

• hypothesis verifiable with certainty ↔ open set

• hypothesis refutable with certainty ↔ closed set

But our hypotheses above, W ′ and B′ do not fall in either of these descrip-
tions. They regard the number of black balls: is it finite or infinite? We will
never get an answer to this from a finite number of observations. We must
stop observing at some point, and even if we observed white balls all our life,
the day after we retire, a black ball could emerge. But not all is lost, at least
we can still classify these hypotheses. This is how: suppose we are examining
hypothesis W ′ (that there are only finitely many black balls, so only finitely
many 1s), by looking at successive balls. Then we guess an assessment of the
hypothesis simply by saying it is correct every time we see a white ball, and
incorrect every time we see a black ball. Suppose there are only finitely many
black balls. Then there must be a final one. After the black ball, and onwards
to infinity, our assessment will stabilise to the right answer: it will say W ′ is
correct. We then call the hypothesis W ′ verifiable in the limit. Now take the
complementary hypothesis B′ that there exist infinitely many black balls. This
hypothesis is refutable in the limit by virtually the same assessment method,
only this time the method says correct every time we see a black ball, and incor-
rect whenever we see a white ball. Then it will successfully stabilise to incorrect
if the sequence has a final black ball, followed by white balls up to infinity. But
is B′ also verifiable in the limit? The answer is no. Suppose we had an ideal
method which tries to decide if B′ is true. However the method might work,
suppose we have the following: whenever it decides on correct (presumably af-
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ter having seen many black balls), a succession of white balls start appearing; if
the method sticks to the assessment correct, the white balls keep going forever,
making the assessment false; if the method switches to incorrect, a succession
of black balls starts. This time, if the method switches again to correct, the
balls start appearing white, while if the method switches to incorrect, the balls
keep appearing black. Suppose this goes on forever: then this ideal method is
never able to decide if B′ is true. We say the hypothesis is not decidable in
the limit. This hypothesis is also not verifiable in the limit: if a sequence
makes B′ false, we have a method that will stabilise to incorrect forever; but
there is no method that can decide if B′ is true. A hypothesis is decidable in the
limit if it is both refutable and verifiable in the limit. Note that it could seem
as if there was a malicious agent changing the colours of the balls according to
the decision we made about our hypothesis. Indeed, Kelly calls these ‘demonic
arguments’. But of course a demon is just a mathematical artifice: the fact is
that such sequences could exist; and so we are not guaranteed verifiability in
the limit. Note also that even if a demon knew our first, simple, assessment
method, there would be no chance of failing: if the number of black balls is
finite, then they will stop eventually, and our method will return the right as-
sessment. There is nothing even a demon could do about this. By a specular
demonic argument we show that W ′ is not refutable in the limit (for this
would just mean B′ would be verifiable in the limit) [32, pp.51-55]. These kinds
of hypothesis can again be characterised as sets in the Cantor space (for the
proof see [32, pp.92-94]). We have:

• hypothesis verifiable in the limit ↔ countable union of closed sets

• hypothesis refutable in the limit ↔ countable intersection of open sets

Finally, countable additivity comes into play. Recall the convergence theorem
at the end of the last section. There, we were guaranteed, except for on a
set of measure 0, to receive an answer, in the limit, on whether the sequence
x confirmed or refuted our hypothesis E, if E was a measurable set. This
means that if we only consider, as valid hypotheses, sets from a σ-algebra, and
we accept ‘probability-1 decidability’, rather than decidability over all possible
sequences, we have decidability in the limit for any hypothesis. We simply assess
E as correct if the limit in the theorem is 1, and incorrect if it is 0. But we
have not changed the experimental situation: problematic sequences did not
suddenly disappear. It is our way of looking at them which changed, by using
measure theory (and thus countable additivity). Kelly notes that if we take away
countable additivity, this probability-1 decidability fails, as we would expect
given the comments about the role of the axiom in measure theory. And hence,
he argues, it is artificial to believe that these problematic sequences, over which
convergence to correct or incorrect fails, are unimportant because they have
probability 0: they only have probability 0 thanks to countable additivity, and
relative to the initial probability measure we adopted (this echoes the criticisms
of convergence theorems above). He actually concludes that adopting countable
additivity constitutes a realist bias, and a dogmatism:

It is a fine thing for the realist that alleged canons of inductive ratio-
nality entitle him to claim sufficient knowledge to solve all inductive
problems in the limit. A competent sceptic, on the other hand,
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will reject this blanket entitlement to knowledge as a technically
disguised form of dogmatism [32, p.320].

That the realism versus anti-realism debate can be understood in the simple
choice on whether to adopt countable additivity or not, or whether to apply
convergence-to-the-truth to agents or not, is an extremely interesting remark.
It is perhaps qualified by the fact that such interpretation of said theorems seems
to have died out, but the same cannot be said of realism; and that it could make
some thinkers unknowing realists. Neither remark is necessarily knock-down, of
course. We end this chapter by summing up and commenting on what we saw
so far.

3.4 Remarks

We will see in Chapter 6 that the choice between countable and finite additivity
is not the only one: we could use non-standard analysis to get out of the deadlock
and define a different type of summation. It would be very interesting to see
how this sort of solution stands to Kelly’s remarks on additivity. Because the
interest in non-standard probability seems to have resurfaced very recently (see
[39] from 2013, after similar solutions were suggested earlier, see [2] from 1999),
this might be a little-explored path. I also remark that there exist theorems in [8]
which appear to be similar to the one by Halmos described above, but proved
in a finitely additive setting. I do not know if they evade Kelly’s criticism,
but the area is too unfamiliar to me, for me to comment. With regards to
Kelly’s critique in general, it is very interesting in that it shows (somewhat)
explicitly what we gain by using measure theory: convergence on almost all
data sequences, at the cost of having eliminated the problematic data sequences
to start with. The critique appears tempered, today, by the seemingly universal
refusal to interpret converge theorems literally as applying to agents in time. But
Kelly adds something to the two criticisms generally levelled at such application
of convergence theorems, which are (i) that they are relative to the chosen
probability measure, and (ii) that they only work in the infinitely long run. In
fact, since Kelly studies ideal assessment methods and their behaviour in the
limit, the latter would not a relevant criticism from him. What Kelly highlights
is that probabilistic convergence theorems give ‘selective’ information about
this behaviour in the long run. We saw above how the hypothesis that there
exist only finitely many black balls is not decidable, even in the infinite limit.
But we also saw that the probabilistic convergence theorem guarantees to decide
any hypothesis in the limit, given the necessary premises (including countable
additivity). Note that neither approach is mathematically wrong, of course. It
is just the interpretation of the probabilistic convergence theorems which might,
in a sense, give us something of a false sense of security with regards to what
future data sequences hold.

Another possible comment on Kelly’s position is that it might seem artificial
to suppose that what we are viewing is the finite initial segment of something
infinite. This assumption will not apply in any finitary updating of our beliefs,
but of course neither will convergence theorems or countable additivity: we see
then that this assumption is, in fact, something that runs throughout the debate
presented in my work. Lastly, is Kelly’s an argument against the adoption of
countable additivity? I think the answer is no: the point is rather to make sure
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we realise what the cost of applying measure theory in philosophy of science is.
Kelly calls hybrid probabilism the following philosophical view: chance exists in
nature (the so-called propensity of something to occur or not), and probability,
for agents, is just an assignment of degrees of belief. These degrees of belief
should be coordinated to propensities, if an agent is rational (this is the well-
known Principal Principle by David Lewis). Kelly explains that propensities, in
this view, respect the measure-theoretic definition of probability, and so count-
able additivity can be freely used. A quick survey (see [23]) actually shows that
there is no agreement with regards to whether propensities are additive or not.
But this need not change the message of the interesting passage by Kelly which
follows: we simply read ‘a probabilistic view which adopts countable additivity’
for his ‘hybrid probabilism’:

I do not mean to suggest that hybrid probabilism is a mistake. I
only wish to make it clear that the apparent advantages of the view
(e.g., its correspondence with statistical practice and its ability to
overcome global underdetermination) come at expense of a clear,
logical account of what science is about, of what its import is for
observation, and of how scientific method leads to the truth [32,
p.337].

Here Kelly is criticising the Principal Principle as an unclear link between obser-
vation, degrees of belief and science, and the way in which probabilistic theorems
lead to the truth through the mathematical artifice of countable additivity. He
also remarks that these criticisms do not affect views of probability which are
only finitely additive, because these lack the strong convergence results which
seem at odds with Kelly’s epistemology. We will mention this view again in the
final conclusions, because criticisms in a way similar to this are often brought
against measure-theoretic probability: namely that it shifts probability away
from our intuitive, real-world idea of it. For now, we devote the next chapter
to the subjective probability of individual agents: should a coherent agent have
countably additive degrees of belief? We address this question in what follows.
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4 Dutch Book arguments for countable additiv-
ity

4.1 Setting

De Finetti, whose infinite lottery scenario is the backdrop to this whole work,
was one of the main proponents of what came to be called ‘subjective Bayesian-
ism’. His philosophical position was that probabilities ‘do not exist’, except for
as a numerical way for rational beings to express their epistemic uncertainty
about some event, or hypothesis, or any aspect that requires uncertain reason-
ing. Hence probability is ‘subjective’, and probabilities are personal ‘degrees of
belief’. He was also one of the first modern Bayesians, in that he showed that
if a decision procedure in a situation of uncertainty is rational, then it must
follow the rules of Bayesian updating [15]. The merits and faults of such school
of thought are discussed to this day, but what is interesting in the context of
infinite lotteries is de Finetti’s definition of a coherent thinker.4 In de Finetti’s
subjective Bayesianism, it is pleasingly practical and simple:

[. . . ] once an individual has evaluated the probabilities of certain
events, two cases can present themselves: either it is possible to
bet with him in such a way as to be assured of gaining, or else this
possibility does not exist. In the first case one clearly should say that
the evaluation of the probabilities given by this individual contains
an incoherence, an intrinsic contradiction; in the other case we will
say that the individual is coherent. It is precisely this condition of
coherence which constitutes the sole principle from which one can
deduce the whole calculus of probability: this calculus then appears
as a set of rules to which the subjective evaluation of probability of
various events by the same individual ought to conform if there is
not to be a fundamental contradiction among them [12, p.103].

A collection of bets which guarantee a loss in either direction (so a certain loss
on one of the two sides of the bet) is often called a Dutch book. A coherent
agent, by de Finetti’s standards, must avoid being the subject of a Dutch book.
Since, as de Finetti remarks, we can obtain the rules of probability through a
study of how to avoid Dutch books, this technique is often called ‘the Dutch
book argument’ for probability.

Given that de Finetti himself came up with both this concept and the infi-
nite lottery, it might be surprising to learn that there exists a Dutch book for
countable additivity, and one which is in fact very straightforward. I present
this argument below, in a version by Williamson [41]. Reading de Finetti’s [14]
one realises that he was aware, of course, that such an argument could be made.
In that book he provides an answer to it, which he clearly thought was obvious
enough, since the matter is dismissed in one short paragraph. A reading of it,
however, shows how puzzling it is and why it has failed to put off successive
writers from making an explicit Dutch book argument against merely finite ad-
ditivity. Howson, in [27], provides a detailed study of just what de Finetti could
have meant. Before presenting his reconstruction, I propose another, simpler

4or a consistent one: there is disagreement with regards to how to translate de Finetti’s
coerenza from the Italian original—se Howson’s [27].
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reading of de Finetti’s passage, based on the reading of his original manuscript
in Italian. It is ultimately equivalent to what Howson concludes. There is a
small but crucial difference between what de Finetti wrote in Italian and what
is reported in the translated version in [14], which is what Howson quotes.
Namely, where de Finetti wrote serie, or series (an infinite sum), the translator
writes sequence. I believe this reading strengthens de Finetti’s position on the
matter. In what follows, the probability measure P is always assumed to have
the usual properties of being positive, real-valued and less than or equal to 1
for all events. Additivity properties will be mentioned explicitly in each case.

4.2 A Dutch book argument for the adoption of countable
additivity

Suppose we have a countable infinity of mutually exclusive and exhaustive
propositions. To each proposition we attach a degree of belief. If these sub-
jective probabilities do not add up to 1, Williamson [41, pp.411-412] shows that
we are guaranteed a loss whatever happens. In particular, if in the de Finetti
lottery we assign probability 0 to each number being picked, then we are open
to an unfair system of bets. Let us call the event ‘the number n is picked in
the de Finetti lottery’ simply ‘n’. Then P (3), for example, is the probability
that 3 will be picked. Let us now give a definition, following de Finetti and
Williamson [41, p.402] of degrees of belief in the betting set up. Suppose we
are betting on an event occurring (or not). If we are willing to pay P · S on
the event occurring, where S is the prize if it does occur, then we say that P
is our degree of belief in such occurrence. A bet on an event E is very simple:
we pay PS, and we get S back if E occurs, and nothing if it does not. (Recall
that P (E) ≤ 1.) Crucially, we only know P , and perhaps information about
how likely the event E is. We do not know the direction of the bet (S could
be positive or negative), and neither do we know the (real-valued) amount |S|
we are betting. Both values could depend on our chosen degree of belief. In
other words, P has to be chosen so that, even if someone were betting against
us and could modify magnitude and direction of S, we would not be guaranteed
a loss. Williamson wants to prove that, in the de Finetti lottery, we are not

guaranteed a loss if and only if
∞∑
n=1

P (n) = 1. Here is the proof by Williamson

(adapted slightly from [41, pp.411-412] for the sake of consistent notation in my

work). Suppose
∞∑
n=1

P (n) < 1. Now suppose the stake is the same, S, for all

numbers. Then clearly we would make a certain gain if S were positive, as we

would spend
∞∑
n=1

P (n)S, less than what we would gain from the winning num-

ber, S. We would make a certain loss if the direction of the bet were reversed.
So if we wish to avoid a Dutch book, our countable degrees of belief must sum
up to 1.

Now for the other direction of the double implication. We assume that
∞∑
n=1

P (n) = 1, and that all amounts of money exchanged are finite. The latter is

equivalent to the requirement that all stakes and all losses be finite. Let Lh be
the loss we make if the number h is extracted and let Si be the stake associated
with the bet over the occurrence of event i, or the extraction of i in the infinite
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lottery. Then:

Lh =

∞∑
n=0

P (n)Sn − Sh.

We want to avoid all possible losses being positive, and we assumed that Lh <∞
for all h, which is equivalent to assuming that

∞∑
n=1

P (n)Sn <∞, since we already

assumed stakes to be finite.Note the following:

∞∑
i=0

P (i)Li =

∞∑
i=0

P (i)

 ∞∑
j=0

P (j)Sj − Si


=

∞∑
i=0

P (i)

∞∑
j=0

P (j)Sj −
∞∑
i=0

P (i)Si as all money amounts are finite

= 1

∞∑
j=0

P (j)Sj −
∞∑
i=0

P (i)Si = 0.

So we have
∞∑
i=0

P (i)Li = 0, but we know that P (i) ≥ 0 for all i, and we have

assumed that these values add up to 1, so it must be P (k) > 0 for some k.
Therefore, for the series to add up to 0, it must be the case that for some j,
Lj < 0, and hence the Dutch book is avoided.

Williamson argues that his Dutch book argument provides a normative rea-
son to abandon uniform distributions of degrees of belief in countable cases.
The fact that we are instinctively attracted to such positions, he remarks, is no
argument for privileging uniformity over countable additivity; in this case, our
intuitions must simply be wrong. Let us now see what de Finetti (writing a few
decades before) made of such arguments.

4.3 De Finetti’s dismissal of the Dutch book argument for
countable additivity

As anticipated above, de Finetti considers the argument above (or, more pre-
cisely, one direction of it: that we are open to a Dutch book if we do not adopt
countable additivity), but he quickly dismisses it. Here is the passage in full,
as translated for the book [14], which is a collection of essays by de Finetti.
Note that de Finetti calls countable additivity ‘complete additivity’; also, he
writes pn where we would write P (n), the probability of picking n in the infinite
lottery (or any event n which forms part of an exhaustive partition of the event
space into mutually exclusive events). The betting set-up is identical to that
described above.

The first argument in favour of complete additivity is the following:
if the sum of probabilities pn is p < 1, it would be possible, by enter-
ing the infinite number of available bets, to receive 1 in any event for
a total payment of amount p, and this is clearly unreasonable. But
in reality the argument is circular, for only if we know that complete
additivity holds can we think of extending the notion of combina-
tions of fair bets to combinations of an infinite number of bets, with
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the corresponding sequence of betting odds [14, p.91] [emphasis in
original].

What does de Finetti mean by this? As Howson remarks, this has puzzled
authors for a long time [27, p.5]. The first impression must be, I think, that
Williamson escapes such circularity, although the question is not treated ex-
plicitly by him. It does not seem correct that we need the idea of countable
additivity in order to envisage an infinite sequence of bets. By finite additivity,
we must have that

P

(⋃
n

n

)
≥ P (1) + P (2) + . . .

because P

(⋃
n
n

)
= 1, whereas all finite sums of probabilities of events are

less than or equal to 1. Countable additivity imposes equality in this equation.
Williamson shows (but so does de Finetti) that if P (1)+P (2)+ · · · < 1 a Dutch
book is possible. Merely talking about this infinite sum, however, it seems that
we are not yet committing to countable additivity—the resulting number could

still be different from P

(⋃
n
n

)
. But, by properties of probability, and if we

wish to avoid a Dutch book, we have that

P

(⋃
n

n

)
≥ P (1) + P (2) + · · · = 1 = P

(⋃
n

n

)
,

so that indeed P

(⋃
n
n

)
= P (1) + P (2) + . . . . But it seems strange that de

Finetti would have missed such a simple reasoning. Looking at his original
Italian manuscript containing the passage above (the published version is not
easily available), could hold the key to understanding what de Finetti meant.
I add the Italian original in a footnote below; here is the relevant passage (as
translated by me), which is the second half of the passage above:

But this is something of a vicious circle, because only if I knew
complete additivity to be valid could I think of extending the notion
of ‘fair combination of bets’ to combinations of infinite bets, and
base them on the series of the betting odds [13, p.12] [emphasis as
in original].5

It is quite remarkable that serie was translated as sequence, when the mathe-
matical meaning of the two terms is very different—a series is the sequence of
partial sums of elements of a sequence. ‘Sequence’ does not imply any addition:
it is just a list of elements. I think that now what de Finetti meant can be
interpreted and assessed more easily: it is not that we cannot conceive of an
infinite number of bets if we do not have countable additivity. In fact, I think
we can paraphrase de Finetti thus: we simply would not associate an infinite

5Un motivo che tenderebbe ad avvalorare l’additività completa: se le probabilità pn hanno
somma p < 1, stipulando tutte le infinite scommesse posso ricevere in ogni caso 1 pagando p,
e quindi avrei un’incongruenza. Ma è un po’ un circolo vizioso, perchè solo se sapessi valida
l’additività completa potrei pensare di estendere la nozione di ‘combinazione di scommesse
equa’ a combinazioni di infinite scommesse, e di basarle sulla serie delle quote di scommessa.
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combination of bets with the infinite sum of the underlying single odds—unless,
that is, we use countable additivity. Or, to use another formulation: it is true
that the infinite sum of the single probability values, in an infinite lottery, opens
us to a Dutch book if it is not equal to one; however, if we do not use countable
additivity, we are never committed to saying that our degree of belief, in an
infinite sum of bets, should be the infinite sum of the single odds, or degrees
of belief. Indeed, this is just countable additivity. If we do use countable ad-
ditivity, then our degrees of belief must adhere to such rule. If we give weight
to this observation by de Finetti, Williamson’s argument breaks down right at
the start. Of course, if the price we pay to enter the bet, which is just our
degree of belief, is less than 1 then we are ensured a win, and this reveals an
incoherence. This applies if our degree of belief corresponds to the infinite sum
of our single degrees of belief. But this is not the case: finite additivity allows
us to consistently bet 0 on each single number, while betting one on the infinite
union of all numbers, regardless of what the infinite sum of our degrees of belief
might be (as long as it is less than or equal to 1). To my knowledge, the above
interpretation of this passage of de Finetti, based on a re-translation of the
original Italian manuscript, has not been made in the literature in these simple
terms. I find the argument simple and convincing, which makes it plausible
as an interpretation of what he had meant to say, and would also explain the
apparent confidence with which he dismisses the issue. As mentioned above,
other debates about the existing translations of de Finetti’s work exist in the
literature, so a (possible) mistake in this passage would not be so extraordi-
nary. I next Howson’s interpretation of the passage, based on the translation
of de Finetti in [14]. I believe it ends up at the same conclusion I present here,
but takes a longer path to it. Howson invites us to take a closer look to what
de Finetti actually intended to show with his Dutch book argument for finite
additivity.

4.4 Howson’s reading of de Finetti’s rebuttal.

Rigidity and finite additivity. Howson explains that de Finetti’s quote
above (in the opening paragraph of this section) is based on the following as-
sumption, which de Finetti makes silently in [14, p.77] and explicitly in [16]. The
assumption is the following: ‘A finite sum of bets is fair with respect to P just
in case each is fair with respect to P ’ [27, p.7]. Howson calls this assumption
(A). He can thus explain de Finetti’s passage as follows:

The explanation is in two parts: (i) by ‘extending the notion of
combinations of fair bets to combinations of an infinite number of
bets’ de Finetti actually means extending (A) to include countably
infinite sums; (ii) the extension of (A) to countable sums entails
countable additivity, and conversely [27, pp.7-8].

Hence when de Finetti claims that the Dutch book argument for countable
additivity is circular, according to Howson, he is pointing out that it would
amount to the above extension of the principle (A). Howson has a simple proof
of the fact that if we extend (A) to countable bets we get countable additivity—
but in de Finetti’s own terms the reasoning is even simpler, as I will note below.
To understand how this works, we need to see what relation the principle (A)
has to finite additivity. It might seem obvious that a sum of fair bets is fair if

34



and only if each one is fair. However, consider the following scenario: suppose
that, instead of paying P to bet, as above, we were buying a good for that price.
The ‘fair’ price is the price we would be prepared to pay. Here is de Finetti:

In general, it is not true that if one is prepared to buy an article
A at the price P (A), and an article B at a price P (B), one must
be prepared to buy both of them together at a price P (A) + P (B).
It may happen that the purchase of one of them affects, in various
ways, the desirability of the offer [16, p.74].

In fact, many of us are risk-adverse, and we would rather pay a small sum, rather
than incur the 50/50 chance of winning, or losing, a larger sum. However, for
simplicity it is assumed that the property above holds. This is called rigidity
in the face of risk [16, pp.77-78]. What is slightly disconcerting, is that this as-
sumed property immediately gives finite additivity—or even, in this framework,
it just is finite additivity: the price for A∪B is P (A∪B) by definition, but we
also just affirmed that the price for A ∪B is P (A) + P (B), so that

P (A ∪B) = P (A) + P (B).

Then why should we assume rigidity? That the betting scenario is not repre-
sentative of how many of us view risk, is a well-known criticism of this approach
to probability (see for example Glymour’s [20, pp.70-71]). But it is also, for its
simplicity, one of its strong points. With rigidity, De Finetti is supposing that
‘utility’ is just equal to monetary value. For this he assumes that all the bets
considered are on small amounts—we would baulk at betting on a million Euro,
say, but we might be willing to bet 5 or 10 Euro because those amounts do not
have a big impact on our finances. If we do not set this rigid scale, we would
have to somehow describe how our risk-aversion increases as the sums involved
increase, and how our judgement of utility fluctuates according to countless cir-
cumstantial factors. Money, however, ensures a certain generality: we can speak
of a bet being unfair if it causes us to lose money whatever happens. However
we happen to value such loss is a separate matter—the amount of money lost
is objective.

However, the problem is this: seeing de Finetti’s explanation, we could sim-
plify Howson’s principle (A), because, as remarked, the principle is just finite
additivity. And note that if we assume that for an infinite collection of bets
rigidity still holds, we are simply assuming countable additivity: rigidity is the
assumption that we will pay, for a number of items or bets taken together, the
sum of the individual prices. Then why should we not extend rigidity to a count-
able number of bets? Well, the answer must be, because we should not force
agents to be countably additive. In order to avoid, in other words, countable
additivity. This is circular, as is circular the Dutch book ‘justification’ of finite
additivity. We seem to use them to prove finite additivity, but only after having
assumed finite additivity itself (or a principle that, as de Finetti explicitly says,
is entirely equivalent to it). And so, two questions seem very legitimate: (1)
why do we assume rigidity, since it is equivalent to finite additivity; (2) what
is the Dutch book argument for finite additivity supposed to show. If finite
additivity of a collection of probability estimates, which is assumed, is entirely
equivalent to not being open to a Dutch book (given finite additivity), then
surely the second characterisation can add nothing new. It is important to note
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that de Finetti does not hide from this circularity; he discusses the hypothesis
of rigidity at some length (see [16, pp.77-82, 92-93]) but, as is evident from the
quote above, he does not pretend that it is a feature which is generally true
in all real-world situations. De Finetti is perfectly aware that his Dutch book
argument is a characterisation, rather than a justification, of probability func-
tions; and he wishes not to impose that all probability functions be countably
additive, hence why he does not assume rigidity in the face of infinite bets. The
answer to question (2) is the following:

In order to give an effective meaning to a notion—and not merely
an appearance of such in a metaphysical-verbalistic sense—an op-
erational definition is required. By this we mean a definition based
on a criterion which allows us to measure it. We will therefore be
concerned with giving an operational definition to the prevision of a
random quantity, and hence to the probability of an event [16, p.76].

Hence just defining probabilities abstractly is clearly not enough for de Finetti:
he deems it necessary to be able to elicit actual probabilistic statements from
agents, even if in a slightly idealised situation, to ground our concept of proba-
bility. And we had also asked, in question (2): why stop at probabilities which
are finitely additive? Or, which is the same, why assume that we will consider
fair the sum of two fair prices? In de Finetti’s words,

let us turn to the other reasons for preferring this approach: these
are essentially concerned with simplicity. The separation of prob-
ability from utility [i.e. the adoption of rigidity], of that which is
independent of risk aversion from that which is not, has first of all
the same kind of advantages as result from treating geometry apart
from mechanics, and the mechanics of so-called rigid bodies without
taking elasticity into account [. . . ] [16, p.81].

Therefore, a Dutch book argument is not, for de Finetti, a proof that finite
additivity is necessary in order to avoid certain loss; this is only true if rigidity—
which, as stressed above, is in this case another word for finite additivity—is
assumed. Having assumed rigidity, a Dutch book argument is just the following
simple observation: since we have deemed that a fair price for article A ∪ B is
P (A) + P (B), and the price for A ∪ B is by definition P (A ∪ B), we should
not accept to pay more than that fair price. If we had the situation in which
P (A) +P (B) > P (A∪B) we know would be paying more than we deemed fair.
What follows is finally a practical example of a Dutch book argument, inspired
from the passage by de Finetti which Howson cites most, in [14, p.77].

The Dutch book argument ‘for finite additivity’. We are looking at
finite sums of bets, which we write as:

X = k01E0
+ k11E1

+ · · ·+ kn1En .

We should interpret this as follows: the Ei are events, (where E0 is the certain
event, so that we just write k0 omitting the indicator function; note that also
P (E0) = 1); for the sum of bets above, we pay k0 + k1P (E1) + · · ·+ knP (En),
and we get back a combination of k0 + ki + kj + . . . , namely we receive ki for
every event Ei that occurs, and 0 for the ones that do not occur. This is how
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a fair sum of bets is defined: X, as written above, is fair with respect to the
function P if we can have the following property:

k0 = − (k1P (E1) + · · ·+ knP (En)) . (10)

What this means in practice is best explained by taking two mutually exclusive
and exhaustive events E1 and E2. The bet is now the following:

X = k01E0 + k11E1 + k21E2 .

Either E1 or E2 must happen, and not both at the same time; E0 will happen
in any case. So the outcomes of this bet can only be:

k0 + k1 if E1 occurs, (11)

and
k0 + k2 if E2 occurs. (12)

Recall that we only have partial control over the price we pay for these bets,
which is k1P (E1) + k2P (E2), as we choose P (E1) and P (E2), but we know
nothing of the ki. The definition of fairness given in 10 means that we should
be able to rewrite the two possible results of the bet as follows:

k1 − k1P (E1)− k2P (E2) if E1 occurs, (13)

and
k2 − k1P (E1)− k2P (E2) if E2 occurs. (14)

Now, it is up to us to avoid a Dutch book: what this means in practice, is ad-
justing the parameters in our control, P (E1) and P (E2), so that both quantities
above cannot be negative whatever happens. How could they both be negative?
Very simply, as follows:{

k1 − k1P (E1)− k2P (E2) < 0
k2 − k1P (E1)− k2P (E2) < 0

which is equivalent to 
k1 <

k2P (E2)
1−P (E1)

k2 <
k1P (E1)
1−P (E2)

This has no solutions if and only if P (E1) + P (E2) = 1, for only in that case
the system reduces to: {

k1 < k2
k2 < k1

Therefore, fairness, or the avoidance of certain loss, is equivalent to finite addi-
tivity. Given the comments above, this is not surprising. Rigidity comes into it
as the presupposition that we were able to simply sum bets numerically, with-
out making adjustments for the fact that a larger bet might be less desirable
than a smaller one. The assumption is contained in the definition of fairness 10,
which makes it clear that the loss we incur from a sum of bets is the sum of the
individual losses.
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This, of course, works in general. For a general proof in this style for a
number n of bets see de Finetti’s [12, pp.103-104] (it is very similar in spirit
to the one above, except for the slight complications which arise from solving
larger systems of equations). It is intuitively clear that, if the total loss we suffer
from a collection of bets is the sum of the individual bets, then in general this
condition:

min
i
ki ≤ k1P (E1) + · · ·+ knP (En) ≤ max

i
ki,

ensures that at least two results from the bet will be of opposite sign, thus mak-
ing a Dutch book impossible. It holds if the quantity in the middle is a weighted
average (in this case a convex combination, which means the coefficients P (Ei)
add up to 1), because in that case such quantity will definitely be within the
range defined by the two extreme values for ki.

I find that in the passage quoted by Howson the concepts above are less
clear than in other writings by de Finetti (such as in [12] and in [16, pp.69-90]),
however, I report it for completeness. Howson’s point is that in [14, p.77], what
de Finetti actually shows is this: if the events form an algebra, and if finite
additivity fails, we could have a finite sum of bets, each of which is fair, with
each one giving certain loss; how de Finetti words it, however, is that, if the
events form an algebra, we would have a fair sum of bets, which collectively give
rise to a loss. The issue is that we need assumption (A) (rigidity) to pass from
the second claim to the first. (De Finetti clearly gives it for granted at this more
advanced stage of his treatment—the main point in those pages is to discuss
the consequences of imposing that probability is defined only on a σ-algebra.)
And if we only have the first, we perhaps we would need not worry, because we
would not necessarily have a loss from a sum of bets which individually give
losses—unless, that is, we assume principle (A). Put schematically: a failure
of finite additivity implies a sum of unfair bets. That this sum is itself unfair
overall, is an extra assumption.

Let us see how the concept of fairness, in the passage cited by Howson,
underpins the claim that a failure of finite additivity can bring about a certain
loss (see [14, p.77]). We first prove this direction of the claim: assuming fairness
as defined above in 10, if we have finite additivity, then a sum of bets, each
of which is positive (we noted that a bet in which all possible results have the
same sign opens us to a Dutch book), is not fair. Now, suppose finite additivity
of P holds; then we can write the expectation of the sum of bets X as follows:

E(X) = X · P (X) = k0 + k1P (E1) + · · ·+ knP (En).

By our definition of fairness, we must have E(X) = 0. If all of

k0, k1P (E1), . . . , knP (En) > 0

we would have E(X) 6= 0, and so the overall bet is not fair. Note that this is
precisely where assumption (A) comes into play: by the definition of fairness, we
have ‘for free’ that a sum of unfair bets is itself unfair. For the other direction,
we want to show the following: the fact that a sum of bets, each of which is
positive, gives rise to an unfair bet, implies finite additivity. This is equivalent
to showing that if finite additivity fails, then we would consider as fair a sum of
unfair bets. So we suppose that finite additivity fails, namely that we have two
incompatible events E1, E2 such that

P (E1 ∪ E2) 6= P (E1) + P (E2).
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Now consider the following sum of bets:

k(P (E1) + P (E2)− P (E1 ∪ E2))− k1E1
− k1E2

+ k(1E1
+ 1E2

)

where we note that the first member of the sum, k(P (E1)+P (E2)−P (E1∪E2))
is just a constant, what we previously called k0. Then we immediately see that
this sum of bets is fair, with respect to the definition above. But we can also
rewrite it as

k(P (E1) + P (E2)− P (E1 ∪ E2))

because −1E1
− 1E2

+ 1E1
+ 1E2

= 0, since the events are incompatible. And
now we see that this can easily be made positive, by picking k appropriately.
Hence a failure of finite additivity would make us consider this bet fair, by
the definition of fairness given above, while we see that it could bring certain
loss. The reader might be wondering why de Finetti embarked on this more
convoluted argument, and why the explicit mention of algebras was made above.
The fact is that, as anticipated above, in these passages de Finetti is not seeking
justifications for finite additivity, but actually discussing how we would define
probability if the events did not form an algebra. For example, in the case where
we only had three events E1, E2 and E3, with E3 = E1 ∪ E2. How would we
say that P (E3) ≤ P (E1) + P (E2), as must be correct? We would not have the
intersections of the sets defined to make this precise. It is in this context that de
Finetti defines linear combinations of events (linear combinations of bets) and
gives the notion of fairness. He comments that this fairness is equivalent to finite
additivity if we are operating within an algebra, as we would expect. If we are
operating in algebra of sets, if E1 and E2 are in the algebra, then so are E1∪E2

and E1 ∩E2 and we can always define the probability of E1 ∪E2. However, de
Finetti’s aim is to show that even if the set is not an algebra, we can extend a
probability function defined on such set to the whole algebra generated by that
collection. We do this by using the definition of fairness given in equation 10
and the condition that we do not accept Dutch books [14, pp.76-79]. I do not
treat this further, and pass now to some concluding remarks for this chapter.

4.5 Remarks

I claimed above that a closer reading of de Finetti’s work shows that he did
not think that Dutch book arguments were the proof of the necessity of finite
additivity. This seems the case especially given the fact, readily admitted by de
Finetti, that they are circular, in that they rely on finite additivity of degrees
of belief in order to work. Therefore, the avoidance of Dutch books is rather
a characterisation of probability. This was especially important in de Finetti’s
philosophical view, because, something of a positivist, he absolutely refused
to see probability as the description of something which is actually existing
in the world. His view is expressed perhaps most extensively in his essay on
Probabilism [17], and here is an emblematic passage:

Probability exists for me only as a function of the degree of ignorance
in which I find myself at the time; it would be absurd, even if it
were not meaningless, to consider probability as a mysterious and
unreachable metaphysical entity, existing in abstraction, on which
the occurrence of an event somehow or other depends [17, p.178].
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Hence he needs an operational definition of probability in order to properly
ground what he is talking about. A coherent assignment of probabilities is an
assignment that would not open us to certain loss, supposing we were to bet
on the events in question occurring, and assuming rigidity. Probability, for de
Finetti, is nothing else than this.

Since this is the case, just as a Dutch book argument does not really ‘show’
finite additivity, because it must assume it in the first place, it also cannot
show countable additivity, for the same reason. De Finetti is fully aware of
this, but he would refuse to make the same assumption of rigidity for infinite
combinations of probabilities, because he is opposed to countable additivity (for
reasons such as the infinite lottery scenario). Hence a Dutch book argument for
countable additivity does not really show anything, unless we assume that the
betting odds for an infinite combination of bets are the sum of the odds of each
bet. If we do not assume countable additivity, we also need not assume this.
This seems to be what de Finetti had meant in his rebuttal of such arguments,
and it is underpinned by what Howson concludes, after his closer look at Dutch
book arguments for additivity in general. Howson’s next step in reasoning is
this: if Dutch book arguments cannot independently support either finite or
countable additivity, then what can? For an answer, he turns to a work by
Cox. It is important to note that Howson turns to Cox’s construction, which
I will study in some detail in the next chapter, in his search for “a type of
completeness theorem telling us that the rules of probability extend to finite
but not countable additivity ” [27, p.17]. This because “De Finettis argument
that a purely ‘formal’principle [i.e. coherence] should not forbid in principle a
uniform distribution over the elementary events (atoms) in a power set algebra
has, I believe, a very strong intuitive pull” [27, p.17]. In his [10], Cox shows
that starting with just two qualitative axioms, which do not mention additivity
properties, we are able to arrive to the known probability rules, but only up to
finite additivity. This is especially interesting for the present work since Jaynes,
a respected author on Bayesian probability, takes exactly the same starting point
but comes to opposite conclusions, namely that probability functions which are
not countable additive should not be considered ‘probabilities’.

4.6 Appendix: A proposed solution to the infinite lottery

Here is a proposal on how to solve the dilemma of the de Finetti lottery, by
Bartha [1]. I present an outline of it here because it uses the betting terminol-
ogy introduced in this chapter, but I argue that unfortunately it seems a refor-
mulation of, rather a solution to, the problem. Bartha agrees with Williamson
that if we have real-valued degrees of belief, then we are subject to a Dutch
book in the infinite lottery, unless we adopt countable additivity. To this he
proposes different solutions: one is we could have non-standard degrees of be-
lief; he outlines this solution in his [2], and I present a similar one in Chapter
6. The other solution he proposes is to adopt relative betting quotients. Instead
of having degrees of belief for all outcomes of a random event (say, the tickets
in the infinite lottery), we could express only how likely we consider events to
be relative to each other. This works as follows. Taking fair betting odds as
defined above, suppose event E1 has betting odds p, and event E2 has odds q.
Then define their relative betting quotient as k = p

q . Drawing up the table of

possible gains and losses for bets for E1 and against E2 (meaning we win if
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E2 does not occur), Bartha notes that p and q do not appear any longer. The
payouts, then, depend only on k. This suggests that we could use this k to
define relative bets even if one or both the single odds are 0, or for betting on
two events whose probability is not defined in general, but only with respect
to each other [1, pp.307-308]. Hence he defines a general simultaneous bet, for
E1 and against E2, such that we receive kS if E1 occurs and E2 does not, and
−S if E2 occurs and E1 does not.6 Note that k is a non-negative number, but
that is the only restriction. It should reflect ‘how much more or less likely’ we
consider E1 to be with respect to E2, because, as in the sections above, S could
be positive or negative. Postulating that no money is exchanged if neither event
happens, the results of the bet just described are set in Table 1 below.

E1 E2 Payoff

T F kS
F F 0
T T (k − 1)S
F T −S

Table 1: The relative betting quotients for E1 against E2.

The relative betting quotient for k is the non-negative number that makes
the bet described in Table 1 fair [1, p.308]. This approach, however, only solves
the de Finetti lottery in the following sense: there is no real number k that
would make the above bet fair, if the two events are: a particular number is
picked (very unlikely); versus: some number is picked (which is certain). On the
other hand, it is easy to express that two given tickets have the same probability
of being picked: we set k = 1 for the relative bet between those two tickets. For
Bartha, this shows that the de Finetti lottery does not constitute a counter-
example to countable additivity, because countable additivity only applies if we
have well defined degrees of belief [1, 309-310]. It seems to me that this is not a
strong argument, and not a real solution to the deadlock. Having defined relative
betting quotients, Bartha goes on to explain that in the infinite lottery these
relative betting quotients do not exist. He claims that this tells us something
about the infinite lottery; I think a more natural reading would be that it tells
us the method is not adequate to the problem in question.

6To ‘receive’ −S means to pay out S.
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5 Deriving probability from qualitative axioms

5.1 Setting

In the previous chapter I argued, with Howson, that Dutch book arguments
cannot be the deciding factor in judging whether to take countable additivity
as an axiom or not: in both cases, the additivity principles need to be assumed
in order for the Dutch book argument to work. In this chapter I present a
completely different argument for the foundations of probability. Howson turns
to this foundational argument because it stops short of justifying countable
additivity, since he deems this not a desirable axiom. As anticipated above,
Jaynes (in his recent book [30]), also uses this very same foundational argument
for probability, but he considers the very concept of merely finite additivity
quite absurd, and he maintains that we get countable additivity naturally if we
approach the limit of a sequence of events in the proper manner; and infinite
sequences that do not achieve countable additivity in the limit should not be
considered objects of probability theory [30, p.465].

The aim of this chapter is straightforward: I wish to explore how a principle
of additivity is obtained in Cox’s framework, and which kind of additivity this is;
and examine whether Jaynes’ position on countable additivity can be grounded
in this framework, or if it must come from additional assumptions. I present
Cox’s own derivation of the rules of probability in some detail, and follow it
step-by-step, except for some minor changes in notation, and some passages in
which I try to make the reasoning more immediately understandable; in one
passage I follow Jaynes’s approach in [30, pp.24-38].

5.2 Cox’s axioms, and a derivation of quantitative rules
for probability

Cox’s aim in [10] is to obtain quantitative rules for uncertain reasoning, starting
from qualitative principles which, it seems clear, must be respected in this con-
text. Hence he stipulates two “axioms of probable inference”; from these, using
the rules of Boolean algebra and mathematical manipulation, we will be able to
obtain the usual rules of probability. Here are the two axioms, quoted in full:

I The probability of an inference on given evidence determines the proba-
bility of its contradictory on the same evidence [10, p.3].

II The probability on given evidence that both of two inferences are true
is determined by their separate probabilities, one on the given evidence,
the other on this evidence with the additional assumption that the first
inference is true [10, p.4].

Suppose we accept the two above facts as correct characterisations of what
probability should be; suppose further that we accept the formal correctness of
Boolean algebra and standard mathematical manipulation; then we will accept
the results of these elements combined. These results are the known probability
axioms. Hence we have a ‘justification’ of probability, or at least a characterisa-
tion of it, which might seem better grounded than the usual axiomatic definition.
This can represent a justification in subjectivist Bayesian terms because we are
compelled to obey, in rational thinking, rules resulting from axioms we accept
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and truth-preserving manipulations. Therefore it is very interesting from the
point of view of countable additivity: here we have an alternative characterisa-
tion of probability; it too is normative, if we accept the starting axioms and the
formal correctness of mathematics and Boolean algebra; does it imply countable
additivity? As we will see below, it does not, at least not directly. Inspecting
Cox’s arguments, it appears that the only way of extending these results to
include countable additivity would be to explicitly include the principle itself.
This could then, perhaps, be motivated by some other assumption or intuition,
but these would need to be added on to Cox’s axioms.

Looking at the axioms themselves, we notice that the first one immediately
seems correct and basic. The second axiom, on the other hand, while rea-
sonable, hardly seems something we would intuitively take as a foundation for
quantitative uncertain reasoning. Cox [10, pp.3-4] and Howson [27, p.18] pro-
vide some justification on why we should consider the axiom reasonable. Here
is a concrete example by Cox, on the plausibility of Sir John Maundeville’s as-
sertion that “Noah’s Ark may be seen on a clear day [. . . ] on the top of Mount
Ararat” [10, p.3]. This depends on the likelihood that Maundeville (a) made the
assertion based on memory rather than invention. (b): given (a), the likelihood
that his memory is correct. (c): given (a) and (b), that what Maundeville saw
on the top of Mount Ararat actually was Noah’s Ark. Howson prefers another
way of justifying the second axiom. Suppose the plausibility of an assertion
depends only on the plausibility of (a) and (b). If I only know how likely (b) is
given (a) and the given evidence, I would not know how likely (b) is in general.
But if I also knew how likely (a) is on the given evidence, then it seems that I
should know how likely (a) and (b) are taken together [27, p.18].

I am not sure if it is worth trying to emphasise the role of Cox’s axioms as
intuitively fundamental for probability. Howson and Cox succeed in making the
second axiom seem reasonable, but of course this is not why it was chosen: the
point is to derive the known axioms of probability. Other aspects of conditioning
or of uncertain thinking may very well seem more fundamental than these two,
the second one especially. Adding these notions as ‘axioms’, however, would be
redundant, since we will derive all relevant aspects of probability from axioms
I and II anyway. I think it is natural to wonder, however, what we gain by
stipulating these two assertions as axioms, rather than stipulating the usual
axioms of probability directly. Howson emphasises that Cox’s result shows “how
strikingly little in the way of constraints on a numerical measure suffice to
yield the finitely additive probability functions as canonical representations”
[27, p.17]. He adds: “Cox believed, I think correctly, that these three rules
deserve to be regarded as fundamental ” [27, p.19].7 More discussion of the
merits of this approach will follow. First, I will explain concretely how we can
get from qualitative axioms as the ones above to the desired rules of probability.
My aim is to show, step-by-step, how we arrive to the sum rule for probabilities
of unions of exclusive events. We will need to express the axioms slightly more
formally. In doing so, I adopt Cox’s convention of writing ‘probabilities’ (even if
we have not yet defined what probability is) simply as the letters representing the

7Howson adds a third axiom to Cox’s two; the third is that if two assertions are equivalent,
or have the same truth value, and two given evidence instances are equivalent, then the two
conditional probabilities (of either assertion conditional on either evidence) should be the
same. I follow Cox in keeping only the two rules above as axioms and noting explicitly when
I use this third, arguably fundamental, fact.
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propositions themselves (using brackets when necessary for clarity); for example,
a|b ∧ c is the probability of a given b and c.8 As we progress in the reasoning
below, we will find quantitative constraints for this expression, that will justify
our calling it a probability. It is more usual to denote the probability of an event
by a function of the letter representing that event, rather than by the letter itself.
However, we will need to write functions of such probability functions, and the
notation would quickly become messy. Some further remarks about notation:
since Cox and Jaynes treat probability as attached to a proposition, logical
notation is used, but this is entirely equivalent to attaching probabilities to sets
and using set-theoretic notation. We could rewrite everything that comes below
in set-theoretic terms, with the following translations: for propositions a, b we
would commonly write A,B for the sets with that name; ∨ is the logical ‘or’,
where a ∨ b means ‘a is the case or b is the case or both are the case’, and it is
equivalent to the set-theoretic union A ∪ B. The symbol ∧ is the logical ‘and’,
where a∧ b means ‘a is the case and b is the case simultaneously’. It is the same
as the set-theoretic intersection, A∩B. Finally, ¬ is the negation: ¬a means ‘it
is not the case that a’; it is equivalent to the complement of a set, which we write
as AC . I use ‘proposition’ and ‘event’ (which is what we usually call subsets
of the whole range of possibilities, in a set-theoretic context) interchangeably
throughout this chapter. Also throughout the chapter, we read, for example,
a|b ∧ ¬c as a|(b ∧ ¬c), and a ∨ b|h as (a ∨ b)|h; placing these brackets explicitly
every time would result in notation which is hard to read. We can now start
working directly with the axioms.

Axiom II transformed into a quantitative rule. Axiom II says the fol-
lowing:

i ∧ j|h = F ((i|h), (j|h ∧ i)) , (15)

where F is some function, as yet unspecified. We want to find out more about
this function, using the rules of Boolean algebra and calculus. We apply Equa-
tion 15 to b ∧ (c ∧ d)|a = b ∧ (c ∧ d)|a and get

b ∧ c ∧ d|a = F ((b|a), (c ∧ d|a ∧ b)) . (16)

We can label x := b|a and rewrite equation 16 as

b ∧ c ∧ d|a = F (x, (c ∧ d|a ∧ b)) .

Now we apply 15 again to c ∧ d|a ∧ b:

c ∧ d|a ∧ b = F ((c|a ∧ b), (d|a ∧ b ∧ c)) .
8Note that this conception of probability is always in conjunction with, or conditioned on,

a given hypothesis (say H). We do not have the concept of the ‘pure’ probability of an event
E, say P (E), but only P (E|H), the probability of E given H. Whether P (E) or P (E|H)
should be considered the more fundamental concept in probability, with one defined in terms
of the other, is object of some discussion in the philosophy of probability (see [12], [22]). In
the present context, however, we need not worry too much about this. In the infinite lotteries
considered, we always condition upon the same hypothesis (namely H = ‘one, and only one,
number will be picked’) and when this is the case we leave it unwritten and take it for granted.
This is to say, that the results obtained here are immediately applicable to the other lotteries
seen in my thesis, where we would only need to make the hypothesis H explicit, in order to
have completely identical notation.
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Now call y := c|a ∧ b and z := d|a ∧ b ∧ c and we have that

b ∧ c ∧ d|a = F (x, F (y, z)) .

But now apply 15 again, to b ∧ c ∧ d|a:

b ∧ c ∧ d|a = F ((b ∧ c|a), (d|a ∧ b ∧ c)) ,

where we note that

b ∧ c|a = F ((b|a), (c|a ∧ b)) = F (x, y).

So we also have
b ∧ c ∧ d|a = F (F (x, y), z) .

And therefore we have the important equality:

F (F (x, y), z) = F (x, F (y, z)) . (17)

We now assume F is differentiable. Howson [27, p.19, note 14] and Jaynes [30,
p.27] point out that this condition is not necessary, but it makes for a much
shorter derivation; I make the assumption so I can follow Cox’s proof. In any
case, it does not make a substantial difference to the general argument. We

call Fi(x1, x2) := ∂F (x1,x2)
∂xi

, whatever the arguments x1 or x2 may be. Now
we differentiate both sides of 17, first with respect to x then y to obtain two
new equations. We just need the chain rule and the definition of Fi above. For
example:

∂F (F (x, y), z)

∂x
=
∂F (F (x, y), z)

∂F (x, y)

F (x, y)

∂x

= F1(F (x, y), z)F1(x, y).

The equations we obtain are:

F1(x, F (y, z)) = F1(F (x, y), z)F1(x, y)

F1(F (x, y), z)F2(x, y) = F2(x, F (y, z))F1(y, z).

We can take a ratio of the two equations and write:

F2(x, F (y, z))

F1(x, F (y, z))
F1(y, z) =

F2(x, y)

F1(x, y)
. (18)

We can multiply equation 18 by F2(y,z)
F1(y,z)

to obtain an equally valid equation:

F2(x, F (y, z))

F1(x, F (y, z))
F2(y, z) =

F2(x, y)

F1(x, y)

F2(y, z)

F1(y, z)
. (19)

Now call G(u, v) = F2(u,v)
F1(u,v)

to rewrite the above equations as:

G(x, F (y, z))F1(y, z) = G(x, y), (20)

G(x, F (y, z))F2(y, z) = G(x, y)G(y, z). (21)
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Now we compute the derivative of equation 20 with respect to z and the deriva-

tive of equation 21 with respect to y. Clearly ∂G(x,y)
∂z = 0. Simple computations

show that

∂[G(x, F (y, z))F1(y, z)]

∂z
=
∂[G(x, F (y, z))F2(y, z)]

∂y

if it holds that
∂F1(y, z)

∂z
=
∂F2(y, z)

∂y
.

This in turn holds, by what is known as Schwartz’s theorem, if such second
partial derivatives are continuous. This extra condition on the otherwise arbi-
trary function F is not noted explicitly by Cox or Jaynes, but I do not think
it weakens the derivation in a significant way. Therefore, granting continuity of
the second partial derivatives of F , we have that the left hand side of equations
20 and 21 are identical when differentiated with respect to z and y respectively.
So, we have:

∂G(x, y)G(y, z)

∂y
= 0.

Hence the product G(x, y)G(y, z) must be constant in y, or in other words y
must not appear. This means that in general, G(u, v) must be of the form

aH(u)
H(v) , with a an arbitrary constant. Using this, we can rewrite equations 20

and 21 as:

F1(y, z) =
H(F (y, z))

H(y)

F2(y, z) = a
H(F (y, z))

H(z)
.

By property of differentials:

dF (y, z) = F1(y, z)dy + F2(y, z)dz,

and using the identities just above:

dF (y, z)

H(F (y, z))
=

dy

H(y)
+ a

dz

H(z)
.

Therefore we can write:∫
dF (y, z)

H(F (y, z))
=

∫
dy

H(y)
+ a

∫
dz

H(z)
. (22)

Thus we have

exp

(∫
dF (y, z)

H(F (y, z))

)
= exp

(∫
dy

H(y)

)
+

[
exp

(∫
dz

H(z)

)]a
.

We can write this more efficiently if we call w(u) := exp
(∫

du
H(u)

)
, and w(u) will

be an arbitrary function, since F was arbitrary (albeit with the two properties
mentioned above, differentiability and continuity of second partial derivatives).
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Here I depart slightly from Cox’s account and I continue with the proof by
Jaynes [30, p.28]. We have, from the preceding steps,

w(F (y, z)) = w(y)(w(z))a.

And we apply this to write:

w(F (x, F (y, z))) = w(x)(w(F (y, z)))a (23)

w(F (F (x, y), z)) = w(F (x, y))(w(z))a. (24)

But recalling the result in equation 17, it must be:

w(x)(w(F (y, z)))a = w(F (x, y))(w(z))a

and so
w(x)(w(y))a(w(z))a

2

= w(x)(w(y))a(w(z))a,

which is non-trivial only if a = 1. So now we have w(F (y, z)) = w(y)w(z).
Applying this to i|h and j|h ∧ i, and recalling our initial definition at 15, we
finally have a functional relation between the two plausibilities which we wanted:

w(i ∧ j|h) = w(i|h)w(j|h ∧ i). (25)

Of all the arbitrary functions that w could be, we make here an assumption:
that it is simply the function w(u) = u. This assumption is greatly simplifying,
because the relation above becomes a direct relation between probabilities, and
this is the main result of this section:

i ∧ j|h = (i|h)(j|h ∧ i) = (j|h)(i|h ∧ j), (26)

where the second equality is obtained by recalling that i ∧ j|h = j ∧ i|h. The
assumption above is warranted, Cox points out, because choosing to represent
probability by another function would only amount to a change in notation,
because we would never use the symbol i|h except for in the expression w(i|h)
[10, p.16]. We can now obtain that the certain event has probability 1, and
the impossible event has probability 0. I follow [30, pp.29-30]. It is simple to
see that if we admit the basic principle that propositions with the same truth
value have the same probability, and if j is certain, then i ∧ j|h = i|h and also
j|h∧ i = j|h. (The second assertion is obvious if we consider a drawing such as
the one below). From this we get that, for j certain (on given evidence h),

i|h = (i|h)(j|h),

and so j|h = 1. On the other hand, if i|h is impossible, then i ∧ j|h is also
impossible, and so by the principle just invoked that propositions having the
exact same plausibility must have the same probability value, i|h = i ∧ j|h.
We also have that i|j ∧ h must be impossible, supposing j ∧ h itself is not a
contradiction. Hence i|h = i|j ∧ h, and so we can rewrite equation 26, in this
case, again as:

i|h = (i|h)(j|h),

but this time we want it to be true for general values of j|h. Hence i|h, the
probability of an impossible event, must be either 0 or infinite. We choose 0
by convention. Hence all probability values are between 0 and 1, with 0 for the
impossible event, and 1 for the certain event.
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Axiom I and genesis of the sum rule. We now can use the results above
to trace the genesis of the sum rule for a conjunction of events. Axiom I says
that the probability of a proposition and that of its contradiction must be in
functional relation. Then it must be, for some function f ,

¬i|h = f(i|h). (27)

Again, the idea is to use substitutions obtained by Boolean algebra and the
previous result in equation 26 to gain an insight in what this function f must
be. The first important property f must have, is the following:

f(f(x)) = x. (28)

To see this, we only need to apply equation 27 with j := ¬i. Then j|h =
f(¬j|h) = f(f(j|h)). We can say much more about f . We now apply it again,
with i ∧ j instead of i:

f(i ∨ j|h) = ¬(i ∨ j)|h = (¬i ∧ ¬j)|h
= (¬i|h)(¬j|h ∧ ¬i)
= f(i|h)f(j|h ∧ ¬i),

applying the product rule obtained above in equation 26 then equation 27 again.
So:

f(j|h ∧ ¬i) =
f(i ∨ j|h)

f(i|h)
,

which, taking f on each sides, becomes

j|h ∧ ¬i = f

(
f(i ∨ j|h)

f(i|h)

)
.

We can now use the product rule 26 again to see that

j|h ∧ ¬i =
¬i ∧ j|h
¬i|h

=
¬i ∧ j|h
f(i|h)

.

And so:

¬i ∧ j|h = f(i|h)f

(
f(i ∨ j|h)

f(i|h)

)
.

We apply the product rule once again to the left hand side to get:

¬i ∧ j|h = j ∧ ¬i|h = (j|h)(¬i|h ∧ j) = (j|h)f(i|h ∧ j) = (j|h)f

(
i ∧ j|h
j|h

)
,

and finally the equality:

(j|h)f

(
i ∧ j|h
j|h

)
= f(i|h)f

(
f(i ∨ j|h)

f(i|h)

)
. (29)

Suppose we now apply this equation to propositions i, j such that i∧ j = i and
i ∨ j = j. If we think in terms of sets and set operations, i is a subset of j; in
yet other terms, j implies i. Then the equation above becomes:

(j|h)f

(
i|h
j|h

)
= f(i|h)f

(
f(j|h)

f(i|h)

)
.
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A little clarification might be helpful here. We will use this equation to narrow
down the properties that function f must have, which is what we are looking
for. However, this does not mean that the results are limited to events of the
type just described above—but because they could be, f must be valid in this
case too. Hence the result we obtain for f must satisfy this equation. We make
the following substitutions to rewrite more simply: y := f(i|h), and z := j|h.
Here is the equation which must hold:

zf

(
f(y)

z

)
= yf

(
f(z)

y

)
. (30)

We can call u := f(y)
z and v := f(z)

y . If we differentiate equation 30 with respect

to y, to z and to y and z we obtain three new equations (I omit the standard
manipulations); combined with equation 30, we obtain the following equation:

uf ′′(u)f(u)

(uf ′(u)− f(u))f ′(u)
=

vf ′′(v)f(v)

(vf ′(v)− f(v))f ′(v)
. (31)

Cox here simply comments that u and v are ‘mutually independent’ [10, p.21],
and so, since the function on both sides is the same, this function must be
constant for an arbitrary constant x. Of course he does not mean probabilistic
independence, for we have not defined yet. Expanding briefly on what he means,
we can say the following. Suppose f is of the type f(x) = k−x. This satisfies the

only condition on f we have so far, f(f(x)) = x. Then if u = f(y)
z = i|h

j|h = M ,

say, we have v = f(z)
y = f(j|h)

f(i|h) = k−(j|h)
k−(i|h) . This can take arbitrary values,

regardless of the value of M , which does not appear. And now suppose we

know that v = f(z)
y = f(j|h)

f(i|h) = k−(j|h)
k−(i|h) = N . Again, u = f(y)

z = i|h
j|h can take

arbitrary values, as it does not depend on N . Therefore, we can now conclude
as follows: suppose we take the value of equation 31 for an arbitrary x; then
this must be equal to a constant c, since equation 31 takes the same value for
arbitrary values of its argument. Therefore we can write:

xf ′′(x)f(x) = cf ′(x)(xf ′(x)− f(x)),

or

x
df ′

dx
f(x) = cf ′(x)(x

df

dx
− f(x)),

which Cox [10, p.21] rewrites, with a little manipulation, as:

df ′

f ′
= c

(
df

f
− dx

x

)
.

Integrating on both sides, we get

log |f ′| = c log |f | − c log |x|+A′,

(A′ is just a integration constant). Cox derives directly the following conclusion:

f ′ = A

(
f

x

)c
, (32)
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where A is another constant of integration. But to get rid of the absolute value
we need to assume the arguments are positive. This assumption has already
been made for probability values, and this extends to x and f(x), since the
latter is also a probability value by equation 27. However, for f ′(x) I think
we must make the additional assumption now, namely that the derivative f ′ is
positive, and hence f is in fact a non-decreasing function. Now we have that
equation 32 is a differential equation, which is in fact separable. Solving in the
usual way, we have

f1−c = Ax1−c +B, (33)

B another constant of integration. Now we can apply the two constraints we
had found for f to narrow down what it should be. Firstly, applying equation
33 to equation 30 we get easily that (A2 −B)y = (A2 −B)z. So if we want the
equation to be valid for general y, z, it must be B = A2. Note that in equation
30 there is in fact a relation between the variables, namely that i is a sub-event,
or is implied by j, and the variables y and z are defined in terms of conditional
probabilities of i and j. However, the relation between i and j only dictates
that one probability will be lesser than or equal to the other; we still require
equation 30 to be valid for otherwise arbitrary values. Secondly, f , as defined in
equation 33, should satisfy equation 28. Therefore, the following third-degree
equation in A must be satisfied: A3 + (x+ 1)A2−x = 0. The only solution that
does not involve x (keeping in mind that A is constant) is A = −1. Neither of
these two conditions put restraints on the exponent 1 − c. Therefore we now
have:

f1−c(x) = −x1−c + 1.

And recalling the definition of the function f :

(i|h)1−c + (¬i|h)1−c = 1.

This is nearly the equation we expect for the sum of the probabilities of an event
and its complement, except for the exponent 1− c. The conditions on f do not
specify what this should be; as a matter of convenience, then, we are free to
take it equal to 1 to finally obtain:

(i|h) + (¬i|h) = 1. (34)

These results are the first in which a sum appears. As we will see shortly, it
will be possible to derive the desired sum rule for a conjunction of events. First
note that applying the product rule at equation 26 we can get

(i ∧ j|h) + (i ∧ ¬j|h) = (i|h)((j|h ∧ i) + (¬j|h ∧ i)),

which, when combined with equation 34, gives the expected property:

(i ∧ j|h) + (i ∧ ¬j|h) = (i|h). (35)

Now recall that for any a, b a∨ b = ¬(¬a∧¬b), so we can apply equation 34 as
follows:

1 = ((¬a ∧ ¬b)|h) + (¬(¬a ∧ ¬b)|h)

= ((¬a ∧ ¬b)|h) + ((a ∨ b)|h).
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We can apply equations 34 and 35 again to the first member on the right hand
side above:

((¬a ∧ ¬b)|h) = ¬a|h− (¬a ∧ b|h) by equation 35 (36)

= 1− (a|h)− (¬a ∧ b|h) by equation 34. (37)

And so
(a ∨ b)|h = (a|b) + (¬a ∧ b|h).

But by equation 35,
(¬a ∧ b|h) = (b|h)− (b ∧ a|h),

and so finally we have the sum rule for a conjunction of events:

a ∨ b|h = (a|h) + (b|h)− (b ∧ a|h). (38)

Cox proves the general version of this rule for any number n of propositions
[10, pp.25-28]. Here we are only interested in mutually exclusive propositions,
such that b ∧ a|h is impossible and so has probability 0. The generalisation
to any number n is immediate. Suppose a1, . . . , an are n mutually exclusive
propositions. Then:

(a1 ∨ · · · ∨ an|h) = ((a1 ∨ · · · ∨ an−1) ∨ an|h) (39)

= ((a1 ∨ · · · ∨ an−1)|h) + (an|h) (40)

... (41)

= (a1|h) + (a2|h) + · · ·+ (an|h). (42)

This is the result we were after, and this is precisely finite additivity.

5.3 Jaynes and countable additivity

I mentioned in the introductory discussion of this chapter that it would be inter-
esting to see whether we can obtain countable additivity from Cox’s derivation,
by some modification which would not just be countable additivity itself. We
quickly see this seems impossible. Adding countable additivity to the condition
just above, is precisely that, just an addition of countable additivity as a fur-
ther property. In Cox’s argument I explained above, additivity derived from the
relation expressed in Axiom II, which is between an event and its complement;
this enables us to interpret the result of the differential equation 32, in equation
33, as a functional relation between the probability of an event and that of its
complement. We then develop this into the relation between the probability of
a conjunction of two events, and that of their individual probabilities (equation
38). This is a binary relation, and as such can be extended easily to a finite
number of events, as is done in equations 39 and following, but to extend the
relation to an infinite number of events would be simply to assume countable
additivity. It is not easy to see how we could modify the derivation ‘earlier’,
before assuming infinite additivity outright, in order to get it as a final result
without explicitly demanding it from the start. By this I mean a way to ob-
tain countable additivity which is akin to the way we obtained finite additivity
above, without it being mentioned in the initial axioms. Somewhat tentatively,
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I would say that proceeding to additivity from the binary relation between the
probabilities of an event and its complement, can only bring us as far as finite
additivity. Even if the event in question, or its complement, were infinite unions
of events, we still would only have the definition of probability of a finite union
between events, which happen to be themselves infinite unions of sub-events;
this would tell us nothing about breaking down their probability into the single
probabilities of these sub-events. This is what we can conclude, then: if we
accept the interpretation of probability which arises from Cox’s derivation, we
should also accept that countable additivity cannot be one of our axioms—it
may or may not hold—unless we add it ‘manually’. This is why Jaynes’ position
in his [30] is extremely interesting: while basing his approach on Cox’s, he also
clearly thinks that either a countable number of events have probabilities which
are countable additive, or probability on such set should not be allowed to exist
and be considered absurd [30, p.464]. But I find that his argument unfortunately
does not clarify the situation. He denies that countable additivity is a stronger
assumption than finite additivity [30, p.466], when it clearly is: all countably
additive probability measures are also finitely additive; the opposite is not true.
He reports an example by Feller in which, without countable additivity, we could
have a measure that assigns 0 to all finite intervals and 1 to the whole line [30,
p.465]. He comments that “We are trying to make a probability density that
is everywhere zero, but which integrates to unity. But there is no such thing,
according not only to all the warnings of classical mathematicians from Gauss
on, but according to our own elementary common sense” [30, p.465](emphasis
in original). But there clearly is such a probability measure, it seems to me,
since he has just defined it. And, as we will see shortly, it satisfies all rules that
we could derive from Cox’s proof. So if we want to exclude such probability
measures, we must add some rule to do this—this is countable additivity. What
is particularly weak, in my view, in Jaynes’ argument against merely finitely
additive measures, is that, by his own assertion, ‘our own elementary common
sense’ is no argument for or against a mathematical result. Jaynes bemoans
the “psychological phenomenon”in which

someone asserts a principle that seems to him intuitively right, and
when probability analysis reveals the error, instead of taking this
opportunity to educate his intuition, he reacts by rejecting the prob-
ability analysis. For him, his intuitive ad hoc principle takes prece-
dence over the rules of probability theory. [. . . ]. One can be so
deeply committed to his position that mathematical proof to the
contrary, and any number of counter-examples, carry no weight for
him [30, p.488] (emphasis in the original).

But it seems to me that Jaynes himself is victim of the very same phenomenon.
Here is the probability measure which is viewed as “weird” [30, p.465]: we let
F ((a, b)) = 0 for all b <∞, and F ((a,∞)) = 1. We suppose a > 0. Let us check
that Cox’s rules for probability measures are satisfied. The additivity reported
by Feller only regards the case in which we divide an interval I into a finite
number of non-overlapping intervals In with

⋃
n In = I. Firstly, all events have

probability between 0 and 1, trivially. Secondly, the certain event, as required
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in [10, p.17], has probability 1:9

i ∨ ¬i|h = i ∨ ¬i = F ((a, b) ∪ (a, b)C)

= F ((a, b) ∪ (0, a] ∪ [b,∞))

= F ((0,∞)) = 1

Finally, take a finite sequence (In)1≤n≤N of disjoint intervals In = (an, bn), such

that
N⋃
n=1

In = I for some interval I. Then I is either a finite interval (a, b) or

has an infinite right end-point, (a,∞). Suppose the former is the case. Then

F (I) = F

(
N⋃
n=1

In

)
= 0.

The sub-intervals In = (an, bn) must clearly all be finite, giving

N∑
n=1

F (In) = 0 + · · ·+ 0 = 0,

so that F

(
N⋃
n=1

In

)
=

N∑
n=1

F (In), and finite additivity holds in this case. Now

suppose I = (a,∞). Then

F (I) = F

(
N⋃
n=1

In

)
= 1.

Now, there must be at least one sub-interval Ik with Ik = (ak,∞), because if

this were not the case, there would be a largest bj < ∞ such that
N⋃
n=1

In =

(a, bj) ( I. On the other hand, there must be only one such interval with
infinite right end-point. To see this, suppose this were not the case, and we had

(ak1 ,∞), (ak2 ,∞) ∈
N⋃
n=1

In. Then (ak1 ,∞) ∩ (ak2 ,∞) = (aK ,∞) 6= ∅, where

aK = max {ak1 , ak2}, contradicting the fact that all sub-intervals are disjoint.
Hence we have

N∑
n=1

F (In) = 0 + · · ·+ 0 + 1 + 0 + · · ·+ 0 = 1,

giving again F

(
N⋃
n=1

In

)
=

N∑
n=1

F (In). Therefore, finite additivity is ensured,

and F satisfies all of Cox’s quantitative rules for probability. What happens if
I is divided into a countably infinite number of intervals, whose union is equal

to I? If I is finite, then F (I) = F

( ∞⋃
n=1

In

)
= 0. Of course, all sub-intervals

must be finite too, and so
∞∑
n=1

F (In) = 0.10 If I = (a,∞), we know that

9I ignore the hypothesis h because a truism is certain on any hypothesis [10, p.17].
10To divide a finite interval into an infinite number of sub-intervals, it is enough that each

sub-interval has a decreasing width b − a, with the widths forming a converging series. For
example, we could divide the interval (0, 1) in the sub-intervals (0, 1

2
], ( 1

2
, 1
2

+ 1
4

], . . . , (an, an+
1
2n

], . . . , with the widths adding up to 1.
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F (I) = F

( ∞⋃
n=1

In

)
= 1. However, since we allow this interval to be divided

into an infinite number of sub-intervals, we have two cases: either one (and only
one, by the argument above) of the sub-intervals is of the type (ak,∞), in which

case
∞∑
n=1

F (In) = 1. But it could also be that all sub-intervals are finite. (For

example, the infinite union of all intervals of unit length, (0, 1] ∪ (1, 2] ∪ . . . ,
clearly is equal to the whole positive real line.) In that case,

∞∑
n=1

F (In) = 0.

Hence in general we can only affirm the following:

F

( ∞⋃
i=1

Ii

)
≥
∞∑
i=1

F (Ii)

and so we do not have countable additivity in general. What Jaynes requires, to
avoid this ‘weird’ example, as he calls it, is an additional condition on infinite
sums: he requires countable additivity. But we see now that his argument in
favour of the principle is circular: he requires countable additivity to avoid cases
of probability measures which are not countably additive. Jaynes’ argument
relies on something which he considers obvious, but clearly many others do
not, and is not prescribed by Cox. Curiously, Jaynes’ point can be reduced
to Kolmogorov’s well-known and concise remark on the subject. Here is what
Jaynes says:

[. . . ] it is a trivial remark that our probabilities have ‘finite additiv-
ity’. As n→∞ it seems rather innocuous to suppose that the sum
rule goes in the limit into a sum over a countable number of terms,
forming a convergent series; whereupon our probabilities would be
called countably additive. Indeed (although we do not see how it
could happen in a real problem), if this should ever fail to yield
a convergent series we would conclude that the infinite limit does
not make sense, and we would refuse to pass to the limit at all [30,
p.465].

And here is what Kolmogorov famously wrote: “We limit ourselves, arbitrarily,
to only those models which satisfy [countable additivity]”[33, p.15] (emphasis in
the original). The word Jaynes would dispute, I believe, is ‘arbitrarily’; I have
argued, however, that his arguments are not convincing, and thus his choice to
consider only countably additive measures may indeed be viewed as arbitrary.

5.4 Remarks

As explained above, Jaynes and Howson use the same foundational argument
for probability, but reach opposite conclusions regarding countable additivity.
What can we conclude from this? What were the arguments from either side?
The only argumentations that emerged, amounted to claiming the obviousness,
or the desirability, of the intuition which should be respected in the issue of
additivity.11 The problem, of course, is that these obvious intuitions are in
conflict. Now Jaynes’ and Howson’s opposite conclusions, reached from the

11Howson in [27] also points to some similarities between logic and finitely additive proba-
bility. This does not seem a strong argument in favour of finite additivity in general, nor does
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same starting point (Cox’s axioms and derivation), can be explained. Other
interesting points emerge from this discussion.

Ad-hockery of countable additivity. Firstly, we could see a partial bal-
ancing-out of the ad-hockery accusations levelled at the assumption of countable
additivity: namely, that it is a principle that has nothing to do with the nature
of probability, and is only assumed for technical convenience (see, for example
[34], [39], [14] and [11]). It is often highlighted how even Kolmogorov himself ap-
parently supported this idea—and if the very person who introduced countable
additivity thought it was somewhat extraneous to probability, the arguments
seem to suggest, then surely that must be the case. We see this, an interpretation
of what Kolmogorov meant by conceding that the requirement was arbitrary,
in Schurz and Leitgeb’s [34, p.258], and Wenmackers and Horsten’s [39, p.59].
The former say: “Already Kolmogorov has emphasized that the condition of
σ-additivity is merely a useful assumption of idealization but is not contained
in the meaning of ‘probability’” [34, p.258]; an identical feeling is expressed in
the latter. I think this is too strong an interpretation of the passage which both
papers cite. It is the famous passage I quoted partially above; here it is in full:12

Since the new axiom [i.e. countable additivity] is essential for in-
finite fields of probability only, it is almost impossible to elucidate
its empirical meaning, as has been done, for example, in the case of
Axioms I - V [. . . ; the axioms regulating finitary probability]. For,
in describing any observable random process we can obtain only fi-
nite fields of probability. Infinite fields of probability occur only as
idealized models of real random processes. We limit ourselves, arbi-
trarily, to only those axioms which satisfy Axiom VI. This limitation
has been found expedient in researches of the most diverse sort [33,
p.15].

Kolmogorov only says that we cannot give an empirical meaning to a rule re-
garding infinite sets; this seems straightforward. He does not refer here to the
meaning of probability itself, and the interpretation above seems forced. Read-
ing a few pages after this passage, the impression is strengthened. Kolmogorov
presents an extension theorem, which is a theorem to the effect that a finitely
additive measure µ0 defined on an algebra A0, can always be uniquely extended
to a countably additive measure µ on a σ-algebra A, with µ(E) = µ0(E) for all
E ∈ A0 (see Section 2.2 for a reminder of these definitions). After the theo-
rem, he comments that while the sets of an algebra can be considered as ideally
corresponding to actual random events, this is not the case with a σ-algebra,
which is a purely mathematical concept. And this is how he continues (in our
notation):

Thus the sets of A are generally merely ideal events to which noth-
ing corresponds in the outside world. However, if reasoning which
utilizes the probabilities of such ideal events leads us to a determi-
nation of the probability of an actual event of A0, then, from an

the author, it seems to me, present it as such. We would need a further justification of why it
is vital to have these particular similarities between logic and probability, such that countable
additivity should be excluded.

12An infinite field is a σ-algebra; a field is an algebra; see Section 2.2.
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empirical point of view also, this determination will automatically
fail to be contradictory [33, p.18].

This comment is a simple consequence of the fact that µ(E) = µ0(E) for all
E ∈ A0, and that we are allowed to consider sets in A0 as corresponding to
real random events. It seems wrong to claim Kolmogorov emphasised countable
additivity to be extraneous to the idea of probability: we would ignore that he
called the axiom ‘essential for infinite fields’, and that he said we can correctly
transfer the results obtained in such infinite fields back to reality. Be that as
it may, let us return to the partial balancing-out of the adhockery accusations.
Why were the two axioms chosen as they were by Cox? Presumably, in order to
obtain a derivation of the laws of probability and provide a logical justification
for them. While these two axioms are definitely reasonable, it would be quite
a stretch to claim that they are obviously fundamental to uncertain reasoning.
So if we do not want to commit to giving an exceptional weight to these two
particular axioms (and all the mathematical manipulation needed to derive the
probability axioms from them), we would have to admit that these too are
chosen ad hoc for the purpose of justifying probability. It seems to me that in
principle, this is not too different from assuming countable additivity to obtain
powerful integration techniques, for example. We assume a principle which
seems reasonable (probabilities are additive in a countably infinite setting), in
order to justify the techniques we wish to use for uncertain reasoning. It is
not obvious why assuming axioms which are supposedly ‘more fundamental’
(Howson believes they are [27, p.19]), then deriving the rules we wanted in the
first place, would put us on more solid ground. Firstly, we would still need to
justify the first axioms (with other axioms?). And secondly, that these other
axioms are more fundamental could be questionable. For this see the point
below.

On which axioms are more fundamental. With regards to which princi-
ples should be seen as more fundamental, between the usual definition of prob-
ability or Cox’s axioms, we note the following: in Cox’s derivation we needed
to have a pre-existing, well-formed concept of integral, both in equation 22 and
the subsequent ones, and in the solution to the differential equation 32. In
mathematical probability, there is no need for this. As we saw in Chapter 2,
important properties of integrals are not assumed as already existing, in order
to define probability: rather, we define probability axiomatically as a measure,
and then construct a powerful and flexible theory of integration from it. Given
the importance of integration in probability, this could be seen as more nat-
ural. This, I believe, is an argument against the perceived position of Cox’s
qualitative axioms (I) and (II) as more ‘fundamental’ than the direct axiomatic
definition of probability. It highlights that the ‘naturalness’ of qualitative ax-
ioms for probability could be disputed, for it relies critically on non-qualitative,
pre-existing concepts in order for one of its most important instruments to work.
An axiomatic definition of probability is not qualitative, and stipulates directly
what features a probability measure must have. However, we can use this as a
starting point for a natural definition of integral. We leave this discussion at
that, to return to infinite lotteries. This time, a different kind of solution is
sought, one which hopes to go beyond the deadlock we have explored thus far
between arguments for and against countable additivity.
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6 α-theory and solutions to the infinite lottery
problem

6.1 Setting

Being extremely concise, the problem of the infinite lottery can be explained
thus: we would like to assign equal probability to each number, but any real
number is too big for this, and 0 is too small. Perhaps, then, it could be useful to
go first back to finite lotteries for a moment, to try and extrapolate what makes
them fair, and apply that somehow to an infinite case. In this chapter I present
such an approach, given by Wenmackers and Horsten in [39]. I follow their
setting, but I refer the reader to their article and to [4] for the complete formal
approach using ultrafilters. Not being familiar with ultrafilters, I limit myself
to explaining their approach by using α-theory (as is also done in that article,
[39]), as presented in [5]. α-theory is an axiomatic approach to non-standard
analysis, and the numbers involved are objects of this branch of mathematics.
I will make little use of non-standard analysis in general, however, being more
concerned with finding a ‘practical’ solution to the infinite lottery problem. Of
course, this practical solution is backed up and given plausibility by its formal
theoretical background, but for this I refer the reader to the articles I cite above.
I will introduce some elements of α-theory shortly, insofar as they are needed
for the discussion in this chapter. The explanations for the result I present
are equivalent if we use ultrafilters or α-theory, and I find the latter approach
easier to follow. Before presenting this result, I propose an approach of my
own. It is very similar to the one in [39], and indeed identical in spirit and
in the results of the simple worked-out examples given in that paper. I follow
the main ideas of Wenmackers and Horsten, except for some small changes,
and the fact that I derive a probability measure entirely from the instruments
of α-theory. I do not wish to claim that my approach is better. However, I
found α-theory intuitively more approachable, and perhaps a solution that uses
only its instruments can help in the argument that this type of solution (using
α-theory or ultrafilters, but the bottom line is that they all use non-standard
analysis) can be understandable and desirable. Moreover, the proof of additivity
resulted different, in my construction, than that in [39]. After having presented
both probability functions, I show that they are indeed equivalent.

6.2 Finite lotteries, asymptotic densities and where they
fail

Let us start, then, from finite fair lotteries. Throughout this chapter the sample
space will be the set of natural numbers N = {1, 2, 3, . . . }. I simply assume each
ticket is numbered according to the natural numbers, and call the tickets by
their numbers: P (k) is the probability that the ticket labelled by the number k
has of winning. I consider lotteries in which there is only one winning ticket, and
so all events are mutually exclusive, and one ticket must win, so the events are
exhaustive. This gives a simplified additivity, as we do not need to subtract the
probability of more than one ticket winning simultaneously, from the probability
of a union of tickets. For any lottery with n tickets, the fair probability of each
ticket is 1

n . For any finite subset A of tickets, the probability, respecting finite
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additivity, should be #(A)
n , where #(A) is the function that maps a finite set

to its number of elements. What is clearly tempting, then, is to take the limit
at infinity of this fraction. This is called asymptotic density ad as is defined as
just described:

ad(A) = lim
n→∞

#(A ∩ {1, . . . , n})
n

, (43)

if such limit exists. I will call adn(A) := #(A∩{1,...,n})
n . Clearly the numerator

will (eventually, or in the limit) give the size of the set A in question. However,
this limit does not exist for all subsets of N, and the sets for which it does exist
do not constitute an algebra (so it could happen that we know the probability of
two sets, for example, but not of their union). Therefore, such limit is not a good
solution to the infinite lottery problem [39, p.42]. In the article just cited, there
is mentioned the following example: take the set of natural numbers that, when
written in binary notation have an even number of digits. Then, for this set, the
limit ad does not exist, and hence this set has no probability value according to
the formula above (note 6 in [39, p.42]). The authors do not elaborate further
on this example. I will treat it in some detail, because it seems perfect to test
whether, and in what sense, a non-standard solution can be better than ad.
Hence I will describe it in the section that follows, then take it up again below,
after I have described a new probability function.

Example of a set with no ad value. How many numbers have a binary
expansion with an even number of digits? Rather than thinking from the natural
numbers, it is simpler to reason directly in terms of binaries. Suppose we have k
digits, and each can be 0 or 1. Then we can form 2k different combinations, but
half of them must start with a 0. Since we ignore these initial 0s in the notation
of an integer, we actually have 2k−1 different numbers. Then, supposing we
start from the number 1, we can get one number from one digit (1 in binary,
which is 1 also in decimal notation); from k = 2 digits, we have 21 = 2 numbers
(10 and 11, which correspond to 2 and 3 in base 10); from k = 3 digits we have
22 = 4 numbers, and so on. We call A the set of all those natural numbers
which arise from even values of k. We want to find an expression for adn(A) for
finite n. Dividing the natural numbers according to the number of digits of their
binary expansion, we will have the following scenario: we have 1 number with
one digit; followed by 21 numbers with 2 digits; followed by 22 numbers with
3 digits; and so on. Integers with an odd number of binary digits (I will call
them ‘odd-digit numbers’) are in the sets [22k, 22k+1), while numbers with an
even number of binary digits (‘even-digit numbers’) are in the sets [22j+1, 22j).
The way to see which of these sets a natural number n belongs to, is to take its
logarithm in base 2—or rather, the floor function (the largest integer smaller
than a given number) of its logarithm, blog2(n)c. However, we see that we will
have different formulae for the cases in which n falls in an interval [22k, 22k+1) or
an interval [22j+1, 22j), i.e. whether blog2(n)c is respectively odd or even. This
is because we are counting, in the numerator of adn, only how many numbers,
less than or equal to n, fall in intervals [22j+1, 22j). The denominator of adn
will of course always be n, but the numerator is seen to be, respectively: the
number of even-digit numbers up to 2blog2(n)c, if blog2(n)c is even; and n minus
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the number of odd-digit numbers up to 2blog2(n)c, if blog2(n)c is odd. Hence

#(A ∩ {1, . . . , n}) =

blog2(n)c
2 −1∑
i=0

22i+1 if blog2(n)c is even,

and

#(A ∩ {1, . . . , n}) = n−

blog2(n)c−1
2∑
i=0

22i if blog2(n)c is odd.

These are sums of powers, so the function for the probability of A for each n
can be written as:

adn(A) =
2blog2(n)c+1 − 2

3n
if blog2(n)c is even (44)

and

adn(A) = 1− 2blog2(n)c+1 − 1

3n
if blog2(n)c is odd. (45)

Inspection of the function immediately shows that it does not have a limit. The
function grows in intervals in which blog2(n)c is odd, and decreases when this
number is even. The first assertion follows from the fact that adn(A) < 1, and
in general if a

b < 1, then a+1
b+1 = a

b + b−a
b(b+1) >

a
b . The second follows from the

fact that in intervals in which blog2(n)c is even, we add 1 to the denominator
and 0 to the numerator at each step. We also see that for all n which have
n = 22k for some k, adn(A) = 2

3 −
2
3n , and for any n that has n = 22j+1 for

some j, we have adn(A) = 1
3 + 1

3n . We also notice that it is bounded above—by
a smaller number than the obvious bound 1. To see this for the blog2(n)c even
case (just ‘the even case’ for the rest of the treatment of this example), we can
rewrite the expression in equation 44 as follows:

adn(A) =
2blog2(n)c−log2(n)+1

3
− 2

3n
<

2

3
, (46)

while the case for blog2(n)c odd (‘the odd case’) gives:

adn(A) = 1− 2blog2(n)c−log2(n)+1

3
+

1

3n
≤ 2

3
. (47)

So ad(A) ≤ 2
3 . We can also find an expression in terms of n for the lower

bound. For the even case, we look again at expression 46 and note that this is
smallest when blog2(n)c − log2(n) + 1 has its minimums, which is in the cases
where n is the number before 2blog2(n)c+1 , so that n = 2blog2(n)c+1 − 1. Sub-
stituting this into expression 44 gives adn(A) = 1

3 −
1
3n . For the odd case,

the lowest value attained is just the value at any n that has n = 22j+1 for
some j. This is because the function is increasing for n from n = 22j+1

to n = 22j+2 − 1. In this case adn(A) = 1
3 + 1

3n . We saw, then, that
lim inf adn(A) = 1

3 , while lim sup adn(A) = 2
3 . This means that the limit

lim
n→∞

adn(A) = ad(A) does not exist, and the set A cannot be assigned a

probability value. We note that we know a range in which the value of the
probability of A must be, however it really seems a contradiction in terms to
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say (as we must, since the relevant limit does not exist), ‘the set A does not
have a probability’ and at the same time affirm that ‘the probability of the
set A lies between such-and-such extremes’. Hence we may want to relax this
definition of probability to include difficult cases like this one. For example,
we could modify ad(A) to fix this as follows. The limit inferior and limit su-
perior of a sequence always exist for any sequence, so we could redefine ad(A)
to at least take an interval value, ad(A) ∈ (lim sup adn(A), lim inf adn(A)) if
lim sup adn(A) − lim inf adn(A) > 0, and ad(A) = lim

n→∞
adn(A) if the limit ex-

ists (i.e. lim sup adn(A) − lim inf adn(A) = 0). While this is in a sense more
promising, we still do not get countable additivity. In fact, if we take any sin-

gleton {m}, m ∈ N, then ad({m}) = lim
n→∞

1
n = 0. However, while N =

∞⋃
m=1

m,

we have that ad(N) = lim
n→∞

n
n = 1. Note that any finite subset A of natural

numbers would also have ad(A) = 0. This suggests that if we want a probability
function which: (1) takes on a value for any subset of N; and (2) has additive
properties, both for finite unions and for infinite unions of sets; then we should
look at other ways of approaching the concept of values ‘at infinity’. This is
the basic idea of α-calculus (and of non-standard analysis in general), which
I introduce below. As will become apparent, it is possible to satisfy the two
properties above; however, we have to define a new concept of infinite sum; and
we have to give up on real-valued probabilities.

6.3 α-theory and a different concept of size

Looking at equation 43, it is clear that the numerator will give the size of any
finite set A, by giving the number of its elements. But what is the ‘size’ of N,
over which, in the limit, we will be dividing? When we are applying the counting
function to A∩{1, . . . , n}, for increasing numbers of n, we are effectively ‘adding
a 1’ for each element in the intersection. We can put this more clearly as follows.
Let 1A be the characteristic function of the set A, defined as

1A(n) =

{
1 if n ∈ A
0 if n 6∈ A

Then we can create a sequence of 0s and 1s as we apply 1A to an initial section
of N (the complete sequence of 0s and 1s is what is called a ‘characteristic
bit-string’ in [39]). I call the partial bit-string up to n ∈ N simply T (n):

TA(n) =

n⋃
i=1

{1A(i)} ,

where the curly brackets are used to indicate that we consider the set {1}, say,
rather than just the number 1. As an example, suppose A is the set of odd
integers; then TA(6) = {1, 0, 1, 0, 1, 0}. (I omit the curly bracket notation in
future writings of T (n), giving the meaning of the notation for granted.) Now
call S(n) the partial sum of elements of T (n):

SA(n) =
∑

x∈T (n)

x =

n∑
i=1

1A(i).
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We have simply written an equivalent form of the counting function #, but
written in this way we will be able to apply to it the rules of α-calculus directly.
The idea for our probability measure is to consider the sequence of partial
sums S(n) and its value ‘at infinity’, and this will be its assigned size; we then
divide this number by the size assigned to N. The size of N is where α makes
its first appearance. Suppose we take the bit-string T (n) of N. Then this is
TN(n) = {1, 1, . . . , 1} for all n. Therefore, SN(n) = n, for all n. We can think of
α as an infinitely large integer, and of the α-limit of a sequence as its ‘value at
infinity’. We define the α-limit of the identity sequence, such as SN(n), to be:
SN[α] = α 6∈ N. The main advantage of taking α-values instead of conventional
limits is that, while the limit of a sequence may or may not exist, the α-value of a
sequence always exists. Here are the five axioms which determine the properties
of α. I quote them nearly verbatim from [5], except for some notation which
I found more convenient. Note that atoms here are those primitive objects
which are not sets. Numbers, for example are considered to be atoms. (We
could consider all numbers to be ‘sets’, but this is avoided in [5] for the sake of
clarity.)

1 Extension Axiom. For every sequence ϕ there is a unique element ϕ[α],
called the α-limit or α-value of ϕ.

2 Composition Axiom. If ϕ and ψ are sequences and if f is any function
such that the compositions f ◦ ϕ and f ◦ ψ make sense, then

ϕ[α] = ψ[α]⇒ f ◦ ϕ[α] = f ◦ ψ[α]

3 Number Axiom. If cr : n 7→ r is the constant sequence with value r ∈ R,
then cr[α] = r. If IN : n 7→ n is the identity sequence on N then IN[α] =
α ∈ N.

4 Pair axiom. For all sequences ϕ, ψ and υ:

υ(n) = {ϕ(n), ψ(n)} for alln⇒ υ[α] = {ϕ[α], ψ[α]}

5 Internal Set Axiom. If ψ is a sequence of atoms, then ψ[α] is an atom. If
c∅ : n 7→ ∅ with constant value the empty set, then c∅[α] = ∅. If ψ is a
sequence of non-empty sets, then

ψ[α] = {ϕ[α] |ϕ ∈ ψ(n) for alln} .

Benci and Di Nasso formulate these postulates as an axiomatic approach to
non-standard analysis. However, here I will only use the results as a ‘practical’
solution to the infinite lottery problem, without introducing or treating non-
standard analysis fully. We immediately notice, however, that α is not in N.
It is actually in N∗, the non-standard extension of N. I will define this more
carefully below. I remarked above that the sequence SA(n) is the same as the
function #(A ∩ {1, . . . , n}). For our probability function, we want to consider
the α-limit of the sequence T (n), and take its sum S(n). All sets T (n) are
finite for all n (indeed they have all precisely n elements), and the α-value of a
sequence of finite sets is called a hyper-finite set [5, p.364]. Axiom 5 above says
that the elements of T [α] are all the α-values of all sequences with values in T (n)
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for all n. However, T (n) only contains 0s and 1s at each n, so by the Pair Axiom
(number 4), the α-values of such sequences must be 0 or 1. However, because
of how the hyper-finite sum, or the sum over elements of T [α] is defined, we
need not worry about these α-values of the elements of T (n). We only remark
that they are trivially hyper-natural numbers, where the set of hyper-naturals is
defined as N∗ = {ψ[α] |ψ : N→ N}. This is the mould for the general definition
of the star-transform, a crucial concept in non-standard analysis; I will come
back to this below. The last definition we need for current purposes is that of
hyper-finite sums: if ϕ[α] is a hyper-finite set of hyper-natural numbers, then
its hyper-finite sum

∑
x∈ϕ[α]

x is the α-value of the sequence of finite sums
∑

x∈ϕ[n]
x

[5, p.381].
We are now nearly ready to give the definition of a probability measure

obtained thanks to α-theory. First, however, I would like to redefine T (n) and
S(n) given above, to make additivity properties more obvious for unions of sets.
The probability of a single set will be seen to remain unchanged. As we will
see, additivity of hyper-finite sums follows easily from finite additivity. This is
why the probability measure I propose is hyper-finitely additive, rather than
hyper-countably additive (I define the hyper-countable sum below—intuitively,
it is just the non-standard extension of a countable sum). The measure obtained
in [39] is hyper-countably additive, but only in a vacuous sense, as they explain.
There will be more on this in the discussion at the end of this chapter.

Now, suppose we are interested in the probability value of the union of k
sets, A1 to Ak. Recall that all sets represent (sets of) lottery tickets and are
mutually exclusive. We wish to keep using the hyper-finite sum as defined above,
and this applied to summing the members of sequences of finite sets. If we first
take the characteristic bit-string T (n) of the sets A1 to Ak, and then consider
their union, we would have a union of k hyper-finite sets, and we could not
use the definition of hyper-finite sum directly. But this is desirable, since, as
mentioned above and as we will see shortly, the additivity of infinite sets (or
hyper-finite sets), follows very naturally if we use hyper-finite sums. Therefore,
we redefine T (n) as follows, for each n,

T (n) =

n⋃
j=1

n⋃
i=1

1Aj (i),

with the understanding that for all n > k, the characteristic bit-string of An
will simply be {0, 0, . . . , 0}. This is reasonable since we may consider these to
be empty sets. The partial sum S(n) of elements of T(n) will be as follows:

S(n) =

n∑
i=1

1A1
(i) + · · ·+

n∑
i=1

1An(i)

=

n∑
j=1

n∑
i=1

1Aj (i),

where we could also stop the first summation in the equation above after n > k,
if we are considering the union of a finite number k of sets, since all elements of
the bit-strings for such An are just 0. This means that for the case of a single
set A, the definition of the partial sum S(n) effectively remains the same. For a
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union of countable sets, however, there will be a set for each n. Visually it might
be helpful to understand this new definition of S(n) as the sum of all the 1s and
0s present in an n×n array which contains the value of 1Aj (i) at position (j, i).
The redefined T (n) can be seen as a two-dimensional ‘characteristic bit-array’.
We remark that the sequence T (n) is still a sequence of finite sets (each T (n)
has n2 elements) and that, since the sets Aj are disjoint, S(n) can attain a
maximum value of α but not more. For the probability function I propose, we
take the following steps:

1 we associate each subset of N, or union of such subsets, to its characteristic
bit-array given by 1Aj (i), and we further associate this sequence to its
value ‘at infinity’, the unique α-value of T (n) (which we write as T [α]);

2 we obtain a probability function P by taking the α-value of the ratio S(n)
n ,

where the numerator is the hyper-finite sum of T [α], and the denominator
the α-value of the sequence cN(n) = n, which is just α.

Writing this out as equations we have, for a single set:

P (A) = Pα(T [α]) =
S[α]

α
. (48)

Here Pα is simply an intermediate function that maps a set T (n) to the sum of
its elements S(n) for all n, so that the α-value of S(n) is the sum of the α-value
of the sequence of bit-strings (or bit-arrays) T (n). The probability function P
has the following desirable properties

1 P (∅) = 0, since T∅(n) = 0 and so S∅(n) = 0 for all n, and so S∅[α] = 0 by
Axiom 1;

2 P (N) = 1, since TN(n) = n and so SN(n) = n
n = 1 and so SN[α] = 1 again

by Axiom 1.

3 Finite additivity follows from the definition, the additivity of the counting
function # (which is the same as the partial sums S(n)) and the properties
of α-values of sequences. We write ‘|α’ for ‘evaluated at α’, or the α-limit
of the sequence.

P

 k⋃
j=1

Aj

 =

(
1

n

n∑
i=1

1A1
(i) + · · ·+ 1

n

n∑
i=1

1Ak(i)

)∣∣∣∣∣
α

=

(
1

n

n∑
i=1

1A1
(i)

)∣∣∣∣∣
α

+ · · ·+

(
1

n

n∑
i=1

1Ak(i)

)∣∣∣∣∣
α

=

k∑
j=1

P (Aj),

since for all sequences of natural numbers, if ψ(n) = φ(n) + ϕ(n) for all
n, then ψ[α] = φ[α] + ϕ[α] [5, p.362].

Unfortunately, it is not possible to define a countable sum over non-standard
numbers [39, p.50], and the α-limits of the sums S(n) will in general be non-
standard numbers. Hence we cannot work out the probability of a single ticket
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(which is non-zero, as we will see shortly) then add this number over the natural
numbers. However, this probability function does preserve additivity for infinite
unions of disjoint sets: it is hyper-finitely additive. This means that the

probability of a countable union of disjoint sets, which is just P

(
∞⋃
j=1

Aj

)
=

Pα

(
n⋃
j=1

n⋃
i=1

1Aj (i)

∣∣∣∣∣
α

)
, is equal to the hyper-finite sum of the probabilities of

each set. We show this now, starting from the latter hyper-finite sum.

α∑
j=1

P (Aj) =

α∑
j=1

Pα

(
n⋃
i=1

1Aj (i)

∣∣∣∣∣
α

)
=

α∑
j=1

 1

α

∑
x∈TAj [α]

x

 . (49)

So far we have only written out the definition of P (Aj). Let us relabel these

sums for simpler notation. Let ϕj(n) := 1
n

∑
x∈TAj (n)

x = 1
n

n∑
i=1

1Aj (i), so that

ϕj [α] = 1
α

∑
x∈TAj [α]

x. Then we can rewrite the last member of equation 49 more

simply as follows:
α∑
j=1

ϕj [α] =
∑

y∈{ϕ1[α],...,ϕα[α]}

y. (50)

Now, {ϕ1[α], . . . , ϕα[α]} is a hyper-finite set, because it is the α-limit of the
sequence of finite sets defined by {ϕ1(n), . . . , ϕn(n)} for each n. Therefore, by
the definition of hyper-finite sum, equation 50 is actually the α-limit of the finite
sums of members x ∈ {ϕ1(n), . . . , ϕn(n)}. Thus we write:

∑
y∈{ϕ1[α],...,ϕα[α]}

y =
∑

y∈{ϕ1(n),...,ϕn(n)}

y

∣∣∣∣∣∣
α

(51)

= [ϕ1(n) + · · ·+ ϕn(n)]|α (52)

=

[
1

n

(
n∑
i=1

1A1(i) + · · ·
n∑
i=1

1An(i)

)]∣∣∣∣∣
α

(53)

=

 1

n

n∑
j=1

n∑
i=1

1Aj (i)

∣∣∣∣∣∣
α

(54)

= Pα

 n⋃
j=1

n⋃
i=1

1Aj (i)

∣∣∣∣∣∣
α

 (55)

= P

 ∞⋃
j=1

Aj

 . (56)

Therefore, we have defined a probability function which respects all axioms
of finitely additive probability, and on top of that, is hyper-finitely additive. The
difference with conventional probability measures, however, is that this P is not
real valued, but rather maps all subsets of N to ratios of numbers in N∗, the
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non-standard extension of the natural numbers. These numbers are in Q∗, the
hyper-rational numbers, which are the non-standard extension of the rational
numbers Q. Hence P : P(N) → Q∗. This might be puzzling at first, but, as is
argued in [39], just as the real numbers are obtained as the limiting values of
sequences of rational numbers, the same is true for the hyper-rational numbers
(as we see in the function P ), albeit with a different idea of limit, namely the α-
value. So there seems no intrinsic reason, at least, why a real-valued probability
function should be more intuitive than a hyper-rational-valued one. There will
be more about this in the discussion at the end of this chapter. In the following
paragraphs I present some examples of probabilities of subsets of N. We will
need to define a few more concepts from non-standard analysis to interpret these
numbers; however, I think it greatly aides intuition to first see some actual cases
of probabilities in practice, so I intersperse the definitions between the examples.

6.4 Examples and more definitions.

Singletons and finite sets. We saw above that P (N) = 1 and P (∅) =

0. Now take a singleton m ∈ N. Then P ({m}) = Pα

(
n⋃
i=1

1{m}(i)

)
=[

1
n

n∑
i=1

1{m}(i)

]∣∣∣∣
α

. Consider the sequence of partial sums in the equation, which

we called S(n). For all M > m, M ∈ N, we have that S(M) = S(m). By
Proposition 1.3 in [5], if a sequence ϕ(n) = ψ(n) for all but finitely many n,
then ϕ[α] = ψ[α]. But S(m) = 1 and so S[α] = 1, because S(n) = 1 for all but
a finite number (precisely m−1) of n. Then P ({m}) = 1

α , hence the probability
of a single ticket is 1, over the size of the whole set. This is exactly the sort of
value one has in mind for a fair lottery. The reasoning is similar for any finite
subset A of N. Any such subset must have a largest member, say N ∈ N. Then
for all M > N , M ∈ N, we have that S(M) = S(N) = #(A) ∈ N. Hence,

S[α] = #(A) and P (A) = #(A)
α . Again, this is exactly as expected. We have

already shown the hyper-finite additivity of P , but perhaps it would be nice to
check that the probabilities of all single tickets add up (or rather ‘hyper-finitely
add up’) to 1. Indeed they do:

α∑
j=1

1

α
=

∑
x∈

{
1

α
, . . . ,

1

α

}
︸ ︷︷ ︸

α

x =
∑

x∈

{
1

n
, . . . ,

1

n

}
︸ ︷︷ ︸

n

x
∣∣∣
α

= 1|α = 1.

Star-transforms, infinitesimals and shadows. Before treating other ex-
amples, it will be useful to define a few more concepts from non-standard analy-
sis. The star-transform of any entity should be understood as its non-standard
extension; in the context of α-theory, which is the one that interests us, the star-
transform of any non-empty set is the set of the α-values of all sequences with
values in A [5, p.361]:

A∗ = {ϕ[α] |ϕ : N→ A} .
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By the manner in which we obtain probabilities according to the function P ,
namely taking α-values of rational numbers, we immediately see that these prob-
abilities are numbers in the set Q∗. As anticipated above, this set is called the
set of hyper-rational numbers. Without aiming to be rigorous, we nonetheless
note the following properties of the star-transform: it preserves all basic prop-
erties of sets, so that for example A ⊆ B ⇒ A∗ ⊆ B∗; and, because of Axiom 3
(the Number Axiom), A ⊂ A∗. That this inclusion is proper is readily under-
stood by taking the natural numbers. By the Number Axiom, the α-value of all
constant sequences cr(n) = r, is simply cr[α] = r. Hence all natural numbers
are also hyper-natural numbers, so N ⊆ N∗. However, we also know that the
identity sequence IN(n) = n has IN[α] = α 6∈ N, and hence actually N ⊂ N∗ [5,
p.361-363]. We now see that 1

α , seen above as the probability for a singleton, is
a hyper-rational number. In this context we may want to know the following:
‘how big’ a number such as 1

α is; and how, if at all, we could associate this num-
ber with a standard (say real, or rational) number, in order to translate this
solution back to a standard infinite lottery. For the first question we introduce
infinitesimal numbers. A number ξ ∈ R∗ is infinitesimal if −r < ξ < r for
all r ∈ R. Note that this definition applies to hyper-rational numbers too, as
Q ⊂ R⇒ Q∗ ⊂ R∗. Note also that the only infinitesimal number in R is 0. The
number 1

α ∈ Q∗, however, is indeed infinitesimal. The relation < considered in
the definition of infinitesimals is actually the star-transform of the relation <
in R, so we should actually write it as <∗. A possible definition of <∗ is the
following: for ζ, ξ ∈ R∗, ζ <∗ ξ ⇔ ξ − ζ ∈ (R+)∗, with R+ the set of positive
real numbers. However we follow [5] in writing this relation simply as <, and
we see that 1

α is indeed infinitesimal by using the following sufficient condition
given in that paper [5, p.363]: if ϕ and ψ are real sequences, with ϕ(n) < ψ(n)
eventually, then ϕ[α] < ψ[α]. Hence, because 1

n is eventually less than any
real number, 1

α is indeed infinitesimal. Similarly to the definition of infinites-
imals, we have finite hyper-real numbers, which are those ξ ∈ R∗ such that
−r < ξ < r for some positive real number r; and infinite hyper-real numbers for
which no such r exists. These definitions obviously carry over to hyper-rational
and hyper-natural numbers too. Other infinitesimal numbers are the following:
(i) if ζ and ξ are infinitesimal, then ζ · ξ and ζ + ξ are infinitesimal; (ii) if ζ is
finite and ξ is infinite, then ζ

ξ is infinitesimal [5, p.365]. The last important def-
inition we need in this section is that of shadow of a hyper-real number. First
this important theorem: every finite hyper-real number ξ is infinitely close to a
unique real number r; hence it can be written uniquely as the unique sum of a
real number and an infinitesimal number: ξ = r+ ε [5, p.366]. The real number
r in this representation is called the shadow. Now we can answer the second
point above, namely how we can associate our non-standard valued probabili-
ties with real or rational numbers. The answer now is very simple: we take the
shadow of the obtained result. We see, then, that the shadow of 1

α is just 0. This
indicates that we are not able to simply ‘translate back’ the values obtained in
the non-standard-valued probability, to something more recognisable but that
will maintain its additivity properties. We can now examine other examples,
and see what their shadow would be.

Odd and even numbers. Because the probability function is the α-value

of the sequence of partial sums S(n)
n , if we can write a formula for the partial
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sums in terms of n, then we easily have its α-value. Take the set of all odd
integers as an example (let us call it ODD). If n is even, exactly half of the

integers in {1, . . . , n} are odd. Hence S(n)
n =

n
2

n = 1
2 . If n is odd, the number

of odds in {1, . . . , n} is the same as the number of odds in {1, . . . , n+ 1}, so
S(n)
n =

n+1
2

n = n+1
2n . Using the function

1− (−1)k

2
=

{
1 if k is odd
0 if k is even

we can write this for all n as:

SODD(n) =
1

2
+

1− (−1)n

4n
,

so

SODD(n)
∣∣
α

=
1

2
+

1− (−1)α

4α
.

This highlights what could seem the biggest drawback of this approach: the
α-limit always exists, but it is not unique. We see that:

P (ODD) =


1
2 if α is even

1
2 + 1

2α if α is odd

Benci and Di Nasso remark that we can consistently postulate these kind of
properties about α [5, p.367]. We could simply add to the axioms describing
α, an additional one deciding whether it is even or odd. A similar situation, of
course, arises for the set of even integers (EV EN). We have

P (EV EN) =


1
2 if α is even

1
2 −

1
2α if α is odd

A first answer could be to simply postulate that α should be even. However,
as [39, p.54-55] point out, the shadow is the same in either case, namely 1

2 ,
so in this case we could argue that it makes little difference—or infinitesimal
difference. A condition on α being even or odd is not the only one we could
want, however, as we will see in the next example.

Multiples of k. Let Ak be the set of all m ∈ N such that m = 0 mod k, or
all the multiples of k. Then the partial sums SAk(n) follow the formula

SAk(n) =
bnk c
n
.

Therefore,

P (Ak) =
bαk c
α

=


1
k if α = 0 mod k

1
k −

r
αk if α = r mod k

Just as we could postulate that α is even, by the same reasoning we should
perhaps say that α is a multiple of all prime numbers, so that we always get
a ‘nice’ result in cases such as these. This would represent an infinite number
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of constraints on α. Again, however, we could simply ignore the different cases
and call them equivalent, since the shadow of both solutions, for α a multiple
of k or not, is simply 1

k , because r < k and k is finite, so r
αk is infinitesimal.

So far, so good, then: the α-limit always exists, and it is not unique but this
does not really represent any serious issue, since the solutions so far all have the
same value in real numbers. The next example, however, shows that while the
probability function P is in many ways a good solution, it is not ‘miraculous’.

Even-numbered binary expansions. We can now go back to example 6.2,
where we found a formula for the probability of the set of numbers which have
an even number of digits in their binary notation (we call this set A). Recall that
we had (using that the functions #(A ∩ {1, . . . , n}) and S(n) are equivalent):

S(n) =
2blog2(n)c+1 − 2

3n
if blog2(n)c is even

and

S(n) = 1− 2blog2(n)c+1 − 1

3n
if blog2(n)c is odd.

We saw that the conventional limit did not exist. Can the function P , obtain
through the α-calculus, do better? Firstly, the α-value, like the limit superior
and the limit inferior, always exists, so this particular issue is solved. We do
not, however, get a unique value for an α-limit. The α-limit is as follows:

P (A) =


2blog2(α)c+1−2

3α if blog2(α)c is even

1− 2blog2(α)c+1−1
3α if blog2(α)c is odd

This constitutes a range of hyper-rational numbers, and it is not possible
to write this as a real number plus an infinitesimal, unless we make further
assumptions on α. However, assumptions such as the ones above will not neces-
sarily help. Assuming α is a multiple of 2, for example, does not narrow down a
value for the probability of A. Even numbers obviously have values of blog2(n)c
all across the range. We could say, then, that α could be an integer power of 2,
but even this gives different results: P (A) is either 2

3 −
2
3α (if log2(α) is even),

or 1
3 + 1

3n (if log2(α) is odd). These have shadows of 2
3 and 1

3 respectively. Ar-
bitrarily, we could say that log2(α) is even, or odd, and get equivalently valid,
but different solutions. The upper and lower bounds on P (A), as worked out
in the first discussion of this example, become respectively 2

3 and 1
3 −

1
3α , the

latter being 1
3 plus an infinitesimal. Hence using the function P we can still

talk of intervals for the probability function, making use of the information we
have about this. However, this example shows that P is not unique in an im-
portant way, and not only in the sense above that different solutions only have
an infinitesimal difference between them. This is in disagreement with what is
claimed in [39, p.54]. I believe, however, that the construction given in that
paper suffers from the exact same problem we have just seen, since it is essen-
tially the same as what I have described thus far. I outline such construction
below. As a last example, we go back to Humean induction applied to the
infinite lottery, as done in section 2.5.
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Humean induction and infinitesimal degrees of belief. Recall that, in
this example, we had an agent picking numbered balls from an infinite urn, and
she did not know whether she was in one of these two situations: either all balls
are black, or there is one white ball in the urn. As she picks balls from the urn,
she writes 1 for black ones and 0 for the white one. We call the two hypotheses

• B := all balls are black,

• W := there is one white ball,

and we are interested in computing how the degrees of belief of the agent change
in time as she picks ball after ball from the urn. We had noted that the problem
of assigning a probability to the event ‘ball number n is white, given that there
exists a white ball’, which is needed for the Bayesian updating of the agent’s
probabilities, is precisely an infinite lottery as the ones considered thus far.
Hence, given the results of this chapter, we assign such events the following
probabilities: P (0|W ) = P (10|W ) = · · · = P

(
1(n)0|W

)
= · · · = 1

α . Then we
have the following:

P
(
B|1(n)

)
=

α

2α− n
,

and
P
(
W |1(n)

)
=

α

2α− n
− n

2α− n
.

Hence, for all finite n, P
(
W |1(n)

)
is only infinitesimally smaller than P

(
B|1(n)

)
.

If we take the α-limit of these expressions, however, we obtain that B has
probability 0, and W probability 1, as they should. We also get the correct
results in the case of a the white ball being picked, P

(
W |1(m)0

)
= 1 and

P
(
B|1(m)0

)
= 0. Moreover, writing out the following,

P
(
W |1(n+1)

)
=

α− n
2α− n

− α

(2α− n)(2α− n− 1)

= P
(
W |1(n)

)
− 1

4(α− n)− 2 + n2+n
α

we see that P
(
W |1(n+1)

)
= P

(
W |1(n)

)
− ε, where ε is an infinitesimal number

for all finite n. So P
(
W |1(n)

)
decreases only an infinitesimal amount each time

another black ball is picked. All these observations point to the fact that this
seems a reasonable solution.

6.5 Another construction for P and hyper-countable ad-
ditivity.

In the construction I presented above I essentially followed the one given in [39].
The main difference is that I omitted to use ultrafilters, and I sought to show
directly that the probability function obtained is hyper-finitely additive, rather
than hyper-countably additive. I now describe the probability measure given in
that paper, after having introduced two more concepts which are needed. We
defined N∗ above; a hyper-countable sum is simply a sum over all members of
this set. We also defined the star-transform of a set. We now give the definition
of the star-transform of a function, taken from [5]: let f : A→ B be a function.
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Then its star-transform f∗ : A∗ → B∗ is a function such that, for every sequence
ϕ : N→ A,

f∗(ϕ[α]) = (f ◦ ϕ)[α]. (57)

We are now ready to present Pnum, the probability measure given in [39]. Al-
though in that paper ultrafilters are used, as remarked above, we do not need
to introduce them to present the additivity proof or for a comparison with my
construction described in the sections above. First we define the numerosity of
a set A by:

num(A) = #∗(A∗ ∩ {1, . . . , α}). (58)

Then the probability measure in [39, p.49] is just:

Pnum : P(N)→ [0, 1]∗Q∗ (59)

A 7→ num(A)

α
. (60)

Before presenting the additivity proof, some remarks: I asserted above that the
star-transform preserves all the basic properties of sets (except the power set [5,
p.361]); this property is called ‘Transfer’. Another property used in the proof is
the following: (⋃

n∈N
An

)∗
=

⋃
N∈N∗

A∗N (61)

The proof in [39, p.52] regards the function num only. The aim is to show that
the num of a countable sequence of disjoint sets, is equal to the hyper-countable
sum of the individual num of each set.

Proof of hyper-countable additivity of num ([39, p.52]).

num

(⋃
n∈N

An

)
= #∗

((⋃
n∈N

An

)∗
∩ {1, . . . , α}

)

= #∗

( ⋃
N∈N∗

A∗N ∩ {1, . . . , α}

)
by equation 61

= #∗

( ⋃
N∈N∗

(A∗N ∩ {1, . . . , α})

)
by properties of union and intersection and Transfer

=
∑
N∈N∗

#∗ (A∗N ∩ {1, . . . , α}) by CA of # and Transfer

I now follow the passages explained in [39] in order to make the last line explicitly
about An. The num of a sequence of sets is defined as

num(〈An〉) = #∗(〈An〉 ∩ {1, . . . , α}), (62)

where the star-map of a sequence in N is defined as:

(〈An〉n∈N)∗ = 〈〈A∗N 〉〉N∈N∗ . (63)
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The double angled parentheses are used to indicate hyper-sequences, or se-
quences over the hyper-natural numbers. We will need to intersect this sequence
with {1, . . . , α}, and apply the star-transform of the counting function, #∗, to
such intersection. These operations are defined component-wise: 〈〈A∗N 〉〉 ∩ S =
〈〈A∗N ∩ S〉〉 for any S ∈ (P(N))∗; and we define: #∗(〈〈A∗N 〉〉) = 〈〈#∗(A∗N )〉〉.
Finally, using this we can write, for the num of a sequence of disjoint sets:

num(〈An〉) = 〈〈#∗(A∗N ∩ {1, . . . , α}) 〉〉. (64)

This is a hyper-sequence of hyper-natural numbers. If we call the N th element
of this hyper-sequence (num(〈〈An〉〉))N , we can conclude the additivity proof
above by rewriting the last line:

num

(⋃
n∈N

An

)
=
∑
N∈N∗

(num(〈〈An〉〉))N . (65)

Differences between P and Pnum. I intend to show that my approach is
entirely equivalent to the one in [39] I just described, which of course guided
my own. Having shown this, however, it must follow that the more serious
non-uniqueness which affects my way to the solution, must also affect Pnum.
The two obvious differences between the approaches, which I believe are only
superficial, are the following: (1) for the numerator of Pnum we take num(A) =
#∗(A∗∩{1, . . . , α}), while in P we take the α-limit of the sequence S(n), which
is just the α-limit of the sequence S(n) = #(A∩{1, . . . , n}); (2) Pnum is hyper-
countably additive, while P is only hyper-finitely additive. I will treat these
two matters in this order, followed by some remarks on the non-uniqueness of
P and Pnum.

α-limit versus star-transform. I wish to show that #∗(A∗∩{1, . . . , α}) =
(#(A ∩ {1, . . . , n}))[α], which is to say, num(A) = SA[α]. Recall the definition
of A∗ for any set A: A∗ = {ϕ[α]|ϕ : N→ A}. Hence A∗ ∩ {1, . . . , α} is the set
of all α-limits of all sequences which have all values in A, and have α-limits less
than or equal to α. We also have, by definition of α-limit of a set, that:

(A ∩ {1, . . . , n})[α] = {ϕ[α]|ϕ(n) ∈ (A ∩ {1, . . . , n}) for all n} .

Hence clearly (A∩{1, . . . , n})[α] ⊂ (A∗∩{1, . . . , α}), because (A∩{1, . . . , n})[α] ⊂
A∗ and we know that all sequences A ∩ {1, . . . , n} have α-limits less than or
equal to α. On the other hand, take ψ : N → A to be a sequence with
ψ[α] ∈ A∗ ∩ {1, . . . , α}. This sequence may or may not have the property
ψ(n) ∈ A ∩ {1, . . . , n} for all n. If it does, then ψ[α] ∈ (A ∩ {1, . . . , n})[α].
Suppose the sequence ψ(n) does not have this property. It must still take on
values in A∩{1, . . . ,mn}, for some finite mn for all ψ(n). In particular, it must
have a lowest value ψ(L) ∈ A ∩ {1, . . . ,mL} for some finite mL. Hence, for all
n ≥ mL, we indeed have that ψ(n) ∈ A ∩ {1, . . . , n}. Therefore, any sequence
ψ : N → A with ψ[α] ∈ A∗ ∩ {1, . . . , α}, must be equal, except for in a finite
number of positions, to a sequence ψ′ : N → A with ψ′(n) ∈ A ∩ {1, . . . , n} for
all n. And therefore any such sequence has ψ[α] = ψ′[α] ∈ (A ∩ {1, . . . , n})[α].
Therefore (A∗ ∩ {1, . . . , α}) ⊂ (A ∩ {1, . . . , n})[α], and so we can conclude that

71



(A∗ ∩ {1, . . . , α}) = (A ∩ {1, . . . , n})[α].13 Now, using the definition of the
star-transform of a function, we have the following:

S[α] = (#(A ∩ {1, . . . , n}))[α]

= #∗((A ∩ {1, . . . , n})[α]) by definition 57

= #∗(A∗ ∩ {1, . . . , α}) by steps above

= num(A).

Therefore, P and Pnum are completely equivalent. Why, then, is the latter
hyper-countably additive, while the former merely hyper-finitely additive? I
treat this next.

Additivity of P and Pnum. Considering what we discussed above, the
different additivity of the two functions can only be on a formal level. And
indeed, it is best explained as follows:

[T]he lottery on N is HCA [hyper-countably additive] in a very spe-
cific sense: [. . . ] there can always be found a hyper-natural number,
K ∈ N∗ (α in the example [of the union of all single tickets], but
possibly larger in other cases), such that the hyper-countable sum
decomposes in a hyper-finite sum and a hyper-countable tail with
zero-terms only. Thus we may call num and Pnum hyper-finitely
additive (HFA) [39, p.52].

Hence we could say that the hyper-countable additivity of Pnum is only a result
of how the proof was approached; Pnum is in fact only vacuously hyper-countably
additive, much in the same way as a finite lottery is ‘countably additive’ [39,
p.52]. Even the assertion that we could sum up to a hyper-natural number
K ∈ N∗ which is larger than α, could be qualified, in my opinion: in fact, we
would need exactly enough members of the sum to be 0, in order for num to be
less than or equal to α. Hence we would be, in truth, adding a maximum of α
members.

Non-uniqueness of P and Pnum. Wenmackers and Horsten, in [39, p.54],
address the worries that the non-standard solution to the infinite lottery is not
unique, as follows: “[I]n the present context the accusation of arbitrariness boils
down to the choice of a free ultrafilter U . A different choice of free ultrafilter
produces a different value of α and hence a probability function with the same
standard part but infinitesimal differences”. (Note that the standard part is
what I called the shadow of a hyper-rational number.) We need not worry
about ultrafilters here (I quote the passage in full only for completeness), but
only about different values of α. In that article, the results obtained for the
probability of the sets of even and odd numbers, and of multiples of a number,
are the same as the ones I worked out with the function P . This is not surprising,
since the two functions P and Pnum are the same, as seen above. No other
examples are treated in [39]. Now, even without considering ultrafilters, we note
that in [39] it is explicitly allowed to consider α even. In my example 6.4 above,

13Note that this is a special case and I am not claiming that E[α] = E∗ for general sequences
of sets En. A counterexample is E1 = {1, 2}, E2 = E3 = · · · = {1}, where the sequence
〈2, 2, . . . 〉 has α-limit 2 ∈ E∗

1 but 2 6∈ Eα.
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however, we saw that even postulating that α be even, we still have a range of
results whose shadow differ in more than just infinitesimals. In particular, we
had that the shadow of P (A) was either 2

3 or 1
3 according to whether α was

an even or odd power of 2. This is in direct contradiction with the claim by
Wenmackers and Horsten quoted above. I presently do not see how, if they were
to calculate the probability in this example, they could obtain a different result
from mine. Especially, that is, given that the functions P and Pnum appear to
be entirely equivalent. If my workings are correct, and if my understanding of
the passage above is sound, then there is a considerably more substantial degree
of non-uniqueness than the authors claim, in the non-standard solution.

6.6 Remarks

A solution to a different problem. In [39], there is an interesting remark
about infinite lotteries defined on the hyper-natural numbers, rather than de-
fined on the natural numbers then assigned hyper-rational probability values;
the remark is simply that this approach “does not solve the original problem.
Instead, it is a solution to a different problem” [39, p.56]. It would seem legit-
imate to make the same remark about the solutions presented in this chapter,
in the context of my thesis. We wanted an answer to the problem that we are
forced to choose between fairness and additivity in infinite lotteries, whereas this
choice does not need to be made in any finite case. We came up with a solution
that changes another usual axiom of probability, namely that probabilities are
real-valued; and yet we still did not achieve countable additivity. Also, we saw
that we cannot work in the non-standard universe, and then translate back our
results into something more usual: if we use infinitesimal numbers, we must add
them either in finite sums, or in hyper-finite sums; most disappointing, perhaps
(although entirely to be expected), is that when we do this translation back
to real values, we find that the probability of each ticket simply becomes 0.
Nonetheless, the discussion in the previous chapters showed that there simply
is no solution that will include both countable additivity and absolute fairness
in an infinite lottery. From this point of view, then, this constitutes a viable
solution, a way around the deadlock, if not through it.

Intuitions and the non-standard solution. Wenmackers and Horsten [39]
specifically set out to seek a solution for a infinite lottery which will respect
some intuitions we have with regards to lotteries in general. I quote them in
full, with the names given in [39, p.40]:

Fair. The lottery is fair.

All. Every ticket has a probability of winning.

Sum. The probability of a combination of tickets can be found by
summing the individual probabilities.

Label. The labelling of the tickets is neutral with respect to the out-
come.

The solution above respects Fair (all tickets have a 1
α chance of winning), All

and, the authors in [39, p.54] claim, Sum. It has to be pointed out, however,
that the non-standard solutions described above only respect Sum if we rede-
fine it to mean ‘hyper-finite sum’ or ‘hyper-countable sum’. As the preceding
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chapters amply demonstrate, it is often quite tricky to talk about intuitions:
contrasting arguments can seem equally well justified by different, but maybe
equally deep-seated, intuitions we may have. But I can surely say this: to me
hyper-finite sums, and hyper-countable sums even more so, are not very intu-
itive. However, perhaps we should not resign to thinking of the non-standard
solution as something counter-intuitive and abstruse. Benci and Di Nasso make
the appealing case that some concepts in calculus are actually much more natu-
ral if we are allowed to operate with infinitesimals and infinite numbers, rather
than banish this concept, as is done in standard analysis:

The view of many working mathematicians in non-standard analysis
is that infinitesimal numbers actually do exist and that the notion of
a limit is just an awkward way to indirectly talk about infinitesimals
without explicitly mentioning them [5, p.378].

They further remark that, given a simple axiomatic approach like their α-theory,
we would have no need to translate over all the standard concepts of analysis,
to re-write them in non-standard terms. We could learn what is currently called
non-standard theory, just as we learnt standard calculus in school and univer-
sity. Hence, in the context of the infinite lottery, we can assert that there is no
inherent reason why the non-standard solution should be less intuitive than a
solution using standard calculus only. There is even a sense, however, in which
this argument is too strong; for which intuitions are inherently better than oth-
ers? And how much are intuitions based on and conditioned by our existing
knowledge? These seem to be difficult questions. If we can axiomatically re-
place any intuition we have with another set of rules, and claim that there is
no inherent difference between the newly obtained approach and the previous
intuitive one, then, in a sense, anything goes. We wanted real-valued degrees
of belief—we ended up with hyper-rational probability values, and the deeper
problem of why we should favour one set of axioms over another, equally pow-
erful, one; we wanted countable additivity—we ended up defining a new way
of summing altogether. And this brings us back to the original doubt, namely
that we might have described the solution to a slightly different problem to the
one we started out with. However, since the original problem seems unsolvable
without giving up on some intuition or another, the non-standard solution is
definitely one way to approach the issue, and a valuable and interesting one at
that.
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7 Conclusions

It is time to recollect all the threads we discussed in the remarks which concluded
each chapter, and assess what we can conclude from this study. The main
theme that emerged was certainly that of the two contrasting intuitions which I
outlined in the introduction: on the one hand, we would want it to be possible
to have a uniform distribution of probabilities even in infinite cases, especially
if we see no reason not to; on the other hand, it would also seem reasonable
that our probability for a union of incompatible events be equal to the sum of
each single probability, as it is in the finite case. That these two intuitions are
incompatible when adopting real-valued probabilities is clear; what I tried to
show in the present work is that most available positions in the debate ultimately
rely upon one of these two intuitions. This points to the fact that it is not
possible to conclude the debate in a way which is satisfactory to both sides,
unless we abandon the sphere of the real numbers and standard analysis. As I
remarked in Chapter 6, doing so forces us to abandon yet other intuitions about
numbers and about summation. As I also remarked there, with Benci and Di
Nasso, our intuition is influenced by what we happen to know already, and as
such it can be educated.

De Finetti puts this matter, of intuitions and defining probability, very elo-
quently in the passage below, written in 1930 as part of his academic corre-
spondence with the probabilist Frechét (who took probability as a countably
additive measure). I quote it in full because, strikingly, notwithstanding the
fact that it was written so long ago, it brings up clearly many of those issues
which are still hotly debated today:

Every concept, mathematical ones included, is more or less directly
and clearly suggested by intuition: however, its definition is totally
arbitrary, as long as the consequences that we wish to draw from
it are purely formal: as long as, that is, they are propositions in
which that concept acts in the convened sense which it assumed by
its definition. This is the case of measure; we would have a different
case, on the other hand, for weight, because we cannot impose to
the scale to work according to our definition; in the same way, it
seems to me that probability too is a different case. In the case of
probabilities the trouble is that when, based on a convention, we
conclude, for example, that the probability of an infinite sum of
incompatible events with null probability has null probability, we
intuitively think that this sum is an almost impossible event, while
the definition only allows us to conclude, completely rigorously, that
what has a value equal to zero is that numerical function which we
have, by convention, called “probability”[11, pp.4-5] [emphasis in
the original; my translation].

The points raised here can guide us in a number of comments. Firstly, Bing-
ham, for example, agrees that calling the measure we defined in Section 2.2
‘probability’ is an artefact, or a double use of the same word: in one sense it is
a word of natural language, and in another sense it is that measure we defined
rigorously. And by giving a formal, conventional definition, we have indeed dis-
tanced ourselves from its real-world meaning (whatever that is)[7, p.22]. We can
read Kelly’s warning in the same light: we should be fully aware that theorems
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that seem to guarantee convergence to the truth can only be viewed as formal
results of what we, by pure convention, called probability. Kelly argues that we
cannot justify countable additivity from its consequences (e.g. adopt it because
it allows Lebesgue integration), and then interpret these very consequences for
an epistemological advantage (the convergence to the truth results). I think
this point must be conceded, and, whether thanks to Kelly or not, it largely has
been. So far so good, then: it seems that measure-theoretic probability is for-
mally powerful, but unfortunately distant from the real-world, natural-language
significance of probability.14 But the following problem arises: we would need
to prove that finitely additive probability is closer to the real-world thing, as
de Finetti believes; but this will be difficult, because as seen on different occa-
sions above, we also have intuitions that tell us that the real-world probability
should be countably additive. Perhaps Cox’s derivation could persuades us that
probability, if we see it as a kind of extension of logic that deals with uncertain
reasoning, really is only finitely additive. But, as I argued above, this is quite
problematic; we would need to be convinced of the qualitative axioms’ more
fundamental status, and this is not at all obvious. And on the other hand, for
example, assuming countable additivity we can prove the Strong Law of Large
Numbers, which says the following: if we have a sequence of independent and
identically distributed random variables, then the average of the first n random
variables, converges almost surely to the common expectation of the random
variables. Almost sure convergence means that this convergence occurs for all
sequences, except for on a set of probability 0. What this law guarantees in
practice is that the long run relative frequency must, with very high probability,
converge to the ‘real’ probability of the event. This constitutes a vindication
and explanation of a very important intuition about probability, which is of
course encountered in practice: namely that the past relative frequency of an
experiment, if performed a large number of times, gives us a very good indica-
tion of its probability of success in future repetitions. Bingham, citing an earlier
paper by himself, remarks that this fact “demonstrates convincingly that the
Kolmogorov axiomatics of the Grundbegriffe [which is [33]] have captured the
essence of probability” [7, p.22].

De Finetti rejected axiomatic definitions of probability; as we saw above,
he thought that only an operational definition, in terms of risk, decisions and
losses, could have a meaning which is not merely “an appearance of such in a
metaphysical-verbalistic sense” [16, p.76]. As suggested by Howson, a reading
of how de Finetti actually used Dutch book arguments, shows their purpose
was precisely this grounding in meaning, rather than the ‘proving’ of finite,
or countable, additivity. Hence, Dutch book arguments do not really tell us
anything new about additivity either way. By setting himself the task of de-
scribing formally what probability really is, de Finetti embarked on something
very difficult, which the vast majority of mathematicians simply have no interest
in, or avoid (see, for example, the comments by Doob in footnote 14, but also
the remarks by Bingham in that paper, or also Littlewood’s chapter on The
Dilemma of Probability Theory in his popular [35]). His theory of subjective

14Note that this conclusion would most likely be serenely accepted by most mathematicians:
Bingham reports this emblematic quote by Doob, a mathematician who did much seminal work
in probability: “I cannot give a mathematically satisfactory definition of non-mathematical
probability. For that matter, I cannot give a mathematically satisfactory definition of a non-
mathematical chair” [7, p.11].
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probability went on to play vital roles in decision theory, game theory and laid
the foundations for Subjective Bayesianism in the philosophy of science (see [37,
pp.275-276]). Evaluating his position on countable additivity is more difficult.
Von Plato, for example, says that “de Finetti remained faithful to the princi-
ples of his foundational program and his radically empiricist philosophy, such as
the requirement that unverifiable infinitary events cannot in general have well-
determined probability values” [37, p.244]. But in [14, p.6] de Finetti does not
shy away from having his agent choose from an infinite (indeed, uncountable)
number of admissible choices, in order to model a decision problem. Also, he
was not opposed to countable additivity as such, as we remarked in Section 2.2.
Rather, he was in favour of considering the study of countably additive proba-
bilities as a special case, much like continuous functions are studied in analysis.
Hence there is a sense in which de Finetti’s is a purely ‘verbalistic’ dispute, in
that it could be solved by adding a few lines to all probability textbooks to the
effect that, while the concept of probability is broader, we nearly always study
countably additive probabilities.

To sum up my position, I would say the following. I agree with Howson
when he argues that Dutch book arguments have nothing to say about finite
versus countable additivity; I disagree with him when he goes on to claim that
arguing from qualitative axioms puts us on more solid ground. Indeed, it is
not clear what such argument really adds to a simple axiomatic stipulation of
the properties of probability functions. With regards to these properties, and
the question of their additivity, there is nothing wrong, in principle, with de
Finetti’s proposal: we could consider countably additive measures as a special
case of probability, albeit by far the most important one. This would proba-
bly fail to raise mathematical interest in the matter, especially given that, by
most accounts, the finitely additive theory is much less accessible. On the other
hand, it would allow us to model, in a countably infinite setting, philosophi-
cally interesting concepts such as uniformity of preference and, closely linked,
Humean scepticism towards induction. From a philosophical point of view, it
does seem arbitrary to exclude such cases from being modelled, especially if
such exclusion comes by arguing from the perceived obviousness of countable
additivity. I found Jaynes’ comments on the principle a good example of this
sort of argument—and Kelly’s arguments should serve as a warning against
the easy application of convergence theorems to epistemology that could fol-
low (although we note that Jaynes does not make this step). Of course, in the
countably infinite setting, finitely additive probability has counter-intuitive as-
pects: we can believe each single event to be impossible and their infinite union
to certain; but so does countable additivity: we must assign nearly all prob-
ability to some finite subset of events, possibly against our better judgement.
We can finally address this seemingly simple question for subjective probability:
should an agent’s beliefs be countably additive? But the answer will be terribly
disappointing: it depends—on whether we consider uniformity and scepticism
important, or whether we deem additivity to be more natural. Foundational
arguments fail to settle the question, and because of the mathematical features
of the problem, and the counter-intuitive consequences of either solution, cannot
possibly do so.
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