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1 Introduction

In this thesis I will discuss the behaviour of a quantum wire in a transverse
field on top of a superconductor. Before discussing this problem I will introduce
second quantisation. We can then deal with an one dimensional chain of atoms,
on which fermions can hop to neighbouring site. Then I discuss the Ising chain
in a transverse field, from there we can deal with the final problem.

Our interest in this system comes from the Majorana particle. As we can
see in the thesis, at the end of the quantum at the right conditions there will
arise a Majorana fermion. Majorana predicted in 1937 that there should exist
a particle that is its own antiparticle. Ever since, we have tried to find such
particles, recently the first experiments have shown signs of a Majorana fermion
[1].

Because this particle is its own antiparticle it has special properties, due to
that properties we hope it would be able to built a quantum computer where
the qubits are based on the behaviour of Majorana fermions.
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2 Second quantisation

For this section I used the references [2] and [3].
Quantisation is the mechanism of going from a classical theory to a quantum
theory. First quantisation describes particles as quantum wave functions, but
the fields are described classically. All quantum states are represented as vectors
in the Hilbert space. In many particle systems it is necesarry to quantise the
fields also, which therefore gives another kind of algebra.

2.1 Theory

The two basic postulates of second quantisation are:

1. States of interacting particles can be expanded using non-interacting particle
states as the basis.

2. The variable used to describe 1-particle systems are capable of describing
many-particle systems; that is, there is no basic change in the nature of a
particle caused by presence of other particles.

Where we first described each particle with a certain state, in second quantisa-
tion we describe the number of particles in a certain state.

Ψ = |Ψ〉 = |n1, n2, .., ni, ..〉 = Ψ(n1, .., ni, ..), N =
n∑
i=1

ni , 〈Ψ|Ψ′〉 =
∞∏
i=1

δnini′

Where ni is the number of particles in a certain state i. So in second quantisa-
tion we are working in a product of hilbert spaces. This space we call the the

Fock space: F =
N⊗
n=1

S±Hn, where S± is the (anti)symmetric operator. In the

Fock space the complete sets of states are enumerated by indicating the number
of particles with a certain eigenvalue for a particular operator.
The basic operators of the Fock space are the creation (a†) and annihilation (a)
operators. The annihilation operator removes a particle from a position (state),
and the creation operator adds a particle to a position.

ai |n1, n2..., ni, n1+1, ...〉 = ±
√
ni |n1, n2..., ni − 1, n1+1, ...〉

ai
† |n1, n2..., ni, n1+1, ...〉 = ±

√
ni + 1 |n1, n2..., ni + 1, n1+1, ...〉

We just wrote operators acting on kets, but if they act on bra’s we get:

ai 〈ni| =
√
ni 〈ni − 1| so ai 〈ni| = 〈ni| ai† =

√
ni 〈ni − 1|

Likewise: a†i 〈ni| = 〈ni| ai =
√
ni + 1 〈ni + 1|
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2.1.1 Bosons

For bosons in a certain state there can be any number ni of particles. The
operators become here:

ai |n1, n2..., ni, n1+1, ...〉 = +
√
ni |n1, n2..., ni − 1, n1+1, ...〉

ai
† |n1, n2..., ni, n1+1, ...〉 = +

√
ni + 1 |n1, n2..., ni + 1, n1+1, ...〉

The operators must satisfy the commutation relation: [ai, ai
†] = 1.

[a, a†] |n〉 = (aa† − a†a) |n〉 = (
√
n+ 1

2 −
√
n

2
) |n〉 = |n〉

2.1.2 Fermion

For fermions we know that ni = {0, 1}, due to Pauli’s exclusion principle. So if
there is more then one fermion in a state, the state does not exist: |n ≥ 2〉F = 0.
Therefore:

c†i |ni = 1〉 = 0 ci |ni = 0〉 = 0

The creation and annihilation operators for fermions are:

ci |n1, n2..., ni, n1+1, ...〉 = ±
√
ni |n1, n2..., ni − 1, n1+1, ...〉

ci
† |n1, n2..., ni, n1+1, ...〉 = ±

√
ni + 1 |n1, n2..., ni + 1, n1+1, ...〉

Whether it is a plus or minus sign depends on the specifs of the state. Fermion
operators satisfy the anticommutation relation: {ci, ci†} = 1.
{ci, ci†} |ni〉 = {cici† + ci

†ci} |ni〉 = |ni〉
We know that cc† = 1 or 0 , and c†c = 0 or 1, due to the Pauli exclusion
principle.

2.1.3 Second quantised operators

The kinetic energy operator is : T =
∑
i

pi
2

2ma
†
iai, because a†iai gives the num-

ber of particles in that state, and pi
2

2m is the normal kinetic energy formula for
particles in a certain state i.
The Hamiltonion is: H =

∑
i

ai
†aiEi, and the total energy (not an operator in

Fock Space) is: E =
∑
i

Eini

So if we consider a 1D lattice where a electron can jump from one site to each

of the neighbouring sites the kinetic energy would be of the form T =
∑
i

pi
2

2mc
†
i ci

If an electron jumps one site to the right its kinetic energy term would look like:
tj+1c

†
j+1cj , and if an electron jumps one site to the left: tj−1cj−1

†cj . Where
tj+1 = tj−1 if there is no external field. The kinetic energy term becomes

T = t
N∑
j=1

cj+1
†cj + cj

†cj+1 , the chemical potential: P =
N∑
j=1

Vjc
†
jcj = V N . Be-

cause for every site the chemical potential is the same, so the chemical potential
is the chemical potential of one electron in a site times the number of electrons.

H = −t
N∑
j=1

c†j+1cj + cj
†cj+1 + V N , t > 0 (1)
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2.2 Fourier transformation

If we want to calculate the energy spectrum of a 1D lattice as described above,
with th Hamiltonian given in equation 1. To solve the problem we want to make
a Fourier series.

cj =

√
1

N

N∑
n=1

c̃kne
iknx =

√
1

N

N∑
n=1

c̃kne
iknja, kn =

2π

N
n, x = ja

I will use later the definition of the Kronecker delta : 1
N

N∑
n=1

ei(kn−k
′
n)j = δknk′n .

δknk′n =

{
1 if kn = k′n
0 if kn 6= k′n

We want to write the Hamiltonian in the Fouriercoefficients c̃k instead of cj .

Therefore we first rewrite:
N∑
j=1

cj+1
†cj and

N∑
j=1

cj
†cj+1

N∑
j=1

cj
†cj+1 =

N∑
j=1

√
1

N

N∑
n=1

c̃†kne
−iknja

√
1

2π

N∑
n′=1

c̃k′
n′
eik

′(j+1)a

=

N∑
j=1

1

N

N∑
n=1

N∑
n′=1

c̃†kn c̃k′n′
eik

′
n′aeia(k′

n′−kn)j

=

N∑
n=1

N∑
n′=1

c̃†kn c̃k′n′
eiak

′
δk′
n′kn

=

N∑
n=1

c̃†kn c̃kne
iakn

N∑
j=1

c†j+1cj =
N∑
j=1

√
1

N

N∑
n=1

c̃†kne
−ikna(j+1)

√
1

N

N∑
n′=1

c̃k′
n′
eiak

′
n′ j

=

N∑
j=1

1

N

N∑
n=1

N∑
n′=1

c̃†kn c̃k′n′
e−iakneia(k′

n′−kn)j

=

N∑
n=1

N∑
n′=1

c̃†kn c̃k′n′
e−iaknδk′

n′kn

=

N∑
n=1

c̃†kn c̃kne
−iakn

So the Hamiltonion will become:

H = V N − t
N∑
n=1

c̃†kn c̃kn(eikn + e−ikn) = V N − 2t

N∑
n=1

c̃†kn c̃kn cos(kn) (2)
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Its energy spectrum εk is the term in the sum
∑
k εk c̃

†
k c̃k we neglect the constant

term V N

εkn = −2t cos(ak) (3)

To visual this I plotted the energy spectrum. I choose the constants random,
and they are given in the caption of figure 1.

1 2 3 4 5 6

k

-2

-1

1

2

Ε

Figure 1: The graph of the energy spectrum with chosen constants. The
number of sites is N = 100, the lattice spacing is a = 1, the hopping amplitude
t = 1. Every site is considered so, 1 ≤ n ≤ N . Because we work in k-space:
0 ≤ kn < 2π

If we want to calculate the ground state energy of one electron, it is the
minimum of the energy spectrum. So first we take the derivative: dε

dkn
= 0.

d
dkn

εkn = d
dkn

− 2t cos(akn) = 2ta sin(kna) = 0
So this would mean kn = 0, if we now consider more particles the ground state
will just fill all the lattice sites with the minimum energy. So if we consider two
electrons on the lattice, the first electron will go to the site j = 0 (because our k
was zero) and the second electron will go to the lattice place: j = ±1 = {N, 1}
(which is kn = { 2π

N (N−1), 2π
N }). If we now add an extra elctron this elecron will

go to the not filled site of {N − 1, 1}. In particular if we have q ≤ N particles
the energy of these particles will be:

εkn =

q
2−1∑
n=− q2

−2t cos(kna) if n is even

εkn =

q
2−

1
2∑

n=− q2 + 1
2

−2t cos(kna) if n is odd

Where the lattice site of −1 is equal to the site N − 1, −2 is equal to the site
N − 2 and so on.
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2.3 Not a constant Chemical Potential

If the chemical potential is not the same in every lattice point, we cannot rewrite
the chemical potential P = V N . This gives a Hamiltonian of the form:

H = −t
N∑
j=1

c†j+1cj + c†jcj+1 +

N∑
j=1

Vjc
†
jcj , t > 0 (4)

If we want to take the Fourier transform of this equation, the terms of the
potential energy will be:

N∑
j=1

Vjc
†
jcj =

N∑
j=1

√
1

N

N∑
n′′=1

Ṽk′′n′′ e
ik′′n′′aj

√
1

N

N∑
n=1

c̃†kne
−iknja

√
1

N

N∑
n′=1

c̃k′
n′
eik

′
n′ ja

=

N∑
j=1

(
1

N
)

3
2

N∑
n′′=1

N∑
n=1

N∑
n′=1

Ṽk′′
n′′
eik

′′
n′′aj c̃†kne

−iknjac̃k′
n′
eik

′
n′ ja

=

N∑
j=1

(
1

N
)

3
2

N∑
n′′=1

N∑
n=1

N∑
n′=1

Ṽk′′
n′′
c̃†kn c̃k′n′

eija((k′
n′−kn)+k′′

n′′ )

=

√
1

N

N∑
n′′=1

N∑
n=1

N∑
n′=1

Ṽk′′
n′′
c̃†kn c̃k′n′

δk′′
n′′ (k

′
n′−kn)

=

√
1

N

N∑
n′=1

N∑
n=1

Ṽk′
n′−kn c̃

†
kn
c̃k′
n′

And this term in the Hamiltonian can not (easily) be solved because it is not a
diagonal matrix.
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2.4 Complex hopping Amplitude

The Hamiltonian will have another form if we say that the hopping aplitude can
be complex (so has the form t = |t|eiθ):

H = −
N∑
j=1

tc†j+1cj + t†c†jcj+1 + V N (5)

Then we rewrite the function: where we use:
N∑
j=1

c†j+1cj =
N∑
n=1

c̃†kn c̃kne
−iakn

N∑
j=1

cj
†cj+1 =

N∑
n=1

c̃†kn c̃kne
iakn

So the Hamiltonian will become (where we now neglect the constant term V N):

H =

N∑
n=1

−tc̃†kn c̃kne
−iakn − t†c̃†kn c̃kne

iakn

=

N∑
n=1

−|t|eiθ c̃†kn c̃kne
−iakn − |t|e−iθ c̃†kn c̃kne

iakn

=

N∑
n=1

−|t|c̃†kn c̃kn(e−i(akn−θ) − ei(akn−θ)

=

N∑
n=1

−2|t|c̃†kn c̃kn cos(akn − θ)

So the energy spectrum will be εkn = −2|t| cos(akn−θ) which looks very simular
to what we found before in equation 3, but now it has a phase shift θ.
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3 Ising model in a transverse field

For this section I used the references [4] and [5].
We are now going to examine a 1D chain of atoms, as we had before, and we are
going to apply an external field to it. The system will behave in a different way,
and phase transitions can occur. A phase transition is the change in the phase,
an example of a thermal phase transition is the melting of ice. There the system
goes from a solid to liqued phase. Another example is the feromagnetic and
paramagnetic phase transition. If the temperature is low enough the material
will act as a permanent magnet with spins ligned up. So all spins are up or down,
creating a magnetic field (feromagnetism). But if the temperature is above that
certain temperature the magnetic particles will line up with an external field
and if there is no external field, the spins will differ, which means that there is
no magnetic field (paramagnetism). The classical phase transition is driven by
the change of temperature. A quantum phase transition is driven by another
parameter than the temperature (such as pressure or the magnetic field). This
phase transition occurs at a zero temperature, which we consider in what follows.

If we consider a 1D chain of fermions, we have two phases: An ordered phase
and a disordered phase. The ordered phase is when all spins are ligned up (just
like the spins in a feromagnet), and the disordered phase is the phase where the
spins are random orientated. The phase transition will occur when all spins ar
alligned (up or down) and then disorder will occur (flipping of some of the spins
of the fermions.)

We consider a circular chain of N-Spins with only Nearest Neighbour inter-
action. Now the Hamiltonian is given by:

H = −Γ

N∑
i=1

Sxi − J
N∑
i=1

Szi S
z
i+1 (6)

Where Γ is corresponds to the tunneling energy, and J is the proton-proton
interaction. Where the first term will try to destroy the order in the system,

and where −J
N∑
i=1

Sxi S
x
i+1 tries to order the system (allignment of the spins).

Here S is a spin operator. Now we rewrite this Hamiltonian such that it will
have eventually a nicer form ( where g = Γ

J ).

H = −J
N∑
i=1

(gσxi + σzi σ
z
i+1) J > 0, g ≥ 0 (7)

Here σi are Pauli matrices, the relation between σ and S is: Si = h̄
2σi. Both

commutation relations are worked out in appendix 1.1.

3.1 Limiting cases

We know that g is proportional with Γ and Γ is a term that tries to destroy
the order. So if we consider the first limiting case: Γ → ∞ the system will
completely be disordered. If Γ = g = 0 there is nothing in the system that tries
to break the order, so all spins will be ligned up. So all the spins are up, or all
the spins are down. We will have a closer look at these two cases.
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If g = 0 the Hamiltonian will look like: H = −J
N∑
i=1

(σzi σ
z
i+1), and the spins

can then be alligned in two different ways:

|⇑〉 = |↑〉1 |↑〉2 |↑〉3 |↑〉4 .........

|⇓〉 = |↓〉1 |↓〉2 |↓〉3 |↓〉4 .........
So now we can calculate the energy of both configurations, but the configurations
are very simular. Because there is no external force that makes one spin direction
energetically favored we expect that both configurations have the same energy.
If we just look at what the operators in both states would do, on the left the
spin up case, on the right the spin down case.

HΨ↑ = E↑Ψ↑ HΨ↓ = E↓Ψ↓

−J
N∑
i=1

(σzi σ
z
i+1)Ψ↑ = E↑Ψ↑ −J

N∑
i=1

(σzi σ
z
i+1)Ψ↓ = E↓Ψ↓

−J
N∑
i=1

((1)(1))Ψ↑ = E↑Ψ↑ −J
N∑
i=1

((−1)(−1))Ψ↓ = E↓Ψ↓

−JNΨ↑ = E↑Ψ↑ −JNΨ↓ = E↓Ψ↓

So in this limiting case both configurations have the same energy: E = −JN ,
as expected.
If g →∞ the term σzi σ

z
i+1 in the Hamiltonian can be neglected. The dominant

term is the −Jg
N∑
i=1

σxi . Now we write the spin operator σxi in terms of σzi :

|→〉 =
1√
2
|↑〉+

1√
2
|↓〉 |←〉 =

1√
2
|↑〉 − 1√

2
|↓〉

The ground state of this energy can be obtained very easily. Because if every
σxi = 1 we have the lowest possible energy state. Therefore the ground state
energy of this sytem with N particles is: E0 = −JNg which goes to −∞. The
ground state energy in this limiting case is ordered in the x-direction, but dis-
ordered in the z-direction and looks like: ψ0 = |→〉1 |→〉2 |→〉3 |→〉4 |→〉5 |→〉6 ..........
Therefore we can say: 〈ψ0|σzi |ψ0〉 = 0.

3.2 Jordan-Wigner Transformations

The JordanWigner transformation is a transformation that changes the spin
operators into creation and annihilation operators. So where we first considered
spin- 1

2 particles we map them to ’spinless’ particles. The annihilation operator

ci annihilates an fermion from a site, and the creation operator c†i adds a fermion
to a site. We now can map a spin up particle to an emtpy orbital and we can
map a spin down particle to a filled orbital. This kind of mapping implies:

σzi = 1− 2c†i ci

σ+
j = (σxj + iσyj )/2

σ−j = (σxj − iσ
y
j )/2
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The following representation satisfies the (anti)commutation relations and it
was found by Jordan and Wigner:

σ+
i = Πj<i(1− 2cj

†cj)ci

σ−i = Πj<i(1− 2cj
†cj)c

†
i

If we take the inverse of these operators, we can construct our ladder opperators.

ci = Πj<i(σ
z
j )σ+

i

c†i = Πj<i(σ
z
j )σ−i

The (anti)commutation relations are now:

{ci, c†k} = δik [σ+
i , σ

−
k ] = δijσ

z
i (8)

{ci, ck} = {c†i , c
†
k} = 0 [σzi , σ

±
j ] = ±2δijσ

±
i (9)

We also used the index k for Fourier transforms, but in this case it’s just the
index. For the specific calculations that confirm these relations I refer to the
appendix 1.2

3.3 Hamiltonian

Because first we used a Hamiltonian which has spins in it, we no want to rewrite
that using the Jordan Wigner transformaions. The spins are both not defined
in same way,there is a difference of 90 degrees. So here we use:

σz → σx , σx → −σz

So the mapping becomes:

σxi = 1− 2c†i ci , σzi = −Πj>i(1− 2c†jcj)(ci + c†i )

The Hamiltonian written in (fermi) ladder operators looks like:

H = −J
∑
i

g−2gc†i ci+[−Πj>i(1−2c†jcj)(ci+c
†
i )][−Πj>i+1(1−2c†jcj)(ci+1+c†i+1)]

Now we can use the commutation relation to let the product vanish:

H = −J
N∑
i=1

(g − 2gc†i ci + c†i ci+1 + c†i+1ci + c†i c
†
i+1 + ci+1ci) (10)

If we give this formula a closer look we can say that the terms c†i ci+1 +c†i+1ci are
describing a fermion hopping on an lattice from one site to a neighbouring site.
Also we can recognice the chemical potential: g − 2gc†i ci. For all these terms
there was particle conservation, there was annilated one particle, and one was
created. The other terms do not have particle conservation, there two fermions
are created or annihlated at the same time. When two fermions are acting as
one particle this has a great comparasing to the cooperpair (where 2 electrons
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form a so called cooperpair, in which it is possible to act as a boson). So this
indicates that we are dealling with an superconducting term in the Hamiltonian.
The next step is looking at the momentum eigenstates using Fourier:

ckn =
1√
N

N∑
j=1

cje
−ikrj

Where N is the number of lattice sites, and we again are going to obtain the
changed Hamiltonian by using the the relations we found by discussing second
quantisation. 

n∑
j=1

cj+1
†cj =

n∑
n=1

c̃†kn c̃kne
−iakn

n∑
j=1

cj
†cj+1 =

N∑
n=1

c̃†kn c̃kne
iakn

H = J

N∑
j=1

N∑
n=1

−g + 2gc†i ci − 2c̃†kn c̃kncos(kna)− c†i c
†
i+1 − ci+1ci

Now we are going to rewrite the remaining terms, where I for once will write i
as j to not confuse i with

√
−1:

c†jcj =

√
1

N

N∑
n=1

c̃†kne
−iknja

√
1

N

N∑
n=1

c̃kne
iknja =

1

N

N∑
n=1

c̃†kn c̃kn

N∑
j=1

c†jc
†
j+1 =

N∑
j=1

√
1

N

N∑
n=1

c̃†kne
−iknja

√
1

N

N∑
n′=1

c̃†kn′ e
−ikn′ (j+1)a

=
1

N

N∑
j=1

N∑
n=1

N∑
n′=1

c̃†kn c̃
†
kn′ e

−i(knja+kn′ )jae−ikn′a

=

N∑
n=1

N∑
n′=1

c̃†kn c̃
†
kn′ e

−ikn′aδkn−kn′

=

N∑
n=1

c̃†kn c̃
†
−kne

ikna

N∑
j=1

cj+1cj =

N∑
j=1

√
1

N

N∑
n=1

c̃kne
ikn(j+1)a

√
1

N

N∑
n′=1

c̃kn′ e
ikn′ ja

=
1

N

N∑
j=1

N∑
n=1

N∑
n′=1

c̃kn c̃kn′ e
iaj(kn+kn′ )eikna

=

N∑
n=1

N∑
n′=1

c̃kn c̃kn′ e
iknaδknkn′

=

N∑
n=1

c̃kn c̃−kne
ikna
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The last two together give:

N∑
j=1

c†jc
†
j+1 + cj+1cj =

N∑
n=1

c̃†kn c̃
†
−kne

ikna + c̃kn c̃−kne
ikna

=

N∑
n=1

(c̃†kn c̃
†
−kn + c̃kn c̃−kn)(cos(kna) + i sin(ka))

=

N∑
n=1

2 cos(kna)c̃†kn c̃kn + i sin(c̃†−kn c̃
†
kn

+ c̃−kn c̃kn)

Now we can write the Hamiltonian as:

H = J

N∑
n=1

−g + 2[g − cos(ka)]c̃†kn c̃kn − i sin(ka)[c̃†−kn c̃
†
kn

+ c̃−kn c̃kn ] (11)

We now can again map our coordinates, using the Bogoliobov transform-
ations, which constructs another set of fermi operators. This transformation
diagonilizes the Hamiltonian we have. The new operators are defined by a
unitary transformation on c̃kn , c̃

†
−kn :

γk = uk c̃kn − ivk c̃
†
−kn

Where uk and vk are real numbers that satisfy:

u2
k + v2

k = 1 , uk = u−k , and v−k = −vk (12)

The same relations still count (as checked in the appendix 1.3)

{γk, γ†k′} = δk,k′ {γ†k, γ
†
k′} = {γk, γk′} = 0 (13)

Now we find the inverse of this transformation which is: c̃kn = (ukγk + ivkγ
†
−k)

and plug it back in the Hamiltonian we found in equation 11. Our k is still
k = kn = 2πn

N .

H = J

N∑
n=1

−g + 2[g − cos(ka)](ukγ
†
k − ivkγ−k)(ukγk + ivkγ

†
−k)− i sin(ka)

[(ukγ
†
−k + ivkγk)(ukγ

†
k − ivkγ−k) + (ukγ−k − ivkγ†k)(ukγk + ivkγ

†
−k)]

= J

N∑
n=1

−g + 2[g − cos(ka)]

(u2
kγ
†
kγk + v2

kγ−kγ
†
−k + iukvkγ

†
kγ
†
−k − ivkukγ−kγk)

− i sin(ka)[(u2
kγ
†
−kγ

†
k + v2

kγkγ−k − iukvkγ
†
−kγ−k + iukvkγkγ

†
k)

+ (u2
kγ−kγk + v2

kγ
†
kγ
†
−k + iukvkγ−kγ

†
−k − iukvkγ

†
kγk)] (14)

We will now solve this equation in steps. For these operators uk and vk we do
not know if there is particle conservation, but our operators can still be chosen.

13



So now we try to find a solution which would make the term γ†kγ
†
−k vanish in the

equation. Recall that the operators should satisfy the conditions in equation
12. If we now consider a solution that always satisfies the conditions we can
’forget’ them.

uk = cos(
θk
2

) vk = sin(
θk
2

) (15)

The choice of θk
2 in stead of θk is not very obvious, but will be clear in a while.

So now we are going to look at all the prefactors of γ†kγ
†
−k, and then substitute

the solutions of equation 15 and set that to zero. For this calculation keep the
anticommutation relation in mind (equation 13), which has a result that we will

use: γ†kγ
†
−k = −γ†−kγ

†
k. We will also use the goniometric functions:

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b) cos(2x) = cos2(x)− sin2(x)

sin(a+ b) = sin(a) cos(b) + sin(b) cos(a) sin(2x) = 2 sin(x) cos(x)

Then we can rewrite the formula:

0 = 2[g − cos(ka)](iukvkγ
†
kγ
†
−k)− i sin(ka)[(u2

kγ
†
−kγ

†
k) + (v2

kγ
†
kγ
†
−k)]

= 2[g − cos(ka)](−iukvk)− i sin(ka)[u2
k − v2

k]

= 2i[cos(ka)− g] cos(
θk
2

) sin(
θk
2

)− i sin(ka)(cos2(
θk
2

)− sin2(
θk
2

))

= [cos(ka)− g](−i sin(θk))− i sin(ka) cos(θk)

i sin(ka) = [cos(ka)− g](−i tan(θk))

tan(θk) =
sin(ka)

cos(ka)− g

θk = arctan(
sin(ka)

cos(ka)− g
) (16)

So this value of θk is the value we can plug back in the formula 14, but we will
do this in steps. The first part we will consider are the terms of γkγ−k which
does look very similar to the equation we just set to zero.

2[g − cos(ka)](−ivkukγ−kγk)− i sin(ka)[v2
kγkγ−k + u2

kγ−kγk

=2[g − cos(ka)](−ivkukγ−kγk)− i sin(ka)[−v2
kγ−kγk + u2

kγ−kγk

=2[g − cos(ka)](−ivkuk)− i sin(ka)[−v2
k + u2

k] = 0

The choice of our θk has as a result that a lot of terms in our Hamiltonian
will vanish. The Hamiltonian not only consists of terms of: γkγ

†
k or γ†kγk. So

14



the Hamiltonian now looks like (using the commutation relations):

H = J

N∑
n=1

−g + 2[g − cos(ka)](u2
kγ
†
kγk + v2

kγ−kγ
†
−k)

− i sin(ka)[−iukvkγ†−kγ−k + iukvkγkγ
†
k + iukvkγ−kγ

†
−k − iukvkγ

†
kγk]

= J

N∑
n=1

−g + 2[g − cos(ka)]u2
kγ
†
kγk + 2[g − cos(ka)]v2

k(1− γ†−kγ−k)

− sin(ka)ukvkγ
†
−kγ−k + sin(ka)ukvk(1− γ†kγk)

+ sin(ka)ukvk(1− γ†−kγ−k)− sin(ka)ukvkγ
†
kγk

= J

N∑
n=1

−g + 2[g − cos(ka)]u2
kγ
†
kγk + sin(ka)ukvk(1− γ†kγk)

− sin(ka)ukvkγ
†
kγk + 2[g − cos(ka)]v2

k(1− γ†−kγ−k)

− sin(ka)ukvk(γ†−kγ−k − (1− γ†−kγ−k)

So now we have split up our Hamiltonian in two parts, one is the summation
over k, and the other is the summation over −k. If we then look at the part
where we sum over −k, we can map our −k to k: −k → k, this would not
change the outcome of the summation. If we also use the relations we wrote
down in equation 12 and 13, we find:

J

N∑
n=1

2[g − cos(ka)]v2
k(1− γ†−kγ−k)− sin(ka)ukvk(2γ†−kγ−k − 1)

= J

N∑
n=1

2[g − cos(−ka)]v2
−k(1− γ†kγk)− sin(−ka)u−kv−k(2γ†kγk − 1)

= J

N∑
n=1

2[g − cos(ka)]v2
k(1− γ†kγk)− sin(ka)ukvk(2γ†kγk − 1)

= J

N∑
n=1

2[g − cos(ka)]v2
k + sin(ka)ukvk

+ (−2[g − cos(ka)]v2
k − 2 sin(ka)ukvk)γ†kγk

The other part of the Hamiltonian stays just the same and the Hamiltonian
looks like:

H = J

N∑
n=1

−g + sin(ka)ukvk + 2[g − cos(ka)]v2
k + sin(ka)ukvk

+ (2[g − cos(ka)]u2
k − 2 sin(ka)ukvk − 2[g − cos(ka)]v2

k

− 2 sin(ka)ukvk)γ†kγk (17)
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So we found a shorter form of the Hamiltonian:

H = J

N∑
n=1

−g + 2[g − cos(ka)]v2
k + 2 sin(ka)ukvk

+ (2[g − cos(ka)](u2
k − v2

k)− 4 sin(ka)ukvk)γ†kγk (18)

Now we look first at the prefactor of γ†kγk, and using the rules the sums of angles
in sine and cosine, and using equation 11:

2J

N∑
n=1

([g − cos(ka)](u2
k − v2

k)− 2 sin(ka)ukvk)

=2J

N∑
n=1

([g − cos(ka)](cos(
θk
2

)2 − (sin(
θk
2

)2)− 2 sin(ka) cos(
θk
2

) sin(
θk
2

))

=2J

N∑
n=1

([g − cos(ka)](cos(θk)− sin(ka) sin(θk))

=2J

N∑
n=1

([g − cos(ka)] cos(arctan(
sin(ka)

cos(ka)− g
)))

− sin(ka) sin(arctan(
sin(ka)

cos(ka)− g
))

=2J

N∑
n=1

(
g − cos(ka)√

1 + ( sin(ka)
cos(ka)−g )2

− sin(ka)2

(cos(ka)− g)
√

1 + ( sin(ka)
cos(ka)−g )2

)

=2J

N∑
n=1

(g − cos(ka))2 + sin(ka)2

(cos(ka)− g)
√

1 + ( sin(ka)
cos(ka)−g )2

=2J

N∑
n=1

−2g cos(ka) + g2 + 1√
−2g cos(ka) + g2 + 1

=2J

N∑
n=1

√
−2g cos(ka) + g2 + 1

16



If we now look at the remaining terms, we can find a simular result:

J

N∑
n=1

−g + 2[g − cos(ka)]v2
k + 2 sin(ka)ukvk

=J

N∑
n=1

−g + 2[g − cos(ka)]
1

2
(1− cos(θk) + 2 sin(ka)ukvk

=J

N∑
n=1

g cos(θk)− cos(ka) + cos(ka) cos(θk) + 2 sin(ka)ukvk

=J

N∑
n=1

− cos(ka)− (cos(ka)− g)√
1 + ( sin(ka)

cos(ka)−g )2
− sin(ka)2√

1 + g2 − 2g cos(ka)

=J

N∑
n=1

− cos(ka) +
− cos(ka)2 + 2g cos(ka)− g2 − sin(ka)2√

1 + g2 − 2g cos(ka)

=J

N∑
n=1

− cos(ka) + J

N∑
n=1

2g cos(ka)− g2 − 1√
1 + g2 − 2g cos(ka)

=− J
N∑
n=1

√
1 + g2 − 2g cos(ka)

So then we find: H =
∑
k

εk(γ†kγk −
1
2 ), Where: εk = 2J

√
1 + g2 − 2g cos(ak)

To visualize what happens I plotted the energy spectrum for a certain values
of g:

g=0

g=0.5

g=1

g=1.5

g=2

-3 -2 -1 0 1 2 3
k

1

2

3

4

5

6

Εk

Figure 2: The graph of the energy spectrum with chosen constants. The
number of sites is N = 100, the lattice spacing is a = 1, J = 1. Every site is
considered so, −49 ≤ n ≤ 50. Because we work in k-space: −π < kn ≤ π. The
values of g, which gives different graphs are given in the combined plot.
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If we now write the groundstate as: |0〉, we see γk |0〉 = 0. The energy of the
groundstate is:

E0 |0〉 = H |0〉

=
∑
k

εk(γ†kγk −
1

2
) |0〉

= −
∑
k

1

2
εk

A particle in state |k〉 = γ†k |0〉 has an energy of H |k〉 = EK |k〉:

EK |k〉 = H |k〉

=
∑
k

εk(γ†kγk −
1

2
) |k〉

= (
∑
k

−1

2
εk + εkγ

†
kγkγ

†
k |0〉)

= (
∑
k

−1

2
εk + εkγ

†
k |0〉)

=
∑
k

1

2
εk

So we see that: EK − E0 =
∑
k

εk

If we compare our result to what we found on the limiting cases we see that the
energy of g = 0 state is indeed just a product of the number of latice sites times
the energy of one site (because all the energys are the same in every site). Also
the energy of every site increases if we increase g, so indeed the energy goes to
infinity.
If we want to calculate the ground state energy of one electron in this system,
it is again in the minimum of the energy spectrum (as seen before). So first we
take the derivative: dε

dk = 0.

0 =
dε

dk

=
d

dk
2J

√
1 + g2 − 2gcos(ak)

=
2aJg sin(ak)√

1 + g2 − 2gcos(ak)

= 2aJg sin(ak)

k = 0

If we now look at the energy spectrum: εk=0 = 2J
√
g2 + 1− 2g. We see that

this will be zero if g = 1 (because J > 0, g ≥ 0). So this is the point where the
quantum phase transition occurs! You can see this in Figure 1, where the red
line is the line where g = 1. From the dε

dk we could also see that if g = 1 it is
not defined, and there would be a quantum phase transition.
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4 Unpaired Majorana’s

For this section I used reference [5]
At the moment big companies are invesing in the research to more powerfull
computers. One common way is quantum computing, but there are problems
with quantum computing that need to be dealt with. So if we consider a lattice
with sites where a fermion can be, the site is then a so called qubit. The fermions
can be placed and removed from a site as we have seen before. If this happenes,
there is a loss of data, because the qubit changed. This is the classic error in
quantum computing. But if we consider for example the spin of the fermion
there can also be a phase error, denoted by σzj which flips the spins.

But as we have seen before the electral charge is conserved, and if we deal
with a supercondicting system the fermionic parity is preserved. If we consider
a lattice where the lattice sites are very far apart from each other, jumps of fer-
mions will be impossible because of the energy gap between the sites. Therefore
the classical error is will not occur here.

But the phase error will still occur, which we describe by the operators a†j
and aj . Different configurations will have different energies, so therefore they
will pick up a different phase

Each site can be described by an annihilation and creation operator, from
these operators we can define the operators, which satisfy the commutation
relations:

a2j−1 = cj + c†j a2j =
cj − c†j
i

j = {1, 2.., N}

a†m = am 2δlm = alam + amal l,m = {1, 2.., N}

The phase error c†jcj = 1
2 (1 + ia2j−1a2j) will be very unlikily occur when two

sites are far apart from each other. There the Majorana fermion is immune
for both errors. But the phase error term breaks the fermion parity, and is
therefore not likely to be found in a Hamiltonian. But for quantum computinng
the Majorana fermions are really interesting for data storage. This is also the
reason why big companies as microsoft are investing in research to the Majorana
fermion.

4.1 Model

If we now want to construct a model where these unpaired Majorana fermions
will arise we will have to deal with some problems. The first thing we do is
that we want that our U(1) symmetry is broken down to a Z2 symmetry. A
U(1) symmetry corresponds to electric charge conservation. The Z2 symmetry
can be realized by having the system ineracting with a superconductor. In this
superconductor electrons pair up in Cooperpairs, so in this case there can be
created two eletrons from one Cooperpair, or two electrons can be annihilated
to create one Cooperpair. So if we consider a quantum wire lying on top of an
superconducter, the superconductor will act as a buffer of cooperpairs, where
we can put in two electrons, or we can take out two electrons.

So if we know consider a chain of N � 1 sites, each site can be empty or
occupied by an electrom (as we have seen before). The Hamiltonian of this 1D
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quantum wire on top of a superconductor is given by:

H =
∑
j

−t(c†jcj+1 + c†j+1cj)− µ(c†jcj −
1

2
) + ∆cjcj+1 + ∆?c†j+1c

†
j (19)

Here t is the hopping amplitude, µ the chemical potential and ∆ = |∆|eiθ is
the induced superconducting gap. This looks very simular to what we have
discussed before, if we compare this to what we found in the transverse field
section:

H = −J
N∑
i=1

(g − 2gc†i ci + c†i ci+1 + c†i+1ci + c†i c
†
i+1 + ci+1ci)

We now want to write the Hamiltonian in terms of the Majorana operators. We
define these operators in the way that they depend on θ.

a2j−1 = ei
θ
2 cj + e−i

θ
2 c†j a2j = −iei θ2 cj + ie−i

θ
2 c†j {j = 0, 1, ..., L}

Because we are considering just one superconducter, the phase of this conductor
is not important, and we set it to zero (θ = 0).

a2j−1 = cj + c†j a2j = −icj + ic†j

cj = a2j−1 − c†j a2j = −i(a2j−1 − c†j) + ic†j

2ic†j = a2j + ia2j−1

c†j =
−i
2
a2j +

1

2
a2j−1

cj = a2j−1 +
i

2
a2j −

1

2
a2j−1

cj =
1

2
a2j−1 +

i

2
a2j {j = 0, 1, ..., L}

These operators satisfy (which is checked in appendix 1.4):

a†m = am 2δlm = alam + amal l,m = {1, 2.., N} (20)

We can plug these operators back in the Hamiltonian, but first we consider the
products of the original operators and write them in Majorana operators, using
the relations described in formula 20.
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c†jcj = (
−i
2
a2j +

1

2
a2j−1)(

1

2
a2j−1 +

i

2
a2j)

=
−i
4
a2ja2j−1 +

1

4
a2

2j−1 +
1

4
a2

2j +
i

4
a2j−1a2j

=
i

2
a2j−1a2j +

1

4
+

1

4
=

1

2
(ia2j−1a2j + 1)

c†jcj+1 = (
1

2
a2j−1 −

i

2
a2j)(

1

2
a2j+1 +

i

2
a2j+2)

=
1

4
a2j−1a2j+1 +

i

4
a2j−1a2j+2 −

i

4
a2ja2j+1 +

1

4
a2ja2j+2

c†j+1cj = (
1

2
a2j+1 −

i

2
a2j+2)(

1

2
a2j−1 +

i

2
a2j)

=
1

4
a2j+1a2j−1 +

i

4
a2j+1a2j −

i

4
a2j+2a2j−1 +

1

4
a2j+2a2j

= −1

4
a2j−1a2j+1 −

i

4
a2ja2j+1 +

i

4
a2j−1a2j+2 −

1

4
a2ja2j+2

cjcj+1 = (
1

2
a2j−1 +

i

2
a2j)(

1

2
a2j+1 +

i

2
a2j+2)

=
1

4
a2j−1a2j+1 +

i

4
a2j−1a2j+2 +

i

4
a2ja2j+1 −

1

4
a2ja2j+2

c†j+1c
†
j = (

1

2
a2j+1 −

i

2
a2j+2)(

1

2
a2j−1 −

i

2
a2j)

=
1

4
a2j+1a2j−1 −

i

4
a2j+1a2j −

i

4
a2j+2a2j−1 −

1

4
a2j+2a2j

= −1

4
a2j−1a2j+1 +

i

4
a2ja2j+1 +

i

4
a2j−1a2j+2 +

1

4
a2ja2j+2

c†jcj+1 + c†j+1cj = +
i

2
a2j−1a2j+2 −

i

2
a2ja2j+1

cjcj+1 + c†j+1c
†
j = +

i

2
a2j−1a2j+2 +

i

2
a2ja2j+1

So if we fill this back in the Hamiltonian we get:

H =
∑
j

−t( i
2
a2j−1a2j+2 −

i

2
a2ja2j+1)− µ(

i

2
a2j−1a2j) + ∆(

i

2
a2j−1a2j+2 +

i

2
a2ja2j+1)

=
i

2

∑
j

−µ(a2j−1a2j) + (t+ ∆)a2j−1a2j+2 + (−t+ ∆)a2ja2j+1 (21)
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4.2 Relation

In chapter three we did a Jordan Wigner transformation, we mapped spin
particles to spinless particles. What we obtain in our Hamiltonian are cre-
ation and annihilation operators. These operators can be transformed to spin
operators, if we just use the Jordan Wigner transformation other way around.

σzi = 1− 2c†i ci

σxi = σ+σ− = Πj>i(1− 2cjc
†
j)(c

†
i + ci)

If we now look at the terms in our Hamiltonian, and use the commutation
relations:

a2j−1a2j = (cj + c†j)i(c
†
j − cj) a2j−1a2j+2 = (cj + c†j)i(c

†
j+1 − cj+1)

= i(2cjc
†
j − 1) = −iσxi σxi+1

= −iσzi

If we now assume that t = ∆, it will make the Hamiltonian a bit easier:

H =
i

2

∑
j

−µ(−iσzi ) + (t+ t)(−iσxi σxi+1)

=
∑
j

−1

2
µ(σzi ) + t(σxi σ

x
i+1)

= t
∑
j

−1

2

µ

t
(σzi ) + (σxi σ

x
i+1)

(22)

If we compare this to what we found in equation 7, there is a small difference.
This can be solved using a rotation as we did in section 3.3. This has as result
that (comparing to equation 7): t = −J , and µ

2t = g.
In chapter three we found a value for g at which a phase transition would

occur. The value we found was g = 1. In this case we have a simular value: µ
2t .

In this case we can say that in the system a phase transition will occur at the
value: 2µt . In the following section it will be clear what this phase transition
means.

4.3 Trivial Cases

Before we are going to solve this problem and find exact energy spectrums as
we did before, we consider two special easier cases.

The first one is where we consider: ∆ = t = 0 and µ > 0. The Hamiltonian
will become: H = −µ

∑
j

(c2jc2j+1 − 1
2 ) = −iµ

2

∑
j

a2j−1a2j . If we look at the

definition of the Majorana operator we can see that two adjacent operators are
paired. So in this case we only have adjacent operators, so every Majorana
operator is paired together with it’s adjacent Majorana operator to form a
ground state, which is not occupied. That it is not occupied can we obtain if
we compare it with the limiting cases of the ising chain in a transverse field:
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H = −J
N∑
i=1

(σzi σ
z
i+1). We already solved this problem, where we obtained that

the groundstate was if all spins where alligned.
The second trivial case is where we consider ∆ = t > 0 and µ = 0. For

this case the Hamiltonian will become: H = it
∑
j

a2ja2j+1. If we now look at

the definition of the Majorana operator we see that not two of the adjacent
operators are paired together. Because the adjacent operators are: a2j and
a2j−1. For this reason the Majorana bonding looks like the right configuration
in the figure below:

Figure 3: On the left (a) the Majorana are paired up with the adjacent operator
where ∆ = t = 0. On the right (b) the Majorana is paired up with an Majorana
from another site, where µ = 0, and ∆ = t > 0

In the second case can introduce new set of creation and annihilation operators:

ãj =
1

2
(a2j + ia2j+1) ã†j =

1

2
(a2j − ia2j+1)

a2j = ãj + ã†j a2j+1 = −iãj + iã†j

If we now look at what these operators actually do, we see that all operators
are paired with an neighbouring operator. Only the first (a1) and the last (aL)
are unpaired. Which is also clear in figure 3.
Now we can write our Hamiltonian as:

H = it
∑
j

a2ja2j+1 = 2t
∑
j

ã†j ãj −
1

2

For clearification I shall write down the product:

ã†j ãj =
1

2
(a2j − ia2j+1)

1

2
(a2j + ia2j+1)

ã†j ãj =
1

4
(a2

2j + a2
2j+1 + ia2ja2j+1 − ia2j+1a2j)

ã†j ãj =
1

4
(1 + 1 + 2ia2ja2j+1)

ã†j ãj −
1

2
=

1

2
ia2ja2j+1

ia2ja2j+1 = 2(ã†j ãj −
1

2
)

As discussed in the section results, we obtain two phases. We can now
compare this with the phases we found in chapter three. The phase we there
obtained below g = 1 was a ferromagnet, and above that value we are dealing
with a paramagnet. In this case we can say that if µ

t < 2 we deal with the

23



topological phase, and if µ
t > 2 we are dealing with the trivial phase. So if we

look at the figure 3, the left situation is the normal situation, which corresponds
to a paramagnet. The right situation is the topological phase, which corresponds
with the ferromagnet.
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5 Discussion

In this thesis I have been working to a model which describes unpaired Ma-
jorana’s. I started with explaining what happenes in a chain of atoms where
fermions can hop between site. There I did the most calcuation, and related
that with the Majorana chain.

People are very interested in Majorana fermions because we hope that if
we find the Majorana fermion, we can use them to built powerful quantum
compuers. This could eventually lead to computers that calculate antibiotics
or other medicins. There have been a lot of experiments to find the Majorana
fermion which we described in this paper. We have dealt here with a simple
model, which is not physically realisable. In Delft they claimed to have found
the Majorana fermion in 2012 [1]. It is a quasiparticle that arisis in a nanowire
on top of a superconducter, what is very simular to what we have dealing with.

The quantum computers working on Majorana fermions are not close to
realization, but possibly this will be in the future. But before starting to dream
of that, we first have to be sure that the particle was found is indeed a Majorana
fermion.
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7 Appendix

Appendix 1.1

We have the relation between the spin operators and the Pauli matrices:
Si = h̄

2σi.
First we look at the commutation relations of the spin operators. We know that
spin operators are a type of angular momentum operators. For these operators
the commutation relations are well known. Therefore, the commutation relation
of spin operators is given by:

[Sx, Sy] = ih̄Sz [Sx, Sx] = 0

[Sy, Sz] = ih̄Sx [Sy, Sy] = 0

[Sz, Sx] = ih̄Sy [Sz, Sz] = 0

[Si, Sj ] = iεijkh̄Sk

Where ε is the Levi-Civita symbol, which allows us to write the commutation
relation in a much shorter way. For the commutation relations for the Pauli
matrices, we can just say they differ by a factor 2

h̄ :

[σi, σj ] = iεijkh̄
2

h̄
σk = 2iεijkσk

Appendix 1.2

As seen in section 3.2:

σ+
j = (σxj + iσyj )/2

σ−j = (σxj − iσ
y
j )/2

Where we wrote the x, y, z as subscripts, we will now write these as superscripts.
So the (anti)commutaion relation becomes:

[σ+
j , σ

−
k ] =

1

4
((σxj + iσyj )(σxk − iσ

y
k)− (σxk − iσ

y
k)(σxj + iσyj ))

=
1

4
(σxj σ

x
k − iσxj σ

y
k + iσyj σ

x
k + σyj σ

y
k − σ

x
kσ

x
j − iσxkσ

y
j + iσykσ

x
j − σ

y
kσ

y
j )

=
1

4
([σxj , σ

x
k ] + [σyj , σ

y
k ] + i[σyj , σ

x
k ] + i[σyk , σ

x
j ])

=
1

4
(0 + 0 + i(−2iδjkσ

z
j ) + i(−2iδkjσ

z
j ))

= δkjσ
z
j

[σzj , σ
±
k ] =

1

2
((σzj )(σxk ± iσ

y
k)− (σxk ± iσ

y
k)(σzj ))

=
1

2
(σzjσ

x
k ± iσzjσ

y
k − σ

y
kσ

z
j ∓ iσ

y
kσ

z
j )

=
1

2
([σzj , σ

x
k ]± i[σzj , σ

y
k ])

= ±2δjkσ
±
j
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{σ+
j , σ

−
k } =

1

4
((σxj + iσyj )(σxk − iσ

y
k) + (σxk − iσ

y
k)(σxj + iσyj ))

=
1

4
(σxj σ

x
k − iσxj σ

y
k + iσyj σ

x
k + σyj σ

y
k + σxkσ

x
j + iσxkσ

y
j − iσ

y
kσ

x
j + σykσ

y
j )

=
1

4
({σxj , σxk}+ {σyj , σ

y
k}+ i{σyj , σ

x
k} − i{σ

y
k , σ

x
j })

=
1

4
(2δjkI + 2δjkI + 0 + 0) = δkjI

{σ+
j , σ

+
k } =

1

4
((σxj + iσyj )(σxk + iσyk) + (σxk + iσyk)(σxj + iσyj ))

=
1

4
({σxj , σxk} − {σ

y
j σ

y
k}+ i{σxj , σ

y
k}+ i{σyj , σ

x
k}

=
1

4
(1− 1 + 0 + 0) = 0

{σ−j , σ
−
k } =

1

4
((σxj − iσ

y
j )(σxk − iσ

y
k) + (σxk − iσ

y
k)(σxj − iσ

y
j ))

=
1

4
({σxj , σxk} − {σ

y
j σ

y
k} − i{σ

x
j , σ

y
k} − i{σ

y
j , σ

x
k}

=
1

4
(1− 1 + 0 + 0) = 0

We also found the fermion operators in terms of these creation and annihilation
operators:

ci = Πj<i(σ
z
j )σ+

i

c†i = Πj<i(σ
z
j )σ−i

The anticommutation relations for these operators become:

{ci, c†k} = Πj<i(σ
z
j )σ+

i Πj<k(σzj )σ−k + Πj<k(σzj )σ−k Πj<i(σ
z
j )σ+

i

= δik

{ci, ck} = (Πj<i(σ
z
j )σ+

i )(Πj<k(σzj )σ+
k ) + (Πj<k(σzj )σ+

k )(Πj<i(σ
z
j )σ+

i )

= 0

{c†i , c
†
k} = (Πj<i(σ

z
j )σ−i )(Πj<k(σzj )σ−k ) + (Πj<k(σzk)σ−i )(Πj<i(σ

z
j )σ−i )

= 0

Appendix 1.3

In this appendix we check the commutation relations of γk:

γk = uk c̃kn − ivk c̃
†
−kn

γ†k = uk c̃
†
kn

+ ivk c̃−kn
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The commutation relations become:

{γk, γ†k′} = (uk c̃k − ivk c̃†−k)(uk′ c̃
†
k′ + ivk′ c̃−k′)

+ (uk′ c̃
†
k′ + ivk′ c̃−k′)(uk c̃k − ivk c̃†−k)

= ukuk′{c̃k, c̃†k′}+ vkvk′{c̃−k, c̃†−k′} − ivkuk′{c̃
†
−k, c̃

†
k′}

+ iukvk′{c̃k, c̃k′}
= δk,k′(u

2
k + v2

k)

= δk,k′

{γ†k, γ
†
k′} = (uk c̃

†
k + ivk c̃−k)(uk′ c̃

†
k′ + ivk′ c̃−k′)

+ (uk′ c̃
†
k′ + ivk′ c̃−k′)(uk c̃

†
k + ivk c̃−k)

= ukuk′{c̃†k, c̃
†
k′} − v

2
k{c̃−k, c̃−k′}+ ivkuk′{c̃−k, c̃†k′}

+ iukvk′{c̃†k, c̃−k′} = 0

{γk, γk′} = (uk c̃k − ivk c̃†−k)(uk′ c̃k′ − ivk′ c̃†−k′)

+ (uk′ c̃k′ − ivk′ c̃†−k′)(uk c̃k − ivk c̃
†
−k)

= ukuk′{c̃k, c̃k′} − vkvk′{c̃†−k′ , c̃
†
−k′} − ivkuk′{c̃

†
−k, c̃k′}

+ iukvk′{c̃k, c̃†−k′} = 0

{γk, γ′†k } = δk,k′ {γ†k, γ
†
k′} = {γk, γk′} = 0

Appendix 1.4

We have the operators: a2j−1 = cj + c†j and a2j = −icj + ic†j .

a†2j−1 = (cj + c†j)
† = c†j + cj = a2j−1

a†2j = (−icj + ic†j)
† = ic†j − icj = a2j

a2j−1a2j′−1 + a2j′−1a2j−1 = (cj + c†j)(cj′ + c†j′) + (cj′ + c†j′)(cj + c†j)

= {cj , cj′}+ {c†j , c
†
j′}+ {cj , c†j′}+ {c†j , cj′}

= 2δj,j′

a2ja2j′ + a2j′a2j = (−icj + ic†j)(−icj′ + ic†j′) + (−icj′ + ic†j′)(−icj + ic†j)

= −{cj , cj′ − {c†j , c
†
j′}+ {cj , c†j′}+ {c†j , cj′}

= 2δj.j′

So we have:

a†m = am 2δlm = alam + amal
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