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Abstract 

 

Ear as a part of human body has been used in forensic practice but the use of earprints as 

evidence in criminal trials remains arguable. The Forensic Ear Identification (FearID) research 

project was started in order to study the strength of evidence of earprints found on crime scenes. 

A limited number of publications exist related to computerized methods used for earprint 

identification. The study presented here compares existing methods for earprint image 

identification. Two of them are point based methods that use Scale Invariant Feature Transform 

(SIFT) feature and Curvature Scale Space (CSS) feature for recognition process. The other is 

based on the image intensity value that compares two images by registration algorithm. We 

applied two different similarity metrics for evaluating registration. All methods carried out on a 

subset of FearID database. Equal error rate and hitlist behavior on our small dataset show that 

CSS is not useful in earprint recognition whereas SIFT and image registration technique have 

promising results.  

 

 

 

 

 

 

 

 

 

 



2 
 

Chapter 1 

Introduction 

Several signs are used in a crime scene to identify the criminal who committed crime. These can 

be fingerprints, DNA material, shoe prints, earprints and so on. When criminal listen at a 

window or a door, oils on the ear leave a print that can be made visible using some techniques. 

Until now, due to a lack of scientific basis, earprints have been used very few times and most of 

the time without much success. A good review article on the lack of scientific research up to 

1999 with respect to earprint identification can be found in [1]. The three cases discussed briefly 

below highlight this point.   

In  the  US, in  the  case  against  David  Wayne  Kunze [2],  the  Appeal  Court considered  the  

admissibility  of  earmarks  as  evidence,  according  to the  Frye  general  acceptance  standard.  

The  court  concluded  that earmarks  failed  the  Frye  criteria  considering  that  identification 

based  on  earmarks  are  not  generally  accepted  by  the  scientific community. 

In  the  case  of  Mark  Dallagher [3],  in  his  first  trial  the defendant  was  sentenced  to  life  

imprisonment  on  the  basis  of  earmark  evidence.  The  two  experts  called  to  testify on  

behalf  of  the  prosecution  both  expressed  the  view  that  Mark Dallagher  was  the  source  of  

the  recovered  earmarks,  either  in absolute  terms  (‘‘identification’’)  or  by  degree  (‘‘very  

likely’’).  The decision  was  reversed  six  years  after  the  conviction  on  the  ground that  the  

Court  had,  at  the  time  of  the  first  trial,  no  opportunity  to hear  a  dissenting  view.  This  

was  caused  by  the  shortage  of  experts in  this  specialized  area  available  for  the  defense.  

On  appeal,  it  was also  argued  by  the  defense  that  there  was  a  paucity  of  empirical 

research  to  support  a  conclusion  based  on  the  comparative examination  of  earmarks  

against  earprints.   

The  UK  court  of  Appeal also  considered  the  case  against  Mark  Kempster [4].  During this  

last  appeal,  the  Court  faced  a  prosecution  expert  who identified  Kempster  based  on  a  

mark  recovered  from  the  scene. The  defense  expert  testified  in  favor  of  exclusion  because  

of  the presence  of  differences  that  could  not  easily  be  reconciled  on  the ground  of  

distortion  or  other  deposition  factors. 
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To provide the scientific basis, the Forensic Ear Identification research project (FearID), a 

collaboration of several European institutes, was initiated a couple of years ago. The FearID 

research project aims to obtain estimators for the strength of evidence of earprints found on 

crime scenes and the development of methods to match and classify earprints. For this purpose 

earprints from over 1229 donors from three different countries have been collected to set up a 

database. Standard operating procedures were designed for the recovery and lifting of donor 

earprints, laid down in [5]. During the FearID research project, several methods have been 

developed which determine the similarity between two earprints. E.g. Alberink and Ruifrok [6] 

developed a semi-automatic recognition system. In their work, the digital images are processed 

in three different ways: Annotated print (Fig. 1), Operator axis (Fig. 2) and Medial axis to form 

the feature vector. The medial axis is a polyline derived from the superstructure.  

 

 

Fig.1. Example of an annotated earprint. 
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Fig. 2. Example: original print, clicked polyline and calculated ‘superstructure’. 

 

1.1 Goal 

The  goal  of  this  project  is  to  compare  a  set  of  methods  for  earprint recognition.  The 

main task is performance comparison between point based approach and image based approach. 

Example of point based approach are Scale Invariant Feature Transform (SIFT) [7] and 

Curvature Scale Space (CSS) [8] that extract some key features from the image and image 

registration technique as an image based method that works based  on  the  superimposition  of  

images. Image  registration  is  performed  using an  iterative  multi-resolution  algorithm,  based  

on  the  image  intensity [9].   

1.2 Overview 

The first chapter gives an introduction and the main goal of our project.  

In chapter two the design of FearID dataset and the ways in which performance is reported 

(equal error rates and hitlist behaviour of the system) is briefly described.  

Chapter three describes Scale Invariant Feature Transform (SIFT) features extracted from images 

to help in reliable matching between earprint images. The extracted features are invariant to scale 

and orientation, and are highly distinctive of the image. They are extracted in four steps that are 

described in more detail in this chapter. Experimental result and performance measure are shown 

by graph and table. 
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In chapter four the other method of recognition is introduced: Curvature Scale Space (CSS). The 

original images are used to represent the shapes of boundary contours of earprint. Then, the CSS 

representations of the contours of earprint images are computed. From that we extract the CSS 

features. Finally, CSS matching performs between a set of input CSS features and the stored CSS 

features for earprint identification. Performance is represented in the form of EER and hitlist 

behavior.  

Chapter five introduces image registration technique used in this project. Image registration is 

the process of aligning two images into a common coordinate system. It computes 

transformations to set correspondence between the two images. The registration process requires 

specifying a pair of images, one as the fixed image f(x) and the other as the moving image m(x) 

as input images, a transform, a metric, an interpolator and an optimizer. This chapter will be 

ended with the achieved experimental results. 

Chapter  six  concludes  the  whole  project  and  the  performance of  the given  methods  are 

compared.  
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Chapter 2 

Database and Performance Measures 

To enable earprint to be evaluated in different methods we require a database contains earpint 

images coming from the same and different sources. On the basis of the above, we implemented 

some methods for extracting useful features in the matching process of earprint images. 

Performance of these methods should be reported in some ways that are discussed as follows. 

2.1 Design of the database 

The database consists of 7364 prints of 1229 donors, taken according to the standard procedures 

to ensure that all prints have the same (high) quality. This means that all donors provided first 

three left, then three right earprints on the FearID ‘listening box’, which would be consecutively 

lifted using Black Gel Lifter. 216 of 7364 prints are without instructions to the donor and have 

low quality and function as simulated crime scene marks which are called marks.  

The original images contained in the FearID dataset are at 600 dpi in greyscale (8 bits) and 

dimension 2100*3000. Access to this large-scale dataset was not possible due to the difficulty in 

data transferring. On the other hand doing the operation on the small dataset can be much faster 

and less expensive than the large one. The following numbers of earprint images are in our 

database as described in Table1. 

Table1. Number of prints in our database. 

Side of ear Earprint images 

Left 9 

Right 9 

 

2.2 Performance Measures 

Performances were measured on the query prints, the prints to test the system, using ROC curve, 

equal error rates and hitlist behavior.  
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2.2.1 ROC curve and Equal Error Rates (EER) 

Receiver Operating Characteristic (ROC) is a standard information retrieval curve in order to 

visualize the quality of the classification system. Here we measure the performance of a 

classification system with two classes of outcomes: matching (or positive or acceptance) and 

non-matching (or negative or rejection). 

The ROC curve is the parametric curve given by the false positive rate (FPR) against the false 

negative rate (FNR). False positive corresponds to the cases in which the system declares a 

match in case of non-matching prints (also called a false acceptance). False negative corresponds 

to the cases in which the system declares a non-match in case of matching prints (also called a 

false rejection). Since the FPR and FNR are threshold-dependent, we rather use the equal error 

rate (EER), which is the point on the ROC curve that corresponds to have an equal probability of 

miss-classifying a positive or negative sample (FPR(t) = FNR(t) with threshold t). This point is 

obtained by intersecting the ROC curve with a diagonal of the unit square. The lower the equal 

error rate value, the higher the accuracy of the system. The Area Under the Curve (AUC) is 

another indicator of the overall quality of a ROC curve. For example, the ROC of the ideal 

classifier has AUC equal to 1. ROC rand would be the performance of a random classifier (in the 

limit of infinite data). An example of this is given in Fig. 3. 

According to VLFeat library [10] different variants of the ROC plot can be produced (Fig. 3). In 

this paper we used false positive/false negative plot. However the AUC is probably a misnomer 

for that plot. In practice, the function reports always the same AUC measure regardless of the 

particular variant of the plot. Anyway we did not use AUC and ROC rand in our calculations. 
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Fig. 3. Variants of the ROC plot. 

 

2.2.2 Hitlist behavior 

The second way in which the performance of the system is tested is by looking at hitlist behavior 

of the system. Here, query prints are compared to a reference database and for any query print 

the relative position of the corresponding matching print that comes highest in the hitlist is noted. 

A possible result of a query search is depicted in Fig. 4 with two matching prints at places 4 and 

15 and the best hit at place 4. In the current setting, we have two reference databases, for left and 

right prints, respectively; those consist of two prints per ear, and use the remaining prints as 

query prints to test the system. We are not so much looking for a matching print of the query 

print at place 1 of the hitlist, but rather in, the top 3.  

 

Fig. 4. An example of hitlist. 
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Chapter 3 

Scale Invariant Feature Transform (SIFT)  

Scale Invariant Feature Transform (SIFT) is an algorithm presented by Lowe [7] takes an image, 

detect keypoints and compute its descriptors. These are invariant to scale, rotation and translation 

of the image.  

Meijerman et al. [11] applied Sift features to automatically match earprints. Their method 

consists of the following steps: image preprocessing to resample the images and apply filter, 

keypoint detection using the Sift algorithm of Lowe, keypoint matching defined as the minimum 

Euclidean distance in the Sift feature space, and similarity metric definition as the number of 

accepted keypoint matches found for a pair of images [11]. The  method  has  been  initially  

tested  on a  limited  sample  of  36  right  earprints  from  six  pairs  of  identical  twins. It has 

been given promising hitlist results in which a print from the correct individual is ranked at the 

top of the hitlist in 36 out of 36 cases. 

Here is an outline of what happens in Sift. 

3.1 Creating the Difference of Gaussian Pyramid 

The  first   stage  is  to  construct   a  Gaussian  scale  space  from   the  original  image [7].  For 

this, the image is convolved with Gaussian functions of varying widths, and then the difference 

of Gaussian (DoG) images are taken as the difference between two filtered images, one with k 

multiplied by scale of the other.  

 

Where L(x,y,σ),  is the convolution of Gaussian functions, G(x,y,σ), with an original image, 

I(x,y).  
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Fig. 5. Gaussian pyramid in the left with neighboring images separated by a constant scale factor k. 

Difference of Gaussian (DoG) pyramid on the right.  

An efficient approach to construction of D(x, y, σ) is shown in Fig. 5. The convolved images are 

grouped by octave and separated by a constant scale factor k. Each octave is divided into an 

integer number, s, of intervals, so k = 2
1/s

. Then the Difference of Gaussian (DoG) images are 

taken from subtracting the adjacent Gaussian-blurred images per octave. Once an octave has 

been completed, the Gaussian image is down-sampled by a factor of 2, and the process repeated. 

 3.2 Extrema Detection 

In this stage extrema points are identified in the DoG pyramid. This is done by comparing each 

pixel in the DoG images to its eight neighbors at the same scale and nine corresponding 

neighboring pixels in each of the neighboring scales (Fig. 6). If the pixel value is the maximum 

or minimum among all compared pixels, it is an extrema [7]. Subpixel extrema are found by the 

Taylor expansion of the image around the approximate keypoint. 

 

Taking the derivative of this function with respect to x and setting it to zero, gives the true 

extrema point. 
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Fig. 6. An extrema is detected as a minimum or maximum value between all its neighbours in DoG scale.  

3.3 Keypoints Elimination 

Some keypoints generated in the previous step lie along an edge, or they don’t have enough 

contrast. In both cases, they are not useful as features. So in this stage they will be eliminated [7].  

The value of the keypoint in the DoG pyramid at the extrema is given by: 

 

If the value at x in the DoG image is less than a threshold, it is rejected. 

In Keypoints that are located on edges the principal curvature across the edge would be much 

larger than the principal curvature along it. So they should be eliminated from the keypoint list. 

A 2x2 Hessian matrix, H, computed at the location and scale of the keypoint is used to compute 

the principal curvature.  

(1) 

So if inequality (1) fails, the keypoint is rejected. 

 

 

 

http://www.aishack.in/2010/06/sift-step-3-finding-key-points/
http://en.wikipedia.org/wiki/Principal_curvature
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3.4 Orientation Assignment 

 

Fig. 7.  Left: An orientation is assigned to the candidate keypoint to achieve invariance to image rotation.  

Right: An orientation histogram with 36 bins covering 360 degrees is created. 

In this step, one or more orientations are assigned to each keypoint based on local image gradient 

directions. First, For an image sample L(x,y) at scale σ, the gradient magnitude and orientation 

are calculated using these formulae: 

 

The magnitude and orientation is calculated for all pixels around the keypoint. Then, a histogram 

is created for this [7]. In this histogram, the 360 degrees of orientation are broken into 36 bins 

(each 10 degrees) as illustrated in Fig. 7.   

Each  sample  is  weighted  by  its   gradient   magnitude  and  by  a  Gaussian-weighted  circular   

window with a σ that is 1.5 times that of the scale of the keypoint. 

The histogram will have a peak at some points. The peaks in this histogram correspond to 

dominant orientations. The orientations corresponding to the highest peak and local peaks that 

are within 80% of the highest peaks are assigned to the keypoint. In the case of multiple peaks, a 

new keypoint is created having the same location and scale as the original keypoint. But it’s 

orientation is equal to the additional peak. So, orientation can split up one keypoint into multiple 

keypoints.  

http://www.aishack.in/2010/07/histograms-from-simplest-to-the-most-complex/
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This is the key step in achieving invariance to image rotation. Till now the keypoints are 

invariant to image location, scale and rotation. In Fig. 7, keypoints are   indicated as arrows. The 

length of the arrows indicates the magnitude of the contrast at the keypoints. 

3.5 Descriptor Computation 

In this stage, a descriptor vector for each keypoint is computed such that the descriptor is highly 

distinctive. To do this, a 16×16 window is computed around the keypoints [7]. It is divided into 

16 sub-blocks of 4×4 sizes. Within each 4×4 window, gradient magnitudes and orientations are 

calculated. These orientations are put into an 8 bin histogram. The magnitudes are further 

weighted by a Gaussian function with σ equal to one half the width of the descriptor window. 

Since there are 4 × 4 = 16 histograms each with 8 bins, the vector has 128 elements. This 128- 

dimensional vector forms keypoint descriptor that is then normalized to unit length in order to 

achieve more invariance. This process is indicated in Fig. 8. 

 

Fig. 8. Left: The magnitude and orientation values of samples in a square region around the keypoint. 

Right: The orientations are put into an 8 bin histogram indicated   by   the   arrows   and   is   computed   

from   4×4 sub regions.    

 

3.6 Experiment Result 

3.6.1 Pre-processing of images 

As explained in section 2.1, the images used by us for testing and comparing the SIFT keypoints 

and descriptors are 18 earprint images of 6 persons with 3 images per person taken from FearID 

dataset. The original images are at 600 dpi in greyscale (8 bits) and 2100*3000 in dimensions 

http://en.wikipedia.org/wiki/Rotational_invariance
http://www.aishack.in/2010/07/histograms-from-simplest-to-the-most-complex/
http://www.aishack.in/2010/07/histograms-from-simplest-to-the-most-complex/
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(Fig.9, left). For the speed optimization purpose the images were resampled to 220*300. The 

region of interest (ROI) is specified  by drawing a polygon on the image at any location of 

interest (Fig.9, right) then denoising filter are applied. Finally the images are manually rotated to 

align vertically (Fig.9, middle).  

Each print in the database which follows the same pre- processing to obtain ROI was taken in 

turn as a query print or a test image. The image is then compared to a database containing other 

prints. Therefore considering the number of prints in the database, 81 independent runs were 

carried out for each side of ear.  

                               

 

Fig. 9. Illustration of the pre-processing of images. 

3.6.2 Algorithm 

Matlab was used to implement the SIFT matching algorithm. The code for extracting SIFT 

features was available from David Lowe’s website [12]. 

  

Selection of the 

Region Of Interest  

Rotation, 

Denoising filter 
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3.6.3 Matching 

Given two prints with extracted keypoints, the matching algorithm is as follows:  

First, SIFT features are obtained from each print automatically using the SIFT algorithm 

described above.  Fig. 10 shows the detected SIFT keypoints. Each feature in the test image or 

query print is matched to all the SIFT features obtained from the other print. This feature 

matching is done through a Euclidean-distance based nearest neighbor approach. A feature is 

considered the best matched with another feature when the ratio between the distance to that 

feature and the distance to the next nearest feature is minimum. But this matching gives many 

wrong matches (outliers). In order to remove the outliers, the keypoints with low ratio (less than 

0.6) are used to find the transformation model. This transformation (rotation and translation) are 

used to improve the number of good matches found between the images. For this purpose, the 

pixel distance threshold should be set on the found transformation to remove bad keypoint 

matches. 

We defined the number of accepted keypoints as a similarity metric to compare pair of images. 

We expect to have few keypoint matches in the prints come from the different sources however 

prints with the same source have many keypoints matches [11]. 

We found the matches consistent with a geometric transformation using RANSAC (Random 

Sampling and Consensus) algorithm [13] implemented by the function 

GeometricTransformEstimator [14].  So many wrong matches (outliers) automatically will 

remove in this way. Fig. 11 represents the matched keypoints before and after applying 

RANSAC. 
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Fig. 10. Earprint with Sift features. 

 

Fig. 11. Matched keypoints including outliers (left) and matched keypoints including inliers only (right). 

 

3.7 Evaluation of performance 

3.7.1 EER  

We evaluate the system performance by comparing a query print to all prints in the reference 

database. The results are shown using false positive and false negative rate in a ROC curve. The 

value of equal error rate on the ROC curve indicates the performance. The smaller this rate, the 

more efficient the system. 
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Fig. 12 shows the ROC curve for the similarity metric. Graph in green color is for left ear and 

blue is for right ear. The difference between EER for left prints and right prints shows that the 

discrimination of left ears is better than that of right ones before applying RANSAC. 

Results in terms of  equal  error  rates (EER),  for  all comparisons are given in Table 2.  Note 

that a value of EER = 0 indicates perfect detection.  

 

Fig. 12. ROC curve for SIFT before applying RANSAC. 

 

Table 2. EER performance of the system. 

   

 

 

 

 

 

Results  obtained  with  SIFT using  our  dataset 

Sample before RANSAC[%] after RANSAC[%] 

Right 7.41 0.0 

Left 3.70 0.0 

Total 5.55 0.0 
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3.7.2 Hitlist behavior 

For the method the numbers of keypoint matches found for each print comparison are provided 

in a results matrix (Fig. 13). In Fig. 13 the three prints from each donor are grouped together and 

the two or more comparisons that give the highest keypoint matches are highlighted.  

Comparisons between prints from different donors show few keypoint matches. Among this 

group, only 1 of 54 comparisons showed ten keypoint matches and no comparison showed more 

than 10 matches. Conversely, comparisons between prints from the same donor show relatively 

high numbers of keypoint matches. Among this group, 18 from 18 comparisons showed the 

highest matches; the maximum number of matches was 53. 

The results shown in Fig. 13 can be investigated in the hitlist. All comparisons made for a query 

print were ranked by the number of keypoint matches in descending order. As a result, a print 

from the correct donor is ranked at the top of the hitlist in all cases (i.e., 9 out of 9 prints). Also 

in 100% cases, the two prints from the correct donor are returned as the first two prints in the 

hitlist.  

 

 Donor 1 Donor 2 Donor 3 

P1 P2 P3 P1 P2 P3 P1 P2 P3 

Donor 1 P1  10 22 5 4 4 5 4 3 

P2 10  13 4 7 10 4 5 4 

P3 19 13  5 5 4 4 3 5 

Donor 2 P1 4 3 4  13 19 6 5 5 

P2 4 3 4 14  30 6 4 5 

P3 4 4 4 16 26  7 5 4 

Donor 3 P1 3 4 4 6 7 8  48 27 

P2 6 4 6 6 7 7 53  36 

P3 5 3 5 7 6 5 28 33  

Fig. 13. Results matrix for 9 left earprints showing the number of matching keypoints found for each print 

comparison. Two or more matches are highlighted in the matrix and the print matched with itself left 

blank.  



19 
 

Hitlist results for  all  comparisons  are  presented  in  Table  3 and Table 4.  For each  query 

print,  its  matching  position  in the  list  is  noted.  These  results  therefore  show  the  

percentage  of query print,  according  to  its  matching  position  in the  list.  Thus, for  right  and 

left earprint comparisons with RANSAC, 100% of the first matches and 100% of the second 

matches  are in the first and the two position in the list. Whereas 77.7% of the second matches is 

in the two position and 22.2% of the matches in the three position before applying RANSAC.   

 

Table 3. Hitlist results including outliers using Sift descriptor in our dataset. 

Searches 

Position Left Right Overall 

1 9 out of 9 (100%) 9 out of 9 (100%) 100% 

2 8 out of 9 (88.8%) 6 out of 9 (66.6%) 77.7% 

3 1 out of 9 (11.1%) 3 out of 9 (33.3%) 22.2% 

 

Table 4. Hitlist results including inliers only using Sift descriptor in our dataset. 

Searches 

Position Left Right Overall 

1 9 out of 9 (100%) 9 out of 9 (100%) 100% 

2 9 out of 9 (100%) 9 out of 9 (100%) 100% 

3 0 out of 9 (0.0%) 0 out of 9 (0.0%) 0.0% 
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Chapter 4 

Curvature Scale Space (CSS)  

In many applications, the user wishes to retrieve similar images from the database. The goal is to 

capture image information in the form of feature vector which describe shape, texture and color 

properties of the image. These vectors are compared to one another to find images from the 

database. A considerable amount of information exists in two dimensional boundaries of objects 

which enable us to recognize objects without using further information. Curvature scale space is 

an efficient and robust shape representation method. The CSS image consists of several arch-

shape contours representing the inflection points of the shape as it is smoothed. The maxima of 

these contours are used to represent a shape [8].  

The construction of the CSS image and the properties of using its maxima as the shape 

representation are explained as follows. 

4.1 The CCS representation 

Consider a parametric vector equation for a curve:         

 

Where u is an arbitrary parameter.  The formula for computing the curvature function can be 

expressed as: 

(1) 

Convolution each component of  Γ with g(u, σ), a1D Gaussian kernel of width σ, gives 
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Similar formulas are used to compute Y(u, σ),Yu(u,σ) and Yuu(u, σ). Thus the curvature of the 

smoothed curve can be computed easily: 

(2) 

Every object is represented by the x and y coordinates of its boundary points. Due to the various 

numbers of these points for images, the curve is first resampled and then smoothed by Gaussian 

function. The smoothed curve is called Γσ, where σ denotes the width of the Gaussian kernel, 

g(u, σ). Then Eq.2 is used to find the locations of curvature zero crossings on the smoothed 

curve. Curvature-zero crossings of a curve are points where the sign of curvature changes. The 

process starts with σ =1, and at each level, σ is increased by ∆σ. As σ increases, Γσ shrinks and 

becomes smoother, and the number of curvature zero crossing points on it decreases. Finally, 

when σ is sufficiently high, Γσ will be a convex curve with no curvature zero crossings 

(Fig.14.a). The location of curvature zero crossing of every Γσ are displayed by some points in 

(u, σ) plane, where u is an approximation of the normalized arc length and σ is the width of the 

Gaussian kernel. The result can be represented as a binary image called the CSS image of the 

curve (Fig. 14.b). The intersection of every horizontal line with the contours in this image 

indicates the locations of curvature zero crossings on the corresponding evolved curve Γσ  [8]. 

 

(a)                         (b) 

Fig. 14. (a) Shrinkage and smoothing of the curve and decreasing of the number of curvature zero 

crossings during the evolution, from left: σ=1, 4, 7, 10, 12, 14. (b) The CSS image of the shape. 
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4.2 Extracting maxima of CSS contours 

Every image in the database is represented with the locations of its major CSS contour maxima. 

For example, in Fig.14.b there are seven major maxima, and therefore the image will be 

represented by seven pairs of integer numbers. The CSS contours are usually connected 

everywhere except in a neighborhood of their maxima. We find the peaks of both branches of a 

contour in the CSS image and consider the midpoint of the line segment joining the pair as a 

maximum of the CSS image. In order to avoid complicated and inefficient matching, small 

maxima are not included in the representation. In our system, if a maximum is less than 1/6 of 

the largest maximum of the same CSS image, it is considered as noise [8]. As a result, only 

major concavities and convexities of a shape will contribute to the representation.   

The benefits of this representation are that it is invariant under rotation, uniform scaling, noise 

and translation of the curve. It is unique (or there is a 1 to 1 correspondence between a curve and 

CSS image) and it is stable (slight changes in the curve does not significantly affect the CSS 

image and vice versa). 

4.3 CSS matching 

In this section, I explain the basic concepts of the matching algorithm, which compares two sets 

of maxima and assigns a matching value to them. A complete description of the CSS matching 

algorithm can be found in [15]. The matching value represents the similarity measure between 

the actual boundaries of objects. I call the input image as image and the images in the database as 

models. 

Let Mimage = {(t1, γ1), (t2, γ2), ..., (tL, γL)} be the maxima of the image, parameterized by arc length 

t and arranged in descending order of the scale γ. Let Mmodel = {(s1, σ1), (s2, σ2), ..., (sN, σN)} be 

the maxima of the model, parameterized by arc length s and arranged in descending order of 

scale σ . The matching algorithm is as follows [15]: 

1. Compute the CSS shift parameter using the largest scale maximum in the image and the 

model.   α = s1 − t1 

Calculate the cost for the match as:    C = |σ1- γ1|  
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Create two lists. One contains maximum pair from image and the other with the maximum 

pair from the model. 

 

2. Apply the CSS shift parameter α for the second largest maximum in the image and then 

find the closest maximum in the model to this shifted image maximum. 

(si, σi ) = arg min ||(si, σi) − (t2+α, γ2)||, (si, σi) 

Add the two new maxima to their respective list. 

 

3. The cost of the match is updated as follows: 

C = {

  ||(     )  (       )||        ( )

  ||  ||                                             ( )

  ||  ||                                             ( )

 

 

If the two maxima are in a reasonable horizontal distance (0.2 of the maximum possible 

distance), then follow (1) otherwise (2) and if there are no more image curve CSS maxima 

left, follow (3). 

 

4. Repeat 2 for all the elements in the image. 

 

5. Calculate the CSS shift parameter for maxima in the model which have a scale close 

(within 80%) to the highest maximum of the image. Also do the same using the second 

highest scale maximum (t2, γ2) of the image and the respective maximum in the model (s2, 

σ2). Repeat 1-3 to compute the cost of match. 

 

6. Reverse the place of the image and the model and repeat steps 1 to 4.  

 

7. Consider the lowest cost from all these matches as the best matching cost between the 

image and the model. 

 

 

 



24 
 

4.4 Experiment Result 

The overall procedure of earprint recognition based on the curvature scale space (CSS) 

representation is shown in Fig. 15.  

First, input the original earpint image. Second, the image of earprint is segmented into the binary 

contour images via some image processing techniques. Third, compute the CSS representation of 

the contours of earprint images. Then, extract the CSS features. Finally, perform features 

matching and recognition between the input feature vectors and the stored feature vectors for 

reference database. 

 

 

 

 

 

Fig. 15. Procedure of earprint recognition using CSS. 

 

The first four steps are shown in Fig. 16(a) -16(e). Fig. 16(a) shows an input earprint and Fig. 

16(b) is the contour of the earprint. Fig. 16(c) shows the resulting contours performing a 

convolution with the (1:0.1:20) kernel.  The red points in the figure mean the locations of zero 

crossing points in the CSS image corresponding to the locations of the smoothed contours. Fig. 

16(d) shows the generated CSS image. Fig. 16(e) represents the extracted maxima of the CSS 

image as the CSS features.  

As the CSS image shows the two points on the smoothed contour do not join each other even in 

the high sigma, so we do not consider these two points in our calculations.  

 

Earprint Image Binary Contour Image CSS Image 

Extracting CSS Features Matching 



25 
 

 (a)                (b) 

 

(c) 

 (d) ) e) 

Fig. 16. Procedure of curvature scale space. 

Extract the contour 
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4.4.1 Pre-processing of images 

As explained in the previous section, the antihelix contour should be extracted from the original 

images by an image editing software. The antihelix area was chosen because of its prevalence on 

prints found on crime scenes. Our dataset for CSS descriptor is the same as that I explained in 

section 3.6.1 just here we have contour images with dimension 350*500. The CSS image should 

be computed for all contour images in the dataset (Fig. 16(d)). One of the CSS images is taken as 

a test image. The CSS test image is then compared to a database containing other CSS images. 

Therefore considering the number of CSS images in the database, 81 independent runs were 

carried out for each side of ear.  

4.4.2 Algorithm 

Given an earprint image, the antihelix area as the region of interest (ROI) is specified in an 

image editing software. This part of the work has been done by the user. All operation performed 

after this step is fully automatic and do not require any user input. The boundary of the antihelix 

is traced and then gradually smoothed using Gaussian function. The process starts with sigma=1, 

the width of the Gaussian kernel. With increasing the value of sigma, chosen as 0.1 in our 

experiments, the resulting contour gets smoother and the number of zero crossings of the 

curvature along it decreases, until finally the contour is convex. The approaching zero crossing 

points create a contour in the CSS image, the joint points represent the maximum of the relevant 

contour. 

The two sets of extracted maxima are compared and a matching value is assigned to them 

according to the matching algorithm in section 4.3.  

4.4.3 Matching 

The CSS features or sets of maxima are extracted from all the CSS images in the database 

(Fig.16 (e)). Then, given a CSS test image or CSS query, the extracted maxima from that is 

compared against the sets of maxima as a CSS features from each CSS image in the database.  

The cost of the match is defined as the summation of the straight-line distances between the 

matched pairs plus the vertical coordinates of the unmatched maxima. The matching cost 
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represents the similarity measure between the actual boundaries of earprints. The CSS image in 

the database with the lowest cost is considered as the nearest CSS image. 

 

4.5 Evaluation of performance 

4.5.1 EER 

We compared all query prints to all reference prints (per ear side).The results are illustrated by 

ROC curve. The value of equal error rate on the ROC curve indicates the performance. The 

smaller this rate, the more efficient the system. 

Fig. 17 shows the ROC curve for the cost fucntion. The curve for left and right ear comparison 

are presented in green and blue color respectively. Results  in  terms  of  equal  error  rates 

(EER),  for  all comparisons  are  given  in  Table  5.   

 

Table 5. EER performance of the system. 

 

 

 

 

 

Note that the EER are significantly larger in right ears compare to the left ears. Overall EER is 

also high (22.22%). One reason for that would be the extraction of low quality contours. 

Results  obtained  with  CSS  using  our  dataset 

Sample Cost[%] 

Right 29.63 

Left 14.81 

Total 22.22 
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Fig. 17. ROC curve for CSS cost function. 

4.5.2 Hitlists  

The cost of the matches found for each CSS image of left earprints comparison is provided in a 

results matrix (Fig. 18). In Fig. 18 the three prints from each donor are grouped together and the 

two comparisons that give the lowest cost are highlighted. These two are the best and the second 

best matches between the others. 

If a hitlist is made for each query by ranking the prints according to the cost of the matches, a 

print from the correct donor is ranked at the top of the hitlist in 8 out of the 9 prints. Furthermore, 

the two prints from the correct donor are returned as the first two prints in the hitlist for 6 out of 

the 9 prints; the two prints in which they are not come from the same donor belong to donor 2. 

 Hitlist results splitted out in left and right for all comparisons  are  given  in  Table 6.  To  

achieve  these  results,  the  position  of the  true  donor  in  the  hitlist  was  noted. These  results  

show  that  for only 66.6% of cases the best resulting hit will be in the top 0.1% of the hitlist. 

72.2% of hits are in position three which means they are ranked from incorrect donors.  
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 Donor 1 Donor 2 Donor 3 

P1 P2 P3 P1 P2 P3 P1 P2 P3 

Donor 1 P1 0 147 135 349 202 191 192 183 214 

P2 147 0 179 360 188 185 228 216 237 

P3 135 179 0 309 193 201 187 234 236 

Donor 2 P1 349 360 309 0 313 272 221 282 250 

P2 202 188 193 313 0 165 210 174 240 

P3 191 185 201 272 165 0 250 191 234 

Donor 3 P1 192 228 187 221 210 250 0 154 144 

P2 183 216 234 282 174 191 154 0 171 

P3 214 237 236 250 240 234 144 171 0 

Fig. 18. Results matrix for 9 left CSS images showing the cost found for each CSS image comparison. 

 

Table 6. Hiltlist behavior for CSS. 

Searches 

Position Left Right Overall 

1 8 out of 9 (88.8%) 4 out of 9 (44.4%) 66.6% 

2 6 out of 9 (66.6%) 5 out of 9 (55.5%) 61.05% 

3 4 out of 9 (44.4%) 9 out of 9 (100%) 72.2% 
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Chapter 5 

Image Registration 

It is a process of aligning two images into a common coordinate system in order to monitor 

subtle changes between the two.  

Junod et al. [16]  proposed  an  automatic  system for comparison  of  earprints and  earmarks,  

based  on  the  superimposition  of  images  by  a  registration  algorithm.  In their method, region 

of interest (ROI) is indicated by a user in form of polygon and then denoising filter will be 

applied. Then processed images are aligned using an iterative multi-resolution algorithm, based 

on the image intensity. Closeness between aligned images is measured by 2D Pearson–Bravais 

correlation coefficient normalized by a Z-score. 

The following section introduces the mathematical formulation of the registration process and 

gives an overview of the components of which a general registration method consists. 

5.1 Images 

Image registration is all about images. Two images are involved in the registration process. One 

image, the moving image IM (x), is deformed to fit the other image, the fixed image IF(x). 

Registration is the problem of finding a transformation T(x) = x + u(x) that makes IM (T (x)) 

spatially aligned to IF(x). The transformation is defined as a mapping from the fixed image to the 

moving image. 

 

Fig. 19. Image registration is the task of finding a spatial transformation mapping one image to another. 

Left is the fixed image and right the moving image. 
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Commonly, the registration problem is formulated as an optimization problem in which the cost 

function C is minimized w.r.t. T:   

T = arg min C( T; IF, IM ) 

T is the number of possible transformation 

The components involved in image registration are shown in Fig. 20. 

 

Fig. 20. Basic registration components. 

5.2 Metrics 

The metric defines the image similarity metric for evaluating the accuracy of the registration. 

This image similarity metric takes two images and returns a scalar value that describes how 

similar the images are. Several choices for the similarity metric can be found in the literature. 

Some common choices are described below. 

Sum of Squared Differences (SSD): The SSD is defined as: 
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With |ΩF| the number of pixels of the fixed image. The vector µ contains the values of the 

transformation parameters. For example, when the transformation is modelled as a 2D rigid 

transformation, the parameter vector µ contains one rotation angle and the translations in x and y 

direction. 

Given a transformation T, this measure can easily be implemented by looping over the pixels in 

the fixed image, taking IF(xi),calculating IM (Tµ(xi)) by interpolation, and adding the squared 

difference to the sum. 

Normalized Correlation Coefficient (NCC): The NCC is defined as: 

 

Mutual Information (MI): For MI 

 

p is the discrete joint probability, and pF  and pM are the marginal discrete probabilities of the 

fixed and moving image, obtained by summing p over m and f , respectively. The joint 

probabilities are estimated using B-spline Parzen windows [17]: 

 

Mutual Information is the most popular image similarity measures for registration of 

multimodality images. Normalized Correlation Coefficient and Sum of Squared Differences are 

commonly used for registration of images in the same modality.  
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5.3 Interpolators 

During the optimization the value IM (Tµ(x)) is evaluated at non-pixel positions, for which 

intensity interpolation is needed. Several methods for interpolation exist, varying in quality and 

speed. 

N-th order B-spline: The higher the order, the better the quality, but also requiring more 

computation time. Zero-order B-spline interpolation is called nearest neighbor (N=0) and first-

order one is linear interpolation (N=1) [18]. Nearest neighbor is the simplest technique, low in 

quality, requiring little resources. The intensity of the pixel nearest in distance is returned. In 

linear, the returned value is a weighted average of the surrounding pixels, with the distance to 

each pixel taken as weight. Bilinear interpolation is an extension of linear interpolation in two 

directions. During registration linear interpolation, often gives satisfactory results but to generate 

the more accurate result, a higher order interpolation e.g. N=3 is usually required.  

5.4 Transforms 

The transformation type defines the type of 2-D transformation that brings the misaligned image 

(called the moving image) into alignment with the reference image (called the fixed image). 

Translation: The translation is defined as: Tµ(x) = x + t,   with t the translation vector. The 

parameter vector is simply defined by µ = t. 

Rigid: A rigid transformation is defined as: Tµ(x) = R(x − c) + t + c, with the matrix R a rotation 

matrix, c the center of rotation, and t translation again, which means that the image can translate 

and rotate but cannot be scaled or stretched. The parameter vector µ consists of the Euler angles 

(in rad) and the translation vector. In 2D, this gives a vector of length 3: µ = (θz, tx, ty)
T
, where θz 

denotes the rotation around the axis normal to the image.  

Similarity: A similarity transformation is defined as Tµ(x) = sR(x − c) + t + c, with s a scalar 

and R a rotation matrix. This means that the image is treated as an object, which can translate, 

rotate, and scale isotropically. The rotation matrix is parameterized by an angle in 2D. The 

parameter vector µ consists of the angle, the translation vector, and the isotropic scaling factor. 

In 2D, this gives a vector of length 4:     µ = (s, θz , tx, ty)
T
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Affine: An affine transformation is defined as: Tµ(x) = A(x − c) + t + c, where the matrix A has 

no restrictions. This means that the image can be translated, rotated, scaled, and sheared. The 

parameter vector µ is formed by the matrix elements aij and the translation vector. In 2D, this 

gives a vector of length 6: µ = (a11, a12, a21, a22, tx, ty)
T
.  

B-splines: For the category of non-rigid transformations, B-splines are often used as a 

parameterization [19]: 

 

with xk the control points, β
3
(x) the cubic multidimensional B-spline polynomial, pk the B-spline 

coefficient vectors , σ the B-spline control point spacing, and Nx the set of all control points 

within the compact support of the B-spline at x. 

See Fig. 21 for an illustration of different transforms. 

 

Fig. 21. Different transformations [20]. 
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5.5 Optimizers 

To obtain the optimal transformation parameter vector µ, commonly an iterative optimization 

strategy is employed. The optimizer defines the methodology for minimizing or maximizing the 

similarity metric.     µk+1 = µk + ak dk,      k = 0, 1, 2, · · ·  

with dk the ‘search direction’ at iteration k, ak a scalar gain factor controlling the step size along 

the search direction. The optimization process is illustrated in Fig. 22. Examples are quasi-

Newton (QN), nonlinear conjugate gradient (NCG), gradient descent (GD), and Robbins-Monro 

(RM) [21]. Bellow I explain gradient descent used in our experiment. 

 

Fig. 22. Iterative optimisation. Example for registration with a translation transformation model. The 

arrows indicate the steps akdk taken in the direction of the optimum, which is the minimum of the cost 

function [20]. 

Gradient descent (GD): Gradient descent optimization methods take the search direction as the 

negative gradient of the cost function: 

µk+1 = µk − ak g(µk), 

with  g(µk) = ∂C /∂µ evaluated at the current position µk . Several choices exist for the gain factor 

ak. It can for example be determined by a line search or by using a predefined function of k. 
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5.6 Multi-Resolution 

Registration is a multi- resolution algorithm. For multi-resolution strategy, two hierarchical 

methods are distinguished: reduction of data complexity, and reduction of transformation 

complexity. 

- Data complexity 

It is common to start the registration process using images that have lower complexity, e.g., 

images that are smoothed and possibly downsampled. This increases the chance of successful 

registration. A series of images with increasing amount of smoothing is called a scale space. If 

the images are not only smoothed, but also downsampled, the data is not only less complex, but 

the amount of data is actually reduced that is called pyramid. The Gaussian pyramid is the most 

common one that applies smoothing and down-sampling. Fig. 23 shows the Gaussian pyramid 

with and without downsampling.  

- Transformation complexity 

The second multiresolution strategy is to start the registration with fewer degrees of freedom for 

the transformation model. The degree of freedom of the transformation equals the length 

(number of elements) of the parameter vector µ. An example of this is the use of a rigid 

transformation prior to nonrigid (B-spline) registration.  

 

Fig. 23. Two multi-resolution strategies using a Gaussian pyramid (σ = 8.0, 4.0, 2.0 pixels). The first row 

shows multi-resolution with down-sampling, the second row without [20]. 
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5.7 Experiment Result 

Image registration is an automatic way to compare earprint images based on superimposition of 

images, without any manual extraction of key features. Image  registration  is  performed  using 

an  iterative  multi-resolution  algorithm,  based  on  the  image  intensity as described in the 

previous section. 

5.7.1 Pre-processing of images 

All pre-processing steps for image registration experiment are the same as section 3.6.1. So I do 

not repeat them.  

5.7.2 Algorithm 

As described before intensity-based image registration is an iterative multi-resolution process. It 

requires specifying a pair of images, a metric, an optimizer, and a transformation type.  

The process begins in each level of pyramid with the transform type you specify and an 

internally determined transformation matrix. Together, they determine the specific image 

transformation that is applied to the moving image with bilinear interpolation. Next, the metric 

compares the transformed moving image to the fixed image and a metric value is computed. 

Finally, the optimizer checks for a stop condition. A stop condition is anything that warrants the 

termination of the process. In most cases, the process has reached a point of diminishing returns 

or it has reached the specified maximum number of iterations. If there is no stop condition, the 

optimizer adjusts the transformation matrix to begin the next iteration.  

Implementation of image registration was done in Matlab using Image Processing Toolbox by 

the function imregister [14]. We used mean squared difference as the similarity metric, affine 

transformation as the transform type, number of pyramid levels = 3 and gradient descent as the 

optimizer with maximum iteration equals to 100.  

5.7.3 Matching 

Matching process is fully automatic.  The   registration  algorithm  previously  explained is  used  

as  a  mechanism  to  find  the  closest  alignment  between a test image and prints contained  in  
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the  database.  The alignment is performed between greyscale images. The  result  of  a  

comparison  between  a  test image  and  a print  can  be  represented  for  illustration  purposes  

as  a  composite  RGB  image including  the  test image and the print image.  The  overlapping  

parts  between  the  test  and  the  print  are  shown  in black  and  non-overlapping  parts  of  the  

test  and  the  print  appear  as  magenta  and  green (Fig. 24). 

                           

                            

Fig.  24.  Illustration  of  an  automatic  comparison  between  a test image and print (left)  leading  to  the  

optimal  alignment  illustrated  by  the  RGB  image  (right). 

 

For  each  comparison,  a  score  is  calculated  to  reflect  the  level  of closeness  obtained  

following  the  alignment  between  a  test image and print image.  To  find  the  most  

discriminating  score,  two  metrics  were  used  : Dice Similarity Coefficient (DSC) and 

Correlation Coefficient (CC). 

Correlation Coefficient (CC)  

A measure of the strength and direction of the linear relationship (dependence) between two 

variables X and Y that is defined as the (sample) covariance of the variables divided by the 

product of their (sample) standard deviations. 
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Giving a value between +1 and −1 inclusive, where 1 is total positive correlation, 0 is no 

correlation, and −1 is total negative correlation. 

Dice Similarity Coefficient  

Compute the overlap of segmented anatomical structures after registration. The better the 

overlap, the better the registration.  

 

Where X and Y represent the binary label images, and | · | denotes the number of pixels that equal 

1. A higher DSC indicates a better correspondence. A value of 1 indicates perfect overlap; a 

value of 0 means no overlap at all. 

The  metrics  are  calculated  on  the  resulting  images  in  binary  form  obtained from alignment 

and test image in each run. 

 

5.8 Evaluation of Performance 

5.8.1 EER  

As previously indicated, EER is a performance metric for the system.   

In Fig. 25 and Fig. 26, ROC curve  for  the  two  metrics  calculated with combination of two 

graphs, one for left ear in green color and the other for right ear in blue color. Results  in  terms  

of  equal  error  rates (EER),  for  all comparisons  are  given  in  Table  7.    
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Table 7. EER performance of the system. 

 

 

 

 

The system shows  better  performance for  comparisons using correlation coefficient,  with 

equal error rate of 4.63% whereas the equal error rate for dice similarity coefficient is 7.41%. 

 

 

Fig.  25.  ROC  curve  for  DSC  metric. 

 

Results  obtained  with  registration  using  our  dataset 

Sample DSC[%] CC[%] 

Right 7.41 1.85 

Left 7.41 7.41 

Total 7.41 4.63 
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Fig.  26.  ROC  curve  for  CC metric. 

Note that the EER are significantly larger in left ears using correlation coefficient comparison 

than for right ears.  

5.8.2 Hitlists  

The second way in which the performance of the system is tested is, as explained in Section 2.2, 

by constructing hitlists for every query print compared to its reference database. Between two 

similarity metrics, the better results was obtained with the correlation coefficent so we construct 

matrix and then hitlist on the results of CC. For this purpose the value of correlation coefficient 

of the matches found for each right ear image comparison is provided in a results matrix (Fig. 

27). In Fig. 27 the two comparisons that give the highest value are highlighted. These two are the 

best and the second best matches between the others.  
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 Donor 1 Donor 2 Donor 3 

P1 P2 P3 P1 P2 P3 P1 P2 P3 

Donor 1 P1 1 0.238 0.157 -0.294 -0.284 -0.296 -0.162 -0.014 -0.107 

P2 0.350 1 0.133 -0.328 -0.297 -0.282 -0.124 -0.030 -0.138 

P3 0.080 0.343 1 -0.127 -0.324 0.055 -0.222 0.019 -0.010 

Donor 2 P1 -0.148 -0.150 -0.143 1 0.064 0.101 -0.117 -0.044 -0.285 

P2 -0.182 -0.098 -0.168 0.175 1 0.019 -0.386 -0.321 -0.353 

P3 -0.096 -0.086 -0.068 0.645 0.155 1 -0.209 -0.255 -0.248 

Donor 3 P1 -0.060 -0.002 -0.057 -0.104 -0.092 -0.061 1 0.261 0.193 

P2 -0.108 -0.117 -0.101 -0.077 -0.079 -0.108 0.673 1 0.151 

P3 -0.068 -0.089 -0.121 -0.081 -0.039 -0.006 0.430 0.194 1 

Fig. 27. Results matrix for 9 right ear images showing the correlation coefficient found for each image 

comparison. 

The  results matrix on the correlation coefficient value can  be  sorted  in  descending  order  of  

scores  to provide  a  hitlist. For any query print, we look for the relative position of the 

corresponding matching print that comes up highest in the hitlist. For a right query print this 

means it is compared to all 9 prints in the right earprint database, and the best position of the 

matching prints in the resulting hitlist is taken. The  results are presented in Table 8. The two 

right prints from the correct donor are returned as the first two prints in the hitlist for 9 out of the 

9 prints. 

Comparison shows that on average, 94.4% of cases gained the best match in the first position in 

which for right ear all first and second matches (100%) were ranked correctly. 

Table 8. Hiltlist behavior for CC. 

Searches 

Position Left Right Overall 

1 8 out of 9 (88.8%) 9 out of 9 (100%) 94.4% 

2 7 out of 9 (77.7%) 9 out of 9 (100%) 88.85% 

3 3 out of 9 (33.3%) 0 out of 9 (0%) 16.65% 
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Chapter 6 

Conclusion 

Main aim of this project is comparing the performance of the existing methods for automatic 

recognition of earprint images. These methods are based on the scale invariant feature transform 

(SIFT), curvature scale space (CSS) features and image registration techniques.  Among these 

methods, SIFT features and registration based on the image intensity have been used for earprint 

recognition. But this is the first time that CSS is used as a feature extraction approach for earprint 

recognition.  

The recognition rates shown in Table 9 and the EER presented in Table 10 are the average 

results of both sides of the ears.  

According to the Table 9, using SIFT features, we got 100% recognition rate. This result is in 

agreement with those obtained by Meijerman et al. [11] for matching right earprints of twins. We 

both used the SIFT algorithm implemented using the executable code provided by Lowe [12] and 

also both defined the number of accepted keypoint matches as a similarity metric. However 

Meijerman et al. applied the SIFT algorithm on the whole image of the earprint but we applied 

the algorithm on the specified region of interest (ROI) showing the antihelix area.  

In case of image registration, the best performance obtained using correlation coefficient 

similarity metric in which in 94.4% cases the first matches was recognized correctly.  This result 

can be compared with Junod et al. [16] work. With these differences that they applied Intensity 

based image registration algorithm on the ROI two times. One time to construct a model from all 

earprints coming from the same donor and the other to do matching between a query mark and a 

model. Whereas we applied image registration algorithm once for comparison of query print with 

other prints.  In Junod et al. work, 2D  Pearson–Bravais correlation  coefficient  normalized  with  

Z-score was used to reflect the level of closeness between  an aligned  print and  another print  or  

model. As a result, 97.6% of cases have the correct match in the first position of the hitlist. To 

evaluate the registration we used Correlation Coefficient and Dice Similarity Coefficient which 

we got the better result using Correlation Coefficient (EER = 4.63 compared to EER = 7.41) that 

this equal error rate of  4.63% is rather high compared to 0.51% for Junod et al. work. The 
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reasons for our high rate is probably the limited number of prints in our dataset and also we did 

not make any model of the prints in order to compare with other models or prints.  

CSS has too low recognition rate on the first (66.6%) and second best matches (61.05%) and also 

it has too high EER of 22.2%. These results show CSS is not useful in earprint recognition. This 

is probably due to the shape of the contour of earprint and also having two inflection points in 

the CSS image which do not join.  

Overall, SIFT algorithm applied on our small dataset achieved high recognition rate. However, 

the 128-dimensional SIFT feature descriptor contains redundant information and is slow to 

compute. Thus, our results in consistent with those results reported by Meijerman et al. for 6 pair 

monozygotic suggest that SIFT is the most promising method for a small dataset. Although for a 

large-scale dataset image registration would be more potential approach [16].  

 

Table 9. Recognition rate on the methods. 

Method First matches Second matches 

SIFT 100% 100% 

CSS 66.6% 61.05% 

Image registration using CC 94.4% 88.85% 

 

Table 10. EER on the methods. 

Method EER(%) 

SIFT 0.0 

CSS 22.2 

Image registration using CC 4.63 
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