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 1 ABSTRACT
This thesis describes a method which deals with terrain deformation and excavation in a virtual environment. 
Research into the subject has generally focussed on representation of the surface of the terrain, with methods 
based on triangle meshes with level of detail to voxel based surfaces, sometimes with deformation rules 
based on physics. However, most do not take sub-surface areas of terrain into account, nor do they consider 
multi-user interaction. 

The method we present deals with terrain deformation as manipulation of volumetric data, with emphasis on 
retaining data describing the subsurface parts of the terrain. Manipulation of the data is caused by 
interactions between multiple entities and the terrain, where each entity is directed by a user within a multi-
user network environment.

Experiments which were run to measure the performance of our methodology have shown that it is able to 
handle interactions at a lower than real-time rate, with its data structure best suited for scenarios which cause 
contiguous changes, such as a ball rolling through snow, as opposed to interactions causing highly random 
changes, which cause the data structure to grow rapidly. Experiments have also shown that client-side 
calculation of changes is possible, but it remains unclear if this is preferable to server-side calculation in 
terms of absolute calculation time.
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 2 INTRODUCTION

 2.1 BACKGROUND
Throughout the years computing power has increased dramatically and the complexity of virtual worlds 
has grown with it. So-called 'open world gaming' is now the norm for triple A games rather than an 
exception. It is now commonplace for such games to consist of huge virtual worlds, complete with 
expansive landscapes and populated by characters consisting of tens of thousands of polygons. The 
possibilities for such worlds are as grand as the ideas of the people who create them. Their design choices 
decide what a player may and may not do within the world: which elements are dynamic and which are 
static. There are many examples of such dynamic elements: non-player characters, moveable objects, 
destructible geometry such as parts of buildings, the list goes on. Static elements may be as varied in 
appearance as dynamic elements, but are not interacted with beyond collision detection. Examples may 
include non-destructible buildings, trees, rocks, etc.

Terrain, by which we mean the world's underlying geography, generally also belongs to the latter group. 
Such a terrain may be modelled in a number of ways: it may be modelled by hand, which gives a creator 
the most control over the terrain's form, but it also demands very meticulous work. Computer generation 
is the other more scalable solution, which we may split into two groups: derivation from existing data sets 
and procedural generation. We will be discussing this in more detail later. Regardless of the way in which 
the terrain is created, like most elements the terrain is often represented as a polygon mesh since 
consumer graphics hardware heavily focusses on the fast rendering of polygons. In most gaming worlds 
this polygon mesh is sufficient. It is when we want the terrain to also be alterable, meaning allowing 
deformation, subtraction and addition of material, that the limits of using polygon meshes become 
apparent. The polygon meshes used merely describe the surface of the terrain. In other words: it is a shell 
with no thickness with nothing beneath beneath except a void, it is non-volumetric. Without volumetric 
data of what exactly is beneath this surface, it is nearly impossible to simulate a truly realistic 
deformation behaviour. 

One may speculate on the reasons as to why volumetric terrains are used so little in games, but it is likely 
that data storage and computational considerations play a role, as does the balancing of resources. 
Furthermore, volumetric data often cannot be visualized in the same way as polygon meshes can and thus 
needs either a different rendering method or conversion to a polygon mesh in order to be visualized. Of 
course, there are examples of games where volumetric data is actually the main focus of the game, such 
as the popular 'Minecraft'.

Finally, terrain deformation may simply not add enough game play value to justify the resources it will 
need. This does not mean that terrain deformation is completely disregarded: many virtual worlds allow 
temporary and superficial alterations such as footprints or scorch marks to occur to add to the realness of 
the environment. More permanent changes, however, such as lasting deformation and addition and 
subtraction of material however are very rarely implemented, especially in mainstream games.

However, there are quite a few applications of virtual worlds where the inclusion of deformable 
volumetric terrain would be desirable or even necessary. For many years industries such as the mining, 
marine equipment and dredging industries have been using training simulators in order to teach their staff 
how to use multi-million Euro equipment. Such equipment, which includes excavators, dredging ships, 
pipe lays and drilling vessels, often interacts extensively with soil. If this soil can be represented by 
volumetric terrain which includes soil properties, it will be possible to make interactions between 
equipment and soil more natural, thus making the training simulation a richer learning experience.

 2.2 OBJECTIVES
The primary focus of this thesis is the description, implementation and testing of a data structure and 
methodology for handling deformable volumetric terrain within a virtual world as found in typical 'open 
world' games. We want this terrain to be available in a network environment and contemporary, 
commercial hardware such as one would find in the average Dutch household should be enough to run it.
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 2.2.1 Deformable volumetric terrain
First and foremost, we want the terrain to be volumetric, so that the properties of the soil it describes can 
also be stored. Real world soil is almost never uniform in type and each type may have its own 
implications in terms of how the terrain deforms, but also in terms of what kind of effect the interaction 
between dynamic element and soil has on the dynamic element.

In order to get a general sense of what one could expect in soil, and thus the terrain, we take a quick look 
at the field of pedology, a branch of soil science which concerns itself with soil origin (pedogenesis), soil 
morphology and classification. Pedology subdivides soil into a multitude of layers, or horizons, of 
specific types of material. It describes a number of commonly occurring horizons, which are as follows: 
O Horizon) a layer of organic material in a relatively non-decomposed form; A Horizon) also called 
topsoil, this layer can be divided into layers of leaf-litter, fermenting leaf-litter, humus of several varieties 
and an eluvial layer; B Horizon) also called subsoil, a mix of particles like sand, silt and clay, which lacks 
the organic matter of the A horizon;  C Horizon) or the parent material/rock, which is original rock from 
which the soil was formed. This may consist of large chunks of the R Horizon or Bedrock, a largely 
continuous mass of hard rock.

Our volumetric terrain must be able to accommodate similar structures of different types of material, 
which we will refer to as 'layers'. Layers can be of any shape and size, meaning it may also self-overlap.

A terrain's shape and size will differ according to the overall goals of its designer: a linear first person 
shooter will demand a different kind of terrain than a flight simulator. We will look at these types of 
terrain use as finite terrain and infinite terrain (see Figure 1). The goal of finite terrain is generally to 
provide a small but detailed world and it may be non-contiguous and be oddly shaped. Examples of such 
terrain are any game that has levels which players need to traverse, like adventure games and first person 
shooters. Infinite terrain focuses more on expansiveness and will be largely contiguous. Flight simulators 
are an obvious example, but also games such as Minecraft, which uses procedural generation to create 
terrain on the fly so it is seemingly infinite. Of course, both finite and infinite terrains are technically 
finite because of technical limitations such as storage and calculation capacity of the hardware of the 
machines hosting them.

We want to be able to accommodate both types of terrain, although our focus will lie mostly on infinite 
terrain, as issues of data size and scalability are most prominently present there.

Alterations to the terrain will be initiated by the dynamic elements (excluding the terrain itself) which 
populate the virtual world. These elements must be able to change the terrain by adding or removing soil 
from it. We will assume that most interactions will be close to the upper surface of the terrain.
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Figure 1: top-down schematic view of finite terrain (i) versus infinite terrain (r)



 2.2.2 Network environment
We want the virtual world to run in a network environment and allow multiple users working on different 
physical computers to be able to look at and alter the same world and thus the same terrain. The type of 
networking environment we will consider is the well-known client-server model (see Figure 2), whereby 
we make the terrain available from a central server to multiple client computers. This also means that the 
terrain needs to be kept synchronous between the server and each client: any changes to the terrain on one 
client should also appear in the server and all other clients as well.

Since the terrain may contain a large amount of data, we also need to limit the amount of data that needs 
to be communicated from server to clients and vice versa. In light of this, the data structure used should 
be able to communicate the terrain only partially and operations to the terrain's data should be kept to a 
minimum, meaning we must attempt to avoid repeatedly calculating the same operations.

 2.3 RESEARCH QUESTIONS
From the requirements set in the previous section, we can describe a number of possible research 
questions, such as:

1. How can terrain property information (such as soil type) be stored?

2. How can data size be minimized in terms of storage and transfer over a network?

3. How do we keep data synchronized between server and client computers?

4. How do we handle interactions between dynamic elements and the terrain?

This leads us to the main research questions of this thesis:

1. Can volumetric terrain data be held synchronous in a client-server network environment with server-
side interaction handling where multiple clients initiate such interactions, and is the amount of data 
needed to facilitate communication and calculation thereof acceptable?

2. In a client-server model where interaction handling is delegated to the clients and the server 
coordinates and communicates terrain updates, how often do two clients initiate interactions which 
conflict with one another?
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Figure 2: Computers in a client-server model. A terrain, originally defined by a server, is kept  
synchronous over a number of clients on a network. Each of these clients is able to change the  

terrain. 



 2.4 STRUCTURE OF THIS THESIS
We will start with a literature review in Chapter 3, in which we will take a look at research concerning the 
use of terrain in games, polygon and tetrahedral meshes and volume reconstruction, visualization, storage 
and manipulation.  

In Chapter 4 we will describe the methodology we have chosen to use and go into the details of its data 
structure and the various operations that need to be done, including generation of terrain, serialization and 
de-serialization of the structure for communication within the network environment and finding and 
calculating changes.

Chapter 5 will detail two experiments which we have run in order to test our methodology, including 
hardware set-up, software configurations, measures evaluated and of course results. These experiments 
are labelled I and II, I measuring general performance and II focussing on synchronization. Conclusions 
from the experiments in relation to our research questions will be discussed in Chapter 6.

Finally in Chapter 7, we will look at possible further research and cover any new question that we may 
have as a result of the experiments.
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 3 LITERATURE REVIEW

 3.1 TERRAIN IN GAMES
Terrain, by which we mean the world's underlying geography, may be modelled in a variety of ways: 
modelling the mesh by hand gives a creator the most control over its form, but it also demands very 
meticulous work. Another way is to use height maps [1]. A height map is a regular two-dimensional grid 
holding values which describe height at a certain point. In other words, it is possible to use Jpeg, Gif and 
Bitmap image files and using the grey scale or colour values of each pixel to denote height. This method 
allows designers to work faster, but it is still not a scalable solution when dealing with very large terrains. 
A third way, procedural generation, alleviates this problem by an algorithm to determine the shape of the 
terrain. Such algorithms may be entirely random or have some forms of control applied to them [2] in 
order to give designers some measure of control over the final shape. A popular method is fractal based 
generation. An often stated downside to procedural generation, however, is that there is always a certain 
randomness to the end result which is beyond a designer's control. Like most elements, the terrain is often 
represented as a polygon mesh since consumer graphics hardware heavily focusses on the fast rendering 
of polygons. In some more recent games, such as 'Minecraft', the procedural generation approach is used 
to create a simple volumetric terrain consists of a regular grid of 'blocks' (containing soil characteristics) 
that are grouped into 'chunks'. Blocks have a relatively large size (around half the size of a player 
character) and its visible faces are rendered as polygons[3].

 3.2 MESHES
Polygon meshes, or simply meshes are described by a number of connected elements. In two dimensions 
they can be described with either triangles or quadrilaterals, a form which we see in most terrain meshes, 
and in three dimensions by either tetrahedral or hexahedral elements, each of which is described by a 
number of vertices, or nodes, which connect to one another via edges. Adjacent elements share vertices 
and edges.

Meshes can be either structured or unstructured: structured meshes are generally simpler and faster 
because connections between each node and its neighbours is known beforehand. In unstructured grids 
each node needs to also store a set of pointers to each neighbour, which takes up additional storage.  This 
does not mean that unstructured meshes are without use: there are many problems which cannot be 
modelled using structured meshes because of their shape or because the original data on which the mesh 
is to be based is itself irregular. In such situations unstructured meshes can result in more efficient 
triangulation as a smaller number of elements can closely fit an odd shape, while structured meshes may 
have to use many elements to both fit the odd shape and satisfy its regularity constraints.0 

There is a great body of work concerning the construction of meshes, many of it incorporating Delaunay 
triangulation [4],  such Chew's Constrained Delaunay triangles [5] and Shewchuk's Delaunay refinement 
[6]. Several works focus on the construction of meshes from regular and irregular data like point clouds 
[7][8] acquired via laser-range-scanning techniques and the subsequent creation of provably well formed 
triangle meshes.

Other, more simulation related studies focus on level of detail, such as ROAM [9][10].

 3.3 VOLUME DATA
In the introduction we mentioned that volumetric terrain is not often applied in games and thus volume 
data is not taken into consideration in most virtual worlds created for entertainment purposes. The 
application of volume data is more prevalent in serious virtual worlds: one area in which volumetric data 
plays a major role is in medical imaging. In order to analyse a patient's health condition in a non-invasive 
way, medical personnel rely on several imaging techniques, such as Ultrasound, Thermography, x-Ray, 
Magnetic Resonance Imaging (MRI),  Positron Emission Tomography (PET) and Computed Tomography 
(CT). Most techniques result in several slices of voxel or point set data which together form the entire 
scanned volume. The need for volume data can also be found in the widely varying field of engineering, 
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where such data is needed for calculations ranging from force distribution through objects to fluid 
dynamics and heat transfer.

 3.3.1 Volume Reconstruction
Data acquired via these imaging methods, or modalities, often requires reconstruction of some sort in 
order to make visualization possible. Two- and three-dimensional reconstruction of such data has been 
a research subjects for almost 30 years.

Most reconstruction methods used in the medical field [11][12][13] follow a number of basic steps 
from original data to a model ready for visualization: 

Step 1) Image segmentation, meaning isolating pixels in each  image slice which correspond with 
certain tissue types.  The manner in which this is done varies by imaging modality: CT and MRI scans, 
for instance, are highly contrasted, allowing for easy segmentation.

Step 2) Region labelling, meaning the classification of tissue pixels belonging to the same group into 
anatomical structures. This may be done either by hand or using knowledge based methods. 

Step 3) Global connection: this step connects the labelled regions on adjacent slices with one another.

Step 4) Local connection: once regions have been roughly linked, a proper connection must be made 
between them, which takes boundaries into account.

At the end of the entire process, we are left with proper volume data, which can then be visualized.

Within 3D construction methods, there are two main approaches: surface methods and volume methods. 
The former focusses mainly on the reconstruction of the surface of the volume and the efficient 
visualization thereof, while volume methods, as their name implies, focus on the volume itself. This is 
as much a visualization question as is a data structure question.

Surface methods focus on the visualization of the surface of the volume, which means that such a 
surface must first be constructed as well, for instance in the form of curved surfaces or a polygon mesh. 
This may be done via a number of techniques [7][8][14][15], including the point-cloud reconstruction 
methods mentioned earlier . The advantage of surface reconstruction over volume methods is that it can 
create meshes which can be easily visualized by consumer graphics cards. An obvious downside is the 
extra reconstruction that is needed.

 3.3.2 Volume Visualization
Volume methods focus on the direct visualization of volume, and often use regular 3D voxel grids. 
There are three popular methods to do this, namely: Volume Ray casting, Splatting and Shear-warp 
[16].

Volume Ray casting [17] as its name implies, projects a ray through each of the pixels of the viewing, 
or image plane and continues through the volume data itself. This volume has certain colour and 
opacity properties which the ray then accumulates until it either becomes completely opaque, or it exits 
the volume altogether. This final state, along with shading, determines the opacity and colour of the 
resulting pixel.

Splatting [18][19] is another volume rendering technique. It takes volume data stored in a rectilinear 
grid and converts its voxels into two-dimensional representations, or footprints, which are then 
'splatted' onto the viewing plane, much like throwing a snowball at a wall. The resulting footprints then 
combine to form a complete picture. Several factors influence the resulting rendering, including the size 
of the footprints and the ways in which they combine with other footprints. The method trades quality 
for speed, although many improvements have been made since it was originally proposed.

Shear-warp [20] tackles the problem of mapping object space, for instance a volume data grid 
consisting of several volume slices, to image space. In order to do so it creates an intermediary 
coordinate system, which is called 'sheared object space'. Because of the arbitrary angle at which the 
volume grid is viewed, viewing rays will most likely cut through the volume at an angle which is not 
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axis aligned with the grid itself.  The shear-warp method transforms and scales the slices so that within 
the sheared object space, rays are axis aligned with the grid, which makes for more efficient 
compositing, which is then warped to match the image plane.

 3.3.3 Volume storage structure

  2D regular grids and quadtrees
Part of the volume reconstruction process for medical visualization is the isolating of pixels of certain 
tissue types and the classification thereof. All this takes place on a two-dimensional plane, which may 
be a two-dimensional regular grid. Each grid cell has the same dimensions and may be referred to as a 
pixel or unit square. Raster images, such as Jpeg, gif, png and Bitmap are regular grids and are useful in 
storing the two-dimensionally reconstructed data. However, since the regular grid may use many unit 
squares to describe a large contiguous tissue area, they are not particularly efficient.

One way which to store contiguous areas more efficiently is the quadtree [21]. Originally proposed by 
Finkel and Bentley [22] and others quadtrees are an often used tree structure which subdivides a two-
dimensional space into four quadrants. Each of these quadrants can themselves be subdivided in a 
similar fashion until a granularity is reached in which subdivision is no longer possible.
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Illustration 3: A 2D regular grid (upper left) and a quadtree based on it (upper right), A 3D grid  
(lower left) and an octree based on it (lower right)



In a quadtree, each quadrant can be seen as a node. Such nodes can either have no children, or exactly 
four. In other words, they are either a parent to four sub-quadrants, or they are leaf nodes. Each of these 
nodes can be reached by simply following a path down from the root node, which encompasses the 
entire area divided by the tree. Furthermore, the quadtree's logical structure means that it can be 
serialized using the same number of elements as there are nodes. We will discuss this further in Section
4.3.2 .

The basic quadtree idea has been expanded upon by various researchers, most notably Samet, who has 
written extensively  [23][24][25][26][27] on this and directly related subjects. Work by him and others 
concerns quadtree construction from binary data, rasters, etc., neighbour node finding, conversion from 
and to chain/boundary codes [28][26] and quadtree compression [29].

  3D regular grids and octrees
As we mentioned earlier when discussing 3D reconstruction, two-dimensional slices are combined to 
form a 3D grid which holds the complete volume data. One structure in which such data can be put is a 
three-dimensional regular grid, also known as a voxel grid. It suffers from the same efficiency 
drawbacks of the two-dimensional grid, only it adds another dimension to the problem.

Luckily, the Quadtree structure is easily translatable into a the third dimension, where it becomes an 
Octree. The octree is almost identical in properties to the quadtree, but instead subdivides the space into 
eight octants.

As with Quadtrees, a lot of work has been written by Samet and others on the subject [25][30][31].

 3.4 VOLUME MANIPULATION (DEFORMATION, CUTTING AND ADDING)
There are many situations in which alteration of volume data is needed. As we mentioned earlier, within 
the field of engineering volume data can be used to make calculations relating to natural phenomena 
like force distribution, fluid dynamics, acoustics and more. Most of these calculations affect the volume 
data in some way, for instance deforming solids or changing certain properties of the volume data. 
Within the medical field, the need for alterable volume data can be found in surgical simulations 
created in order to train medical personnel.  Deformation, elasticity, incompressibility and cutting of 
soft tissue is one of the main subjects, which is quite often combined with techniques concerning haptic 
feedback.  Many studies, such as the works of Picinbono, Delingette and Ayache [32], Bro-Nielsen and 
Cotin [33] and Nienhuys [34] have delved into this subject and use a number of different methods.

A great number of studies have focussed on this problem and many have built on the idea of meshes, 
both regular and irregular. One method is that of Mass-spring models [35], which creates a mesh to fit 
the volume which it is to simulate and places masses at the nodes and damped springs on each edge. It 
is relatively computationally friendly and may allow real-time behaviour, but it is limited in its realism, 
as behaviour is heavily dependent by the topology of the mesh. 

Another approach is Chainmail [36], in which volume elements are linked to six surrounding 
neighbours and behave in a way similar to that of the links in a chain, hence its name. Distance 
constraints are put on the links so that displacements are transferred to neighbouring links, which 
means that small displacements cause only local changes, but when stretched or compressed to the 
limit, it will cause the entire system to displace. Like mass-spring models, it is computationally 
friendly, but a bit simplistic.

There are also a number of discretization methods which deal with partial differential equations (PDEs) 
which are a mathematical way of describing natural phenomenon such as the ones we described at the 
beginning of this section. These are the finite difference method (FDM), finite element method (FEM), 
finite volume method (FVM) and the Boundary Element Method (BEM). What these methods have in 
common is that they attempt to break down a large complex problem into smaller, more manageable 
bits. The calculation of deformation, elasticity, heat conduction, fluid dynamics, etc. for a large volume 
or mass as a whole can be very difficult, if not impossible because of how all forces interact with the 
volume on a granular level. In other words: FEM, VFM, FDM and BEM break up problems concerning 
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the behaviour of continuous mass (continuum problems) into smaller, discrete elements.

The finite difference method (FDM) [37][38] divides a volume into a regular grid called a space-time 
grid and creates a discrete finite-difference model, which is a way of approximating continuous 
derivatives, with approximations of the derivatives at grid points and boundary conditions at the end 
points. Because the resulting grid may not neatly fit the original volume, the method is less suitable to 
applications where correct geometry matters, for instance fluid flow, radiation and stress between 
moulds and castings. However, the method is often used in the fields of seismology, Earthquake ground 
motion modelling and exploration.

The finite element method (FEM) [34][32][39] is a popular within the field of computer-aided 
engineering. It brings together mathematical and engineering approaches by arranging discrete, non-
overlapping elements (nodes) into a Finite Element Mesh. This 3D volumetric mesh, which can be a 
structured or unstructured and fits the original volume fairly closely, is key to the method but its 
creation can be a difficult process.

The finite volume method (FVM) [40][41]  is similar to FEM in that it uses a mesh, which may be 
structured or unstructured, and is used for the discretization of conservation laws. It has been used 
extensively for the calculation of problems concerning fluid mechanics and heat and mass transfer.  It 
divides the domain into discrete control volumes, which are a division of a volume into a grid, which 
can be regular or irregular.

Finally, there is also the Boundary Element Method (BEM) [42], which deals with boundary integral 
equations (BIE) [43], which are reformulations of boundary value problems for PDEs and is applicable 
to problems where Green's functions can be calculated. It does not divide the entire volume into a mesh 
of discrete elements like FDM, FEM and FVM do, but divides the boundary of such a volume into a 
number of discrete elements. In a 2D example, this means it applying line segments and in a 3D 
example surfaces. BEM deals well with complicated geometries.

 3.5 NETWORKING AND SYNCHRONIZATION
Questions surrounding networking and synchronization have been around for a long time, with a lot of 
research emerging after the internet started growing to truly global proportions. At its core, all 
synchronization problems are problems concerning the chronologically correct sequencing of events 
between processes running at different locations. Much like the way we needed to synchronize our 
watches to a defined standard time, so too must these processes work according to a common time-line. 
Approaches such as described by Lamport [44] attempt to do just that.

In the games industry, the advent of online virtual worlds and a demand for low latency has driven 
research into the topics of networking and synchronization with a variety of approaches, based on a 
number of network models. The first is the common client-server model, which is often preferred 
because it centralizes event sequencing an thus makes synchronization simple. However, this means it 
is also a bottleneck and presents a single point where errors can disable the entire network. Peer-to-peer 
networking, another approach, decentralizes calculation by letting clients be responsible for calculation 
and update messages to other clients, but it also creates significant synchronization problems. Finally, 
there is also the mirrored servers approach [45], which uses multiple mirrored servers which are 
connected with separate groups of clients.

Research into volume data and networking focusses on a number of subjects: one such subject is design 
of systems which allow for the sharing of volume data for purposes of sharing and education and the 
transfer of such data. Another is distribution of calculation tasks, such as volume reconstruction and 
incremental [46] or parallel [47] processes for rendering of volume on a network.
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 4 METHODOLOGY
We want to have a virtual world which contains a deformable volumetric terrain as well as dynamic entities 
which may interact with it and we want this virtual world to work inside a network environment using a 
client-server set-up, meaning that alterations may be initiated by different clients and such changes must be 
synchronized between server and clients.

In this chapter, we will describe a methodology which aims to accommodate this. We will start by describing 
a data structure to hold the volumetric data, followed by how we deal with dynamic elements within the 
world. Finally, we will go through the operations that occur within the world before and during run-time.

 4.1 DATA STRUCTURE
The terrain we wish to deal with may be of an arbitrary size and depth, and in the case of the infinite 
terrain example, may not have a set maximum size. It holds volumetric data describing soil of one or 
more different types, which are present in the form of layers. As we have discussed in Section  3.3.1 , this 
volumetric data can come in a variety of forms such as point clouds, stacked 2D images and voxel grids. 
Our methodology builds upon the idea of 3D regular grids, which means a conversion process is needed. 
We will go into more detail about this in Section 4.3.1. 

The 3D regular grid, as described in Section  3.3.3 , consists of a collection of cubes. In graphical terms, 
we could refer to each of these cubes as a voxel. However, these terms are strongly connected to 
graphical representation, which is not the goal of this thesis. Instead we will refer to such cubes as unit  
cubes and we will refer to its 2D counterpart as a unit square (see Figure 4).

This naming choice may seem arbitrary, but these terms more accurately describe functionality, as it is 
not inherently given how each unit relates to actual size of the terrain data that is represented in the 
virtual world. It could be that a unit square has dimensions in terms of cubic millimetres, metres or even 
kilometres. In other words: the size of a unit cube relative to the terrain it describes directly influences the 
resolution of the terrain. The more granular (i.e. smaller) the cube, the higher the resolution will be. Of 
course, this also means that more cubes are needed to describe the terrain and the size of the 3D regular 
grid will be larger.

It is obvious that as a terrain gets larger, the data needed to describe it also gets larger until at a certain 
point it reaches an unmanageable size in terms of both physical memory and computational limits. To 
alleviate this, we begin by dividing the terrain into smaller regions which we will call patches. Doing this 
has a number of advantages: the spatial division of the terrain into subregions allows us to make 
interaction checking more efficient as we can check which patch an interaction relates to instead of 
checking the entire terrain. Secondly, it allows us to deal with each subset of the terrain separately, which 
opens up new possibilities for calculation and storage.

A patch, as illustrated in Figure 5, is a cuboid region that is axis aligned, meaning that it is aligned with 
the main axis of the virtual world in which the terrain exists. Its horizontal dimensions w are equal to 
each other and whose depth or height d is determined by the maximum depth or height of the subset of 
the terrain it encompasses. Relating back to the regular grid mentioned earlier, both values must 'fit' this 
grid. In other words, w and d can be seen to express a 'number of unit cubes', for instance 4x4x4 unit 
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Figure 4: unit square (left) and unit cube (right). The  
dots indicate the centre of each.



cubes.  In relation to one another, patches are allowed to have different sizes in terms of both d and w, but 
the value of d may be any integer, while w must always be a power of two. The choice in actual size and 
placement of patches in relation to each other depends on the situation: in an infinite terrain the need for 
on the fly terrain generation may make similarly sized patches more preferable, while the odd forms of a 
finite terrain might be better off using varied sizes that more closely fit it. Examples of this can be seen in 
Figures 5 and 6.

The reason why we need w to be a power of two has to do with the way we subdivide each patch, whose 
data can be described as a 3D regular grid. Such a grid is inefficient in terms of storage and 
communication over a network, as the position and properties of each individual cube would have to be 
stored and communicated separately. In Section  3.3.3  we described ways in which 3D grid data can be 
stored more efficiently, namely via an octree. Therefore, using an octree to make a spatial subdivision of 
the grid would be a logical choice. 

To recap: an Octree subdivides a cuboid region into eight equal cuboid regions recursively until a state is 
reached where division conditions are met and no further subdivision is possible or needed. One logical 
condition would be that all content of an octant needs to be of one type of soil, for instance. The octree 
has a very predictable structure, as a node has either no children or it has exactly eight, which is useful 
for serialization and de-serialization. In many ways it is a far more efficient way of storing volumetric 
data than the 3D regular grid. It is only in a worst case scenario that the grid is actually more efficient: the 
number of cubes needed to store a cubic area as a 3D regular grid can be defined as N cubes=w3 , where
N cubes is the number of resulting unit cubes and w is the size of each side of the regular grid, which is a 

power of two, i.e. w=2n . Thus, we can also write the formula as N cubes=(2n)3=8n . 

Because an octree is a hierarchy of nodes, each child node has a parent that counts towards the total 
number of nodes needed to describe the unit cubes. The number of nodes in a worst-case octree, meaning 
the space is divided to its most granular level where no further subdivision is possible, would be:

N nodes=∑
i=0

n

8i

where N nodes  is the number of nodes in the octree. Here, n  also describes the depth of the tree. This 
situation will occur when the original terrain data is almost entirely non-contiguous. Choosing octrees as 
a method of spatial subdivision for our patches would be a logical choice. However, we choose to go with 
a bit more unorthodox approach. As we mentioned in Section  2.2.1 , we focus on interactions that mainly 
happen at the surface of the terrain and we want this terrain to exist within a network environment in 
which it is shared between a server and several clients. In such a network environment, only the server 
will initially need all of the terrain data. A client's user will be able to view the world via a camera, which 
may or may not be connected to an avatar representing the user within the world. In any case, the camera 
will have a certain starting position within the world and most likely, not all patches will be within 
viewing range of the client. This means that the client does not need to retrieve patches which lie beyond 
its viewing range. Also, the camera cannot look through the terrain's surface, so the client only needs to 
be aware of parts of the terrain which are exposed to or very near to the surface. 

To facilitate this, we do the following: instead of subdividing via an octree, we will be subdividing the 
patch into regions that are perpendicular to the vertical axis. We will refer to these subsets as slices (See 
Figure 7). Slices have the same horizontal dimensions as the patch and its height is equal to a single unit 
cube, which is also how their vertical position within the patch is described. Slice 0 is positioned just 
above the virtual world's origin, meaning slices below it are expressed in negative numbers. By using 
slices, we can now choose to communicate only surface parts of the terrain to clients. Furthermore, we 
are able to extend a patch further up or down without having to make a new spatial subdivision for the 
patch as a whole, since we can simply add new slices to the top or bottom of the patch. 

Of course, by slicing the patch up in this fashion we have basically reduced the 3D regular grid back to a 
stack of 2D regular grids (although each has a height of one unit cube in the third dimension). From each 
of these grid slices we create a quadtree. With this, the patch is now a stack of quadtree slices. This is 
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Figure 6: Example (top-down) of how differently sized patches may fit  
together to encompass a finite terrain.

Figure 5: Dividing a terrain into patches of similar size. Below, a patch has  
been lifted out of the terrain for clarity.



illustrated in Figure 8. 

We use quadtrees because they have the same kind of properties that octrees have (octrees pretty much 
just adding a dimension to quadtrees): they have two types of node: internal nodes with exactly 4 
children, and leaf nodes with no children. Its structure is predictable so it can be very easily serialized, 
stored and communicated over a network. This is something which we will discuss in detail in Section 
 4.3.2 . Quadtrees also have a good search time and work together well with the way in which we treat 
dynamic entities and the interactions they initiate, which we will explain further in the next section.

Using quadtrees does mean letting go of some of the data stored in unit cubes: Because groups of unit 
cubes of similar type are replaced by a single quadtree node, their positional data is lost. However, to 

page 18 of 45

References

Figure 8: A stack of three slices, each described in the form of a  
quadtree. In this image, the quadtrees have been pulled apart and given  

thickness for better clarity. (Actual height is implicitly described by  
slices, which is a unit cube in height).

Figure 7: A patch vertically divided into slices of one unit cube height.  
Lower right shows a single isolated slice.



regain the original cubes, we can simply redivide the quadtree node. 

As it is with octrees compared to 3D grids, the highest possible complexity of a quadtree is always less 
efficient than a 2D uniform grid describing the same area. We can describe the number of unit cubes in a 
2D uniform grid as N cubes=w2 , where again N cubes  is the number of cubes and w=2n  so the formula 
can be written as N cubes=(2n)2=4n . The worst case for a quadtree can be described as:

N nodes=∑
i=0

n

4i

where N nodes is the total number of nodes required and n is also the depth of the tree. From this, we can 
conclude in the worst case situation  even n=1 means that the quadtree is larger than the uniform grid. If 
we compare quadtrees and uniform grids over increasingly large values of n , we notice this efficiency 
difference rises sharply at first, but levels off at approximately 33%. 

As we mentioned earlier with octrees, one situation in which such a worst-case scenario may occur is 
when material is distributed in an extremely granular and non-contiguous way, such as fine dust being 
sparsely sprinkled across the terrain. Figure 9 shows a number of patterns which result in a worst case 
scenario.

 4.2 ACTING ENTITIES
Dynamic elements cause the terrain to deform by acting upon it. Of course, in our virtual world the 
terrain itself is a dynamic element, so we need to more specifically define which elements we mean. First, 
we exclude the terrain, since it will not interact with itself. Furthermore, we exclude any entity which is 
not controlled directly or indirectly by a client since such entities should be under the server's control, 
which means that any interaction is done on the server and only communicated towards the clients. We 
will refer to the elements which are directly or indirectly controlled by a client as acting entities (AE).  
Examples of acting entities would be an avatar controlled by a player, or units in a real time strategy 
game.

The shape and complexity of acting entities may vary widely, from a six-sided box to a character model 
consisting of tens of thousands of polygons. Especially in the case of the latter, it can be difficult to 
determine which parts of the entity make contact with the terrain. Luckily, we can look at solutions used 
in collision detection to solve this problem.

Because within a virtual world there may be many thousands of entities that might collide with one 
another, it is impossible to check for collisions between every entity pair.  Therefore, the process is often 
split up into different levels of detail: first it needs to be checked whether entities are in close enough 
proximity to one another to collide. Tree structures may be used to map spatial divisions between the 
entities in order to make searching more efficient. But even if entities are close together, they might still 
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Figure 9: Three worst case examples for a quadtree. Each square in the example to the  
right is equal to a unit square



not collide. In order to avoid immediately having to do detailed collision detection based on the polygons 
of the model, another rough check can often be made using an entity's bounding volume, which may be a 
sphere, cuboid, cylinder, etc. These bounding volumes may be rotated or axis-aligned.

We will be using an axis-aligned bounding box, which is the smallest cuboid possible that completely 
contains the entity and which edges are aligned to the axis of the virtual world. We do this because in our 
terrain's data structure, the stacked quadtrees are also axis aligned, which means that these bounding 
boxes can be directly used in tree searches.

The bounding box, together with the entity's geometry tell us which parts of the terrain are affected, while 
the physical properties and motion of the entity determine what this effect entails. We will discuss the 
details of this further in Sections  4.3.4 , dealing with finding affected nodes and calculating changes 
respectively.

 4.3 OPERATIONS
Several operations are needed to facilitate storage, manipulation and communication of the data structure 
over a network. We will now describe these operations.

 4.3.1 Creating the terrain data structure
As we mentioned in Section 2.2.1 , the basis for our terrain is a 3D regular grid. However, this does not 
mean the input volume data needs to be exactly that: a variety of collections of volume data can be 
used, provided that this data is described in a regular fashion such that it traversed as if it were a 3D 
regular grid. For example, a collection of stacked images such as described in Section 3.3.1 can also be 
used.

Irregular or incomplete data, such as for instance sparsely populated and unorganized point clouds 
should first be converted to a more regular format. As long as we have data points at regular intervals 
on which to base each unit cube, we can convert it into our data structure. Also, any absence of any data 
points is interpreted as empty space, i.e. a unit cube containing nothing.

The operation of creating the terrain from a 3D regular grid is relatively straight forward and moves 
through the following steps:

Step 1. Subdivision into patches 

First, we need to decide whether the grid can be fitted into a single patch or that we need to divide its 
volume data among several patches, since particularly large sets of volume data may result in a patch of 
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Figure 10: Bounding box surrounding a model of the Stanford bunny



unmanageable size. This decision is made with the help of a pre-set value determining the preferred 
value for horizontal patch dimensions wmax : if the the grid's dimensions stay within this value, the 
entire grid is put into a single patch. If they exceed the value, we subdivide. wmax  should be a power of 
two for reasons which we will explain in step 3.

As was shown in Figures 5 and 6, large 3D regular grids of volume data are subdivided horizontally 
into a regular grid of patches, each with a size equal to the pre-set maximum value or smaller. This 
subdivision is done by first making a rough subdivision into the aforementioned regular grid of patches. 
Sometimes, these patches will contain a lot of empty space due to the shape of the original terrain data. 
In such cases the patch is then subdivided into four quartiles, much like a quadtree is. This process is 
repeated until all patches contain either volume data or no data, or when further subdivision results in 
patches whose dimensions are smaller than a pre-set minimum value wmin . Such a minimum prevents 
the creation of patches which are too small (for instance a patch of 2x2 unit cubes).

Step 2. For each patch, divide vertically into slices.

Once patches have been created, they are each divided into slices, as is illustrated in Figure 7. This 
process is very straightforward: we simply subdivide the 3D regular grid vertically so that we are left 
with 2D regular grids which are one unit cube in height. Resulting slices are numbered according to 
there position relative to the origin of the virtual world, with which we simply mean that slices above 
zero will have positive numbers and those below will have negative numbers.

Step 3. For each slice, convert into a quadtree

In section 3.3.3 we mentioned that data in 2D regular grids can generally be stored more efficiently in 
the form of a quadtree. Because the horizontal dimensions of our patches and thus our slices are a 
power of two, we can easily convert each slice (which, although it has a height of one unit cube, acts 
like a 2D regular grid) into such a quadtree. We take the value of the top-left unit pixel (unit square) in 
the image and remember it. Then, we iterate through the values of each pixel in the image, comparing 
their values to our remembered value. If we encounter a value that doesn't match it means we need to 
split the node into 4 children.

For each of these children we repeat the scanning process, albeit now staring with the respective origins 
of each division, taking the top-left pixel within that division as an initial value and considering only 
the area of the image it encompasses. This process continues until no differences are found within a 
node, or we reach a logical node size of one pixel.

 4.3.2 Slice serialization and de-serialization

Because a quadtree node has no children or 4 children, we can serialize it efficiently by traversing the 
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Figure 11: Serialization of a quadtree containing two layers: the left image represents  
a raster image divided into squares; the right image represents the resulting quadtree.  

This example results in the example string "{fe{fefee"



tree, starting with the root node and traversing its children in a set clockwise fashion. We move down 
the tree where nodes have children, repeating clockwise traversal until all nodes have been visited. This 
results in a serialized, ordered set of elements which can describe the entire quadtree with exactly as 
many elements as there are nodes.

De-serialization follows the same logic, but backwards: we start with the first element, which describes 
the root node. If the quadtree describes a slice that is wholly subterranean, this might be a leaf. 
Otherwise, this is a node with exactly 4 children, meaning the second through fifth elements describe 
children of said node. If we adhere to the same clockwise rule as done when we were serializing, we 
know at which position these nodes were. We continue through the set of elements, noting that each 
child's dimensions are exactly half that of its parent. Coupled with the knowledge of a parent's exact 
position we can build the entire tree in one traversal. This principle is shown in Figure 11.

It is worth noting that, because each branch within a quadtree is also a quadtree, we can choose to 
serialize and de-serialize only specific branches within the quadtree, which is useful for partial 
communication of terrain data.

 4.3.3 Partial communication
We mentioned in Section 2.2.2 that we want to be able to only partially communicate our terrain and in 
Section 4.1 we discussed several reasons for why the ability to do this is needed, namely large terrain 
size and the local nature of clients and acting entities. Updates to the terrain caused by interactions will 
also have a local effect and such changes need to be communicated in a way which does not require us 
to send an entire patch or even a complete slice. In the next section, we will discuss how we can 
accomplish this.

As for initial connection between the server and a client, a client will communicate the current position 
and the bounding box of its acting entities. First, the server will determine which patches the client 
needs to acquire based on this. Secondly, it will determine which slices need to be communicated.

The number of slices, in other words the depth to which we take slices from the patch has 
consequences: If we make a shallow selection, this means only few slices need to be communicated to 
the client and thus the entire process generally takes less time and less client-side storage space is 
needed. However, this also means that in case of an interaction beyond the depth of the slices chosen, 
entire new slices need to be communicated towards the client, which may slow down the interaction 
itself. Conversely, choosing a deeper selection lessens the likelihood of having to communicate new 
slices, but it does mean more initial communication and it requires more client-side storage space.

 4.3.4 Interaction handling
Interaction handling happens when an acting entity interacts with the terrain. In this section, we will 
describe the steps involved in this process.

  Step 1 - Finding affected nodes
The first thing we do is determine which patches are within the reach of the acting entity, given its 
current position which should in most cases include no more than four patches (if the AE is at the spot 
where patch corners meet). This search can be done by checking whether or not the active entity's 
bounding box intersects with patches. Once we have determined the affected patches, we check which 
slices within these patches are affected. For this, we again use the active entities bounding box: only 
slices which lie between the bounding box's bottom and top planes are affected. Finally, we use the 
bounding box to do a quadtree search in order to find the affected quadtree nodes. 

  Step 2 - Acting entity geometry and slice intersection
Now, we must determine how the acting entity's geometry intersects with each slice and that slice's 
nodes.  Because both acting entity bounding boxes and patches are axis aligned, this means that we can 
directly use the bounding box's horizontal dimensions to do a quadtree search in order to see which 
nodes of the tree are roughly affected by the interaction. This is illustrated in Figure 12.
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Figure 12: An Acting Entity's bounding box (red rectangle) holding the AE's stamp at a  
specific slice.

Figure 13: Left: a single polygon intersecting with a slice. Right: top down view of the same  
intersection.

Figure 14: Approximating a grid from a polyhedron (or polygon in a 2D version).



The shape of an acting entity's geometry can vary widely and it most likely does not fill the entire 
bounding box, meaning that even if a part of the terrain falls within the bounding box this does not 
necessarily mean it is changed. In order to more accurately determine which nodes are affected and 
how, we need to know more about the acting entity's geometry. This geometry most likely consists of a 
collection of polygons, which will not neatly 'match' with the grid on which the quadtree is based (see 
Figure 13). Because of this, the effect of the interaction will never be completely precise. Therefore, we 
approximate the area which the geometry affects in the following way: first, we take the part of the 
acting entity's geometry which lies between the bottom and top of the affected slice, which is a 
polyhedron with a height equal to a unit cube. Then, we look at how this polyhedron fits within the 
slice.

Each slice's quadtree was created from a 2D regular grid of unit cubes. In order to fit the polyhedron 
into this grid, we must first convert it into such a grid of unit cubes. As illustrated in Figure 14, parts of 
the polyhedron may only partially occupy a unit cube, but a unit cube cannot contain multiple 
situations: it is either inside or outside of the acting entity's geometry. Therefore, we use a process 
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Figure 15: The stamp affecting the lower-right node, the part of the stamp that is  
within that node getting converted to a quadtree and the original node being swapped  

with the root node of the generated quadtree.



similar to the rasterization of vector graphics to make this decision.

A threshold value is used to determine how much of the unit cube needs to be occupied by the acting 
entity's geometry for it to be considered as being inside of it. This means that the value used greatly 
influences the outcome of the approximation. A low threshold will mean more unit cubes will be inside 
of the geometry, and thus the interactions effect will be larger in terms of size. This may lead to empty 
space between the acting entity geometry and the terrain. Conversely, a large threshold means more unit 
cubes will be considered outside, which may result in the terrain intersecting with the actual acting 
entity geometry.

One drawback of this method might be that these volume approximations may be very costly to 
calculate. An alternative is to slice the acting entity horizontally at a vertical position halfway between 
the bottom and top of a slice. This reduces the approximation to a two-dimensional question.

As a result of this step, we now have an approximation of the acting entity geometry which is a regular 
grid of unit cubes. We will refer to this as an acting entity's stamp on a slice. Of course, it is not 
necessary to actually generate a regular grid as an in-between structure because we can use the 
approximation rules directly in step 3, but for the sake of clarity in our explanation, we will deal with 
stamps as if we did.

  Step 3 - Applying changes
Now, for each affected slice, we have a complete set of nodes that are affected by the interaction and we 
have the acting entity's stamp at that particular slice. From this we can calculate changes to the nodes.

Each affected node intersects with the acting entity bounding box. This means it may be fully within the 
bounding box or only partially within it. Likewise, the stamp may lie completely or partially within 
such a node. In each situation, we take the part of the stamp which lies within the affected node and we 
convert the regular grid within that part into a new quadtree. Now, in Section 4.3.2 we mentioned that a 
quadtree branch is in itself another quadtree. Therefore, we can use the resulting tree as a branch within 
our existing slice quadtree, meaning we simply swap the old node with the root node of this new branch 
to complete the change. This process is shown in Figure 15.

  Step 4 - Communicating changes
Now, if we are using multiple clients in a network environment, changes caused by the interaction of 
one client must be communicated to all other clients in order for them to have the correct terrain. We 
can do this by sending out change sets to these clients. A change set is a collection of all the branches 
created by the interaction, coupled with a series of elements describing the path to the node which each 
of these branches is going to replace. These path descriptions include which patch and which slice the 
nodes are in. Once a client receives a changes set, it simply replaces the nodes at the given paths with 
the new branches, thereby updating the terrain data.

  Step 5 - Pruning the quadtree
During the application of changes we do not prune the quadtree. Pruning is important for the efficiency 
of the quadtree as changes to the structure might introduce sibling nodes which all have the same 
content, meaning they can be combined into a single node. 

The reason to wait until all changes are finished is that pruning between changes might cause parts of 
the quadtree to simplify into a parent node, while a second pending change might want to replace a 
child node of that node.  As a result it would not be possible to make the change, which means the 
change is lost. Over time, this will cause otherwise synchronized quadtrees in different clients to grow 
increasingly dissimilar, which is not acceptable.

The pruning operation goes as such: for each changed node, we check if its siblings all have the same 
value. If so, they can be represented as one node: we delete the children and give their value to the 
parent, which is now a leaf. We then move up the tree to see if we can do the same thing again. This 
process is repeated until there is nothing left to prune (i.e. we try to move up at the root node).
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 5 EXPERIMENTS
In this chapter we will discuss a number of experiments which are aimed at testing our methodology, the 
implementation of which makes use of the well-known client-server model, namely with one server and a 
number of clients which connect to it. In this model, the calculation process can be distributed in different 
ways: the server can do all the calculation, calculation can be distributed over the various clients or a hybrid 
version of both. In our experiments, we will consider the first two situations: server-side calculation and 
client-side calculation.

Experiment I will focus on changes in terrain size and change set size in a server-side calculation situation, 
while experiment II will look at reservation conflicts between clients in a client-side calculation situation. 
Both experiments will run two interaction scenario's: random interaction and coherent path interaction and 
each of these scenario's will be run using different numbers of clients.

 5.1 GENERAL EXPERIMENT SET-UP
Both experiments I and II use the same basic set-up in terms of hardware, terrain data and interaction 
scenario's.

 5.1.1 Hardware
As we described in Section 2.2 , our methodology aims to allow calculation of interactions between 
acting entities and a volumetric terrain in real-time and to synchronize these changes via networks 
using commercial hardware, i.e. hardware found in the average Dutch household.

In order to run our experiments, we will be using the following pieces of hardware.

• Server – Desktop computer with the following technical specifications: AMD FX(tm)-8120 Eight-
Core Processor 3.10 GHz, 16GB memory, Windows 7 64-bit.

• Client(s) - Samsung RC730, Intel Core I7-2670QM 2.2Ghz, 8GB memory, Windows 7 64-bit.

Clients and server will communicate with each other via a wired connection. All machines are set up to 
be in the same work group.

 5.1.2 Terrain
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Figure 16: Two screen shots of the Server program with one patch. Left, the patch is  
shown in solid colours. Right, the quadtree structures of each slice in the patch are  

shown, with empty nodes not drawn.



The same terrain will be used for each experiment.

The input data for this terrain is a collection of images of 1024x1024 pixels containing six possible 
grey-scale values, with each grey-scale value denoting a different type of soil for the terrain and a value 
of 0 describing the absence of soil, or empty space.

This creates a terrain consisting of a single patch which measures 1024x1024 unit cubes horizontally 
and contains 100 slices. Of these slices, 13 are (partially) exposed to the surface, meaning that the 
terrain surface has 13 different heights. 33 of them are described with a single quadtree node, meaning 
there is only one soil type at that particular slice.

There are 5 different types of soil in the terrain, which are stacked on top of each other in a layered 
fashion. For each of these layers, the height at different parts of its surface varies, and it contains some 
extrusions which overlap lower parts of the layer. An example of the resulting terrain can be seen in 
Figure 16.

Initially, the entire terrain is described using 183.476 quadtree nodes, with a potential to grow to a 

worst-case situation in which it would have (∑
i=0

10

4i)∗100=139.810 .100 nodes. A 3D regular grid 

description of the same data would contain 104.857.600 nodes.

 5.1.3 Interaction scenarios
In order to run our experiments, each client in the experiment must be able to trigger interactions. In 
order to do so, we need one acting entity per client. Human input (having a human user initiate change 
on said client) is one option, but it is very work-intensive, as we would need a person for each client. 
Furthermore, human input will be different in terms of both time and position of the change for each 
time that the experiment is run, meaning different behaviour on the part of human participants gives us 
different end results.

Therefore, we choose to automate this task by implementing a configurable acting entity that allows us 
to predefine where and when a change is made. This ensures that if we repeat an experiment, the input 
will always be the same. 

This leads us to the following set-up: each client will control one acting entity that will interact with the 
terrain at predefined positions. These positions are given in a configuration file describing a list of 
points that is unique to each acting entity. All acting entities will use the same geometry as their shape, 
namely a sphere with a radius of  25 unit squares. The horizontal position of each acting entity at each 
interaction is determined by its point set. The vertical position for each interaction is at the surface of 
the terrain, meaning the place where non-empty volume data starts when moving through the slices in a 
top-down fashion (see Figure 17). This vertical position is determined prior to the actual interaction.

There are two types of effects that an interaction can have: the first removes soil from the terrain, while 
the second adds soil to the terrain. In the latter case, the soil added is the same as that of the top layer. 
These effects take place within the area occupied by the acting entity, i.e. within its spherical body. In 
each experiment, half of the clients involved have the first effect and half have the second.

Using such interactions, each experiment is split up into two interaction scenarios:

Random point interaction – this will use point sets generated as following: over the entire area of the 
patch, we will generate a random point set of 100 points. The scenario moves through these points, 
starting at t=0 (the first point) until it reaches t=99 (the last point). Interactions will be done with a time 
interval of 100 milliseconds, starting at point t=0. An example pattern for random point interaction is 
shown in Figure 18. Once t=99 is reached for all acting entities, the scenario is finished.

Coherent path interaction – here we will also use randomly generated point set. Each point set will 
contain 5 random points between which the acting entity will move in a straight line. Interactions will 
start at t=0 and the acting entity will move at a constant speed between the points until it reaches t=4. 
An example pattern for coherent path interaction is shown in Figure 19.
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At the beginning of each experiment, the server will send out a starting signal to all involved clients, 
telling them to start performing their interactions. This means that during the experiment all clients will 
be performing their interactions simultaneously.

 5.1.4 Number of clients
Each interaction scenario will be run using different numbers of clients, namely 2, 4, 6, 8 and 10 
clients. By running the experiments using different numbers of clients, we can see how an increase in 
clients affects the overall performance of our methodology.

 5.2 EXPERIMENT I
As we mentioned at the beginning of this chapter, Experiment I focusses on changes in terrain size and 
change set size in a server-side calculation situation.

Server-side calculation, as the name implies, lets the server do most of the work. Clients will send it 
positions at which interactions happen, and the server will calculate changes and communicate these back 
to the clients.

The advantage of this configuration is that it makes the task of synchronization a simple one-way affair. 
Although clients initiate interactions, the server is the only holder of the source terrain (i.e. the terrain 
which can always be considered correct and current) and the only one making changes to it, thus 
controlling its correctness. As a result, clients will always receive the same terrain data and thus be 
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Figure 19: Coherent interactions.Figure 18: Random interactions.

Figure 17: An acting entity and its spherical geometry just before an interaction is  
triggered (vertical cross-section).



synchronised. The disadvantage is that the server has to do all the work, meaning that its workload will 
increase according to the number of clients. And since each client initiates interactions and such 
interactions need to be communicated to all other clients this can, given enough clients, overload the 
server.

 5.2.1 Interaction scenarios
The interaction scenarios for experiment I will be as they are described in Section 5.1.3 , except for the 
following: for each scenario, half of the clients participating will be adding material to the terrain, while 
the other half is removing material.

 5.2.2 Measures evaluated
There are two measures which interest us in experiment I:

Terrain size – We will register the size of the terrain, i.e. number of nodes in the terrain before and 
after each interaction, after the terrain has been pruned. This way we can monitor how interactions 
affect overall terrain complexity. Will the terrain grow ever more complex to a point where it gets close 
to the worst case scenario described in Section  4.1 , or will complexity stabilize at a certain point?

Change set size – We will also register the number of nodes in each change set. Coupled with the 
number of times it gets sent over the network this should give us a good indication of how much strain 
each change set puts on the network, and how their size changes as the terrain itself changes over time. 

The reason for measuring our method's performance in terms of amounts of data, rather than time, is 
that hardware configurations may vary widely with regard to processing power: is there a single, but 
powerful processor? Are there multiple processors, each of them mediocre in processing power? Other 
processes might be running, thereby influencing computing time. Network speed is similarly 
influenced. As far as hardware is concerned, a Gigalan network is obviously going to transfer data 
faster than a 65k modem. Network speed is also affected by other processes: if for instance another user 
on the network is streaming HD videos, this will slow down other transfers.

The amount and size of data generated and transferred is independent of processor and network speed. 
Processes might be executed at different speeds, but the amount of data remains the same, meaning that 
measuring these factors gives us a clearer picture of how our methodology behaves.

 5.2.3 Experimental configuration
The terrain described in Section  5.1.2  will be used. As mentioned in Section 5.1.3 , the experiment 
will be run according to two different interaction scenarios: random interaction and coherent path 
interaction. Furthermore, we will run the experiments a number of times using a different number of 
clients as was described in Section  5.1.4 .

This results in the following experiments being run:

• random_interaction for 2, 4, 6, 8 and 10 clients.

• coherent_path for 2, 4, 6, 8 and 10 clients.

 5.2.4 Results
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The results of experiment I using the random interaction scenario are shown in Figures 23 through 26 
and Tables 1 and 2. Results for the coherent path scenario are shown in Figures 27 through 31 and 
Tables 3 and 4. For all graphs, the horizontal axis represents consecutive interactions, meaning 
interactions by all clients in the order in which they are received by the server (on a first-come-first-
serve basis). For terrain size graphs, the vertical axis represents the number of nodes in the entire terrain 
and for the change set graphs, the vertical axis represents the number of nodes in a change set.

Looking at the results, we can see that terrain growth is affected not so much by the number of clients, 
but by the number of interactions caused by those clients. This becomes more clear when comparing 
the experiments for 2, 4, 6, 8 and 10 clients in each interaction scenario: if we overlay these results, we 
can see that the terrain growths they describe are very similar to one another. In fact, results from 
experiments using less clients almost seem to be subsets of experiments using more clients. In other 
words: if we were to repeat the experiments using only two clients, but having these clients perform a 
number of interactions equal to that caused by the version of our current experiments using 10 clients, 
results would likely be very similar.

If we look specifically at the results of the random interaction experiments, we can see that with 200 to 
400 interactions, there seems to be a steady, almost linear growth. From 600 on to 1000 interactions 
however, we can see that the rate of growth slows down as more interactions are performed: this could 
indicate that terrain growth will eventually level out at a certain size, but the results of the random 
interaction experiments provide insufficient data to verify this. The resulting terrain is nearly 400% its 
original size after 200 interactions and well over 1200% after 1000 interactions. This large increase is 
most likely caused by the randomness of the interactions, which make the terrain more chaotic (see 
Figure 20) and so the quadtrees become more complex.

The size of the change sets varies throughout each experiment, with mean and median size per 
interaction increasing with the number of interactions performed. The maximum size is very similar for 
each experiment, which is to be expected since the acting entity's geometry is always the same.

The results for coherent path interactions paint a rather different picture. Although growth seems to 
follow a trend similar to that of random interactions, the rate of growth is much lower, with a mean and 
median growth per interaction that is around one tenth that of each experiment using the random 
interaction scenario. Maximum total growth per interaction is also much lower: 89% with 422 
interactions (2 clients) and 343% with 2266 interactions (10 clients). It is worth noting that the number 
of interactions performed during the coherent path experiments is more than twice that of their random 
interaction counterparts, and so we have more data to work with. Growth rates, like we saw with 
random interactions, seem to slow down as more interactions are performed, almost flattening out at 
around 2200 interactions. However, it is still not clear if this means the terrain will stop growing. 

The reason why coherent path interactions are so different from random interactions most likely lies in 
the nature of the interaction: random interactions are constantly influencing a different part of the 
terrain, while coherent interactions follow a certain path. This means that for each client, new 
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Figure 20: An example of the effects of each interaction scenario on a  
single slice. left, after random interactions. right, after coherent paths.



interactions are always done close to where a previous one was performed, which results in more 
contiguous areas (see Figure 20) and contiguous areas can be described using less nodes.

This difference can also be seen in change set size. There are noticeable groups of peaks at several 
points in each experiment, which are most likely caused by two acting entities with differing actions 
(add/remove) encountering one another: since one would add soil and the other remove it, they are 
continuously causing large changes in the area where they intersect, thus causing large change sets. 
This type of conflict also causes the terrain to become 'shredded' as shown in Figure 21. Of course, it is 
worth noting that in most virtual worlds, such intersections would not occur, because acting entity 
geometry would be prevented from doing so by collision detection.
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Figure 21: Terrain 'shredded' by two conflicting clients.

Figure 22: Experiment I - random_interaction, 2 clients.
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Figure 23: Experiment I - random_interaction, 4 clients.

Figure 24: Experiment I - random_interaction, 6 clients.

Figure 25: Experiment I - random_interaction, 8 clients.



page 33 of 45

References

Figure 26: Experiment I - random_interaction, 10 clients.

Figure 28: Experiment I - coherent_path, 4 clients.

Figure 27: Experiment I - coherent_path, 2 clients.
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Figure 29: Experiment I - coherent_path, 6 clients.

Figure 30: Experiment I - coherent_path, 8 clients.

Figure 31: Experiment I - coherent_path, 10 clients.



 5.3 EXPERIMENT II
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Table 4: Experiment I - coherent_path, change set size.

change set size

clients mean median max.
2 3331.5 2958 6625 1175.8
4 3511.3 3531 6625 1173.2
6 3604.3 3890 6625 1265.6
8 3546.5 3623 6625 1285.5
10 3680.1 3933.5 6611 1289.0

Standard 
deviation

Table 3: Experiment I - coherent_path, terrain size growth.

clients

total growth per interaction

nodes % mean median max.
2 422 166528 88.9 395.6 352 3252 343.8
4 867 346652 185.1 400.3 382 3252 348.3
6 1255 463932 247.7 370.0 358 3252 423.7
8 1781 558368 298.1 313.7 312 3252 435.2
10 2266 645612 342.7 285.0 288 3572 459.3

Combined
Interactions

standard 
deviation

Table 2: Experiment I - random_interaction, change set size.

change set size

clients mean median max.
2 4993 5349.5 12347 2326.2
4 5347.4 5404.5 12650 2459.6
6 5457.5 5414.5 12530 2546.6
8 5787.3 5526.5 12525 2666.7
10 5832.8 5535 12829 2750.3

Standard 
deviation

Table 1: Experiment I – random_interaction, terrain size growth.

clients

total growth per interaction

nodes % mean median max.
2 200 733104 399.6 3665.5 4118 7580 1734.6
4 400 1307868 712.8 3277.9 3416 7576 1794.4
6 600 1679144 915.2 2803.2 2872 7864 1934.7
8 800 2051244 1118.0 2567.3 2492 7692 2013.2
10 1000 2273148 1238.9 2275.4 2176 7824 2051

Combined
Interactions

standard 
deviation



Experiment II focusses on interaction conflicts between clients in a client-side calculation situation.

Client-side calculation distributes calculation tasks across the clients, allowing them to handle the 
changes they make themselves and send the results to the server for distribution to other clients. The 
benefit of this method is that it relieves the server of its change calculation duties, thus allowing more 
clients to participate without overwhelming it. Furthermore, it should allow for greater changes to be 
made, as each client provides its own computing power. However, there is a drawback to this.

During the experiment, all clients will be performing their interactions simultaneously. This means that 
each individual client will attempt to change the terrain without regard for the actions of other clients. As 
a result, several clients could potentially make different changes to the same piece of terrain at the same 
time, resulting in multiple, equally valid changes which cannot be united into a coherent 'truth'. To 
prevent this, the server will need to enforce a system of reservation. What this means is that for every 
interaction, we need to check what part of the terrain the client is attempting to change, and if the client's 
version of the terrain is up-to-date for this part. Such a reservation attempt consists of an affected node 
search at both client and server side, with the client sending its results to the server and the server 
checking whether or not this matches its own results. If the results match and none of the affected nodes 
are already reserved by another client, the client may continue with its interactions. If the results do not 
match, the client's version of the terrain is not up to date, meaning it has not yet received available 
updates and it must wait for them. If there are already nodes reserved, the reservation also fails. In both 
cases, the client attempting the reservation must wait for updates before reattempting the reservation.

Unfortunately, in the time between a denied reservation and a renewed attempt by the client to make the 
same reservation, another client may have reserved and changed the terrain, meaning that the reservation 
request will fail again and the whole procedure is repeated once more. Especially when clients are in 
close proximity to one another this may mean that many reservations fail repeatedly. And, because each 
reservation attempt communicates a set of affected nodes to the server, the size of all reservation attempts 
combined might exceed the size of a single change set generated from a successful interaction.

The purpose of experiment II is to find out the amount of interaction conflicts in relation to the number of 
participating clients.

 5.3.1 Measures evaluated
In this experiment, we are interested in the following measure:

Number of attempted reservations per interaction - We define this as a reservation attempt by an 
acting entity on one client, where some or all of the nodes it would affect are already in the process of 
being changed by an interaction caused by an acting entity from a different client. This measure will 
show us how many times a single interaction fails.

With this, we will be able to see how the number of conflicts per interaction changes over the course of 
the experiment, what the mean and median are for this and where extremes occur. Furthermore, we can 
also determine what kind of effect the number of participating clients has: is there a growth trend in the 
number of conflicts, for instance?

 5.3.2 Experimental configuration
The terrain described in Section  5.1.2  will be used. Like experiment I, we will run both the random 
interaction and coherent patch scenarios using a different number of clients.

This results in the following experiments being run:

• random_interaction for 2, 4, 6, 8 and 10 clients.

• coherent_path for 2, 4, 6, 8 and 10 clients.

Each client will once again have one acting entity, which moves as described by the scenario type and 
its given point sets. 

As was done in experiment I, at the beginning of experiment II, the server will send out a starting signal 
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at which point the clients will start performing their interactions simultaneously. Reservations are 
handled by the server at a first-come-first-serve basis. Furthermore, in order to simulate the reservation 
and subsequent changing of a part of terrain, the server will lock such parts for a pre-set amount of 
time, defined as t lock , which is the time in milliseconds that the lock will remain on the terrain. For our 
experiment, we will use 100 milliseconds.

We also set an amount of time a client has to wait before retrying an interaction after it fails, defined as 

twait , which is waiting time in milliseconds, where twait=
1
2

t lock . We use half of  t lock  because a client 

may encounter a conflict at any time between the other interaction's lock start and ending time, meaning 
that it may have to wait the full duration of the lock, or only a fraction of time thereof. The timing of 
each interaction is determined by a waiting time, which is 1/4th of t lock .

 5.3.3 Results
Looking at the results for random interactions, shown in Figure 32, we can see that most failed 
reservation attempts occur at the start of each experiment. The reason for this may be that in the 
beginning, the terrain has a lot of contiguous soil, which means that a lot of sub surface material can be 
described with a slice containing a single node. As the first few interactions are performed, many 
clients will try to reserve such single nodes at the same time, leading to many reservation failures. The 
amount of failures then rapidly decreases, because every applied interaction makes the slice more 
complex, thereby lowering the chance of acting entities working within the area of the same nodes.

Table 6 Shows us that the number of interactions that need multiple reservation attempts is fairly low 
compared to the total number of interactions, and the highest average attempts needed is only 1.4.

Coherent path interactions are again different. As shown in Figure 33, these types of interactions do not 
cause the same kind of peaks at the beginning of each experiment as random interactions did. Again, 
this is most likely because the client is following a path rather than acting randomly: it moves along a 
path, which means that each new interaction will be very close to the one before it. As such, once the 
first few interactions have been applied each client will work within an area which is already highly 
complex, thus limiting the chance that another client will intervene with its work. Such conflicts will 
only occur if two acting entities are very close to intersection.

Another noticeable difference, when we look at Table 5, is that the percentage of interactions needing 
multiple reservation attempts is much higher than with random interactions: it is almost 100%. This 
seems to be caused primarily by the clients themselves: because the area of each interaction largely 
intersects with the one before it, the server is likely to still be handling changes made in the previous 
interaction, thus denying a reservation of that part of the terrain. However, results also show a drop in 
the percentage of interactions that need multiple reservation attempts as more clients are used. It is not 
entirely clear why this happens, but it could be due to a slowdown of the program running the 
experiment as a result of becoming overwhelmed by the multitude of interactions.

One way to prevent this problem is to add information to reserved nodes on which client made the 
reservation. This way, when a client encounters nodes it reserved in a previous reservation, it can 
simply also reserve these nodes and continue its interaction, since it already knows what changes are 
made to the previous reservation. However, this also means that one client gets a reservation advantage 
over other clients, as it can continue to reserve along its own path, while denying others reservations 
along this path. When two client paths intersect, this may cause a prolonged failure of reservation for 
one of the clients.
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Figure 32: Experiment II - random interactions.
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Figure 33: Experiment II - coherent paths.
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Table 6: Experiment II - random_interaction, results.

total per interaction

clients attempts mean median max
2 200 272 39 19.5 1.4 1 6 0.87
4 400 518 50 12.5 1.3 1 12 1.14
6 600 733 66 11 1.2 1 11 0.86
8 800 1035 93 11.6 1.3 1 13 1.20

10 1000 1245 90 9 1.2 1 16 1.21

Combined 
interactions

 interactions 
needing 
multiple 
attemps

% of total 
interactions

standard 
deviation

Table 5: Experiment II - coherent_path, results.

total per interaction

clients attempts mean median max
2 933 2258 925 99.1 2.4 2 5 0.5
4 1828 4235 1816 99.3 2.3 2 29 1.1
6 2741 4892 1654 60.3 1.8 2 36 1.3
8 3685 5358 1126 30.6 1.5 1 16 1.0

10 4604 6068 861 18.7 1.3 1 27 1.1

Combined 
interactions

 interactions 
needing 
multiple 
attemps

% of total 
interactions

standard 
deviation



 6 CONCLUSIONS
In this chapter we will discuss what conclusions we can draw from our experiments and how these relate 
to the main two research questions of our thesis.

While the data generated by the experiments is by no means conclusive enough to make any hard 
statements concerning the use of our methodology over a prolonged period of time, the results do shed 
light on a number of things which help us understand how it behaves under different scenarios.

In Section  4.1  we talked about the worst-case scenario for quadtrees, something which is caused by very 
granular, non-contiguous areas of soil. The random interaction scenario causes this kind of granularity 
(see Figure 20) and the consequences can be seen in the growth rate of the terrain during this scenario. As 
such we may conclude that, although growth rates seem to decrease once more interactions have been 
performed, the data structure used in our methodology performs badly when subject to random changes 
to its content, especially if such change increase the types of soil present in each slice. It performs better 
when subjected to a coherent path scenario, in which interactions resemble those caused by entities 
within a virtual world such as player characters. The results show that these interactions affect terrain size 
more positively due to the more contiguous nature of the changes, which results in larger contiguous 
areas that can be described with quadtrees that are less complex.

If we look at the question of server-side versus client-side calculation we may conclude that client-side 
calculation is indeed possible, as most conflicts happen only at the beginning of each experiment. 
However, although client-side calculation means the server doesn't need to calculate changes any more, it 
does need to enforce a system of reservation. In this system, each reservation causes both the client and 
server to do a search for affected nodes and the server needs to compare these results. If the results do not 
match, this causes the reservation to fail and the entire process will need to be repeated. Because of this 
added work, client-side handling may actually prove to be slower than server-side handling in terms of 
absolute calculation time. Unfortunately, neither experiment I nor II contain any data to make such a 
comparison and so it remains unclear which approach is more efficient.

With this in mind, we can now answer the main research questions stated in Section  2.3 .

Can volumetric terrain data be held synchronous in a client-server network environment with server-
side interaction handling where multiple clients initiate such interactions, and is the amount of data  
needed to facilitate communication and calculation thereof acceptable?

Yes, this can be done, but only with a limited number of clients and results may vary according to the 
scenario: the best scenarios are those where interactions performed cause contiguous areas of the same 
soil type (or removal thereof) as this means less terrain growth and thus less data that needs to be 
communicated. The worst scenarios are those that cause granular, non-contiguous changes, in which case 
calculation and communication may become too slow to work in real-time.

In a client-server model where interaction handling is delegated to the clients and the server  
coordinates and communicates terrain updates, how often do two clients initiate interactions which  
conflict with one another?

The number of reservation attempts needed to do a single interaction depends on the terrain structure and 
the position of the clients. As described in Section 5.3.3 , a starting terrain may contain larger nodes 
increasing the chance of conflicts, but this problem is automatically solved after the first few interactions. 
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 7 FURTHER RESEARCH
The experiments that were run as part of this thesis project have answered some questions, but have also 
given rise to new ones. Furthermore, there are also questions which have not been addressed in this thesis 
that may require further research. In this final chapter, we will discuss such  questions shortly.

Prolonged usage of the methodology – the data produced by both experiments I and II showed that 
terrain growth seemed to slow down as more interactions were performed. However, this data was 
insufficient to draw any hard conclusions from. Continued research should test how the data structure 
used in our methodology behaves under the random interaction and coherent path scenario's when far 
more interactions are performed. 

Client-side versus server-side calculation – in Chapter 6, we mentioned that the our experiments did 
not produce any data to show the differences in calculation time between client-side and server-side 
calculation. Therefore, further experiments should focus on measuring performance of both methods in 
terms of absolute calculation time.

Underground interactions – All experiments have focussed on interactions at the surface of the terrain, 
meaning underground interaction has not been considered. Such interactions, in a natural terrain, might 
cause effects which do not occur at the surface, such as cave-ins. Further research could focus on if 
and/or how the data structure used in our methodology might accommodate such effects.

Visualization of the terrain – This thesis project has focussed completely on data structures and network 
synchronization and ignores the issue of terrain visualization which is, as we mentioned in Section 3.3.2 , 
a well-researched subject. Continued research should therefore focus on uniting our methodology with 
one or more of these established methods.

Large terrains and dynamic terrain loading – although our methodology offers a way to subdivide 
large sets of volume data, it does not account for limits in memory size. The terrain used in the 
experiments consisted of a single patch containing only 100 slices, but once loaded into the server 
program, it took up over 750 MB of memory. In continued research, these issues should be addressed.
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