
Type Class Instances for Type-Level Lambdas in Haskell

Thijs Alkemade
Universiteit Utrecht
me@thijsalkema.de

Abstract
Haskell 2010 lacks flexibility for creating instances of type classes
for type constructors with multiple type arguments. We would like
to make the order of type arguments to a type constructor irrelevant
to how type class instances can be specified. None of the currently
available techniques in Haskell allow this satisfactorily.

To solve this, we have added the concept of type-level lambdas
as anonymous type synonyms to Haskell. As higher-order unifica-
tion of lambda terms in general is undecidable, we take a conserva-
tive approach to equality between type-level lambdas. We propose
a number of small changes to the constraint solver that will allow
type-level lambdas to be used in type class instances. We show that
this satisfies our goal, while having only minor impact on existing
Haskell code.

1. Introduction
1.1 Example
The first version of the unittyped package (Alkemade 2012) used a
datatype similar to:

data Value v u d = Value v

A Value v u d contains an object of type v and is tagged with
phantom types u and d . u would represent the physical unit of
the value (for example, meters, miles, seconds, etc.) and d the
dimension of that unit (length, time, etc.). u and d determine what
operations may be done on these values, for example, only allowing
addition when the dimension of the values is the same.

After the release, a feature request asked for a Functor instance
for Values . The only possible instance that the datatype would al-
low would give fmap the type:

fmap :: (a → b)→ Value v u a → Value v u b

This is not a useful instance: it can only change the dimension.
Using a different dimension but the same unit breaks the invariants
the library is supposed to guarantee. The desired fmap instance
would replace the v type argument:

fmap :: (a → b)→ Value a u d → Value b u d

However, Haskell doesn’t make it possible to give this instance.
Eventually, all uses of the Value type were rewritten to use the
definition:

data Value u d v = Value v

1.2 Background
A type class in Haskell is a set of polymorphic functions that can
only be used on types that have instances for that class (Hall et al.
1996). This way programmers can use the same name for similar

functions. This allows for more concise notation and code that uses
the type class can be re-used, requiring only new instances to be
written. For example, the Eq class makes it possible to use ≡ for
any type that has an instance for Eq , instead of requiring many
different functions for checking equality.

Type classes can not only be specified for normal types of kind
∗, but also for types of other kinds, in particular those of an arrow
kind like ∗ → ∗. Every type class requires its instances to have a
specific kind, determined by how many arguments the type variable
receives in the function signatures of the type class (Peterson and
Jones 1993).

For example, Eq has a type variable of kind ∗, as the type
variable a in the class head does not receive any arguments:

class Eq a where
(≡) :: a → a → Bool

The Functor class has a type variable of kind ∗ → ∗, as f is
used with one argument (as a and b are of kind ∗):

class Functor f where
fmap :: (a → b)→ f a → f b

Now consider a type class definition using a type of kind
∗ → ∗ → ∗, such as Category (Figure 3) or Arrow (Figure
4). Suppose we want an instance of the class Functor on the first
type argument of the Arrow . Such an instance is tedious to obtain
using the current features of Haskell. In this paper we show how
to add type-level lambdas to instance heads in Haskell, making it
possible to write, for instance:

data T x y z = T y

instance Functor (Λy . T x y z) where
fmap f (T y) = T (f y)

*Main> fmap (+1) (T 42)
T 43

1.3 Contents
In Section 2 we will establish some preliminaries about applied
type variables. Section 3 will describe the problem in detail. Section
4 explains the current potential solutions to this problem and their
downsides. Section 5 will formalize the notion of a type-level
lambda. Section 6 gives a general background about type checking
and constraint solving in Haskell and Section 7 will explain the
changes to support type-level lambdas. In Section 8 we will show
what is possible with these changes and in Section 9 we describe
some potential problems with other GHC extensions.

1 2014/4/17

2. Preliminaries
First, we introduce some preliminaries. In Section 2.1 we cover
how higher-kinded types can be constructed and in Secion 2.2
where applied type variables are used in Haskell.

2.1 Higher-kinded types
Haskell has two flavors of types: variable and constants. Type
variables always start with lower-case letters. Type constants are
type constructors, which are the types introduced by data and
newtype definitions and always start with an upper-case letter.

Type constructors can take type arguments which make them
into type-level functions. By not providing all type arguments, type
constructors can be made into type constants of a higher kind.

Constant types with different orderings of type arguments are
isomorphic. We can show this by applying a type-level curry, and
using the isomorphism between (a, b) and (b, a):

T x y is isomorphic to T (x , y)

T (x , y) is isomorphic to T (y , x)

T x y is isomorphic to T y x

Thus, the order of the type arguments of a type constructor may
appear irrelevant. However, the exact order is important when con-
sidering which higher kinded types can be formed. For example,
a type constructor with three arguments (data T x y z), allows
only the following types of higher kinds to be formed:

T :: ∗ → ∗ → ∗ → ∗
T x :: ∗ → ∗ → ∗
T x y :: ∗ → ∗
T x y z :: ∗

This misses, for example, T · y z of kind ∗ → ∗, where a type
argument is used as the x .

2.2 Redundant applied type variables
The Functor class uses types consisting of a type variable applied
to another type variable: f a and f b. This means that f can be
substituted by any type of kind ∗ → ∗ and a and b by any type of
kind ∗. Lets look at the situations where a type like f a is useful.

Haskell programmers often try to find the most general type
for a function, because using the most general type means the
function can be used in more situations. This means that when a
type variable applied to another type variable is used (like f a), it
is very likely at least one of the following holds: Either f occurs
somewhere else in the type, in a class constraint on f or f applied
to a different type or type variable, or a occurs somewhere else in
the type.

If neither condition holds (which means that only f a is used,
no separate f or a), then the function could be given a more gen-
eral type by substituting f a by a single, new type variable. For
example, consider the type signature:

fun :: f a → b → f a

There are only two possible implementations of a function with
this type:

fun x y = x
fun x y = ⊥

For both options c → b → c would be a valid type too, and this
is in fact the most general type for fun . It does mean the function
can be called on more types: the original type signature would not

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b

Figure 1. The Monad class.

class Functor f ⇒ Applicative f where
pure :: a → f a

(<*>) :: f (a → b)→ f a → f b

Figure 2. The Applicative class.

class Category cat where
id :: cat a a
(◦) :: cat b c → cat a b → cat a c

Figure 3. The definition of Category from Control.Category.

class Category a ⇒ Arrow a where
arr :: (b → c)→ a b c
first :: a b c → a (b, d) (c, d)
second :: a b c → a (d , b) (d , c)
(∗ ∗ ∗) :: a b c → a b′ c′

→ a (b, b′) (c, c′)
(&&&) :: a b c → a b c′

→ a b (c, c′)

Figure 4. The Arrow class.

allow fun ’a’, as ’a’ :: Char and Char 6∼ f a . However, it
is very unlikely a programmer would want to write a function that
can only called on values with an applied type, without actually
making use of the type application. For example, without any class
constraint on f it would be impossible to write a function of type
f a → f b or a → f a .

3. Problem description
Although the order of the arguments of a type constructor may
appear irrelevant for starting Haskell programmers, they influence
the instances of higher-order type classes that can be specified.
Some examples:

• An example datatype T x y z can only be a Functor that
modifies z , or an Applicative that applies a function to z , or
a Monad that can lift a value given a value of type z into the
monad, etc.
So for any type with at least one type variable, the last type
variable is the variable that Functor , Monad (Figure 1) and
Applicative (Figure 2) act on.

• Instances for Category (Figure 3) and Arrow (Figure 4) use
the two last variables. In particular, this means that in any
instance of Arrow that is also an instance of Functor , fmap
will always modify the second variable of the Arrow (which
would be the result type, in the usual Arrow (→)).
So T x y z can only be made an Arrow where arr has type
(y → z) → T x y z . We can not make T an arrow where x
and y are the source and destination of the arrow, but where z
is the variable that is modified by fmap.

• The MonadTrans class from the mtl package (Gill 2006-2012)
and the MFunctor class from the mmorph package (Gonzalez

2 2014/4/17

class MonadTrans t where
lift :: Monad m ⇒ m a → t m a

class MFunctor t where
hoist :: (Monad m)⇒ (∀ a . m a → n a)

→ t m b → t n b

Figure 5.

2013-2014) also use the last two variables, see Figure 5. How-
ever, they both expect the first variable to have kind ∗ → ∗ and
the second one to have kind ∗.
But Category and Arrow require the two type variables to be
of equal kind. So it’s never possible to give a type both an
instance for MonadTrans or MFunctor and an instance for
Category or Arrow .

So defining new higher-order type classes has the following
problem: the order of the arguments of the type class variable
determines, for every instance of this new class, how it can be
instantiated as a Functor , Arrow , etc.

Suppose f is expected to have two type arguments, x and y , in
the following new class:

class C f where
foo :: f ? ?

Then there are two options: using f x y and using f y x . Which
of these two is used determines for all instances of C how they can
be made a Functor , Arrow , etc. There might be a logical choice
(when the class has some relationship with Arrow or Functor), but
there’s no way the class can leave it up to the programmer to make
a choice per type. These restrictions make it difficult to introduce
new higher-order type classes and may lead to confusing ordering
of type arguments for complicated type constructors.

The goal of this paper is to make the order of the arguments of a
type constructor irrelevant. In particular, they should have no effect
on how instances of higher-order classes can be defined. We would
like to do this under the following conditions:

1. The type checker requires no user-added type signatures where
they are currently not required.

2. It should not be required to duplicate functions or type classes
or to make large changes to existing functions or type classes.

For example, we would like to specify instances like in Section
1. There, the type constructor has three arguments and we would
like to be able to specify a Functor instance where fmap affects
the first one, i.e., has the type (a → b)→ T a y z → T b y z .

4. Existing solutions
Currently, the simplest solution to obtain the correct instances for
a type would be to first consider the type classes that a type should
have instances for, and then order the type variables accordingly. If
the type variables of existing code do not match the order required
for the desired class instances, they can be reordered to match by
rewriting the type everywhere it is used.

For example, if T x y z later needs to have Functor instance
that works on x , that would mean replacing every T x y z with
T y z x . In a large codebase, this could be a significant amount of
work.

4.1 Type Synonym Instances
The GHC extension TypeSynonymInstances (The GHC Team
2013) may appear as a good solution. This extension allows type

data T x y z = T x
type TFunctor y z x = T x y z

instance Functor (TFunctor y z) where
fmap :: (a → b)→ T a y z → T b y z

Figure 6. Using TypeSynonymInstances, this is how one could
try specifying an instance for Functor using a type synonym for
T , but GHC will reject this.

class Functor2 f where
fmap2 :: (a → b)→ f a x → f b x

class Functor3 f where
fmap3 :: (a → b)→ f a x y → f b x y

Figure 7. Extra Functor instances for different variables.

synonyms in the head of an instance declaration. Without this
extension, only newtypes and datatypes can be used in the class
instance heads.

By creating a type synonym that orders the type variables in
the way they should be used by that class, the desired type for the
instance could be specified. See for example Figure 6. Here a new
type synonym is created for T which specifies the order of the type
variables for its Functor instance.

As nice as this may seem, it will not be accepted by GHC:
TypeSynonymInstances only allows fully applied type synonyms
in the instance head. A type synonym can’t be partially applied to
form a type of kind ∗ → ∗ and supplied to Functor .

The only way a type synonym can be used to represent a type
of kind ∗ → ∗ (or higher), is when the rhs of the type synonym
already has kind ∗ → ∗:

data T x y z = T x
type TFunctor y x = T x y

But this means we are back to supporting only the limited set of
higher-kinded types seen in Section 2.1. Therefore this solution
does not meet our main goal.

4.2 More type classes
A simple solution would be to add more type classes. For every
ordering of type variables a programmer might want to use for a
class, a new copy of the class can be added. See for example Figure
7, where Functor2 and Functor3 are defined which act on the
second and third to last type variable, respectively. The Bifunc-
tors package (Kmett 2011-2013) uses this approach: it allows
types to be specified as functors on both the last and the second
to last variable at the same time.

The advantage of this solution is that instances for Functor2
and Functor3 do not overlap. For every variable of a type con-
structor it would therefore be possible to indicate whether it allows
an fmap[n].

There is however a serious disadvantage to this solution: ev-
ery function with a Functor constraint needs to be copied for
Functor2 , Functor3 , etc. The implementation will be the same,
except for the use of fmap2 , fmap3 , etc. instead of fmap. See Fig-
ure 8. The main goal of type classes is to avoid code duplication,
but this solution adds code duplication.

Another disadvantage to this solution is that the number of extra
type classes increases fast, especially for even higher-order type
classes. For example, the Category class requires type constructors
of kind ∗ → ∗ → ∗ (Figure 3). Every possible pair would require

3 2014/4/17

increase :: (Functor f)⇒ f Int → f Int
increase = fmap (+1)

increase2 :: (Functor2 f)⇒ f Int x → f Int x
increase2 = fmap2 (+1)

increase3 :: (Functor3 f)⇒ f Int x y → f Int x y
increase3 = fmap3 (+1)

Figure 8. Every function using a Functor constraint needs to be
copied for Functor2 , Functor3 , etc.

newtype Flip t b a = Flip {unFlip :: t a b}

Figure 9. Flip from TypeCompose.

data T x y z = T y

instance Functor (Flip (T x) z) where
fmap :: (a → b)
→ Flip (T x) z a
→ Flip (T x) z b

fmap f (Flip {unFlip = T y })
= Flip {unFlip = T (f y)}

Figure 10. Using Flip to specify flipped Functor instances.

newtype Flip2 t c b a = Flip2 {unFlip2 :: t a b c}
newtype Flip3 t d b c a = Flip3 {unFlip3 :: t a b c d }

Figure 11. Generalizations of Flip.

a separate class, Category 2 3 , Category 1 3 , Category 2 1 ,
etc.

While this solution meets our main goal, it does not satisfy
condition 2: existing functions using type classes can not be reused
for the newly introduced type classes.

4.3 Newtype wrappers
The TypeCompose package (Elliott 2007-2013) contains the new-
type definition in Figure 9. It can be viewed as a type-level variant
of flip: the last two type arguments of the Flip type are the last two
type arguments of the wrapped type, but reversed. This also makes
it possible to write instances where the last two variables are re-
versed, as can be seen in Figure 10. It’s not only possible to flip the
last two arguments, but Flip can be generalized to every reordering
of type variables, see Figure 11.

The difference with TypeSynonymInstances is that Flips are
newtypes, not type synonyms. Therefore the type on the instance
head is different. This also means that instances for different vari-
ants of Flip will not overlap. So also here it is possible to specify,
for every type variable, whether the type has a Functor over that
variable or not.

One disadvantage of this solution is that every argument of the
relevant type needs to be wrapped in with Flip, and unwrapped
with an unFlip call. See Figure 12 for how fmap would need to be
called for a Flipped type.

This solution meets our main goal, however, the extra boiler-
plate code to wrap and unwrap datatypes before and after applying
type class functions does not satisfy condition 2.

4.4 Associated type families
The reason the Functor class needs instances with a variable
f :: ∗ → ∗ is to make it possible to construct f a and f b.

fmap (+1) (T 42)
⇓

unFlip (fmap (+1) (Flip (T 42)))

Figure 12. Wrapping and unwrapping Flipped Functor in-
stances.

class Functor f where
type FunctorApp f c :: ∗
fmap :: (a → b)→ FunctorApp f a

→ FunctorApp f b

instance Functor (Maybe x) where
type FunctorApp (Maybe x) y = Maybe y
fmap :: (a → b)→ FunctorApp (Maybe x) a

→ FunctorApp (Maybe x) b
fmap Nothing = Nothing
fmap f (Just x) = Just (f x)

data T x y z = T x

instance Functor (T x y z) where
type FunctorApp (T x y z) v = T v y z
fmap :: (a → b)→ FunctorApp (T x y z) a

→ FunctorApp (T x y z) b
fmap f (T x) = T (f x)

Figure 13. Functor with a associated type family FunctorApp.

It is not vital for Functor that f is a type constructor and a the
last argument, the only part that matters is that f a is a type that
contains a somewhere, and f b the same type but with a replaced
by b. However, it is currently not possible to express that this a is
anywhere, not just on the last position.

With the TypeFamilies language extension of GHC (The
GHC Team 2013) it is possible to define type families within type
classes. We can use such an associated type family instead of us-
ing f a and f b directly. This way, the type family indicates how
the types are changed within the class functions, see for example
Figure 13 of how this can be used for Functor . Note that Functor
no longer receives a type of kind ∗ → ∗ but of kind ∗, as it doesn’t
need to be apply it: it uses the FunctorApp definition for that
instead.

The type family would have one argument for the type of the in-
stance and one argument for every variable the type class uses. The
rhs of the type family should be the first type, with the arguments
substituted at the right positions.

While this may seem like a lot of extra code for all instances and
classes, it would be possible to translate definitions written with
the current syntax to this format automatically. Only for instances
where the extra expressiveness is needed the type families would
need to be added by hand.

However, this solution has a problem with the way type families
work currently: to call fmap (+1) on Just 1, the type family
equality constraint FunctorApp f a ∼ Maybe Int would need
to be solved (a substitution for f needs to be found). However, type
families in GHC are not injective. There could be other types T
which defined FunctorApp T x = Maybe x , although this is
completely bogus. There is no way to prohibit this, so the equality
constraint can not be solved. This makes type families as they
currently work unusable for this goal.

This solution does not satisfy our main goal: the non-injectivity
of the associated type families makes it impossible to use the type
class functions.

4 2014/4/17

data T x y z = T x y

instance Functor (Λx . T x y z) where
fmap f (T x y) = T (f x) y

instance Functor (Λy . T x y z) where
fmap f (T x y) = T x (f y)

*Main> fmap (+1) (T 2 3)

Figure 14. Resolving which instance to use would be impossible
without a type signature or extra code.

4.5 Conclusion
None of the mentioned solutions satisfies the main goal and all
conditions in Section 3.

A number of the possibilities allow multiple instances per type
constructor for a given type class. For example, some allow defin-
ing Functor instances (or a new instance meant to look like
Functor , like Functor2) for both the last and the second to last
type variable. Although this can be useful, it can not satisfy condi-
tions 1 and 2 at the same time: without either type annotations or
boilerplate code, the compiler would be unable to determine which
instance to use for an fmap call. See for example Figure 14. We
shall therefore consider multiple instances for the same type over-
lapping, even when they use a different ordering of type variables.

5. Type-level lambdas
In the previous sections we have informally used Λ to denote a
type-level lambda function. In this section we will give a precise
definition and we will investigate the issues it can create with type
checking.

5.1 Undecidability
Lets examine more closely why the solution in Section 4.1 is re-
jected by the compiler. Type synonyms can have zero or more ar-
guments. However, contrary to type families they can not do any
case distinction on those variables. We can consider type synonyms
polymorphic “functions” on types. This means that determining
whether two partially applied type synonyms are equivalent comes
down to determining whether two lambda expressions are equiva-
lent. This problem is known as unification: we need to find a sub-
stitution of the free variables in the two expressions such that they
become equivalent. Specifically, it is higher-order unification: free
variables may be substituted by new lambda abstractions. Higher-
order unification is undecidable in general, as was shown by (Huet
1973).

Haskell therefore uses the rule that type synonyms must be
fully applied before they may be used as a type. That’s why the
example in Section 4.1 is forbidden: it is using a partially applied
type synonym on the place of a type.

5.2 Adding Type-level Lambdas
To write an instance of Functor where fmap has type (a → b)→
T a y z → T b y z , the instance head would need to have a type
τ such that τ a is equal to T a y z and τ b is equal to T b y z .
Type synonyms can not be used here currently, but even if they
could, it would be more convenient to have notation that does not
require defining new type synonyms for every type class and type
constructor. Therefore we introduce as new notation the “type-level
lambda”: Λx . T x y z is a type where x is bound by the lambda,
and y and z are free.

Evaluation is, just like value-level λ-functions, a β-reduction
step where the argument is substituted for a variable:

(Λx . M) y →β M [x := y]

Q;Q; Γ, x : κ ` T : κ′

Q;Q; Γ ` Λx.T : κ→ κ′

Figure 15. Type-level lambda kind-checking rule. Q is a top-
level environment and Q is a set of constraints. Γ is a kinding
environment, T is a type and κ and κ′ are kinds.

newtype (Monad m)⇒ MaybeT m a
= MaybeT {runMaybeT :: m (Maybe a)}

Figure 16. The MaybeT monad transformer.

The kind checking rule that applies to type-level lambdas can
be found in Figure 15.

In dependently typed languages type-level lambdas and value
level lambdas are the same concept, but also in other, non-depen-
dently typed functional languages the concept exists, for example in
Scala, see 10.2. Although type-level lambdas do not exist in Haskell
itself, they do occur in the typed internal representation of GHC
called “Core”.

Note that ∀ x . T x y z and Λx . T x y z do not mean the
same thing. ∀ x . T x y z has the same kind as T x y z , but
Λx . T x y z has kind l → k , with x :: l and T x y z :: k .

5.3 Decidable unification of type-level lambda terms
We can see type-level lambdas as anonymous type synonyms, just
like value level lambda functions as anonymous functions. Unifica-
tion of type-level lambdas will therefore be undecidable in general.
We can use multiple solutions for this:

1. Use the same limitation as for type synonyms: type-level lamb-
das need to be fully applied before they may be used as a type,
with an exception for instance heads.
A disadvantage to this solution is that, for example monad
transformers (see Figure 16), which take a type variable with a
Monad constraint, could not be specified for monads which use
type-level lambdas. For example, MaybeT (Λx . T x y z) a
would be forbidden.

2. We can try to limit the unification problems to a subset that is
decidable.
Lower-order unification is decidable, however, not sufficient for
our goal: it would be unable to ever unify f a with anything.
Higher-order matching is also decidable. Matching is unifica-
tion where one of the two arguments is closed. However, this is
also not useful: type class instances do not need to be closed,
they may contain free type variables.

3. Use Guided Higher-Order Unification (ΛGHOU) as proposed by
(Neubauer and Thiemann 2002). The restrictions applied to
ΛGHOU, compared to general higher-order unification are:

• Projections are ruled out. These are lambda abstractions
where the body of the type starts with one of the abstracted
variables. This forbids lambda types of the form:

Λx . x ...

• The types are restricted to a subset of the lambda calculus
called λI: this only allows abstracted variables that occur
free in the body of the type. This forbids, for example:

5 2014/4/17

Λx . Int

4. We consider these solutions either too restrictive or too compli-
cated. Instead, we chose to do the following:

• Type-level lambda functions may be used unapplied. How-
ever, they are not unified: they must be α-equivalent or type
checking will fail. This means they may be used in monad
transformers, like in case 2, but they must be used consis-
tently.

• We make an exception for unifying with instance heads.
This will be covered in Section 7.2.

6. Type checking Haskell
In the this section, we will give a short description of the type
checking and constraint solving for Haskell that is documented in
(Vytiniotis et al. 2011).

Type checking is divided into two phases: first type inference,
where constraints are generated, then these constraints are solved.
The solution of the solving of these constraints is a set of substitu-
tions and (possibly empty) set of unsolved constraints.

6.1 Example
Consider the following source:

f x = x + 5

The type inferencer will start out by giving f a function type, as it
is specified with one argument. x is its argument, so it gets assigned
the argument’s type.

f :: α→ β
x :: α

By looking up the Num class, it will determine that (+) ::
(Num a) ⇒ a → a → a and 5 :: (Num b) ⇒ b. By
looking at the body of f and how it uses (+), the type infer-
encer will introduce the constraints α ∼ a , b ∼ a and
β ∼ a . So the type inferencer will end with the set of constraints
(α ∼ a, b ∼ a, β ∼ a,Num a,Num b).

The constraint solver can turn all these equality constraints
into substitutions, as they are simple. The result is the substitution
[α 7→ a, β 7→ a, b 7→ a]. Due to the substitution,
the constraint Num b has become unnecessary, as it is equal to
Num a , so only one constraint is left, Num a . This constraint is
left over, which means it gets added to f ’s type signature, making
the final type signature (Num a)⇒ a → a .

6.2 Generating constraints
The important constraints to consider are:

1. Class constraints: a class followed by zero or more types:
D x

In this paper we will only look at classes using exactly one
variable. See also Section 9.1.

2. Equality constraints: constraints demanding two types are
equal:

a ∼ b

We can consider different types of equality constraints:

(a) Impossible: Equality constraints which contain different
concrete types on both sides can not be solved:

Char ∼ Int

This also includes equality constraints where an applied
type is matched with an non-decomposable type:

f a ∼ Int

(b) Simple: Equality constraints which contain a single type
variable on one side:

a ∼ T

(c) Type family: Type families are the only equality constraints
that might need to be specified by the programmer manu-
ally:

F a ∼ T

(d) Applied: Equality constraints which have an applied type
variable on one side, and a different applied type variable or
a concrete type on the other side:

f a ∼ g b
f a ∼ [Int]

6.3 Solving constraints
To solve the generated constraints, a number of different solvers
are applied one after another in a loop. If during one iteration of the
loop no changes are made to the set of remaining constraints, the
loop terminates and the set of constraints that are left is returned. If
this set is non-empty, then these are usually turned into errors.

The different solvers include:

1. Canonicalization: Before constraints are passed to other solvers,
they are canonicalized. This makes the constraints simpler and
ensures that constraints are always following certain rules. For
example, constraints that fail the occurs check are rejected,
nested type families or type families in class constraints are
turned into flat type families (by introducing fresh type vari-
ables) and applied equality constraints are split into simple
equality constraints.
We will use [W] to denote wanted constraints and [G] to denote
given constraints. Some examples of the canonicalization step:
{[W] f a ∼ g b} → {[W] f ∼ g , [W] a ∼ b}
{[W] f a ∼ [Int]} → {[W] f ∼ [], [W] a ∼ Int }

This is allowed because f and g have to be (partially applied)
type constructors: they can’t be a type synonym or type family.
As seen in Section 2.1, every type constructor has at most one
partially applied type for a given kind so it can be unambigu-
ously resolved.

2. Binary interaction: Another solver looks at 2 canonical con-
straints together. For example, a simple equality constraint and
another constraint will apply the equality constraint as a substi-
tution on the other constraint. Having two identical constraints
means one of them can be deleted. Type family constraints with
identical lhs, but different rhs generate an equality constraint
between the rhs and allow one of the two type family constraints
to be deleted. The binary interaction rules only look at two con-
straints that are either both given, or both wanted.
Here are some examples of the binary interaction step:
{[W] Num a, [W] Num a } → {[W] Num a }
{[W] a ∼ T , [W] Num a }
→ {[W] a ∼ T , [W] Num T }

{[W] F Int ∼ [a], [W] F Int ∼ [Int]}
→ {[W] [a] ∼ [Int]}

3. Simplification: The simplifier also looks at 2 canonical con-
straints, but specifically pairs of constraints where one of them

6 2014/4/17

is given (i.e., given by the user by supplying a type signature)
and the other is wanted (i.e., generated during type checking).
Obviously, a given constraint and a wanted constraint that are
identical means the wanted constraint can be deleted. Given
simple equality constraints can also be used as substitutions on
wanted constraints.
Some examples:
{[W] Functor f , [G] Functor f } → {[G] Functor f }
{[W] Functor f , [G] f ∼ g }
→ {[W] Functor g , [G] f ∼ g }

4. Top-level interaction: During top-level interaction, the in-
stances of type classes and type families are used to solve
wanted type class and type family constraints, respectively. This
may introduce new constraints, for example for superclasses of
instances.
For example, suppose the usual Functor [] instance is in scope:
{[W] Functor [a]} → {}

Suppose we have a type family:
type family F x :: ∗
type instance F Int = [Int]

Then the top-level interaction step will do the following:
{[W] a ∼ F Int } → {[W] a ∼ [Int]}

7. Adding Type-Level Lambdas to GHC
We have set out to include our proposed changes in GHC. Our
development started off with the 7.7 version of GHC, which is the
development branch that was later released as GHC 7.8.

These changes consist of 3 parts: the parser is modified to allow
notation with /\ for type-level lambdas, the internal representation
of types is modified to support Λ and the constraint solving is
adapted to take into account the possibility of type-level lambdas
in class instance heads.

/\ is currently valid syntax for a term-level operator. However,
because this is type-level syntax it will not cause problems. With
the GHC extension TypeOperators (The GHC Team 2013), /\
can be used as a valid type operator. We assume that because using
it requires an extension, there will not be many problems with
existing code already using this syntax.

7.1 Parser
The changes to the parser are simple: /\ follows the same rules
as forall: /\ must be followed by one or more types, which can
optionally have a kind signature when KindSignatures is set.

For example:

/\ a . [a]
/\ x . ()
/\ (f :: * -> *) . f Int

7.2 Evaluation of type-level lambdas
We evaluate type-level lambdas greedily: when a type-level lambda
is encountered which is applied to an argument, the substitution is
carried out immediately. We shall show that this can not introduce
non-termination in the type checker.

The type-level language of Haskell can be considered a “typed”
lambda calculus, where Haskell’s kinds form the types. The kinds
form a simply-typed lambda calculus, thus the types are strongly
normalizing. This means that we can not write non-terminating
combinators from the untyped lambda calculus, such as Ω:

ω = (λx.x x)

Ω = ω ω

The ω combinator can not be type checked as its type fails the
occurs check: suppose ω :: τ → σ, then σ = ττ , which means
τ = τ → σ. This equation can not hold for types. Thus Ω also fails
to type check. In GHC, trying to define ω would cause a “Kind
occurs check” error.

Another way we can achieve non-termination is through recur-
sion. Haskell let-bindings can refer to themselves, which can lead
to infinite recursion.

It is impossible to create a recursive definition from lambda
functions alone: they are anonymous, so can not refer to them-
selves. It would be possible with the Y combinator, but a type-level
Y combinator is impossible for the same reason as Ω: it fails the
kind occurs check, in the same way that the Y combinator, without
using newtypes, fails the type occurs check in Haskell.

But, just like how let-bindings in Haskell allow terms to be
named, we can give names to type-level lambdas by defining a type-
level function for it. Haskell currently knows two different forms of
type-level functions:

• Type synonyms
• Type families

Type synonyms can’t be recursive: trying to do recursion or
mutual recursion in type synonyms will give an error “Cycle in
type synonym declarations”.

Type families can be (mutually) recursive, but only when the
UndecidableInstances (The GHC Team 2013) extension is en-
abled. When this extension is not enabled, recursion will be forbid-
den because it will mean the equation has a rhs that does not follow
the rules which require the rhs to be “smaller” than the type family
arguments.

Turning on UndecidableInstances will cause GHC to lift
many of its restrictions that should guarantee termination. With
this flag on, it is already possible to cause infinite loops in the type
checker, so the addition of type-level lambdas does not change that.

7.2.1 Type-level lambdas in instances
The main goal of our work is to allow type-level lambdas in the
heads of type class instance declarations. To avoid problems with
undecidability here, we will allow only well-formed type-level
lambdas as instance heads.

DEFINITION 1. A well-formed lambda function is a lambda func-
tion that can can be constructed using the following grammar:

L := /\ x . L
| T

where T are the type constructors possibly applied to some types,
under the extra condition: every variable x that is bound by a
/\ must occur exactly once as an argument to the inner type
constructor.

In other words, a type-level lambda function is well-formed if
every lambda bound type variable is used exactly once, and the
body of the lambda is either again a type-level lambda, or starts
with a type constructor.

See Figures 17 and 18 for examples of well-formed and non
well-formed types.

The advantage of only allowing well-formed type-level lambda
functions is that their unification is simple, which avoids the unde-
cidability involved with higher-order unification.

7 2014/4/17

Λx . T x y z
Λx . [x]
Λx .Λy .Λz . T z x y

Figure 17. Well-formed types.

Λx . T [x] y z
Λx . T x x z
Λx . [Int]

Figure 18. Not well-formed types.

For most instances given by programmers the well-formedness
restriction should not cause problems: it allows reordering of type
variables (as we intended to do), but no more complicated type-
level functions. In this sense reordered instances are just as power-
ful as instances which can be written without this extension.

Some examples of instances that can not be written as they use
non well-formed type-level lambdas:

• Definition 1 states that the body of a type-level lambda must
start with either another type-level lambda, or a type construc-
tor. Notably, it may not start with a type variable, in particular
the lambda-bound type variables.
This means for example that an instance using Λx . x Int
can not be specified. However, this type would have kind (∗ →
∗) → ∗ (note that this is not the same as ∗ → ∗ → ∗). Classes
using type variables of this kind, or even higher kinds, are quite
rare, at least for now.

• A type-level lambda bound type variable must occur as a direct
argument to the inner type constructor. It may not be inside
another type constructor in the argument.
This means that, for example, Λx . Maybe [x] is not well-
formed. We believe this will not be a problem for Haskell
programmers, as type class arguments are currently always
interpreted to refer to one of the direct arguments of a type
constructor.

• A type-level lambda bound variable must occur exactly once as
an argument to the inner type constructor.
For example, Functor (Λx . (x , x)) is not well-formed. Just
like the previous case, we believe this will not be a problem for
Haskell programmers, as type class arguments are currently al-
ways interpreted to refer to exactly one of the direct arguments
of a type constructor, never multiple at the same time.

• From a category theoretic point of view it might be interesting
to define the identity functor and functor composition. We can
express these with type-level lambdas as can be seen in Figure
19. However, this will not work, as both instances’ heads are
non well-formed.
Although they are interesting, they are not very useful in
Haskell. First of all, with the way instances are resolved in
Haskell the identity functor would overlap with every other
possible Functor instance. When the user would call fmap f
with the intention to use the identity functor (i.e., on a type
with no other functor instance), f x can do the same. Secondly,
when using fmap on composed functors, GHC could not re-
solve whether the call to fmap f is meant to apply on the first
functor alone, or on the composition. fmap (fmap f) can be
used instead to apply to the composition.
Alternatively, it is possible to use the wrappers Identity and
Compose from the transformers package (Gill and Paterson
2009-2012) to obtain identity functors and functor composition.

instance Functor (Λx . x) where
fmap f x = f x

instance (Functor f ,Functor g)
⇒ Functor (Λx . f (g x)) where

fmap f x = fmap (fmap f) x

Figure 19. These instances contain non well-formed types.

7.3 Constraint solving
We can now express type class instances with type-level lambda
instances, but to be able to use them the constraint solver needs to
be able to find and use those instances. This does not, however, re-
quire many changes to the class constraint solver. The changes are
mostly in the solving of equality constraints, specifically applied
equality constraints.

Firstly, the splitting of applied equality constraints as happens
during canonicalization (Section 6.3) is no longer allowed. Suppose
the following data type exists, and in the code fmap is applied to it:

data T x y z = T x y z

foo = ...fmap g (T 1 () ’a’) ...

During type inference, the constraint f a ∼ T Int () Char
will be created. However, we do not yet know how which Functor
instance for T exists. The possible decompositions are therefore:

• f ∼ Λb . T b y z and a ∼ Int

• f ∼ Λb . T x b z and a ∼ ()

• f ∼ Λb . T x y b and a ∼ Char

The constraint can not be split, but it has to be solved as a whole. In
Section 7.3.1 we will set the requirements for how these constraints
can be split (an applied type variable on one side, a concrete type on
the other) and in Section 7.3.2 for the case where both sides consist
of an applied type variable.

7.3.1 Applied-Concrete
Suppose a constraint f a ∼ T x y z is encountered: an applied
type variable on one side, with a concrete type on the other side.

As mentioned in Section 4.5, satisfying all the conditions from
Section 3 at once can only be done when every type still allows only
one instance per type class. We shall therefore keep this restriction
and use it to solve these constraints. When an applied equality
constraint is encountered with a concrete type on the rhs, and a
type class is known that applies to that concrete type, then we use
the type-level lambda used in the class instance to pick the correct
decomposition of the equality constraint.

For example, suppose the following are given:

• The wanted equality constraint: f a ∼ T x y z ,
• for a certain class C , the class constraint C f is given or

wanted,
• and exactly one instance of C for one of the types Λq . T q y z ,

Λq . T x q z or Λq . T x y q

then we may conclude that f ∼ Λ T x y z and thus
a ∼ ... (where ... is determined by the alternative chosen in the
3rd condition).

This may sound demanding, but in many cases all three will
be true. If the first two conditions hold, but the third does not,
constraint solving will fail due to a missing instance of C for T
anyway.

8 2014/4/17

decompose(Q∧ C (Λyi.T y), f a ∼ Tx,C f)

= (f ∼ Λxi.Tx) ∧ (a ∼ xi)
decompose(Q, f a ∼ g b, C f ∧ C g)

= (f ∼ g) ∧ (a ∼ b)

decompose(Q, Q1, Q2 ∧Q3) = Q4

Q ` 〈ᾱ, ϕ,Qg ∧Q3, Qw ∧Q1 ∧Q2〉 ↪→
〈ᾱ, ϕ,Qg ∧Q3, Qw ∧Q2 ∧Q4〉

Figure 20. The applied-concrete and applied-applied type check-
ing rules.

A situation where the first condition holds, but no C exists for
the second and the third conditions should be rare, as we argued
in Section 2.2: this would imply that an applied type variable was
used, but neither the applied type variable itself, nor its arguments
occur anywhere else (for example in a class constraint). In this
situation f a could be replaced by a fresh, single type variable,
which would make the constraint solvable and the code would
receive a more general type.

7.3.2 Applied-applied
For equality constraints of the following form:

f a ∼ g b

we use a similar rule as in Section 7.3.1: if we have a class con-
straint that applies to both f and g , then we may split the constraint
into f ∼ g and a ∼ b.

When we can not find any constraint on both f and g , then the
constraint has to stay unsolved. It could be that a different equality
constraint can find a substitution for f or g and the constraint will
be solved later. If that does not happen, then this constraint should
be reported to the user as an error.

There is one exception to this rule:

f a ∼ f b

will still be decomposed automatically, resulting only in a ∼ b.

7.3.3 Type rules
We can express the typing rules in the previous two sections for-
mally as in Figure 20. Using the notation from In (Vytiniotis et al.
2011), ↪→ is a typing judgment with an input tuple 〈ᾱ, ϕ,Qg, Qw〉
and an output tuple 〈ᾱ′, ϕ′, Q′

g, Q
′
w〉. Here,Q is the top- level envi-

ronment (containing, for example, all defined class instances), Qw
are the wanted constraints and Qg are the given constraints. ᾱ is a
set of touchable variables (the variables which may be substituted)
and ϕ is a set of substitutions. The ↪→ judgment is applied until a
fixed-point is found. In (Vytiniotis et al. 2011) a number of cases
for ↪→ are described, Figure 20 adds a new case to deal with type-
level lambdas in instances. We have also removed a case which is
not explicitly given in (Vytiniotis et al. 2011), namely the rule that
would automatically decompose f a ∼ g b into f ∼ g and
a ∼ b.

The first part of the decompose function in Figure 20 checks the
top-level environment for an instance of the class C for the type f ,
then for an applied-concrete equality constraint and a constraint
C f , which may have come from either the given or wanted
constraints. The equality constraint is then decomposed according
to the type-level lambda used by the instance. The second part

of the decompose function checks for an applied-applied equality
constraint and a type class that applies to both. Then the equality
constraint is split. Here C f and C g may also come from both the
wanted and the given constraints.

7.4 Termination
The goal of the type checker in Haskell is to judge whether pro-
grams are well-behaved within a finite amount of time. It is not a
problem if programs are rejected when they can not be determined
to be well-behaved in a certain amount of time, but it should be im-
possible to have a non well-behaved program accepted by the type
checker.

In particular, this means that it is important that termination of
the constraint solver can still be guaranteed.

To any type, we can assign a depth as follows:

• The depth of a single type variable or a nullary type constructor
is 0.

• The depth of an applied type t a b c... is:

1 + max(depth(t), depth(a), depth(b), depth(c), . . .)

When an applied equality constraint is solved according to one
of the two rules we introduced the result is a number of new equal-
ity constraints. These can again be applied equality constraints. For
example:

[[a]] ∼ f (g x)
[a] ∼ g x , [] ∼ f
a ∼ x , [] ∼ g , [] ∼ f

However, the newly introduced equality constraints will always
have a strictly lower depth than the equality constraint that was
solved, because solving a constraint can not introduce a deeper
nesting level. This implies that infinite loops in equality constraints
are impossible: an equality constraint can only introduce a finite
number of equality constraints of lower depth.

7.5 Implementation
The described changes were implemented as a patch for GHC. The
patch works with the development version 7.7 and can be found on
https://github.com/xnyhps/ghc/tree/TypeLambdaClasses.

8. Results
The code shown in Section 1 now works: fmap changes the first
argument of the data type. As can be seen from this example, no
extra type annotations are necessary and the Functor class used is
unchanged. This means the solution satisfies the two conditions in
Section 3.

In Figure 21 we show an example of a Monad instance, again
defined on the first argument of a data type with three arguments.
Additionally a MaybeT monad transformer is created where the
same type-level lambda is used. From the result it can be seen that
the correct instance was found.

9. Limitations with other GHC features
To become part of GHC, our changes should not only be consistent
with the Haskell 2010 specification (Marlow 2010), but we should
also make sure it works correctly with other GHC extensions, or, if
that is impossible, document why combining those extensions leads
to problems and add warnings to the compiler when users try to use
them at the same time.

9 2014/4/17

import Control .Monad .Trans.Class
import Control .Monad .Trans.Maybe

data T x y z = T x

instance Monad (Λx . T x y z) where
return x = T x
(>>=) (T x) g = g x

bar :: T String Char Int
bar = return "bar"

foo :: MaybeT (Λx . T x Char Int) String
foo = lift bar

*Main> runMaybeT foo
T (Just "bar")

Figure 21. An example of a Monad instance using a type-level
lambda and a MaybeT monad transformer using that same type-
level lambda.

class C f a b where
func :: f a b

instance C (Λx y . (x , y)) Int Char where
func = (1, ’a’)

instance C (Λx y . (y , x)) Char Int where
func = (2, ’b’)

Figure 22. Despite the instance heads appearing very differently,
both funcs have the same type.

9.1 MultiParamTypeClasses
The MultiParamTypeClasses GHC extension (The GHC Team
2013) allows type classes to be specified with multiple type param-
eters.

Combining this with type-level lambda instances can create new
ambiguities, as can be seen in Figure 22.

Without β-evaluating the instance’s type-level lambdas, it is not
clear that these instances overlap. However, foo in both instances
has the type (Int ,Char).

Ambiguity is not necessarily a problem: GHC does not prohibit
two instances to exist which can be ambiguous for some type, only
when a class is resolved and multiple instances match an error is
raised.

However, it will also complicate the solver’s strategy. The solver
currently looks for instances for every possible lambda with the re-
quired number of arguments for a single type. When using multi-
parameter type classes, it meeds to look for every possible lambda
abstraction for each of them. This means that increasing the num-
ber of parameters can lead to an exponential increase in the number
of instances that need to be considered.

Instead of failing on ambiguity only when it occurs, another op-
tion would be to apply the following restriction to multiparameter
type lambda instances: different instances with the same type con-
structor on the lambdas body must use the same type-level lambda.
This would forbid the example in Figure 22, because while both
use the type constructor (,), the order in which they take their
arguments is flipped. The advantage of this restriction is that the
type-level lambda for every parameter can be found independently,
avoiding the exponential increase in cases.

9.2 PolyKinds
Combining the PolyKinds extension (The GHC Team 2013) with
type-level lambda instances currently has some implementation
problems. However, with some more work it should be possible
to eliminate those problems.

When PolyKinds is enabled, type constructors take implicit
kind arguments for all type variables which do not have a fixed
kind.

For example, the datatype T :

data T x y z = T x

Would no longer have type T :: ∀ y z . x → T x y z , but instead:

T :: ∀ (k :: �)
(l :: �)
(x :: ∗)
(y :: k)
(z :: l) .

x → T k l x y z

In practice the user will not see these kinds, so they should not be
considered when selecting the type-level lambda decomposition to
use. This is not yet implemented.

10. Related work
10.1 Guided Higer-Order Unification
As described in Sections 5.3 and 7.2.1, (Neubauer and Thiemann
2002) introduced a similar approach to type-level lambda terms
in instance declarations. However, they also introduced a more
complicated unification strategy known as Guided Higher-Order
Unification (ΛGHOU).

This strategy also tries to keep unification decidable, but does so
in a less restrictive way than our approach. To maintain decidability,
ΛGHOU applies the restrictions:

• Identity type-level functions are not allowed.
Λx . x is forbidden.

• Constant type-level functions are not allowed.
This forbids, for example Λx . Int .

• Type-level projection functions are not allowed.
This forbids functions like Λx y . x .

The well-formedness restriction we have presented in our solu-
tion is more strict, and we will show the differences.

First of all, ΛGHOU allows lambda-abstracted variables to occur
multiple times in the lambda’s body, our well-formedness restric-
tion forbids this and only allows those variables to occur exactly
once. So these are valid ΛGHOU types, but non-well-formed:

Λx . T x x y
Λx . (x , x)

Secondly, ΛGHOU also allows lambda-abstracted variables to
occur arbitrarily “deep” within the lambda’s body, in other words,
nested in (an) extra type constructor(s).

Thus, these are also valid ΛGHOU, but non-well-formed:

Λx . T [x] y z
Λx . [(x , Int)]

As we argued in Section 7.2.1, we believe the extra limitations
we impose on type-level lambdas in type classes will not be a

10 2014/4/17

trait Monad[M[_]] {
def point[A](a: A): M[A]
def bind[A, B](m: M[A])(f: A => M[B]): M[B]

}

class EitherMonad[A]
extends Monad[({type ?[a] = Either[A, a]})#?] {

def point[B](b: B): Either[A, B]
def bind[B, C] (m: Either[A, B])

(f: B => Either[A, C]): Either[A, C]
}

Figure 23. The Monad trait (the Scala equivalent of a type class)
in Scala, with an instance for Either using a type-level lambda,
where the second type variable is used by the Monad .

problem for many programmers, as allowing these would create
instances that are very different from how type classes are currently
used. Programmers can create instances where the order of type
variables doesn’t matter, which was our initial goal.

10.2 Scala
Scala allows type-level lambdas using the following syntax:

({type ?[a] = Either[A, a]})#?

This allows class instances to be specified as can be seen in
Figure 23.

Scala also allows multiple, different instances for the same type.
As mentioned in Section 4.5, this requires a trade-off: in Scala this
is done by giving instances names and passing these instances to the
function with a class constraint. This is more manual work for the
programmer, but it means the implementation for the type checker
can be much simpler than the approach described here: the type
checker always knows which instance to use before type checking
starts, it doesn’t need to find the instance based on the types in the
constraints.

11. Conclusion
We have described a problem caused by the inflexibility of the
combination of type classes and type constructors with multiple
arguments. We have presented a number of potential solutions to
this problem that are currently supported by GHC and explained
how none of them satisfy the desired properties we’ve specified.

After a brief overview of type checking and constraint solving
in Haskell, the concept of type-level lambdas in Haskell was in-
troduced, with a number of restrictions to avoid undecidability in
the type checker. A number of changes were proposed to allow the
constraint solver to deal with type-level lambdas in type class in-
stances. We have demonstrated that this solves the described prob-
lem and has the desired properties we specified, while having only
a small impact on existing Haskell code.

References
T. P. Alkemade. UnitTyped. https://hackage.haskell.org/

package/unittyped, 2012. [Online; accessed 9-April-2014].
C. Elliott. TypeCompose. https://hackage.haskell.org/package/

TypeCompose, 2007-2013. [Online; accessed 10-December-2013].
A. Gill. MTL. https://hackage.haskell.org/package/mtl, 2006-

2012. [Online; accessed 10-December-2013].
A. Gill and R. Paterson. Transformers, 2009-2012. [Online; accessed 10-

December-2013].
G. Gonzalez. mmorph. https://hackage.haskell.org/package/

mmorph, 2013-2014. [Online; accessed 20-February-2014].

C. Hall, K. Hammond, S. P. Jones, and P. Wadler. Type classes in haskell.
ACM Transactions on Programming Languages and Systems, 18:241–
256, 1996.

G. P. Huet. The undecidability of unification in third order logic. Informa-
tion and Control, 22(3):257 – 267, 1973. ISSN 0019-9958.

E. A. Kmett. Bifunctors. https://hackage.haskell.org/package/
bifunctors, 2011-2013. [Online; accessed 10-December-2013].

S. Marlow. Haskell 2010 language report, 2010.
M. Neubauer and P. Thiemann. Type classes with more higher-order poly-

morphism. In Proceedings of the seventh ACM SIGPLAN international
conference on Functional programming, ICFP ’02, pages 179–190, New
York, NY, USA, 2002. ACM. ISBN 1-58113-487-8.

J. Peterson and M. P. Jones. Implementing type classes. In R. Cartwright,
editor, PLDI, pages 227–236. ACM, 1993. ISBN 0-89791-598-4.

The GHC Team. The Glorious Glasgow Haskell Compilation System User’s
Guide, April 2013.

D. Vytiniotis, S. Peyton jones, T. Schrijvers, and M. Sulzmann. Out-
sidein(x) modular type inference with local assumptions. J. Funct. Pro-
gram., 21(4-5):333–412, sep 2011. ISSN 0956-7968.

11 2014/4/17

