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Abstract

In this thesis we consider the multi-depot vehicle routing problem with pickup and
delivery requests with time windows, based on a real world case of a precision trans-
port company. To be able to generate more realistic schedules we include time
dependent travel times in our model. The algorithm can handle alternative pickup
and delivery locations and times, and gives the possibility to generate solutions with
a maximum shift time to make sure driver regulations are respected. This problem
is solved using a simulated annealing approach combined with large neighborhood
operators. The algorithm is guided towards better solutions by using a selection
probability that prefers better changes, and a similarity value to select orders that
are similar to each other. A comparison using a benchmark by Li & Lim shows
that our algorithm is competitive on basic Pickup and Delivery instances with time
windows. To allow for comparison of algorithms in further research we have created
a benchmark for the problem with time dependency and alternative pickup and de-
livery options.

Keywords: Multi Depot, Multi Vehicle, Pickup & Delivery, Alternative Locations,
Local Search, Simulated Annealing, Large Neighborhood Search, Time Dependent
Travel Time, Insertion, Similarity, Benchmark
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Chapter 1

Introduction

Transportation is an important issue. In the Netherlands alone there are over 10.000
companies involved in transporting goods. This brings forward many challenges,
from packing and sorting the goods to planning the routes the vehicles take to de-
liver the orders. Because competition in this sector is tough, every advantage counts.
Efficiency is a key factor in gaining this advantage. In this thesis we study methods
for solving the routing of the vehicles as efficiently as possible for practical and the-
oretical cases.

The most common routing problem is the standard vehicle routing problem. An
example of this problem is the delivery of mail. There is a fleet of vehicles that all
depart from a given starting point, called the depot. At this depot they load the
mail that has to be delivered to all the customers into the vehicles. The goal is to
create the most efficient set of routes possible for this fleet of vehicles. With this
type of vehicle routing many practical transportation problems can be modeled and
solved. In this paper we will discuss a different kind of routing problem, namely the
pickup and delivery problem (PDP). A good example of this is a moving company,
which moves boxed office equipment from one location to another. Instead of a sin-
gle starting location at which all the cargo is loaded, like in the previous example,
in the PDP there are many locations where boxes have to be picked up. Once a
box is picked up, it has to be delivered at a given destination. Instead of a group of
locations that can all be treated the same, there are two different types of locations:
pickup locations and delivery locations. Boxes are picked up at the pickup locations
and then moved to their corresponding delivery location. Where in simpler cases
pickups could be left out of the algorithm because they were all picked up at the
same location, they now have to be included in the planning process.

In this thesis we will describe an algorithm that can solve such a PDP, with a
number of extensions. The problem that will be studied is based on a real world
transportation optimization case for a precision transport company. Precision trans-
port means the transport of vulnerable, high value equipment like pianos, printers,
medical and scientific equipment etc. Although the studied problem is based on
this practical case, the algorithm is created to solve a more general problem that
includes this particular problem. In essence the problem we are solving is a Pickup
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and Delivery problem with time windows (PDPTW), where all the pickups and de-
liveries have a time window in which they can be serviced. Every day this company
services a number of orders from their clients. Most of the orders are a combination
of a pickup and a delivery at two different locations, but an order can also be an
internal relocation where both the pickup and the delivery are at the same loca-
tion. This company has a number of vehicles at its disposal to service these orders.
These vehicles are all assigned to a depot, selected from a set of one or more depots
that belong to the company. The vehicles start their day at the depot to which they
are assigned, service their orders, and return to the same depot at the end of the day.

We create an algorithm to solve this problem using a combination of Simulated
Annealing and Large Neighborhood Search, which will both be explained later. We
also consider extensions to the basic problem that allow for more detailed problems
to be solved: Time-dependent travel times, alternative pickups and deliveries, het-
erogenous vehicles and maximum shift times to accommodate the drivers.

Alternative pickups and deliveries can be used to give the algorithm more flexi-
bility in planning the orders. From the alternative pickups and deliveries one pickup
and one delivery should be chosen. With these alternatives a situation could be
modeled where a pickup can be done on Monday morning at a work address or
Thursday evening at a home address for example. From these alternatives the algo-
rithm should choose the option that fits the schedule best.

In reality travel times are not always the same, they change over time. If this
aspect could be included in the planning algorithms, more realistic schedules could
be made. Also roads that are very likely to have traffic jams could be avoided during
rush hour. Not only rush hours but any event that has a predictable influence on
travel times could be included. An important feature of our algorithm is the possi-
bility to include time-dependent travel times.

We will describe an algorithm to solve the basic PDPTW with the extensions of
time-dependent travel time and alternative pickup and delivery locations. First, in
Chapter 2, a description of the problem that is the subject of this study will be given.
In Chapter 3 the literature on this subject that is already available is reviewed. Then
in Chapter 4 we explain the algorithm we created to solve this problem, including
the extensions to the basic problem. Chapter 5 will contain the results of the ex-
periments we did with this algorithm as well as a comparison to similar algorithms.
We end with a conclusion in Chapter 6, in which we reflect on the algorithm and
review the advantages and disadvantages of the used approach. Also future research
and improvements will be discussed in this last chapter.
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Chapter 2

Problem Definition

2.1 Basic Problem

In the problem that we solve, a schedule has to be made that routes vehicles as
efficiently as possible to be able to pick up and deliver a number of orders. In this
chapter we will describe all the aspects of this in detail.

Orders & Depots

A problem instance contains |O| orders, where O is the set that contains all orders.
In the regular PDP every order consists of one pickup and one delivery node, where
for every order the pickup is planned before the delivery, and both parts of the order
are served by the same vehicle. This means that an order o ∈ O consists of exactly
one pickup and one delivery node. All pickup nodes together form the set P and all
delivery nodes the set D. For every order o ∈ O the pickup and delivery node have
to be served, or none of them if the order can not be planned. It is impossible to
have a pickup serviced without the delivery or vice versa.

In addition to the order nodes there is a set of depot nodes E. These represent
the depots the vehicles depart from and return to. There has to be at least one
depot node. All pickup and delivery nodes together with the depot nodes E form a
graph where all nodes are connected to all other nodes. Every arc (i, j) going from
node i to j gets assigned a driving distance dij and a driving time dtij. All pickups
and deliveries have a time window [ai, bi] in which they must be served. Service at
location i takes serviceT imei units of time. The service must be finished before bi.

Vehicles and Capacity

For servicing these orders a fleet of |V | heterogenous vehicles is available. All of
these vehicles start from a given depot e ∈ E at which they end as well. Because
vehicles can only carry a certain amount of cargo all vehicles v ∈ V get a capacity
Qv. The capacity can be different for every vehicle. As there are different vehicles,
these vehicles can be assigned different costs. That is why we introduce the fixed
vehicle cost, fcostv and variable cost per time unit (drivingcostv,workingcostv and
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waitingcostv) and per distance unit vcostv. The fixed cost for a vehicle is the penalty
contribution that is given for every day that this vehicle is in use. The variable cost
can represent gasoline usage and drivers’ wage for example.

A vehicle can never carry more cargo at the same time than its capacity allows
for. Every pickup gets a positive load qi equal to the weight of the object to be
transported, and every delivery gets a load equal to the negative weight of the ob-
ject that is delivered. In this way you can keep track of the total weight carried at
every node by taking the sum of all loads from previous nodes visited by the same
vehicle. Once a vehicle picks up an order i it keeps this order on board until it is
delivered, which means that the available capacity of the vehicle is reduced by qi
until the order is delivered. A vehicle can not transfer picked up cargo to another
vehicle.

In practice linear models for describing capacity are often not adequate. The num-
ber of orders that fit in a vehicle depends on the dimensions of the vehicle and the
orders to be transported. For example, a package may not fit in a vehicle due to
its dimensions, while the weight of the package does not exceed the capacity of the
vehicle. For this research we have chosen to use a simple capacity model, because we
want the model to be generic. For specific cases other ways of describing capacity
could be used.

Routes

A planning can be made for a planning window of one or multiple days. Every
vehicle v ∈ V has a set of time periods Wv in which it is available. This set can be
used to represent the days at which vehicle v is available in the planning window.
To every time period w ∈ W one route can be assigned that fits inside this time
period.

A route r is a sequence (r1, r2, .., rk) of actions to be serviced. A route always
starts and ends with an action at a depot node e ∈ E, and represents the schedule
of a vehicle v ∈ V for a single time period w ∈ Wv. The set of all routes that are
driven forms the schedule.

Actions

An action a describes visiting a node nodea ∈ N (where N is the set containing all
pickup, delivery and depot nodes) and performing the service corresponding to that
node. This can be a picking up an order, delivering and installing an order or the
preparation of a vehicle at the depot. An action has a start time starta, and an end
time of starta + serviceT imenodea . The set of all actions is defined as A. The set of
all planned actions for a subset of nodes N ′ ⊆ N is A′N .
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2.2 Extensions

In addition to the basic Pickup and Delivery problem we introduce a number of
extensions. These extensions allow for a broader range of problems to be solved.
Another reason for these extensions is that because more information can be used,
the algorithm should be able to generate solutions that relate to reality better.

2.2.1 Alternative Pickup and Delivery Locations

We add the possibility to define orders that have multiple alternative pickups and
deliveries, of which one pickup and one delivery have to be chosen. These alternative
actions have their own time window, and may also have different locations. Alter-
native pickups and deliveries can be used for the purpose of allowing multiple time
window and location combinations per order to improve planning flexibility. For
instance one can say that an order can be picked up on a Monday morning between
9:00 and 12:00 or at a Thursday afternoon between 15:00 and 17:00. If there are
many orders scheduled for Monday morning, then we could plan the order at the
Thursday.

This means that an order o ∈ O consists of a set of pickup and delivery nodes
Po and Do, instead of a single pickup and delivery. For every order o exactly one of
the pickup nodes in Po has to be serviced, and exactly one of the nodes in Do (or
none at all if the order is not scheduled). This addition may be useful in a number
of situations that occur in practice, such as different delivery locations over time for
traveling customers.

2.2.2 Maximum Shift Time

There are limits to the number of hours an employee can and may work contiguously.
To make the solutions more realistic we introduce shifts. A shift starts and ends
at a depot, and represents a period of contiguous work for one driver. For example
if a route r starts at 5:00 am and ends at 10:00 pm. This adds up to a total of
17 hours. Say we use a realistic maximum work time for a driver of 8 contiguous
hours per day. As these 17 hours exceed the maximum time a driver can work on
one day this route could be split into three shifts of 7, 7 and 3 hours, which are all
less than the maximum of 8 hours. After every shift the vehicle has to return to the
depot to exchange drivers. Of course this takes up time because the vehicle has to
return to the depot, and there has to be enough time for the drivers to exchange.
The maximum time that is allowed for a shift is maxshifttime. This is the same
for all drivers. The maximum time for a shift is not a hard constraint, however
exceeding the shift time will add a penalty value. This choice is made because
sometimes it may be desirable to allow for a little overtime to be able to plan more
orders. However only small overtime values should be allowed, because drivers can
not be expected to work more than they are allowed to. Although maximum shift
time is considered when scheduling the actual driver schedules are not created. This
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extension makes sure there are no shifts that are impossible to assign to any of the
drivers. This approach only works with identical drivers. If the orders or vehicles
have requirements that not all drivers meet, driver schedules have to be taken into
account as well.

2.2.3 Time Dependent Travel Time

One of our main research goals is to implement an algorithm that can handle time-
dependent travel times and distances. For achieving this, another parameter has to
be added to all of the arcs: time. Every arc (i, j) going from node i to j now has a
driving distance dijt and a driving time dtijt which depend on the time of departure t
from node i. The distance can differ, because a different route from point a to b can
become preferable. In this way you can include the effects of rush hours, weather
conditions and events on the driving time to increase the accuracy of the planning.
These time-dependent times work on the assumption that the FIFO (First In First
Out) property holds. FIFO means that if you leave earlier you always arrive earlier
or at the same time. A result of this is that if a vehicle drives an arc (i, j) at time t
it always arrives at node j earlier or at the same time than when the departure time
is later than t. Time dependent travel distances do not impose new restrictions,
only a change in penalty contributions. A change in travel time however causes new
restrictions on the possibility to add certain orders on a particular time, as the total
travel time may increase and render the solution impossible.

2.3 Model

Given this problem description we create a model that describes the problem more
formally. First we will describe the most important parameters that need to be taken
into account when solving the problem. Secondly we will describe the constraints,
and finally the objective function.

2.3.1 Parameters

These are the most important parameters. They are known beforehand, and are
used to describe the problem instance.

P : set of Pickup Nodes.
D : set of Delivery Nodes.
E : set of Depot Nodes.
N : set of all Nodes N = P ∪D ∪ E.
V : set of Vehicles.
O : set of Orders.
Po : set of Pickup Nodes that belong to order o ∈ O.
Do : set of Delivery Nodes that belong to order o ∈ O.
Wv : set of time windows [wsv, wev] in which vehicle v ∈ V is available.
Qv : capacity of vehicle v ∈ V .
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depotv : indicates the depot e ∈ E that vehicle v ∈ V starts and ends its
routes on.

vcostv, fcostv, drivingcostv, waitingcostv, workingcostv : All the penalty values for
vehicle v ∈ V . These values define weights in the objective function.

dijt : distance in centimeters between nodes i and j when departing
from node i at time t, dijt ≥ 0∀(i, j) ∈ N∀t.

dtijt : time in seconds it takes to get from node i to node j when de-
parting from node i at time t, dtijt ≥ 0∀(i, j) ∈ N∀t.

[twsi, twei] : time window for node i. This node can only get service between
twsi and twei.

qi : the value that is subtracted from the remaining capacity of the
vehicle v ∈ V that visits location i. The value of qi is negative for
deliveries and positive for pickups. For all other nodes qi is 0.

serviceT imei : the duration of service at node i.
maxshifttime : indicates the limit of time per shift.
maxtime : indicates the limit on the planning horizon.

2.3.2 Constraints

Because this problem is based on a practical case, it comes with many constraints.
The constraints we will describe next are all hard constraints. This means that these
constraints can not be violated.

Order constraints

All of the orders have the possibility to be either fully planned or not planned. This
means that for every order there is the possibility to have exactly one pickup action
planned and exactly one delivery action planned, or no actions planned at all. It is
not possible to plan a delivery action without a pickup action and vice versa, or to
plan more than one pickup or delivery action for an order.

Route and Shift constraints

There are a number of constraints on routes and shifts. Every vehicle v ∈ V has
a set of time windows w ∈ Wv in which it is available. These time windows never
overlap other time windows of the same vehicle, because two overlapping time win-
dows could be described as a single time window. At most one route r ∈ R can
be assigned to every time window, if it satisfies the condition that all of the actions
in r can be planned inside the time window of w. The starting time of the first
action of this route should be greater than or equal to wsw and the end time of the
latest action should be less than or equal to wew. Furthermore, the routes have to
be chosen so that none of the order constraints are violated.

A shift is defined as the part of a route that starts and ends at a depot. Since
all routes start and end at a depot, all the actions of a route have to be part of a
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shift as well. A route can consist of one or multiple shifts, depending on the number
of depot visits inside the route.

Time Constraints

Time imposes many constraints upon our problem. The first constraint is that all
routes have to be inside the given planning window, i.e. the start time of all routes
has to be greater than or equal to 0 and less than or equal to maxtime, the limit
of the planning window. When an action a is planned it has to be planned inside
its time window. It must start after twsa and the service must be completed before
twea; the start time of a must be less than or equal to twea − serviceT imea.

A solution is invalid if the planning is too tight to allow for the vehicle to arrive at its
next location in time. To guarantee that this will never happen we define a constraint
on all actions: An action a can never be planned earlier than the earliest possible
arrival time, given the properties of the previously planned action preva. The start
time of action a (starta) should be greater than or equal to the start time of preva,
plus the service time at the previous location, and the travel time from the previous
location to the location of a when departing at time startpreva + serviceT imepreva .
This constraint ensures that an action is never planned earlier than it can be ser-
viced. Since it is done for all actions it also ensures that none of the orders can be
planned too late, because the constraint would be broken for the next action. It
also ensures the trivial constraint that an order can never be planned later than its
successor, or earlier than its predecessor.

Precedence Constraints

In the PDP pickup and delivery actions are not only constrained by time but they
also put constraints on each other. For all orders the delivery action must always be
planned later than the pickup action, because you can not deliver a package before
it is even picked up. Also, it should not be possible to let the pickup and delivery
actions of an order be delivered by a different vehicle, because transferring orders
between vehicles is not allowed.

Capacity Constraints

Besides the time constraints there are other constraints on the vehicles to take into
account. All the vehicles have a capacity Qv, which indicates the amount of goods
it can carry at any given time. The load a vehicle carries can never exceed Qv at
any moment in the planning. The orders’ weight is subtracted from the remaining
capacity of the vehicle at the moment the order is picked up and it is added again
after the order is delivered.
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2.3.3 Objective Function

Given this description of the problem our goal is to minimize the following function:

α · Unplanned(S) + β · V ehicles(S) + γ ·Distance(S) + δ · Time(S) (2.1)

The objective function consists of four parts. Unplanned(S) stands for the number
of unplanned orders in solution S. V ehicles(S) is the number of vehicles used in the
solution. Distance(S) is the total distance driven by all of the vehicles. Time(S)
is the sum of all time related penalties. The combination of these four parts are
minimized, with the given weights α, β, γ and δ.

The objectives mentioned above are conflicting. Improving one of the objectives
may deteriorate the other objectives. As a simple example, when optimizing cost
and customer satisfaction, if no expenses are spared to make the customer as com-
fortable as possible, it will hurt the profits. On the other side, doing everything with
minimal expenses might leave the customer with inferior service. In other words,
there is no solution possible where both objectives are optimal. We deal with this
by giving weights to the different objectives. More important objectives get a higher
weight. In this way, if two objectives are conflicting, the solution that has the lowest
cost of all objectives combined given their weights gets preferred.

The values for α, β, γ and δ can be de adjusted to fit the problem to be solved. The
value of α is always relatively high, because planning all orders is often the most
important objective (unless the goal is to find orders to outsource). The values for
β, γ and δ depend on the problem to be solved. If drivers are relatively expensive
the number of vehicles used is an important objective to minimize, because every
vehicle needs a driver. If the variable cost of driving vehicles is relatively high we
would prefer minimizing the total distance driven and the driving time.

Number of vehicles

Minimizing the number of vehicles used is necessary, because costs increase when
more vehicles are used. Every vehicle needs a driver, and in addition the fleet size
can be smaller if the number of vehicles needed to service the orders is lower. The
objective is defined as follows:∑

v∈V

∑
r∈R(S)

fcostv · drivesvr (2.2)

Here, R(S) is the set of routes used in solution S. drivesvr indicates if a vehicle
v ∈ V drives route r; the value of drivesvr is 1 if vehicle v drives route r, and 0
otherwise.
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Distance

We want solutions to be as efficient as possible. That is why we want to minimize
the distance driven. Different vehicles can have a different cost per distance unit.
Take for example a fleet of vehicles with a number of old inefficient vehicles and a
number of new vehicles that are very eco-friendly and efficient. The company with
this fleet would prefer to use the newer part of the fleet because these vehicles use
less fuel per kilometer driven, which minimizes the driving cost and also contributes
to a better reputation for the company. Therefore it should be possible to define the
variable cost vcostv for each vehicle separately. This objective is defined as the total
weighted distance driven by all vehicles, where the weight of a vehicle v is equal to
its variable cost vcostv.

Time

Another important aspect of the objective function is time. The time objective
consists of three parts: Driving Time, Waiting Time, and Working Time. Driving
time is the total time the vehicles spend traveling between locations. The waiting
time between two actions is the idle time. When a vehicle departs at a location a at
time t when work is finished, it would arrive at the next location b at time t + tabt.
If this arrival time at b is earlier than the start of work at location b there would
be a waiting time which is the difference between the start of work at location b
and the arrival time. The final part is the time spent on orders, which can differ if
alternatives for pickups and deliveries are defined.
The weights of these three parts of the time objective can be adjusted for different
situations. In a realistic problem, an important goal is to minimize the total cost.
The total time of a shift indicates the number of hours a driver has to work. Shift
time is variable, and depends on the amount of time it takes to service the orders
in the shift. In this case waiting time is unwanted, because there is no productivity
but there are still costs. However, equal cost for waiting time and driving time could
lead to inefficient routes, because detours would have no effect (except for the dis-
tance penalty) on the value of the objective function. Weights are determined per
vehicle. This is because different vehicles could have a different impact on the quality.

The second aspect in determining the time penalty is overtime. When we have
determined a maximum shift time maxshifttime, we add an overtime penalty for
every shift which time exceeds maxshifttime. The overtime penalty is equal to∑

s∈S max(0, shiftT imes−maxshifttime)x. Here x determines the speed at which
the overtime penalty increases. Because of the exponential formulation, the shift
time can be exceeded by a small amount, but as the overtime increases the penalty
quickly rises to a high value.

10



The time objective can be defined as follows:∑
v∈V

∑
w∈Wv

∑
r∈R

(travelcostv · travelT ime(r) + waitingcostv · waitingT ime(r)

+workingcostv · workingT ime(r) +
∑
s∈Sr

((duration(s)−maxshifttime)x))
(2.3)

Where travelT ime(r) is the time travelled in a route r, waitingT ime(r) is the time
a vehicle is waiting in route r and workingT ime(r) is the total time spent working
at location (the sum of service times) in route r. The set Sr contains all shifts driven
in route r, and duration(s) is the total duration of shift s.
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Chapter 3

Literature

Many versions of the Pickup and Delivery problem (PDP) have been studied over
the last decades. There are a number of different instantiations of the PDP. The
generalized problem is a problem with characteristics that return in all of these
different instantiations of the PDP. Savelsbergh and Sol [1995] describe this general-
ized version of the pickup and delivery problem. They define the generalized PDP to
consist of a set of transportation requests which are serviced in a number of routes.
A route starts at a given node and ends at another given node, which may be the
same, and is driven by one vehicle k. Between the start and end node a number of
pickup and a number of delivery nodes are included in the route. For every delivery
node there is a corresponding pickup node. All of the nodes are served only once by
a vehicle k. During the whole route the vehicle load never exceeds it capacity. The
whole solution is a set of routes, for which it holds that every pickup and delivery
node is visited exactly once. They also consider a number of more specific problems
individually, including the pickup and delivery problem with time windows. On
all of the problems that are covered additional literature is given. They divide the
problems that are covered in three categories: Pickup and Delivery for goods, for
passengers (Dial-a-Ride Problem), and the standard vehicle routing problem, where
all the pickups are located at the depot. These problems are all PDPs, but they
have different constraints and properties. The problem we are going to solve is a
PDP for goods, with time windows.

3.1 Approaches for solving the PDP

In literature there are many ways in which the PDP for goods is solved. We will
give an overview of the literature on this subject, categorized by the approach used
to solve the problem.

3.1.1 Exact methods

Since the PDP is proven to be NP-hard (see Lenstra and Rinnooy Kan [1981]) solv-
ing these problems to optimality is very hard, and larger instances can not be solved
in a reasonable amount of time. Often exact approaches in literature use a column
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generation approach. For solving large mixed integer problems like the PDPTW
branch-and-price (see Barnhart et al. [1998]) can be used. This approach works as
follows. A mixed integer program can be expressed as an objective function that has
to be minimized or maximized, a set of parameters, a set of decision variables and a
set of constraints. Because in these problems there are often too many variables to
consider, and most of these variables are not used at all, the problem is solved using
a subset of the variables. The LP-relaxation of this subproblem is solved. Then,
to find out whether improvement upon the current solution is possible a pricing
problem is solved. With the pricing problem we find the variable that improves the
solution most if included, and add this variable to the subset of variables to consider.
If no such variable exists, and the solution is integral, the optimal solution is found.
If it is not integral, branching is applied; for each node (branch) a lower bound is
computed by solving the LP-relaxation again using column generation.

Sol and Savelsbergh [1994] used a branch-and-price approach to solve small sized in-
stances (50 orders) of the PDPTW. They formulate the problem as a set partitioning
problem. They consider two different implementations of the pricing problem, and
two implementations of branching. Their results, on a set of randomly generated
problem instances are good: most of the time the optimal solution is found. Fur-
thermore they state that their algorithm can easily be adapted to an approximation
algorithm to solve larger problem instances.

Although the problem can be solved very well using column generation techniques,
even for a reasonable number of customers, we are uncertain if it would be possible
to solve highly constrained large instances using the column generation approach.
Especially with the addition of time-dependent travel times solving the problem
would probably become very hard using this method. More literature on solving
vehicle routing problems in an exact fashion can be found in the paper by Baldacci
et al. [2010].

3.1.2 Metaheuristics

In problems where exhaustive search is not possible due to the size of the search
space metaheuristics can be used. Metaheuristics guide the search process to try
and find a good solution. These methods are not guaranteed to find the optimal
solution, because not all possible solutions are tried, and the search may end in a lo-
cal optimum. Because the PDP usually has a large search space, metaheuristics can
be used to find good solutions in a reasonable amount of time. Also most of these
methods are very flexible, making it easier to adapt to new problems. In literature
many methods can be found that solve this problem using metaheuristics. We will
summarize a few of these methods to give an understanding of the possibilities, and
the previous accomplishments in this area.

First we will introduce some concepts often used in non-exact algorithms. All of
these algorithms have a current solution (or in case of the genetic algorithms, a
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population of solutions) to which small modifications are made to improve it. A
simple greedy algorithm can be used to generate an initial solution to start with.
The neighborhood space consists of all solutions that are reachable from the current
solution by making a single modification of a specified type to it. The type of modi-
fication is determined by the operator used. An operator is a predefined method for
making changes to a solution, for example removal and reinsertion of one random
order. In this way the search space, which contains all possible solutions, is explored.
All solutions in the search space have a fitness value, which describes their quality.
The solution with the best fitness value is the global optimum. A solution that has
no solutions in its neighborhood that are better is called a local optimum.

Hill climbing

One of the most basic methods for improving solutions of large problems is hill
climbing (see Tovey [1985]). The hill climbing algorithm improves a solution by
repeatedly selecting new solutions from the neighborhood space of the current so-
lution. Only new solutions that are an improvement to the current solution are
accepted. There is a large possibility that the algorithm gets stuck in a local op-
timum, because it has no way of escaping from local optima. The final solution
depends on the starting solution, and the operators used. The problem of getting
stuck in local optima can be partially overcome by restarting a number of times. In
this way, different parts of the search space can be explored to find a better solution.

For the reasons mentioned above hill climbing is mainly used as part of a more
sophisticated algorithm. The main advantage of hill climbing is that it is able to
quickly improve a solution.

Tabu Search

Tabu search (see Glover [1989]) is a metaheuristic that keeps a list of previously
visited solutions: the tabu list. In every step of the algorithm a neighborhood is
searched and the best solution in that neighborhood that is not on the tabu list
becomes the new current solution. This process is repeated for a given amount of
time, or until no more improvement was found for a number of iterations.

Cordeau and Laporte [2003] have created a method using Tabu Search for solv-
ing a largely similar problem as the PDP, namely the Dial-a-Ride Problem (DARP).
Here people are transported instead of goods. An example could be public transport
in rural areas, where people have to make a call to be picked up. The difference
with the problem we are treating is that people do not want to take large detours,
because they want to be at their destination as fast as possible, while transported
goods do not care about detours. To give more flexibility to the searching pro-
cess the authors allow infeasible solutions. All the time constraints, and capacity
constraints may be exceeded. To guide this possibly infeasible solution to a feasi-
ble one the penalties given for violations are dynamic. First they start with low
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penalties for exceeding constraints. Over time these penalties get higher, so that at
the end of the process infeasible solutions are too costly to be allowed. Allowing
infeasible solutions makes it easier to find a solution to start the search process from.

Creating an initial solution is easy, as the authors allow time and capacity con-
straints to be broken. The initial solution is created by randomly assigning every
request, consisting of a pickup and a delivery, to a randomly selected vehicle. The
delivery is always placed after the pickup. In this way you are certain that a pickup
always comes first, and the delivery is placed in the same route.

When a request is transferred to another route, computing the impact of this change
can be costly, because all of the other requests in the route may be influenced by this
change. The impact on the quality of the solution of removing a pair of vertices and
inserting them into another route is computed with the help of the slack value Fi

(see Savelsbergh [1992]). Fi indicates the forward slack of a node. Forward slack is
the maximum time a node i can be moved forward in time without changing the end
time of the route. First the time window constraint violations are minimized, then
the route duration is minimized without increasing the penalty for exceeding time
window constraints. The method they describe gives optimal departure and arrival
times for a given route in a quick fashion. The impact is the difference between the
result of this calculation and the routes before the transfer of nodes.

In their conclusion the authors state that their method is easily adapted to other
routing problems with time windows, such as our version of the PDP.

Simulated Annealing

Simulated Annealing (see Kirkpatrick et al. [1983]) is a local search method like
Tabu Search. It works with a temperature that gradually gets lower as the algo-
rithm proceeds. At the start, when the temperature is high, worse solutions are
accepted with high likelihood to be able to search a large part of the search space
without getting stuck in local optima. As the temperature decreases the probability
of allowing solutions worse than the current one decreases with it. Solutions that
are worse than the current one get accepted with the probability value as described
in Equation 3.1. Here temperature is the current temperature and difference is
the new fitness value minus the old fitness value, which is always a positive value
because acceptance probability is only calculate when considering worse solutions,
and the higher the fitness value the worse the solution is.

e
−difference
temperature (3.1)

For a predetermined number of iterations or amount of time new solutions are cho-
sen randomly from the neighborhood space, which is the space accessible by making
a single modification to the current solution.
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Şahin et al. [2012] wrote about their research on a special case of the PDPTW
where they allow loads to be split among different vehicles. They use an interesting
algorithm that combines Tabu Search with Simulated Annealing: Tabu Embedded
Simulated Annealing (TESA). When selecting a new neighbour from the neighbor-
hood space they do not take the best non-tabu neighbour. Instead they choose a
new solution from a set of good non-tabu neighbours. If the selected neighbour is
worse than the current solution, it is selected with a probability like in simulated
annealing. For creating an initial solution they use an adaption of the savings algo-
rithm by Clarke and Wright [1964]. After creating an initial solution the algorithm
performs four stages for a number of times. Every stage uses a different neighbor-
hood to search, until no more improvement is found. The authors of this paper state
that the algorithm performed considerably better with simulated annealing and tabu
search combined than with only tabu search. When they experimented with only
Tabu Search the algorithm got stuck on local optima more often. Furthermore one
of the disadvantages of Simulated Annealing, the lack of memory based decision
making, is overcome by using tabu lists.

More literature on solving the PDPTW with simulated annealing can be found
in Zidi et al. [2012].

Genetic Algorithms

Genetic algorithms are another good option for solving optimization problems. A
genetic algorithm is based on the way natural evolution works. The algorithm starts
with a population of solutions, called individuals, which are described as dna strings.
This string usually consists of a number of binary parameters, but these variables
can also get other values. The idea is that the population evolves over time by
competing with each other.

First an initial population is created, this can just be a group of random solutions.
In every iteration, which is called a generation, a set of individuals is selected. This
selection is usually based on fitness of the individuals. There are different ways to
make this selection. An example is to select the best half of the population, or let
all individuals compete in a tournament to select the ones that perform best. The
selected individuals are copied, and all of the copies are changed using mutation or
recombination operators. Mutations modify an individual a little by changing one
or multiple values. Recombination operators, as the name suggests, recombine two
individuals by selecting a part of the first and a part of the second individual. Local
search can be used to improve the modified copies before letting them compete with
the old population again. After the mutation/recombination phase the algorithm
starts over at the selection phase again. This is repeated until a certain criterion is
met.

Chevrier et al. [2012] created a hybrid evolutionary algorithm for solving a DARP.
Solutions are simply encoded as strings of pickups and deliveries in a given order for
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every vehicle. The ordering in this string is the order in which the vehicle visits the
nodes. In every string all the characters have to appear twice. The first occurrence is
the pickup and the second occurrence is the delivery. It is assumed that all vehicles
start and end at the depot, so this does not have to be included in the strings. The
algorithm repeats a process of selection, crossover and mutation on a population.
After the mutation step a hill climbing algorithm is applied using 2-opt and shifting
of customers between routes, making the algorithm hybrid.

A relatively new evolutionary computing method which we will not discuss in this
paper is particle swarm optimization. For those interested, Sombuntham and Ka-
chitvichayanukul [2010] wrote two papers about this topic.

Large Neighborhood Search

Large Neighborhood Search (LNS) is another method that is often mentioned in
literature about the PDP. Where the neighborhoods in the metaheuristic methods
mentioned before only allow small modifications to the current solution, LNS neigh-
borhoods are much larger and could allow for a large part of the solution to be
changed in one iteration. These larger neighborhoods make it easier for the algo-
rithm to escape from local optima, but naturally take more time to compute.

Ropke and Pisinger [2006] used LNS to solve the PDPTW. They use an adaptive
approach, which means that the improvement history of all the operators defines
the chance of using them again. Operators with a better chance of improving the
solution get picked more often. The operator they use removes a number of orders
from the solution and inserts them again. Different ways of removing and insert-
ing orders can be combined to create operators. They combine this LNS method
with simulated annealing. They keep a temperature just like in simulated annealing,
which determines the chance that the changes made by the operator get accepted.
While the LSN operators worked very well for improving a solution, they were not
able to reduce the number of vehicles sufficiently. This is why they created a two-
phase approach. In the first phase the number of vehicles is reduced by solving the
problem until all orders are planned; then they remove a vehicle and try to solve the
problem again. This continues until the number of vehicles is no longer sufficient
to service all orders in the given time without violating the constraints. Then one
more vehicle is added and the algorithm goes to phase two, which tries to improve
this solution with the minimum number of vehicles as much as possible.

3.2 Extensions of the PDP

3.2.1 Time Dependant Travel Time

One of the main research questions of this thesis is how to include time dependent
travel times in a proper way. The literature on vehicle routing problems using time
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dependent travel times is relatively sparse.

Ichoua et al. [2003] created a model for solving this problem. There are many
ways to describe time dependent travel times. Discrete travel time or cost func-
tions could be used. This means that per time interval travel times can change to
a new value. This could result in large sudden changes in travel time. In reality
travel time increases and decreases continuously. The authors of this paper chose
for a continuous travel time function, where they work with travel speeds instead of
travel time. The travel speeds can change per unit of time and affect the travel time
from location to location. They set the travel speeds for a number of points in time.
The values in between these points are linearly interpolated. They use a parallel
tabu search algorithm to solve the problem with time dependent travel times. A
lateness penalty is used to indicate the badness of a solution. Total lateness is the
sum of lateness for all actions. Calculating the influence of an insertion or removal
of an action becomes more expensive with time dependent travel times, because the
travel times for all actions can change as an effect of a single change.

A number of algorithms that are adapted for calculating travel times that depend
on several factors such as weather conditions, traffic information and events are de-
scribed by Van Zeijl [2013]. These time dependent algorithms are based on existing
algorithms for finding shortest paths. For real-world problem instances this research
can improve the solution quality considerably, because important topical informa-
tion is considered when creating the routes.

More information on time dependency in Pickup and Delivery problems can be
found in a paper by Donati et al. [2008]. They use an ant colony optimization
approach for solving the problem with time dependent travel times.

3.2.2 Dynamic PDP

We define a PDP as static if all of the orders and driving times are known before
the planning is made, and no changes can be made during the execution of the
schedule. In many practical cases however the problem is dynamic, meaning that
changes can be made to the problem during execution. New orders can be added
and orders can be removed or modified. The need for these changes can be caused
by vehicles getting stuck in traffic, and arriving late at their destination, or due
to missing information at the time the schedule is made. These changes can be
resolved in different ways. An option is to compute a static variant of the prob-
lem any time a change occurs, while trying to keep most of the old schedule intact.
Also all actions that are performed before the moment the change occurs can no
longer be modified. Because these new schedules have to be created on the fly, a
fast algorithm is required. When adding new orders during execution a fast way
to modify the existing solution is by using insertion heuristics to insert these new
orders. An example of an insertion heuristic is cheapest insertion, where the orders
are inserted at the position in the schedule which increases the fitness value the least.
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More literature on the Dynamic PDP and insertion heuristics can be found in Lu
and Dessouky [2006],Luo and Schonfeld [2007], Schilde et al. [2011] and Coslovich
et al. [2006].

3.3 Parallel Computing

In the last few years the increase of computing power has shifted from higher clock
frequencies for each core to more cores in parallel. This means that computer pro-
grams written in the traditional way no longer benefit from this increase in speed.
It is desirable that an increase in computer cores results in an increase in speed,
but this requires a new way of programming. Parallel programming is usually done
by dividing the program in separable parts, which can be computed independently
of each other. This way of programming is harder because you don’t know which
thread will finish first, and this uncertainty can introduce new bugs.

Subramanian et al. [2010] have developed a heuristic method for solving the PDP
using parallel computing. For computing all the possibilities in the different neigh-
borhoods worker threads can do these computations simultaneously while the master
thread keeps track of the best improvement.

Parallel computing is very interesting for speeding up optimization problems on
multi core systems. It is bound to get even more important when the number
of cores in computers increases in the future. Also parallel computing on GPUs
(Graphics Processing Units) could be a major improvement if done well, because
GPUs have many cores that could all do their own computations.

The downside of parallel computation is that it is often hard to divide a task into
many small tasks that can be run in parallel efficiently. If the algorithm has to
wait for other threads to finish their computations often, the speed increase will be
nullified.

3.4 Summary

In this section we discussed previous research on a number of methods for solving
the pickup and delivery problem. From this research we can conclude that exact
methods can be used to solve this problem, however these methods are not suited
for solving larger problems, because the computation time increases exponentially
with the problem size. Also, more complex problems in terms of constraints would
be very hard to solve. Metaheuristic methods which do not guarantee finding an
optimal solution can solve much larger problem instances.

We have also discussed literature that covers the pickup and delivery problem with
time dependent travel times. This research describes algorithms adapted to solve
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these problems, and methods for describing these problem instances.

Based on our findings in literature, we choose to use a simulated annealing ap-
proach. This approach is chosen because previous results with simulated annealing
are quite good, and the algorithm is easily extended because of its simplicity. This
is useful because it allows us to focus on the extensions of the PDPTW, such as time
dependent travel time.
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Chapter 4

Implementation

In this chapter the algorithm will be explained. First a high level overview is given,
followed by more detailed descriptions of the different parts of the algorithm. We
start by explaining the initialization process, then the improvement phase and the
operators, the extensions to the algorithm, and finally the process of inserting and
removing orders.

4.1 Algorithm

The algorithm we created (see Algorithm 1) uses a simulated annealing approach,
because of the good results described in previous literature, and the flexibility. It
starts by greedily creating a number of initial solutions, using one or multiple of the
initialization methods we will describe later, and the best found solution is stored.
The best initial solution that was found is improved using several operators that are
randomly chosen at every iteration. These operators can use either a small or a large
neighborhood. The algorithm starts with an initial temperature. This temperature
influences the chance of worse solutions to be accepted, a higher temperature means
a higher chance of accepting worse solutions. If the new solution has a better fitness
value than the old one, the new solution always replaces the old one. The fitness
value of a solution represents its quality, based on the objective function described in
Chapter 2. The lower the fitness value the better the solution is. If the new solution
is worse than the current solution, a chance P (temperature, distance) is calculated
based on the current temperature value and the difference between the fitness values
of the old and the new solutions. The new solution gets accepted with probability

e
−difference
temperature , where difference is the difference in fitness value between the old and

the new solution. Once the number of iterations has been reached we want to reduce
the number of vehicles used. At this point there are two scenarios: all orders are
planned, or there are still unplanned orders. In the first case we try to decrease
the number of vehicles used. To do this the algorithm selects a randomly chosen
vehicle and day, with a higher probability to select vehicles which serve fewer orders
on that day. This vehicle is set as disabled for that day. The algorithm then returns
to the improvement phase and tries to solve the problem with the disabled vehicle
as in Ropke and Pisinger [2006]. In the second case, if some of the orders remain
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Algorithm 1 An outline of our algorithm

1: procedure Algorithm
2: overallBest← empty solution
3: for r=0 ; r<numberOfRuns ; r++ do
4: best← createInitialSolution()
5: for i=1;i<initialSolutions;i++ do
6: newInitial← createInitialSolution()
7: if newInitial.fitness < best.fitness then
8: best← newInitial
9: end if

10: end for
11: current← best
12: for m=0 ; m<numberOfMinimizations & t ≤ allowedTime ; m++ do
13: for i=0 ; i<numberOfIterations & t ≤ allowedTime ; i++ do
14: newSolution← applyRandomOperator(current)
15: if newSolution.fitness < current.fitness then
16: current← candidate
17: if current.fitness < best.fitness then
18: best← current
19: end if
20: else
21: difference← candidate.fitness− current.fitness
22: if random() < P(temperature, difference) then
23: current← candidate
24: end if
25: end if
26: temperature = temperature · α
27: end for
28: current← best
29: if |current.unplannedOrders| = 0 then
30: current← removeV ehicle(current)
31: else
32: current← restoreV ehicles(current)
33: end if
34: current← removeV ehicle(current)
35: temperature = startingTemperature
36: end for
37: best← hillClimb(best)
38: if best.fitness < overallBest.fitness then
39: overallBest← best
40: end if
41: end for
42: return overallBest
43: end procedure
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unplanned, all previously disabled vehicles are enabled again. The whole process
can be repeated for a number of runs, or until the time limit for the algorithm is
exceeded. Every time a solution is found that is better than the overall best solution,
the overall best solution gets replaced. Finally this overall best solution is returned.

4.1.1 Solution Representation

The solutions that are generated consist of a number of actions that are planned
within their time windows. On the highest level there are schedules for the vehicles,
which consists of one or more routes. These routes are sequences of actions. A route
can be divided into a number of shifts if it visits the depot within a route. Every
subsequence of a route that starts and ends at a depot is a shift, so a route always
consists of one or more shifts. Figure 4.1 illustrates this structure.

Figure 4.1: Representation of a solution with two vehicles. In this illustration the
boxes are actions, and the gray boxes represent actions in which the depot is visited.
The width of the boxes indicates the service time of the actions, and the length of
the arrows indicate the travel time. For every time window w ∈ Wv the vehicle can
have a route assigned. A route can, for example, represent the schedule for a vehicle
for a single day.

4.1.2 Similarity

Before the different parts of the algorithm are described in more detail, the concept
of similarity has to be introduced first, because it is used throughout the algorithm.
Similarity is a value, based on time and distance, used to describe how much orders,
actions or groups of orders are alike. This similarity value is used to guide the algo-
rithm; Orders that have a high similarity are more likely to produce a valid solution
if they are swapped. Because of the time window restrictions many of the orders
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that have low similarity have little influence on each other. Using this similarity
factor in the operators increases the success rate. The concept of similarity is based
on the relatedness function introduced by Shaw in Shaw [1997]. Too much guidance
could lead to parts of the search space being skipped, and possibly good solutions
not being found. This is why we do not always use similarity in the operators. Some
operators, like combining two trips into one, always use similarity. Other operators
use similarity with a probability, so that it does not limit the possibility to reach all
parts of the search space.

Similarity between actions

We define the similarity factor SF (a, b) between actions a and b as a combination
of timeSimilarity(a, b) and locationSimilarity(a, b). To define the time similarity
there are two possible scenarios. Either both orders are planned or only one of
the orders is planned. When both of the orders are unplanned there is no need
to calculate similarity because they have no influence on the insertion possibilities.
The formula for calculating the time similarity value for both scenarios is given in
Equation 4.1.

timeSimilarity(a, b) =

{
1− |starta−startb|

maxTimeDifference
if both actions are planned

1− |starta−closestStart(b,starta)|
maxTimeDifference

if only action a is planned

(4.1)

Here maxTimeDifference is the largest time difference possible given the set of
orders: closestStart(b, starta) is the time value closest to starta that the start time
of b can attain in its time window.

The location similarity depends on the distance of the two locations from each other.
The location similarity value can be calculated as in Equation 4.2.

locationSimilarity(a, b) = 1− distance(a, b)

maxDistance
(4.2)

Here maxDistance is the largest distance between any two actions in the prob-
lem instance.

The total similarity between actions a and b is the product of the time similarity
and the distance similarity, as given in Equation 4.3.

SF (a, b) = timeSimilarity(a, b) · locationSimilarity(a, b) (4.3)
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Similarity between orders

Using the similarity values for actions we can define a similarity value between two
orders. We do this by taking the average of the similarity for the pickup action
and the delivery action of both orders. When an order has more than one pickup
or delivery alternative we use the values for the actions that are currently planned,
because these are the ones that influence the solution. If one of the orders is not
planned, we use the pickup action and delivery action from that unplanned order
that have the highest similarity to the planned actions of the other order. The
actions with highest similarity value are picked because it is most likely that these
are the actions that will influence each other when making a change to the solution.

Similarity between routes

Similarity between routes can be defined as the average of similarity between the
combinations of all orders in both routes. This can be used when trying to find two
similar routes to merge into one.

4.1.3 Initialization

The first step of our algorithm is to generate an initial solution. The initial solution
serves as a basis that can be improved in the second phase. This approach should be
able to quickly generate a feasible solution. For generating initial solutions there are
a few different approaches: Random insertion, Farthest insertion, Nearest insertion,
Insertion by similarity, Sweep insertion and Cheapest insertion. The aim of these
different initialization methods, which we will describe in this section, is to be able
to create a wide variety of starting solutions.

The easiest way to create a feasible initial solution is starting with an empty so-
lution, a solution where none of the orders are planned. With an empty start the
simulated annealing algorithm does all the work. The other methods try to insert as
many orders as possible, even if the penalty of inserting this order is extremely high.
When creating a planning with maximum shift times this method, together with
the hillclimbing method, can be preferable over the other methods. With maximum
shift times it is often desirable to create an initial solution that does not exceed the
maximum shift times by too much.

Random insertion is a fast initialization method. This method selects all the
orders in random order and tries to plan them at their cheapest possible posi-
tion at that moment. The cost of an insertion is based on the contribution to
the fitness value of the solution. The worst-case running time of this method is
O
(
o · (maxn · (n+s))

)
, where n is the number of order actions, o is the number of or-

ders and s is the number of shifts. An order usually has two order actions, but there
can be more possibilities if alterative pickups or deliveries are given. For every order
action the maximum number of possible insertion locations is O

(
maxn · (s + n)

)
,

where maxn is the maximum number of order actions an order has in this problem
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instance. This is because an order action can be inserted in an empty shift, or af-
ter every already inserted order action, of which there can be only two per order,
and . The advantage of this method is that a wide variety of solutions can be cre-
ated with the same method in a short amount of time by permuting the initial order.

The Hillclimbing method is like random insertion, but only if an insertion im-
proves the solution it gets accepted. This method is useful for generating an initial
solution with our implementation of maximum shift time; insertions are not accepted
if they cause the duration of a shift to become too high.

Farthest insertion selects the order that has the highest minimum driving time
from any of the depots, and inserts it in the best possible place. The driving time is
chosen because this is a constraining factor in planning, and distance is not. The ad-
vantage of farthest insertion is that orders which are probably hard to plan because
they take a long time to reach, are planned first, giving them a higher chance to be
able to be planned. Before planning the orders have to be sorted by distance from
the depots, and are inserted from farthest order to closest order. The running time
is the same as with random insertion, because all the distances to the depots can be
calculated once before the insertions start. The Nearest Insertion method is the
same as Farthest Insertion, but instead of the farthest orders, the nearest orders are
selected first.

Insertion by similarity is an initialization method we have developed that uses
the similarity value between orders. To the best of our knowledge, this method has
not been researched before. The first action is to select a random order. We insert
this order at its cheapest insertion position. For the selection of the next order we
sort all orders by similarity and select the most similar order to the one we have
inserted last. This most similar order is also inserted at its cheapest insertion posi-
tion. We continue this process until all orders are planned, or no more orders can be
inserted without violating the hard constraints. The running time of this method
is O

(
o · ((o ·max2n) +maxn · (n+ s))

)
, because for every order that we planned we

look for an unplanned order which has highest similarity to the last planned order.
We plan o orders, for which we have to do a similarity check on O

(
o
)

other orders.
The similarity check is done in O

(
max2n

)
time, because the similarity between all

actions of the two orders are checked.

The Sweep Method, based on the method proposed by Gillett and Miller [1974],
first clusters all the orders around their nearest depots. Once the orders are clustered
we start solving the initialization for all of the depots. For every depot D an extra
coordinate A, at a different coordinate than D, is created. This extra coordinate
is used to sort the orders that were assigned to this depot by angle. The location
of the order is O. Then the angle ∠ADO is calculated for every order, and the
orders are sorted by increasing angle. The solutions are then created by selecting
the orders that have the smallest angle first and inserting these orders at the best
possible location. This creates solutions where all the routes handle a different side
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of the area. The method is called the sweep method, because the area surrounding
the depots is ‘swept‘ in clockwise or counterclockwise direction, based on angle. The
sweep method has the same worst-case running time as random insertion. The only
difference for the running time is that all angles have to be calculated before the
actual insertions start, but this does not influence the worst-case running time.

The Cheapest Insertion method calculates the cheapest insertion over a num-
ber of orders for every iteration, and inserts this order. The running time of this
method is high because instead of just inserting one order at every iteration this algo-
rithm inspects a number of orders before inserting one. If we calculate the cheapest
insertions for all orders at every iteration, the worst case running time would be
O
(
o2 · (maxn · (n+ s))

)
. We can reduce the running time by selecting a random set

of orders with size selectionSize for which to calculate the cheapest insertions at
every iteration, instead of doing this for all orders. This would reduce the worst-case
running time to O

(
o · selectionSize · (maxn · (n + s))

)
, but it would not guarantee

that the cheapest insertion is chosen.

4.1.4 Improvement phase

The improvement phase starts by selecting the best result generated by the initial-
ization phase. It then continues to improve this solution using a slightly modified
version of the simulated annealing (see Kirkpatrick et al. [1983]) meta-heuristic.

Simulated annealing is based on the annealing process of metals, where metals are
heated and then cooled in a controlled fashion to reduce defects in the structure.
The simulated annealing algorithm works in a similar fashion, but instead of de-
creasing the freedom of movement of atoms over time, the freedom to move through
the search space is reduced, until the algorithm reaches a stable state. The differ-
ence between the normal simulated annealing algorithm and our implementation is
that we added some guidance towards better modifications. Also we introduced a
number of large neighborhood operators to decrease the chance of getting stuck in
a local optimum.

The pseudo code for the simulated annealing algorithm is given in Algorithm
2. Here best is the best solution found so far; temperature is the current temper-
ature of the solution, which is decreased by multiplying it with a factor α after
every iteration; candidate is the new solution found by applying a random operator;
solution.fitness is the fitness of solution, and random() generates a random num-
ber between 0 and 1.

For a number of iterations neighbors are selected from the neighborhood spaces
defined by the operators we will describe later. The algorithm starts with a high
temperature which provides a lot of freedom to move around in the search space. The
temperature determines the probability of accepting new solutions that are worse
than the current one. A higher temperature means a higher probability to accept
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Algorithm 2 Simulated Annealing

1: procedure Simulated Annealing
2: current← createInitialSolution()
3: best← current
4: temperature←starting temperature
5: while end condition not met do
6: candidate←random neighbouring solution to current
7: if candidate.fitness < best.fitness then
8: best← candidate
9: current← candidate

10: else
11: if random() < P(temperature, candidate.fitness -

best.fitness) then
12: current← candidate
13: end if
14: end if
15: temperature← temperature · α
16: end while
17: return best
18: end procedure

a solution that is worse than the current one. As time goes on the temperature is
decreased gradually. This means that the solution becomes increasingly stable, until
it reaches an equilibrium where it no longer changes. The reason worse solutions are
allowed is to escape from local optima.

To move through the search space a number of operators are defined. All of these
operators modify the solution in some way. The neighborhood space for an operator
is defined as the set containing all solutions that can be reached by applying this
operator. In our algorithm we have defined a number of fast operators which make
small scale changes, these could for example move one order to another location
in the planning. In addition to these small scale operators there are a number of
operators that make changes on a larger scale, the large neighborhood operators.
These can remove and reinsert a large number of orders in one iteration. All of the
operators will be explained in detail in Section 4.2. In every iteration one of the
operators is chosen at random, with a predetermined probability for selecting each
operator. First the algorithm makes a choice between applying a small scale or large
scale operator, which both have a predefined probability of being selected. Then it
selects one of the operators in the chosen group at random. This operator is applied
to the solution. The new, modified solution is then compared to the old solution to
see if it gets accepted or rejected. The large neighborhood operators are introduced
because we reason that due to the larger changes that are made, the algorithm can
escape local optima that it would not be able to get out of by only using small scale
operators. In the experiments and results chapter we experiment with the different
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operators and determine good probabilities for selecting operators. We will also
analyze the influence of the large neighborhood operators.

Temperature Values

If the new solution is better than the old one it is always accepted. If it is worse
there is a probability that the solution is accepted. This acceptance probability
is based on the difference between the fitness of the old and the new solution and
the current temperature, and is defined in Equation 4.4. Here difference is the
difference between the fitness value of the old and the new solution. The probability
function always provides a probability value between 0 and 1.

P (difference, termperature) = e
−difference
temperature (4.4)

A starting and final temperature are chosen before running the algorithm. The
value for α to cool the starting temperature down to the final temperature is cal-
culated with Equation 4.5, where Te is the desired final temperature and T0 is the
initial temperature.

α =
Te
T0

1
iterations

(4.5)

Temperature settings have a large influence on the quality of the produced solutions.
The ideal values for the start and end temperature depend on the instance size, the
penalty settings and the distances between the locations. In previous literature
there are a number of methods defined for calculating good starting temperatures
for different instances. We based our implementation on the method defined by
Johnson et al. [1989]. For calculating a good initial temperature they define the
acceptance ratio X of a given temperature for a certain solution. This acceptance
ratio is the percentage of solutions which are worse than the current one, that are
accepted. The starting temperature T0 for a given initial acceptance ratio X0 is
defined in Equation 4.6.

T0 = − ∆E

ln(X0)
(4.6)

∆E is the expected change in energy, the equivalent of fitness in our approach.
This expected change is based on a number of randomly selected modifications to
the solution, where only modifications that make the solution worse are considered,
because the acceptance rate of better solutions is 100%. For all these modifications
the change in fitness is added to a list L, with values L1 to Lk. The average accep-
tance probability over all the fitness differences in this list has to be equal to the

initial acceptance rate X0. We do this by solving Equation 4.7. Since e
−difference

T is
the probability a new solution that has a fitness value of difference higher than
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the current solution’s fitness value gets accepted when the current temperature is
T , the equation we want to solve is that the average of accepting a value from ∆E
is equal to X0. The larger the set L is, the more accurate the prediction for accep-
tance probability gets. In the experiments and results section an experiment will be
discussed for finding good acceptance rates.

∑i<k
i=0 e

−Li
T0

k
= X0 (4.7)

At the initialization phase of the algorithm the previously described method can
be used to determine good temperature values for different problems. To do this the
set L will be generated by applying a number of operators to an initial solution.

Minimizing vehicles

Because we found that the algorithm was not good enough at minimizing the number
of vehicles used we have added a mechanism, based on the approach of Ropke and
Pisinger [2006], to the algorithm that handles vehicle minimization. Once the desired
number of iterations for the simulated annealing has been reached the algorithm
removes a random vehicle from the solution for a random day. The chance for the
vehicles to be removed depends on how busy the schedule for this vehicle is. The
less there is planned for a vehicle on a given day the larger the chance that it can
be successfully removed. The thought behind this is that the orders of vehicles that
don’t have much to do can possibly be redistributed among other vehicles more
easily. Once a vehicle is disabled the simulated annealing algorithm runs again
and tries to plan all of the orders without the disabled vehicle. If not all orders
are planned when the simulated annealing phase ends the removal of a vehicle is
postponed. Also if the algorithm was unable to find a solution in the given time,
after disabling a vehicle, the disabled vehicle is enabled again and the simulated
annealing is ran again.

4.2 Operators

To be able to improve the solution, operators that define the neighborhood spaces
have to be defined. Every operator has its own neighborhood. The goal of these
operators is that when combined they make it possible to reach all of the solutions
in the search space. In our algorithm there are two kinds of operators: The small
neighborhood operators and the large neighborhood operators.

4.2.1 Small neighborhood operators

The small neighborhood operators are the foundation of our algorithm. These oper-
ators are fast because they only examine a small part of the search space. Because
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they are fast they can make a lot of changes to the solution in a short period of time.
This makes it possible to quickly improve the initial solution. We will describe all
of the small neighborhood operators we use below.

Simple Pair Shift Operator

The most basic operator we use is simple pair shift. This operator selects an order
at random. If the order is contained in the current solution, both its pickup action
and delivery action are removed. From the set of all possible insertions for this
order, an insertion is chosen based on its insertion cost; cheaper insertions have
a higher probability of being chosen. Unplanned orders can also be selected, the
algorithm will then try to insert these orders anywhere if possible, using the insertion
probabilities.

Time Shift Operator

Inserting, removing or shifting orders in the current solution can cause gaps of
waiting time inside shifts to be created. The solution may be improved by optimizing
the starting times of the planned actions. The goal of time shift is to optimize the
time for one shift. First a random shift is selected. When selecting a shift we prefer
shifts that have a lot of waiting time, because these are the shifts that are most
likely to improve most by optimizing the time. We try to make the selected shift
as short as possible while we also include the effects of the new starting time of the
shift on other shifts. To optimize the time penalty we select the first action of the
shift and try to plan it with a number of different starting times that are possible
for this action. The actions following the first action are moved backwards in time
as far as possible without shifting the first action of the shift. This is done because
the duration of a shift is minimized if the end time of a shift is as close as possible
to the starting time of that shift. The best of all selected starting times is selected,
and the start time of the shift is set to the selected starting time.

Swap Operator

The swap operator tries to find the best swap for a random order. First a random,
planned or unplanned, order o1 is selected. Then a list of all the orders this order
can be swapped with is made. The swap is possible if both the pickups and the
deliveries of o1 and o2 can be swapped. The best possible swap for o1 is executed, if
any swaps are possible.

Unplanned Insertion Operator

Unplanned orders have a very high penalty contribution. When an unplanned order
can be planned it will probably lead to a large decrease in total penalty. For this
reason, when there are unplanned orders, planning them has high priority. First
a random order is selected from the list of all unplanned orders. Then we look for
insertion possibilities for this order in the current planning. If an insertion is possible
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we plan the order. If no insertion is possible, we will try to swap the unplanned order
with any of the planned orders. After a swap is made the order that is swapped with
the unplanned order is inserted again on the best possible position in the planning.
If a swap is not possible either, we remove a number of orders. Then we try to insert
the unplanned order first. After the unplanned order is inserted we try to reinsert
the removed orders again.

Exchange Operator

When there is already a tight schedule it may be useful to create space to be able to
move orders to other locations. The exchange operator selects a random non-empty
route and removes a random small number of orders (in our experiments 2 to 5)
from those routes. Then it selects a second route with a 75 percent chance to choose
a route that is similar to this route, and it removes the orders from that route as
well. It then tries to reinsert the orders that are removed from route 1 in route 2
and vice versa. For all orders that could not be inserted in the other route, the
operator tries to insert those orders somewhere else in the planning. The insertion
is done in the same way as with the simple pair shift operator. Due to the larger
number of orders considered, the exchange operator could also be categorized as a
Large Neighborhood Operator. We chose not to do this, because the neighborhood
is not as large as with the ruin/recreate or route combination operators.

Consecutive Exchange Operator

The consecutive exchange operator is almost exactly the same as the normal ex-
change operator, but instead of removing random orders from route 1 and route 2, a
small number of consecutive actions are selected. The orders to which those actions
belong are removed from the planning, and reinserted in the same fashion as with
the normal exchange operator.

4.2.2 Large neighborhood operators

For complex problems like the PDPTW we are solving, operators that make small
changes to the solution can be unable to reach the best solutions in the search space
Schrimpf et al. [2000]. For example, moving a single order to another route may
increase the cost of the solution, while moving all orders in the route simultaneously
could lead to a much better solution. These operators change a larger part of the
solution. This may create the possibility to move to a better solution that was
unreachable by the small neighborhood operators. The larger neighborhoods are
not searched completely: heuristics are used to be able to execute these operators
in a reasonable amount of time.

Ruin/Recreate

This operator is based on the operators described by Ropke and Pisinger [2006]. It
removes up to n orders (where n is 20 in our implementation) from the solution
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and reinserts them at new locations. This operator can use different removal and
reinsertion mechanisms.

Removal methods : The removal methods select up to n orders to remove. The
possible methods are listed here.

Random : Random removal is the simplest removal algorithm. It just re-
moves n randomly selected orders.

Worst : Worst removal removes the orders that add most to the penalty
value of the current solution. We calculate the penalty contribution of
these orders by removing them from the solution and subtracting the old
penalty value from the new one. The reason we select the most expensive
orders is because these orders are more likely to be planned in a bad
place.

Similar : When removing orders it would be useful if the orders can be
swapped. We select one random order. Then we select n − 1 orders
by similarity to the previously selected order.

Insertion methods : The insertion methods insert the removed orders into the
solution again. These are the possibilities we consider.

Random insertion : The fastest way to insert the removed orders. We
reinsert the orders one by one. Every order gets inserted at its best
position at that moment.

Insertion by similarity : Similar insertion inserts one random order from
the removed orders first on its cheapest insertion position. Then it inserts
the order that is most similar to the order that was inserted first, and
inserts this as well. This process continues until all removed orders are
planned.

Greedy insertion : Greedy insertion inserts all the removed orders in a
greedy fashion. There are two possibilities for the greedy insertion method,
cheapest greedy and most expensive greedy. It calculates the best inser-
tion positions for all the removed orders and selects the cheapest overall
insertion, or the most expensive overall insertion from these insertions,
based on which method is chosen. The process is repeated for all the
removed orders that are not yet reinserted.

Regret insertion : The regret method is a little more sophisticated. For all
the removed orders it checks the best insertion possibility in every route.
It remembers the best and second best insertion. The orders are then
sorted by difference between the best insertion value and the second best
insertion value, the so called ’regret’ value. The one with the biggest
’regret value’ is inserted. The idea behind this method is that if an order
with a high regret value can not be inserted at its best position anymore
the loss in quality is high, because the difference between the best and
second best insertion position is high.
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Route Combination Operators

There are three operators that try to combine or remove routes. This can be useful
when trying to reduce the number of vehicles used. The combine route operator
tries to combine two routes into one by removing two randomly chosen routes. The
orders that were in these routes are then reinserted. When the two routes fit into
one the operator will combine the two routes, otherwise it will plan as many orders
as possible in one route and try to plan the remaining unplanned orders at their
best possible positions.

The combine route remove N operator tries to merge a route with similar orders. A
random route is selected, and for that route a number of similar orders are removed.
Removing these similar orders creates space for the orders in the selected route to be
replanned. All orders in the selected route are planned at their new best position,
and afterwards the removed orders are reinserted again if possible.

For problems with heterogenous vehicles there is need for a method that can com-
bine two routes that are scheduled for low-capacity vehicles into one route for a
high-capacity vehicle. Without such a method, small vehicles with low cost would
always be preferred over larger more expensive vehicles, because the direct impact
on the fitness value is lower with the small vehicles. The combine routes into new
operator is the same as the combine route operator, with the difference that it tries
to assign the orders in both routes to a new vehicle instead of one of the vehicles of
the removed routes.

2-Opt* Operator

The 2-opt* operator is a 2-opt operator that is modified to work with the con-
straints of our problem. We based this operator on the modified 2-opt by Potvin
and Rousseau [1995]. They modified the normal 2-opt operator to be able to cope
with time windows. The standard 2-opt operator selects a number of subsequent
locations in the route and reinserts them in reversed order.

Algorithm 3 The standard 2-opt procedure

1: procedure 2-opt(route, i, k)
2: newRoute← empty route
3: add route[0] to route[i− 1] to newRoute
4: add route[i] to route[k] to newRoute in reversed order
5: add route[k + 1] to the end of the route and add them to newRoute
6: return newRoute
7: end procedure

Reversing a part of a route in a routing problem with time windows using the
standard operator however is likely to lead to an infeasible solution. Potvin and
Rousseau created a modified 2-opt where the orientation of the original route is
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preserved. Their operator takes two routes as input, we call these routes r1 and r2.
One edge is chosen from r1 and one edge is chosen from r2. The routes are cut at
these edges, creating routes existing of two parts. The two new routes new1 and
new2 are created: new1 exists of the first part of r2 and the second part of r1, new2

exists of the first part of r1 and the second part of r2. With this new operator the
chance of the new solution being feasible is much larger, especially when two routes
are selected which are similar to one another.

In our problem however we also have to deal with precedence constraints imposed
by the pickups and deliveries. Pickups are always served before their corresponding
delivery. We extended the 2-opt* to also take this constraint into account. First,
two routes are selected, with a 75% chance to select the second route by similarity
to the first. All the delivery actions are removed from these routes. Then two new
routes are created by applying Potvin and Rousseau’s 2-opt* to these routes. Fi-
nally the delivery actions that were removed from the original routes are reinserted
again. We start by inserting the delivery action belonging to the last delivery action,
and then work backwards until all deliveries have been inserted. If a delivery can
not be inserted in the new route, we also remove the pickup, because a valid solu-
tion can not have a planned pickup without its corresponding delivery being planned.

In our operator instead of the usual 2-opt many possibilities are examined instead
of only one. Two routes are selected, from which one has to be non-empty. For both
of these routes we select a number of edges, the split points. We apply the adapted
2-opt* to these routes with all combinations of the selected split points, and execute
the best one. The goal of this operator is to find the best splitting points for the
two routes to combine them to new routes. This is done by trying a large number
of possibilities and finally selecting, and executing the best.
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Figure 4.2: The 2-opt* operator.

4.3 Time Dependency

4.3.1 Travel time without time dependency

Calculation of travel time without time dependency is done using a location matrix.
The location matrix contains all the distances and travel times between the locations.
The travel time between two locations can be found by looking at the corresponding
cell in the matrix. When there are n locations in the problem the location matrix
has a size of n2. To save on this we group order nodes by location: if there are
multiple nodes that correspond to the same location, the location only has to be in
the matrix once.

4.3.2 Travel time with time dependency

When working with time dependent travel times the algorithm works with an input
consisting of discrete travel time values per time unit, for all pairs of locations. The
only restriction is that these travel times have to follow the FIFO (First In First
Out) principle, meaning that when a vehicle leaves a location earlier it will always
arrive earlier or at the same time. For example, when a vehicle arrives at time at
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when departing at time t it will arrive at a time at′ ≤ at when departing at time
t′ ≤ t. The input can consist of discrete travel time values per time unit for every
pair of locations, or it can be calculated when it is needed using a fast algorithm.

4.3.3 Calculation of travel time using periods

To calculate the time dependent travel times different methods can be used. To save
all travel times in a 3d matrix would require large amounts of memory, for n locations
and a planning window of w time units we would have a location matrix of size n2 ·w.

Instead of defining all travel time values exactly per time unit, we work with periods
of time, which can be used to calculate all travel time values. A default travel time
is given for every pair of locations (a, b). The time periods indicate periods of time
in which the travel time differs from the default value. The value assigned to a time
period for locations (a, b) indicates the time it would take to get from location a
to location b, if the whole trip can be finished within the same time period. If the
destination is not reached within the same time period, interpolation is applied (as
illustrated in Figure 4.3.3). Travel times always follow the FIFO property due to the
way this interpolation is done, no matter which values are given for the time periods.

We calculate the travel time for traveling from location a to location b when de-
parting at time t using the procedure given in Algorithm 4. We start by finding the
starting time and the end time of the period t is in: periodStart and periodEnd.
This time period has a travel time, currentTravelT ime assigned to it, which is the
time it would take to reach the destination if the whole trip could be finished in
this period. The total travel time up to the current moment is travelT ime, and
distanceCovered is the total distance covered so far. Until 100% of the drive is fin-
ished, and the destination is reached, we repeat the process of adding the progress
towards the destination trough all the periods we go through. Say that for example
we leave at location a at time 110 with the time periods given in Figure 4.3.3. Since
period T1 starts at time 0 and ends at time 150, there are 40 time units left in
period T1. Because the travel time in this period is 50 time units, 80% of the trip
can be finished within the time that was left. The remaining 20% will be driven in
time period T2, where the driving time is 75 time units. The remaining part will
then be driven in 15 time units, giving a total travel time of 65 time units.

This method always respects the FIFO property. Going into a new time period in
which it takes longer to reach the destination does not matter for the FIFO property,
because there is no restriction on the delay imposed by going forward in time. When
leaving earlier though it should not be possible to arrive at a later time. Say a time
period p1 with very short travel times starts at time t. The period before it p0 has
very high travel time. Leaving at time t′ ≤ t should never cause the vehicle to arrive
later than leaving at time t. We can prove that the FIFO property always holds.
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Algorithm 4 Calculation of travel time between locations a and b with time de-
pendency

1: procedure calculateTravelTime(a, b, t)
2: travelT ime← 0
3: distance← distance(a, b)
4: distanceCovered← 0
5: periodStart← previousT imePoint(t)
6: periodEnd← nextT imePoint(t)
7: currentTravelT ime← currentTravelT ime(periodStart)
8: if periodEnd - t > currentTravelTime then
9: return currentTravelT ime

10: else
11: travelT ime← periodEnd− t
12: while distanceCovered < distance do
13: periodStart← periodEnd
14: periodEnd← nextT imePoint(periodEnd)
15: currentTravelT ime← currentTravelT ime(periodStart)
16: travelT imeLeft← (1− distanceCovered

distance
) · periodStart

17: periodDuration← periodEnd− periodStart
18: if travelTimeLeft ≤ periodDuration then
19: return dtravelT ime+ secondsNeedede
20: else
21: travelT ime← travelT ime+ periodDuration
22: distanceCovered← periodDuration

travelT imeLeft
· (distance− distanceCovered)

23: end if
24: end while
25: end if
26: return dtravelT imee
27: end procedure
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Figure 4.3: Representation of calculating travel time between a pair of locations
(a, b), using interpolation between periods. There are three periods: T1, T2 and T3.
The dark blue rectangles represent the defined travel time, and the light blue parts
represent the interpolated travel time in between periods. On the y-axis the travel
time is given, and on the x-axis the current time is given.

Theorem 4.3.1. The arrival time at location b when leaving location a at time t−1
is never larger than the arrival time when leaving at time t.

Proof.
Say we have two vehicles, v1 and v2, travelling from location a to location b. Vehicle
v1 departs from location a at time t, and vehicle v2 departs from the same location
at time t′ ≥ t. Say that vehicle v2 takes the fastest route r to reach its destination
b. If vehicle v1 would take that same route it would arrive at b earlier than or at the
same time as v2, because it departs earlier. If vehicle v2 catches up with vehicle v1
somewhere in the route they would be at the same place at the same time, which
by definition (see Algorithm 4) leads to both vehicles arriving at location b at the
same time. Vehicle v1 however drives its fastest route r′ to reach b, and this route
may be different from r. But r′ can never take longer than r, because if this would
be the case r′ would not be the fastest route. This means that vehicle v1 always
arrives earlier than or at the same time as vehicle v2. This proves that if a vehicle
drives from a location a to a location b, and it departs earlier than another vehicle,
it will always arrive at location b earlier than or at the same time as the vehicle that
departs later. This means that the FIFO property is respected.

4.4 Maximum shift time

We described the concept of a shift before as a part of a route that starts and ends
at the depot. Shifts are introduced to be able to create routes that respect the
maximum working times of drivers. A shift is a subsequence of actions in a route,
which starts and ends at a depot node. In this problem, all drivers have the same
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maximum working time. If a maximum time for shifts is defined we have to split
routes that last too long into parts. The routes are divided into multiple shifts by
adding a number of shift start actions to the routes. These actions represent the
start of a new shift, and a visit to the depot to exchange drivers. The number of
shift start actions that are added to a route r is d rer−rsr

maxshifttime
e − 1 + e, where rer is

the end time of route r and rsr is the start time of route r. This is the number of
actions that is necessary to divide the route into shifts that are shorter than or equal
to maxshifttime; e is the number of extra shifts that are added. A higher value for
e means that there can be more shifts, which gives the algorithm more possibilities
for distributing the actions among shifts. More possibilities however also means that
the computing time increases, and a value of e that is too high implies that there
are probably many empty shifts. Whether these shift start actions are used depends
on the actions planned before and after it. If there are no orders planned in a shift,
the shift is not actually performed because there is no need to have a driver for a
shift with no actions.

To make sure there is no unnecessary waiting time the duration of the shift start
actions is flexible. There is never waiting time before or after any visit to the depot.
We let the vehicles depart from the depot so that they arrive exactly on time at their
next location. Also when arriving at the depot earlier than the action is planned,
this excess time is not counted as waiting time, because the driver’s shift is over
at the time he arrives at the depot, and the next shift starts when the next driver
enters the vehicle.

Figure 4.4: An example of a route with two shifts. The blue rectangles represent
the start and end of the route, and therefore also the start of the first shift, and the
end of the second shift. The green rectangle is a shift start action, this is where the
first shift ends and the second shift begins. The solid arrows indicate travel time,
whereas the dotted lines are waiting time. The transparent blue area indicates the
use of the flexible duration of the depot actions. The duration of a depot action is
stretched to remove all unnecessary waiting time. For example say we have a shift
that is finished at 11:00 am, and a depot action that is scheduled to start at 12:00
am. The waiting time gap of one hour is then filled by extending the depot action
to start at 11:00. The actual duration of the shift is indicated by the brackets on
top of the representation.

This approach with a fixed number of Shift Start Actions can only be used when
we have a finite route time. But since it is unlikely to make a planning with an
unlimited planning window this approach can be used for most problem instances.
If there would be an infinite planning window, an operator for adding or removing
shift start actions would have to be introduced.
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4.5 Inserting Orders

Because of the many constraints on our problem, the usual approach of simulated
annealing where operators make random modifications to the solution, is not very
effective. Many of the modifications will fail. That is why we have added some guid-
ance to the operators. Because of this guidance we need to have more information
on the insertions that are possible: the cost of insertion and which insertions are
possible, and which are not.

4.5.1 Slack Values

Before we can explain how order insertions are found we need to introduce the
concept of slack. An essential part of finding out where actions can be inserted is
finding the earliest and latest insertion times of that particular action, for a given
route. These earliest and latest insertion times depend on the time window of the
action, the route it is planned in, the extra travel time that is needed when this
action is inserted, and the actions that are planned before and after it. We use slack
values to quickly determine if an action can be inserted on a particular location in
a route.

Normal slack

When solving a problem instance without time dependent travel times, we use slack
values based on the method used by Savelsbergh [1992]. All of the actions get a
forward slack and backward slack value. These values indicate by how much the
action can be shifted forwards or backwards respectively, without rendering the so-
lution infeasible due to time constraints being violated. The forward slack FSi for
an action i can be defined through a recursive function:

FSi =



min{starti+1 + FSi+1 − (starti + serviceT imei + travelT ime(i, i+ 1)), if i is not the
twei − (starti + serviceT imei)} = last action in
min{maximum amount of time i can be shifted forward to the route
still be able to service i+1 in time, twei − (starti + serviceT imei)}

twei − (starti + serviceT imei) otherwise

In this function i is the index of an action in the route. Furthermore starti is
the start time of the action at i, travelT ime(i, j) is the travel time needed to get
from the location of action i to j, serviceT imei is the time needed for servicing the
action at i and twsi and twei indicate the start and end time of the time window
for the action at position i.

For all of the actions the amount they can be shifted forwards (their forward slack)
depends on their time window, and the actions that are scheduled after an action
in the same route. If an action is the last action in the route its forward slack
only depends on its time window: The action can be moved to the end of its time
window. If there are other actions planned after the action at i, the forward slack
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depends on the starting time and forward slack of the next action, and its own time
window. The action at i can be shifted towards the end of its own time window,
until the action at i+ 1 can not shift any further. We only need to look at the next
action because of the recursiveness of FSi; the forward slack for an action i takes
into account the forward slack of the following actions.

In the approach of Savelsbergh every action is planned as early as possible. In
our approach we can plan actions anywhere in their time window. This makes it
necessary to also define the backward slack of the actions.

BSi =



min{starti − (starti−1 + serviceT imei−1 + travelT ime(i− 1, i))−BSi−1, if i is not the
starti − twsi} = first action in
min{maximum amount of time i can be shifted backwards to the route
without forcing i-1 to start too early, twei − (starti + serviceT imei)}

starti − twsi otherwise

All of the variables that are used in this function are the same as in the previous
function. The backward slack function works in the same fashion as the forward
slack function, but in a reversed order.

Every time an action is inserted, removed or had its starting time changed we update
all the slack values of the other actions in the route.

Time dependent slack

For instances that use time dependent travel time, we use a method that works a
little different than the method without time dependency, but the goal is still to
be able to determine the possibility of an insertion by only looking at the previous
and the next action. This method does not use forward slack and backward slack,
but instead remembers the earliest and latest starting time for this action with the
current ordering of the route, ESTi and LSTi for every action. Donati et al. [2008]
use a method that is largely similar to this method. When we plan every action as
early as possible, starting from the first action in the route, the starting times of
the actions are the earliest starting times. We depart from every location as soon as
possible. For every action i that is planned the earliest starting time is:

ESTi =



max{ESTi−1 + serviceT imei−1+ if i is not the first
travelT ime(i− 1, i, ESTi−1 + serviceT imei−1), twsi} = action in the route
max{earliest time it is possible to reach the location

of i after service is finished at i-1, twsi}

twsi otherwise

This is true because travel times work according to the FIFO principle; planning
an action later than its earliest possibility never reduces the earliest starting times
of the actions following it, and neither does waiting after an action is finished.

For the latest starting times it works a little different. The FIFO principle does
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not work the other way around. If the departure at a location is at t + 1 instead
of t, the increase in travel time could be anything. This means we could get the
wrong values when leaving everywhere as soon as possible. We still do plan ev-
ery action as late as possible, starting from the last one. But instead of using the
travelT ime(i, j, t) function, we now use the travelT imeTo(i, j, t) function, which
gives us the latest time we can leave location i to arrive at location j at or before
time t. The latest insertion time for action i is defined as follows:

LSTi =



min(LSTi+1 − travelT imeTo(i, i+ 1, LSTi+1)− serviceT imei, if i is not the first
twei − serviceT imei) action in the route =
max{latest start time at i without forcing i+1

to start later than possible, twsi}

twei − serviceT imei otherwise

Every time an action is added or removed from a route we update the values. If
an action is shifted in time, the earliest and latest insertion times do not have to be
updated.

To create a more consistent representation, we will only use EST and LST from
now on. The slack values we described for instances without time dependent travel
times can be represented as EST and LST with the following conversion:

ESTi = starti −BSi (4.8)

LSTi = starti + FSi (4.9)

4.5.2 Insertability

To be able to select a good option for inserting an action we need a method to find
out if an action can be placed on a given location in the planning. An action can be
either a pickup or a delivery. We also need to know the cost of this insertion. An
action can be inserted at a given location if it satisfies all of the constraints. Firstly,
it must comply with all of the time constraints. Secondly, the capacity of the vehicle
should not be exceeded by inserting this action.

Before any other calculation is done, we check if the action can possibly be inserted
in the route. A route has a start and an end time. If the inserted action can not
be planned between the bounds of this route, given the action’s time windows and
the travel time from and to the starting location of the route, we can immediately
return that the insertion is impossible.

Earliest and latest insertion time

If the action can be inserted in the route, we need to know its earliest and latest
insertion times for the position in the route we want to insert it on. Say we want
to know if we can insert action i after action p and before action n. Then we can
calculate the earliest and latest insertion times of the inserted action as follows:
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earliest(i, p, n) = max(ESTp + serviceT imep + travelT ime(p, i, ESTp + serviceT imep), twsi)
(4.10)

latest(i, p, n) = min(LSTn − travelT imeTo(i, n, LSTn)− serviceT imei, twei − serviceT imei)
(4.11)

Because we know the earliest and latest starting times for all the actions in the
route we only have to look at the action before and after the insertion position. If
the earliest insertion time for inserting an action at a specific position in the route is
smaller than or equal to the latest insertion time, the action can be inserted there.
If this is not the case it is not possible to insert the action at that position without
violating time constraints. The time window starting from the earliest insertion
time earliest(i, p, n), and ending at the latest insertion time latest(i, p, n) is the
time window in which action i can start if inserted between actions p and n.

Figure 4.5: Illustration of the use of earliest and latest starting times, to determine
if an action can be inserted. The rectangles represent actions. The grey rectangles
are order actions, and the blue rectangles are depot actions. The arrows between the
rectangles represent the travel times. The insertion window for an inserted action
depends on the EST of the previous action and the LST of the next action.

Vehicle capacity

Another constraint that has to be met for an action to be insertable is the vehicle
capacity constraint. For every inserted action, we store what the current load is
at that action. When inserting a new pickup action we add the increase in load of
the inserted action to the load the vehicle had after visiting the previous node. If
this is lower than the vehicle’s capacity we can insert the action. When inserting a
pickup action we do not yet look at the influence this insertion has on the load at
locations it visits later on in the route, while it could very well be that the capacity
of the vehicle is exceeded later on in the route by this insertion. When checking
for the insertion of the delivery action that belongs to the newly inserted pickup
action however we look at all the actions between the newly inserted pickup and its
delivery. If the vehicle’s capacity is exceeded then we declare the insertion pair not
insertable.
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Best insertion time

Once the earliest and latest insertion times for an insertion of an action are known
we can use these to find the best starting time. This is the starting time that, if the
new action is inserted at that time, adds least to the total penalty of the solution.
We want little waiting time since waiting time adds to the total duration of the
shift. This is why we introduced a number of scenarios for which we can quickly
find good options for the starting times. This method does not guarantee that the
best possible starting times are found, but it can quickly find good options.

Insertion at the start of a shift : When inserting an order at the start of the
shift it needs to be shifted forward until it arrives at the next location right
in time. If the inserted action can not be shifted forward in time far enough
because of its time window we plan it as late as possible. If the inserted action
can not be planned early enough without shifting subsequent actions, it is
planned as early as possible, and the following actions are shifted forward in
time.

Insertion at the end of a shift : When inserting an order at the end of the shift,
we insert it so that when leaving from the previous action we arrive there
exactly on time. If this is not possible because of the inserted actions’ time
windows we make sure that the starting time is as close as possible to the time
we wanted.

Insertion inside a shift : When inserting an action inside a shift we have a range
of starting times to insert the action without creating more waiting time. This
range is determined by the time at which we can arrive at the inserted location
earliest without shifting the previous action backwards in time, and the time
we can plan this order without shifting the next action forward in time.

Insertion in an empty shift : When inserting an action in an empty shift, we
can insert the order anywhere in the range between its earliest insertion time
and its latest insertion time. We select a number of values in this range, and
choose the best one, based on the cost of the insertion at that time.
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Figure 4.6: Finding the best insertion times. The green block is the inserted order,
the grey blocks are already planned order actions, and the blue blocks are the start
and end of the shift at the depot. For insertions at the start and end of a shift we
only allow one starting time, the one that induces the least amount of waiting time
possible in the shift. When inserting between other order actions there is a time
window in which no waiting time is created. A predefined number of starting times
for the inserted action are checked within this time period.

Calculating insertion cost

When we want to insert an order we calculate the cost of this insertion first. We do
not calculate the insertion cost for all possible insertion times but only for the ones
we check when finding the best insertion time.

Calculating the change in distance penalty is straightforward. When inserting an
action i between actions p and n, where p is the previous action and n is the next
action, we calculate the previous distance between p and n first. The new distance
is the addition of the distance from p to i and from i to n. The change in distance
penalty is then the difference between the old distance penalty and the new distance
penalty. If distance is time dependent, the change in distance between all actions
that are affected by the insertion must be recalculated.

The time penalty is the difference between the old time penalty for this shift and
the penalty after inserting the action. We know the old penalty value for the route.
The new time penalty is the difference in penalty caused by the inserted action, and
all actions that it affects.

Finally, if we insert an action in an empty route we add the fixed cost for using
the vehicle that drives this route to the insertion cost.
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Finding all possible insertions

In our approach we find all possible insertion positions, for a limited number of
starting times, when inserting an order o ∈ O. From this set of possible insertions
an insertion can be selected, based on the cost increase that this insertion causes.
First we find all possible insertions for all of the possible pickup actions pa ∈ Po

that belong to this order. We do this by going through all the vehicles. For all the
vehicles we go through all of its routes. First we check if the action fits in the time
window of this route. Then for all the route actions ta, except for the last unload
action we check if the pickup action can be inserted between ta and tanext. For all
the possible insertions we found for the pickup actions of o we then try to find pos-
sibilities for inserting the delivery actions. We do this by first inserting the pickup
action at the previously found possible insertion. The check for possible delivery
insertions is the same as that of the pickup insertions, but this time we only check
if it can be inserted after route actions that are planned after pa. If both the pickup
action and the delivery action can be planned we have a possible insertion pair. This
procedure gives us a list of all possible insertion pairs.

For all the possible insertions we make an estimate of the cost of inserting the
action at that position. The cost of the insertion pair is the addition of the cost of
the insertion of the pickup and the cost of the insertion of the delivery.

Insertion by probability

From the list of possible insertion pairs, we can select the cheapest insertion. But
because we do not use tabu search this could result in parts of the search space
being excluded. To overcome this we select one of the possible insertion pairs by
probability. The probabilities we use to select an insertion pair are calculated with
the method shown in Algorithm 5.

Algorithm 5 Selecting insertion pairs by probability

1: procedure insertByPossibility(possibleInsertionPairs, bias)
2: sum← 0
3: for pip ∈ possibleInsertionPairs do
4: sum← sum+ 1

pip.insertionCostbias

5: end for
6: for pip ∈ possibleInsertionPairs do
7: pip.selectionProbability ← 1

pip.insertionCostbias·sum
8: end for
9: end procedure

For selecting by probability higher insertion costs are worse, and need to get
lower selection probabilities. For this reason we assign new values of goodness to the
insertion pairs, where higher is better. These values are defined as 1

pip.insertionCostbias

where bias is the bias towards better insertions, and pip.insertionCost is the cost

47



of inserting the possible insertion pair. The bias factor can have any value higher
than or equal to 0. The higher bias is, the higher the probability of selecting an
insertion with a low insertion cost. Because the sum of all probabilities has to be 1
we have to divide these goodness values by the sum of all values, sum. This gives
us the probabilities for selection. Using these probabilities one of the insertions is
selected.

4.5.3 Insertion

Once a possible insertion pair is actually inserted we have to modify the current
solution. Before inserting an action, first all other actions from the same order and
the same type (pickup or delivery) are removed to avoid planning more than two
actions per order. The fitness value is adjusted after this removal. This means that
when we insert a pickup action any pickup actions belonging to the same order are
removed from the solution. The same holds for delivery actions.

After inserting the action at the desired time, it may be that the actions before
it and after it have to be shifted to create a valid solution again. Starting from
the action p before the inserted action i we check if the addition of the start time
of p, the duration of p and the travel time from p to i when arriving at starti is
greater than starti. If this is so the start time of p is set earlier so the vehicle can
arrive at location i on time. This is done for all the actions preceding i in the same
route. For the actions subsequent to the inserted action i we do the same. For every
action, starting at n which is the first successor of i we calculate if we arrive at these
locations later than their current starting time. If so we shift them forward enough
to arrive exactly on time. This is always possible, because an insertion is chosen
from the list of possible insertions.

After all the starting times have been updated the slack values will also change,
so we need to recalculate the slack values for this route as well. At the same time
we adjust the load values at all of the actions.

4.5.4 Removal

When removing an action we create more room to shift the orders, so we will need
to update all the slack values for this route again. Also, after we have removed
an action from a route that is not the first or last action in a shift, we create a
waiting time gap in the shift. To fill this gap we first shift all actions subsequent
to the removed action backwards in time as far as possible without having to shift
any of the actions before the removed action. Then we shift all actions preceding
the removed action forward as far as possible without moving the actions after the
removed action. These new starting times are not necessarily optimal, because travel
times may increase when shifted, but this can be adjusted by the time shift operator.
In addition to moving the actions in the route, we also update all the load values.
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4.6 Summary

In this chapter we have reviewed the algorithm we use for solving the Pickup and
Delivery problem with time windows and time dependent travel time. A high level
description of the algorithm was given in Section 4.1, followed by more detailed re-
views of the different parts of the algorithm. A number of initialization methods have
been introduced. Whereas most of these methods have been used and described in
other literature, we introduced a new method for initializing solutions: initialization
by order similarity. The similarity factor is also explained in this section. A number
of small- and large neighborhood operators that are used to improve the solution
have been introduced in Section 4.2. In Section 4.3 we discussed the implementation
of time dependent travel times in our algorithm. We have also elaborated on how we
can work with these time dependent travel times in an efficient fashion, using time
dependent slack values. In Section 4.4 the implementation of maximum shift time
for routes, using stop actions was discussed. Finally, in section 4.5, we described the
process of the insertion and removal of orders, and what is needed for these to work
with time dependent travel time and alternative pickups and deliveries.
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Chapter 5

Experiments & results

In this chapter we will describe the experiments we performed to test the algorithm.
Many parameter values have to be determined before running the algorithm, and
most of these values influence each other. Also, the best values of the parameters can
vary between different problems. We will start by finding the initialization method
to use, determined by the quality of the produced solutions. Next the selection prob-
abilities for all of the operators are determined by their average improvement. Then
good values for temperature and the bias value for selecting better insertions are
examined. Finally the influence of the large neighborhood operators is evaluated.
With these values we solve two benchmarks: The benchmark for the basic PDPTW
by Li and Lim [2003], and our own benchmark which extends this problem with
time dependent travel times and alternative pickups and deliveries. We have also
tested the influence on the quality and computing time of the additions we made to
the algorithm: Time dependent travel time, alternative pickups and deliveries, and
maximum shift times. The chapter is concluded with an evaluation of the require-
ments for solving real world problems.

The algorithm is written in java. All of the following experiments are run on a
laptop with a 2.2 ghz quadcore cpu (i7-2670QM) with a maximum of 8 simultane-
ous threads, and 4 GB of memory.

5.1 Initialization methods

First we tested the initialization methods. Every initialization method was run five
times on three different problem instances: one where the locations are clustered
(lc 1 6 1), one where they are randomly distributed (lr 1 6 1) and a combination of
the two (lrc 1 6 1). All these instances come from the Li & Lim benchmark (see
Li and Lim [2003]). The results are given in Table 5.1. As can be read from the
table, the insertion by similarity method outperforms the other methods on both
the clustered and the combined instances, whereas the farthest insertion method
is better at the randomly distributed instance. Because the insertion by similarity
method produced the best solutions in two out of three instances, and was second
at the randomly distributed instance, we will use initialization by similarity in the
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Instance Method best
routes

avg.
routes

best km avg. km best tt avg tt best fitness avg. fitness
avg.
time (s)

lc 1 6 1 similarity 61 61.0 15421 15527.4 4283 4312.6 15421.48 15527.72 3.01
random 95 98.4 31953 34206.4 8876 9501.6 31953.84 34207.03 2.41
farthest 64 66.0 15486 16147.2 4301 4485.0 15486.58 16148.02 3.09
nearest 68 70.2 17410 18283.0 4836 5078.4 17410.23 18283.61 2.53
sweep 67 71.4 16477 18036.0 4577 5009.8 16477.99 18036.80 2.52
cheapest 98 101.8 33464 36336.6 9295 10093.0 33464.92 36337.52 38.48

lr 1 6 1 similarity 67 68.2 31243 31873.8 8678 8853.4 31243.91 31874.74 1.92
random 71 75.2 38270 39435.4 10630 10953.8 38270.91 39436.23 2.24
farthest 72 75.2 30012 30738.8 8336 8538.0 30012.47 30739.57 2.23
nearest 87 88.6 35187 36486.2 9774 10134.8 35187.52 36486.87 3.14
sweep 80 82.4 32707 33847.2 9085 9401.6 32707.93 33848.13 2.84
cheapest 66 68.2 33437 35946.0 9288 9984.6 33437.88 35946.87 36.73

lrc 1 6 1 similarity 66 66.6 23069 23332.6 6408 6481.2 23069.94 23333.34 2.31
random 71 76.0 26567 27567.6 7379 7657.0 26567.78 27568.14 1.77
farthest 70 71.2 23476 24064.8 6521 6684.4 23476.69 24065.66 1.95
nearest 73 78.8 26818 28218.4 7449 7838.0 26818.83 28219.37 1.85
sweep 69 71.4 24759 25486.8 6877 7079.2 24759.61 25487.62 2.19
cheapest 73 75.0 26393 27681.2 7331 7689.0 26394.17 27681.95 33.59

Table 5.1: Comparison of initialization methods on three instances from different
categories. We compare the best and average solutions generated by the initialization
methods. Also the average time to complete the method is given in this comparison.
The best values per problem instance are printed in bold font.

following experiments. Producing the best result with an initialization method does
not mean that it always leads to the best final results after running the algorithm,
because the generated starting solution may be more difficult to improve. However
on the Li & Lim benchmark the algorithm seemed to find the best known solutions
faster when using this initialization method.

5.2 Operators

For determining the probabilities for selecting the operators we do five runs for three
different types of problem instance with 600 locations: One clustered, one randomly
distributed, and one combined instance. The effectiveness of all the operators is
tested by tracking the average success rate, the number of times the operator was
called, and the average improvement on success over these five runs. All the exper-
iments were given 10 minutes computing time.

Not all the operators are included in this experiment. We did a number of ex-
ploratory runs to see which operators were most competitive, and then tested these
operators more extensively. All of these selected operators are used in every run,
except for the time shift operator which is only used in the time dependent problem
instances. For this reason this operator is not included in these experiments. The
time shift operator however is the only operator in our algorithm which improves the
time penalty, so it is always used in problems instances with time dependency. The
results for the small scale operators are in Table 5.2, and the results for the large
neighborhood operators are in Table 5.4. The probabilities to select these operators
in the algorithm are given in Tables 5.3 and 5.5.

The probabilities for selecting a certain operator in an iteration are determined
by the results of this experiment. The average improvement of the solution by an
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Instance Operator
Times
called

Success
rate

avg. impr. Ranking

lc 1 6 1 simple pair insertion 20856 0.04% 48.51 3
exchange 20785 0.34% 819.11 2
exchange consecutive 20954 0.19% 1611.95 1
insert non-planned 10418 0.04% 30.72 4

lr 1 6 1 simple pair insertion 19393 2.15% 748.45 3
exchange 19630 4.24 % 5335.10 1
exchange consecutive 19808 3.32% 4553.54 2
insert non-planned 9944 2.70% 493.86 4

lrc 1 6 1 simple pair insertion 21235 6.73% 329.06 4
exchange 21204 10.62% 3736.13 2
exchange consecutive 21088 10.23% 5609.65 1
insert non-planned 10513 7.44% 321.47 3

Table 5.2: A comparison of the small scale operators. The ranking of the operators
is based on their success rate multiplied by the average improvement. The best
operator is marked for all the instances.

Operator pt. lc pt. lr pt. lrc points selection probability
simple pair insertion 2 2 1 5 1/4
exchange 3 4 3 10 1/2
exchange consecutive 4 3 4 11 11/20
insert non-planned 1 1 2 4 4/20

Table 5.3: The probabilities of selecting the small scale operators. These are based
on the points (the inverted ranking) for their performance in the three problem
instances. The three columns after the operator name indicate the number of points
gained on the different instances (clustered, randomly distributed and combined).

operator is the success rate multiplied by the average improvement on success. For
all operators we calculate weights for the three problem instances. The operators are
ranked according to their weights, and are given points according to the inverse of
their ranking, i.e. if the ranks go from 1 to 4, the operator that is ranked first gets 4
points. The sum of rankings over all instances determines the selection probability.
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Instance Operator
Times
called

Success
rate

Avg. impr. Ranking

lc 1 6 1 Ruin/Recreate (random/fast) 1739 1.35% 621.33 4
Ruin/Recreate (random/similar) 1659 0.86% 250.00 6
Ruin/Recreate (similar/fast) 1654 1.79% 378.87 5
Ruin/Recreate (similar/similar) 1652 1.11% 765.36 3
2-opt* 1649 2.96% 17.43 7
Combine routes 1618 1.17% 1650.53 2
Combine remove 1680 1.76% 3746.91 1

lr 1 6 1 Ruin/Recreate (random/fast) 1789 12.94% 1689.50 4
Ruin/Recreate (random/similar) 1773 7.90% 1766.78 6
Ruin/Recreate (similar/fast) 1719 13.92% 1883.93 2
Ruin/Recreate (similar/similar) 1770 8.29% 1819.63 5
2-opt* 1693 8.88% 837.52 7
Combine routes 1839 6.57% 16837.95 1
Combine remove 1776 5.20% 4223.57 3

lrc 1 6 1 Ruin/Recreate (random/fast) 1874 18.97% 477.91 5
Ruin/Recreate (random/similar) 1768 8.39% 3539.61 4
Ruin/Recreate (similar/fast) 1955 17.92% 403.53 6
Ruin/Recreate (similar/similar) 1824 9.71% 4070.19 3
2-opt* 1768 18.01% 339.99 7
Combine routes 1796 6.49 % 13600.48 1
Combine remove 1787 5.41% 13619.98 2

Table 5.4: A comparison of the large scale operators. The ranking of the operators
is based on their success rate multiplied by the average improvement. The best
operator is marked for all the instances.

Operator pt. lc pt. lr pt. lrc points selection probability
Ruin/Recreate (random/fast) 4 4 3 11 11/84
Ruin/Recreate (random/similar) 2 2 4 8 8/84
Ruin/Recreate (similar/fast) 3 6 2 11 11/84
Ruin/Recreate (similar/similar) 5 3 5 13 13/84
2-opt* 1 1 1 3 3/84
Combine routes 6 7 7 20 20/84
Combine remove 7 5 6 18 18/84

Table 5.5: The probabilities of selecting the large neighborhood operators. These are
based on the points (the inverted ranking) for their performance in the three problem
instances. The three columns after the operator name indicate the number of points
gained on the different instances (clustered, randomly distributed and combined).
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5.3 Temperature

In Chapter 4, we explained how to find the starting temperature T0 that roughly
corresponds to a certain acceptance ratio X0. The acceptance ratio is the fraction of
worse neighbours to be accepted. An acceptance ratio of 0.5 means that half of the
worse neighbours are accepted. To find a value for T0 for a given acceptance ratio
X0, we use Equation 5.1.

∑i<|L|
i=0 e

−Li
T0

|L|
= X0 (5.1)

Here the set L is a set of randomly selected neighbours from a starting solution
of the problem instance. The larger the set L is, the more accurate the starting
temperature value for an acceptance ratio of X0 can be determined. In our experi-
ment, the set L has a size of 1000. The left side of the equation equals the average
acceptance probability of all the elements in the set L. The probability of accepting
a change to the current solution that is worse than the current solution is determined

as e
−difference
temperature , where difference is the new fitness value minus the old value. The

numerator of the fraction is the sum of all acceptance probabilities in the set L.

Even if we know how to determine a starting temperature that corresponds to a
given acceptance ratio, the best value for X0 is still unknown. In the next exper-
iment we will try to find the best value for X0, by doing test runs with a number
of different values. First, the fitness values for the desired acceptance ratios are
calculated for the given problem instance, with the method described before. Then
the algorithm is executed 5 times with 15000 iterations for starting acceptance ra-
tios 0.3, 0.4, 0.5, 0.6 and 0.7 on a half clustered, half randomly distributed problem
instance. We chose to test the acceptance ratio on this instance because it has the
structure of both the clustered and the randomly distributed instances. Figure 5.1
illustrates the acceptance ratio to temperature function. The results of this exper-
iment can be found in Table 5.6. As can be read from this table, the higher the
starting temperature becomes, the higher the probability that the number of routes
will be minimized, but the fitness value is best at a value of 0.5 or 0.6. Also the
algorithm will improve faster with low temperatures. For the following experiments
an initial acceptance ratio between of 0.55 will be used, because 0.5 produced the
best average values, and 0.6 produced the best overall value.
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Figure 5.1: Acceptance ratio to temperature for problem instance lrc 1 6 1. The
horizontal axis is the acceptance ratio and the vertical axis the temperature that
gives such an acceptance ratio.

X0 T0
best
routes

avg.
routes

best km avg. km best tt avg tt best fitness avg. fitness

0.3 246 55 55.5 17924 18367.2 4979 5101.7 866674.73 879501.33
0.4 888 54 54.8 17855 18054.0 4959 5014.5 860070.28 866960.60
0.5 3413 53 54.6 17930 18087.6 4980 5024.0 850256.23 865556.52
0.6 8092 53 54.6 17961 18088.1 4989 5024.1 849979.89 865565.02
0.7 14781 53 54.4 17981 18212.6 4995 5058.8 850145.27 865766.25

Table 5.6: Comparison of different initial acceptance ratios over 15000 iterations for
instance LRC 1 6 1 with final temperature 1.

5.4 Selection by probability

To be able to reach a good solution faster, but still allowing the algorithm to explore
all of the search space, we introduced selection by probability. This means that when
selecting a new solution from a neighborhood, all options are considered, but there
is a bias towards better options. When this bias factor is 0 no distinction is made
between neighbors, because the selection weight 1

insertionCostbias
is the same for all

insertion costs, and x0 = 1 for all values. When the bias factor has a high value,
better neighbors have a higher chance of being chosen. To see the influence of this
bias factor we make a comparison between solutions with different bias values, where
the other values are kept the same. These experiments are based on 5 runs, with
30.000 iterations each. As with all previous experiments the problem instance is
LRC 1 6 1. The results of this experiment are listed in Table 5.7. As we expected
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bias
best
routes

avg.
routes

best km avg. km best tt avg tt best fitness avg. fitness

0.0 59 61.6 19323 20015.2 5367 5559.4 931382.04 969609.00
1.0 54 55.0 18006 18278.2 5001 5077.0 865205.84 872929.12
1.5 55 55.0 17838 17960.0 4955 4988.6 865153.98 867305.21
2.0 53 54.0 17870 18005.8 4964 5001.2 849522.84 858110.35
100.0 54 54.4 17972 18086.8 4992 5023.8 857509.07 863542.89

Table 5.7: Comparison of different bias values. a bias value of 1.0 means there is no
bias at all, a value of 100 practically removes the probability factor, only the best
neighbours are chosen.

only selecting the best neighbors restricts the search space too much, experiments
with a bias value of 2.0 produced the best results with the given number of iterations.
It may however be possible that the results with lower bias values may be better if
given more time.

5.5 Large Neighborhood search

Because we reasoned that small changes may not be always enough to escape from
local optima we introduced a number of large neighborhood operators. To test if
these operators have a positive influence on the quality of the produced solutions, we
compare the algorithm with and without LNS operators on a hard instance from the
Li & Lim benchmark set. We compare how fast both algorithms converge and what
the final results are on this problem instance. The algorithm was run for 30 minutes
with 20.000 iterations per vehicle minimization stage. Every problem instance is
ran 5 times. For the runs that use large neighborhood operators, there is a 1%
chance that one of the LNS operators is chosen. As can be read from the results in
Chart 5.2 and Table 5.8, the results are not unanimously in favor of using or not
using LNS. Both produce equal results in the clustered instances. In the randomly
distributed instances the algorithm seems to perform a little better without LNS, and
in the combined instances the algorithm with LNS produces slightly better solutions.
Although the results do not differ much, we choose to use the LNS operators for
solving the benchmarks because they seem to find solutions with fewer vehicles better
in some of the cases.
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Figure 5.2: Convergence with, and without the use of LNS operators on the problem
instance lrc1101.

Instance LNS best routes avg. routes best fitness avg. fitness
lc181 yes 80 80.00 25184.38 25184.38

no 80 80.00 25184.38 25184.38
lc281 yes 24 24.00 11687.06 11687.06

no 24 24.00 11687.06 11687.06
lr181 yes 80 80.40 41841.85 42159.43

no 80 80.20 41236.00 42170.89
lr281 yes 16 17.00 29961.97 30597.46

no 16 16.80 29961.22 30140.01
lrc181 yes 68 70.40 32640.93 33079.96

no 69 70.40 32675.99 33171.90
lrc281 yes 21 21.80 21799.20 21954.61

no 22 23.20 21670.45 22281.18

Table 5.8: Comparison of running the algorithm with and without LNS (1% of the
time) on a number of instances of the Li & Lim benchmark set. The best results are
printed in bold font.
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5.6 Benchmark : Li & Lim

To be able to determine how our algorithm performs we used benchmark instances
by Li and Lim [2003]. The problems in this set are pickup and delivery with time
windows problems. Many researchers published the results of their algorithms on
this benchmark set, and the best known results are published online. For this reason
we can use this benchmark to compare our results to other algorithms.

The set of benchmark problems consists of 354 pickup and delivery problem in-
stances with time windows. The size of these problem instances ranges from around
100 to around 1000 locations (100, 200, 400, 600, 800 and 1000 locations), with half
as many orders. The problems are divided in six problem classes: LC1, LC2, LR1,
LR2, LRC1 and LRC2. In the sets LC1 and LC2 the orders are clustered, in LR1
and LR2 the orders are randomly distributed, and in LRC1 and LRC2 the orders
are partially clustered and partially randomly distributed. The difference between
the sets ending on 1 and the sets ending on 2 is that the sets ending on 1 have short
planning horizons and the sets ending on two have a long planning horizon. In this
experiment 36 instances from this benchmark will be tested; one instance from all
of the problem classes, and all of the problem sizes.

The locations used in this benchmark are located on a plane, but they are not
real geographical locations. Every location has an x and a y coordinate, and the dis-
tance and driving time between two locations is calculated as the distance between
the two points on the plane, calculated with double precision. All orders consist of a
pickup and a delivery action with a time window and a location. An order also has
a demand, which indicates the capacity needed to transport this order. For every
problem instance there is a given number of homogenous vehicles available with a
given capacity. The benchmark has a hierarchical objective: The first objective is
to minimize the number of vehicles used, and the second objective is to minimize
the number of kilometers driven. The total number of kilometers driven is rounded
to two decimals.

For this benchmark we use the results from the previous experiments to determine
the settings. The temperature is set to have a starting acceptance ratio of 55% and
a final acceptance ratio of 1%. We use the similarity initialization method, and the
selection probabilities for the operators as determined before. The running time of
the algorithm depends on the size of the instance to be solved. For every 100 loca-
tions the algorithm gets 10 minutes of computing time. Because the first priority is
to minimize the number of vehicles we do a number of vehicle minimization rounds.
Every round 20.000 iterations are run. If within these 20.000 iterations all orders
are planned a vehicle is removed from the solution (based on the number of orders
assigned to the vehicles, a vehicle with fewer orders assigned gets a higher proba-
bility of being removed), and the algorithm starts solving the problem again, with
one vehicle less. If not all orders could be planned within these 20.000 iterations,
all removed vehicles are restored again. The results are stated in Table 5.9. As can
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be read from this table the algorithm performs very well on the clustered problem
instances, for many of the instances the best known result is equaled. For some of
the problems the driven distance is improved, but the number of vehicles used is
higher than in the best known result. For the randomly distributed set it can be
noticed that for the smaller problems the best known solutions are found, but for
the larger problems the algorithm performs a little worse, although most of the time
the solution with the best known number of vehicles is still matched. The last prob-
lem set, which is partially clustered and partially randomly distributed, has proven
hardest to solve for our algorithm. Even though shorter routes are found for some
of the instances, the algorithm often fails to equal the minimum number of vehicles
needed.
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Instance
routes
(bk)

distance (bk)
routes
(br)

distance (br)
routes
(avg)

distance (avg) time (min)

lc101 10 828.94 10 828.94 10.0 828.94 10
lc121 20 2704.57 20 2704.57 20.0 2704.57 20
lc141 40 7152.06 40 7152.06 40.0 7152.06 40
lc161 60 14095.60 60 14095.64 60.0 14095.64 60
lc181 80 25184.38 80 25184.38 80.0 25184.38 80
lc1101 100 42488.66 100 42488.66 100.0 42488.66 100
lc201 3 591.56 3 591.56 3.0 591.56 10
lc221 6 1931.44 6 1931.44 6.0 1931.44 20
lc241 12 4116.33 12 4116.33 12.0 4116.33 40
lc261 19 7977.98 19 7977.98 19.0 7977.98 60
lc281 24 11687.06 24 11687.06 24.0 11687.06 80
lc2101 30 16879.24 30 16879.24 30.0 16879.24 100
lr101 19 1650.80 19 1650.8 19.0 1650.8 10
lr121 20 4819.12 20 4819.12 20.0 4819.12 20
lr141 40 10639.75 40 10689.56 40.0 10764.18 40
lr161 59 22838.30 59 23326.27 59.6 23751.51 60
lr181 80 39315.92 80 41911.65 80.2 42372.05 80
lr1101 100 56903.88 100 60437.15 100.0 60990.64 100
lr201 4 1253.23 4 1253.23 4.0 1253.23 10
lr221 5 4073.10 5 4073.1 5.0 4073.1 20
lr241 8 9726.88 8 9726.88 8.0 9889.09 40
lr261 11 21945.30 12 18960.75 12.0 19116.29 60
lr281 15 33816.90 16 30070.72 16.4 30836.63 80
lr2101 19 45422.58 19 45924.79 19.4 46688.62 100
lrc101 14 1708.80 14 1708.8 14.0 1708.8 10
lrc121 19 3606.06 19 3606.06 19.0 3606.86 20
lrc141 36 8966.97 37 8944.58 37.0 8977.74 40
lrc161 53 17924.88 53 17994.47 53.2 18127.96 60
lrc181 67 32268.95 68 32501.92 68.2 33016.25 80
lrc1101 84 49315.30 86 50085.55 86.4 50385.15 100
lrc201 4 1406.94 4 1406.94 4.0 1406.94 10
lrc221 6 3605.40 7 2997.06 7.0 2998.59 20
lrc241 12 7471.01 13 6646.02 13.0 6651.19 40
lrc261 16 14817.72 17 13122.63 17.0 13185.15 60
lrc281 20 23289.40 21 21461.99 21.0 21933.31 80
lrc2101 22 35073.70 24 31006.56 24.0 31276.39 100

Table 5.9: The results of our algorithm on the Li & Lim Benchmark. (bk) is best
known result, (br) is the best result our algorithm found over 5 runs and (avg) is the
average result of our algorithm. Results that are equal to or better than the best
known result are written in bold font.
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5.7 Time dependency

Time dependent travel times can have a positive impact on the produced solutions,
because they correspond to reality better. The disadvantage is that there are more
computations to be done, which has a negative influence on the convergence speed
of the solutions. To test the impact of time dependency on computing times we did
5 test runs with 5.000 iterations on randomly distributed problem instances from
our benchmark set (dtr501, . . . ,dtr5001). We performed tests with time dependency
where multiple possible starting times are considered when inserting actions. Also
a simpler way of handling time dependency is tested, in which only a single starting
time is considered at insertion to improve the computing time. Finally to make a
comparison, the algorithm is run without time dependency on the same instances.
The results of this experiment can be found in Table 5.10. As can be read from
the table there is still a large difference between calculations with and without time
dependency. With time dependency more computations have to be done, because
one insertion or removal can influence all other orders in the same route. The
cost with time dependent travel times in Figure 5.3 is higher because the fitness is
calculated in a different way: in the run without time dependency there was no cost
for waiting and working time.

Figure 5.3: The difference in convergence speed between an instance with time
dependence, and the same instance without time dependence.
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Instance Size
(orders)

Time
dependency
& Multiple
Options (s)

Time
dependency
(s)

No time
dependency
(s)

50 279.46 (41.16 x) 39.91 (5.88 x) 6.79
100 417.18 (48.79 x) 85.85 (10.04 x) 8.55
200 1014.38 (72.46 x) 171.85 (12.28 x) 14.00
300 1189.69 (48.62 x) 271.77 (11.11 x) 24.47
400 1908.07 (54.10 x) 383.65 (10.88 x) 35.27
500 2925.21 (42.24 x) 400.68 (5.79 x) 69.26

Table 5.10: Comparison of computing time (in seconds) for 5000 iterations on prob-
lem instances of different sizes with and without time dependency. The factor the
computation speed differs from the problem without time dependency is given be-
tween the parentheses for the time dependent columns.

5.8 Alternative pickups & deliveries

The second addition to the basic problem we test are the alternative pickups and
deliveries. If there are more options available to consider it can be assumed that
the computing time needed to solve an instance will increase. To test the influ-
ence of alternative locations on the computing time we have generated 5 instances
with a differing number of alternatives for the pickups and deliveries. All instances
consist of 201 locations, and 100 orders to be serviced. First we test an instance
without alternative pickups and deliveries, as a baseline measurement. Then we test
instances with an increasing maximum number of alternatives for both the pickups
and deliveries, ranging from 1 alternative to 4 alternatives. We compare the aver-
age computing time and quality of the solutions in 10.000 iterations, over 5 runs.
As can be read from Table 5.11, the computing time increases with the number of
alternatives. Also the driven distance and the number of routes decreases, because
better alternatives can be chosen.

max. alternatives avg. time (s) avg. routes avg. distance driven
0 15.75 24.8 422485.80
1 23.88 21.6 351515.00
2 37.95 17.2 279654.20
3 54.98 17.0 270034.20
4 71.25 15.6 251232.40

Table 5.11: Comparison of solving 5 randomly generated problem instances, with
100 orders and 201 locations. The maximum number of alternatives applies to both
the pickups and deliveries. For example with a maximum of 2 alternatives every
pickup and delivery can have 1 to 3 locations / time windows to be considered.
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max. shift
time

avg. time (s) avg. routes avg. shifts avg. distance

avg.
orders
planned

- 420.29 15.80 15.80 382382.60 100.0
1
2

day 766.41 18.80 22.60 436762.80 100.0
1
3

day 1689.09 19.60 32.60 507968.40 100.0
1
4

day 1413.90 20.00 43.00 578622.40 99.0

Table 5.12: Comparison of solving a randomly generated instance with 100 orders,
using differing shift times. The fraction in the max. shift time column indicates in
how many shifts the day is split.

5.9 Maximum shift time

The last addition that is tested is the introduction of the shift time constraint. For
this experiment, a problem instance with 100 orders is generated. The orders in
this instance have long time windows and small service times. Also, the number
of vehicles is low (20), so the shift constraint can not be avoided by using more
vehicles. We compare the results of the instance solved with 1 up to 4 shifts per
day. The results as shown in Table 5.12 indicate that shorter maximum time for a
shift leads to higher computing times. The reason for this is that more shifts need
to be considered, which means more options for the insertion of actions. The driven
distance also increases with the number of shifts, because between every two shifts
the vehicle needs to return to its depot.

5.10 Benchmark : Time Dependency & Alterna-

tive Locations

Because to the best of our knowledge there is no benchmark available for pickup
and delivery problems that include time dependency or alternative locations, we
introduce a new benchmark that includes both these attributes.

The benchmark consists of 144 problems, and is divided in four sets of problems:
Clustered orders with time dependency (dtc), Randomly distributed orders with time
dependency (dtr), Clustered orders with time dependency and alternative locations
(dtac) and Randomly distributed orders with time dependency and alternative lo-
cations (dtar). All problem instances have one central depot from which a fleet of
heterogenous vehicles depart. The vehicles have different capacities, on which their
cost is based. All vehicles have a fixed cost and a variable cost. The fixed cost is
added to the fitness value if the vehicle if used, and the variable cost is the penalty
per kilometer driven. For all four of the problem classes there are six instances for
each of the problem sizes. There are problems with 50, 100, 200, 300, 400 and 500
orders. An order consists of a pickup and a delivery, with time windows. In the
problem instances with alternative locations, both the pickups and deliveries can
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have alternative locations with different time windows, from which one alternative
has to be planned.

The problem instances are generated randomly given a number of parameters. A
square area is created in which all the locations are placed. In randomly distributed
instances all locations are completely random. To create clustered instances a clus-
ter size and a number of locations per cluster is given. The clusters are then added
randomly, with the restriction that they can not overlap previously added clusters.
This is a trial-and-error process: when the location of a newly added cluster over-
laps an existing cluster it is moved to a new random location, until it no longer
overlaps any other clusters. If no non-overlapping location can be found after a
number of tries the cluster is added to the last random location. The number of
locations depends on the number of orders, the number of depots and the chance of
alternative pickups and deliveries. The number of locations is twice the number of
orders plus the number of depots. If there is a chance on alternative pickups and
deliveries, the number of locations is the average number of locations needed to give
every alternative a unique location. After all locations are created the pickups and
deliveries for the orders are generated. For an order the pickup locations are chosen
at random. The delivery locations are chosen by probability; locations that are close
to a pickup location get a higher probability to be chosen as delivery location. The
size of the time windows for the pickups and deliveries depends on the values for the
parameters that are given. There is a maximum and a minimum time window size
for both the pickups and the deliveries. The service time is determined in the same
fashion. To make sure it is always possible to schedule an order, earliest and latest
starting times for the time windows are determined. These values depend on the
travel times and the service times of the pickups and deliveries for this order. For
a delivery the earliest starting time is adapted to one of the corresponding pickup
alternatives, chosen at random. The travel time is based on the size of the map.
With a depot in the center of the map it should be possible to reach all of the orders
within the given planning window. We have included time dependent travel times,
and alternative pickups in the instance generator. For time dependent travel times,
a number of periods with different travel times are set. The travel time modifier
for these periods is between a minimum and a maximum value given as input by
the user. The time per period and number of periods can also be set. Alternative
pickups and deliveries can be generated with a given probability. Also the maximum
number of alternatives is given. Pickup alternatives are generated independent of
one another, and the location and time window of the deliveries each depend on a
randomly selected pickup action of the same order. Finally the user can set a number
of vehicles and depots to be used. The vehicles have a randomly generated capacity
between a minimum and maximum value. Their cost can be random or dependent of
their capacity. And all vehicles are randomly assigned to one of the available depots.

To be able to compare the quality of solutions the penalties that are given in Table
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Attibute Penalty per unit
Driving time vcostv
Waiting time 0.25 · vcostv
Working time 0.25 · vcostv
Fixed vehicle penalty fcostv

Table 5.13: Penalty values for different attributes. The sum of all penalties is the
fitness value.

5.13 are used. The sum of all penalties is the fitness value of a solution. The dis-
tance between two locations is determined by the direct distance between the two
points, as if they are in a 2d plane. The distance value is rounded to the nearest
integer value. Without time dependent travel time, the driving time between two
locations is the same as the distance. With time dependent travel time the travel
time between locations is calculated as in Section 4.3.3. The travel time in a given
time period is the multiplier for that period multiplied with the distance between
the locations. All the penalty values are calculated with double precision, and the
total value is rounded to two decimals.

Because the speed is lower when running the algorithm with time dependent travel
times, the number of iterations for all the following experiments is set to 7500. The
other settings are the same as in the Li & Lim benchmark experiment, with the
exception that instead of the 2-opt* operator the combine routes into new operator
is used. This operator is used here, because contrary to the Li & Lim benchmark,
heterogenous vehicles are used here. If we would not use this operator the algorithm
would always prefer smaller vehicles, because the cost of these vehicles is lower, so
their direct impact on the fitness value is smaller. The 2-opt* was replaced, because
it is a slow operator, and the computing time already increases by a considerable
factor due to the time dependency.
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Instance
rts
(b)

fitness (b)
rts
(avg)

fitness (avg) Instance
rts
(b)

fitness (b)
rts
(avg)

fitness (avg)
time
(min)

dtr501 13 531873.57 13.0 539442.87 dtar501 13 484807.02 13.4 506128.32 10
dtr502 18 550506.34 18.0 560749.22 dtar502 14 489506.95 14.8 505953.70 10
dtr503 17 524206.08 16.2 527105.53 dtar503 20 634500.29 20.2 637779.11 10
dtr504 13 525721.21 13.2 547794.36 dtar504 12 549547.60 12.0 559607.83 10
dtr505 13 458868.14 13.2 469051.41 dtar505 12 408704.23 12.8 426007.12 10
dtr506 17 570012.35 17.2 576555.00 dtar506 17 513331.35 16.2 515357.10 10
dtr1001 21 860470.83 22.4 895679.90 dtar1001 22 949136.27 22.0 961146.51 15
dtr1002 28 878028.81 28.6 899437.90 dtar1002 29 935581.85 28.8 954191.66 15
dtr1003 39 1092364.05 40.0 1116255.93 dtar1003 30 974109.51 30.4 988064.04 15
dtr1004 24 913861.38 24.0 938833.02 dtar1004 20 826954.94 19.8 837008.56 15
dtr1005 33 944017.30 32.2 956646.75 dtar1005 26 865159.88 26.2 882683.39 15
dtr1006 35 1026350.54 35.0 1038151.48 dtar1006 32 962312.46 33.2 983585.21 15
dtr2001 45 1819562.84 45.4 1851028.80 dtar2001 40 1753386.35 40.8 1785311.82 25
dtr2002 62 1877375.64 63.0 1895008.75 dtar2002 54 1626828.86 52.8 1651110.24 25
dtr2003 65 1922233.23 67.6 1947556.41 dtar2003 71 2002240.91 69.0 2022907.30 25
dtr2004 38 1747035.07 39.2 1783900.37 dtar2004 37 1601018.82 38.4 1649645.35 25
dtr2005 67 2021301.04 67.0 2043047.35 dtar2005 46 1552164.13 46.6 1598671.26 25
dtr2006 71 2114904.75 72.2 2151667.59 dtar2006 65 1989698.56 67.0 2008347.08 25
dtr3001 62 2524567.12 64.2 2555678.24 dtar3001 65 2556689.29 63.2 2579982.33 35
dtr3002 81 2492128.33 80.8 2527008.47 dtar3002 80 2485442.71 80.0 2513209.99 35
dtr3003 91 2817665.40 95.0 2857052.51 dtar3003 94 2993818.13 94.8 3012681.81 35
dtr3004 67 2529218.45 65.6 2569782.36 dtar3004 57 2224836.77 57.8 2270408.69 35
dtr3005 85 2648265.35 84.8 2690420.49 dtar3005 71 2277549.35 71.6 2293219.76 35
dtr3006 105 3029289.73 104.2 3052612.68 dtar3006 98 2879259.55 99.8 2938124.57 35
dtr4001 74 3000969.14 74.8 3028213.74 dtar4001 81 3249911.35 81.4 3283468.98 45
dtr4002 111 3448427.35 112.8 3487633.77 dtar4002 106 3362478.27 104.0 3420574.21 45
dtr4003 131 3881025.44 132.8 3956732.79 dtar4003 129 3734382.50 128.4 3790199.74 45
dtr4004 78 3059838.00 78.2 3093359.00 dtar4004 65 2919096.48 66.2 2937776.25 45
dtr4005 109 3289235.43 111.8 3334045.95 dtar4005 95 3034043.29 96.8 3094564.15 45
dtr4006 144 4107305.50 146.0 4183317.44 dtar4006 119 3589406.20 121.0 3628740.15 45
dtr5001 91 3755474.88 93.2 3803984.11 dtar5001 86 3781806.58 87.6 3814599.85 55
dtr5002 134 4016773.97 136.8 4075876.85 dtar5002 129 3963692.11 129.6 4008962.48 55
dtr5003 165 4905008.97 169.2 4956360.88 dtar5003 158 4861006.57 159.8 4949729.01 55
dtr5004 100 3984552.73 99.4 4018923.04 dtar5004 79 3513188.10 81.4 3578016.91 55
dtr5005 137 4263243.03 140.4 4311725.91 dtar5005 123 3816532.58 123.8 3906279.22 55
dtr5006 175 5107283.28 176.4 5159024.95 dtar5006 145 4249483.61 146.4 4309442.07 55
dtc501 10 274403.99 10.0 276570.48 dtac501 10 286279.85 10.0 293629.79 10
dtc502 13 286563.58 12.8 290769.46 dtac502 13 290376.42 13.0 294334.55 10
dtc503 12 295362.73 12.0 297249.13 dtac503 12 286616.68 11.6 290267.51 10
dtc504 8 233429.66 8.0 241500.14 dtac504 9 283082.56 9.0 301312.75 10
dtc505 10 270727.04 10.2 277954.95 dtac505 12 307289.68 12.6 316234.30 10
dtc506 10 251244.73 10.6 257902.22 dtac506 13 338512.78 13.0 342777.44 10
dtc1001 19 539642.21 18.6 544606.51 dtac1001 17 506584.20 17.0 518499.04 15
dtc1002 21 563385.06 21.2 568694.18 dtac1002 24 583340.17 23.6 585892.22 15
dtc1003 31 703326.38 31.6 716866.97 dtac1003 29 725742.15 29.0 739505.09 15
dtc1004 17 496647.93 17.0 508441.75 dtac1004 15 514138.24 15.0 533802.38 15
dtc1005 27 603668.78 27.6 610060.00 dtac1005 20 540241.31 20.0 549840.96 15
dtc1006 30 684398.74 30.6 694817.87 dtac1006 29 673162.25 30.0 688014.27 15
dtc2001 31 977544.06 31.6 1015527.72 dtac2001 30 1082151.57 30.4 1104254.03 25
dtc2002 43 1095830.30 44.2 1146289.74 dtac2002 43 1103674.03 43.6 1110158.11 25
dtc2003 60 1409877.23 60.2 1422090.93 dtac2003 57 1376448.38 55.2 1398989.12 25
dtc2004 29 975328.12 29.8 989078.94 dtac2004 32 1011759.59 33.2 1059172.43 25
dtc2005 41 1069204.58 42.4 1073176.92 dtac2005 40 1094857.89 40.4 1125066.43 25
dtc2006 57 1363133.79 57.0 1374376.84 dtac2006 52 1265118.69 52.4 1294353.53 25
dtc3001 52 1544340.67 52.4 1571762.66 dtac3001 45 1483029.18 45.0 1508085.61 35
dtc3002 66 1597360.13 67.2 1625941.06 dtac3002 67 1589905.10 65.8 1617411.17 35
dtc3003 88 2059577.07 88.2 2093673.41 dtac3003 84 2065789.47 85.0 2090483.86 35
dtc3004 43 1440533.40 45.4 1467857.23 dtac3004 41 1332246.51 40.0 1387295.51 35
dtc3005 69 1603475.54 69.4 1624825.51 dtac3005 65 1615453.22 64.4 1663337.87 35
dtc3006 83 2076867.30 83.0 2103065.15 dtac3006 80 1956851.31 79.8 1985634.03 35
dtc4001 61 1829955.07 61.0 1892228.36 dtac4001 56 1920984.49 55.2 1945029.28 45
dtc4002 90 2139448.80 91.8 2162985.71 dtac4002 87 2060177.08 87.2 2131542.77 45
dtc4003 125 2901733.02 126.6 2941880.75 dtac4003 118 2755109.06 116.6 2813792.62 45
dtc4004 54 1778278.25 55.4 1802755.25 dtac4004 55 1807669.90 56.4 1864604.56 45
dtc4005 91 2118274.91 91.2 2141262.62 dtac4005 83 2052917.34 83.4 2101187.76 45
dtc4006 118 2645011.77 118.8 2671897.52 dtac4006 109 2592449.26 110.2 2616629.32 45
dtc5001 63 2188278.73 65.6 2215141.65 dtac5001 63 2118154.83 66.2 2162558.90 55
dtc5002 97 2459795.50 99.0 2524590.93 dtac5002 102 2558151.65 103.8 2614840.04 55
dtc5003 152 3516777.63 151.4 3531512.03 dtac5003 139 3246479.97 139.0 3338553.20 55
dtc5004 72 2395093.39 71.8 2427058.58 dtac5004 68 2198083.48 69.6 2241442.99 55
dtc5005 110 2664649.61 113.6 2706279.21 dtac5005 106 2614577.18 107.2 2665146.81 55
dtc5006 155 3573142.96 157.4 3629362.74 dtac5006 130 3187680.57 131.6 3246432.25 55

Table 5.14: The results of our algorithm on our Benchmark. The best result over 5
runs is listed.
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5.11 Real world problems

An important aspect of our research is real world applicability. In addition to be
able to solve theoretical problems we want our algorithm to be useful in real world
problems. That is why we based our problem on a real world case of a precision
transport company. Such a problem is too complex to include all the details in an
algorithm or model. There is always a tradeoff between detail and efficiency: incor-
porating too much detail in the model makes the search space larger, and thus makes
it harder to find a good solution in a reasonable amount of time; too little detail
could lead to creating unusable schedules, because important constraints are ignored.

The problem we solve is based on the data of a busy week of this precision transport
company. This company has three depots at which 50 vehicles are stationed. In
this planning window 1202 orders have to be serviced by these vehicles. This comes
down to around 240 orders per day. We have shown that our algorithm is capable
of solving problems of this size. The orders have a pickup and a delivery location,
and can have one or more possible time windows in which they can be serviced. We
extended the model to include alternative locations as well. Vehicles are driven by
drivers who take a co-driver with them if they need to deliver heavy orders. These
drivers and co-drivers have a maximum amount of time that they can work on a
day. Also they have the right to take a break somewhere during the day. We chose
to exclude the planning of the drivers from our model. Because in this situation it
does not matter which driver drives a trip, the scheduling of the drivers can be done
afterwards. This does not mean that we can ignore the constraints arising from the
needs of the drivers. We chose to include the maximum time for shifts, and exclude
the drivers breaks. Driver breaks are not included in our model, for the reason that
they do not have a major impact on the schedules that are made. If there is waiting
time between two orders, this can be used by the drivers to take a break. The drivers
breaks can be split up in 15 minute periods, which would have a relatively small
impact on the total schedule. Limits on shift time however have a larger impact on
the produced schedules. This is because the vehicle has to be returned to the depot
when changing shifts, to be able to exchange drivers. This means that the route
for the vehicle has to be adjusted, to include a stop at the depot. A route created
without this constraint may be very inefficient, or impossible to drive, in practice.

Travel time is an important aspect of the problem. A good estimation of travel
time can lead to better results, and less delay. Travel times can change signifi-
cantly during the day. Because we make a schedule in advance, we can not use real
time data to adjust the schedule. Nonetheless travel times can be estimated based
on historical data. For example traffic jams, or slower traffic due to bad weather
conditions can be estimated to a certain extent. Our algorithm is able to handle
time-dependent travel time, of which the input would be an estimation, to create
more realistic schedules.

For this problem service times may be high, which means they can have a large

67



impact on the solutions. We allow for service time to be given for every pickup
or delivery separately. A good estimation for these service times is important for
creating good schedules.

Our algorithm can be used as a basis for solving large real world pickup and de-
livery problems in a reasonable amount of time. The extensions we made, based on
this real world case, improve the usability of our algorithm for practical problems.
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Chapter 6

Conclusion & Future Research

6.1 Conclusion

A lot of research has been done on the Pickup and Delivery problem with time
windows. In our research we have extended the approaches for solving the basic
PDPTW to be able to handle practical situations better. To reach this goal we pro-
posed a method for handling time dependent travel times and a method for limiting
the duration of a shift. In addition our algorithm allows for alternative pickup and
delivery locations and times from which a choice can be made. These extensions
make it possible to handle a wider range of problem instances, and to generate more
realistic solutions.

The algorithm we created for solving these problems is a simulated annealing al-
gorithm. A number of extensions to this algorithm were made to be able to reach
a good solution faster, and to have a better chance of escaping local optima. We
do not make completely random changes to the solution as in a regular simulated
annealing approach. Instead we give the algorithm a little guidance towards better
neighbours. The danger of this approach is that the algorithm could get stuck in
local optima faster, because we allow less freedom for exploring the search space.
To overcome this problem, we do not always select the best neighbours. Neighbours
are selected by probability, based on their fitness value. Also operators that search
a larger neighborhood are introduced. We chose to add guidance to the algorithm
because of the many constraints the time windows pose. Randomly shifting orders
would often lead to much worse solutions, and increasing the number of iterations
needed to find a good solution.

To make the algorithm more efficient we have added a similarity factor, which
determines the similarity between orders, actions or trips. This factor is used to
select orders that are more alike in neighborhood moves, so that less invalid moves
are made. We introduced a new initialization method based on this similarity value,
which proved to be competitive. Also, integrating similarity in some of the operators
proved to be an improvement: Better results were found in a shorter amount of time.

69



The main research subject was time dependent travel time. Our implementation
of time dependent travel time is very flexible and can handle many types of input,
as long as the travel times follow the FIFO principle. The input can be either dis-
crete values, or a function or algorithm that calculates travel times on the fly. The
implementation is based on the approach by Savelsbergh [1992], in which slack values
are used. We have adapted this approach to be able to handle travel times that can
change during a day, by introducing time dependent slack. The only disadvantage
is that the computing times increase when working with time dependency. Results
of our experiments (see Section 5.7) show that the computing time for the same
number of iterations increases by factors from around 5 to 12, when considering one
possible starting time for newly inserted actions.

In addition to the time dependency we added the possibility of having alternatives
for pickups and deliveries. This addition can be used in practical situations like
the possibility of delivering an order at two possible dates, or making a distinction
between home and work address for a package to be delivered. Because all combi-
nations of pickups and deliveries have to be considered when inserting an order, the
computing times increase if there are more alternatives available. We have tested
problem instances with up to 4 alternatives per action in Section 5.8. The computing
time for solving problems with alternatives increases in a quadratic fashion. If all
orders have two alternative pickup locations and two alternative delivery locations,
there are four possible combinations per order. If we have 3 alternatives per pickup
and per delivery this increases to nine possibilities, and so on.

In real world problems there are restrictions on the maximum time a driver may
work on a day. We introduced an approach for handling this constraint. We intro-
duced shifts that start and end at a depot, and have a maximum duration. A day
is divided into a number of shifts, that are driven by different drivers. The depot is
visited in between shifts to exchange drivers. Orders can be divided between shifts
to in such a way that the maximum working time constraint is respected. The exper-
iment in Section 5.9 shows that the more shifts there are the more computing time
it costs to find a good solution. Also the total distance driven increases, because the
vehicles have to return to the depot in between shifts.

For the PDPTW without time dependent travel time there was a benchmark by
Li and Lim [2003] to which a comparison could be made. The results our algo-
rithm found were often close to the best found solutions, although for some of the
problem instances a solution with the minimum amount of vehicles used was not
found. Because to the best of our knowledge there was no benchmark available for
the PDPTW with time dependent travel times, or alternatives for the pickups and
deliveries, we created a new benchmark so the quality of algorithms with these ex-
tensions can be compared. For all the problem instances in our benchmark set we
have noted the best result found so far (see Table 5.14, for use in future research.

Although the algorithm we created is quite competitive and can be used as a foun-
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dation for solving real world PDPTW problems, there are still many improvements
possible. For example, running the algorithm with time dependency requires a lot
of processing time. There are many possibilities for increasing efficiency in this algo-
rithm. Smarter ways of recalculating fitness values based on changes to a solution, or
faster methods for estimating the change in fitness when inserting or moving orders
could improve the speed. Checking for order insertion possibilities is currently the
largest bottleneck in speed, so it would be beneficial to make this more efficient.

6.2 Future Research Possibilities

There are some aspects in our research that can be improved by doing more exten-
sive research. We also name a number of possible extensions that can help with
solving realistic problems.

Firstly, our way of dealing with heterogenous vehicles is very simple, and can cer-
tainly be improved if researched further. We choose vehicles based on their cost,
which is usually lower for smaller vehicles. Because of this, the algorithm prefers
smaller cheaper vehicles over larger one. For servicing one order the small vehicle
may be preferable, but if fewer larger vehicles could service a group of orders the
larger vehicles might be more efficient, even though they are more expensive to use.
To overcome this, we have an operator that tries to combine two similar routes into
one. If two routes are driven by small vehicles, they can possibly be combined in one
route for a large vehicle. A method that finds out the most efficient use of vehicles
in a more sophisticated way could improve the solutions.

Furthermore more research can be done for maximum shift time. Our method cre-
ates a fixed number of shifts for a day with known duration, so it can never be used
in problem instances with an unlimited planning window. Also this method can
become inefficient for problems with long planning windows, because there would be
many shifts to consider. A more flexible approach to this problem could be better
and more efficient. This could be done by allowing shifts to be created and removed
on the fly.

In addition to the limits on shift times, drivers need breaks during their day. In-
tegrating breaks into the scheduling process is useful for creating schedules that
comply to the conditions for drivers which need to be satisfied.

In practice often not everything is known at the time the schedule is made: Travel
times can change due to unexpected events and/or orders can be added or cancelled.
To cope with these events we have to be able to adjust the schedule to these dy-
namic changes. Drivers can not be expected to change their whole schedule every
time something changes. This can be solved by applying a simulated annealing al-
gorithm again, with penalties for deviations from the original solution. Everything
that happened before the current time can not be modified anymore. The further
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in the future modifications are made, the less they matter, and the lower their devi-
ation penalty should be. For better applicability to real world cases, this extension
would be a good research subject.

Every real world case has its own requirements. There are many more extensions
that can be researched for use in these problems such as more realistic ways of de-
scribing capacity, schedules adapted to the skills and requirements of the personnel,
real time modifications after a solution is created, methods for estimating pickup
and delivery duration etc.
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Rémy Chevrier, Arnaud Liefooghe, Laetitia Jourdan, and Clarisse Dhaenens. Solving
a dial-a-ride problem with a hybrid evolutionary multi-objective approach: Appli-
cation to demand responsive transport. Applied Soft Computing, 12(4):1247–1258,
2012.

G Clarke and JW Wright. Scheduling of vehicles from a central depot to a number
of delivery points. Operations research, 12(4):568–581, 1964.

Jean-François Cordeau and Gilbert Laporte. A tabu search heuristic for the static
multi-vehicle dial-a-ride problem. Transportation Research Part B: Methodological,
37(6):579–594, 2003.

Luca Coslovich, Raffaele Pesenti, and Walter Ukovich. A two-phase insertion tech-
nique of unexpected customers for a dynamic dial-a-ride problem. European Jour-
nal of Operational Research, 175(3):1605–1615, 2006.

Alberto V Donati, Roberto Montemanni, Norman Casagrande, Andrea E Rizzoli,
and Luca M Gambardella. Time dependent vehicle routing problem with a multi
ant colony system. European journal of operational research, 185(3):1174–1191,
2008.

Billy E Gillett and Leland R Miller. A heuristic algorithm for the vehicle-dispatch
problem. Operations research, 22(2):340–349, 1974.

Fred Glover. Tabu search-part i. ORSA Journal on computing, 1(3):190–206, 1989.

Soumia Ichoua, Michel Gendreau, and Jean-Yves Potvin. Vehicle dispatching with
time-dependent travel times. European journal of operational research, 144(2):
379–396, 2003.

David S Johnson, Cecilia R Aragon, Lyle A McGeoch, and Catherine Schevon.
Optimization by simulated annealing: An experimental evaluation; part i, graph
partitioning. Operations research, 37(6):865–892, 1989.

Scott Kirkpatrick, D. Gelatt Jr., and Mario P Vecchi. Optimization by simmulated
annealing. science, 220(4598):671–680, 1983.

Jan Karel Lenstra and AHG Rinnooy Kan. Complexity of vehicle routing and
scheduling problems. Networks, 11(2):221–227, 1981.

74



Haibing Li and Andrew Lim. Local search with annealing-like restarts to solve the
vrptw. European journal of operational research, 150(1):115–127, 2003.

Quan Lu and Maged M Dessouky. A new insertion-based construction heuristic for
solving the pickup and delivery problem with time windows. European Journal of
Operational Research, 175(2):672–687, 2006.

Ying Luo and Paul Schonfeld. A rejected-reinsertion heuristic for the static dial-
a-ride problem. Transportation Research Part B: Methodological, 41(7):736–755,
2007.

Jean-Yves Potvin and Jean-Marc Rousseau. An exchange heuristic for routeing
problems with time windows. Journal of the Operational Research Society, 46
(12):1433–1446, 1995.

Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic
for the pickup and delivery problem with time windows. Transportation science,
40(4):455–472, 2006.
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