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Abstract

Diffusion-weighted imaging (DWI) is a type of contrast imaging used in Magnetic Resonance
Imaging (MRI) that visualizes the amount of diffusion of water molecules in tissue. Tumors
are well visible on DWI images. DWI is often acquired with Echo Planar Imaging (EPI) tech-
niques. Unfortunately, these techniques lead to geometric distortions in the diffusion-weighted
images. This causes problems in locating the position of the tumor exactly, which is required
for radiotherapy.
In this thesis, an approach called Compressed Sensing (CS) was investigated as a technique to
reduce the geometric distortions. In theory, the distortions are reduced by obtaining less MR
data during scan acquisition (undersampling). By enforcing sparsity of the data in a trans-
form domain, a well reconstructed image can be obtained as the solution of an appropriate
minimization problem. The reconstruction algorithm used to solve this problem was cFISTA,
a modification of FISTA developed by Beck and Teboulle [1].
Five undersampling strategies were retrospectively used on a DWI patient data set and the best
strategy among these five was identified. The reconstruction quality of the whole image and
the quality of the tumor reconstruction were assessed using the so-called Structure Similarity
Image Measure. A strategy called ‘centerincreased’ gave the best balance between the average
percentage of the MR data required for high quality reconstruction and the variation between
the test images, for both the tumor reconstruction and reconstruction of the whole image. High
quality reconstructions were obtained for this strategy, when on average only 20% of the MR
data was included.
The implemented reconstruction algorithm cFISTA was also used to reconstructed MR data
that was acquired in an undersampled fashion. This experiment proved the working of cFISTA
on the complex MR data, but a reduction of the geometric distortions could not be demonstrated
yet due to practical limitations of the EPI technique implemented on the MR scanner.
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Chapter 1

Introduction

Diffusion-weighted magnetic resonance imaging (DWI) is a type of contrast imaging used in
Magnetic Resonance Imaging (MRI). It visualizes the amount of diffusion of water molecules
in tissue. This leads to a Magnetic Resonance (MR) image in which for example tumors are
well visible. In practice, DWI is often acquired with the Echo Planar Imaging (EPI) technique.
Unfortunately, the use of EPI techniques lead to geometric distortions in the DWI image. This
in turn causes problems in locating the exact tumor position. The knowledge of the exact tumor
location is necessary for radiotherapy.

In this thesis, an approach called Compressed Sensing (CS) is investigated as a technique to
reduce geometric distortions in DWI. The data used to reconstruct an image is undersampled,
which means that less data is obtained during scan acquisition. Undersampling leads to a re-
duced scan time and less distortions. By enforcing sparsity of the data in a transform domain,
a well reconstructed image can be obtained as the solution of an appropriate minimization
problem. After finding a reconstruction algorithm to solve the problem, the goal is to find the
optimal undersampling strategy for the least amount of data possible to obtain good recon-
structions.

In Chapter 2, an overview of the history and principles of MRI is given. The principles behind
MRI and Nuclear Magnetic Resonance (NMR) are discussed and the concept of k-space is de-
scribed. The working of DWI is explained and the problem of geometric distortions that arise
when DWI is acquired with EPI is discussed.

In Chapter 3, the principles of CS are described. First, two possible undersampling strate-
gies are discussed, namely uniform and non-uniform undersampling. Then the minimization
problem, used for CS, will be stated. An iterative algorithm (ISTA) that will be used to solve
the minimization problem will be derived and explained. ISTA has a slow convergence, and
therefore it was improved. The approach by Beck and Teboulle in [1] resulted in the algorithm
FISTA.
In this thesis, several modifications and improvements were implemented to this algorithm to
finally obtain cFISTA. cFISTA can be used for complex-valued MRI data (Chapter 5).

To quantitatively compare the reconstructions from the undersampled data to the reconstruc-
tions without undersampling, a quality measure is required. In Chapter 4, three quality mea-
sures are discussed.
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In Chapter 5, experiments will be performed on ten diffusion-weighted patient data sets. First,
the efficiency of five undersampling strategies will be investigated. Next, choices of the pa-
rameters and transforms needed in the minimization problem and the reconstruction algorithm
cFISTA will be made. Then the test images will be undersampled using the five undersampling
strategies and then again reconstructed using cFISTA. This will lead to a optimal undersam-
pling strategy among these five strategies for diffusion-weighted images of patients.
The working of cFISTA will be tested on actual MR data in Section 5.3.4. Finally, the code
will be extended to be applicable to 3D volumes.
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Chapter 2

Magnetic Resonance Imaging

In this chapter, an overview of the principles and the history of Magnetic Resonance Imaging
(MRI) is given.
In Section 2.1, the principles of MRI and Nuclear Magnetic Resonance (NMR) are explained. In
Section 2.2, the concept of k-space is described, which will be used in later chapters. Section 2.3
deals with three types of contrast imaging; the focus will be on diffusion weighted imaging
(DWI). Finally, the main problem of this thesis is introduced: the geometric distortions that
arise when DWI is acquired with Echo Planar Imaging (EPI).

2.1 NMR and MRI

Magnetic resonance imaging is an imaging technique used for imaging of soft tissues and their
metabolic processes in the body [2]. MRI is based on the principle of NMR, which is a spectro-
scopic technique used to obtain microscopic chemical and physical information about molecules.
MRI is noninvasive and does not employ ionizing radiation like X-ray imaging. A MR image
represents the relative response of specific nuclei to absorbed radio frequency energy. The
image is a function of nuclear density. The image contrast is furthermore influenced by physical
factors, including differences in the ability to re-emit the absorbed Radio Frequency (RF) signal
(relaxation) and flow phenomena [2].

2.1.1 History

In 1946, Felix Bloch and Eduard Purcell independently discovered the MR phenomenon, for
which they receive a Nobel Prize in Physics in 1952. After this discovery, NMR was developed
and used for chemical and physical molecular analysis and reaction processes [2]. In 1967,
Jasper Johns had measured NMR signals from live animals and he proposed the first human
applications [3].
Raymond Damadian found in 1971 that nuclear magnetic relaxation times of tissues and tumors
differ, which made the technique useful for detecting diseases [4]. In 1973, the first MRI concepts
were published in papers by Paul Lauterbur and Peter Mansfield. Lauterbur provided the first
demonstration of MRI on small test tube samples using a back projection technique similar to
the technique used in CT [5]. In 1975, Richard Ernst proposed MRI using phase and frequency
encoding as well as Fourier transforms [6]. He defined the basis of the current MRI. His technique
was used by William Edelstein and others for the demonstration of imaging the body. In
1977, Mansfield developed an imaging technique called EPI and in 1992 functional Magnetic
Resonance Imaging (fMRI) was developed [3]. This last technique allowed mapping of the
function of various regions of the brain and led to a new application for EPI in mapping regions
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of the brain responsible for thought and motor control. Nowadays, fMRI and EPI are not only
used for the brain, but also for other parts of the body. In 2003, Lauterbur and Mansfield
received the Nobel Prize in Medicine for their discoveries concerning MRI.

2.1.2 Principles of Nuclear Magnetic Resonance

Magnetic resonance imaging started out as a tomographic imaging modality for producing NMR
images of a slice through the human body [2]. Since MRI is based on NMR, first the principles
of NMR will be discussed.

Certain nuclei possess an inherent angular momentum, or spin. A spin possesses an effec-
tive current loop which is capable of interacting with the static magnetic field B0, measured in
Tesla (T), as well as producing its own magnetic field. The strength of this loop is denoted by
the magnetic dipole moment vector ~µ. The magnetic moments ~µ in a collection of nuclei will be
randomly oriented by the principles of Brownian motion. However, when a static magnetic field
B0 is applied, the spinning nuclei will either become parallel or anti-parallel with the direction
of the applied field [2]. Due to thermal energy associated with the absolute temperature T , the
number of spins parallel to the magnetic field exceeds the number of spins anti-parallel. This
is called spin excess and it creates a longitudinal equilibrium magnetization M0, parallel to the
static field:

M0 =
ρ0γ

2h̄2

4kT
B0,

with ρ0 the number of protons per unit volume (spin density), k the Boltzmann constant and
T the absolute temperature. The gyromagnetic ratio is denoted by γ and is a nucleus specific
constant of proportionality. h̄ is Planck’s constant divided by 2π. This equilibrium value,
limited by the spin excess, leads to measurable NMR effects.
The alignment of the magnetic moment with B0 is not perfect (Figure 2.1). The spin vectors
of the nuclei rotate around the axis of B0 with a precession frequency ω called the Larmor
frequency.

Figure 2.1: Spinning nucleus with magnetic dipole moment ~µ oriented along external magnetic
field B0, precessing with Larmor frequency ω [3].

This frequency ω depends on the specific physical characteristics of the nucleus involved and
the strength of the applied magnetic field [2]:

ω0 = γB0,

where ω0 is the Larmor frequency for the applied magnetic field in MHz and γ is the gyromag-
netic ratio.
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Introducing a RF pulse onto the static magnetic field causes the spinning nuclei to flip from
their initial position with magnetization M0. This will lead to a decrease in the nuclear magne-
tization Mz = M0, and an increase in the magnetization in the x- and y-direction, Mx and My

respectively. The transition back to the initial state occurs over a period of time. This means
that the amplitude of the received signal decreases over time.

Let x̂, ŷ and ẑ be the unit vectors in the x-,y- and z-direction respectively. To calculate the
nuclear magnetization M = (Mx,My,Mz) as a function of time and position, the Bloch equation

dM

dt
= γM ×B0ẑ +

1

T1
(M0 −Mz)ẑ −

1

T2
Mxy (2.1)

is used [2]. The first right-hand term of Equation (2.1) describes the precession of the spins.
The second term contains the longitudinal magnetization Mz and denotes the long recovery of
the magnetization. This process is called the spin-lattice relaxation where T1 is the spin lattice
relaxation time. The last term uses the transverse magnetization Mxy := Mxx̂ + Myŷ to de-
scribe the transverse magnetization decay, which is the spin-spin relaxation with the spin-spin
relaxation time T2. It always holds that T2 is shorter than T1 [3]. More details about spin-lattice
and spin-spin relaxation are discussed in Section 2.3.

The solution set of Equation (2.1) for each position r = (x, y, z) = xx̂ + yŷ + zẑ and time
t is given by

Mx(r, t) = e−t/T2(r) (Mx(r, 0) cos(ω0t) +My(r, 0) sin(ω0t)) , (2.2a)

My(r, t) = e−t/T2(r) (−Mx(r, 0) sin(ω0t) +My(r, 0) cos(ω0t)) , (2.2b)

Mz(r, t) = Mz(r, 0)e−t/T1(r) +M0(1− e−t/T1(r)). (2.2c)

Note that Equation (2.2a) and Equation (2.2b) can be combined to

Mxy(r, t) = Mxy(r, 0)e−t/T2(r)e−iωt, (2.3)

with ω = ω0 + γ
(
~r · ~G(t)

)
. ~G(t) denotes a gradient that will be discussed in Section 2.1.3.

2.1.3 Principles of Magnetic Resonance Imaging

MRI associates a given NMR signal, as in (2.2), with a location in the tissue. The MR imaging
system consists of several components (Figure 2.2).

(a) MR scanner. (b) Gradient coils system.

Figure 2.2: Magnetic Resonance Imaging system [7]. (a) A cross-section of a MR scanner. The
magnet is used to generate a magnetic field. The radio frequency coil produces pulses to excite
the nuclei and detects the signal from the nuclei. (b) The gradient coil system present in the
MR scanner. These coils are used to encode the spatial position of the nuclei.
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The magnet is used to generate the static magnetic field B0, which influences the signal and
image contrast. A RF coil is used to excite the nuclei and to receive the signal.

A weak magnetic field that linearly changes with position can be introduced on the main
static field B0 and this is used to create a magnetic field gradient. The magnetic field gradient
system consists of three sets of orthogonally positioned coils (Figure 2.2b). These coils produce
gradients in the x-, y- and z-directions required for spatial selection and spatial encoding.

The Z coil varies the magnetic field intensity in the head-to-feet direction. A patient is ex-
posed to a RF pulse with a narrow range of frequencies, so a narrow bandwidth, which is
ideally a block function. Only those nuclei in the thin slice with z-coordinate, say z0, where the
Larmor frequency matches the frequencies of the RF pulse will absorb the RF energy.
This process is a slice selective excitation. It uses the so-called slice selection gradient Gz. The
slice thickness is controlled by the amplitude of the magnetic field gradient and the bandwidth
of the RF pulse. Ideally, a block function in the frequency domain requires a RF pulse shaped
like a sinc function in time.
The Y coil varies the intensity of the magnetic field in the anterior-to-posterior (or front-to-
back) direction. It leads to the gradient field Gy, which is the so-called phase encoding gradient.
This gradient is applied after Gz (Figure 2.3) to alter the phases of the spins according to their
relative positions along the Gy gradient axis. By varying the strength of the gradient, the phases
of the spins will differ in the y-direction.
The X coil varies the intensity of the magnetic field in the left-to-right direction and leads
to the gradient field Gx, which is applied after Gy. This gradient is the so-called readout gra-
dient and it provides spatial information of the spin density ρ0 along the x-axis of the image slice.

(a) Acquiring one k-space line (b) Acquiring several k-space lines

Figure 2.3: (a) A k-space line is acquired with a gradient sequence. Simultaneously applying
Gy and Gx leads to a displacement from (0, 0) to (kmin, kp), as is illustrated by the green line in
(a). Then only Gx is applied and between Tmin and Tmax, the signal is sampled. This leads to a
displacement from (kmin, kp) to (kmax, kp) (red line). (b) Multiple lines are acquired by varying
the strength of Gy.

As will be discussed below, the Fourier transform of the detected signal is a projection onto
slice. The amplitude of each frequency component is proportional to the summed signal in the
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y-direction for that x-position.

The combination of the gradients is the basis for 2D Fourier techniques used in MRI. Each
gradient is applied for a period of time, so the mentioned gradients are time-dependent. This
results in the combined time varying gradient ~G(t) = [Gx(t), Gy(t), Gz(t)]. This gradient leads
to a variation at position (x, y, z) at time t in the magnetic field of size

xGx(t) + yGy(t) + zGz(t) = ~r · ~G(t).

Equation (2.3) can be rewritten as

Mxy(r, t) = Mxy(r, 0)e−t/T2(r)e−ir·
∫ t
0 γ

~G(τ) dτ , (2.4)

where it has been used that the gradient magnetic field ~G(t) is proportional to the frequency ω.

2.2 k-space

During the time the readout gradient Gx is applied, the signal is sampled by acquiring data at
Nx points. Repeating this sampling process Ny times leads to data of amplitudes at a Nx×Ny-
grid (Figure 2.4).

Figure 2.4: 2D k-space, where kx is the frequency encoding direction and ky is the phase
encoding direction. The step sizes are ∆kx and ∆ky for the frequency encoding and phase
encoding respectively.

Every point k = (kx, ky) (or k = (kx, ky, kz) in 3D) in k-space is a spatial frequency and cor-
responds to the frequencies of a sinusoidal wave in the selected slice with wave number k that
form the basis of the Fourier transform in the x- and y-directions. The signal emitted by the
slice of interest (z0) is represented in k-space and this is used to reconstruct an image, as will
be shown below.

In practice, the spatial frequency k is obtained by

k := k(t) =
γ

2π

∫ t

0
G(τ) dτ. (2.5)

Amplitude information (data) on a line in k-space can be acquired by sampling in presence of
the gradients according to (2.5) (Figure 2.3). k-space can be completely sampled, i.e. filling
k-space, by varying the strength of the Gy gradient (Figure 2.3b).
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In theory, the spatial frequencies could vary from −∞ to ∞, leading to an infinite precision of
the image. This is not practical for imaging and thus the process is truncated (between kmin

and kmax) and discretized (∆k).

kmin, kmax and ∆k are determined by the desired spatial resolution and the field-of-view (FOV)
of the image. The FOV is the distance across an image, i.e the size of the spatial encoding
area of the image. Note that ∆k denotes ∆kx for the kx-direction and ∆ky for the ky-direction.
Furthermore, kmin and kmax could be different for the kx and ky directions.

Using the notion of spatial encoding in k-space in Equation (2.5), Equation (2.4) can be rewrit-
ten as

Mxy(r, t) = Mxy(r, 0)e−t/T2(r)e−i2πk(t)·r.

The received signal can be computed by integrating the transverse magnetization over the
volume R

s(t) =

∫
R
Mxy(r, 0)e−t/T2(r)e−i2πk(t)·r dr. (2.6)

Mxy(r, 0)e−t/T2(r) can be written as the effective spin density ρeff(x, y, z). The effective spin
density is the true spin density corrected for effects like T2 decay and field inhomogeneity
dephasing [2]. The sampled signal can be written as a 2D Fourier transform for discretized
k-space:

s(kx, ky) =

∫∫∫
ρeff(x, y, z)e−i2π(kxx+kyy) dx dy dz. (2.7)

Hence, s is the representation of ρeff in k-space, here also referred to as the image of ρeff in
k-space or just as k-space in the chapters to come.
Recall that t  (kx(t), ky(t)) is a curve in k-space (Equation 2.5): kx = kx(t) and ky = ky(t).
The Fourier transform of ρeff is measured for the points on this trajectory in k-space. For the
points in k-space that are not situated on the trajectory, the signal value s is interpolated.

The result of the inverse Fourier transformation with respect to both kx and ky is a 2D image:

ρ̂(x, y) =

∫
s(kx, ky)e

i2π(kxx+kyy) dkx.

Hence, ρ̂ is the restriction of ρ(x, y, z0) and will also be referred to here as the image of s in
image space or just as the image.

The low spatial frequencies are located in the center of k-space. These frequencies mainly
lead to contrast and large structures [8]. There is little details or edge information. After ap-
plying the inverse Fourier transform on a k-space containing only the spatial frequencies in the
center, an blurred image is obtained in which the contrast information is preserved (Figure 2.5).
To add details in the image, the higher spatial frequencies at the border of k-space must be
included. As an example, all but the center part of k-space is selected and an image is obtained
by using the inverse Fourier transform (Figure 2.5). Now the edge information and details are
preserved and not the contrast information.
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Figure 2.5: An image of the distribution of the amplitudes in k-space (left) and the resulting
image of a brain (right) in image space, adapted from [9]. The top row shows the image of
the full k-space and the corresponding back transformation in image space. The middle row
shows only the center part of k-space. The corresponding image in image space is blurred in
comparison with the top row image, but the contrast information is preserved. The bottom
row contains an image in k-space where all but the center is selected. The corresponding back
transformation in image space contains all details of the original image, but has no information
about the contrast.

2.2.1 Trajectories

There are several ways to fill k-space. The standard way of filling k-space is a linear and
Cartesian (or sequential) profile order, with one readout line after the other, from the bottom
of k-space to the top. The lines are acquired from kmin to kmax, which gives a Cartesian
(or rectilinear) coordinate system. This trajectory will be referred to as standard Cartesian
(Figure 2.6).
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Figure 2.6: Cartesian trajectory in k-space. Applying the Gx and Gy gradients simultaneously
leads to a displacement from (0,0) to the beginning of a readout line (blue), The lines are
acquired in a sequential order from the bottom to the top of k-space (red). When the end of the
readout line is reached, the trajectory goes back to the starting point (blue). Then the cycle
can be repeated using different Gy strengths.

k-space can also be sampled in one excitation on the Cartesian grid by using Echo Planar
Imaging (EPI)[10, 11, 12] (Figure 2.7).

(a) (b)

Figure 2.7: (a) The gradient sequence of EPI. The readout gradient is continuously applied with
positive and negative alternations. The phase encoding gradients is applied at each echo onset
(blip). (b) The EPI trajectory in k-space. k-space is filled in one excitation from the bottom
to the top.

The readout gradient Gx is continuously applied, with positive and negative alternations, such
that consecutive lines have opposite directions. A phase encoding gradient is applied at each
echo onset (blip), giving a rectilinear trajectory.

2.3 Contrast Imaging

At equilibrium, the net magnetization vector M0 lies along the direction of the applied magnetic
field B0, so M0 = Mz. There is no transverse magnetization, so Mx = My = 0. By exposing
the nuclear spin system to a RF pulse for a short time, the magnetization can be rotated away
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from its alignment along the B0 axis. If the RF pulse gives enough energy to the system, it is
possible to saturate it such that Mz = 0.

2.3.1 Spin-lattice relaxation and T1-weighting

Spin-lattice relaxation is the process in which the spins give the energy, obtained by the RF
pulse, to the surrounding lattice. In the Bloch equation (2.1), the spin-lattice relaxation time
T1 is used (Section 2.1.2). T1 describes how Mz returns to its equilibrium value and can be
computed using the Bloch equation solution (2.2c):

Mz(t) = Mz(0)e−t/T1 +M0(1− e−t/T1).

T1 is the time it takes to reduce the difference between the longitudinal magnetization Mz and
its equilibrium value by a factor e.
T1-weighted images demonstrate the differences in the T1 relaxation time of tissues. Tissues
with a short T1 (like fat tissue) appear bright in the images (Figure 2.8a).

(a) T1-weighted (b) T ∗
2 -weighted (c) Diffusion-weighted

Figure 2.8: Three MR images of a brain [13], displayed using three different contrast imaging
techniques: T1-weighted image (a), T ∗2 -weighted image (b), and diffusion-weighted image (c).

2.3.2 Spin-spin relaxation and T2-weighting

In addition to the rotation, the net magnetization starts to fan out because each group of spins
is experiencing a slightly different magnetic field and rotates at its own Larmor frequency. The
fanning out is also referred to as dephasing. The longer the elapsed time, the greater the phase
difference will become. The time constant which describes the return to equilibrium of the
transverse magnetization Mxy is called the spin-spin relaxation time T2 and can be computed
with

Mxy(t) = Mxy(0)e−t/T2 . (2.8)

T2 is the time required to reduce the transverse magnetization by factor e and is always less
than or equal to T1. First, the net magnetization in the xy-plane will go to zero and then the
longitudinal magnetization grows until M0 is along the z-axis.

Two factors that contribute to the decay of the transverse magnetization are the molecular
interactions and the variations in B0. The first factor leads to the pure T2 molecular effect and
the second factor leads to an inhomogeneous T2 effect, denoted by T ′2. This latter factor leads
to a reduction in the initial value of the transverse components Mxy. A combination of these
two factors is what actually results in the decay of the transverse magnetization. This combined
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time constant is called T ∗2 and is defined as 1
T ∗2

= 1
T2

+ 1
T ′2

. In practice, the formula in (2.8) uses

T ∗2 instead of T2, so
Mxy(t) = Mxy(0)e−t/T

∗
2 .

By applying an additional pulse, the dephasing caused by external field inhomogeneities T ′2 can
be reversed, so the spins are rephased. T2 cannot be recovered, since it is related to local,
random, time-dependent field variations.

T2-weighted images show the differences in the transverse relaxation of the net magnetization
and thus the T2 relaxation time of tissues. Tissues with a long T2 (like water or cerebrospinal
fluid) appear bright in the images (Figure 2.8b).

2.3.3 Diffusion-weighted imaging

When using diffusion-weighted imaging (DWI), the resulting image contrast is different from
that provided by conventional MR techniques [14]. The image contrast is dependent on the
molecular Brownian motion of water, which may be altered by disease. So, DWI provides
functional information of tissues and thus can be used to detect and characterize pathologic
processes. The most commonly applied method for diffusion-weighted contrast is the Pulsed
Gradient Spin Echo (PGSE) [15, 16]. In this method, two symmetrical (diffusion) gradient
lobes called Motion Probing Gradient (MPG)s are placed on both sides of the 180 ◦ pulse,
which refocuses the spins. The sequence described here is invented by Stejskal and Tanner
[17](Figure 2.9).

Figure 2.9: The Stejskal-Tanner sequence [16, 17], which is used to make MRI sensitive to diffu-
sion. Gx,Gy and Gz are the gradients in readout, phase encoding and slice selection direction,
respectively. δ is the duration of one MPG, ∆ is the interval between the start of both MPGs
and TE is the echo time, i.e. the time between the 90◦ and the center of the sampling time.

The degree of signal decrease in DWI depends on the magnitude of diffusion and on the amount
of diffusion weighting. The amount of diffusion weighting is defined by the b-value in s/mm2 and
is computed as

b = γ2G2δ2(∆− δ

3
),

with δ is the duration of one MPG, ∆ is the interval between the start of both MPGs (Figure 2.9),
G is the strength of the MPG and γ the gyromagnetic ratio.
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The signal strength is described by

S(b) = S(0)e−bD,

where S(b) is the signal intensity for a certain b-value, i.e. with MPG application. S(0) is the
signal intensity without the diffusion weighting and it is affected by T2 and ρ. D is the diffusion
constant of the tissue.
Tissues with high proton density and restricted diffusion appear bright on diffusion-weighted
images (Figure 2.8c). Tissues with restricted diffusion are for example tumors. When tissues
have unrestricted diffusion, the MR signal decreases and thus the tissues appear dark on the
images. Often, the diffusion is expressed by an effective or Apparent Diffusion Coefficient
(ADC). The ADC of a selected region-of-interest (ROI) can be calculated using two or more
images with different b-values. Then, the fractioned ADC is computed between each pair of
images with b-values b1 and b2 using the formula

ADC = − 1

b2 − b1
ln

(
S[b2]

S[b1]

)
. (2.9)

For more details about the derivation of the ADC formula in (2.9), see Appendix A.1.

An ADC-map can be computed by estimation of the regional ADC pixel by pixel, using linear
regression. In this map, the T2 effect is removed. This effect also affects S(b). Therefore, the
ADC gives a quantitative measure of the diffusion for the MR data. Using the ADC, diffusion-
weighted images of one patient can be compared to another patient. The ADC is also used
to compare images of a patient scanned over several different days to monitor the effect of
treatment.

2.4 Geometric distortions

For detecting a tumor, a diffusion-weighted image of the esophagus is placed on the T2 weighted
image (Figure 2.10). In the center of the image, a tumor is located. It can be noticed that
the DWI is slightly shifted in comparison with the T2 weighted image by looking at the tumor.
This is immediately the problem when using DWI combined with EPI (Figure 2.7).

Figure 2.10: A transverse slice of a patient with an esophageal tumor. The diffusion-weighted
image (color) is overlaid on a T2 weighted image (gray). In the center of the image, the tumor
is located. The DWI is slightly shifted in comparison with the T2 weighted image, as can be
seen by looking at the tumor.
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2.4.1 Echo Planar Imaging

EPI is a fast practicable MRI method, which gives a high Signal-to-Noise Ratio (SNR) per unit
time. However, a low pixel bandwidth in the phase encoding direction makes this sequence
prone to geometric distortions [18].

In practice, the magnetic field B0 is not completely homogeneous, so B̃0 = B0 + ∆B0. This
leads to phase evolution between adjacent points in k-space.

The position of a pixel (x, y, z) in the image is determined by the phase evolution between
consecutive discretizations of the phase. When k-space is filled using a Cartesian trajectory
with multiple excitations, the phase evolution between adjacent points in k-space is defined as
stated in [11]:

∆kxx = ∆φx = 2πγ[GxxDw + ∆B0(x, y, z)Dw] (2.10a)

∆kyy = ∆φy = 2πγ∆Gyyτy. (2.10b)

Equation (2.10a) denotes the phase evolution in the readout direction and Equation (2.10b)
denotes the phase evolution in the phase direction. ∆B0 denotes the field inhomogeneity of the
signal, γ is the gyromagnetic ratio, Gx and Gy are the gradients in readout and phase encoding
direction, where ∆Gy denotes the phase encoding step. τy represents the duration of this phase
encoding step and Dw denotes the dwell time, so the interval between sampling of the spin
echoes. The inverse of the dwell time is called the bandwidth.
From (2.10) it can be concluded that the phase evolution in the read direction of k-space is
sensitive to the presence of field inhomogeneities, whereas the pixel shift in the phase encoding
is zero since there is no field inhomogeneity contribution.

The phase evolution for the EPI trajectory differs from the standard Cartesian trajectory.
As defined in [11], EPI gives a phase evolution between adjacent points in k-space for point
(x, y, z) as

∆φx = 2πγ[GxxDw + ∆B0(x, y, z)Dw] (2.11a)

∆φy = 2πγ[Gyyτramp + ∆B0(x, y, z)(2τramp +N ·Dw)]. (2.11b)

τramp is the ramp time of the switched gradients and N is the number of samples on a line in
k-space, i.e the number of readout steps.
As defined in [11], this phase evolution leads to a pixel shift as

∆rpe = γ∆B0(x, y, z)M(2τramp +N ·Dw). (2.12)

Here, M is the number of phase encoding steps.

2.4.2 Reducing geometric inaccuracy

The phase evolution in (2.11a) is the same as the phase evolution in (2.10a). So in the read
direction, the pixels are affected by the field inhomogeneity term ∆B0(x, y, z). However, the
phase evolution formulas (2.10b) and (2.11b) of the phase encoding direction differ. Using the

EPI trajectory, the pixels are shifted and the shift is a factor
2τramp+N ·Dw

Dw
bigger than the pixel

shift in the read direction (Figure 2.11a). In practice, the pixel shift in the read direction is
negligible compared to the shift in the phase encoding direction [11].
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CHAPTER 2 2.4. GEOMETRIC DISTORTIONS

(a) Fully sampled k-space. (b) Undersampled k-space.

Figure 2.11: Ideal EPI trajectory in k-space (blue) and EPI trajectory with phase evolution
(red). (a) The ideal EPI trajectory through k-space uses the phase evolutions of Equation
(2.10). The red trajectory denotes how the phase evolutions of Equation (2.11) change the blue
trajectory by some shift. (b) Undersampling k-space in the phase encoding direction leads to a
reduced phase evolution and thus a smaller pixel shift.

However, if M is decreased, the pixel shift term also becomes smaller. So there is a smaller
pixel shift in the phase encoding direction (Figure 2.11b). Decreasing M means that less lines
are scanned in k-space. This principle is called undersampling.

By undersampling k-space, the geometric distortions of DWI are reduced because of a higher
bandwidth. The frequency difference between successive phase encoding lines is higher. There-
fore, the phase error due to magnetic field inhomogeneities has less effect in the total trajectory.
Furthermore, a higher bandwidth leads to a shorter time to change the phase of the signal due
to magnetic field inhomogeneities. This will produce less image distortions. However, this will
be at the cost of a lower SNR.

Hence, to reduce the geometric distortions in DWI combined with EPI, k-space will be un-
dersampled. The best strategies to undersample and to obtain a high quality reconstruction
from the undersample k-space will be examined in the next chapters.
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Chapter 3

Compressed Sensing

In this chapter, the principles of CS is discussed. In Section 3.1, the difference between uniform
and non-uniform sampling will be investigated. In Section 3.2, the objective function of the
reconstruction problem will be discussed. The algorithm used for solving the reconstruction
problem will be derived in Section 3.3 and improvements on the existing algorithm will be
made. Since the algorithm will use wavelet transforms, a short overview of wavelets will be
given in Section 3.3.8.

3.1 Undersampling

In Chapter 2, it has been made plausible that geometric distortions in DWI can be reduced by
undersampling an image in k-space. However, undersampling leads to other problems, such as
aliasing.
Aliasing, or foldover, is an effect which causes that different signals cannot be distinguished
by looking at their sampled values. A continuous-time cosine signal at 60 Hz is sampled for
uniformly distributed (ti) at 70 Hz (Figure 3.1). However, a cosine signal at 10 Hz can also be
drawn through the sampling points (ti, f(ti)). So when only the sampling points are given, it
is not clear which signal lies underneath.

Figure 3.1: Continuous-time cosine signal at 60 Hz (blue), with (ti) uniformly sampled at 70 Hz
(circles), could also be a continuous-time cosine signal at 10 Hz (red). However, for the sampled
points with (ti) non-uniformly distributed (squares), there is only one unique continuous-time
cosine signal possible.
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CHAPTER 3 3.1. UNDERSAMPLING

The Nyquist-Shannon sampling theorem provides the sampling rate required to avoid aliasing
with uniform sampling [19, 20]. The theorem states that the sampling frequency fs should be
at least twice the highest frequency fh contained in the signal:

fs ≥ 2fh.

This theorem gives a sufficient condition for perfect reconstruction of the signal. When k-
space is undersampled, the Nyquist criterion is not satisfied and thus aliasing will occur.

However, when the signal is sampled for non-uniformly distributed (ti) (Figure 3.1), and it
is known that the underlying signal is a continuous-time cosine signal, then the cosine signal at
60 Hz is uniquely recovered from the sample points.

The questions now arising are about the best strategy to undersample k-space and the solution
for avoiding aliasing artifacts.

3.1.1 Uniform vs non-uniform sampling

The first distinction that can be made is between uniform or non-uniform sampling. Non-
uniform sampling could uniquely define a 1D signal, whereas uniform sampling can only do so
if the Nyquist sampling theorem is satisfied (Figure 3.1).

To investigate the difference between these two sampling strategies for images, the Shepp-Logan
problem is used in Matlab [21] (The MathWorks Inc., Natick, Massachusetts). The image of
the Shepp-Logan phantom is transformed to an image in k-space using a Fourier transform.
An undersampling mask is applied to the image in k-space. An undersampling mask indicates
the lines that are scanned and the lines that are not, to get a certain percentage of the data in
k-space (Figure 3.2b). After the undersampling, an inverse Fourier transform is applied and the
result is a reconstructed image in image space. This method just undersamples in k-space and
performs a simple Fourier reconstruction without any additional operations. Therefore, here
this method is called a naive reconstruction.
Note that the undersampling is still only performed in one dimension, instead of the possible
two dimensions. The reason for this is the use of the method EPI for data acquisition (Sec-
tion 2.4.1). Therefore, all samples in one direction (the readout direction) will be taken. The
undersampling will take place in phase encoding direction by increasing the bandwidth in this
direction.

A naive reconstruction is performed on the Shepp-Logan phantom using a uniform mask for
25% of the image data in k-space (Figure 3.2). A uniform mask chooses lines with equal distance
between them. The reconstructed image contains a lot of periodic aliasing (Figure 3.2c).
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(a) Shepp-Logan phantom (b) Mask (c) Naive reconstruction

(d) Sensitivity maps for 8 coils.

(e) Reconstructed
Shepp-Logan phantom

Figure 3.2: A 256 × 256 Shepp-Logan phantom (a) is undersampled using a uniform mask for
25% of the k-space data (b). The mask indicates the lines that are scanned (white) and the
lines that are not (black). A naive reconstruction is obtained by applying an inverse Fourier
transform (c). This reconstruction contains periodic aliasing. Using the sensitivity maps for
each of the eight coils (d), an unfolding matrix can be computed. This matrix is used to unfold
the naive reconstructed image of (c) to obtain an exact reconstruction (e).

An example where a uniform mask used in practice, is MRI with Sensitivity Encoding (SENSE)
[22]. With SENSE, the scan time is reduced at reserved spatial resolution, with the number
of k-space samples reduced by a reduction factor R. For example, a reduction factor R = 2
leads to a mask where every second line is not scanned. With SENSE, the periodic aliasing
is solved by making use of the sensitivity maps of the coils. Each coil produces an image in
which a signal superposition occurs with different weights according to the sensitivity of that
coil (Figure 3.2d). All coil sensitivities and the superimposed pixels form the sensitivity matrix
S, which is used to calculate an unfolding matrix U . Using U , the naive reconstructed image
can be unfolded (Figure 3.2e).

Although using SENSE can solve problems with uniform undersampling and thus leads to
a scanning time reduction, there are also some disadvantages. In theory, SENSE reconstruction
can be applied for reduction factors up to the number of coils used. However, the geometry
factor will increase [23]. This factor describes the effect of varying noise enhancement according
to the conditioning of the sensitivity-based reconstruction steps. So, using a higher reduction
factor leads to more noise and thus a big penalty in the SNR. Furthermore, the performance of
SENSE is very dependent of the coil set-up.

Here, a new approach is investigated, which will not be dependent on the coil set-up and
also get a good SNR. This technique is called Compressed Sensing (CS).
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CHAPTER 3 3.2. RECONSTRUCTION PROBLEM

3.1.2 Compressed Sensing

Using CS, a signal sampled in violation with the traditional Nyquist criterion could be recon-
structed. Important for CS is that the signal has some sparse representation domain. To be
able to reconstruct the signal, aperiodic artifacts have to be present in the transform domain.
These aperiodic artifacts arise when k-space is undersampled non-uniformly (Figure 3.3).

(a) Shepp-Logan phantom (b) Mask (c) Naive reconstruction

Figure 3.3: A 256 × 256 Shepp-Logan phantom (a) is undersampled using a non-uniform mask
for 25% of the data in k-space(b). Applying an inverse Fourier transform results in a naive
reconstruction containing aperiodic aliasing (c).

Since a non-uniform mask is used, the distance between consecutive lines differs. The inverse
Fourier transform, which is used to reconstruct the image in image space from the image in
k-space, assumes that the lines are uniformly chosen. Now, the reconstructed image contains
aperiodic aliasing, which are non-uniform undersampling artifacts.
To be able to reconstruct the underlying signal, using the aperiodicity of the artifacts, a non-
linear method has to be used. The method used for CS reconstruction in Section 3.2 will take
both sparsity and data consistency into account by stating an objective function consisting of
a l1-norm, l2-norm, and Total Variation-norm.

3.2 Reconstruction problem

Without undersampling, there are m measurements. In this case, the signal can be recovered
exactly. The main goal is to reconstruct a signal x by using only p < m measurements. In
matrix notation:

Ax = b, (3.1)

where A ∈ Cp×n is the measurement matrix, x ∈ Cn the signal and b ∈ Cp the measurements.
When x is an image of size n1×n2, then x is reshaped to be a column vector of length n = n1 ·n2.

In applications, the measurements are often contaminated with some noise, i.e. b̂ = b + η
with η unknown noise. In this case, the system of equations in (3.1) becomes

Ax = b̂

= b+ η. (3.2)

The system of equations in (3.2) is an underdetermined system because there are more unknowns
than equations. The goal is to find the underlying signal x that satisfies the data fidelity norm

‖Ax− b‖2.
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CHAPTER 3 3.2. RECONSTRUCTION PROBLEM

Underdetermined systems, as (3.1) and (3.2), have no unique solution. However, when the
extra property that the signal is sparse with respect to a transform basis is given, then there is
a probability to find the signal x.

Definition 1 (s-sparse and sparse). Choose s ∈ N0. Then x = (x(1), . . . , x(n))T ∈ Cn is called
s-sparse if

‖x‖0 := #{i|x(i) 6= 0} ≤ s.

Furthermore, x is called sparse if x is s-sparse for s� n.

If x is sparse, then the underlying solution of (3.1) might be obtained by solving

(P0) : argmin
x
{‖x‖0} subject to Ax = b. (3.3)

or when there is noise contamination:

(P0) : argmin
x
{‖x‖0} subject to ‖Ax− b‖22 < ε (ε small). (3.4)

3.2.1 l1-minimization

The problem (P0) stated in (3.4) is a hard problem to solve. For this reason, the “l0-norm” is
replaced by a regularization term consisting of a l1-norm. This leads to the problem

(P1) : argmin
x
{‖x‖1} subject to ‖Ax− b‖22 < ε (ε small). (3.5)

This problem is also called Basis Pursuit Denoising (BPDN) and is a convex optimization prob-
lem. The l1-norm is used to replace the l0-norm, because the l1-norm is a well defined norm
that is most similar to the l0-norm, which is not a well defined norm. Furthermore, the l1-norm
is convex, which will be used in Section 3.3.

To ensure accurate reconstruction, Candès uses in [24] the Restricted Isometry Property (RIP),
defined in Definition 2.

Definition 2 (RIP). Let A be a m×n matrix (m < n) and take the restricted isometry constant
δs as

δs := sup

{∣∣∣∣1− ‖Ax‖22‖x‖22

∣∣∣∣ ∣∣ x is s-sparse

}
.

If δs < 1, then A is said to have the s-restricted isometry property (RIP).

The combination of RIP and the l1-minimization problem (P1) lead to Theorem 1.

Theorem 1. If the true signal x? is s-sparse, δ2s <
√

2− 1 and x̃ is a minimizer of (P1), then

‖x̃− x?‖2 ≤ Csε, where Cs =

√
2(1 + δ2s)

1− (
√

2 + 1)δ2s

.

Theorem 1 ensures that all s-sparse x are perfectly recovered via the l1-minimization of prob-
lem (P1). So the RIP gives a theoretical condition for the recovery of sparse vectors using
l1-minimization.
Certain types of random matrices have a high probability to obey the RIP property [25]. Exam-
ples are random matrices with independent and identically distributed entries with mean zero
and variance 1/n, Bernoulli matrices (where the entries are independently chosen from {−1, 1}
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with uniform probability), and partial random Fourier matrices [26]. However, for many matri-
ces it cannot be proved that they have the RIP property. Therefore, a RIPless theory is often
used in practice on the measurement matrices [27]. This theory still implies that the solution
of (3.6) is also the solution of (3.3).
The matrix A used here is of the latter type of measurement matrices. In the application in
mind, the measurements b have a distribution with the most information located in the center
of the vector b. A should also have a structure that will take this in account.

To make sure that the vector of interest is sparse, a sparsity transform Ψ is included in the
l1-norm. For example, Ψ can be a wavelet transform. So the l1-minimization problem becomes

(P ′1) : argmin
x
{‖Ψx‖1} subject to ‖Ax− b‖22 < ε. (3.6)

By taking y = Ψx, problem (P ′1) in (3.6) can be written as problem (P1) in (3.5), that is

ˆ(P1) : argmin
y
{‖y‖1} subject to ‖AΨ−1y − b‖22 < ε. (3.7)

3.2.2 TV-norm

Another regularization term in the form of the Total variation (TV)-norm is introduced to the
problem (P ′1). This regularization term is often used in the minimization problem since the
TV-norm can also be viewed as a sparsifier, as will be argued below.

The TV-norm for x ∈ Cn1×n2 is defined as

‖x‖TV :=

n1−1∑
i=1

n2−1∑
j=1

√
|xi,j − xi+1,j |2 + |xi,j − xi,j+1|2 +

n1−1∑
i=1

|xi,n2 − xi+1,n2 |+
n2−1∑
j=1

|xn1,j − xn1,j+1|.

For better interpretation of this TV-norm, define the discrete gradient operator L : Cn1×n2 →
Cn1×n2 × Cn1×n2 by

L(x)ij = (∂1(x)ij , ∂2(x)ij), ∀1 ≤ i ≤ n1, 1 ≤ j ≤ n2, (3.8)

where ∂1 and ∂2 are the difference operators for vectors in Cn = Cn1×n2

∂1(x)ij = xi+1,j − xi,j , ∂2(x)ij = xi,j+1 − xi,j (i = 1, . . . , n1, j = 1, . . . , n2), (3.9)

using reflective boundary conditions, that is xn1+1,j = xn1,j and xi,n2+1 = xi,n2 . Note that

L(x)n1,j = (0, xn1,j+1 − xn1,j) and L(x)i,n2 = (xi+1,n2 − xi,n2 , 0).

Consider a vector space Cn × Cn with norm

‖(x, y)‖ :=
n∑
i=1

‖(xi, yi)‖2 =
n∑
i=1

√
|xi|2 + |yi|2,

with x = (x1, . . . , xn)T , y = (y1, . . . , yn)T ∈ Cn. This norm is equivalent to the l1-norm ‖x‖1 +
‖y‖1 on Cn × Cn, that is

‖(x, y)‖ ≤ ‖x‖1 + ‖y‖1 ≤
√

2‖(x, y)‖,

using the Minkowski and Cauchy-Schwartz inequalities on C2.
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Then the use of this norm leads to the following representation of the TV-norm

‖x‖TV = ‖L(x)‖
= ‖(∂1(x), ∂2(x))‖.

If an image is piecewise constant, as is the case for MR images, then the TV-norm produces a
sparse x by using the gradients of x. This means that the TV norm enforces sparsity, where it
also uses the l1-norm. So, the TV-norm can be seen as a sparsifier as well.

The TV-norm used in combination with the data consistency term in an objective function
like (3.6) allows a denoising effect to happen on the applied image. In this situation, the piece-
wise smooth parts are smoothed in the resulting image x, while sharp edges are preserved, as
an extra property of this norm.

3.2.2.1 3D version of TV-norm

To reconstruct a volume of size n1×n2×n3, the definition of the TV-norm was modified to be
applicable for 3D.

The 3D version of the discrete gradient operator L in (3.8) becomes L3D : Cn1×n2×n3 →
Cn1×n2×n3 × Cn1×n2×n3 × Cn1×n2×n3 ,

L3D(x)ijk =
(
∂3D

1 (x)ijk, ∂
3D
2 (x)ijk, ∂

3D
3 (x)ijk

)
, ∀1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ k ≤ n3, (3.10)

where the difference operators are defined as

∂3D
1 (x)ijk = xi+1,j,k − xi,j,k, ∂3D

2 (x)ijk = xi,j+1,k − xi,j,k,
∂3D

3 (x)ijk = xi,j,k+1 − xi,j,k (i = 1, . . . , n1, j = 1, . . . , n2, k = 1, . . . , n3). (3.11)

In Section 5.3.5, these definitions will be used to reconstruct an undersampled 3D volume.

3.2.3 The minimization problem

A combination of both regularization terms ‖Ψx‖1 and ‖x‖TV is considered here, with θ1, θ2 > 0,
resulting in the following minimization problem

(P ′) : argmin
x
{θ1‖Ψx‖1 + θ2‖x‖TV } subject to ‖Ax− b‖22 ≤ ε. (3.12)

Using Lagrange multiplier λ, problem (P ′) can be written as

(P ) : argmin
x

{
1

2
‖Ax− b‖22 + α‖x‖TV + β‖Ψx‖1

}
, (3.13)

with α, β ∈ R the regularization parameters:

α =
θ2

2λ
and β =

θ1

2λ
.

In practice, the values of ε and θ1
θ2

are not known and thus α and β are found experimentally
in Section 5.2.2.
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3.3 Solving the minimization problem

For solving (P ), Beck and Teboulle proposed an iterative method called (F)ISTA [1, 28]. In this
section, (F)ISTA and related methods will be derived for solving (P ) (Equation (3.13)). First,
some simpler problems are discussed, which will lead to a better understanding of problem (P ).

3.3.1 Solving simpler problems

Problem (P ) in (3.13) can be written as

min
x
{F (x) := f(x) + g(x)} ,

with f(x) = 1
2‖Ax− b‖

2
2 and g(x) = α‖x‖TV + β‖Ψx‖1.

f(x) is a smooth convex function that is continuously differentiable with Lipschitz continuous
gradient Lf , that is ‖∇f(x) −∇f(y)‖ ≤ Lf‖x − y‖ ∀x, y and g(x) is a convex function which
is possibly non-smooth. The definition of a convex function is stated in Appendix A.2.
For problem (P ) in (3.13), it holds that ∇f(x) = A∗(Ax− b) and Lf = λmax(A∗A).

To get more insight into the algorithm used in [1, 28], first look at a simpler problem:

(P̃ ) : argmin
x

{
1

2
L‖x− y‖22 + g(x)

}
, (3.14)

where L > 0 is a constant and y := b
L . In this case, matrix A is equal to L ·I (with I the identity

matrix). Problem (P̃ ) can be seen as a quadratic approximation of problem (P ) around y.
Define the proximal regularization proxL(g)(y) as

proxL(g)(y) := argmin
x

{
1

2
L‖x− y‖22 + g(x)

}
. (3.15)

If the proximal regularization problem proxL(g)(y) is solvable, then it suggests an iterative
method as will be discussed below.

As an example how this iterative scheme may look like, consider

f(x) =
1

2
‖Ax− b‖22 and g(x) =

{
0, if x ∈ C
∞, if x /∈ C (3.16)

where C is a closed convex subset of Rn and g(x) is a convex, discontinuous function. Then (P̃ )
reads as

(P2) : argmin
x

{
1

2
‖Ax− b‖22

∣∣ x ∈ C} , (3.17)

The minimizer is restricted to this closed convex subset. This example will also be of importance
in Section 3.3.5.

Next, it will be shown how the quadratic approximation of 1
2‖Ax − b‖22 (x ∈ C) leads to a

proximal regularization problem as in (3.15).
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Let x0 ∈ C be an approximate minimizer and define x = x0 +z and r0 = b−Ax0. For L ≥ ‖A‖22,
a quadratic upper bound for ‖Ax− b‖22 can be found that is equal to ‖Ax− b‖22 in x0.

‖Ax− b‖22 = ‖Az +Ax0 − b‖22 = ‖Az − r0‖22
= ‖Az‖22 − 2(Az, r0) + ‖r0‖22
≤ L‖z‖22 − 2(Az, r0) + ‖r0‖22, (L ≥ ‖A‖22) (3.18)

= L‖z − 1

L
A∗r0‖22 −

1

L
‖A∗r0‖22 + ‖r0‖22, (Appendix A.3 Equation (A.1))

= L‖x− x0 −
1

L
A∗r0‖22 −

1

L
‖A∗r0‖22 + ‖r0‖22

= L‖x− y0‖22 −
1

L
‖A∗r0‖22 + ‖r0‖22, with y0 = x0 +

1

L
A∗r0.

Hence,
‖Ax− b‖22 ≤ L‖x− y0‖22 + C,

with C a constant. So the quadratic function in (3.17) can be bounded from above by the sum
of the simple quadratic function of (3.14) and some constant C. If x = x0, then ‖Ax − b‖22 =
L‖x− y0‖22, as can be easily checked using (3.18).

Computing a minimizer x1 for (P̃ ) with g(x) as defined in (3.16) will lead to an improvement
of the minimizer x0. So, if

x1 = argmin
x

{
L‖x− y0‖22

∣∣ x ∈ C} with y0 = x0 −
1

L
A∗r0,

then ‖Ax1 − b‖22 ≤ ‖Ax0 − b‖22. Repeating this process leads to a sequence {xk} of improved
minimizers and thus an iterative scheme is derived.
The inequality is always strict, unless (z,A∗r0) = (x− x0, A

∗r0) ≤ 0 ∀x ∈ C. In that case, one
can check that x0 is the minimizer.

The calculation of proxL(g)(y) can require intensive computation, unless C is simple [1]. For
example, half spaces and cubes are simple convex sets for which the projection of x onto these
sets (which ensures x ∈ C) is easy to compute. The set C used in Section 3.3.5 will be simple
and thus the proximal regularization problem will be easy to compute.

3.3.2 ISTA

In this section, an iterative method called ISTA is described, which solves the general mini-
mization problem

argmin
x
{F (x) := f(x) + g(x)} . (3.19)

Suppose x0 is an approximate solution. The quadratic upper bound of F (x) is found by deriving
the approximate quadratic Taylor expansion of f in x = x0 + z around x0. For L ≥ Lf ,

f(x) = f(x0 + z)

= f(x0) + (z,∇f(x0)) +
1

2
∇2f(x0)‖x0 + z − x0‖22

= f(x0) + (z,∇f(x0)) +
1

2
∇2f(x0)‖z‖22

≤ f(x0) + (z,∇f(x0)) +
1

2
L‖z‖22, (L ≥ ∇2f)

= f(x0) + (x− x0,∇f(x0)) +
1

2
L‖x− x0‖22.
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If x = x0, then f(x) = f(x0) + (x− x0,∇f(x0)) + 1
2L‖x− x0‖22.

Hence

f(x) + g(x) ≤ f(x0) + (x− x0,∇f(x0)) +
1

2
L‖x− x0‖22 + g(x). (3.20)

The upper bound in (3.20) can be seen as an approximate quadratic expansion of F (x) =
f(x) + g(x) in x around approximate solution x0.

The next iterate x1 is found by solving the minimization problem for the upper bound of
F (x). So

x1 = argmin
x

{
(x− x0,∇f(x0)) +

1

2
L‖x− x0‖22 + g(x)

}
.

The objective function is rewritten to make the problem similar to (3.15) (for details, see
Equation (A.2) in Appendix A.3). Then:

1

2
L‖x− x0‖22 + (x− x0,∇f(x0)) =

1

2
L‖x− (x0 −

1

L
∇f(x0))‖22 −

1

2L
‖∇f(x0)‖22.

Because 1
2L‖∇f(x0)‖22 does not depend on x, the next iterate x1 becomes

x1 = argmin
x

{
1

2
L‖x− (x0 −

1

L
∇f(x0))‖22 + g(x)

}
= proxL(g)(y1) with y1 := x0 −

1

L
∇f(x0).

Hence, the next iterate x1 can be found by solving the proximal regularization of y1 = x0 −
1
L∇f(x0). By iteratively forming quadratic approximations around a specific point and by
minimizing this approximation, the minimum x? of the original problem will be approximately
found (Figure 3.4).

Figure 3.4: A schematic representation of the iterative method used for solving the minimization
problem (3.19) with objective function F (blue). The approximate quadratic Taylor expansion
(green) is computed in x0. The gradient step y1 = x0 − 1

L∇f(x0) controls the width of the
parabola. Then the next approximate minimizer x1 of F is found by minimizing the quadratic
function. After several iterations, the solution x? of the minimization problem (3.19) will be
found.
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This results in an iterative method called Iterative Shrinkage-Thresholding Algorithm (ISTA)
(Algorithm 1).

Algorithm 1: ISTA

Input: x0 and L ≥ Lf
1 for k = 1, 2, . . . do
2 yk = xk−1 − 1

L∇f(xk−1)
3 xk = proxL(g)(yk)

4 end

The name of Algorithm 1 originates from the use of a shrinkage operator to solve the proximal
regularization in step 3 of Algorithm 1. For general g(x), the proximal regularization step is
solved using other methods, but the name of the algorithm remained ISTA. A shrinkage operator
is used when g(x) = ‖Ψx‖1, as in (3.6), which will be discussed in Section 3.3.5.

3.3.3 Error estimation and convergence of ISTA

Before a rate of convergence can be established, first an estimate for the difference in the ob-
jective function F (x) of the general problem 3.19 is obtained in (3.22) of Lemma 2 below. This
result is needed in (3.24). Recall F (x) = f(x) + g(x).

For the general problem, it has been found useful to compute a lower bound of F (x) for the
error estimation. The lower bound simply comes in the form of the approximate linear Taylor
expansion of f in x = x0 + z around x0:

f(x) = f(x0 + z)

≥ f(x0) + (x0 + z − x0,∇f(x0))

= f(x0) + (z,∇f(x0))

= f(x0) + (x− x0,∇f(x0)). (3.21)

Now, an estimate for the difference in the objective function F (x) can be obtained in Lemma 2.

Lemma 2. If L ≥ Lf , then

2

L
[F (x1)− F (x)] ≤ ‖x0 − x‖22 − ‖x1 − x‖22. (3.22)

Proof. In (3.20), a quadratic upper bound h(x) is found for F (x):

F (x) = f(x) + g(x) ≤ f(x0) + (x− x0,∇f(x0)) +
L

2
‖x− x0‖22 + g(x)

= h(x)

Taking x = x1 gives F (x1) ≤ h(x1). Using the lower bound in (3.21) leads to

F (x) ≥ f(x0) + (x− x0,∇f(x0)) + g(x)

= f(x0) + (x− x0,∇f(x0)) +
L

2
‖x− x0‖22 + g(x)− L

2
‖x− x0‖22

= h(x)− L

2
‖x− x0‖22.

The difference h(x1)− h(x) can be bounded from above by −L
2 ‖x− x1‖22, that is

h(x1)− h(x) ≤ −L
2
‖x− x1‖22. (3.23)
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To compute the difference between the objective functions in x1 and x, subtract F (x) from
F (x1):

F (x1)− F (x) ≤ h(x1)− h(x) +
L

2
‖x− x0‖22

≤ −L
2
‖x− x1‖22 +

L

2
‖x− x0‖22, (use (3.23))

=
L

2

(
‖x0 − x‖22 − ‖x1 − x‖22

)
,

and (3.22) follows.

The error estimated in (3.22) will be denoted by η(e), that is

η(e) =
2

L
[F (x)− F (x?)],

with e := x−x? as the error between x and the minimizer x? of F (x). Define also ek := xk−x?
and fk := xk−1 − x?. Note that η(0) = 0, since e = 0⇔ x = x?.

To investigate the convergence of the objective function, take a look at the difference between
the errors when using x and x1:

η(e1)− η(e) =
2

L
[F (x1)− F (x?)− (F (x)− F (x?))]

=
2

L
[F (x1)− F (x))]

≤ ‖x0 − x‖22 − ‖x1 − x‖22, (use (3.22)) (3.24)

≤ ‖x0 − x? − (x− x?)‖22 − ‖x1 − x? − (x− x?)‖22
≤ ‖f1 − e‖22 − ‖e1 − e‖22. (3.25)

Next, the error estimates for two interesting cases, namely x = x? and x = x0, are found. These
cases lead to e = 0 and e = e0, respectively:{

η1 := η(e1) = η(e1)− η(0) ≤ ‖f1‖22 − ‖e1‖22
η1 − η0 ≤ ‖f1 − e0‖22 − ‖e1 − e0‖22.

(3.26)

In ISTA, f1 = x0 − x? = e0. So for ISTA, (3.26) becomes{
η1 ≤ ‖e0‖22 − ‖e1‖22

η1 − η0 ≤ −‖e1 − e0‖22.
(3.27)

In general, it holds that {
ηk ≤ ‖ek−1‖22 − ‖ek‖22

ηk − ηk−1 ≤ −‖ek − ek−1‖22.
(3.28)

From the last statement of (3.28) follows that ηk < ηk−1.

Using (3.28), Proposition 3 about the convergence of ISTA can be proved.
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Proposition 3.

F (xk)− F (x?) ≤ L‖e0‖22
2k

=
C

k
, ∀k

Proof. The sequence {xk} is generated using ISTA, therefore f1 = e0 and (3.28) holds true.
Then

kηk ≤ ηk + ηk−1 + . . .+ η1

≤ ‖ek−1‖22 − ‖ek‖22 + ‖ek−2‖22 − ‖ek1‖22 + . . .+ ‖e0‖22 − ‖e1‖22, (use (3.28))

= ‖e0‖22 − ‖ek‖2
≤ ‖e0‖22.

So,

ηk ≤
‖e0‖22
k

2

L
[F (xk)− F (x?)] ≤ ‖e0‖22

k

F (xk)− F (x?) ≤ L‖e0‖22
2k

.

Thus F (xk)− F (x?) ≤ C
k .

So, ISTA has a worst-case complexity result of O(1/k). The convergence is guaranteed but may
be slow.

3.3.4 Improvement ISTA: FISTA

There are several algorithms developed to improve the worst-case complexity result of ISTA,
such as the Two-step Iterative Shrinkage-Thresholding Algorithm (TwIST) [29, 30] and the Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA) [1, 28]. In these methods, xk+1 depends
on both xk and xk−1, instead of just xk as in ISTA.
Here, the reconstruction algorithm used for experiments in Chapter 5 is based on FISTA (Al-
gorithm 2).

Algorithm 2: FISTA

Input: x0 and L ≥ Lf . Put t0 = 1 and y1 = x0

1 for k = 1, 2, . . . do
2 xg = yk − 1

L∇f(yk)
3 xk = proxL(g)(xg)

4 tk = 1
2

(
1 +

√
1 + 4t2k−1

)
5 yk+1 = xk +

tk−1−1
tk

(xk − xk−1)

6 end

A sequence {yk+1} is generated using both xk and xk−1 to find xk+1. The parameter tk changes
the effect of two previous iterations. It has been chosen such that the relation t2k = t2k+1 − tk+1

holds. This relation is used in the error estimation of FISTA [1].
Beck and Teboulle derived an improved complexity result for FISTA by exploiting (3.25) with
better choices for e than e = 0 and e = e0 as in ISTA [1]. They proved that with FISTA

F (xk)− F (x?) ≤
2Lf‖e0‖22
(k + 1)2

=
C

k2
.
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Hence, FISTA has a rate of convergence of at least O(1/k2), and thus an improved worst-case
complexity result has been found compared to ISTA.

3.3.5 Choices of g(x)

In step 3 of Algorithm 2, the proximal regularization of the function g is computed. Three
possible functions for g are now discussed:

� g(x) = β‖Ψx‖1,

� g(x) = α‖x‖TV ,

� g(x) = α‖x‖TV + β‖Ψx‖1.

For each g(x), a method of solving the proximal operator proxL(g)(y) is discussed.

Proximal operator for ‖ · ‖1

If g(x) = β‖Ψx‖1, then proxL(g)(y) can be easily computed using a soft-thresholding or shrink-
age operator sλ : Rn → Rn, coordinate-wise defined as

sλ(y)j := sign(yj) max(|yj | − λ, 0), j = 1, . . . , n. (3.29)

So, for x̂ = Ψx,

proxL(β‖x̂‖1)(y) = argmin
x̂

{
1

2
L‖Ψ−1x̂− y‖22 + β‖x̂‖1

}
= argmin

x̂

{
1

2
L‖Ψ−1(x̂−Ψy)‖22 + β‖x̂‖1

}
. (3.30)

If Ψ is unitary (i.e. the l2-norm is preserved: ‖Ψy‖2 = ‖y‖2), then Ψ−1 is unitary as well and
then (3.30) can be written as

argmin
x̂

{
1

2
L‖x̂−Ψy‖22 + β‖x̂‖1

}
,

which can be solved using the shrinkage operator

x̂? = proxL(β‖x̂‖1)(y) = sβ(Ψy).

Hence, the solution of proxL(β‖Ψx‖1)(y) is found by x? = Ψ−1x̂? = Ψ−1sβ(Ψy) (Ψ unitary).

Proximal operator for ‖ · ‖TV

If g(x) = α‖x‖TV , then proxL(g)(y) is harder to compute than proxL(β‖Ψx‖1)(y). Chambolle
proposed a dual approach and suggested a gradient-based algorithm for solving this dual problem
[31].
To construct a dual of the constrained problem

proxL(α‖x‖TV )(y) = argmin
x∈C

{
1

2
L‖x− y‖22 + α‖x‖TV

}
, (3.31)

the ‖ · ‖-norm, the discrete gradient operator L(x) and the difference operators ∂xu(i, j) and
∂yu(i, j) are used (Section 3.2.2). C is a closed convex subset of Rn, as in (3.17).
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LT (p, q) := ∂T1 p+ ∂T2 q is the adjoint of L(x) = (∂1x, ∂2x), that is

(p, ∂1x) + (q, ∂2x) = (∂T1 p+ ∂T2 q, x), p, q, x ∈ Cn.

Let B be the set {(p, q) ∈ Rn × Rn|‖(pi, qi)‖2 ≤ 1 ∀i = 1, . . . , n}. The relations√
x2 + y2 = max

p1,p2

{
p1x+ p2y

∣∣ |p1|2 + |p2|2 ≤ 1
}
,

|x| = max
p

{
px
∣∣ |p| ≤ 1

}
hold true by using Hölder inequalities. Using these relations, the TV-norm can be rewritten for
the constrained case as

‖x‖TV = max
{

(∂T1 p+ ∂T2 q, x)|(p, q) ∈ B
}

(3.32)

Equation (3.32) can be used to write the dual problem of (3.31), as will be done in the proof of
Proposition 4 below. The definitions of the used operations differ from the operations by Beck
and Teboulle in [28], leading to a different derivation of the dual problem.
Proposition 4 shows that the optimal solution of (3.31) is equal to the optimal solution of
the dual problem in (3.33), where a dual of (3.31) is stated. The problem in (3.33) is similar
to the problem stated in (3.17), where the minimizer of the problem containing the l2-norm
constrained to a subset C was approximated.

Proposition 4. Let (p?, q?) ∈ B be the optimal solution of the problem

max
(p,q)∈B

{
−1

2
‖y − λ

(
∂T1 p+ ∂T2 q

)
‖2
}

(3.33)

with λ = α/L. Then the optimal solution of (3.31) is given by

x? = y − λ(∂T1 p
? + ∂T2 q

?)

Proof. First, notice that

‖x− y‖22 = ‖x‖22 − 2(x, y) + ‖y‖22 implies ‖x‖22 − 2(x, y) = ‖x− y‖22 − ‖y‖22. (3.34)

Then

‖x− (y − z)‖22 = ‖x‖22 − 2(x, y − z) + ‖y − z‖22
= ‖x‖22 − 2(x, y) + 2(x, z) + ‖y − z‖22
= ‖x− y‖22 − ‖y‖22 + 2(x, z) + ‖y − z‖22 (use (3.34)). (3.35)

Rewriting and multiplying (3.35) by a factor 1
2 leads to

1

2
‖x− y‖22 + (x, z) =

1

2
‖x− (y − z)‖22 +

1

2
‖y‖22 −

1

2
‖y − z‖22. (3.36)

Take z = λ
(
∂T1 p+ ∂T2 q

)
to relate (3.36) to (3.33) and take the minimum over all x ∈ Cn,

argmin
x∈C

{
1

2
‖x− y‖22 +

(
x, λ

(
∂T1 p+ ∂T2 q

))}
= argmin

x∈C

{
1

2
‖x−

(
y − λ

(
∂T1 p+ ∂T2 q

))
‖22

+
1

2
‖y‖22 −

1

2
‖y − λ

(
∂T1 p+ ∂T2 q

)
‖22
}
. (3.37)
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Since 1
2‖y‖

2
2 and −1

2‖y− λ
(
∂T1 p+ ∂T2 q

)
‖22 do not depend on x, these terms are constant in the

minimization process and can therefore be omitted in (3.37):

argmin
x∈C

{
1

2
‖x− y‖22 +

(
x, λ

(
∂T1 p+ ∂T2 q

))}
= argmin

x∈C

{
1

2
‖x−

(
y − λ

(
∂T1 p+ ∂T2 q

))
‖22
}
,

(3.38)

which has the solution x = y− λ
(
∂T1 p+ ∂T2 q

)
. The minimum of the left-hand side of (3.38) for

this optimal solution is obtained by taking x equal to this optimal solution in the right-hand
side of (3.37):

min
x∈C

{
1

2
‖x− y‖22 +

(
x, λ(∂T1 p+ ∂T2 q)

)}
=

1

2
‖y‖22 −

1

2
‖y − λ

(
∂T1 p+ ∂T2 q

)
‖22. (3.39)

Suppose that x? = proxL(g)(y), with g(x) = α‖x‖TV :

x? = argmin
x∈C

{
1

2
L‖x− y‖22 + α‖x‖TV

}
. (3.40)

Then by (3.32), x? solves

min
x∈C

max
(p,q)∈B

{
1

2
‖x− y‖22 +

(
x, λ(∂T1 p+ ∂T2 q)

)}
= max

(p,q)∈B
min
x∈C

{
1

2
‖x− y‖22 +

(
x, λ(∂T1 p+ ∂T2 q)

)}
.

(3.41)

Equation (3.41) holds since the order of the maximum and minimum can be interchanged for
objective functions that are convex in x and concave in (p, q). Using (3.39) and the fact that
‖y‖22 is constant in the maximization over (p, q) ∈ B, it holds that

max
(p,q)∈B

min
x∈C

{
1

2
‖x− y‖22 +

(
x, λ(∂T1 p+ ∂T2 q)

)}
= max

(p,q)∈B

{
−1

2
‖y − λ(∂T1 p+ ∂T2 q)‖22

}
. (3.42)

From this follows that x? = y − λ(∂T1 p
? + ∂T2 q

?) ∈ C, where (p?, q?) ∈ B solve the dual problem
in (3.42).

To find this optimal solution x? mentioned in Proposition 4, Chambolle proposed the Gradient
Projection method [32]. In iteration k of this method, a solution x̃ = y − λ(∂T1 pk−1 + ∂T2 qk−1)
is computed. Then, the gradient in x̃ is added to the previous found (pk−1, qk−1), resulting into
(p̃k, q̃k). To make sure that (p̃k, q̃k) ∈ B, it is projected onto this set by PB(p̃, q̃) = (p, q), with
p, q ∈ Rn = Rn1×n2 given by

pij =


p̃ij

max{1,
√
|p̃ij |2+|q̃ij |2}

, i = 1, . . . , n1 − 1, j = 1, . . . , n2 − 1

p̃in2
max{1,|p̃in2

|} , i = 1, . . . , n1 − 1,

and

qij =


q̃ij

max{1,
√
|p̃ij |2+|q̃ij |2}

, i = 1, . . . , n1 − 1, j = 1, . . . , n2 − 1

q̃n1j

max{1,|q̃n1j
|} , j = 1, . . . , n2 − 1,

After a maximum number of iterations S, the optimal solution x? of the proximal regularization
problem in (3.31) is found.
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To improve the Gradient Projection method of Chambolle, Beck and Teboulle have used steps 4
and 5 of FISTA (Algorithm 2) to obtain the Fast Gradient Projection method (FGP) (Algo-
rithm 3) [28].

Algorithm 3: FGP

Input: τ < 1
4 , λ = α

L . Put t1 = 1 and (r1, s1) = (p0, q0) = (0(n1−1)×n2
, 0)n1×(n2−1)

1 for k = 1, 2, . . . , S do
2 x̃k = y − λ(∂T1 pk−1 + ∂T2 qk−1)
3 (pk, qk) = PB

(
(rk, sk) + τ

λL(x̃k)
)

4 tk+1 = 1
2

(
1 +

√
1 + 4t2k

)
5 (rk+1, sk+1) = (pk, qk) +

(
tk−1
tk+1

)
((pk, qk)− (pk−1, qk−1))

6 end
7 return x? = y − λ(∂T1 pS + ∂T2 qS)

Chambolle proved convergence of the algorithm (without steps 4 and 5) [32]. It holds that
‖L(x)‖2 ≤ 8‖x‖ and this is used to obtain an upper bound for the Lipschitz constant of the
gradient of the objective function in (3.33). This leads to τ = 1

8 , which is the value used in this
thesis. The value of τ used to solve the proximal operator of the 3D version of the TV-norm is
equal to 1

12 . Algorithm 3 has a rate of convergence of at least O(1/k2).

Hence, proxL(g)(y) with g(x) = α‖x‖TV can be solved by using FGP.

Proximal operator for ‖ · ‖TV + ‖ · ‖1

Huang et al. have proposed a method to compute g(x) = α‖x‖TV +β‖Ψx‖1 [33]. The Composite
Splitting Denoising (CSD) method decomposes the problem

min
x

1

2
‖x− xg‖22 +

h∑
i=1

gi(Bix), (3.43)

with Bi matrices and xg = yk − 1
L∇f(yk) (Algorithm 2), into h simpler regularization subprob-

lems. Examples of Bi matrices are wavelet transforms and the identity matrix. In [33], Bi is
required to be orthogonal. However, only invertibility of the matrices is important. The CSD
method is stated in Algorithm 4.

Algorithm 4: CSD

Input: L ≥ Lf , α, β, {z0
i }i=1,...,h = xg

1 for i = 1 to h do

2 xi = argminx
L
2h{‖x− z

j−1
i ‖22 + gi(Bix)}

3 end

4 x = 1
h

∑h
i=1 xi

Huang et al. stated a more general version of Algorithm 4 in [33, 34]. Combettes and Pesquet
proved that the sequence {xk} generated by this general CSD method will converge to the true
solution x? of (3.43) [35]. Experiments showed that Algorithm 4 performed just as well as the
general version [33, 34] and therefore Algorithm 4 will be used here.

Hence, the original problem with several non-smooth regularization functions is decomposed
into easier subproblems, which can be solved individually with their own proximal operator.
By fixing either the TV-norm or the l1-norm, (3.43) can be solved. The solution of the original
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problem (3.43) is obtained by taking the average of the solutions of the subproblems. So, the
new x value is obtained using a Jacobi type of approach.
However, it may be more efficient to use a Gauss-Seidel type of approach, where each xi value
is immediately used to compute the next xj (j > i). In many practical cases, the Gauss-Seidel
method converges faster than the Jacobi method [36]. In Section 5.2.6, the differences between
the Jacobi and Gauss-Seidel approaches are investigated for the application in mind.

The CSD method is inserted in FISTA (Algorithm 2) to solve

1

2
‖x− xg‖22 + α‖x‖TV + β‖Ψx‖1,

and leads to the modified FISTA algorithm (Algorithm 5).

Algorithm 5: Modified FISTA

Input: x0 and L ≥ Lf . Put t0 = 1 and y1 = x0

1 for k = 1, 2, . . . do
2 xg = yk − 1

L∇f(yk)

3 //start CSD algorithm
4 x1 = proxL(2α‖x‖TV )(xg)
5 x2 = proxL(2β‖Ψx‖1)(xg)
6 xk = 1

2(x1 + x2)
7 //end CSD algorithm

8 tk = 1
2

(
1 +

√
1 + 4t2k−1

)
9 yk+1 = xk +

tk−1−1
tk

(xk − xk−1)

10 end

In step 6 of Algorithm 5, the two solutions of the subproblems are combined. In [33], the two
solutions are averaged and thus given equal weight. The weight of α and β in the proximal
operator is twice as big. The idea behind this is explained next. Step 4 minimizes the problem

1

2
‖x− xg‖22 + 2α‖x‖TV ,

and step 5 minimizes the problem

1

2
‖x− xg‖22 + 2β‖Ψx‖1.

By averaging these problems, it follows that

1

2

(
1

2
‖x− xg‖22 + 2α‖x‖TV +

1

2
‖x− xg‖22 + 2β‖Ψx‖1

)
=

1

2
‖x− xg‖22 + α‖x‖TV + β‖Ψx‖1

= proxL(α‖x‖TV + β‖Ψx‖1)(xg),
(3.44)

which is the problem to solve. Note that x1 and x2 are different and thus combination of these
two solutions will differ from (3.44). However, (3.44) gives insight in the combination of the
two subproblems.
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It is possible to combine the subproblems using different weights: xk = px1 + (1 − p)x2. The
computation steps of the proximal operators are modified for this combination:

x1 = proxL

(
α

p
‖x‖TV

)
(xg),

x2 = proxL

(
β

1− p
‖Ψx‖1

)
(xg).

Here, p = 1
2 will be used.

3.3.6 mFISTA

Unlike ISTA, FISTA is not a monotone algorithm: the function values are not guaranteed to be
non-increasing. When subproblems are not solved exactly, FISTA can diverge. To resolve this,
a monotone version of FISTA is introduced, called mFISTA (Algorithm 6)[28].

Algorithm 6: mFISTA

Input: x0 and L ≥ Lf . Put t0 = 1 and y1 = x0

1 for k = 1, 2, . . . do
2 xg = yk − 1

L∇f(yk)

3 x1 = proxL(2α‖x‖TV )(xg)
4 x2 = proxL(2β‖Ψx‖1)(xg)
5 zk = 1

2(x1 + x2)

6 xk = argminx{F (y)|y ∈ {zk, xk−1}} ; // step to ensure monotonicity

7 tk = 1
2

(
1 +

√
1 + 4t2k−1

)
8 yk+1 = xk +

(
tk−1

tk

)
(zk − xk) +

(
tk−1−1
tk

)
(xk − xk−1)

9 end

The monotonicity step 6 of Algorithm 6 compares the function value of the found result zk with
the function value obtained using the previous iteration xk−1. If F (zk) ≤ F (xk−1), then the
newest result xk is equal to zk, otherwise xk is equal to the previous iterate xk−1. Note that
it is not certain that mFISTA would still work with the introduction of these modifications.
However, experiments in Section 5 shows good results.

3.3.7 cFISTA

MR data is complex and therefore the algorithm used for reconstruction has to be applicable to
complex values. The proximal regularization proxL(‖ ·‖1)(y) in Equation (3.30) of Section 3.3.5
is computed using the shrinkage operator in (3.45). However, this operator is not defined for
complex-valued vectors. The operator is adapted for the use of complex-valued data by defining
sign(ρeiφ) := eiφ. The complex shrinkage operator scλ(y) : Cn → Cn is coordinate-wise defined
as

scλ(y)j :=
yj

(max(|yj | − λ, 0) + λ)
·max(|yj | − λ, 0), j = 1, . . . , n. (3.45)

Using this modification, Algorithm 6 becomes applicable to complex-valued problems and will
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be called cFISTA (Algorithm 7).

Algorithm 7: cFISTA

Input: x0 ∈ Cm×n and L ≥ Lf . Put t0 = 1 and y1 = x0.
1 for k = 1, 2, . . . do
2 xg = yk − 1

L∇f(yk)

3 x1 = proxL(2α‖x‖TV )(xg)
4 x2 = proxL(2β‖Ψx‖1)(xg)
5 zk = 1

2(x1 + x2)

6 xk = argminx{F (zk), F (xk−1)}

7 tk = 1
2

(
1 +

√
1 + 4t2k−1

)
8 yk+1 = xk +

(
tk−1

tk

)
(zk − xk) +

(
tk−1−1
tk

)
(xk − xk−1)

9 end

The working of cFISTA is tested on the Shepp-Logan phantom PSL of size 512 × 512. As an
example, a constant phase of 0.8 is applied on PSL, resulting in a new phantom called PSL0.8

(Figure 3.5a and Figure 3.5d):
PSL0.8 = PSL · e0.8i.

To observe the differences between mFISTA and cFISTA, the algorithms are applied on PSL0.8

to obtain the magnitude images (Figure 3.5b and 3.5c) and phase images (Figure 3.5e and 3.5f
from the reconstructions of both algorithms.

(a) Original magnitude image (b) Magnitude image mFISTA (c) Magnitude image cFISTA

(d) Original phase image (e) Phase image mFISTA (f) Phase image cFISTA

Figure 3.5: Shepp-Logan phantom PSL0.8 with constant phase of 0.8. The magnitude and
phase images of the original PSL0.8 (a,d), the reconstructed images using mFISTA (b,e) and the
reconstructed images using cFISTA (c,f) are displayed. The phase in 3.5e is equal to zero and
thus not restored correctly. The phase in 3.5f is restored correctly.
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Instead of a phase of value 0.8, as in the original phase image (Figure 3.5d), the value of the
reconstructed phase using mFISTA is equal to zero (Figure 3.5e). Hence, the phase reconstruc-
tion fails while using mFISTA. The phase of Shepp-Logan phantom using cFISTA is equal to
0.8 (Figure 3.5f) and is equal to the phase of PSL0.8 . At the borders of the phantom, it seems
that the algorithm has trouble restoring the phase, because it ranges between -2.3416 and 0.8.
At the points of these fluctuations, the data is close or equal to zero. The phase cannot be
restored correctly, since there is little to no information available about the phase at these
points. In practice, a mask is applied to the reconstructed image. This mask is constructed
using the magnitude image, from which can be derived where the data is equal to zero and thus
the locations where it is not possible to reconstruct the phase correctly.

Hence, cFISTA reconstructs complex-valued data correctly and therefore an implementation
of Algorithm 7 in Matlab [21] is used for the experiments in Section 5.

3.3.8 Wavelets

CS relies on the existence of a sparse solution (Section 3.2). To obtain such solution, a sparsifying
transform Ψ is used. Here, Ψ is a wavelet transform. This is a tool that divides the data or
functions into different frequency components [37]. A wavelet transform exploits a wavelet ψ(t)
and a scaling function ϕ(t). Sometimes ψ is also referred to as a mother wavelet and ϕ as a
father wavelet.
For any function h, a basis can be generated by contraction (a) and translations (b):

ha,b(t) :=
1√
|a|
h

(
t− b
a

)
.

Here, the scaling 1/
√
|a| preserves the l2-norm. In case that h is a wavelet, ha,b is called a

daughter wavelet. Discrete translations and contractions are considered only:

a := 2−j and b := k2−j (j, k ∈ Z).

This leads to the following definition:

hj,k(t) := 2j/2h(2jt− k).

For each j, the scaling function ϕ generates a set (ϕj,k) that spans a space Vj of the function
“at resolution level j”. The scaling function ϕ has to be selected such that for the function f of
interest, there exists a high quality approximation fj for non-large values of j. The functions
fj from Vj for j large enough, i.e. for resolution 2−j small enough, are of the form

fj =
∑
k

sjkϕj,k.

A wavelet ψ is associated to the scaling function ϕ. It is used to split the function fj into fj−1

and the function gj−1 with

gj−1 ∈ Wj−1 = span{ψj−1,k

∣∣ k ∈ Z}

gj−1 =
∑
k

dj−1kψj−1,k.

The wavelet ψ has to be selected such that the number of small coefficients in the collection
{|dj−1k|

∣∣ k ∈ Z} and {|sj−1k|
∣∣ k ∈ Z} is (much) larger than in the collection {|sjk|

∣∣ k ∈ Z}.
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The function fj is split into the smooth part fj−1 and the detail part gj−1. Repeating this
procedure l times results in

fj = fj−l + gj−l + . . .+ gj−1,

where l is the wavelet level of decomposition. ψ is such that
∫
ψ(x) dx = 0, whence∫

fj =

∫
fj−l and

∫
gi = 0, ∀i = j − 1, . . . , j − l.

If ∫
ψ(t) dt = 0,

∫
tψ(t) dt = 0, . . . ,

∫
trψ(t) dt = 0,

then the wavelet is said to have r + 1 vanishing moments. The number of vanishing moments
determines the number of small detail coefficients dj−1k for the smooth function f .

The scaling function ϕ and wavelet ψ of three wavelets are displayed in Figure 3.6.

(a) Haar wavelet (b) Daub4 (c) CDF 9/7
Decomposition

(d) CDF 9/7
Reconstruction

Figure 3.6: The scaling functions (top row) and the corresponding wavelet functions (bottom
row) of the Haar wavelet, Daubechies with four vanishing moments (Daub4) and CDF 9/7.
CDF 9/7 is a non-orthogonal wavelet and therefore it requires two pairs of scaling and wavelet
functions: the decomposition and reconstruction functions. The other two wavelet transforms
are orthogonal and thus use the same functions for decomposition and reconstruction.

The map fj  fj−l + gj−l + . . . + gj−1 is the wavelet transform. Usually this transform is
computed at the level of coefficients. Then (sjk)  ((sj−lk), (dj−lk) . . . , (dj−1k)) is the wavelet
transform.

If the ϕj,k form an orthogonal basis of Vj (i.e. ϕ0,k⊥ϕ0,m (k 6= m)), then fj can be obtained by
projecting f onto Vj :

fj =
∑
k

〈f, ϕj,k〉
〈ϕ,ϕ〉

ϕj,k.

If ψj,k⊥ψj′,m (∀j 6= j′ and k,m, and ∀j = j′, k 6= m), then ψ is said to be an orthonormal
wavelet.

Wavelets allow good representation of local behavior of functions and can represent data using
less terms [38]. The wavelet coefficients are sorted to the scale of the details, from coarse-scale
details to fine-scale details. The main difference between the standard Fourier transform and
wavelet transforms is that the bases functions of the Fourier transforms are only localized in
frequency, whereas wavelets are localized in both time and frequency [39].
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In Section 5.2.1, three wavelets are compared on their performance for the reconstruction of
diffusion-weighted images using cFISTA, namely the Haar wavelet, Daubechies with four van-
ishing moments (Daub4) and the Cohen-Daubechies-Feauveau wavelet, CDF 9/7. The wavelet
functions and their scaling functions are displayed in Figure 3.6.
The Haar wavelet is a special case of the Daubechies wavelet and has one vanishing moment
(Daub1). The Daubechies wavelet family consists of orthogonal wavelets. The more vanishing
moments are included in the wavelet, the better piecewise smooth parts of the function f can
be approximated.
In some applications, it is more convenient to use a non-orthogonal wavelet transform. An
example of such bi-orthogonal wavelet is the CDF 9/7 wavelet, which is used for JPEG 2000
compression and fingerprint compression. Since CDF 9/7 is non-orthogonal, two pairs of scal-
ing and wavelet functions are required: the decomposition and reconstruction functions. These
functions have lengths 9 and 7. The CDF 9/7 wavelet is symmetric (Figure 3.6c-3.6d), which has
an advantage over asymmetric wavelets with respect to border extension. Symmetric wavelets
give a symmetric extension of the boundaries, which will not introduce distortions at the borders
[40].
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Chapter 4

Image quality measure

In order to determine the quality of the reconstructed images, there is need for a quality measure.
In this chapter, such quality measure is defined and discussed. Two signals or images are
compared and the quality measure provides a quantitative score that describes the level of
similarity between them. For the comparison of images, only real-valued images are used.

4.1 Mean Squared Error

At first glance, the Mean Squared Error (MSE) could be used to determine the quality of the
reconstructed image x ∈ Rm×n compared to the original image y ∈ Rm×n. The MSE is defined
as

MSE(x, y) =
1

mn

m∑
i=1

n∑
j=1

(yij − xij)2, x, y ∈ Rm×n,

which is the square of the weighted l2-norm.

MSE is often used because it has nice properties:

� it is a simple measure, because it is parameter free,

� it is inexpensive to compute,

� the squared error is evaluated at each pixel independent of other pixels,

� it satisfies the nonnegativity, identity and symmetry conditions of the Euclidean metric
in Rn.

Because of all the nice properties of MSE, this measure is applied to compare modified images
to the original image.

To illustrate the MSE measure, an image of Einstein, altered with different types of distor-
tions such as impulsive noise contamination, blurring and rotation, is used (Figure 4.1). The
MSE was computed for each of these resulting images. The MSE for all three images was the
same (Figure 4.1b-4.1d). However, these images do not have the same quality from a human
visual perspective.

39



CHAPTER 4 4.1. MEAN SQUARED ERROR

(a) MSE = 0, SSIM = 1 (b) MSE = 0.0022, SSIM = 0.6940

(c) MSE = 0.0022, SSIM = 0.8396 (d) MSE = 0.0022, SSIM = 0.6624

(e) MSE = 0.0135, SSIM = 0.3654 (f) MSE = 0.0168, SSIM = 0.3047

Figure 4.1: Comparison of image fidelity measures for an image of Einstein altered with different
types of distortions.
4.1a Reference image. 4.1b Blurring. 4.1c Impulsive noise contamination. 4.1d Recovering from
JPEG compression. 4.1e Rotation 5◦ counter-clockwise. 4.1f Spatial shift to the left.
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4.2 SSIM

To be more in line with the human visual perspective, other quality measures have been pro-
posed. One quality measure is called the Structural Similarity Image Measure (SSIM) [41, 42].
In this section, this measure will be explained.

An image x = {(i, j)
∣∣ i = 1, . . . ,m, j = 1, . . . , n} is covered by blocks k of equal size.

The image x restricted to such a block is called a patch, denoted by xk. The SSIM computes a
so-called SSIM index for each block k in the form of a sliding window that moves pixel-by-pixel
across the image. This means that the blocks will overlap. The SSIM index of a patch is stored
in the center pixel of the block and the result is a so-called SSIM map.

The SSIM index consists of three terms: local luminance (l̃), local contrast (c̃) and local struc-
tures (s̃). The SSIM index is computed in [41, 42] by the formula

S(xk, yk) = l̃(xk, yk) · c̃(xk, yk) · s̃(xk, yk)

=

(
2µxkµyk + C1

µ2
xk

+ µ2
yk

+ C1

)α
·
(

2σxkσyk + C2

σ2
xk

+ σ2
yk

+ C2

)β
·
(

2σxkyk + C3

σxkσyk + C3

)γ
. (4.1)

Here, µxk := 1
|k|
∑

(i,j)∈k xij is the mean value of the patch k of x with |k| the number of

points in the patch. σxk :=
√

1
|k|−1

∑
(i,j)∈k xij − µxk is the standard deviation of the patch and

σxkyk := 1
|k|−1

∑
(i,j)∈k(xij − µxk)(yij − µyk) the correlation coefficient.

Note that if two image patches are the same, then each term is equal to one and thus the
SSIM index is also equal to one.
To get more insight into this quality measure, each term of (4.1) will be studied.

4.2.1 Luminance

The first term is the similarity of the luminance of the patches, denoted by l̃(xk, yk). The
expression is rewritten to gain more insight in this term.

l̃(xk, yk) =

(
2µxkµyk + C1

µ2
xk

+ µ2
yk

+ C1

)α
=

(
1− (µxk − µyk)2

µ2
xk

+ µ2
yk

+ C1

)α
(4.2)

According to (4.2), this term looks at the differences in the signal intensity by taking the
difference between local mean samples µxk and µyk of the images and squaring the result. This
is scaled by the mean samples and a constant C1. The weighting and constants are discussed
in Section 4.2.4.

4.2.2 Contrast

The second element is the similarity of the contrast of the patches, denoted by c̃(xk, yk). Rewrit-
ing the expression stated in [41, 42] yields:

c̃(xk, yk) =

(
2σxkσyk + C2

σ2
xk

+ σ2
yk

+ C2

)β
=

(
1− (σxk − σyk)2

σ2
xk

+ σ2
yk

+ C2

)β
(4.3)
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From (4.3) can be concluded that the similarity in contrast can be computed by taking the
difference between the local standard deviations σxk and σyk and squaring the result.

4.2.3 Structure

The third element is the similarity of the structures in the patches, indicated by s̃(xk, yk).

The unit vectors
xk−µxk
σxk

and
yk−µyk
σyk

are associated with structures in the patches [41, 42]. By

computing the correlation coefficient between the vectors xk − µlpx and yk − µlpy, Wang et al.
find a measure for structural similarity. The linear correlation between the vectors describes
the direction and magnitude of the linear relationship between them. The linear correlation
coefficient is equal to one in the case of perfect linear correlation between the vectors.

Rewriting this term leads to:

s̃(xk, yk) =

(
σxkyk + C3

σxkσyk + C3

)γ
=

(
1− σxkσyk − σxkyk

σxkσyk + C3

)γ
. (4.4)

By subtracting the correlation coefficient from the product of the standard deviations σxk and
σyk , an estimate for the structure similarity is defined.
To get an even better understanding of the structural similarity term , define vi := xi− µx and
wi := yi − µy. Then rewriting the numerator of (4.4) (Appendix A.4):

σxkσyk − σxkyk =
1

N − 1
(‖v‖‖w‖ − ‖vw‖) ≥ 0, ∀v, w. (4.5)

The inequality in (4.5) is derived using Cauchy-Schwarz and is an equality if and only v and w
are linear dependent. This last statement indicates that the structural similarity term indicates
equality between the patches, even when there exist some scaling factor between them. This
scaling factor is evaluated in the luminance and contrast terms. Hence, the structure similarity
term measures the degree of linear correlation between the patches.

4.2.4 Weighting

The constants C1, C2 and C3 are small positive constants that ensure stability of the three terms
in the case the denominators are very close to zero.

C1 is defined as C1 = (K1Λ)2 [41, 42]. It is based on the dynamic range of pixel values Λ
(i.e. the maximum possible pixel intensity) and another constant K1 � 1. In [42], K1 = 0.01.
The constant C2 is defined similar to C1, namely C2 = (K2Λ)2. K2 = 0.03 is chosen in [42].
C3 is taken as C3 = 1

2C2 [41, 42].

The three terms in (4.1) are given a certain weight using the constants α, β and γ (0 ≤ α, β, γ ≤
1). If, for example, the comparability in contrast is more important than in luminance or struc-
tures, then β can be chosen larger than α and γ.
When images are compared in Chapter 5, the three terms are taken equally important in the
calculation of the SSIM index: α = β = γ = 1.
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In Chapter 5, there will also be comparison between images performed where only the structures
are of importance. For this situation, the SSIM index with α = β = 0 and γ = 1 is used. This
situation will be referred to as computing the mean structures score. Similar, it holds that mean
contrast score and mean luminance score have the (α, β, γ)-combination of (0, 1, 0) and (1, 0, 0),
respectively.

4.2.5 Implementation

On the images, the SSIM method is applied to the local patches using a sliding window approach.
The universal image quality index uses square blocks (mentioned above) of size 8×8 as window
[43], but this often results in blocking artifacts. As an alternative, an 11 × 11 normalized,
circular-symmetric Gaussian weighting function w = {wij |i = 1, . . . , 11, j = 1, . . . , 11} with
standard deviation of 1.5 samples is used to create blocks of size 11× 11 [41] (Figure 4.2).

Figure 4.2: An 11 × 11 normalized, circular-symmetric Gaussian weighting function to create
blocks used for the SSIM index computation.

Using this weighting function, the estimates of the local statistics µxk , σxk and σxkyk for block
or patch k are now defined as

µxk :=
1

|k|
∑

(i,j)∈k

wijxij ,

σxk :=

√√√√ 1

|k| − 1

∑
(i,j)∈k

wij(xij − µxk),

σxkyk :=
1

|k| − 1

∑
(i,j)∈k

wij(xij − µxk)(yij − µyk).

To obtain a single overall quality measure of the image, the Mean Structural Similarity Image
Measure (mSSIM) index is computed by averaging the SSIM map:

mSSIM(y, x) =
1

H

H∑
h=1

SSIMh(yk, xk). (4.6)

where H is the total number of local patches in an image.
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The mSSIM values of the altered images of Einstein are computed (Figure 4.1). According
to these values, there exists a quality difference between the altered images (Figure 4.1b-4.1d),
in contrast to the results when using MSE as quality measure. This difference corresponds more
with the human visual perception. For example, all structures and details in the with noise con-
taminated image are as visible as in the original image (Figure 4.1c). For the recovering from
the JPEG compression holds that the big structures are visible, but the details are not, e.g. the
stripes on the suit and tie of Einstein (Figure 4.1d). Therefore, most people would give a higher
quality score to the with noise contaminated image (Figure 4.1c) than to the JPEG compression
recovery (Figure 4.1d). This scoring is similar to the quality scores obtained by using the SSIM,
which suggests that the SSIM corresponds better with the human visual perception.

SSIM index is sensitive to relative translations, scalings and rotations. The mSSIM values
computed for a rotated image and a spatially shifted image were low (Figure 4.1e-4.1f), in-
dicating that a change in structures gets a higher penalty. The Complex Wavelet Structural
Similarity Image Measure (CW-SSIM) is developed in [42] to be less sensitive in these situa-
tions.
However, the sensitivity to translations, rotations and scalings is an advantage. The images
should display an exact image of the scanned slice in the body to be useful for radiotherapy. It
is not desired that pixels are spatial shifted or shifted by rotation or scaling after a reconstruc-
tion using CS. The used quality measure should indeed penalize these transformations in order
to test whether reconstruction using CS leads to the same images as the images obtained with-
out undersampling. Hence, the basic SSIM will be used to compare the reconstructed images
with reference images.

4.2.6 Volume

The mSSIM is also computed to compare two stacks of images, also referred to as volume, with
each other. The total number of local patches will consists of H (i.e. the number of patches in
each image) times the number of images K. Then the mSSIM is defined with

mSSIM(y, x) =
1

H ·K

K∑
k=1

H∑
h=1

SSIMh,k(yk, xk),

=
1

K

K∑
k=1

(
1

H

H∑
h=1

SSIMh,k(yk, xk)

)
,

=
1

K

K∑
k=1

mSSIMslice k. (4.7)

According to (4.7), the mSSIM of a volume can be defined by taking the average of the mSSIM
values per image in the stack.

4.2.7 Reference image

To measure the quality of the reconstructed images, these images will be compared with a
reference image. When performing experiments retrospectively (i.e. an image is Fourier trans-
formed to k-space and then undersampled), this reference image is known: it is the processed
(diffusion-weighted) image. The reconstructed image should be close to the original image and
thus the SSIM can be used.
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However, the reference scan is not known when the undersampling is performed prospectively
(i.e. the raw, unprocessed data is undersampled instead of the processed data). It is not possible
to obtain both the undersampled and fully sampled k-space in one scan. Another scan could
be made to acquire the full k-space. Since undersampling will theoretically minimize geometric
distortions (Chapter 2.4), the image reconstructed from undersampled k-space will differ from
the image reconstructed from the fully sampled k-space. The MR data in Section 5.3.4 is not
diffusion weighted and aquired with a gradient echo instead of EPI. This type of imaging will
not lead to geometric distortions. However, the undersampled and fully sampled raw data differ
due to noise and other influences during acquisition. Comparing the reconstruction with the
fully sampled reference scan could give some indication of the quality of the reconstruction, but
the actual quality cannot be computed.
However, the SSIM can be used to compare the difference in quality between two reconstructions
with different undersampling strategies. The mSSIM can be calculated for both reconstructions
with the fully sampled reference scan. By comparing the results, an order of the quality of the
undersampling strategies could be obtained.

Hence, the SSIM is useful for comparing retrospectively undersampled reconstructions with their
reference images, but it gives not the actual quality for prospective experiments. The SSIM
could be used to compare undersampling strategies used in prospective experiments. Since the
focus of this thesis is on the feasibility of the method, the undersampling is done retrospectively
and thus the SSIM gives a indication of the reconstruction quality of the method.

4.3 Power spectral density

Another comparison method that will be used here, is related to k-space. Comparing the cov-
erage of the power spectral densities included in the undersampling gives more insight in the
expected quality difference between two reconstructed images. This method will be used in
Section 5.3.1.

The power spectral densities [44, 45] are computed using

m,n∑
i,j

|ksi,j |2,

where ki,j is the value at position (i, j) in the m × n-image in k-space and s is the number of
the used slice. Then the so-called power spectral densities of the k-spaces, undersampled with
the masks, are computed using

m,n∑
i,j

|maskhk
s
i,j |2,

with h denoting the number of the used mask. To calculated the percentage of the power
spectrum taken with undersampling, the latter densities were divided by the power spectral
densities of the original slices, that is ∑m,n

i,j |maskhk
s
i,j |2∑m,n

i,j |ksi,j |2
. (4.8)
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Chapter 5

Results

In this chapter, CS experiments are described for patient DWI data. First, several strategies are
formulated to undersample the DWI data in Section 5.1. In Section 5.2, optimal settings of the
regularization parameters α and β and sparsifying transform Ψ in the minimization problem
(P ) (Equation (3.13)) are sought.
After all parameters and transforms were chosen, several experiments were performed on patient
data to find an optimal undersampling strategy (Section 5.3). The undersampling strategies
were applied on the patient data for several undersampling percentages. The reconstructions
were compared using the SSIM metric to find an optimal undersampling strategy and percentage
for this type of data.

5.1 Undersampling masks

DWI scans are acquired with an EPI trajectory. For this type of trajectory, it is more time
efficient to reduce the number of phase encoding steps instead of the number of readout steps.
This increased the bandwidth in the phase encoding direction and thus reduced geometrical
errors (Section 2.4.1).

In Section 5.3.1, the efficiency of five undersampling strategies is investigated (Figure 5.1).
Those strategies were defined in this section. Each strategy took uperc% of the full k-space,
which led to the selection of p ∈ N lines:

p = n ∗ uperc

100
,

with n the total number of phase encoding steps and uperc the percentage of the data used in
the undersampling. The density function φ(t) described each strategy by selecting the p lines
using a uniform distribution of t (Figure 5.1). A random distribution of t was used for the
‘random’ strategy.

The ‘uniform’ strategy did not satisfy the conditions of CS (Section 3.1.1), but was included
to provide information on the performance of the other undersampling strategies. The strat-
egy ‘random’ satisfied the conditions of CS, but probably failed to capture the majority of the
information in k-space. This information is located in the center of k-space (Section 2.2). The
strategies ‘center’, ‘increased’ and ‘centerincreased’ were designed to select more lines in the
center of k-space. These strategies corresponded better with the distribution of information in
k-space and thus with the distribution of information in the measurement vector b than the
‘random’ (Section 3.2.1).
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(a) uniform (b) random (c) center

(d) increased (e) centerincreased

Figure 5.1: The density plots and the corresponding masks of the five undersampling strategies
used in the experiments. A selection of p lines was obtained by using a uniform distribution of
t in the density functions φ (top figures). An exception was the ‘random’ strategy, where t is
randomly distributed. These distributions were used to determine the lines in the masks. Each
of the shown strategies displays the mask used to obtain 25% of the data. The undersampling
took place in the phase encoding direction (y-axis). The readout direction was displayed on the
x-axis.
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Uniform

The first undersampling strategy was the ‘uniform’ undersampling (Figure 5.1a), which was
already discussed in Section 3.1.1. The other strategies should perform at least as well as
‘uniform’, since uniform undersampling does not lead to aperiodic aliasing. This type of aliasing
is required for CS (Section 3.1.2).

Random

The second strategy for undersampling was called ‘random’ (Figure 5.1b). This strategy was
based on the requirements in the CS theory that the measurements should be randomly ob-
tained. For the strategy, p lines in k-space were chosen at random using the function rand-
perm(m, p) of Matlab [21]. An extra condition for this method was that the center line k = 0
of k-space was always included. This extra condition made the ‘random’ strategy more com-
parable with the other strategies. The highest frequency amplitudes in k-space are located in
the center and thus are captured by k = 0. The inclusion of k = 0 provide information about
contrast and large structures of the image (Figure 2.5 in Section 2.2).

Center

The method ‘center’ was designed as an extreme example of selecting lines in the center of
k-space (Figure 5.1c). In this undersampling method, p consecutive lines in the center of k-
space were chosen to obtain uperc% of the image in k-space. This strategy captured most
information about contrast and structures of the image, even when a small number p was
chosen (recall Figure 2.5).

Increased

A disadvantage of ‘center’ was that the periphery of k-space was not sampled (unless a high
percentage of the data is included). This meant that no information about details was captured
(Figure 2.5). The undersampling strategy ‘increased’ was designed to include this information
(Figure 5.1d). The distance between the consecutive lines, viewed from the center of k-space,
was increased. This undersampling strategy used the ideas of variable density, where there was
a higher sampling density in the center of k-space and lower density at the borders [46]. Since
both the center and the outer regions of k-space were sampled, information about structures and
contrast as well as about details was captured. The lines in k-space ranged from kmin := −1

2n2+1
to kmax := 1

2n2. The set of the p chosen lines was obtained using

ksampled =


kmin +

⌊√
|k| · kmax√

1
2
p

⌉
, −1

2p ≤ k ≤ −1,⌊
k2 · kmax

( 1
2
p)

2

⌉
, 0 ≤ k ≤ 1

2p.

The sampling patterns for the two halves of k-space were not symmetric. This was done delib-
erately to create a more random-like sampling pattern of the whole k-space.

A disadvantage of this strategy was that the sampling density in the center of k-space was
low for small percentages, because the p lines were spread over k-space.
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Centerincreased

The last strategy used for undersampling was called ‘centerincreased’ (Figure 5.1e) and it com-
bined the advantages of ‘center’ (information about structures for small percentages) and ‘in-
creased’ (information about details for small percentages). Furthermore, ideas used with keyhole
imaging, were at the base of this strategy.
In keyhole imaging, k-space was divided in three parts [47]. The central keyhole was located
in the center of k-space, which consisted of 1

4 of k-space. The other two regions were called
the SPARSE regions, where the selected lines were interleaved using some SPARSE factor. A
SPARSE factor of 3 was used, which indicates that every third line in the outer regions of
k-space was selected [47]. In other words, an equal distance between consecutive lines was ob-
tained, similar to ‘uniform’.

The mask for the ‘centerincreased’ strategy was also divided in three parts: lowerpart, cen-
terpart and upperpart (Figure 5.2).

Figure 5.2: The mask of ‘centerincreased’ consisted of three parts: lowerpart, centerpart and
upperpart. In each part, a different number of lines was selected, accordingly to different
formulas.

The set ksampled was obtained using

ksampled =


kmin +

⌊√
|k| · bkmax− 1

8
pe√

1
2
p

⌉
, −1

2p ≤ k < −
1
8p,

k, −1
8p ≤ k ≤

1
8p,⌊

k1.5 · kmax

( 1
2
p)1.5

⌉
, 1

8p < k ≤ 1
2p.

When {kmin, kmax} /∈ ksampled, the lowest and highest numbers in ksampled were replaced by kmin

and kmax. This ensured the given resolution.
In the centerpart, 1

4 of the p lines were chosen. This part was inspired by the ‘center’ strategy
and the central keyhole in [47].
The lowerpart contained 3

8 of the p lines of k-space. Instead of taking every third line of k-
space in this part as in [47], the lines were sampled in a more random pattern. The lines were
chosen using a square root function, so the distance between the successive lines increased,
viewed from the center of the mask. This differed from the SPARSE regions in [47], but it was
similar to the ‘increased’ strategy. The upperpart of mask consisted of the last 3

8 of the wanted
k-space lines. Again, the distance between the lines increased when the lines were closer to the
border of k-space. These lines were chosen according to a function of the power 1.5. The value
of the power could be increased, leading to more distance between lines near the border. The
value 1.5 was used here to ensure that a part of the high spatial frequencies in k-space was
sampled.
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5.2 Choice parameters and transforms

To test the feasibility of the method for diffusion-weighted images, cFISTA was applied ret-
rospectively on ten patient data sets, containing diffusion data with b-values b = 0 s/mm2, b =
200 s/mm2 and b = 800 s/mm2 (Section 2.3.3). Each patient set contained 50 slices of size 160×160.
From the 50 slices, a subset of ten slices from each patient set was used for the experiments.
The slices were located in the center of the volume, since the tumor was often located there.
The subsets from each of the ten patients were referred to as the ‘test slices’ of a patient.

Before experiments aimed at finding the optimal strategy could be executed, the parameters
and sparsity transforms of the problem (P ) (Section 3.2.2) were chosen. First, three wavelet
transforms were compared to find the sparsity transform Ψ. Then the regularization param-
eters α and β of the problem (P ) were optimized for the DWI data on which undersampling
experiments were executed. Finally, some implementation remarks were made.

5.2.1 Wavelets

In Section 3.3.8, three wavelets were discussed. In this section, the performance of these wavelets
was tested on DWI data of the patient set to find the best sparsifying transform among these
three for the experiments executed in Section 5.3.

To illustrate the Haar wavelet, Daub4 and CDF 9/7, the wavelet transforms were applied
to an image to obtain their decompositions (Figure 5.3).

(a) Haar (b) Daubechies (c) CDF 9/7

Figure 5.3: Wavelet decompositions of slice 24 of patient 12 (b = 800 s/mm2) by the Haar wavelet
(a), Daub4 (b) and CDF 9/7 (c). The data is reordered in such a way that the highest frequencies
are at the border and the lowest frequencies in the top left corner.

To investigate the sparsifying abilities of the wavelets, the wavelets were applied to an image
of each b-value of the ten patients. In the wavelet domain, subsets (of sizes ranging from 1000
to 10000) of the largest wavelet values were selected and the rest of the total number of 20480
values was set to zero. Then, the inverse wavelet transform was applied and the resulting im-
ages were compared to the original images by computing the mSSIM and the mean structure
score (Chapter 4). The mSSIM measured the quality of the whole reconstructed image and
the mean structure score measured the quality of the reconstructed structures (Section 4.2).
It is important that the structures were reconstructed well, because structures are used in the
process of locating the tumor.

The mSSIM and the mean structure scores were averaged over the ten images of the patients
for each b-value (Figure 5.4).
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(a) b = 0 s/mm2 (b) b = 200 s/mm2 (c) b = 800 s/mm2

(d) b = 0 s/mm2 (e) b = 200 s/mm2 (f) b = 800 s/mm2

Figure 5.4: The average mSSIM values (a-c) and the mean structure scores (d-f) of the thresh-
olded images for the Haar wavelet (green), Daub4 (red) and CDF 9/7 (blue), using b = 0 s/mm2,
b = 200 s/mm2 and b = 800 s/mm2. After applying the wavelets, the images of ten patients were
thresholded by selecting several subset sizes of only the largest wavelet values. The mSSIM
and mean structure scores were compared with 0.9 (black), the value that indicated a good
reconstruction.

On average, all images still had a high mSSIM value using only 9.8% or more of values in
the wavelet domain. For the Haar and Daubechies wavelet, there was a good reconstruction
(mSSIM≥ 0.9) even when 4.9% of the data was selected. The Haar wavelet was slightly better
at preserving the information of the image than the Daubechies wavelet. However, the mean
structure score of the Haar wavelet was lower than for the other two wavelets (Figure 5.4d-5.4f).
This was especially the case for b = 200 s/mm2 and b = 800 s/mm2. The Haar wavelet could lead to
a coarse, boxlike appearance in the reconstruction, because it had only one vanishing moment
(Figure 5.5a).
This implies that the approximations for the piecewise smooth parts of the function were per-
formed using a constant function (Section 3.3.8). If the image resolution is high, then the degree
of smoothness becomes large and thus the coarse, boxlike appearance of the Haar wavelet is
more visible [48]. In future, the resolution of the test images may be increased and thus it is
useful to choose a wavelet that is capable of handling this situation. It was preferred to have
better approximations of the function for wavelet-based compression [49]. Daub4 used four
vanishing moments and thus led to a better approximation. It allowed a better support width
of polynomials on which the degree of smoothness was based [48]. Therefore, the reconstructed
image was more smooth and the structures were better visible (Figure 5.5b).

The Haar wavelet and Daub4 were unitary. This meant that only Ψ was used in the calcu-
lation of the proxL(‖ · ‖1)(y) (Section 3.3.5). The CDF 9/7 wavelet was not unitary and thus
the calculation of proxL(‖ · ‖1)(y) is more difficult due to the additional use of Ψ−1 next to Ψ.
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(a) Haar wavelet (b) Daub4 wavelet

Figure 5.5: An image was reconstructed using the Haar wavelet (a) and Daub4 (b). The Haar
wavelet reconstruction had a coarse, boxlike appearance, in which the structures were not well
visible. In contrast, the Daub4 reconstruction resulted in a smooth image in which the structures
were well visible.

Daub4 resulted in high mSSIM values as well as high mean structure scores. It was unitary and
led to smooth approximations. Hence, this wavelet was chosen to be the sparsity transform in
the experiments to come.

5.2.2 Optimal regularization parameters

In Section 3.2.2, the parameter α and β were introduced into the problem (P ) in Equation (3.13).
As was mentioned there, the values of these parameters are found experimentally, since the value
of ε was not known.

To find the optimal α and β, a training set was created by taking one slice of nine patients.
The slice of the tenth patient was used as a test set. The aim was to find the α and β where
the most slices have a mSSIM greater than 0.9, i.e. a good reconstruction.

The nine diffusion-weighted images (b = 200 s/mm2) were undersampled to obtain 25% of the
data. For hundred (α, β)-combinations, the images were undersampled using ‘center’, ‘increased’
or ‘centerincreased’ and then reconstructed. The reconstructed images were compared to the
original image by computing the mSSIM. The number of images with a mSSIM ≥ 0.9 was
counted (Figure 5.6 and Figure A.1 in Appendix A.5).

52



CHAPTER 5 5.2. CHOICE PARAMETERS AND TRANSFORMS

(a) ‘centerincreased’ (b) zoom of (a)

Figure 5.6: The number of images with a mSSIM ≥ 0.9, displayed as a contour plot. A fine
scale of the α and β values was concentrated in the center of the area with the highest number
of image with mSSIM ≥ 0.9. An enlargement of this area is shown in (b).

There were several combinations of α and β possible which led to the same number of images
with mSSIM ≥ 0.9 in the sampled data set. Using ‘centerincreased’ and the values of α and
β listed in Appendix A.5, the optimal area was refined to find the optimal combination of α
and β. This strategy was chosen, because it would be the best undersampling strategy from a
theoretical point of view (Section 5.1).
The median of the optimal combinations in the refined area was (α, β) = (5 · 10−4, 1 · 10−6).
This combination was also located in the optimal area of ‘center’ and ‘increased’ (Figure A.1).
The optimal combination was tested on the test slice of the tenth patient, again using ‘center-
increased’ and 25% of the data (Figure 5.7).

Figure 5.7: The original image of the test patient (left), the naive reconstruction using the
undersampling strategy ‘centerincreased’ with 25% of the data (middle) and the reconstruction
using cFISTA with the optimal (α, β)-combination (right). The corresponding mSSIM of the
reconstruction is 0.9100.

The mSSIM of the test slice was equal to 0.9100, which indicated a very good reconstruction.
The mSSIM calculations of the other b-values and strategies are stated in Table A.1 in Ap-
pendix A.5. The average mSSIM value over these nine combinations is equal to 0.9019, so good
reconstructions were obtained for this test patient.
The combination (α, β) = (5 · 10−4, 1 · 10−6) led to good reconstructions. Therefore, these α
and β were used for the next experiments.

5.2.3 Size

The size of the images (in image space and k-space) should be divisible by 2w, in order to satisfy
the implementation conditions of the wavelet operator. w denoted the maximum decomposition
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level of the wavelet. In the implementation of cFISTA, w was chosen to be equal to 5, which
led to sizes of the images to be divisible by 32. Note that the images did not have to be square
in order to use the implementation of cFISTA.

5.2.4 100%-image

Since cFISTA tried to minimize the TV norm, a denoising effect could be noticed when the
algorithm was applied to the original image without undersampling. As an example, this effect
was examined for a slice of patient 15 with b = 200 s/mm2 and a maximum number of iterations
equal to 100 (Figure 5.8).

(a) Original image (b) 100%-image (c) Difference image

Figure 5.8: The original image of a slice of patient 15 (a) and its reconstruction using cFISTA,
taking 100% of the data (b). The difference image (c) indicates the suppression of noise in the
100%-image, making this image slightly smoother.

The reconstructed image differed from the original image (Figure 5.8c). The small differences
indicated that the reconstructed image contained less noise, making it slightly smoother. The
reconstructed image is denoted with the term 100%-image. The comparison between the re-
constructions with undersampling and the 100%-image gave a better impression of the recon-
struction quality. Since a denoising effect always occurred, a reconstructed image would never
be the same as the original image. Hence, all mSSIM computations were performed using the
100%-image.

5.2.5 Stopping criterion

Three stopping criteria for the algorithm were investigated. The first criterion compared the
value F (xk) of the objective function value F using the current solution xk with F (xk−l), the
value of l iterations back. If F (xk) ≥ F (xk−l), then the algorithm was terminated. This crite-
rion is referred to as obj.
The second criterion compared the slope between (k − l, F (xk−l)) and (k, F (xk)) with a small
number ε (e.g., ε was taken 1 · 10−8). When the slope was smaller than ε, then the algorithm
was terminated. This criterion is referred to as slope.
The last criterion used a maximum number of iterations as a stopping criterion and is referred
to as max it. When this maximum number was reached, the algorithm stopped.

The first two criteria did not lead to satisfactory results of terminating cFISTA: the algo-
rithm was terminated after more iterations than that were required to obtain a mSSIM above
0.9. In some cases, the number of iterations exceed the 5000 iterations. There were cases where
the obj-criterion did not terminate the algorithm at all (Figure 5.9). Changing l or ε did not
satisfactorily solve this problem.
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Figure 5.9: The mSSIM was computed for each iteration during the reconstruction of an image
of a patient. The number of iterations required for the three stopping criteria before termi-
nating the algorithm are displayed. The criterion based on the comparison of the objective
function values is denoted by obj. The criterion that uses the slope of the objective function is
denoted with slope and the third criterion with max it. A good reconstruction is defined as a
reconstruction with a mSSIM value above 0.9 (black).

Although the third stopping criterion also led to redundant iterations, it was used here. This
criterion led to the same conditions for all experiments. The performance of the strategies with
respect to the quality of the reconstructions could be better compared. The maximum number
of iterations was set to 5000 iterations.

5.2.6 Proximal operator orders

In Section 3.3.5, it was mentioned that the method to compute a new solution x with the CSD
method (Algorithm 4) may not be optimal. So, the performance of several orders of solving the
proximal operators was investigated in this section.

Order options

Instead of directly solving

min

{
1

2
‖Ax− b‖22 + α‖x‖TV + β‖Ψx‖1

}
,

the problem was split into two parts. TV ⇒ l1 denoted the option where first

xTV = argmin
x

{
1

2
‖Ax− b‖22 + α‖x‖TV

}
is solved and then used as initial guess for the next problem, where

xsol = argmin
x

{
1

2
‖Ax− b‖22 + β‖Ψx‖1

}
was solved. The second order of solving is denoted by l1 ⇒ TV and used the same approach as
TV ⇒ l1, but with the l1-norm and TV -norm interchanged.
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The problem could be directly solved by using the CSD method, where both the proximal
operators of the TV -norm and l1-norm were computed and then combined to get the new value
(Section 3.3.5). This order is denoted by csdTV+l1 and it used a Jacobi type of approach.
The fourth and fifth option used a Gauss-Seidel type of approach. The fourth option first
computed the proximal operator of the TV -norm using xg (defined in step 2 of Algorithm 7)
giving a solution xTV . Then the solution zk of the l1-norm proximal operator was computed
using xTVg := xTV − 1

L∇f(xTV ). This order is denoted by TV → l1. The last option was similar
to the fourth option, with the TV -norm and l1-norm interchanged. This order is denoted by
l1 → TV .

Accuracy orders

The accuracy of the five orders was investigated. Slice 24 of all ten patients was undersampled
using the ‘centerincreased’ mask and 25% of the data and then reconstructed for these orders
and the three b-values. The total number of iterations for TV ⇒ l1 and l1 ⇒ TV was 10
000 iterations, since both the reconstructions with TV -norm and l1-norm were performed using
5000 iterations. The other three options used 5000 iterations in total, because the TV -norm
and l1-norm were used in the same reconstruction loop in these options.
The mSSIM values of the reconstructions were computed and averaged (Table 5.1).

Table 5.1: The average mSSIM values obtained using five order combinations of the proximal
operators of the TV -norm and l1-norm for 10 images.

b = 0 s/mm2 b = 200 s/mm2 b = 800 s/mm2

l1 ⇒ TV 0.8946 0.8589 0.8610

TV ⇒ l1 0.8909 0.8524 0.8530

l1 → TV 0.8948 0.8589 0.8610

TV → l1 0.8947 0.8589 0.8610

csdTV+l1 0.8947 0.8588 0.8610

The accuracy of TV ⇒ l1 was lower than the other options, which had equal results. It should
be noted that l1 ⇒ TV used two times more iterations than csdTV+l1 , TV → l1 and l1 → TV
to solve the same amount of proximal operators and thus to obtain the same results. Therefore,
this order was less favourable. Note that the use of a stopping criterion other than the max it-
criterion could lead to different results. In the current experiment, no significant differences in
accuracy between the last three orders was noticed, so each order could be used. For further
experiments, the order csdTV+l1 as is stated in Algorithm 7 was used.

5.3 Experiments on diffusion-weighted images

The five undersampling strategies discussed in Section 5.1 were applied on the test slices of each
patient using 5%−60% of the image data in k-space, with a step size of 5%. The undersampling
masks of a certain percentage were the same for all patients. The undersampled images were
then reconstructed using cFISTA, implemented in Matlab.
The goal was to find the best undersampling strategy among the designed strategies in Sec-
tion 5.1 and the optimal undersampling percentage to get a good reconstruction for each b-
value and among all patients.
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5.3.1 Comparing patients

In this section, the test sets of patients were compared to each other to investigate the similar-
ities and differences between the patients.

Ten slices of each patient were reconstructed using the undersampling strategies ‘center’, ‘cen-
terincreased’, ‘increased’, ‘random’ and ‘uniform’ for twelve undersampling percentages. The
corresponding mSSIM values were computed for each reconstruction. In Figure 5.10, the results
for the three b-values are shown for patient 13 (as a typical example).

(a) b = 0 s/mm2 (b) b = 200 s/mm2 (c) b = 800 s/mm2

Figure 5.10: Ten slices of patient 13 were reconstructed using the undersampling strategies ‘cen-
ter’ (blue), ‘centerincreased’(red), ‘increased’ (green), ‘random’ (purple) and ‘uniform’ (cyan)
for 12 undersampling percentages. The corresponding mSSIM values were combined in an er-
ror plot. The dashed line (black) denotes the mSSIM threshold value of 0.9 to obtain good
reconstructions.

The variation between the ten test slices of patient 13 is shown in an error plot (Figure 5.10).
The variation between the slices decreased for the strategies ‘center’, ‘centerincreased’ and ‘in-
creased’ when more data was sampled. These three strategies all reached the mSSIM value of
0.9, and thus obtained good reconstructions.

The ‘random’ strategy did not perform well, independent of the b-value. It performed even
worse than ‘uniform’ in some cases. Recall from Section 5.1 that ‘uniform’ was included as a
lower bound on the performance of the undersampling strategies.

Masks A and B used for 40% of the data were chosen to investigate the poor performance
of ‘random’ (Figure 5.11).

(a) Mask A (b) Mask B

Figure 5.11: Two masks used for undersampling slices with the ‘random’ strategy to obtain
40% of the data.

57



CHAPTER 5 5.3. EXPERIMENTS ON DIFFUSION-WEIGHTED IMAGES

The two masks were applied to slices 20 and 32 of patient 13 with b = 0 s/mm2. The power
spectral densities (Section 4.3) were computed of both images in k-space (Table 5.2).

Table 5.2: Power spectral density fraction in percent for ‘random’ undersampling 40% of the
data of slices 20 and 32 of patient 13, using masks A and B.

Slice

Mask 20 32

A
32.6% 28.6%

mSSIM = 0.6323 mSSIM = 0.6805

B
71.5% 71.0%

mSSIM = 0.9029 mSSIM = 0.9134

Comparison of the densities showed that mask A only took approximately 30% of the power
spectral density, while mask B took approximately 71% of the density (Table 5.2). Mask B
included more information of k-space than mask A, which led to a higher reconstruction quality.

So far, the differences in reconstruction quality between the ten slices for each sampling strategy
were examined (Figure 5.10). To compare the reconstructions between patients, the mSSIM
of a volume consisting of the ten test slices was computed for each undersampling percentage
and for each patient. The ‘random’ and ‘uniform’ strategies were omitted, because of their bad
reconstruction quality (Figure 5.10). Curves were fitted through the mSSIM values and the
intersections of the curves with the threshold value were computed (Figure 5.12a - 5.12c). For
the same test slices, the average subset size of largest wavelet coefficients required to obtain a
mSSIM ≥ 0.9 was computed to investigate the sparsity per patient (Figure 5.12d - 5.12f).

(a) b = 0 s/mm2 (b) b = 200 s/mm2 (c) b = 800 s/mm2

(d) b = 0 s/mm2 (e) b = 200 s/mm2 (f) b = 800 s/mm2

Figure 5.12: Undersampling percentages required to obtain a mSSIM value of 0.9 with three
undersampling strategies for a volume consisting of ten slices for ten patients (a-c). The used
strategies were ‘center’ (blue), ‘centerincreased’ (red) and ‘increased’ (green).
The average subset size of the largest wavelet coefficients required to obtain a mSSIM ≥ 0.9 for
each patient and three b-values (d-f).
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There are similarities between the percentages required to obtain a good reconstruction and the
number of largest wavelet coefficients required to obtain a good reconstruction. A large number
of wavelet coefficients implied that a higher percentage of data was required. A small number
of wavelet coefficients often implied that a low percentage of data was required. The average
subset size was the smallest for b = 0 s/mm2 for all patients.
The test slices of patient 7 performed the worst and the test slices of patient 9 the best among
all patients (Figure 5.12). These patients are examined further.

The test slices of patient 9 performed the best of all patients for all combinations. The percent-
age of data required to obtain a mSSIM value equal to 0.9 was at most 23.1%. This was the
case for the combination of b = 800 s/mm2 and the ‘increased’ strategy. Compared to the other
patients, there was less data required to obtained the same reconstruction quality.

(a) b = 0 s/mm2 (b) b = 200 s/mm2 (c) b = 800 s/mm2

Figure 5.13: 100%-image of slice 30 of patient 9 for the three b-values. The tumor of this patient
was located in the proximal part of the esophagus (light part).

Patient 9 had a tumor in the proximal part of the esophagus (Figure 5.13) and therefore the
scanned volume was smaller than patients where the tumor is located lower in the esophagus.
This implied that the image to be reconstructed was sparser than the images of other patients,
making it probably also sparser in the sparsity transform domain. Indeed, a maximum of 400
wavelet coefficients were required to obtain a good reconstruction for patient 9 (Figure 5.12d-
5.12f). This was much lower than the average of 950 largest wavelet coefficients required for the
other patients.

The test slices of patient 7 performed the worst of all patients for all combinations (Figure 5.12a
- 5.12c). The percentage of data needed to obtain a mSSIM value of 0.9 ranged between 36.0%
and 45.8%. The subset size of wavelet coefficients ranged between approximately 1400 and 2060.

During the scan of patient 7, one of the coils was not functioning correctly, which resulted
in a noise band in the center of the slice images. When cFISTA was used, the noise was sup-
pressed by the TV norm. The noise was already reduced in the 100%-images, but still present
(Figure 5.14a-5.14c).
The slices were undersampled using the ‘centerincreased’ strategy and 30% of the data and
then reconstructed (Figure 5.14d-5.14f). These reconstructions were smoother than the 100%-
images, so small structures were lost. The large structures were reconstructed well. However,
there were too many differences between the 100%-image and reconstructed images due to the
noise to obtain a high mSSIM. On the other hand, the light parts of the images seemed to be
reconstructed well. Since tumors appear bright on diffusion-weighted images, this meant that
the tumor of patient 7 was probably well reconstructed. The quality of the tumor reconstructions
is investigated in Section 5.3.3.
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(a) b = 0 s/mm2 (b) b = 200 s/mm2 (c) b = 800 s/mm2

(d) b = 0 s/mm2 (e) b = 200 s/mm2 (f) b = 800 s/mm2

Figure 5.14: 100%-image of slice 35 of patient 7 for the three b-values (a-c). The reconstructions
of the slice per b-value (d-f). The slice was undersampled using ‘centerincreased’ and 30% of
the data.

5.3.2 Comparing strategies

In Section 5.3.1, ten slices of each of the ten patients were reconstructed and the difference in
performance between patients was discussed. In this section, the focus was on the differences
in performance between undersampling strategies.

The ‘center’, ‘centerincreased’ and ‘increased’ strategies were compared, since these strate-
gies obtained good quality reconstructions. For each undersampling strategy, ten slices of nine
patients were combined to obtain the average mSSIM values for this data set. The data set con-
tained ninety test slices (Figure 5.15). Patient 7 was excluded from this analysis, because this
data was contaminated with extra noise due to an incorrectly functioning coil (Section 5.3.1).

Figure 5.15: Percentages of the required data to obtain a mSSIM value ≥ 0.9 are displayed as
boxplots. The data sets consisted of ten slices of nine patients for the undersampling strategies
‘center’, ‘centerincreased’ and ‘increased’.
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For the three b-values, it held that the ‘center’ strategy required the least data to obtain an
average mSSIM equal to 0.9. The average percentage of data required over the b-values was
25.9%. The ‘centerincreased’ strategy required on average 28.1% of the data to get the same
results. The strategy ‘increased’ required the most data, with an average of 33.4%.

The variation is here defined as the difference in percentages between the reconstructions that
required the least and the most amount of data to obtain a mSSIM value of 0.9. The latter
reconstruction is here referred to as the worst case reconstruction.
The variation and the percentage of the worst case reconstruction was computed for the three
undersampling strategies (Table 5.3).

Table 5.3: The average variation between the percentages required for good reconstructions
and the worst case reconstruction percentages for three undersampling strategies and the three
b-values.

Variation Worst case reconstruction
b = 0 b = 200 b = 800 b = 0 b = 200 b = 800

center 33.2% 36.5% 36.1% 39.7% 42.7% 41.4%

centerincreased 30.4% 31.4% 32.9% 39.8% 41.1% 42.0%

increased 27.7% 27.6% 26.6% 42.9% 43.7% 43.7%

The largest variation for each b-value was for ‘center’ (on average 35%). The variation was the
lowest for ‘increased’ (on average 27%), followed by the average variation for ‘centerincreased’
(32%). The variation between the slices undersampled with ‘increased’ decreased when higher
b-values were used. For the other two strategies, an increase was seen of approximately 3%.
The percentages required for the worst case reconstructions were similar for ‘center’ and ‘cen-
terincreased’. This percentage was the lowest for b = 0 s/mm2 and b = 800 s/mm2 using ‘center’
(40% and 41% respectively) and for b = 200 s/mm2 using ‘centerincreased’ (41%).

5.3.3 Tumor data

In Section 5.3.1, it was mentioned that a good reconstruction quality of the tumor might be
obtained even though the whole image does not have a good quality. In this section, the quality
of the tumor reconstruction of the ten patients was investigated. The tumors were delineated
by clinicians. By applying the delineation masks onto the reconstructed images and the 100%-
images, images of only the tumor were obtained for these type of images. The obtained tumor
image of the 100%-image is referred to as the 100%-tumor image.

Next, the 100%-tumor images and the reconstructed tumor images were compared and the
mSSIM values were computed (Figure 5.16).
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(a) b = 0 (b) b = 200 (c) b = 800

Figure 5.16: Undersampling percentages required to obtain a mSSIM value of 0.9 with three
undersampling strategies for a tumor volume consisting of ten slices for ten patients. The used
strategies were ‘center’ (blue), ‘centerincreased’ (red) and ‘increased’ (green).

‘Center’ performed worse than the other two strategies, where patient 13 was an exception. The
reason for this will be discussed in Section 6.1.
A data set of ninety test slices was obtained by including ten slices of the tumor of each of the
nine patients. Note that patient 7 was still left out of the analysis due to the ill-functioning
coil.

Figure 5.17: Percentages of the used data required to obtain a mSSIM value ≥ 0.9 are displayed
as boxplots. The data set consisted of ten slices containing the tumor of nine patients for the
undersampling strategies ‘center’, ‘centerincreased’ and ‘increased’. The outliers, a result of
using the boxplot function in Matlab [21], are denoted by a +-sign. A point is called an outlier
if its value is smaller than q1 − 1.5(q3 − q1) or larger than q3 + 1.5(q3 − q1), with q1 and q3 the
25th and 75th percentiles, respectively.

The ‘center’ strategy required on average the most data (31%) and ‘centerincreased’ the least
(19%). ‘Increased’ required on average 20% of the data. The variation between the test slices
was the smallest for ‘increased’ (29%), followed by ‘centerincreased’ (32%). The variation be-
tween the slices for ‘center’ was the largest with approximately 56%. The percentage of worst
case reconstruction was the smallest for each b-value using ‘centerincreased’.

The ADC value was used to obtain a quantitative measure to compare the strategies (Sec-
tion 2.3.3). If the mean ADC values of the undersampling strategies were close to the ADC
value of the reference data, then this also indicated a good reconstruction.
As an example, the mean ADC values of patient 11 were computed for the ‘center’, ‘center-
increased’, ‘increased’ and ‘random’ undersampling strategies and the 12 percentages. These
results were compared with the mean ADC value of the reference tumor data set of patient 11
(Figure 5.18).
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Figure 5.18: The mean ADC value of the reference image (black) of patient 11 is compared with
the mean ADC values of the reconstructed images using the undersampling strategies ‘center’
(blue), ‘centerincreased’ (red), ‘increased’ (green) and ‘random’ (purple) for 12 undersampling
percentages.

The mean ADC value of ‘center’ was approximately the same as the reference data when a
minimum of 20% of the data was used during reconstruction. This was less than the percentages
required for the whole image reconstruction (25.9%) and the tumor reconstruction (31%) based
on the mSSIM (Figure 5.15 and Figure 5.17). The percentage of data required to obtain a
similar mean ADC value for ‘increased’ was approximately 35%. The result of this strategy was
comparable with the percentage found for the whole image reconstruction (33.4%), but it was
higher than the percentage found for the tumor reconstruction (20%). The mean ADC value of
‘centerincreased’ was approximately the same when 20% of the data or more was used during
reconstruction, which was similar to the percentage found for the tumor reconstruction with
this strategy.

5.3.4 Prospective undersampling experiment

The experiments performed above were executed retrospectively, i.e. an image was Fourier
transformed to k-space and there undersampled to obtain a naive reconstruction (Figure 5.19).
The goal was however to directly acquire the MR data in an undersampled fashion. For this
reason, a prospective experiment was also performed (Figure 5.19) to test the performance of
cFISTA on raw (i.e. unprocessed) undersampled MR data.
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Figure 5.19: Schematic representation of the work-flow of the experiments. The lower box (red)
displays the retrospectively performed experiments. From image data, a naive reconstruction
is obtain. This reconstruction is used as input of cFISTA. The output of cFISTA is the recon-
structed image. The other box displays the prospectively performed experiments. An image
in k-space is obtained in a undersampled fashion by performing a MR scan with a special
patch that controls the MR scanner. Using this data, a naive reconstruction is obtained using
‘ReconFrame’[50]. Then the image is reconstructed using cFISTA.

For this experiment, a kiwi, a pomegranate, an orange and a lemon were scanned on a 1.5 Tesla
MR scanner, using a gradient echo. Two scans were performed: a reference scan using the
full k-space and a scan using the undersampling strategy ‘centerincreased’ to obtain 25% of the
data. The raw MR data was loaded into Matlab using the software package called ‘ReconFrame’
[50] (Gyrotools, Zurich, Switzerland).
Subsequently, the undersampled raw data was reconstructed using cFISTA (Figure 5.20). An 8-
channel head coil was used for signal reception. Reconstructions for each of the eight coils were
performed separately. Then, the eight images were combined using the function ‘CombineCoils’
in ‘ReconFrame’. This function combines the coils by performing a sum-of-squares combination
in image space.
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(a) Reference image
(full k-space)

(b) Reconstruction using cFISTA
(undersampled reference scan)

mSSIM = 0.8396

(c) Reference image
(undersampled k-space)

(d) Reconstruction using cFISTA
mSSIM = 0.7930

Figure 5.20: Four MRIs of a kiwi (top left), pomegranate (bottom left), orange (bottom right)
and a lemon (top right). An 8-channel head coil was used for signal reception, and the displayed
images are the combined reconstructed images of eight coils using sum-of-squares. The raw MR
data of two scans was acquired: the full k-space from a reference scan and the undersampled
k-space where ‘centerincreased’ was used to obtain 25% of the raw MR data. The reference
image used the full k-space (no undersampling) (a). This MR data set was undersampled
(‘centerincreased’ and 25% of the data) and reconstructed to obtain the image in (b). From the
MR data that was acquired in a undersampled fashion, a reference image was obtain by a naive
reconstruction (c). The reconstruction using cFISTA for the same data set as the undersampled
reference image is displayed in (d). The reconstructions are compared to (a).

The pieces of fruit in the reference scan using undersampled k-space were blurred and there
was a band of aliasing artifacts (Figure 5.20c). Recall from Section 5.1 that the undersampling
was done in the phase encoding direction. Therefore, the aliasing artifacts only appeared in the
phase encoding direction (left-right) and not the readout direction (top-bottom).
After applying cFISTA, most of these artifacts have vanished (Figure 5.20d). Details also have
been reconstructed, as can been seen for example in the kiwi (top left piece of fruit). There
is a clear transition between the center part of the kiwi and its outer parts, just like in the
reference image (Figure 5.20a). The reconstruction was compared to the reference image of the
full k-spaceand had a mSSIM equal to 0.7930. However, the comparison is performed between
two different scans and therefore the actual quality of the image may differ from this found
mSSIM (Section 4.2.7).
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To investigate the influence of comparing different scans, the full k-space data of the refer-
ence image was also undersampled. The raw MR data was used, so the experiment was again
performed prospectively. Using the strategy ‘centerincreased’, 25% of the raw MR data was
obtained, which was then reconstructed using cFISTA (Figure 5.20b). This reconstruction led
to a mSSIM value equal to 0.8396. This mSSIM value was higher than the value found for the
reconstruction where the MR data was acquired in an undersampled fashion (Figure 5.20d).

This fruit experiment showed the working of the process to reconstruct an image from k-
space data, which was acquired in an undersampled fashion. The process is therefore ready
to be implemented and used on MR data.

5.3.5 3D

In all experiments discussed before, the reconstructions were performed on 2D images with
undersampling only in the phase encoding direction. The theory of CS (Section 3.2) uses the
sparsity of the solution, which is in this case an image. However, the total number of pixels is
quite small in the used DWI data. The technique of CS may be better exploited when a volume
is reconstructed using 3D undersampling.

A 3D volume was undersampled by using a 3D mask (Figure 5.21). The slices of the volume
were undersampled using an undersampling strategy (e.g. ‘centerincreased’) to obtain uperc%
of that slice. By again using an undersampling strategy, it was determined which slices are
undersampled and which slices are not sampled at all. This created a mask that takes u3Dperc%
of the total data.

Figure 5.21: 3D mask to obtain 25% of the total data. Slices of the volume are undersampled
using strategy ‘centerincreased’ to obtain 35% of the data in that slice. By again using ‘center-
increased’, it is determined which slices are undersampled and which slices are not sampled.

To investigate the working of the 3D version of cFISTA (cFISTA 3D), one patient volume of
size 160×160×50 in image space was transformed to a volume in k-space using the 3D Fourier
transform. It was undersampled to obtain 25% of the total data. The mask used for the under-
sampling is displayed in Figure 5.21. Then the volume was reconstructed using cFISTA 3D.
The reconstructed volume was compared with the original data set using the SSIM applicable to
volumes (Section 4.2.6). The mSSIM was equal to 0.9402 and thus a (very) good reconstruction
was obtained.

To compare the accuracy of cFISTA 3D with cFISTA, two reconstructed images were cho-
sen from the volume. One image was reconstructed individually using cFISTA (Figure 5.22b).
The image was first undersampled using the strategy ‘centerincreased’ to obtain 25% data. The
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other image was reconstructed within the volume using cFISTA 3D (Figure 5.22c). The mask
in Figure 5.21 was used for the undersampling. These images were compared with the original
image of the slice used for the other two images (Figure 5.22a).

(a) Reference image
100%

(b) Reconstructed slice 2D
25% of total data
mSSIM = 0.9032

(c) Reconstructed slice 3D
25% of total data
mSSIM = 0.9379

Figure 5.22: An image from a patient volume is undersampled with ‘centerincreased’ to obtain
25% data. It is reconstructed using cFISTA (b). The same image is undersampled within a
volume. The slices were also undersampled with ‘centerincreased’ to obtain 25% of the total
data. The reconstruction of the volume was performed using cFISTA 3D and the same slice as
in (b) was displayed in (c). The reconstructions were compared to the 100%-image (a).

The same undersampling was performed on both slices, namely ‘centerincreased’ to obtain 25%
of the total data. The selected image was not included in the undersampling mask. The mSSIM
of the reconstructed volume slice was higher than the mSSIM of the reconstructed slice.

It is not (yet) possible to acquire a 3D volume using an EPI trajectory. Therefore, another
method to obtain a 3D volume was performed.
A stack of images was transformed to the Fourier domain, one image at the time. The obtained
volume in k-space was undersampled, where the slices were randomly chosen from the stack.
The undersampled volume was again reconstructed using cFISTA 3D. Since each slice was sep-
arately appended to the k-space volume, this method should be applicable to the current EPI
acquisitions. The reconstruction of the volume was compared to the 100%-volume. The mSSIM
value of the volume reconstruction was 0.3914, i.e. a poor reconstruction was obtained.
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Chapter 6

Discussion

In Chapter 2, the problem of geometric distortions of DWI when using an EPI trajectory
has been discussed. It has been made plausible that these distortions could be reduced by
undersampling the image in k-space. In Chapter 3, the technique of Compressed Sensing was
explained. The minimization problem to be solved was stated (Equation 3.13):

(P ) : argmin
x

{
1

2
‖Ax− b‖22 + α‖x‖TV + β‖Ψx‖1

}
, (6.1)

where x was the solution (reconstructed image) and A was a Fourier transform combined with
a mask to undersample the image in k-space. Ψ was the sparsifying transform which was
chosen to be the Daubechies wavelet with four vanishing moment (Daub4) (Section 5.2.1). The
parameters α and β were found using a leave-one-out-method (Section 5.2.2). These parameters
determine the influence of two regularization terms ‖ · ‖TV and ‖ · ‖1.
ISTA was explained as an algorithm to solve the minimization problem. This algorithm was
improved by Beck and Teboulle [28, 1] and was called FISTA. In this thesis, FISTA was improved
and modified such that it was applicable to the complex-valued (MR) data. The resulting
algorithm was called cFISTA. In Chapter 5, experiments were executed on diffusion-weighted
images of ten patient data sets. The images were undersampled and again reconstructed using
cFISTA. A reconstruction was said to be good when it had a mSSIM value ≥ 0.9. In this
chapter, the results are discussed.

6.1 The optimal strategy

CS relies on the assumption that the information is more or less evenly distributed over the
measurement vector b. This assures that random sampling from the vector leads to sampling
sufficient informative data to obtain an exact reconstruction. MR data, however, is not evenly
distributed over b. Most information is contained in the center of k-space, i.e. in the center of
b.

Therefore, the ‘random’ strategy did not perform well in all cases (Section 5.3.1). Masks A
and B used for 40% of the data illustrated this (Figure 5.11). Mask A included approximately
30% of the power spectral density, while mask B took approximately 71% of the density (Ta-
ble 5.2). This coincided with a higher mSSIM value for mask B than mask A.
This also explained why the mSSIM value of a reconstruction could be less when the percentage
of the used data was increased. This was for example the case when the percentage was in-
creased from 40% to 45% (Figure 5.10). The power spectral density of the 40%-mask decreased
to a density of 25% for the 45%-mask.
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So, the performance of ‘random’ is highly dependent on which lines were chosen.

Based on these findings, three other undersampling strategies were designed to have a high
sampling density in the center of k-space, namely ‘center’, ‘increased’ and ‘centerincreased’.
These three strategies were compared to find the optimal strategy among them for undersam-
pling the DWI data set (Section 5.3.2). The optimal strategy should on average require a small
amount of data with a high reproducibility. Furthermore, the highest percentage required (the
worst case reconstruction) should be as small as possible. The used data set contained ten
images of nine patients for each of the b-values b = 0 s/mm2, b = 200 s/mm2 and b = 800 s/mm2.
The variation between the slices gives an indication of the reproducibility of the strategy.

‘Center’ required on average the least amount of data for the three b-values (25.8%), but had
the largest variation between the ninety test images (35.3%). The opposite held for ‘increased’,
which required on average 33.4% with a variation of 27.3%. ‘Centerincreased’ required on aver-
age approximately 3% more data than ‘center’, but the differences between all test slices were
closer to the variation between the slices for ‘increased’ (31.6%). The percentage required for the
worst case was the lowest for b = 0 s/mm2 and b = 800 s/mm2 using ‘center’ and for b = 200 s/mm2

using ‘centerincreased’.

The strategies were also compared by investigating the differences in the reconstruction of only
the tumor (Section 5.3.3). By focussing on the tumor reconstruction, the average percentages
of data required to obtain a good reconstruction could be reduced from 28.1% and 33.4% to
19% and 20% for ‘centerincreased’ and ‘increased’, respectively. The ‘center’ strategy required
more data to obtain good tumor reconstructions than the amount of data necessary for a good
reconstruction of the whole image. The low spatial frequencies were captured very well by ‘cen-
ter’ (Figure 2.5). It only includes information about the details when a high percentage of data
is used. However, ‘center’ worked very well for the reconstruction of the tumor of patient 13.
The tumor of this patient was very homogeneous and thus could be represented by low spatial
frequencies in k-space.

The reproducibility was the same as the case where the complete FOV was investigated: ‘in-
creased’ gave the smallest variation between the test slices and ‘center’ the largest. The per-
centages required on average and for the worst case were the smallest for ‘centerincreased’ (for
all b-values).

Therefore, it can be stated that the sampling strategy ‘centerincreased’ gave the best bal-
ance between the amount of data used and the differences between all slices for b = 0 s/mm2,
b = 200 s/mm2, b = 800 s/mm2. The mean ADC value of this strategy was approximately the
same as the original ADC value when 20% of the data or more was used. This is the same per-
centage required for good tumor reconstruction with this strategy. ‘Centerincreased’ required
approximately 30% of the data to obtain a good reconstruction of the whole image.

For good tumor reconstruction using ‘centerincreased’, 20% of the data was required. For a
good reconstruction of the whole image, 30% of the data was required. Hence, the geometric
distortions would be reduced by 80% or 70% respectively. The original average pixel shift for the
ten patient data sets was eight, i.e. a pixel was shifted 8 pixels compared to its actual position.
For the undersampling situations, the average pixel shift became 1.6 and 2.4, respectively.
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Unfortunately, there are technical restrictions that prevent the distance between consecutive
lines in the EPI trajectory to be too large. A large distance between successive lines might lead
to a higher value of the ramp time τramp in the pixel shift equation (Equation2.12)

∆rpe = γ∆B0(x, y, z)M(2τramp +N ·Dw).

Although M (the number of phase encoding steps) is reduced, the pixel shift does not have to
be reduced due to the increase in ramp time. This increase could lead to overlap between the
Gx and Gy gradients. This means that the spatial encoding of the points sampled at that time
will be different. This situation is not desired and could give a lower bound on the amount of
undersampling.
Hence, EPI might not be the most optimal technique to use Compressed Sensing.

6.2 The reconstruction algorithm

The reconstruction algorithm cFISTA takes an initial guess, for which a naive reconstruction
(i.e. the resulting image after applying the inverse Fourier transform on the undersampled im-
age in k-space) is chosen here. By iteratively solving minimization problems, a reconstruction
is found.
The reconstruction process uses, among others, regularization parameters, sparsifying trans-
forms and a stopping criterion (Section 5.2). Some of these elements are discussed in this
section.

6.2.1 Stopping criterion

Since cFISTA is an iterative method, a stopping criterion was used to terminate the algorithm.
For the ease of discussion, the algorithm is said to be converged when the mSSIM does not
increase any more. Recall that a mSSIM above 0.9 defines a good reconstruction.

Three stopping criteria were investigated:

� obj: the criterion that compares the objective function values of two iterants.

� slope: the criterion that computes the slope between two function values and compares it
with a constant.

� max it: a maximum number of iterations is used.

The max it-criterion was chosen as stopping criterion (Section 5.2.5). There were cases where
the obj-criterion did not terminate, even though a good reconstruction was obtained using a
small number of iterations. The slope-criterion performed better than obj. However, a good
reconstruction was obtained sooner than the stopping criterion indicated.

The maximum number of iterations for all experiments in Chapter 5 was set to 5000 itera-
tions (≈ 300 seconds). However, it is not guaranteed that the algorithm has converged within
5000 iterations. There were cases where the algorithm could have found the optimal solution
within a number of iteration much less than 5000. In that case, redundant iterations are per-
formed that only increase the computation time.

So, the used stopping criterion is also not optimal. However, it has an advantage over the
other two criteria. By using the same amount of iterations for all experiments, the conditions
of the experiments were all the same. Therefore, the performance of the five strategies with
respect to the quality of the reconstructed images could be better compared.

70



CHAPTER 6 6.2. THE RECONSTRUCTION ALGORITHM

6.2.2 Regularization terms

The regularization terms used in (P ) (Equation (6.1)) are ‖x‖TV and ‖Ψx‖1. Recall that the
TV-norm is essentially also a l1-norm (Section 3.2.2). The images used for experiments are
piecewise constant which leads to a very good performance of the TV-norm. The sparsifying
abilities of the TV-norm are too efficient in this situation, making the l1-norm ‖Ψx‖1 a bit
redundant.

The large influence of the TV-norm could also be due to the choice of the regularization pa-
rameters α and β. These parameters were determined by using a leave-one-out-method (Sec-
tion 5.2.2). Computing the mSSIM of the reconstructions using several (α, β)-values led to an
area of optimal values. The median of this area was (α, β) = (5 · 10−4, 1 · 10−6), which led to
good reconstructions of the test image. Therefore, these values were chosen for the regulariza-
tion parameters.
However, the values of β in the optimal area had a large range from 10−7 to 5 · 10−4. This also
gives an indication of the small influence of the l1-norm combined with a wavelet transform.
When β became too large, the reconstruction quality deteriorated.

Nevertheless, preliminary test results showed (not reported here) that the additional use of
this l1-norm in the objective function led to a faster convergence of the algorithm. Therefore,
the combination of the regularization terms was used for the experiments. However, the ab-
sence of a good stopping criterion has made it difficult to investigate the gain of including the
l1-norm in the objective function. When a better stopping criterion is defined, several orders of
executing the proximal operator terms might give different results. Using the current stopping
criterion, no difference was observed (Section 5.2.6).
The balance between the TV-norm and the l1-norm ‖Ψx‖1 might also be improved when the
weights are changed in the step

xk = px1 + (1− p)x2

of the CSD method (Algorithm 4). Recall that p = 1
2 was used for the experiments (Sec-

tion 3.3.5). However, without a better stopping criterion it is difficult to investigate this.

6.2.3 Sparsifying transforms

The sparsifying abilities of Daub4 were investigated on the DWI data (Section 5.2.1). The size
of the set containing the largest wavelet coefficients could give an indication of the sparsifying
abilities of the wavelets. If a clear transition between large and small wavelet coefficients exists,
the amount of large coefficients s could be determined. This could give an indication of the
sparsity of the image in the transform domain. By using the number of largest coefficients s and
putting the other coefficients to zero, a s-sparse vector can be obtained. Then, an indication of
the number of measurements p could be obtained by

p = O
(
s log

(n
s

))
,

as is suggested by results in CS theory [25]. This means that an optimal undersampling per-
centage might be found.

However, there was not a clear transition between large and small wavelet coefficients for Daub4
and thus the optimal cut-off to determine the largest coefficients could not be found. This leads
to the question whether this wavelet transform is the most suitable sparsifying transform.
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6.3 Prospective undersampling

In Section 5.3.4, two prospective undersampling experiments were performed. When the full
acquired k-space was undersampled, the mSSIM value of the reconstruction compared to the
reference image was higher than the value found for the reconstruction where the MR data was
acquired in an undersampled fashion.
The reconstruction based on the undersampling of the full k-space included the same noise as
the reference image. The reconstruction based on directly undersampled MR data acquisition
included different noise. The luminance and structures of the reconstruction in Figure 5.20b
were closer to the luminance and structures of the reference image than the reconstruction in
Figure 5.20d. This resulted in the difference between the mSSIM values.

It can be concluded that performing cFISTA onto undersampled MR data leads to fine re-
constructions, although the SSIM gives a lower mSSIM due to the comparison of different
scans. However, the mSSIM could be used to compare the different strategies.

6.4 3D

The undersampling of k-space was only performed in one dimension (the phase encoding direc-
tion) due to the EPI trajectory. However, CS reaches more of its potential when the measure-
ment vector b has a larger size. The image size used in the experiments was 128× 160, which is
small. The resolution of the image could be improved, leading to a larger image size and thus
a larger b.

Another method to obtain a larger b is by undersampling in more dimensions. For contrast
imaging that does not use an EPI trajectory, the undersampling in more dimensions can be
more easily performed. When, for example, single point imaging is used, 2D undersampling can
be performed on an image in k-space. This leads to (pseudo-)random undersampling in two
dimensions. In these types of imaging, there will probably be less geometric distortions present
than in EPI. Nevertheless, CS techniques are advantageous in this case, because it will lead to
a relatively large reduction of the scanning time.

An experiment on DWI patient data was performed where the undersampling took place in
more than one dimension. (Section 5.3.5). The 3D volume in image space was transformed to
a volume in k-space by applying a 3D Fourier transform. After using an undersampling mask
(volume), cFISTA 3D could be used. The undersampling for the 3D volume was performed in
2 dimensions, namely the phase encoding direction as well as the slice selection. A 3D inverse
Fourier transform was then applied to obtain a naive reconstruction, which was used as input
for cFISTA 3D (Section 5.3.5). The reconstruction of the volumes had a better quality than
the reconstructions obtained for each slice separately (Figure 5.22).
cFISTA 3D uses information of the neighboring slices for the reconstruction of a slice in the
volume. The CS techniques are better used in this case (sparser measurement vector b), leading
to a better reconstruction.
Another advantage of 3D reconstruction is that a whole volume is reconstructed during one
reconstruction process. To obtain a reconstructed volume using 2D reconstruction, every slice
needs to be reconstructed separately. This takes in total more time than the 3D reconstruction.
Hence, it might be beneficial to use cFISTA 3D, although more research should be performed.
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Since it is not (yet) possible to perform a 3D EPI trajectory, another experiment was performed
(Section 5.3.5). A 2D Fourier transform was applied on a stack of slices (i.e. each slice was
transformed separately). A 3D inverse Fourier transform was applied to obtain a naive recon-
struction. Used cFISTA 3D, the volume was reconstructed. However, the mSSIM value of the
volume was 0.3914, so a poor reconstruction was obtained. More research is required to improve
this method in order to obtain better reconstructions.

6.5 Conclusion

The main goal of this thesis was to investigate Compressed Sensing as a technique to reduce
geometric distortions in DWI. Undersampling leads to a higher bandwidth, which in turn would
lead to less distortions.
Five undersampling strategies were designed and experiments on DWI patient data set were
performed. The derived algorithm cFISTA could reconstruct undersampled images by solving
an appropriate minimization problem based on the theory of CS.
From five undersampling strategies, the optimal strategy for DWI patient data was found:
‘centerincreased’ leads to good tumor reconstructions where just 20% of the MR data is required.
This would theoretically lead to an 80% reduction of geometric distortions.
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Chapter 7

Recommendations

Although a reconstruction algorithm is derived and an optimal undersampling strategy has
been found, there still remain several problems that should be solved. There are also topics
that could be improved. In this chapter, some following research subjects will be mentioned.

7.1 Implementation of MR scanner

The goal was to minimize the geometric distortions of DWI when an EPI trajectory was used.
However, it is not (yet) possible to acquire MR data in an undersampled fashion using an EPI
trajectory on the current MR scanners. For this reason, the experiments are only performed
retrospectively. Since these experiments are performed on already processed data, it could
not be verified whether undersampling k-space using the optimal strategy indeed reduces the
geometric distortions.
Undersampling k-space does not necessarily lead to a reduction of the geometric distortions due
to a possible increase of the ramp time τramp (Section 6.1). There might be an optimum, which
gives the best balance between τramp and the number of sampled lines M . However, it is not
possible to investigate the existence of this optimum at this moment due to the technical issues
with undersampled EPI on the current scanners.

7.2 The reconstruction algorithm

Parameters and transforms were chosen for the reconstruction algorithm cFISTA during this
research. However, some choices could be improved when more research is performed. Further-
more, there still remain some problems that need to be solved.

7.2.1 Stopping criterion

The stopping criterion should be modified to perform better and be more designed for this type
of data. For example, monitoring the quality of the reconstruction, using SSIM, during every
iteration might give more insight into a way of designing a more appropriate stopping criterion.

7.2.2 Undersampling strategy

It might be more advantageous to use a spiral type of trajectory instead of the EPI trajectory
(Section 2.2.1). These trajectories intrinsically result in a sampling density in the center of k-
space and thus will probably capture the most information located in the center. Furthermore,
this trajectory leads to 2D undersampling.
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DWI could be performed using such spiral trajectory [51]. However, it leads to a non-Cartesian
coordinate system and thus extra computational steps are required. This means that more
post-processing steps are necessary. The undersampling for these trajectories could take place
in the form of increasing the speed of sampling (i.e. more sampling in the center of k-space) or
by increasing the radius of the spiral. The first type of undersampling might be better for the
application in mind.

7.2.3 Regularization terms

The regularization term in the minimization has to be a l1-norm, since this well-defined norm
is most similar to the l0-norm (which is not a well-defined norm). To improve the quality of the
reconstructions, better sparsifiers should be found.

One improved sparsifier might be the use of the TV-norm in combination with only the first
(and maybe second) level of the Haar wavelet. The use of the TV-norm leads to the loss of the
constant function information. By combining the TV-norm with a wavelet which preserves this
constant function, a good sparsifier might be obtained. The challenge here however is to obtain
only the constant function information of the wavelet instead of the information for more levels
as is normally the case.

7.2.4 Sparsifying transforms

Another possibility to improve the sparsifier is to use other sparsifying transforms Ψ in (P )
than the Daubechies wavelet with four vanishing moments (Daub4).
There may be other sparsifying transforms that will have a clear transition between the large
and small coefficients and thus perform better for the diffusion-weighted data. Some examples
below might be worthwhile to be investigated.

Curvelets

Curvelets are similar to wavelets because they also are parameterized by scale and location.
However, curvelets also included orientation, which leads to a good approximation of edges
[52, 53] in much less coefficients than are needed for wavelets. The diffusion-weighted images
consist of piecewise smooth regions separated by smooth contours. Curvelets could probably
approximate these smooth contours better than wavelets, although they may represent point-
like features less than wavelets. Curvelets require a rotation operation which is challenging for
discrete images sampled on a rectangular Cartesian grid and therefore not appropriate for image
compression [54].

Contourlets

Contourlets [55] can also sparsely represent curves, and have a lower computing complexity
than curvelets for discrete images. The reason for this is that contourlet transforms are directly
defined on discrete rectangular grids. Unlike wavelets, contourlets are not good in representing
point-like image features. However, contourlets could probably also approximate the smooth
contour of the diffusion-weighted images better than the wavelets. Contourlet functions have
less clear directional features than curvelets, resulting in artifacts in compression and denoising
processes [54].

A transform which combines the properties of a wavelet and a curvelet or contourlet might
lead to the best results in sparsifying the DWI data. This combined transform [56] will have
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the wavelet property of representing point-like features as well as the ability to represent curve-
like features due to the curvelet or contourlet transform properties. Although curvelets possess
more directional features, the use of a contourlet might be favorable, since this is it designed
on discrete grids.

7.2.5 Combination SENSE and CS

Nowadays, SENSE is used for DWI-EPI to reduce the amount of acquisition data. It might
be useful to combine SENSE with CS to reduce the fraction of required data even further. In
[57], CS was combined with SENSE for chemical shift imaging in muscular dystrophy. The coil
sensitivities Si (i = 1, . . . ,#coils) were included in A (Equation (6.1)), which already consisted
of the Fourier transform F and the undersampling mask M . By including the coil sensitivities
and thus combining CS with SENSE, problem (P ) (Equation (6.1)) becomes

(PSENSE) : argmin
x

{
#coils∑
i=1

1

2
‖MFSix− bi‖22 + α‖x‖TV + β‖Ψx‖1

}
. (7.1)

More research has to be performed in order to find the optimal parameters, undersampling
strategies and percentages of data required from the image in k-space for DWI.

7.3 Applications

cFISTA is an algorithm that solves a minimization problem. The parameters α and β in the
problem were optimized for this particular DWI data set. These parameters lead to good recon-
structions in other data sets as well. These other data sets included the Shepp-Logan phantom,
the image of Lena [58] and a MR phantom data set acquired with a gradient echo sequence (not
reported in this thesis). Therefore, the choice of parameters seems to be robust and could be
used for other data sets.

There was a large variation of required undersampling percentages observed between the pa-
tients (Section 5.3.1). An image displaying a small volume of the patient can be reconstructed
using less data than an image displaying a large volume.
The reproducibility of the reconstruction quality of the tumor was high (Section 5.3.3). The
tumor in the test data set was located in the esophagus. This means that the tumor size was
approximately the same for all patients.
The undersampling and reconstruction can also possibly be performed on other tumor locations,
because no additional information about the type or location of the tumor was used during the
reconstruction of the image. The variation between the tumors of patients indicates that it
is expected that tumors in other site give the same results as tumors in the esophagus when
the tumors in other sites are small or homogeneous. However, the variation between patients
indicates that large patient volumes or large tumors might lead to different results.
Therefore, further analysis is required to guarantee a good reconstruction when the tumor is
for example in the abdomen (large volume).
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Appendix

A.1 ADC formula

For b-values b1 and b2, the strength is described by

S(b1) = S(0)e−b1D,

S(b2) = S(0)e−b2D.

Then

S(b2)

S(b1)
=
e−b2D

e−b1D
,

−(b2 − b1)D = ln

(
S(b2)

S(b1)

)
,

D = − 1

b2 − b1
ln

(
S(b2)

S(b1)

)
.

So, the ADC is equal to D.

A.2 Convex and concave

Definition 3 (Convex function). A real-valued function h is convex if

h(tx+ (1− t)y) ≤ th(x) + (1− t)h(y), x, y ∈ Rn, t ∈ [0, 1].

Definition 4 (Concave function). A real-valued function h is concave if

h(tx+ (1− t)y) ≥ th(x) + (1− t)h(y), x, y ∈ Rn, t ∈ [0, 1].
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A.3 Calculations used for (P2)

L‖z‖22 − 2(z,A∗r0) = L‖z‖22 − 2L

(
z,

1

L
A∗r0

)
+

1

L
‖A∗r0‖22 −

1

L
‖A∗r0‖22

= L

∥∥∥∥z − 1

L
A∗r0

∥∥∥∥2

2

− 1

L
‖A∗r0‖22. (A.1)

1

2
L‖x− y1‖22 + (x− y1,∇f(y1)) = 1

2L‖x− y1‖
2
2 + L(x− y1, 1

L∇f(y1)) + 1
2L‖∇f(y1)‖22 − 1

2L‖∇f(y1)‖22

= 1
2L‖x− y1‖

2
2 + L(x− y1, 1

L∇f(y1)) + L
2 ‖

1
L∇f(y1)‖22 − 1

2L‖∇f(y1)‖22

=
1

2
L‖x− y1 +

1

L
∇f(y1)‖22 −

1

2L
‖∇f(y1)‖22

=
1

2
L‖x− (y1 −

1

L
∇f(y1))‖22 −

1

2L
‖∇f(y1)‖22. (A.2)

A.4 Rewriting of structure term in SSIM formula

To get an even better understanding of the structural similarity term, the definitions of σxkσyk
and σxkyk are used. Define vi := xi − µx and wi := yi − µy, then

σxkσyk =

√√√√ 1

N − 1

N∑
i=1

(xi − µxk)2 ·

√√√√ 1

N − 1

N∑
i=1

(yi − µyk)2

=
1

N − 1

√√√√ N∑
i=1

(xi − µxk)2 ·

√√√√ N∑
i=1

(yi − µyk)2

=
1

N − 1

√√√√ N∑
i=1

v2
i ·

√√√√ N∑
i=1

w2
i

=
1

N − 1
‖v‖‖w‖

and

σxkyk =
1

N − 1

N∑
i=1

(xi − µxk)(yi − µyk)

=
1

N − 1

N∑
i=1

viwi

=
1

N − 1
‖vw‖.

So,

σxkσyk − σxkyk =
1

N − 1
(‖v‖‖w‖ − ‖vw‖)
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A.5 Optimal parameters

In Section 5.2.2, the following values for α and β are used.

α = [1 · 10−7, 5 · 10−7, 1 · 10−6, 5 · 10−6, 1 · 10−5] ∪ [5 · 10−5 : 5 · 10−5 : 4 · 10−4]

∪ [4 · 10−4 : 1 · 10−5 : 7 · 10−4] ∪ [7 · 10−4 : 5 · 10−5 : 1 · 10−3] ∪ 5 · 10−3

and

β = 1 · 10−7 ∪ [5 · 10−7 : 1 · 10−7 : 1.6 · 10−6] ∪ [1.6 · 10−6 : 5 · 10−7 : 1 · 10−5]

∪ [5 · 10−6, 5 · 10−5, 1 · 10−4, 5 · 10−4, 1 · 10−3, 5 · 10−3]

(a) ’center’ (b) ’increased’

Figure A.1: The number of images with a mSSIM ≥ 0.9, displayed as a contour plot. The
undersampling strategies ‘center’(left) and ‘increased’ (right) are used.

Table A.1: mSSIM values obtained using the optimal α and β combination, for the three b-values
and three strategies, using 25% of the data.

center centerincreased increased

b = 0 0.9128 0.9137 0.8783

b = 200 0.9242 0.9100 0.8925

b = 800 0.9093 0.8966 0.8801
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