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Abstract

Learning has been given much attention in Artificial Intelligence (AI) and Game
Theory (GT) disciplines, as it is the key to intelligent and rational behavior.
However in a multiagent setting, as in Multi-agent Systems (MAS), where the
environment changes according to the actions of the players, the participants
cannot afford to be fully rational and resort to heuristics. In such cases classic
Game Theory fails to provide convergence results of the adjustment process,
thus losing predictive power. Evolutionary Game Theory (EGT), motivated
from biology, has been proven suitable for analyzing bounded rationality and
heuristic learning using the robust replicator dynamics. In this thesis we use a
famous congestion game with many (odd) participants called the Minority Game
(MG) as a learning paradigm. The most critical learning methods used in the
MG are reviewed, motivated from both economics and machine learning per-
spective along with their results. Continuing, individual-reinforcement learning
through replicator dynamics is analyzed and the asymptotic properties of the
learning procedure in the MG are provided. Moreover, we compare individual
learning with social learning through imitation using agent-based simulations.
The two types of learning do share common convergence characteristics, but
differ in the resource allocation schemes and in terms of robustness. Individual-
reinforcement learning is a more utilitarian process maximizing system efficiency
with disregard to single-agent performance. On the other hand, social imitation
can provide a more egalitarian setting where individual scores are almost equal.



Chapter 1

Introduction

“All men by nature desire to know”. This is how Aristorle began his Meta-
physics. However, what is learning and what type of learning processes can we
identify in a context with many interacting agents? Can we analyze mathe-
matically the expected behaviour of learning players for the benefit of Artifi-
cial Intelligence (AI), Social and Economic Sciences? Although the motivation
of Evolutionary Game Theory (EGT) stems from biology, since the work of
Maynard Smith, it has been realized that individual or social learning can be
modeled through EGT and the replicator equations [49, Preface]. This report
revisits the not-so-simple question of how agents learn to play and what do
they learn to play? [80]. Not surprisingly, different adaptive methods lead to
different learning predictions [53].

We narrow our focus on a simple congestion game played by many bounded
rational agents, called the Minority Game (MG). The Minority Game, a paradigm
of Complex Adaptive Systems (CAS), attracted much attention in the Statisti-
cal Physics and Multi-Agent Systems (MAS) literature [92],[93, p. 175]. In this
report, we provide a survey of the numerous learning methods used in MG. Sub-
sequently, we study the Minority Game through EGT and apply the pairwise
imitation protocol that leads to the well-studied replicator equations [90]. We
derive the learning outcomes of agents through analytical treatment and agent
based simulations. Interestingly, individual and social imitation, in the MG do
share similarities in terms of learning outcomes. However, as we will present
in this thesis, there are subtle differences that can benefit a learning process
within an optimization setting or an economic and social one.

Game Theory provides the necessary mathematical formalism to model inter-
acting agents. In a nutshell, non-cooperative Game Theory analyses a strategic
situation (game) played by fully rational players. Specifically, the players know
all the details of the game, including each other’s preferences over all possible
outcomes [101, ch. 1]. The richness and depth of the analysis is tremendous,
with the downside that it can handle only a small number of heterogeneous
agents [22, ch. 1]. Moreover, classic Game Theory, outside a certain strate-
gic environment, fails to explain human behavior and decision making in many
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cases [39, ch. 1]. Concretely, human experiments showed that humans do not
always play in fully rational terms, but rather deviate from this behavior [49,
Preface]. This discrepancy between theory and experiments, impacted the way
game theoretical tools were used to analyze learning.

The primary solution concept used in strategic interactions, is the Nash
Equilibrium (NE) [71]. In words, it is the situation where no agent can improve
his payoff by unilaterally deviating from his behavior [35]. Classically, in terms
of learning, NE took an eductive justification, which relies on the players ability
to reach equilibrium through careful thinking. Since agents are fully rational,
they can always predict and optimally respond to their opponents actions [80].
However, in the case when the players do not behave rationally, initially the
research community assumed that NE loses its predictive power [35]. In the
next paragraphs, we will witness that is not true at all.

Following the aforementioned events, bounded rationality was introduced as
the basic concept to model the cognitive limitations, in behavior and decision
making of humans [94]. Although, the definition of bounded rationality is still
debatable, limiting the cognitive capabilities of agents in a game context, pro-
vided the necessary framework for evolutionary learning and adaption to appear
[49, ch. 1]. One way to describe bounded rationality is by the use of simple
“rules of thumb” for every day decision making, i.e. heuristics [41]. Heuristic
rules, can be considered as the outcome of an ongoing learning process among
agents.

Learning models can be classified in individual learning, social imitation and
belief learning [80]. In individual learning, success and failure directly influence
agent choices and behavior. Learning theories that describe such a procedure
are mainly Behaviorism and Cognitive theories [75]. From a MAS learning
perspective, individual learning is interpreted as various types of reinforcement
learning. Social learning occurs in the cases where success and failure of other
players influence choice probabilities. Social Cognitivism is the equivalent psy-
chological theory representing this human phenomenon. Lastly, Belief learning
is a learning model originating from economic theories, where experiences affect
players beliefs. The main difference between Belief-based and reinforcement in-
dividual learning is that in the former one should hold explicit beliefs for the
rest of the players and play a strategy that yields the highest payoff according
to these beliefs. On the contrary, in reinforcement learning the player adjusts
his/her strategy taking into account only his/her payoff, i.e the agent might
not even know the number of the existence of other players [32]. Moreover, we
should divide theories talking about learning into descriptive and prescriptive.
That is, theories analyzing learning and teaching respectively [93, p 194]. In
this report we will deal with individual and social learning, following descrip-
tive paradigms. We will not impose a specific goal of learning throughout our
analysis, but rather observe the convergence points of evolution (if any).

An evident mathematical inquiry arises, namely how can we model individual
and social learning using game theory as our basis? Evolutionary Game Theory
(EGT) helps to answer the aforementioned question. EGT imagines that a game
is played in a repeated fashion, by socially or biologically bounded agents who
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are drawn from large populations in a random fashion [101]. At each point in
time, each agent only plays a pure strategy. This specific strategy can represent
the heuristic rule this particular player follows to play the game. In the original
biological inspiration of EGT, the agents “reproduce” in a manner proportional
to their payoff (fitness) [101]. This same process can be translated into imitation
learning between players, in the case when the population has a constant size
[101]. Clearly, one weak assumption is of that a game can be repeated with the
same settings over time. However, when interaction is anonymous, i.e from a
large population without having interest of the player identity, EGT framework
appears to be more justifiable [80] . Moreover, the possibility that boundedly
rational agents reach a NE by means of some adaptive procedure, justifies the
importance of this solution concept [80].

One simple model that serves as a paradigm of adaptation is the El Farol
Bar problem (EFBP) [7]. The El Farol the problem goes as follows. We have
a popular bar in Santa Fe with limited capacity that organizes each Thursday
a Jazz-music night. Given that the number of potential customers (players) is
fixed. Suppose the bar is crowded, then no-one will have a good time and each
customer prefers staying at home. So each week players have to choose one out
of two possible actions: stay at home or go to the bar. The players that are in
the minority win the game.

As stated by Brian Arthur, in the Foreward of the book [22].“Legend is
indeed correct: in 1988 on Thursday nights Galway musician Gerry Carty played
Irish music at the El Farol, and the bar was not pleasant if crowed. Each
week I mulled whether it was worth showing up, and I mulled that others also
mulled”. Arthur’s agents (players) are equipped with “predictors” of the bar
attendance. An example of a “predictor” is, assume the attendance to be as
last Thursday or two weeks ago. The “predictors” in turn define a behavior
for each agent. The major contribution of Arthur’s seminal paper was that it
showed in a clear manner the limitations of the game theoretic perspective of
pure strategic reasoning for a complex game with many participants. Arthur
proposed a model of agents equipped with bounded rationality and inductive
reasoning to tackle complex problems of everyday life.

Following the success of the El Farol model, the Minority Game (MG) was
introduced by Damien Challet and Yi-Cheng Zhang as a concise mathematical
formulation of the original model [21]. The MG, although a simplification of
the original problem, managed to preserve the dynamics and characteristics of
the El Farol model. In the MG, an odd number of agents must choose one of
two choices independently at each turn (stay of go to the bar). The players who
end up on the minority side win [22].

The MG is a simple congestion game with many anonymous participants
[53]. In a congestion game (Rosenthal,1973), players use several facilities from
a common pool. The costs or benefits that a player derives from a facility
depends on the number of users of that facility. A congestion game is therefore
a natural game to model scarcity of common resources [38]. Particularly, MG has
been used primarily to model financial market time series [44],[33]. Moreover,
it has been used to optimize cognitive and normal wireless networks resource
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allocation [60], [64], to increase distributed systems efficiency [2] and to exploit
the computational potential of multi-core clusters [25]. In addition the MG has
uses in the energy management for Smart Buildings [104]and an intuitive use in
road traffic optimization [37]. The MG sparked a lot of interest in the Statistical
Physics literature, as originally game theoretical analysis was avoided. There
are over two hundred relevant articles and the MG has its own web-page with
a list of most of them [19]. Although Statistical mechanics investigations led
to great insight on the MG behavior, it did so in an aggregate level [22]. On
this report we will employ EGT to answer how the agents in each one setting
of the MG behave, at least in the simplest memoryless case. Furthermore, it
is interesting to investigate what agents learn through the MG platform along
with the dynamics of their behavior.

This article is organized as follows. In the following chapter, we review the
role of rationality in Game Theory and the emergence of bounded rationality.
Continuing, we present the definition of learning and its different cognitive and
social interpretation and theories 2.4. Concretely, we connect critical adapta-
tion methods used in Multi-Agent Systems and Game Theory literature with
their psychological and behavioral counterpart theories (chapter 2, section 5).
In chapter 3 we describe formally the original MG and analyze its stage game.
Moreover, we discuss relevant literature containing results in terms of outcomes
and Nash Equilibria of the MG where alternative methods of learning have been
applied. Furthermore, we analyze the MG as congestion game and refine the
Nash Equilibrium of the MG using imitation learning and replicator dynam-
ics. Chapter 4 consists of the validation of the MG analytical results through
computer simulations. Moreover, we investigate social imitation in the MG, a
novel scenario, using agent-based simulations. Lastly, chapter 5 provides a short
conclusion of our work on learning in the MG.
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Chapter 2

Learning in Game Theory

2.1 Rationality and Game Theory

Game theory studies, through mathematical models, the conflict or cooperation
of intelligent and rational decision-makers [69, p. 1]. Intelligence and rationality,
in terms of players, are assumptions based on Von Neumann’s principal theories
about economic behavior [56]. Namely, early models of economics and Game
Theory assumed that players in a game setting are capable, as utility maximizers
[56, p. 5], to search the best solution or action looking through all the possible
moves of their opponent(s). To analyze and learn the outcome of the game
when played by rational agents, John Forbes Nash, Jr. in his seminal work
[71] introduced the Nash equilibrium as a solution concept. Furthermore, when
the interaction in a certain strategic game of decision-makers gets repeated, the
players can use the knowledge of the previous outcomes of each stage game and
the Nash equilibrium to deduct long run play. For instance, in the iterated
prisoners dilemma, by backward induction we can conclude that defect is the
game theoretical best strategy. However, the predicted results fall short on
explaining the experimental findings and the emergence of cooperation when
real players play iterated prisoners dilemma[5]. In addition, Axelrod devised
tournaments in order to put to the test several strategies and find the best
one. It was proved that the most successful strategy in the repeated prisoners
dilemma was Anatol Rapoport’s simple tit-for-tat (TFT) [9]. This was one of
the first cues to show that simplistic rules, such as imitate the move of your
opponent, could outperform complex strategies in game settings.

On one hand, perfect rationality is a very plausible assumption when the
stakes are high and the players are fully informed of the payoffs and rules of the
game [70]. Moreover, the assumption of perfect rationality greatly simplifies the
design of the interaction mechanism among the agents and economists can prove
many theorems for the economies that are inhabited by rational players [87].
One the other hand, when situations get more complex (for instance when we
have more than two players and multiple possible actions), the burden imposed
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by rationality to the decision-makers is heavy. An illustrative example is the
game of chess, where we still have only two players and we assume that the
agents have all the information needed at their disposal, that is know all the
possible moves at each step of the game. A perfectly rational agent should
be equipped with an arbitrary large memory to remember all the states of the
game, the moves of their opponents and in addition the cognitive ability to
perform multiple induction arguments to deduct an optimal policy of play in
the long run [8]. Through introspection and laboratory experiments, one is
lead to the conclusion that even in quite simple decision problems, people often
fail to conform to some of the basic assumptions of rational decision theory
[8]. In parallel, this pursuit of rationality forced the emerging field of artificial
intelligence to place extensive computational capabilities in agents, for the sole
purpose to compute and behave using optimal - rational actions [39, p. 1-4].
Consequently, learning in game and decision theory for a period of time was
confined in studying Nash Equilibrium as learning outcome and goal [34, p. 1].

2.2 Bounded Rationality

Question arise however, since humans and their decisions cannot be modeled
as fully logical processes. Which are the ways of human thinking and resolving
in a world of finite cognitive abilities? Simon in his seminal work, introduced
bounded rationality as the basic concept to model the cognitive limitations, in
behavior and decision making, of humans [94]. A precise definition of bounded
rationality is not still available in the literature. However, we can start clarifi-
cation by stating what is not bounded rationality [39, p. 13 - 19]. Certainly,
bounded rationality is not irrationality and does not explain behavior stemming
from abnormality and mental illness. Moreover, an agent, in order to comple-
ment his limited cognitive capabilities, applies (or is subjected to) adaptive and
learning mechanisms after he/she has simplified a complex situation. Thus, a
decision-maker can be viewed as a satisficer, one seeking a satisfactory solution
instead of the optimal one [10]. Finally, a person in an decision process may not
only relax its expectations of optimal solution in terms of one utility, but also
have desire or goal for more than one type or number of utilities. An example
could be that an agent is aiming in emotional reward in addition to some mone-
tary utility (i.e a decision maker can possess a utility vector)[94]. Furthermore,
one of the most simple and fundamental ideas in bounded rationality is that no
rationality at all is required to arrive at a Nash equilibrium [8]. Thus, contrary
to the belief that uncertainty, and not fully rationality, would eliminate the no-
tion of Nash equilibria, the NE solution concept can be regarded as the long-run
outcome of bounded-rational play where agents strive for optimality [34, p. 1 -
10].

In order to understand bounded rationality as a resolving framework, we
must turn our attention to the evaluation process inside the decision making
cycle. A decision is realized in many costly steps such as gathering and organiz-
ing information. However, the evaluation step is crucial and it is dependant on
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the learning procedures of the agent [94]. Gigerenzer suggests economic agents
use simple rules to come to a decision, using minimum computational resources
[41]. These “fast and frugal” decision methods are called heuristics, and can
be seen as a “shortcuts” of mind when the space of choices is arbitrary large
or unknown. The human brain can generalize knowledge from a few specific
examples, discover reusable patterns in everyday life and exhibit near optimal
behavior by following a few simple rules of thumb [81]. Moreover, it has been
observed that heuristic searches are used by experts in decision making and
are a result of accumulated learning and experience in a given situation [41].
Heuristics are used heavily in the computer science field as techniques designed
for solving a problem more quickly when classic methods are too slow, or for
finding an approximate solution when classic methods fail to find any exact
solution. A heuristic can quickly produce a solution that is acceptable in con-
trast to an exhaustive search for an exact optimal solution in a prohibitively
long time [86, chap. 4]. The main difference with the physiological heuristics
is that in most cases, the solution space is static and the environment is not
dynamic. For instance, in a graph search problem, algorithms such as the A*
search algorithm, have the ability to explore partially the solution space and
take the optimum solution in each step [46]. In contrast, psychological heuris-
tics, are somewhat “hard-coded” mental rules derived from personal experience
or social knowledge that are applied directly bypassing most of the searching in
the possible solutions. In addition any heuristic proposed for real life problems,
should account the involvement of uncertain and changing environment that is
also affected by each agents decision [95, chap. 1]. Thus, in AI science field,
heuristics were already considered as a sign of intelligence and a way to quickly
get satisfactory results [77]. On the contrary, psychologists, viewed heuristics
as cognitive biases and source of error in decision process of the human mind
[40]. Heuristics can be considered as the building blocks of mental frameworks
of behavior, i.e as methods of learning and adaptation [42]. The mental frame-
works or models are called schemata [85] and it is often the case that schemata
represent mental stereotypes that ignore stimuli contrariant to the fixed belief.
A more elaborate explanation of the mind schema, will be presented along with
cognitive learning theories in a following subsection.

Gigerenzer in his ground breaking research, showed that heuristics do have
attractive properties and their usage in every day decision problems is not un-
justifiable. Moreover, Gigerenzer and collaborator’s experiments showed that
in many cases, simple heuristics outperform more sophisticated decision algo-
rithms [43, 42, 41]. As heuristic methods in decision making can be considered
efficient mappings of bounded rationality [42], the question still remains on what
type of behavior we learn following heuristic rules in given situations. In the
same spirit, WB Arthur’s paper gave a clear representation of the limitations
of rationality and proposed a model of agents equipped with bounded cogni-
tion following inductive reasoning to tackle complex problems of everyday life
[7]. Arthur’s model, and the simplification by Challet and Young was a concise
way of mathematically presenting behavior rules( i.e schemas) and heuristics in
agents decision process. Studying the original model and the various extensions
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we can use the tools of game theory to derive insightful results towards the
learning outcomes of the population as a whole and the individual players.

2.3 What is Learning

Before we analyze learning as a concept and procedure inside the decision mak-
ing cycle, we must first define what learning is and review learning theories that
connect behavioral models used in economics and artificial intelligence. For-
mally speaking learning can be viewed as ( the observable or not ) process or
product of information acquisition or modification and the transformation of it
to reusable knowledge as result of experience. Learning is extended to alteration
in potential behavior, skill and emotions by the synthesis of different stimuli and
information of the subjects environment [15],[58],[47],[75]. This technical defi-
nition of learning, although it describes what learning is from a broad point of
view, is far from a complete explanation of how learning works, motivated and
accomplished in various different settings. Hence, numerous learning theories
have been developed to address key questions, such as how does learning happen
and which environments enhance it [1]. Furthermore, questions arise on a in-
terdisciplinary science level regarding the importance of memory and the inner
workings of the brain, when learning takes place [3],[75]. The scientific field of
human learning is vast and undergoes intense research as a prominent field, a
full review can be found in [47],[75] and their references therein. In this chapter
we narrow our focus to the main learning theories that have contributed their
methods to adaptive multi agent systems and repetitive game theoretic situa-
tions. Specifically, we will present the specific learning algorithms used in the
literature for the MG.

Learning theories can be divided into descriptive and prescriptive theories
[93, p 194], [98]. Descriptive learning theories are concerned about how learning
occurs and construct models that can be used to explain learning results. On
the other hand prescriptive learning theories strive to find optimal methods and
techniques of learning when the learning goal is fixed. The research of prescrip-
tive learning methods greatly support instructional design sciences [83]. We
continue to analyze descriptive theories of learning, as we mostly care to model
the learning process where subjects are not in an explicit teaching environment.

2.4 Learning Theories

2.4.1 Behaviorism

Descriptive learning theories can be viewed through three general ”perspec-
tives”, namely behaviorism, social cognitive theory and cognitive theory [75].
Behaviorism is a view that assumes learning to be a passive process respond-
ing to environmental stimuli(Stimuli - Response, S-R). Classical behaviorists
assume that learning will lead to an observable behavior change. The learner
starts off as a clean slate (tabula rasa) and behavior is shaped through positive
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reinforcement or negative. Both directions of reinforcement increase the proba-
bility that the preexisting behavior will reoccur. In contrast, punishment (both
positive and negative) is meant to decrease the possibility that the preexisting
behavior will happen again [75]. Behaviorist theory reigned around 1950, suc-
ceeding connectionism and Thorndike’s ”Law of Effect” [47, p. 24-48]. From
behaviorism theory stems the reinforcement learning method applied widely in
machine learning and multi-agent systems [63, p. 293-314],[16],[93]. Another
variant algorithm with the same concept of reinforcement, also widely used, is
Q-learning [explanation and citation needed].

2.4.2 Cognitivism

The cognitivist response replaced behaviorism in 1960 as the dominant learn-
ing theory. Cognitivism argues that thinking is not only a behavior response
as behaviorism assumes. Thinking is a process on its own, therefore requiring
researching the responses to various stimulus conditions, in order to infer about
the cognitive procedures in the human brain [75, p. 157]. Cognitivism contains
three main perspectives, namely constructivism, information processing and
contextual theories. The latter two views represent models of how a subject
evaluates information and the educational setting when the acquiring is taking
place respectively. Most notably, in the case of information processing theo-
ries, human brains are modeled as a computer equipped with bounded memory
capacity. Information Processing theory along with the cognitive restrictions
of humans proposed by Simon, leads to insightful organizational design models
of businesses [36]. Constructivism, and its main theorist Jean Piaget (1980)
assume that learning, is the progressive reorganization of knowledge as result of
experience [79]. Piaget introduces the aforementioned mental schemata as the
general framework where information and knowledge are processed and con-
nected [78]. However, Piaget failed to formalize the mechanism underlying the
creation of schema and the progression stages of knowledge development he had
observed. Drescher in his seminal work, formalizes Piagetian schemata inner
workings with the introduction of the schema mechanism [29]. Schema mecha-
nism can be viewed as the generic model of learning in beings capable of learning,
regardless of its origin. By origin we refer to biological, electronic, emotional
or other abstract initiations of a learning sequence [30, p. 8 - 11]. A schema
mechanism is comprised by schemas, actions and items. Formally a schema is a
tripartite structure consisting of a context, action and result. A schema poses
that when some context conditions are met and a schema action is taken, then
the result conditions will be obtained. Moreover, each action is an event that
can change the state of the world. Finally, an item is a state component and
each item is a proposition of the state of the world [30, p. 9]. In summary,
congitivism from the point of view of artificial intelligence can be seen as the
general framework of connecting representations of information to knowledge
structures. AI is a direct descendant of cognitivism and employs methods from
the vast arsenal of machine learning heuristics to increase its cognitive capabil-
ities. However, modeling artificial intelligence through cognitivism is just one
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approach, other exists such as enaction [99, p. 53 - 62].

2.4.3 Social Cognitive Learning

Social cognitive theory is concerned with the ways in which people learn from
observation [75, p. 140]. Social cognitivism is a generalization of social learn-
ing. Social learning theory can be considered as the intermediate step between
behaviorism and cognitivism. Through social stimulus-response and imitation,
a subject can be reinforced to learn from a third person inside the social en-
vironment [75, p. 144]. The conditioning of the imitator can lead to delayed
imitation, where the change in behavior is not visible from the beginning. When
we talk about imitation, we actually include various types of information that
can be transfered through the social network. Three types of information have
been distinguished to be transfered with the imitation process. Namely those
are, actions, goals and results and depending on which type of information the
imitator perceives, the result of social learning is different. Thus, we can have
imitation of actions or behavior with or without the knowledge of the goals of
the imitated person that can reproduce the desired result [26, chap. 9]. Ar-
tificial Intelligence has benefited by the social cognitivism paradigms, towards
studying and creating machines that can respond, learn and acquire common
sense through social interactions [66, chapter 6].

2.5 Multi-Agent Systems Learning

In this section we review the most important learning procedures used in game
theoretic contexts, suited for the problem analysis of this thesis. The reader is
prompted to the references in the end of paragraph for a more thorough look
in algorithmic learning. Surprisingly, many early learning algorithms used in
artificial intelligence do not have explicit connection to psychology and learning
theories. Moreover, apart from the individual learning schemes, multi-agent
systems can learn through evolution as a population. The idea of evolutionary
learning was developed by biologists and later incorporated in the artificial
intelligence domain. [93, chap. 7], [16, chap. 6], [11]. In this section we review
the most important learning procedures used in game theoretic contexts, suited
for the problem analysis of this report.

2.5.1 Belief Learning

Methods of belief learning where initially used for calculating iteratively Nash
equilibria on zero-sum games. However, belief based learning was reinterpreted
as adaptive models of behavior in a repeated setting [93, p. 196].

Fictitious Play

One of the earliest learning rules used in strategic situation is Fictitious play.
Initially, fictitious play was proposed as an iterative method to compute Nash-
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equilibria of zero-sum games. The rule is straightforward always choose a best
reply to the actions of the other players in the previous periods. That is, if A
is the set of the opponent’s actions, and ∀a ∈ A we have

P (a) =
w(a)∑

a′∈A w(a′)
,

the probability of a in opponent’s mixed strategy and w(a) the number of times
opponent has played action a. Fictitious play is an interesting heuristic method
as it is very simple and gives rise to strong results concerning behavior in equi-
librium. There are variations of the updating rule, such as smooth or weighted
fictitious play that can refine the learning process even further. However, as dis-
cussed in this chapter, fictitious play is not a plausible model of human learning
and the belief update setting is mathematically constraining [93, p. 200].

Bayesian Learning

Bayesian or Rational learning follows the trail of fictitious play and generalizes
it. Namely, it allows players to have a richer set of beliefs about the strategies
of their opponents. We begin by a set of initial beliefs, as in fictitious play,
and we use Bayesian updating to update these beliefs. Given the set of possible
histories h ∈ H, we have

Pi(s|h) =
Pi(h|s)Pi(s)∑

s′∈S Pi(h|s′)Pi(s′)
,

the probability that an opponent is playing strategy s ∈ S.
Rational learning is a very intuitive learning model and provides strong guar-
antees of convergence to the true strategies of the players. However, the com-
plicated analysis required due to the vast space of possible opponent strategies,
makes the Bayesian model an unsuitable contestant to explain human thinking.
On the contrary, in many cases in everyday decision making, people tend to
prefer handling specific information rather than general beliefs.

2.5.2 Reinforcement Learning

Reinforcement models stem directly from the behaviorist learning theories. Re-
inforcement methods, were originally designed for one agent problems and after-
wards generalized in economic decisions and games [95]. In short, an agent asso-
ciates values with states of the environment, by observing the rewards received
when visiting those different states. In the case of repeated games, however, all
changes in the expected reward are due to alteration in strategy by the players.
There is no changing environment state that agents can explore and assign a
certain value. Therefore, repeated games are sometimes also called stateless
games [73]. Moreover, reinforcement learning does not explicitly model the op-
ponent’s strategy, in contrast, it assigns a value in each next available action
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or strategy, that characterizes the expected reward following the respected ac-
tion/strategy. We distinguish two main methods to assign action/strategy-value
pairs. Namely, the Roth-Erev rule and the stateless Q-learning method.

Roth-Erev Reinforcement Learning

Based on the work of psychologists Bush and Mosteller, E. Roth and I. Erev,
associate propensities with each action. Those propensities in turn, translate to
probabilities in taking that action [31].

In the basic model, each player is assumed to start with equal propensities
for each available strategy. That is, for all players n

qnk = qnj∀k, j ∈ S set of strategies.

If player n plays his k− th pure strategy at time t and receives a reinforcement
R(x), then the propensities are updated according to the following formula.

qnj =

{
qnj +R(x) if j = k

qnj otherwise,

Where R(x) is a suitable reinforcement function when the payoff is x ∈ R. The
probability that player n will play his k − th strategy at time t is defined by:

pnk =
qnk(t)∑
j∈S qnj(t)

.

Q-Learning

Q-learning is another important variation of reinforcement learning. In Q-
learning, the agent creates direct action-Q-value pairs rather than mapping
strategies. In a stateless environment for actions a ∈ A, the Q-update function
is:

Q(a)← Q(a)λ(r −Q(a)) ∀a ∈ A,

where r is the reward received, and λ is the learning rate (0 ≤ λ ≤ 1).
What comes next is the question of which action an agent should follow.

The agent action selection is governed by the fundamental trade-off between
exploitation and exploration in each turn. Namely, the agent intuitively could
follow the greedy rule of taking the action with the highest score. However, in
that case the room for exploration of maybe better alternatives would be zero
[51, 95]. Therefore, a simple alternative is to follow the greedy heuristic most of
the time, but every once in a while with small probability ε, select an action at
random. This method is called ε-greedy method. Although near-greedy meth-
ods are simple and popular way of balancing exploitation and exploration, they
have a drawback on effective exploration. When a ε-greedy heuristic, choose an
alternative of the current best action, it assumes the same weight of all other
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alternatives. Thus, it might be possible to choose the worst alternative action,
leading to suboptimal results. For that reason, the softmax action selection
method was introduced. The softmax method still gives the highest selection
probability to the greedy action, however the rest of the alternatives are ranked
according to their value estimates. Commonly, the softmax method uses the
Boltzmann distribution to assign probabilities to action a ∈ A at time t play,
as follows.

p(a) =
eQt(a)/τ∑

b∈A
eQt(b)/τ

, (2.1)

where τ is a positive parameter called the temperature. High temperatures sets
actions with nearly same probabilities. On the other hand, low temperatures
create a greater difference in selection probability for actions that differ in their
value estimates. When τ → 0 , softmax selection becomes the same as taking
greedy action. The above choice method is also called logit choice rule in a game
theoretic context. Reinforcement learning is a very active in multi-agent systems
learning and provides convergence to Nash equilibrium for zero-sum stochastic
games. However, there is no such guarantees for general sum stochastic games.

2.5.3 Rule Based Learning

In Rule learning, players are equipped with decision rules that map histories
of play into strategy choices. In contrast to learning which specific strategies
to choose, agents learn which rules to use for optimal play. One example in
pure game theoretical setting, is a player assigning weights in a set of trigger
strategies he has in his disposal according to performance in play (for instance
tit-for-tat). Afterwards, using a decision heuristic the agent can use the ac-
tion dictated by the proper rule. Intuitively, the set of rules can be expressed
as the way an expert weights different cues of evidence (for instance a doctor
viewing symptoms of a patient). Rule based learning can be considered as a
representation of Piaget’s schemata of the mind and inductive learning proce-
dure. Machine learning decision trees and inductive rules are closely connected,
however numerous results suggest that simple rules, i.e simplistic decision trees
outperform complex ones [43, p. 97 - 140]. Therefore, a closer match to induc-
tive rules learning is the pruned decision trees. There is an intensive research
on the best pruning sequence that simplify a decision tree to resemble a human
expert. Although we cannot offer a full review on the subject of pruning and
decision trees, it suffices to say that finding the simplest inductive schemes from
a decision tree is an intractable problem [65]. In the field of economics and
learning, the most known and well-studied game that introduces inductive rules
is the El Farol Bar problem and subsequently the Minority game. WB. Arthur,
using the EFBP, successfully presented the learning process of the human mind
to economists and game theorists believing in perfect rationality. He did so
by following the psychological rules described in this section, strictly remaining
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inside bounded rationality limits. In the following chapter, we will provide a
formal representation of the game, as it is our main research environment.

2.5.4 Evolutionary Learning and Imitation

The application of game theory in evolving populations, gave rise to evolution-
ary game theory. Agent-based simulations can benefit greatly from the use
of evolutionary learning as it can provide robust results and lead to emergent
conventions. In evolutionary settings, agents have a policy hard-coded in their
“gene” and follow it until they are deleted from the evolutionary process. It
should be noted that there are two main processes followed by evolutionary
models. The one highlights the workings of the mutation process and popula-
tion growth respectively. From the fist class of evolution, the machine learning
genetic algorithms are derived. On the other hand, population growth and dy-
namics are best described by replicator dynamics.In the latter case we shift
our focus from the individual agent behavior changes to the population, over
time. Intuitively, the most successful gene-strategy has the ability to reproduce
more children in the population. Moreover, social imitation can be modeled as
an evolutionary process and it is a very interesting field to investigate, as it is
mostly unexplored [101, p. 152]. The Replicator dynamics model is a paradigm
that provides strong convergence to Nash equilibria for a wide class of games.
Therefore, in this thesis we will follow the replicator dynamics learning model,
in order to clearly analyze the solution concepts of the MG and derive useful re-
sults and conclusions concerning the behavior of the agents in the aggregate and
individual level. In this subsection we will present how the imitation dynamics,
a stochastic process, can be well approximated through a mean-dynamic, an
ordinary differential equation set by the expected direction of the evolutionary
process. Subsequently, we seemingly connect replicator dynamics with social
imitation and reinforcement learning.

We consider a game played by a single population, where agents play equiv-
alent roles. Let there be N players, each of whom takes a pure strategy from
the set S = {1 . . . n}. We call population state x the element of the simplex
X = {x ∈ Rn+ :

∑
j∈S xj = 1}, with xj the fraction of agents playing strategy

j. A population game is identified by a continuous vector-valued function that
maps population states to payoffs, i.e F : X 7→ Rn. The payoff of strategy i
when population state is x, is described by the scalar Fi(x).

Population state x∗ is a Nash Equilibrium of F , when no agent can benefit
and improve his profit by switching unilaterally from strategy i to strategy j.
Specifically, x∗ is a NE if and only if:

Fi(x
∗) ≥ Fj(x∗) ∀j ∈ S (2.2)

∀ i ∈ S s.t. (2.3)

x∗ > 0. (2.4)

In population games modeled as above, agents are matched randomly and
play their strategies, producing their respected payoffs. However, population
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games can also embody congestion games, where all the players take part in
the game. Since MG is a congestion game we will deal with their formulation
in detail in a subsequent chapter. Continuing, we present the basic elements
of imitation models. The foundations of population model dynamics are built
upon a notion called revision protocol.

Definition 1. A revision protocol is a map ρ : Rn×X 7→ R that takes as input
payoff vectors π and population states x and returns non-negative matrices as
output.

Specifically, agents in a population are equipped with a time rate R, at
which they review their strategy choice. Thus, the expected number of revision
opportunities of N agents playing strategy i in state x, over the next dt time
units, is approximately NxiRdt. Player i who receives a revision opportunity,
switches to strategy j with probability ρij/R, where pij(π, x) scalar is called
the conditional switch rate from strategy i to j. Hence, the expected number
of switches in dt is Nxiρijdt. Therefore, the expected change in the number of
agents playing strategy i in time ∆t units is

N∆xi = N

∑
j∈S

xjρji(F (x), x)− xi
∑
j∈S

ρij(F (x), x)

∆t. (2.5)

Let ∆t → 0 and N → 0 such that N ·∆t. If we divide the above equation by
N , we get the differential equation for the change rate in the portion of agents
using strategy i.

ẋi =
∑
j∈S

xjρji(F (x), x)− xi
∑
j∈S

ρij(F (x), x). (2.6)

Equation (2.6) is the mean dynamic with revision protocol ρ in population
game F . The first term is the inflow, whereas the last term captures the out-
flow of agents switching from strategy i to other strategies. Commonly, social
imitation is modeled through the revision protocol called proportional imita-
tion protocol ρij(π, x) = xj [πj − πi]+ [90]. This protocol generates the mean
dynamic

ẋi = xiF̂i(x), (2.7)

with F̂i(x) = Fi(x)−F̄ (x) and F̄ (x) =
∑
i∈S xiFi(x). Equation (2.7) is the well-

studied replicator dynamic of evolutionary game theory [90]. Therefore, all the
results derived for the replicator dynamic can be used to analyze social imitation.
The heuristic rule described in the pairwise imitation protocol, is imitate a
random agent from the street only if his payoff is better ( with probability
proportional to the difference). Other revision protocols are also studied in
the literature of evolutionary game theory that generate replicator dynamics as
their mean field, we direct the reader to Weibull (1995) [101].
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In a slightly different direction, it has been established that evolutionary
dynamics and reinforcement learning are equivalent in the continuous time limit
[11]. This crucial result holds for the multi-population models of imitation.
Suppose we have n populations playing an n-player game. Specifically, a random
agent from each population is selected and they play the game at each round.
Following the steps of the single population model described above, we have the
pairwise proportional imitation revision protocol, ρhk(π, xi) = xik[πk − πh]+,
for each population i ∈ N with population state xi. Concretely, an agent
with a revision opportunity, selects an agent to possibly imitate inside his own
population. By the law of large numbers, the flow of agents switching from
strategy xh to xk yields the following differential equations:

ẋii =
∑
k∈S

xikρkh(F (xi), xi)− xih
∑
k∈S

ρhk(F (xi), xi)dt ∀i ∈ N, ∀h, k ∈ S. (2.8)

Substituting the revision protocol and making the calculations we end up with
the multi-population replicator dynamics [90] (multiplied by a factor of two ).

ẋih = xihF̂h(xi), ∀h ∈ S,∀i ∈ N. (2.9)

Establishing the connection between replicator dynamics and imitation, we are
able to justify the relation between learning and the well-studied replicator
dynamics. In the case of the multi-population model, the imitation taking place
inside each population can be seen as a reinforcement process. Specifically, one
can think that each agent in a population represents a different voice or opinion
and as the revision opportunities arrive the current best performing opinion
gets reinforced [11]. The single population case represents the social imitation
of agents, where players can observe a better strategy of another agent and learn.
In the next chapter we will analyze the outcomes of the MG, using imitation
as learning in both single and multi population models. It is interesting to see,
whether those two learning processes lead to different results.
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Chapter 3

Minority Game

3.1 The Minority Game

In the seminal paper of the MG model [21], we have an odd population of N
agents competing in a repeated one-shot game (N = 2k + 1, k ≥ 1) where
communication is not allowed. At each time step (round) t of the game, every
agent has to choose between one of two possible actions, either “A” or “B”
(“buy” and “sell” bid respectively in a market context). These two choices
are represented by integers “1” and “-1” respectively. We denote the action of
agent i at time t as αi(t) ∈ {−1, 1}. The minority choice wins the round at
each time step and all the winning agents are rewarded, following a predefined
reward function ui(t). In the paper of Challet and Zhang [21], the step and the
linear payoff schemes were proposed as ways of awarding points to the successful
agents. In the step payoff scheme, one point is awarded to every successful
prediction and none otherwise. In the linear payoff scheme, the awarded points
have a linear dependence with the number of players that choose the minority
side. That is, the payoff increases linearly as less people select the minority
side [21]. When all the players have performed an action, the winning side is
made available through a public signal and is maintained as an evolving history
sequence denoted as µ(t). When the winning side, i.e the minority, is the agents
taking action “-1” or “1”, the public signal transmitted is the number “-1”
or “1” respectively. By construction, the MG is a negative sum game, as the
winners are always less than the losers. Each agent has a memory size M and
is equipped with a set of fixed inductive rules Si drawn from a rule pool. These
rules are the equivalent of the “predictors” in the EL Farol Bar problem and
help the agents decide which action to take at each time step. Moreover, the
structure of the “predictors”, follows closely the psychological heuristics rules.
Concretely, each agent possess a number of decision trees, each composed by one
node and each leaf is a mapping of each possible history pattern to an action.
Effectively, these “frugal” decision trees can be represented as lookup tables. We
will refer to each of the aforementioned history - actions mappings as strategies
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History Action

-1 -1 -1 1
-1 -1 1 -1
-1 1 -1 -1
-1 1 1 1
1 -1 -1 -1
1 -1 1 1
1 1 -1 1
1 1 1 -1

Table 3.1: A strategy example with
memory size M = 3.

for the remainder of this thesis. The number of all possible patterns of history

with size M is 2M . Therefore, the number of the possible strategies is 22
M

, a
number that gets extremely large even for a modest M value. Moreover, since
each agent holds different strategies, the MG becomes asymmetric. An instance
of an agent’s strategy with M = 3 is depicted in table 3.1.

Formally, let N agents be equipped with memory of length M ∈ N and
draw actions from the set A = {−1, 1}. Therefore the possible histories are
the set H = ×AM , with |H| = 2M . Therefore, the set of possible strategies
is S = {f : H 7→ A}. I.e the set of mappings from each history to an action
with |S| = |A||H|. Let agent i ∈ N , own sij ∈ Si strategies, with Si ⊂ S and
|Si| = n ≥ 2 ∀i ∈ N .
All the sij ∈ Si strategies of an agent i have to predict at every round of
the game, and points are given to those strategies (no matter whether they
are being selected to perform the action) that give correct predictions. The
scores of all the strategies are summed and called as the virtual points of the
strategies. These scores start at zero in the basic Minority Game, following the
“tabula rasa” of the behaviorism learning theories. At each round of the game,
agents make their decisions according to the strategy with the highest virtual
score in that particular moment. Suppose there are many strategies with the
highest score, then one of these strategies is randomly employed. Therefore,
the agents use a greedy heuristic rule to pick the strategy and subsequently
the proper action, i.e they always pick the best response at any given moment.
The learning method used by the minority game, can be described as learning
with fixed behavioral rules, inherited by the rule based learning models [54].
Moreover, players themselves who make the winning decisions are also rewarded
with points, and these are called the real points of the agents.

We define the attendance Att(t) as the sum of actions from all agents at time
t. We denote the prediction of strategy sij of agent i under the information µ(t)
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to be α
µ(t)
sij

at time t. Thus, the attendance is expressed as

Att(t) =

N∑
i=1

αµ(t)sis =

N∑
i=1

αi(t) (3.1)

where sis, s ∈ n, characterizes the best strategy of agent i at time t. That is,

sis = arg max
s=1..n

Usis(t), ∀i ∈ N (3.2)

with Usis(t) the virtual score of the strategy sis ∈ Si of agent i at time t.
Consequently,

Usij (t+ 1) = Usij (t) + sgn(1− sgn[a
µ(t)
i,sij

(t)Att(t)]) ∀i ∈ N, j ∈ n. (3.3)

The history µ(t) is updated as accordingly with the last minority outcome. We
mention, that the history µ(t) can also conveniently represented as a bitstring,
by applying the convention that the winning side has label 0, 1 when the mi-
nority actions are “-1” and 1 respectively. This convention does not change the
behavior of the model and helps the computer implementation. However, it
does change the mathematical formulation and in the current analysis, we will
preserve the winning labels to be {−1, 1}. Notably equations 3.2, 3.3, denote
the adaptation process for each agent, as the ranking of a strategy, thus the
action, changes through time with respect to its virtual scores and the evolving
history string µ(t). Moreover, the payoff function for each agent i at time t is
as follows:

ui(t) = sgn(1− sgn[a
µ(t)
i,sis

(t)Att(t)]) ∀i ∈ N. (3.4)

The above reward scheme is the mathematical representation of the step
pay-off as a function of the actions of the agents for each time t and signifies the
real points gained by players of the MG. Although other pay-off schemes can be
implemented, it has been found that most of the MG properties are independent
of the gain, as long as the minority rule is kept intact [59]. The minority rule is
kept by setting the comfort level, in accordance with the EFBP, as Att(t) = 0.
In the MG, contrary to the EFBP, the agents cannot attain the comfort level
but rather fluctuate around it. The MG model was initially studied through
extensive simulations [21, 23, 92, 61] and it was observed that the time average
of attendance Att(t) always has a value of 0 (〈Att(t)〉 = 0), regardless of the
parameters of the game. Therefore, the MG exhibited the same behaviour as the
main conclusion of Arthur’s EFBP [7]. Next quantity of interest was to measure
the fluctuations of the attendance around the comfort level. In [92], the variance
of the attendance was introduced to measure the efficiency of resource allocation
in the game, that is if the minority side is optimally occupied. The variance is
given by

σ2 = 〈Att(t)2〉 − 〈Att(t)〉2. (3.5)
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A high value of variance corresponds to large fluctuations in attendance and
hence an inefficient game. On the other hand, low variance corresponds to an
efficient game. The behavior of variance, also called volatility in a market con-
text, presented non-trivial behavior. Extensive simulations showed that σ2/N
is a function of the control parameter

P =
2M

N
, (3.6)

for each value of S [92]. In [92], extensive experiments established that the
behavior of the system is similar for each S. Thus, in this report we will continue
presenting findings for the case when S = 2, as it is a well explored case. As
shown in Figure 3.1, when P is large, the value of σ2/N approaches the value
associated with random choice play. That is, when all agents choose an action
αi by coin toss probability. Specifically, let X be a stochastic variable which has
a binomial distribution with parameters N and p. Let Y be a stochastic variable
defined by Y = lX+ b, then the expected value of Y is lNp+ b and the variance
of Y is (l2)Np(1− p). Therefore, in our case we have l = |A| = 2, b = −N and
assuming a binomial distribution of agent’s actions with probability p = 0.5, the
variance of the attendance can be obtained as σ2/N = 0.5× (1− 0.5)× 4 = 1.
At low values of P the average value of the variance of the game is very large.
Specifically, it scales as σ2/N ≈ P−1, hence the losing side is greater than N/2
and agents behave as a herd, i.e switching sides approximately as a single unit
[92]. In the case of intermediate values of P , the volatility σ2/N is less than
the random regime, and experiments showed that the minimum is Pc ≈ 0.5 [92].
Later analytical treatment showed that the minimum value is slightly lower
and Pc ≈ 0.337 [20]. In the region where the value Pc resides, the size of the
losing group is close to the minimum value of N/2 and the structure of the
divisions allow the identification of two distinct phases around the critical value
Pc. It should be noted however that in the MG, coordination is not complete
and a best possible solution is not reached. Specifically, the case where agents
alternate in groups of (N − 1)/2 and (N + 1)/2, which results in σ2/N = 1/N .

In addition to volatility, other macroscopic quantities presented interesting
behavior between the two phases. R. Savit et al. [92], examined the distributions
of winning probabilities for a certain action after various history strings and
discovered that these distributions are quite different in the two distinct phases.
We define P (1|µk) to be the conditional probability of action with label “1”
to be the minority after history string µk of length k. In Figures 3.2a, 3.2b,
are shown the histograms of the conditional probability P (1|µk) of experiments
with N = 101, S = 2 and M = 4, 6 respectively.

As shown in Figure 3.2a, we observe that the P (1|µk) histogram is flat at
the value 0.5 when P < Pc. Whereas, in the region P > Pc the histogram is
not flat. Concretely, as concluded in [92], there is no extractable information
for any history string of length k = M , when P < Pc. On the other hand, in
the cases when P > Pc, the difference in probabilities for history strings, signify
a predictability of the next minority side of the sequence. Thus, the phase with
P < Pc is called symmetric or unpredictable and the phase with P > Pc is
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Figure 3.1: Volatility with respect to the control parameter P = 2M/N for
S = 2 and various number of agents. The dashed line is the volatility in the
random play.

Figure 3.2: (a) A histogram of the conditional probability P (1|µk) with k = 4 for
the game played with M = 4. The bin numbers, when transformed in binary
form, yield the corresponding strings µ. (b) A histogram of the conditional
probability P (1|µk) with k = 6 and M = 6 [92].

called asymmetric or predictable. These observations where sharpened in [27]
along with the confirmation of a phase transition at critical value Pc = 0.337
where the minimum σ2 takes place (for S = 2). As a measure of non-uniformity
of the winning probabilities given certain history-information, predictability H
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was defined as follows.

H =
1

2M

2M∑
µ=1

〈sgn(Att)|µ〉2. (3.7)

Hence, in the symmetric phase we have 〈sgn(Att)|µ〉 = 0 ∀µ. On the contrary
in the asymmetric phase we get 〈sgn(Att)|µ〉 6= 0 for at least one µ. Finally
in [27], it was found that for a fixed M , H is a decreasing function of the
number of agents N . Furthermore, important phenomena of MG arise from
the microscopic state change, when agents switch strategy. In article [27], the
concept of frozen agents was introduced, as the fraction φ of agents that play the
same strategy all the time. In Figures 3.3a, 3.3b, 3.3c are plotted the average
distributions of the frozen agents φ as histograms for N = 301 and M = 6, 7, 11
respectively.

(a) M = 6 (b) M = 7

(c) M = 11

Figure 3.3: Normalized histograms of average distributions of the frozen agents
φ for N = 301 and M = 6, 7, 11.

We note the increase of frozen agents in the instance of M = 7 in Figure 3.3b
close to the critical point. Moreover, in Figure 3.4 we present the information
predictability and the fraction of frozen agents w.r.t to the control parameter
P , for various memory sizes. We remark that, H = 0 for P . 0.3 and H 6= 0
for P > 0.3.
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Figure 3.4: Information H (open symbols) and fraction of frozen agents φ (full
symbols) as a function of the control parameter P = 2M/N for s = 2 and
M = 5, 6, 7 (circles, squares and diamonds in respective order)[68].

The discontinuity on predictability and frozen agents shown in the Figures
above, certified the existence of phase transition at some critical value Pc and
paved the way to solve analytically the MG for S = 2 using replica symmetry
[27]. The statistical mechanics approach of the MG, gave accurate answers for σ2

in the region of P > Pc . However in the case of P ≤ Pc, due to the degeneracy
of the predictability H, the theoretical results did not provide predictions in
accordance to the experimental ones [22, p. 49 - 57]. At this point the literature
concerning the MG started to grow, following three main research streams.
The first one extended the MG ( or simplified it ), in order to study in detail
the analytical interpretation of the MG, using statistical tools or a functional
approach [22, p. 57 - 61]. The second research path focused on the application
of the MG in modeling financial markets. The Minority Game and a trading
market share crucial common features. Namely, that it is intractable to calculate
an optimal strategy and agents should differentiate among themselves in both
cases. However, financial markets are much more complex involving different
capitals, time horizons and trader needs. Therefore, the second stream of the
MG literature involved variations of the model aimed to reproduce realistic
market fluctuations. The interested reader in the above schemes is referred to
the book [22, ch. 3] and the references therein, for a detailed description of the
simplifications and the analytical methods used on the MG. A detailed review
of the market models based on the MG and their corresponding results can be
found in [22, ch. 4]. An extensive list of the variations of the MG can be found
in the official website of the MG maintained by one of the authors of the original
model [19]. Finally, extensions on the MG were proposed to answer a research
question posed in some degree in the original paper, that is, how efficiently a
group of adaptive agents allocating limited resources can coordinate. The fact
that agents, given bounded rationality and following a simple learning regime,
are able to coordinate better than random, was seen as non-trivial result. In
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the early research of the MG, Darwinism was proposed, where at time step τ
the worst-performing player is replaced with a clone of the best, expect that
one strategy is redrawn with a small probability to allow searching the whole
span of strategies [23]. Darwinism increased the efficiency of the system in the
critical phase, however maintaining the fluctuations of attendance. Thus, a
“quest for better coordination” was initiated, followed by a series of proposed
alternative methods of learning for the MG. Specifically, a question overlapping
the coordination scheme and the modeling of financial markets is the fixed rules
learning method, used in the standard MG, able to model the behavior of agents
in real life cases and specifically in a market context [22, p. 87]. When the
problem faced by a player is simple and does not have a significant impact, for
instance choosing between two roads to get back home, it might be the case that
the MG fixed rules can model successfully the situation. On the other hand, this
not true when players are faced with important decisions in a trading scheme
[62]. What is more, the agents of the MG do not play strategically. Agents,
discussed so far do not play the game against N − 1 other players, but rather
against the signal µ for each t, which is insufficient to lead to an optimal outcome
[22, p.93]. However, this fact along with the limited adaptation capability of the
agents ( only a few unchanged strategies given to each agent), raises the main
question of this report, i.e is fixed rules really learning and in extend, how can
we model a learning process within the framework of bounded rationality. In
game theoretic terms, the research question can be translated to a refinement
of the Nash Equilibria through various learning techniques in MG. Thus, in the
next section we will review the most important learning methods applied in
the MG, along with their results, particularly following cases where agents have
limited capabilities. In latter sections, we analyze MG as a congestion game
and refine the NE using evolutionary game theory and Imitation learning.

3.2 Alternative Learning Methods in the Minor-
ity Game

The vast analysis of the MG in the literature using econophysics methods, led
to insightful results concerning real market price fluctuations. By dramatically
simplifying the individual agent’s sophistication, although maintaining the di-
versity of beliefs and opinions, the MG manages to model the collective behavior
of the financial markets [22, ch. 4]. Nonetheless, the statistical analysis of the
macroscopic quantities used for the MG, does not discuss the changes in be-
havior of the agents in the individual level. Moreover, The Minority Game, is
a challenging platform for adaptive agents that pursue their own selfish goals.
As a consequence, various learning schemes are tested in the literature, using
the MG environment as testbed. In general, the different models proposed for
the MG increase sophistication and intelligence of the agents, striving however
to remain inside the bounded rationality limits. In [62], as a first step towards
modeling markets with the MG, the learning method proposes that each agent
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should take into account his own impact of the market. Namely, the learning
dynamics are updated as follows.

Ui,j(t+ 1) = Usij (t) + sgn(1− sgn[a
µ(t)
i,sij

(t)A(t)]) + ηδis(t) ∀i ∈ N, j ∈ S.
(3.8)

Where, the additional term rewards the strategy actually played by the agent.
It is clear that for η = 0, we resort to the original case. Therefore, the aforemen-
tioned term, can be viewed as a reinforcement procedure towards an optimal
picking of strategies. However, to correctly set the parameter η, each agents
requires to know what payoff she would have got if she had played any strategy
s, including the not used strategies sij 6= sis. Since the agents in the modified
MG model must account for their own action, they are called “sophisticated”
agents. In turn, the agents using the learning method of the standard MG, are
called “naive”. Additionally as noted in the previous section,the macroscopic
quantities of the MG remain unaffected by the modified MG. Furthermore, in
[62] the softmax decision heuristic, coupled with the Boltzmann distribution,
is used to assign probabilities to strategies at each time step, in order to ease
mathematical calculations. The paper concludes that with exponential learning
and full information, agents coordinate on a Nash equilibrium. The conver-
gence depends on the initial conditions Uij(0), different initial beliefs select
different Nash equilibria. The Nash equilibria of the aforementioned model are
also discussed in [27] , where is shown that the number of Nash equilibria grows
exponentially with N .

In a slight different direction, in [50] agents undergo the process of evolution
and are equipped with one strategy S. The version of the MG described in
[50], is also referred as Evolutionary Minority Game (EMG) in the literature
[48]. To make decisions, all agents are assigned a different probability pi at the
beginning, with 0 ≤ pi ≤ 1, which is defined as the probability that agent i acts
according to the strategy S, i.e. follow the recent winning action or the last
outcome for that M-bit history. With a probability 1 − pi, agent i chooses the
choice opposite to the past winning action for that history. This probability pi
takes the role of the “gene” of agents as in the evolutionary game theory models.
Thus, the scores are rewarded or penalized subject to pi. Moreover, agents can
change the value pi within a certain range, if the failures drop below a specific
threshold. The results of this game showed that agents tend to self-segregate in
to opposing groups of p = 0 and p = 1.

Reinforcement learning algorithms are also used in the El Farol Bar Problem
and naturally extend to the Minority Game. Notably in [102], the Roth-Erev
reinforcement learning algorithm is proved to converge to a Nash equilibrium of
the stage game of the El Farol Bar Problem for any comfort level. Therefore,
this critical result can be naturally extended to the Minority Game. Moreover,
in [4] it is shown numerically that Q learning yields a stationary state close to
a Nash equilibrium. In [17], through simulations, the convergence of Roth-Erev
reinforcement learning to NE is confirmed. Notably in [17], the experiments
using reinforcement learning methods in the MG converge to a certain type

25



of Nash equilibrium with agents evenly divided into the two actions and one
playing a mixed strategy. As we will describe in detail in the next section, this
is an efficient state of the game.

In [55, 100, 45] interacting neural networks are trained in the history of the
MG and develop a good strategy towards competition. Moreover, it is shown
that a system of neural networks possesses several advantages compared to the
original learning algorithm of decision tables. Finally in the spirit of machine
learning algorithms, in [96] the agents use one-point genetic crossover mechanism
to mutate their strategies at hand. The genetic model, not surprisingly, reaches
rapidly an efficient state with minimal fluctuations.

It is clear that many learning algorithms stemming from different motiva-
tions, have been tested in the MG benchmark. The vast majority of experiments
has optimal agent coordination as a goal. As presented in this chapter, with
few exceptions, that is accomplished. However, as we will explain in detail in
the next subsection, the points of coordination of the agents are many in the
Minority Game. Therefore, where do players converge or how do agents manage
to coordinate are still questions to be researched. Moreover, the classification
of individual agent behaviors in the MG has been seldomly addressed. In order
to answer the aforementioned queries, one should first analyze the hierarchical
structure of the Nash Equilibria of the MG. An initial effort was performed in
[62, 27], where the existence of a complex hierarchical organization of NE of
the MG is signaled. However as concluded in [62], the efforts to study Nash
equilibria in the MG is far from complete. In addition to the different learning
dynamics between the “naive” and “sophisticated” agents in the MG, as we will
see clearly in the next section, the Nash equilibrium points are many. Thus,
how do “sophisticated” agents manage to converge into the same equilibrium is
an interesting question. Moreover, the time it takes for agents to learn a certain
equilibrium in MG is another captivating research query [22, p. 95 - 97].

In this report we will contribute towards the classification of different be-
haviors in the MG and the types of coordination achieved. To this end, we will
first discuss the Nash equilibria of the MG stage game. Continuing, following
evolutionary game theory, we will describe the NE where the replicator dynam-
ics learning regime converge. As mentioned in the previous chapter, replicator
dynamics lead to Nash equilibria of the underlying game; which in turn makes
it a primary tool for analyzing types of NE, especially when many exist.

3.3 Minority Stage Game and Nash Equilibria

The game theoretic interpretation of the Minority Game is a single MG stage
game with a state of the world as µ. We define the Minority Stage Game as
follows.

Definition 2. Define the Minority stage game as the one shot strategic game
Γ =< N,∆, ui > consisting of:

• N players indexed by i ∈ {1, . . . , 2k + 1}, k ∈ N, N = {1, . . . , 2k + 1},
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• a finite set of strategies Ai = {−1, 1} indexed by α , where αi denotes the
strategy of player i and

• a payoff function ui : αi×α−i 7→ R = {0, 1}, where α−i =
∏
i 6=j αj. More

formally,

ui =

{
1 if − αi

∑N
j=1 αj ≥ 0

0 otherwise.
(3.9)

Note that the “inversion” symmetry ui(−αi,−α−i) = ui(αi, α−i) implies
that the two actions are a priori equivalent: there cannot be any best actions,
because otherwise everybody would do that and lose [62]. Furthermore, the
set of mixed strategies of player i is denoted by ∆(Ai). We describe a mixed
strategy profile by α ∈ ×i∈N∆(Ai). Let us now characterize the equilibria of
the Minority stage game. We denote the set of Nash equilibria of the stage game
as Ȳ . In [102] it is shown that Ȳ contains a finite number of elements. We have
three general types of Nash equilibria, namely:

• Pure Strategy Nash Equilibria. I.e., when all players play a pure strategy.

• Symmetric Mixed Strategy Nash Equilibria. That is, the agents choose
the same mixed strategy to play.

• Asymmetric Mixed Strategy Nash Equilibria. Specifically, the NE when
some players choose a pure strategy and the rest a mixed strategy.

The elements of a pure strategy NE can be easily defined.

Proposition 1. A pure strategy profile is a Nash equilibrium if and only if one
of the actions A = {−1, 1} is chosen by exactly k of the 2k + 1 players [97].

Proposition 2. The number of pure strategy Nash Equilibria in the stage game
of the original MG is 2

(
N

N−1
2

)
.

Proof. The number of pure strategy Nash equilibria in the Minority stage Game
is the sum of two parts. The first part is the number of ways N

2 − 1 different
players can be chosen out of the set of N players at a time with minority side
“0”. Similarly, the second part is the same number as the first part with the
difference that the chosen set of players are labeled with winning side “1”. ♦

We continue to characterize the asymmetric Nash equilibria of the underlying
game, where some players follow a pure strategy and the remaining ones a mixed
strategy. The agents playing a mixed strategy are called mixers.

Lemma 1. Let be α ∈ ×i∈N∆(Ai) a Nash equilibrium with a non-empty set of
mixers. Then all mixers use the same mixed strategy [102, 53].
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In addition, the asymmetric Nash equilibria of the MG stage game can be
divided into subtypes [54]. Namely, we define the type (l, r, λ) of an asymmetric
Nash equilibrium, where l, r ∈ 0, 1..2k + 1 denote the number of players choosing
pure strategy “-1” or “+1”, λ ∈ (0, 1) the probability with which the rest of
players (mixers) z(l, r, λ) = (2k + 1)− (l + r) > 0 play pure strategy “-1”.

Let u−1(l, r, λ), u+1(l, r, λ) denote the expected payoff of an agent choosing
-1 and +1 respectively. A Nash Equilibrium is defined if and only if

u−1(l + 1, r, λ) = u+1(l, r + 1, λ). (3.10)

These equilibria are of type z(k, k, λ) for any λ ∈ (0, 1). In this case, the mixer
uses an arbitrary mixed strategy, whereas the remaining 2k players are spread
evenly over the two pure strategies.

Moreover, equilibria with more than one mixer exist. With, l + r ≤ 2k − 1,
there is a Nash equilibrium of type (l, r, λ) if and only if max{l, r} < k. The
analogous probability λ ∈ (0, 1), solves equation 3.10 and it can be shown to be
unique [53].

Following the above, there exist a unique symmetric mixed strategy Nash
Equilibrium where all players choose one the two actions with probability p =
1/2. It is clear from the stage game equilibrium analysis that the solution points
are many, creating the difficulty of n-players to coordinate to a specific solution.
Finally, for the sake of completeness we define:

Definition 3. The Minority Game is the infinite repeated Minority Stage Game.

3.4 Minority Game as a Congestion Game

A large part of the current literature on the inefficiency of equilibria concerns
congestion games [72, ch. 18, p. 461]. Congestion games are an active research
area, as they can model situations where many agents strategically interact in
order to utilize common resources. Introduced by W. Rosenthal [84], congestion
games model instances when the payoff of each player depends on the choice
of resources along with the number of players choosing the same resource [84].
Examples that congestion games can model successfully are the route choice
in a road network or selfish packet routing in complex structures, such as the
Internet [72, ch. 18]. Congestion games are equipped with many attractive
properties that may provide further refinement of the Nash equilibria of the
MG. Most importantly, congestion games are potential games [84]. Therefore,
there exist a single scalar-valued function that characterizes the game [88, p.
53].

Minority Game can be naturally modeled as a congestion game associated
with a congestion model, as the two available choices to the agents can represent
two distinct resources.

A congestion model (N,M, (Ai)i∈N , (cj)j∈M ) is described as follows:

• N the number of players.
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• M = {1..m} the number of resources.

• Ai the set of strategies of player i, where each ai ∈ Ai is a non empty set
of resources.

• For j ∈ M , cj ∈ Rn denotes the vector of benefits, where cjk is the cost
(e.g cost or payoff ) related to each user of resource j, if there are exactly
k players using that resource.

The congestion game associated with a congestion model is a game with the
set of N players, with sets of strategies (Ai)i∈N and with cost function defined
as:
Let A = ×i∈NAi be the set of all possible players pure strategy vectors. For
any ~a ∈ A and for any j ∈ M , let σj(~a) = #{i ∈ N : j ∈ ~a} be the number
of players using resource j, with ~a the current profile. We have the overall cost
function for player i [93, p. 174]:

Ci =
∑
j∈ai

cj(σj(~a)) = −ui(~a). (3.11)

Moreover, it holds that∑
i∈{σj(~a)}

ui(~a) = −
∑

cj(σj(~a)), ∀j ∈M,~a ∈ A. (3.12)

That is the total cost of using resource j is the opposite of the total benefit of
agents using this resource. We remark that congestion games have an anonymity
property. Specifically, players care about how many others use a given resource,
rather than which do so [93, p. 175]. Concretely, The MG is a congestion game
with M = 2 resources labeled as {−1,+1}, Ai the set of strategies of each player
i and a cost function

cjk =

{
−1 if k < N

2

0 otherwise,
(3.13)

for each resource j ∈M and Ci = −ui ∀i ∈ N . The translation of the MG as a
congestion game helps us to use critical properties of the latter to analyze the
Nash Equilibria of the game.

Theorem 1. Every Congestion Game is a potential game and admits the exact
potential function (or just potential) of the form [67]:

P (~a) =
∑
j∈M

σj(~a)∑
k=1

cj(k) (3.14)

The potential function captures the equality of the players with respect to
the available resources. Specifically, it shows the change in the cost of using a
facility is due to the number of agents using a resource, rather than who is using
the facility. We define a potential of a game G = 〈N, (Ai), ui〉 in strategic form,
with A the collection of all deterministic strategy vectors in G.
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Definition 4. A function P : A 7→ R is a potential of the game G if ∀~a ∈
A,∀ai, bi ∈ Ai ui(bi,~a−i)− ui(ai,~a−i) = P (bi,~a−i)− P (ai,~a−i) [67].

Thus, the Minority Game is a potential game [97] and based on the above,
we can derive the potential function of the Minority Game. Equation 3.14, can
be written as

σ−1(~a)∑
k=1

c−1,k +

σ+1(~a)∑
k=1

c+1,k, (3.15)

where j ∈ {−1,+1} labels the two available resources, actions of the Minority
Game, which posses equal congestion cost. Let µ, λ the number of players to
choose side −1,+1, respectively, in a strategy profile ~a ∈ A, with µ + λ =
2h + 1 = N,h ∈ R. Without loss of generality, we assume µ > λ, that is λ is
the minority. Therefore 3.15 becomes

P =

µ∑
k=1

ck +

λ∑
k=1

ck =

(h+1)+c∑
k=1

ck +

(h−c)∑
k=1

ck =

−h+ c(h+ 1)− (h− c) = −h+ 0− λ = −h+

N∑
i=1

ui(~a) = (3.16)

−h+

N∑
i=1

ui(~a). (3.17)

Where µ = (k + 1) + c, λ = k − c with c ∈ R. Moreover, we have the following
Lemma [67]:

Lemma 2. Let P1 and P2 be potentials of a finite game G. There exist a
constant c such that

P1(~a)− P2(~a) = c ∀~a ∈ A.

Thus, we state the proposition concerning the potential function of the MG.

Proposition 3. An exact potential of the MG is the sum of the payoffs of all
the N = 2h+ 1 ∈ R players. Therefore,

P (~a) =

N∑
i=1

ui(~a) with ∀~a ∈ A (3.18)

Proof. If follows directly from Lemma 2 and equation 3.16, with constant c =
−h. ♦

3.5 Imitation in the Minority game

It is interesting to analyze the Minority Game through imitation. There are a
lot of ways with which imitation can be modeled in a population of strategically
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interacting agents. That is, if we take into account the different heuristic rules
agents apply to imitate, the mutation or noise in imitation process and the
various (social) networks that players can be a part of.

As introduced in section 2.5, imitation can be interpreted in two ways, de-
pending on the type of the population game played. In single-population games,
imitation is social learning and each agent in the population represent a poten-
tial player using a mixed strategy. On the other hand, in the n-population
case, each agent of a population represent a different opinion inside the mind of
the (human)-player. Therefore, each population is the player and the imitation
process reinforces the best performing ideas of each player. In a nutshell, single
population imitation represents social learning and multi-population imitation
models individual learning.

3.5.1 Multi-Population Replicator Dynamics

For a model of pure imitation, we assume that agents imitate without noise.
Moreover, all reviewing players follow the heuristic of adopting the strategy of
“the first man they meet of the street” with a probability proportional to their
score difference. Suppose that the review rate is linearly decreasing in the aver-
age payoff, then the process of imitation can be modeled through the standard
replicator dynamics [101, ch. 4].
The Minority Game is a n-person game, therefore we use the standard n-
population replicator dynamics [101]. Let N = {1, ..., 2k + 1} be a set of
populations, with each population representing an agents role i in the MG.
Thus, each population can be divided into two subpopulations, one for each
of the pure strategies in the minority game. A population state is a vector
~a = α = (α1, ..., α2k+1) or point in the polyhedron ∆(A) of the mixed strategy
profiles. Moreover, each component αi is a point in the simplex ∆(Ai), denoting
the proportion of agents programmed to play the pure strategy ai ∈ Ai. Time
is continuous and indexed by t and agents – one from each population – are
continuously drawn uniformly at random from these populations to play the
minority game. The imitation dynamics modeled through replicator dynamics,
are expressed as follows:

∀i ∈ N, ∀αi ∈ Ai : α̇i(ai) = αi(ai)(ui(ai, α−i)− ui(αi, α−i)). (3.19)

This system of differential equations defines the continuous time multi-population

replicator dynamics [101]. Concretely, the growth rate
˙α(ai)

α(ai)
of a pure strategy

ai ∈ Ai in population i ∈ N of constant size, is equal to the difference in pay-
offs of the pure strategy and the current average payoffs for the population.
Therefore, the population shares of strategies that do better than average will
be imitated more often, while the shares of the other strategies will decline.
Moreover, we can see that the subpopulations associated with the pure best
replies to the current population state have the highest growth rates.

Equations 3.19, define a continuous solution mapping ψ : R×(×i∈N∆(Ai)) 7→
×i∈N∆(Ai) ∀ time t, ∀ initial conditions α0 ∈ ×i∈N∆(Ai). The solution map-
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ping ψ assigns the population state αψ = ψ(t, α0) ∀t, α0 and the solution tra-
jectory of an initial condition α0 is the graph of the solution mapping ψ(·, α0)

A population state α ∈ ×i∈N∆(Ai) is a stationary state of the replicator
dynamics 3.19, if and only if for each population i ∈ N every pure strategy
ai ∈ Ai used by some players in the population gives the same rewards. Thus,

˙αi(ai) = 0 ∀i ∈ N, ∀αi ∈ Ai. Let T be the set of stationary states of equations

3.19, with T = {α ∈ ×j∈N∆(Aj)|∀i ∈ N, ∀αi ∈ Ai : ˙αi(ai) = 0}. Suppose
α ∈ T , then, by definition, α is a pure or a mixed strategy. In the case of the
latter, following Lemma 1, all mixers must use the same strategy. If there is
more than one mixer, the common mixed strategy, determined by equation 3.10,
is unique and defined by the number of players choosing the two pure strategies.
We conclude that the set T of stationary states can be partitioned into three
subsets [53]. Namely,

T1 : The connected set of Nash equilibria with at most one mixer,

T2 : Nash equilibria with more than one mixer and

T3 : non-equilibrium profiles of the type (l, r, λ).
l, r ∈ 2k + 1,

l + r ≤ 2k + 1,

if l + r < 2k + 1 then λ ∈ (0, 1) is uniquely defined by solving equation 3.10.

Furthermore, we analyze the stationary states of the MG under replicator
dynamics. We consider two types of stability, namely Lyapunov stability and
asymptotic stability. Concretely, a population state α ∈ ×i∈N∆(Ai) is Lya-
punov stable if every neighborhood B of α contains a neighborhood B0 of α such
that ψ(t, a0) ∈ B for every x0 ∈ B∩×i∈N∆(Ai) and t ≥ 0. Moreover, a station-
ary state is asymptotically stable if it is Lyapunov stable, and, in addition, there
exists a neighborhood B∗, with limt→∞ ψ(t, a0) = α ∀α0 ∈ B∗∩×i∈N∆(Ai). In
words, if all solutions of the population system that start out near an equilibrium
profile α stay near α through time, then α is Lyapunov stable. Consequently, a
population state α is asymptotically stable if it is Lyapunov stable and a small
perturbation in the population shares, results in the movement of the system to
the original state α.

The Minority Game analysis as a congestion game in the previous section,
proves fruitful as we can rewrite the replicator dynamics equation using the
potential function U of the MG. Specifically, using definition 4 of the potential
function of the pure strategies and extending it to mixed strategy space, using
expectations, in equations 3.19, we get

∀i ∈ N, ∀αi ∈ Ai : α̇i(ai) = αi(ai)(U(ai, α−i)− U(αi, α−i)). (3.20)

Thus, the following proposition holds.

Proposition 4. The potential function U of the minority game is a Lyapunov
function for the replicator dynamic: for each trajectory
(α(t))t∈[0,∞], we have dU

dt ≥ 0. Equality holds at the stationary states [53].
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Proof. We have

dU(α)

dt
=

N∑
i=1

∑
ai∈A

∂U(α)

∂αi(ai)
˙αi(ai). (3.21)

Since U(α) = αi(ai)U(1, α−i) ∀i ∈ N, ai ∈ A equation 3.21 becomes

dU(α)

dt
=

N∑
i=1

∑
ai∈A

U(ai, αi) ˙αi(ai)

=

N∑
i=1

∑
ai∈A

U(ai, αi)(αi(ai)(U(ai, α−i)− U(αi, α−i))

=

N∑
i=1

∑
ai∈A

(αi(ai)U(ai, α−i)
2 − U(αi, α−i)

2)

=

N∑
i=1

(Eαi [U(ai, α−i)
2]− (Eαi [U(ai, α−i)])

2)

=

N∑
i=1

VarαiU(ai, α−i) ≥ 0.

Where equality holds only when variances are zero, i.e α is a stationary point
of the replicator dynamics. ♦

Finally, we can conclude the following proposition

Proposition 5. The collection of Nash equilibria with at most one mixer in
T1 is asymptotically stable under the replicator dynamics. Moreover, stationary
states in T2 and T3 are not Lyapunov stable [53].

Proof. The Nash Equilibria of the set S1, are global maxima of the potential
function U . That is, all pure strategy profiles along with the profiles with one
mixer maximize the function U . By Theorem 6.4 of Weibull [101], this connected
set of global maxima of the Lyapunov function U is asymptotically stable.

The elements of S2 are not Lyapunov stable, as is the case for points in S3.
Suppose α∗ ∈ S2, be a NE with more than one mixer. Furthermore, suppose it
is Lyapunov stable. Since it is an isolated point of the collection of stationary
states, there exist a neighborhood D of α∗ whose closure contains only the
stationary state α∗, i.e cl(D) ∩ S2 = {α∗}. Lyapunov stability states that, as
long as the initial state α(0) is within a sufficiently small neighborhood D′ of
α∗, the solution trajectory α(t) t ∈ [0,∞) remains in D. Let i ∈ N be one the
mixers in the NE α∗. Player i is indifferent between the two pure strategies,
therefore:

U(α∗) = U(−1, α∗−i) = U(1, α∗−i)
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Therefore, U(γi, α
∗
−i) = U(α∗) ∀γi ∈ ∆(Ai). Moreover, for γi 6= α∗i suffi-

ciently close to α∗i , we have that (γi, α
∗
−i) ∈ D′. Thus, the solution trajectory

sγ = γ(t) t ∈ [0,∞) with initial condition γ(0) = (γi, α
∗
−i) ∈ D. From Proposi-

tion 4, since the potential function U is maximized to reach a stationary state,
we have that the Lyapunov function U strictly increases along the trajectory,
until it may reach a stationary state. Let γ∗ ∈ ×j∈N∆(Aj) be the limit point
of sγ . Then, there is a strictly increasing sequence of time points tm →∞ with
limm→∞ γ(tm)→ γ∗. Lemma A.1 of [89, p. 104] certifies that such a limit point
exists and has to be a stationary point. Since cl(D)∩S2 = {α∗} and the trajec-
tory lies in D, therefore γ∗ = α∗. Thus, limm→∞ U(γ(tm)) = U(α∗) = U(γ(0)).
But this contradicts that the Lyapunov function is increasing along the trajec-
tory. Hence, α∗ is not Lyapunov stable.

The same reasoning applies for α∗ ∈ S3. As α∗ is not NE, a mixer i will
deviate slightly to profit (remaining in D′), maximizing the potential function,
however still having α∗ as a limit point. ♦

Thus, as a corollary of the above result, we note that the symmetric NE of
the MG is not Lyapunov stable, following imitation learning regime.

3.6 Three-Player Minority Game

We analyze the case of the three player MG, in order to derive and visualize
useful results concerning the Nash equilibria of the stage game and the conver-
gence of the replicator dynamics. We first derive the payoff function for each
player i with i ∈ {1, 2, 3}, allowing mixed strategies. The payoff matrix of the
three-player MG can be viewed in Table 3.2.

Table 3.2: Payoff matrix of the three-player MG. A1,A2 and A3 denote agents
1,2,3 respectively with actions {−1, 1}. The utility matrix is split into two
submatrices using agent A3 actions as a divider. The payoffs for each agent are
presented w.r.t to their number, i.e. payoff 010 means payoff for A1=0, A2=1
and A3=0.

A3 -1

A1/A2 -1 1
-1 000 010
1 100 001

A3 1

A1/A2 -1 1
-1 100 100
1 010 000

Since player i has two pure strategies from the set Ai = {−1, 1}, he can play
a strategy ai ∈ Ai at each stage of the game. The mixed-strategy simplex is
defined as ∆(Ai) = {αi ∈ R2

+ :
∑
ai∈Ai

αiai = 1}. Since all probabilities are
non-negative and sum up to one, we can express the mixed-strategy simplex of
player i as the line segment ∆1

i , without loss of information. We denote x, y, z ∈
R[0, 1] the probabilities for each player to play strategy ai = 1 respectively.
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Therefore, a complete mixed strategy profile α ∈ ×i∈N∆i of the players can be
expressed as a point α(x, y, z) ∈ R3[0, 1].
Following the fact that the expected payoff of a mixed strategy is exactly the
proportion of the payoff of the pure strategy, we have the utility function of
player 1 defined as

u1(x, y, z) = x · u1(1, y, z) + (1− x) · u1(0, y, z) =

x · (y · u1(0, 0, z) + (1− y) · u1(0, 1, z))+

(1− x) · (y · u1(1, 0, z) + (1− y) · u1(1, 1, z))⇒
u1(x, y, z) = x− xy − xz + yz. (3.22)

In a similar manner we derive the payoff functions of player 2 and 3 with respect
to the mixed strategy profile. We have,

u2(x, y, z) = y − yx− yz + xz (3.23)

u3(x, y, z) = z − zx− zy + yx (3.24)

Therefore, using equation 3.16 we have the potential function for the three player
game as follows:

U(x, y, z) = u1 + u2 + u3 = x+ y + z − xy − yz − zx (3.25)

It is easy to see that maxU(x, y, z) = 1 and the points where the potential
function is maximized, represent the “utilitarian” Nash equilibria of the game.
Furthermore, if we constrain the maximization of the potential function, posing
equality in utilities, we end up with the unique symmetric mixed Nash equi-
librium (1/2, 1/2, 1/2). The “egalitarian” symmetric Nash equilibrium, pre-
serves equality, at the expense of inefficiency of utilities in the aggregate level
U(1/2, 1/2, 1/2) = 3/4. In Figure 3.5, we present the contour of the maximized
potential function, with respect to the mixed strategies of the players. The
highlighted edges of the mixed strategy space (cube) connect the pure Nash
equilibria of the game that are the “utilitarian” solutions of the game. Namely,
it maximizes the sum of the utilities. Moreover, the line of Nash equilibria in
Figure 3.5, is exactly the connected set of equilibria with one mixer. Moreover,
to gain an insight on the curvature of the potential function, we plot in Figure
3.6 the surface of the parametrized function U(x, y, z) = 1 with respect to an
extended space R3[−2, 2]. Due to the boundary limits of the strategy space,
Nash equilibria with one mixer are found in a single connected line in R3[0, 1].

3.6.1 Replicator Dynamics

Following equations 3.25 and 3.20 , the replicator dynamics of the three player
MG can be defined as below, using the potential function U(x, y, z):

ẋ = x(U(1, y, z)− U(x, y, z)) (3.26)

ẏ = y(U(x, 1, z)− U(x, y, z)) (3.27)

ż = z(U(x, y, 1)− U(x, y, z)). (3.28)
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Figure 3.5: The bold line represents the points of the mixed strategy space
where the potential function U(x, y, z) is maximized (U(x, y, z) = 1). The line
is the set of Nash equilibria with one mixer.

Figure 3.6: The potential function surface U(x, y, z) = 1 w.r.t. an extended
space R3[−2, 2].

From equation 3.18, we have

ẋ = (1− y − z)(1− x)x (3.29)

ẏ = (1− z − x)(1− y)y (3.30)

ż = (1− x− y)(1− z)z. (3.31)
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Figure 3.7: Three player MG replicator dynamics, vector field. The field grows
until it reaches Nash equilibrium. The planes with z = 0, 1 are depicted with
dashed arrows.

Notably, non-equilibrium pure strategy profiles are rest points of the replica-
tor dynamics, as well as the unique mixed Nash equilibrium of x = y = z = 1/2.
None of the aforementioned profiles ,however, are stable, in contrast with the
Nash equilibrium combinations of two agents playing opposite pure strategies
and one player mixing between them with a probability l ∈ [0, 1]. In Figure
3.7, we have the replicator dynamics vector field of the three player MG de-
rived from equations 3.29 . The potential function is eager to grow inside the
strategy space, until it reaches the set of the MG Nash equilibria on the bound-
ary. We remark that when a player uses a pure strategy Ai (e.g. z = 0), the
replicator dynamics grow in the Ai plane. Figure 3.7 shows the plane for the
case of z = 0, 1 in dashed arrows. By symmetry, graphs representing the rest
of the vector planes are similar with Figure 3.7. Furthermore, to illustrate the
coordinative character of the MG, in Figure 3.8 the (2D) vector field is plotted
on the plane with x = y. Since x = y the solution converges to a NE with
pure strategies. Namely, the strategy triples (0, 0, 1) or (1, 1, 0). Moreover, the
instability of the mixed NE (1/2, 1/2, 1/2) becomes clear.

In Figure 3.9, we present the trajectories of MG replicator dynamics using
various initial conditions. Each strategy triplet is represented as a point in the
cubed mixed strategy space. Each trajectory remarks the change of strategies
until convergence. The initial strategies of each game stand in the point denoted
by the beginning of each curve and the solution profile at each end vertex (ball).
Clearly, regardless of the initial conditions, excluding non-equilibrium saddle
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Figure 3.8: Three player MG replicator dynamics vector field in the x = y plane.
The field points to pure strategy NE.

points, all plays quickly converge towards the black line highlighting the Nash
equilibria of the MG and stabilize.

3.7 Minority Game and Human Behavior

Several experimental studies have been conducted to explore which strategies
people use in the MG. Specifically, in the simulation studies discussed, the
strategies used by the agents are arbitrary and deterministic. I.e, they do not
allow for randomization in most cases. Results from laboratory experiments
may help understand which strategies actual humans play in the MG. Studies
[12, 13, 76, 91, 14] agree that people always play better than the random case,
i.e. better than the symmetric Nash equilibrium. However, the dynamics of
these games in the laboratory are not trivial. Particularly in [91], it is shown
that oscillations of the fluctuations occur. Moreover, in [76] it was found that the
length M of the public information seems to have no influence on the summary
statistics and the dynamics of volatility. This fact comes to agreement with
the theoretical literature accounting for the irrelevancy of the agents memory
in the MG results when they posses the same amount of memory [18]. We
remark that when agents posses different memory sizes, the theoretical results
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Figure 3.9: Multiple (J = 30), three player MG replicator dynamics, with
random initial strategies. All games converge to a MG NE (thick black line).

differ from the homogeneous case [6]. Furthermore in [13], it was noted that
there was no significant improvement in the individual play, when players where
given the information of their opponents play. Moreover according to [91, 14],
participants tend to repeat the same action at the end of the experiment when
they have enough information and win consistently or they are bored of the
game.

In the experiments on the MG discussed above, effort was put to motivate
humans to play simultaneously the MG. However, such experiments are noto-
riously tricky in social sciences [52]. To overcome the laboratory difficulties in
[57], one human player was placed against artificial agents through a web inter-
face. As the players progress through the game, a record of all the playing data
was kept. The most surprising result is that humans definitely outperform the
computer agents when M ≥ 4. The M = 3 barrier marks a transition where
human player tend to disregard history and revert to oversimplified strategies.
Remarkably, [91] also points out the criticality of M = 3, associating it with the
well know psychology 7± 2 rule, the number of things a human can remember
simultaneously. When M = 3 the number of possible histories is 23 = 8, thus
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the connection with the aforementioned psychological rule.
Another difficulty presented in the MG experiments with real players, is

the inability to definitely determine if the participants randomize or not. To
that extent in [24], a three-player minority game experiment is studied, where
participants can explicitly use mixed strategies. Moreover, there is random re-
matching of groups after each round, in order to highlight the mixed strategy
Nash equilibrium as more obvious candidate for individual behavior. The re-
sults indicate heterogeneity in decision rules, and approximately a quarter of
the participants is best described by the symmetric mixed strategy Nash equi-
librium. In the same spirit in [28], a three-player minority game experiment is
considered, where each player is represented by a team of three participants.
Teams are video monitored and their discussion is analyzed to discover strate-
gies used for playing the MG. The video recordings reveal that teams rarely use
a randomization strategy and that they tend to focus more on their own past
actions than on opposing teams over time, specifically in the case when they
have been successful. It is however unclear whether these strategies are affected
by being taken by a group and not by a sole individual.

It is clear that more experiments must be conducted in order to acquire a
better understanding of the strategies used in the Minority Game. The web
based experiments open new directions, although recording and analyzing play-
ers can be proven equally fruitful towards unlocking their strategic choices.
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Chapter 4

Experiments

In this chapter simulations are performed for the individual, reinforcement learn-
ing and social imitation, represented by multi-population and single-population
replicator dynamics, respectively. Simulations were prototyped initially using
the well-known agent-based platform NetLogo [103],[82]. Moreover, custom im-
plementations using Java programming language were created to gain speed in
the computer experiments and retain cross-platform compatibility [74]. Individ-
ual learning comes first as the analytical solution has been presented and the
simulations follow as a validation of the theory in Chapter 3. In the case of social
learning, a mathematical model was not attempted. Therefore, experiments are
provided to investigate the rich phenomena of the social imitation algorithm.
Experiments include reporting attendance and volatility over time to measure
the efficiency of the system. Moreover, individual imitative agents behavior is
investigated, by monitoring their payoffs in the MG. In all experiments one unit
of time t is the equivalent of one round (step).
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4.1 Multi-Population Learning

A brief algorithmic analysis on the multi-population system reveals that volatil-
ity can reach the lower bound of LB(σ2/N) = 0. This is the case when the
mixer chooses a pure strategy, resulting in a constant minority side. However,
we will see through experimentation that this instance cannot be socially opti-
mal. We present below the algorithm of the individual learning model following
the pairwise imitation protocol (Algorithm 1).

Input: N odd Populations (Popi) each with n agents (agij).
Each Popi has an initial strategy pi, i.e the probability of playing action {1}.
Assign agent (agij) a deterministic action by the probability pi.
A revision rate R and a number of Imitators Im.
A probability change factor f ∈ (0, 1].

Set score(agij) = 0 ∀i, j
Start time t.
loop

Pick N random agents, one from each Popi.
Play the MG with prescribed actions and update score.
if t mod R = 0 then

for Each Popi do
Pick Im random agents (the Imitators)
Each Imitator Imij , chooses a Reference Refik
if score(Refik) > score(Imij) then

Imij imitates Refik action with probability
x = f × (score(Refik)− score(Imij))/R

end if
Set score(agij) = 0 ∀i, j

end for
end if
increment t step 1.

end loop

Algorithm 1: The Multi-Population Pairwise Imitation protocol algorithm

All indexes i, j of the algorithm start counting from zero. The first experi-
ment is performed using the following parameters as shown in Table 4.1.

In Figure 4.1, we present the attendance of the system with eleven players
w.r.t time.

As we can view in Figure 4.1, the attendance fluctuations constantly decrease
until convergence of the algorithm to one, out of the many, Nash Equilibria
with one mixer. In the NE state, we have |Att| = 1, which appears around
step t = 3500. Specifically for experiment of Table 4.1, the system converged to
the NE with the Population strategies as show in Figure 4.2. Here, pi denotes
the probability of Population i to play action 1 ( or 1 − p to play action 0).
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Parameter Value

Populations 11
Agents in Pop. 35
Imitators 18
Review Rounds 1
Prob. Change Factor 0.7

Table 4.1: Parameters for the first experiment using Multiple Populations as
Players.

Figure 4.1: Attendance w.r.t time of the Multi-Population MG with parameters
of Table 4.1.

Specifically, pi is calculated as the fraction of agents in population i who play
action 1. Therefore, we certify the segregation of (N −1)/2 players in each pure
strategy and the one mixer (Player 2, counting from zero).

In order to analyze the efficiency of the solution in terms of resource allo-
cation, the volatility of the system is measured w.r.t to time of the experiment
of Table 4.1. The volatility is presented in Figure 4.3 where, after some initial
fluctuations it drops, converging to the minimum value (dashed red line). Since
the actions of the rest of the populations is deterministic in NE, the minimum

43



Figure 4.2: Strategies of the MG Players with parameters of Table 4.1 (t =
3500).

value of volatility and mean attendance is a function of the mixer’s strategy. In
the current experiment Population 2 has strategy p ≈ 0.74, therefore the mean
attendance becomes 〈Att〉 = −1 · (1 − 0.74) + 0.74 = 0.48. Consequently, the
minimum variance is:

σ2 = (0.26 · (−1− 0.48)2 + 0.74 · (1− 0.48)2)⇒
σ2/N ≈ 0.07, with N = 11.

We remark that in the experiments we calculate the volatility over the whole
time series, resulting in the slow but steady convergence to the minimum after
time step t = 20000.

As it has been described through analysis and experiments, the individual
learning regime is optimal in terms of attendance levels. Specifically, the maxi-
mum number of players gains a point in each turn, however without nourishing
individual performance. In Figure 4.4 it is shown the scores of three representa-
tive populations over time. The score of each population is measured by averag-
ing over the points of the agents consisting the population. Population(player)
0 gains the highest score compared to the other two and along with him the
players that use the same strategy. What is more, the strategy of the unique
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Figure 4.3: Volatility w.r.t time of the Multi-Population MG with parameters
of Table 4.1.

mixer is what creates the difference in average payoffs, denoting the minority
side by its strategy. In experiment of Table 4.1, the mixer strategy is favoring
the populations playing action {−1}. Furthermore, the mixer population is al-
ways on the losing side after the algorithm convergences to NE. The difference
in performance between the populations can be viewed in a clear manner in
Figure 4.5, where we have a snapshot of the scores at time t = 150000. Players
0,1,3,4,7 form a group of equal high scores compared to the rest of the players
minus the mixer (Player 2).

Continuing the experiments, the robustness of the system is tested, in terms
of learning speed. Therefore, the number of populations is increased, the number
of agents in each population is decreased and the probability of change factor
is set to 1. Thus, the rule becomes to imitate surely in the case when a better
agent is met. Moreover, the number of imitators is set the same as number of
agents in a population. Therefore, in each round every agent has a chance to
imitate another agent. The parameters of the second experiment are placed in
Table 4.2.

The attendance and volatility of the experiment are presented in Figure 4.6.
We observe the fast convergence of the algorithm in time t = 1000. Thus, since
the procedure is robust, it is in the hands of the designer to set the desirable
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Figure 4.4: Average Scores w.r.t. time of the experiment of Table 4.1.

Parameter Value

Populations 101
Agents in Pop. 18
Imitators 18
Review Rounds 1
Prob. Change Factor 0.7

Table 4.2: Parameters for the second experiment using Multiple Populations as
Players.

learning parameters according to the purpose of the algorithm.
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Figure 4.5: Scores in time t = 150000 of players of the experiment with param-
eters of Table 4.1.

Figure 4.6: Attendance and Volatility w.r.t. time of the experiment of Table
4.2. Mixer has strategy p = 0.60.
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The mixer in the second experiment converged to strategy p = 0.60, i.e only
sightly favoring the action 0 as the minority. Thus, the populations following
pure strategy should have almost equivalent scores. In Figure 4.7, a snapshot
of the player scores is presented in time t = 2000, in sorted order. The mixer
has the lowest payoff and he will continue to lose in position 0 (red color bar in
color mode). The populations choosing action 1 are visible with the light blue
color, followed by the players with pure strategy p = 0 in the dark blue color
and the slightly higher payoffs. We observe that the difference in scores among
the populations playing pure strategies is lower than the previous experiment.

Figure 4.7: Average scores in time t = 2000 of players of the experiment with
parameters of Table 4.2.

Individual learning, is efficient terms of acquiring maximum sum of utilities
from the system. However, individual performance is affected by the strategy
of the mixer. Even in the case where the mixer plays symmetrically, he is the
one that will always lose when the algorithm has converged. Therefore, multi-
population model in MG is a “utilitarian” solution, not keeping payoff equality
among players. Continuing, the single-population model is investigated, where
we will find similarities and differences with the multi-population model.
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4.2 Single-Population Learning

Social imitation can be modeled through a single population of agents playing
the MG using a specific mixed strategy. Following the pairwise imitation pro-
tocol, agents revise their play when given the opportunity. Since there is no
relevant literature we will perform simulations to provide insight of the model’s
phenomena. The algorithm of social imitation is presented below (Algorithm
2).

Input: N odd Agents (Agi).
Each Agi has a strategy pi, i.e the probability of playing action {1}.
Assign agent (Agi) a strategy pi.
A number of agents that play the MG NumA ≤ N .
A revision rate R and a number of Imitators Im.
A probability change factor f ∈ (0, 1].

Set score(agij) = 0 ∀i, j
Start time t.
loop

Pick NumA random agents, one from each Popi.
Play the MG with actions dictated by agent strategies and update score.
if t mod R = 0 then

for Each Popi do
Pick Im random agents (the Imitators)
Each Imitator Imij , chooses a Reference Refik
if score(Refik) > score(Imij) then

Imij imitates Refik strategy with probability
x = f × (score(Refik)− score(Imij))/R

end if
Set score(agij) = 0 ∀i, j

end for
end if
increment t step 1.

end loop

Algorithm 2: The Multi-Population Pairwise Imitation protocol algorithm

Procedure 2 is very similar to Algorithm 1, however in this case the agents
play as individuals. In order to preserve the microfoundations of the model, a
parameter controlling how many agents of the available ones are playing the MG
[80], is introduced. Moreover, with respect to producing quality simulations it is
beneficial to have a population with N > 51. Below this number, the algorithm
becomes really sensitive to initial distribution of strategies.

Preliminary experiments show that segregation can arise in a population of
imitative agents. In this thesis, in order to be consistent with the reviewed
literature [90], all the available players are set to play the game (NumA = N).
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In Table 4.3, the parameters of the fist experiment are presented.

Parameter Value

Agents 99, 143, 195
Imitators 3
Review Rounds 3
Prob. Change Factor 0.7

Table 4.3: Parameters for the first experiment using a Single Population of
Players.

In Figure 4.8 we show the attendances w.r.t time for number of agents N of
Table 4.3 respectively.

It is evident from Figure 4.8 above that the system does not converge to a NE
of the MG game. However, the attendance values fluctuate around the comfort
level Att = 0 with mean 〈Att〉 = 0, throughout all realizations. Moreover,
the fluctuations of attendance do resemble the behavior of the original learning
algorithm of MG with histories. A closer look at the attendance graphs, reveals
that for all experiment cases of N , there is a significant reduction around step
t = 30000 of the attendance fluctuations. The decrease of fluctuations, although
a noisy process, seems not to depend on the number of agents in the population.
Therefore, it is of real interest to study the mixed strategies used by the agents
in the stationary state. In Figure 4.9 typical strategies used by the agents are
presented, along with the fraction of the population using them respectively for
the parameters of Table 4.3, in stationary state. The results of Figure 4.9, are
normalized over the total population number. Segregation is visible, however
the strategies used are not always the pure ones of p = 0 and p = 1. This effect
is due to the initial distributions of the runs, where the pure strategies can get
lost in the early stages of imitation.

As is shown in Figure 4.9 in the N = 99 case(green triangle), the popula-
tion is split in almost equal sized groups when playing the extreme strategies.
However, as we see in N = 143, 195 cases, when the converged strategies are
not the extreme ones, the two respective fractions playing each strategy are not
equal. Moreover, as shown by the variance point bars, the strategy distributions
are not constant, but rather oscillate with a rate equal to the number of the
imitators. Naturally, the next inquiry regards which strategies do appear in the
stationary state. In Figure 4.10, the histogram of the strategies played in the
stationary state over a five thousand realizations for N = 99, are showed. The
system preference to converge to the pure strategies is clear, followed by the
complete absence of the near symmetric strategies. What is more, experiments
show that the results are independent from the number of agents and in each
case the surviving strategies are always two. In Figure 4.11, we plot the pairs
of strategies in stationary state of the multiple realizations for N = 99. The
clustering in the extreme strategies region is clear with few exceptions.

Concerning the efficiency of the system and the maximization of utility in a
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(a) N = 99 (b) N = 143

(c) N = 195

Figure 4.8: Attendance w.r.t time for N = 99, 143, 195 of Table 4.3 respectively.
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Figure 4.9: Strategy snapshot in stationary state w.r.t agent fraction for popula-
tion parameters of Table 4.3, t = 120000. The point bars represent the variance
of the agents in each case.

social setting, the volatility of the system with the parameters of Table 4.3 is
plotted, in the stationary state. Experiments show that volatility is a function
of the strategies in converged state rather than the number of agents in the
population. In Figure 4.12, the normalized variance of all population sizes of
Table 4.3 is presented. In this specific case all three experiments converged
approximately to the same pair of strategies (0.1, 0.9).

Moreover, all volatilities drop below the random play threshold of value 1,
converging to σ2/N ≈ 0.35. The convergence goes smoothly for N = 99, 195,
however not for N = 143 where the imitation process was not directed imme-
diately to the extreme strategies. Thus, resulting in a higher volatility until
convergence to the stationary state. In order to visualize the dependence of
volatility with respect to the strategies in the stationary state, we plot Figure
4.13. Volatility in Figure 4.13 is averaged over many realizations for each strat-
egy pair (Strategy 1, Strategy 2) for N = 99. We remark the linear decrease of
volatility as Strategy 2 approaches the p = 1 for values of Strategy 1. This be-
havior is consistent except for the case when Strategy 1 has value p = 0.4, where
volatility remains constant for all values of Strategy 2. Moreover as Strategy
1 reaches the value p = 0.4 the minimum volatility at Strategy 2 value p = 1
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Figure 4.10: Histogram of strategies at stationary state, with parameters of
Table 4.3 and N = 99.

increases linearly. As expected the minimum value of volatility for the system
is found at the strategy pair (Strategy 1 = 0, Strategy 2 = 1).

In a broad view, the results concerning efficiency surely favor individual
learning, as in that case we can optimally utilize the system resources. Never-
theless, the efficiency of reinforcement learning has a price paid by the inequality
of scores among the players. On the contrary, social learning provides a more
“egalitarian” solution, where agent payoff do not have great differences. In Fig-
ure 4.14, we present the minimum, maximum and average payoff of the agent in
a population of N = 99 over time. We observe that the minimum and maximum
score stay close to the average and grow with the same rate. Moreover in Fig-
ure 4.15, typical individual performance of three random agents is plotted w.r.t
time. Notably, there are changes in the position of the agents according to the
maximum score, i.e there is no specific agent performing better than the rest for
the whole duration of the experiment. Intuitively, we understand that the best
performance in score will be imitated, thus losing its advantageous position in
time.

To provide further insight of the imitation process, we present Table 4.4,
consisting of five typical results of our experiments with population of N = 99.
In the first column we have the index number, second is the pair of strategies at
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Figure 4.11: Strategy pairs at stationary state, with parameters of Table 4.3
and N = 99.

stationary state and in the third column the corresponding population fraction
playing them.

Index Strategies Population Portion

1 (0.3, 0.85) (0.62, 0.36)
2 (0.07 , 0.90) (0.48, 0.50)
3 (0.003, 0.94) (0.52, 0.47)
4 (0.01, 0.88) (0.44, 0.54)
5 (0.17, 0.97) (0.58, 0.41)

Table 4.4: Strategy and average fractions of population playing them, with
N = 99 and Table 4.3 parameters.

Notably, regardless of the strategy pair, the fractions of the populations play-
ing each strategy are such that expectedly half of the agents will play action
{1} (and the rest action {0}). Imitation pushes the agents to be equal and tries
to settle to the symmetric NE. What is more, this type of behavior is consistent
for all population sizes. Therefore, as stated above, social imitation is a more
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Figure 4.12: Joint volatilities w.r.t time of the experiment with parameters of
Table 4.3. N = 99, 143 and 195 are represented by a solid, dashed and dotted
line respectively.

democratic platform of learning than individual learning. However equality has
as a consequence, the lost efficiency in resource allocation. Continuing on study-
ing the robustness of the pure strategies in the MG using the pairwise imitation
protocol, preliminary tests are performed using simplistic initial strategy dis-
tributions. Specifically in Figure 4.16, it is shown a typical plot of strategies
evolution, when the game is played using only three strategies, namely the two
pure ones and the symmetric mixed strategy. As we observe in Figure4.16 ,
the mixed strategy does not survive, which is a consistent behavior. The mixed
strategy never survives the two pure ones. However, adding more mixed strategy
closer to the extreme ones, there is a likelihood that pure strategies diminish in
the evolution process. Specifically in Figure 4.17, p = 0 disappears and p = 0.2
survives. Intuitively, the preference of a mixed strategy over the pure ones is
a function of the number of agents using each strategy. If the initial distribu-
tion of players favors the mixed strategy over the extreme one, this can lead to
the pure strategy disappearance. Furthermore, adding more initial strategies
to the system enhances the chaotic behavior of the convergence of strategies,
where no definite conclusions can be drawn. Nevertheless, in order to acquire a
clearer view of the convergence phenomena, further experimentation and dedi-
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Figure 4.13: Volatility w.r.t pair of strategies (Strategy 1, Strategy 2) in the
stationary state for parameters of Table 4.3 (N = 99).

cated analysis is required. Specifically, there is further questions regarding the
microfoundations of the model, i.e having a population of agents and only a
certain number of them play the MG in each turn. Such a setting can provide
more intuition on the behavior of the social imitation process.
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Figure 4.14: Minimum, maximum and average scores w.r.t time of an instance
of N = 99 with parameters of Table 4.3. Minimum, maximum and average are
represented by a black solid, red dashed and blue dot-dashed line respectively.
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Figure 4.15: Scores of three random agents w.r.t time of an instance of N = 99
with parameters of Table 4.3.
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Figure 4.16: Strategies evolution, using initial values p = 0, 1 and 0.2.
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Figure 4.17: Strategies evolution, using initial values p = 0, 1, 0.5, 0.8 and 0.2.
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Chapter 5

Conclusions

In this thesis individual and social learning was investigated through a simple
congestion game with many (odd number) participants, the Minority Game.
The Minority Game, originally designed to model bounded rational agents,
proved to be a fruitful research platform of evolutionary game theory learning
methods. On one hand individual learning, representing the behavioral rein-
forcement adaptive methods, is modeled through Multi-Population replicator
dynamics. In the memoryless MG, reinforcement learning leads to optimality in
terms of resource allocation of the game, i.e. minimization of the systems volatil-
ity of attendance. Optimality is reached through the asymptotically stable Nash
Equilibrium of the replicator dynamics, where player populations split equally
between the two pure strategies and one using a mixed strategy. Nevertheless,
optimality in attendance levels comes at the price of inequality between agents
performance. Social imitation on the other hand, representing social learning in
a single population of agents, does provide a more egalitarian environment for
the players. Agent-based simulations showed that social imitative agents, play-
ing the MG, keep the mean attendance to zero, much like the original algorithm
results. The system does not reach a Nash Equilibrium, but rather continuously
fluctuates around the zero attendance level, much like the original MG. Further
research should be performed to provide analytical treatment on the imitation
process of agents in a single population. Furthermore, simulations using vari-
ous initial strategy distributions and different number of participants from the
whole population, should yield more insight on the evolution of strategies and
the convergence properties of social learning in the Minority Game.
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