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1 Introduction

To gain insight in the spread of an infectious disease, it is important to know who infected whom. A trans-
mission tree can be used to describe these transmission events between hosts, see Figure 1 for an example.
For most diseases the complete transmission tree cannot be observed because of missing data. However, due
to its great value for understanding the disease dynamics, epidemiological data, like the time and source of
infection, are often used to reconstruct the transmission tree. Another valuable method, which has become
more popular in recent years, is to estimate the transmission tree based on genetic data of the pathogen,
i.e., the micro-organism causing the disease. The genetic differences between the pathogens obtained from
different patients and/or at different time points are used to relate these micro-organisms evolutionarily; the
larger the difference, the further away the pathogens are in the tree. While in a transmission tree infected
hosts are related, the phylogenetic tree relates the pathogens within these hosts based on their genetic dis-
tance. The field of study that relates organisms evolutionarily is called phylogenetics.

In this thesis we look at the spread of hepatitis B among men who have sex with men (MSM) in the Nether-
lands. The aim is to investigate what role acutely and chronically infected individuals play in the spread
of the disease. Are most infections caused by acutely infected hosts which are often sexually active but
infected for a short period in time? Or is the disease mostly spread by chronically infected hosts which
are infectious for a long time? For the effectiveness of the current vaccination program these are important
questions. It is difficult to answer these questions by standard epidemiologic methods because the infection
is often asymptomatic and most transmission events are unobserved. We use genetic data of the pathogen
obtained from both acutely and chronically infected individuals to construct a phylogenetic tree and to infer
the corresponding transmission dynamics.

In Section 2 we will start with some background information about genetics and we will introduce some basic
concepts. Although hepatitis B is a virus, most concepts will hold for pathogens in general. We therefore
make no distinction between them. An overview of hepatitis B and the data used is given in Section 3. In
Section 4 we discuss the model used to construct the phylogenetic tree from our data. In Section 5 two models
are introduced for quantifying the transmission dynamics from the phylogenetic tree. The phylogenetic tree
generated from our data and the corresponding results using the two models for quantifying the transmission
dynamics are discussed in Section 6. Finally, in Section 7, we discuss the models and give recommendations
for future work.

Figure 1: Transmission tree with time going to the right. Each branch corresponds to one infectious indivi-
dual. During the infectious period, an individual can infect others (denoted by a vertical arrow). The duration
of the infectious period equals the length of the branch; at the end of a branch the individual recovers or
dies. In this tree one index case infects two individuals and one of these infects another individual. Note
that we assume that an infected individual is immediately infectious after infection.
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2 Genetics

DNA, or deoxyribonucleic acid, is a molecule that encodes the hereditary (or genetic) information of most
living organisms. It usually consists of two complementary strands twisted around each other to form a
double helix. Each strand is a sequence of four different nucleotides: adenine (A), guanine (G), cytosine (C)
and thymine (T). The nucleotides in one strand pair with the nucleotides in the other strand in the combi-
nations adenine-thymine (A-T) and cytosine-guanine (C-G) via two and three hydrogen bonds respectively.
Therefore the A-T bond separates more easily.

The complete package of all hereditary information, coded by a sequence of nucleotides, is called the genome
of an organism. Part of this string are genes, combinations of nucleotides coding for a protein, which are
situated on the chromosomes in the nucleus of our cells. The other and biggest part of the genome has
no known function. The genes are transcribed into ribonucleic acid (RNA) for translation into proteins.
RNA is also a molecule encoding the genetic information. Some differences with DNA are that RNA is a
single-stranded molecule and that the nucleotide uracil (U) replaces thymine (T). Pathogens use DNA as
a carrier of their genetic information, except for many viruses that use RNA to encode their hereditary
information [1]. Nevertheless, hepatitis B is a DNA virus and it has the rare property that it is partially
double stranded. The full-length genome consists of 3020 to 3320 nucleotides [2].

DNA sequences are subject to evolutionary processes like resampling, recombination, mutation, selection
and migration. During resampling, or reproduction, genetic information is passed on from one generation to
the next. This process depends on the type of organism. For haploid organisms like bacteria, there is only
one copy of the genetic material in the chromosomes. This means that at resampling there is only one parent
and a copy of its genetic information is passed on to its offspring. For diploid organisms like humans, each
chromosome has two copies of its genetic material. In this case, during resampling both parents pass on one
of each of their pairs of chromosomes to their offspring. It is possible for a parent to pass on a combination
of both of its chromosomes; the genetic material between the two copies of a chromosome is exchanged. This
is called recombination. Since recombination is very complicated and it doesn’t seem to occur in our data,
we ignore this in our study.

Figure 2: Replication of a DNA strand with a mutation in one of its replicated strands [3].

Another evolutionary process is mutation. A mutation corresponds to a change in the order or content of
the nucleotides in a DNA sequence. For example, during replication of the DNA sequence in which the two
strands are pulled apart and along both strands a new complementary chain is formed, a wrong nucleotide
can be inserted. These substitutions can be between two nucleotides of the same type (A↔ G, both purines
or C ↔ T, both pyrimidines) which are called transitions. Transversions are all other possible nucleotide
substitutions and occur less frequently. An illustration can be found in Figure 2. It is also possible during
replication that one or more nucleotides are added to or omitted from the replicating strand. These types of
mutations happen spontaneously. However, it is also possible that these mutations are caused by environ-
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mental exposure to certain chemicals, ultraviolet radiation, or other external factors [4]. Mutations play an
important role in this study, we will discuss this in the next section.

When different gene types or alleles have different predispositions for resampling, this is called selection.
For example, one type could have a higher rate of reproduction. In this study we assume that there is
no selection. This implies neutral mutations; mutations in the pathogen sequence don’t change its rate of
reproduction and its ability to survive.

Finally it is also possible that genetic material is spread from one population to another due to migration.
We will see some kind of migration in the models used for estimating the transmission dynamics in Section
5.

2.1 Phylogenetic tree

To get an idea of the transmission tree of an infectious disease a phylogenetic tree can be constructed.
While a transmission tree represents the transmission of an infectious disease between hosts, a phylogenetic
tree relates the pathogen sequences within these hosts. Once a pathogen enters a host, replication can
take place. During this process of replication, mutations can occur resulting in new pathogens with different
genetic sequences. These mutated pathogens can be passed on to other hosts when new infections take place.

Like mentioned before we assume there is no selection, i.e., we have neutral mutations. Therefore we can
assume that the mutation rate, the rate at which a nucleotide in a single pathogen mutates, equals the
substitution rate. This is the rate at which a mutation is fixed in the total within-host pathogen population.
The substitution rate is also assumed to be constant over time and among different pathogens, this is called
the molecular clock hypothesis [5]. In case of selection we can’t assume that the mutation and substitution
rate are equal, since it is possible that the mutated pathogen goes extinct because of another within-host
pathogen with better predispositions for resampling. In this case a mutation may result in no substitution.

Due to mutations, genetic sequences of pathogens sampled from different hosts differ. The less differences
the strands have, the more likely it is that one of the hosts (indirectly) infected the other. How much the
genetic sequences differ is measured by a possibly complicated function of the two genetic sequences, see
Section 4. The genetic distance is indicative for how far the sequences are apart in the phylogenetic tree.

An example of a phylogenetic tree is shown in Figure 3. In this figure time goes to the right. The ends of
the tree, the leaf nodes (taxa), represent the genetic sequences of the pathogens sampled from different hosts
and the times at which they are sampled. When the sequences are sampled at the same time, we speak of
homochronous sampling. When the sampling times aren’t equal, this is called heterochronous sampling. The
samples are related by their ancestral lineages, based on the genetic distances. A bifurcation event denotes a
replication event; the pathogen corresponding to the branch before the bifurcation replicates and gives birth
to a new pathogen initiating one line of descent and continues in the second ‘descending’ lineage itself. It
is unknown to which of these two pathogens each of the two descending lineages belongs. These bifurcation
events therefore denote the common ancestors of two or more of the sampled pathogens. The left-most node
of the tree, the root, equals the Most Recent Common Ancestor (MRCA) of all genetic sequences. Note that
a bifurcation event in the phylogenetic tree represents a replication within one host. However, infection of a
new host has to take place (shortly) after the bifurcation because the sampled pathogens are from different
hosts. In a transmission tree a branching event denotes an infection between different hosts.

The phylogenetic tree only depicts the ancestral relationships between sequences which are sampled. Ac-
tually, there will be hosts infected with the pathogen which aren’t sampled. Therefore it could have been
that a bifurcation took place at one of the branches despite it isn’t visible in the phylogenetic tree. For
example, suppose that there was a bifurcation at branch a in Figure 3, marked by the dotted line. There
are two possible situations. The first one is that the replicating pathogen initiates the line of descent which
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Figure 3: A phylogenetic tree with time going to the right. Genetic sequences of the pathogens sampled
from different hosts are represented by the leaves of the tree and are related by their ancestral lineages. The
root of the tree denotes their Most Recent Common Ancestor (MRCA). Each bifurcation event denotes a
replication of a pathogen within a host. The dashed line descending from branch a belongs to an unsampled
infection, also called an invisible infection.

is eventually sampled (black solid line) and its descendent initiates the dotted line which isn’t sampled and
has no sampled descendants. In the other case the replicating pathogen initiates the line which isn’t sampled
(dotted line) and its descendent initiates the line which is eventually sampled (black solid line).

The transmission and phylogenetic tree can differ in the times of the internal nodes and topology. This
difference is the largest in case a large fraction of the total number of infected hosts has been sampled. The
times of the internal nodes for both trees are almost the same in case this sample fraction is low [6]. For
our study the sampling fraction is low, therefore we expect the phylogenetic tree to be indicative for the
transmission tree. However, for the models described in Section 5 we need that the transmission times equal
the bifurcation times in the phylogenetic tree and that each infected host corresponds to a single lineage, i.e.,
one branch of the phylogenetic tree. Therefore we will assume that each host has only one pathogen, which
can mutate during the time within this host, and equal rates for replication of the pathogen and transmission
between hosts. An infection in the phylogenetic tree will then always be between hosts.
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3 Data

3.1 Hepatitis B

Hepatitis B is an inflammation of the liver which is caused by the hepatitis B virus (HBV). The virus is
spread through contact with infected body fluids, for example by unsafe sexual contact, blood transfusion,
from mother to child during birth, by puncture wounds or by shared use of needles [7]. When being deposited
on a surface, the virus can stay infectious for about a week [8].

In developing countries with a high number of HBV infections, for example in sub-Saharan Africa and East
Asia, the most common routes of transmission are from mother to child during birth or from person to
person during childhood. In countries with a high standard of living, for example in Western Europe or
North America, infection is mostly spread due to unsafe sexual contacts and by injecting drug users [9].
There are also differences in the genotype, the genetic information, of the virus between regions. These
genotypes are labeled from A to H. In the Netherlands the most common genotypes are A and D, the first is
associated with MSM and injecting drug users, the second with the Moroccan population in Amsterdam [10].

An infection with hepatitis B has several clinical stages. The time between infection and symptoms onset,
or incubation time, depends on the initial viral dose and is about 6 to 26 weeks. When one gets infected
with HBV, there are two different types of infection: acute hepatitis B with symptoms like tiredness, fever,
joint complaints and jaundice (yellowing of the skin and eyes) or an acute infection with mild or even no
symptoms [11]. About two-thirds of patients infected with HBV will have an asymptomatic acute infection.
The average time of an acute HBV infection is 3-4 months [12] and afterwards most people recover. These
recovered people obtain life-long immunity. About 1% of the acutely infected patients develop fulminant
hepatitis, a sudden but intense infection, often with death as a result [13].

However, sometimes the infection is still present after 6 months and the acute infection will progress to a
chronic infection. This is thought to happen in 5% of the cases [13], although a recent study [14] suggests
this to be 23% and 28% for MSM and drug users respectively. Most of them will become an asymptomatic
carrier of the virus, some others will suffer complaints like impairment of the liver (hepatic impairment),
high blood pressure of the portal vein and chronic fatigue. 25-35% of the chronically infected individuals
develop cirrhosis or liver cancer, resulting in an early death for 15-25% of them [11].

The course of the infection depends on the viral replication of HBV in the liver while the severity of the
course depends on the immune response of the host. For example, impairment of the liver isn’t indicative of
the virulence of the virus but is caused by a strong cellular immune response of the host. The probability
that an acute infection proceeds to chronic carriage differs between patients, depending on their age, immune
status and gender. Also, an asymptomatic acute infection is more probable to develop to a chronic infection.
70-90% of the infected newborns (mostly in South East Asia) become chronic carriers. For children under age
five this is 25-50% and for older children and adults just 5-10%. Furthermore the probability of developing
chronic carriage is six times higher for men than for women. For acutely infected patients with less immunity
or with an HIV infection the virus replication continues and chronic carriage is a result. In these cases the
virus replication is higher but the severity of the infection is less [13].

In the Netherlands the number of new infections per year, the incidence, is relatively stable since 1990.
Before 1981 there was a strong increase in the incidence followed by a strong decrease from 1981 until 1990.
This strong decline can be partially explained by a change in sexual behavior due to the AIDS epidemic and
is also partially due to the introduction of an effective vaccine in 1982. In 2012 in 61% of the acute HBV
cases the route of transmission was unsafe sexual contact [11,15].

To prevent the spread of hepatitis B the Netherlands uses screening of pregnant women, vaccination of
newborns and vaccination of risk groups. In 1989 the screening of pregnant women is introduced nationally
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in order to prevent HBV transmission from mother to child during the birth. Most of these infections
won’t be noted while in most cases the child will become chronic carrier of the virus with a realistic chance
to die early. When HBV is found in a pregnant women the newborn will receive antibodies and a first
vaccination against the virus. Nationwide vaccination of risk groups has been started in 2002. This program
is directed to MSM, hard drugs users (both injecting and swallowing) and prostitutes (men and women).
These risk groups have an enhanced probability to get infected with HBV due to their behavior. Since 2012
hard drugs users are excluded from this vaccination program because they weren’t considered to be a risk
group anymore [16]. In Amsterdam a vaccination program targeted against HBV in MSM already started
in 1998 [12]. Since 2000 all medical staff are legally entitled to a vaccination. After the first of August of
2011 all newborns are vaccinated against HBV. Since 2003 the vaccination is already part of the National
Immunisation Programme (NIP) for children who have an enhanced probability to get infected with the
disease. These are children from mothers who are carrier of HBV and children from which at least one
of the parents originates from a region with a high presence, prevalence, of HBV. Also children with the
Down syndrome have a higher probability to get infected. These children are also included in the NIP since
2008. The vaccination protects for at least 25 years, even life-long immunity is expected. It is expected that
the selective vaccination of risk groups and the recent introduction of vaccinating all newborns, will have
an effect on the number of reported HBV cases. The effect on the prevalence will only be visible in the
long-run [11,17].

3.2 Data collection

In this study we want to investigate what role acutely and chronically infected individuals play in the spread
of hepatitis B among MSM in the Netherlands. To answer this question we use DNA sequences of the virus
collected from both acutely and chronically infected individuals. The data used in this study consists of 57
full-length genetic sequences of the hepatitis B virus collected from individuals with an acute HBV infection
and 27 full-length genetic sequences collected from individuals with a chronic HBV infection, all associated
with genotype A and 3221 nucleotides long. These genetic sequences are collected from blood samples
taken from acutely or chronically infected MSM. 30 blood samples, from which 26 chronic, are obtained
from the Amsterdam Cohort Studies, the other 54 blood samples are collected from the Municipal Health
Services (GGD) in different parts of the Netherlands. Corresponding to these genetic sequences we also have
epidemiological data like the sampling date (the date at which the blood sample has been taken from the
patient) and place, personal information like birth date, age and postal code, the number of partners in the
last 6 months, the most likely route of transmission and more. However, most of the information is only
available for a part of our blood samples. The sampling dates for the chronically infected individuals range
between 1985 and 2005; more than a half of these are sampled in 1985. For the acutely infected individuals
the sampling dates range between 1986 and 2011, mostly after 2000.
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4 A model to construct the phylogenetic tree from genetic data

In a phylogenetic tree pathogen sequences from infected hosts are evolutionarily related. The higher the
genetic distance between two DNA sequences, the more they are apart from each other in the tree. A simple
way of measuring this genetic distance is by counting the number of different nucleotides, i.e., the number
of mutations. However, this measure only takes those mutations into account which are observable, not
those who disappeared through time because of a second mutation on the same site. Another lack of this
measure is that it is assumes that all mutations occur with the same frequency [18]. A more reasonable
model describing the genetic distance is the Hasegawa-Kishino-Yano (HKY) model [19].

The Hasegawa-Kishino-Yano (HKY) model accounts for the fact that transitions, replacements of a purine
by the other purine (A ↔ G) or of a pyrimidine by the other pyrimidine (C ↔ T), occur more often than
transversions, which are replacements of a purine by a pyrimidine or vice versa. Furthermore this model
corrects for different base frequencies, i.e., the nucleotides A, T, C and G can occur at different frequencies in
the sequence. Changes in the nucleotides of a pathogen sequence evolve according to a Markov chain process.
The corresponding transition matrix P , where Pi,j denotes the probability that a base i is substituted by a
base j in one small unit time, equals

P =


A T C G

A 1− (aπG + bπT + bπC) bπT bπC aπG
T bπA 1− (aπC + bπA + bπG) aπC bπG
C bπA aπT 1− (aπT + bπA + bπG) bπG
G aπA bπT bπC 1− (aπA + bπT + bπC)

,
so the probability that at time t+ ∆t a base equals i (with i ∈ {A, T,C,G}), denoted by pi, equals

(pA, pT , pC , pG)(t+ ∆t) = (pA, pT , pC , pG)(t)P.

Here a and b denote the probabilities of transitions and transversions respectively and πi equals the sta-
tionary frequency of nucleotide i (i ∈ {A, T,C,G}) in the genetic sequence so πA + πT + πC + πG = 1.
Furthermore, 2b + a < 4 in order to prevent that the probabilities to change from a base to itself become
zero. The transition probabilities are independent of the state before the time of the transition and be-
cause of the molecular clock hypothesis our transition probabilities are also independent of the time of the
transition. With these assumptions the substitutions in this HKY model indeed evolve like a Markov chain
process. The substitution rates at different sites of the genetic sequence, i.e. positions, are assumed to be
equal.

With the transition matrix P the expected genetic distance between two sequences, the average number of
substitutions per site, can be calculated. Since the branch lengths in a phylogenetic tree are in units of the
expected substitutions per site, the genetic distances between all sampled sequences can be used to construct
the phylogenetic tree. Because of the molecular clock hypothesis that assumes a constant substitution rate,
this distance can be translated into a distance in time.

In this study a phylogenetic tree is obtained by the use of BEAST [20], TreeAnnotator which is part of the
BEAST package [20], R [21] and FigTree [22]. For the technical details see Appendix A.
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5 Estimation of the transmission dynamics given the phylogenetic
tree

There are several models to estimate the transmission dynamics from a phylogenetic tree. The two models
used for this study are based on a multi-type birth-death branching model introduced by Tanja Stadler et
al. [23] and a coalescent model introduced by Erik Volz [24]. The main idea is to calculate the likelihood
of the model parameters given the phylogenetic tree and find the parameter set which maximizes the likeli-
hood. The optimization methods we use for finding the maximum likelihood estimators of the parameters
are discussed at the end of this section.

When we mention the host or infected population we consider only the part of the total population which
is infected with the disease. The total population can denote a certain risk group, in our specific case MSM
in the Netherlands.

5.1 Multi-type birth-death branching model

We will start with introducing the multi-type birth-death branching model for m different types. Afterwards
we will focus on the two-type birth-death branching model that represents the transmission dynamics of
hepatitis B.

5.1.1 Multi-type birth-death branching model with m different types

The multi-type birth-death branching (MTBD-m) model describes the transmission dynamics of a host
population with m different types (transmission groups), also called states. All individuals are characterized
by their type and secondary infections take place with type-dependent birth (transmission) rates. At the
beginning of the process there is only one individual with an initial type. The rate at which an individual
of type i gives birth to an individual of type j equals λi,j . Individuals of type i die with rate di. Directly
after death an individual of type i may be sampled with probability si. In epidemiological context, death
is defined as becoming-non-infectious due to host death, recovery, a change in behavior or successful treat-
ment. Sampling an individual means that the pathogen sequence of this infected host is used for deducing
the phylogenetic tree. At time t0 the process stops. Furthermore, we assume that an individual can change
from type i to type j with rate γi,j (γi,i = 0 for i ∈ {1, . . . ,m}), due to migration between geographical
locations or a change in infection state.

To calculate the likelihood of a parameter set given the phylogenetic tree two definitions are needed. Before
we state these, note that time is going backwards. Time at present equals zero and time is increasing going
into the past. For example, if a birth event occurs at time t this means that the time between this event
and the present (time 0) equals t.

Definition 1. For an individual represented by a branch N at time t in state i (i ∈ {1, . . . ,m}), DNi(t)
equals the probability density that this individual gave rise to the phylogenetic tree as given between time t
and the present (time 0).

Definition 2. Ei(t) equals the probability that an individual in state i (i ∈ {1, . . . ,m}) is not sampled and
has no sampled descendants between time t and the present (time 0).

Backwards in time, starting from the leaf nodes, DNi(t) can be derived along the branches of the phylogenetic
tree ignoring all future events with time greater than t. Suppose that a leaf node in state j has been sampled
at time τ in the past. Then, the probability density that an individual at time τ in state i produces the
phylogenetic tree as observed equals

DNi(τ) =

{
disi, if j = i

0, if j 6= i
. (1)
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The individual has to be sampled at time τ and has to be in state j. Furthermore, sampling only occurs
immediately after becoming-non-infectious. For t > τ , i.e., time t is further back in time than time τ , we
can set up the differential equations for DNi(t). Below we derive an equation for DNi(t + ∆t) based on
DNi(t) where ∆t denotes a small positive time step. To derive this equation we use that along an arbitrary
branch N and during a small time interval ∆t five different ‘events’ can occur, each corresponding to one of
the five terms in the equation below. The first term represents that no birth or death event happens and
that the individual doesn’t change state. The second possible event is the birth of an individual in state j
whose lineage produces no samples in time t. The third term represents the birth of an individual in state j
while the transmitting individual i produces no samples in time t. The fourth possible event represents the
transition of an individual in state i to state j. The possibility of more than one event during the interval
∆t, for example multiple births, is included in the last term.

DNi(t+ ∆t) =

1−

 m∑
j=1

(λi,j + γi,j) + di

∆t

DNi(t) +

m∑
j=1

λi,j∆tEj(t)DNi(t)

+

m∑
j=1

λi,j∆tEi(t)DNj(t) +

m∑
j=1

γi,j∆tDNj(t) +O(∆t2)

For ∆t→ 0 the differential equation for DNi(t) becomes

d

dt
DNi(t) = −

 m∑
j=1

(λi,j + γi,j) + di

DNi(t) +

m∑
j=1

λi,jEj(t)DNi(t) +

m∑
j=1

λi,jEi(t)DNj(t) +

m∑
j=1

γi,jDNj(t). (2)

This differential equation includes Ei(t), the probability that an individual in state i is not sampled and has
no sampled descendants between time t and the present (time 0). In an analogous way as for DNi(t), we
can find a differential equation for Ei(t). As an initial condition, so at time 0, Ei(t) equals 1 for all possible
types. The individual at the present cannot be sampled since then he/she would have become non-infectious
and therefore would have been removed. However, he/she is still present now and possibly in the future. So,

Ei(0) = 1 for all i ∈ {1, . . . ,m}. (3)

For time t and given Ei(t) the formula for Ei(t+ ∆t) becomes

Ei(t+ ∆t) = (1− si)di∆t+

1−

 m∑
j=1

(λi,j + γi,j) + di

∆t

Ei(t) +

m∑
j=1

λi,j∆tEi(t)Ej(t) +

m∑
j=1

γi,j∆tEj(t) +O(∆t2).

In this equation the first term represents death without sampling. The second term equals the probability of
no birth, death or state change in time ∆t times the probability that the lineage does not produce samples
in time t. The third term is the probability of a birth of an individual in state j where both lineages don’t
produce samples in time t. The fourth term represents the probability of a change in state from i to j times
the probability that the lineage does not produce samples in time t. The fifth term equals the probability
for more than one event during time ∆t. When we let ∆t→ 0, we obtain as a differential equation for Ei(t)
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d

dt
Ei(t) = (1− si)di −

 m∑
j=1

(λi,j + γi,j) + di

Ei(t) +

m∑
j=1

λi,jEi(t)Ej(t) +

m∑
j=1

γi,jEj(t). (4)

Now we have the differential equations for both DNi(t) and Ei(t) backwards in time, we can calculate these
probabilities along the branches of the phylogenetic tree starting from the leaf nodes. At a bifurcation
event A in state i and at time t we want to calculate the probability DAi(t) of obtaining the two subtrees
descending from this event. Suppose that the two branches descending from the bifurcation event are K and
M . Then there are two possibilities. Either the individual that initiates branch M has given birth to the
individual initiating lineage K, or the individual that initiates branch K has given birth to the individual
initiating lineage M . This yields

DAi(t) =

m∑
j=1

(λi,jDM,i(t)DKj(t) + λi,jDM,j(t)DKi(t)) . (5)

This probability is subsequently used as the initial value for the branch starting from the bifurcation event.
Along this branch the change in the probability can then be calculated by using the differential equations for
both DNi(t) and Ei(t) again. This process repeats itself for all bifurcation events and along all branches of
the phylogenetic tree until the root of the tree is reached. For the change in Ei(t) we can use its differential
equation since the probability that an individual in state i is not sampled and has no sampled descendants
between time t and the present (time 0) doesn’t depend on how the phylogenetic tree evolves. Actually, it
is only depending on the time until present, state specific parameters and Ei(t) for all possible states.

Using Equations (2), (4) and (5) together with the initial conditions (1) and (3) and going backwards in time
until the origin of the tree is reached, we can yield the probability density of the whole phylogenetic tree
given the root is in state i, DOi(t0), for i ∈ {1, . . . ,m}. The overall probability density of the phylogenetic
tree equals

p (T |λ, d, s, t0) =

m∑
i=1

fi
DOi(t0)

1− Ei(t0)
, (6)

where fi equals the fraction of individuals at time t0 being in state i. The probability density DOi(t0) is in
this expression divided by the probability that the individual at time t0 gives rise to at least one sampled
individual. Conditioning on this gives more accurate rate estimates [25]. This makes sense since analyzing
non-sampled transmission chains is not of interest.

In this study we assume fi to be equal to the equilibrium frequencies for all i ∈ {1, . . . ,m}.

5.1.2 Hepatitis B specific two-type birth-death branching model

As discussed in Section 3 a person infected with hepatitis B first becomes acutely infected. After roughly
three to four months the infection is either cleared or the infection progresses to a chronic infection. Since
an infection can be in two states, the acute or the chronic state, we can translate our transmission dynamics
into a two-type birth-death branching model with the parameters given in Table 1. In this table state 1 and
state 2 denote the acute and chronic state respectively.

Note that in this table the parameters λ1,2, λ2,2 and γ2,1, which denote the rates at which acutely and
chronically infected individuals give birth (transmission) to a new chronically infected individual and the
rate at which a chronically infected individual progresses to the acute state respectively, aren’t given. Since
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λ1,1 the rate at which an acutely infected individual gives birth (transmission) to
a new acutely infected individual

λ2,1 the rate at which a chronically infected individual gives birth (transmission) to
a new acutely infected individual

d1 the rate at which an acutely infected individual dies (becoming-non-infectious
due to host death, recovery, behavior change or successful treatment)

d2 the rate at which a chronically infected individual dies (becoming-non-infectious
due to host death, recovery, behavior change or successful treatment)

γ1,2 the rate at which an acutely infected individual progresses to the chronic state.

Table 1: The parameters for the two-type birth-death branching model that describes the transmission
dynamics of hepatitis B. The acute and chronic state are denoted by 1 and 2 respectively.

an infected person always becomes acutely infected with hepatitis B first and it isn’t possible to move from
the chronic to the acute state, these parameters equal zero and are, therefore, irrelevant to the model. Be-
sides these parameters we also have the parameters s1 and s2 which denote respectively the probability to
sample either an acutely or a chronically infected individual directly after death.

For the two-type birth-death branching model the reproduction number R0, the expected number of
secondary infections caused by a single infected individual in a completely susceptible population, equals the
expected number of infections caused by an individual in the acute state plus the probability that an acutely
infected individual progresses to the chronic state multiplied with the expected number of infections caused
by a chronically infected individual. The number of infections caused by an individual in state i (i ∈ {1, 2})
has a geometric distribution modeling the number of trials (infections) before a success (leaving state i).
The success probabilities equal

d1 + γ1,2

d1 + γ1,2 + λ1,1
and

d2

d2 + λ2,1

for acutely and chronically infected individuals respectively. In these formulas the rates of leaving the acute
or chronic state due to death or a change in state are divided by the total rate at which an acutely or
chronically infected individual causes a birth, death or state change event. The average number of infections
caused by an infected individual in the acute or chronic state therefore equal

λ1,1

d1 + γ1,2
and

λ2,1

d2

respectively. The reproduction number R0 then becomes

R0 =
λ1,1

d1 + γ1,2
+

γ1,2

d1 + γ1,2

λ2,1

d2
.

This reproduction number doesn’t depend on the fractions of the individuals in the acute and chronic state at
time t0 because the infectious period of an infected individual always starts with an acute period. However,
these fractions are needed for calculating the likelihood in Equation (6) with m = 2. In case of equilibrium
frequencies, f1 and f2 equal

f1 =
c+ Λ

c+ Λ + 2γ1,2
, f2 = 1− f1 =

c− Λ

c− Λ + 2λ2,1
,
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where Λ = λ1,1− (d1 +γ1,2) +d2 and c =
√

Λ2 + 4γ1,2λ2,1. For the expressions corresponding to the general
two-type birth-death branching model, see [23].

For this two-type birth-death model calculation of the likelihood in Equation (6) of a certain parameter
set given the phylogenetic tree is performed by the bdtypes.stt.lik-function in the R package TreePar [26],
adapted to the possibility for an individual to change state. The calculations were performed in R 3.0.1 [21].
The codes are given in Appendix C.2.

Variable sampling fraction over time

The multi-type birth-death branching model assumes a constant sampling fraction over time which may
differ for acutely and chronically infected individuals. A problem with this method is the unknown sampling
fraction. Furthermore, the data used for this study isn’t collected at a constant rate over time; the chronic
samples are mainly collected between 1985 and 1990 while the acute samples are mainly collected after 2000.

In the two-type birth-death branching model sampling is only possible immediately after an individual has
become non-infectious. Therefore, at each time, the number of sampled infected individuals in state i equals
the number of individuals in state i who became non-infectious times the fraction of infected individuals in
state i sampled. With the extra assumption that we have a constant population of acutely and chronically
infected individuals over time, the number of infected individuals in state i becoming-non-infectious is also
constant. This implies that the number of sampled individuals is directly proportional to the sampling
fraction. The constant sampling fraction for an individual in state i can therefore be replaced by

si = ci · (number of sampled individuals from state i),

which varies over time due to a possibly different number of sampled individuals for each time interval. In
this formula ci is a constant. The number of sampled individuals during each time interval is known from
our data. Note that ci equals one divided by the number of infected individuals in state i that become non-
infectious each time interval. For the adapted two-type birth-death branching model, with extra parameters
c1 and c2, we use different sampling fractions per calendar year.

We calculated the likelihood in Equation (6) for the two-type birth-death branching model with variable
sampling fractions over time by the use of R 3.0.1 [21]. Codes can be found in Appendix C.3.
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5.2 Coalescent model

The coalescent model used in this study assumes the population dynamics to behave like an SIR model.
After an introduction of the SIR model, we will describe the coalescent model for m different types. We will
end the section with the coalescent model that represents the transmission dynamics of hepatitis B.

5.2.1 SIR model

In the SIR model the total population N is divided into three compartments: susceptible (S), infected (I) and
recovered (R) individuals. When an individual is susceptible this means that he/she hasn’t been infected
with the disease yet and is susceptible for the disease. Individuals in the infected category are those who are
infected with the disease and are still able to spread the disease to those in the susceptible compartment.
In the recovered compartment are those individuals who recovered and developed immunity to the disease
or those who died as a result of the disease. It is not possible for recovered individuals to infect others or
become infected again. By assumption the average time an individual resides in each of these compartments
is exponentially distributed. In Figure 4 the typical course of an infectious disease for the SIR model is
represented if the initial number of infected and recovered individuals is small compared to the population
size and R0, the reproduction number, is bigger than 1.

Figure 4: Typical dynamics of the population according to the SIR model [27]

At the beginning of an epidemic the number of susceptibles is high since no one has been infected yet. Once
a small fraction of the population becomes infected, the infectious disease is spreading exponentially fast
since the possibility of infecting a susceptible individual is high. This results in a fast decrease in the number
of susceptibles. Shortly after the first individuals become infected, also the number of recovered individuals
increases exponentially. At a certain point in time a lot of individuals are already infected and/or recovered
so the number of susceptible individuals is declining. The number of infected individuals decreases, resulting
in a slower increase in the number of recovered individuals and a slower decrease in the number of suscep-
tibles. At the end of the epidemic all individuals who were infected are recovered while there are still some
individuals who weren’t infected by the disease at all.

The SIR model introduced by Kermack and McKendrick [28] can be represented by a system of ordinary
differential equations (7). The assumptions made for this model are a constant closed population over time
(no births or natural deaths), all susceptibles are equally susceptible, complete immunity is conferred by a
single infection and infected individuals can infect others during the time they have the disease, excluding
the time at which they get infected. S(t), I(t) and R(t) denote the numbers of susceptible, infected and
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recovered individuals at time t. We also need these numbers to be sufficiently large in order to approximate
them by a system of ordinary differential equation.

d

dt
S(t) = −βS(t)

N
I(t)

d

dt
I(t) = β

S(t)

N
I(t)− γI(t) (7)

d

dt
R(t) = γI(t)

Here β denotes the rate at which an infected individual infects new individuals at the beginning of the
epidemic when almost all individuals are susceptible. γ denotes the rate at which an infected individual
recovers or dies from the disease.

5.2.2 Coalescent model with m different types

The coalescent model used in this study is a continuous time birth-death process with varying rates and
can be used to describe the transmission dynamics of a host population with m different types. Forwards in
time, time is denoted by t and an individual in state i infects an individual in state j with rate βi,j in case
almost the total population is susceptible. An individual in state i recovers with rate γi and state transition,
a change in state during infection, from state i to state j happens with rate γi,j (γi,i=0 for i ∈ {1, . . . ,m}).
Time into the past is denoted by s. If two branches merge into one backwards in time this is called a coales-
cent event; two lineages coalesce. In this model the likelihood of a set of parameters given the phylogenetic
tree equals the probability of observing the coalescence events in the phylogenetic tree. The likelihood there-
fore depends on the rate that two lineages coalesce and on the probabilities that lineages haven’t coalesced
prior to the coalescent event. These rate and probabilities are calculated backwards in time by conditioning
on the sampling times. It is assumed that at the moment of sampling an infected individual is also recovered.

The SIR model that describes the population dynamics of this coalescent model can be represented by a set
of m + 2 differential equations, see Formula (8). For the moment we assume no births or natural deaths,
later on we will add these events to the model (see Section 5.2.3).

d

dt
S(t) = −S(t)

N

 m∑
i=1

m∑
j=1

βi,jIi(t)


d

dt
I1(t) =

S(t)

N

(
m∑
i=1

βi,1Ii(t)

)
+

m∑
i=1

γi,1Ii(t)−
m∑
i=1

γ1,iI1(t)− γ1I1(t)

d

dt
I2(t) =

S(t)

N

(
m∑
i=1

βi,2Ii(t)

)
+

m∑
i=1

γi,2Ii(t)−
m∑
i=1

γ2,iI2(t)− γ2I2(t)

...
...

d

dt
Im(t) =

S(t)

N

(
m∑
i=1

βi,mIi(t)

)
+

m∑
i=1

γi,mIi(t)−
m∑
i=1

γm,iIm(t)− γmIm(t)

d

dt
R(t) =

m∑
i=1

γiIi(t)

(8)

In this model we have m possible states of infection, individuals can change state (migration) and the rates
for changing state, infection and recovery are all time and state dependent.
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It is assumed that infection and migration rates, with migration defined as movement between states that
are independent of reproduction, are deterministic and time-dependent. The infection rates can be specified
in a matrix F (t) with fi,j(t) denoting the rate at which the entire infected population in state i infects a
new individual in state j (note that f here isn’t the same as the f used to denote the equilibrium frequencies
in the birth-death branching model). In the same way the migration rates can be specified in a matrix G(t)
where gi,j(t) denotes the rate at which the entire infected population in state i causes a migration to state
j. For the coalescent model with m different states, F (t) and G(t) equal (9) and (10) respectively. The
diagonal of G(t) consists of zeros since γi,i=0 for i ∈ {1, . . . ,m}.

F (t) =


β1,1I1(t)S(t)

N β1,2I1(t)S(t)
N . . . β1,mI1(t)S(t)

N

β2,1I2(t)S(t)
N β2,2I2(t)S(t)

N . . . β2,mI2(t)S(t)
N

...
...

. . .
...

βm,1Im(t)S(t)
N βm,2Im(t)S(t)

N . . . βm,mIm(t)S(t)
N

 (9)

G(t) =


0 γ1,2I1(t) . . . γ1,mI1(t)

γ2,1I1(t) 0 . . . γ2,mI1(t)
...

...
. . .

...
γm,1I1(t) γm,2I1(t) . . . 0

 (10)

For completeness we can also specify the exogenous birth and death rates for an individual in state i, denoted
by ηi(t) and µi(t). However, as we will see later, these rates will not have a direct effect on the coalescence
rates.

η(t) =
(
0, 0, . . . , 0

)
(11)

µ(t) =


γ1(t)I1(t)
γ2(t)I2(t)

...
γm(t)Im(t)

 (12)

Remember that the likelihood of a set of parameters given the phylogenetic tree equals the probability of
observing the coalescence events in the phylogenetic tree. In order to calculate this we need the coalescence
rates of each pair of branches that coalesce. A coalescence event backwards in time equals a transmission
from one state to another forwards in time. Therefore the coalescence rates depend on both the transmission
rates from one state to another and the probabilities of each of the descending lineages being in each state.
These rates and probabilities can be calculated by starting from the leaf nodes and moving over the branches
backward in time. Since the leaf nodes can have different states and times of sampling, the coalescence rates
can differ for each branch and between every pair of branches.

To give an idea how the probability of a branch being in a certain state changes backwards in time, we look
at the two-state SIR model in Equation (13). Note that the disease dynamics in this model are similar to
those of the branching model in Section 5.1.2.
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d

dt
S(t) = −S(t)

N
(β1,1I1(t) + β2,1I2(t))

d

dt
I1(t) =

S(t)

N
(β1,1I1(t) + β2,1I2(t))− γ1,2I1(t)− γ1I1(t)

d

dt
I2(t) = γ1,2I1(t)− γ2I2(t)

d

dt
R(t) = γ1I1(t) + γ2I2(t)

(13)

In this two-state SIR model individuals always enter state 1 upon infection. From this state an
individual can progress to a state-2 infection with rate γ1,2 or can recover or die from the disease with rate
γ1. During its average time of 1/(γ1 + γ1,2) time units in state 1 it can transmit the disease with infection
rate β1,1

S
N . An individual in state 2 infects new individuals with rate β2,1

S
N and recovers or dies from the

disease with rate γ2.

For this model the infection, migration and exogenous birth and death rates are given in Equation (14).

F (t) =

(
β1,1I1(t)S(t)

N 0

β2,1I2(t)S(t)
N 0

)
G(t) =

(
0 γ1,2I1(t)
0 0

)
η(t) =

(
0, 0

)
µ(t) =

(
γ1(t)I1(t)
γ2(t)I2(t)

)
(14)

A possible phylogenetic tree generated by this two-state epidemic model can be seen in Figure 5. Red
branches represent state-1 infected hosts and blue branches represent state-2 infected hosts.

Figure 5: An example of a phylogenetic tree generated by the model in Equation (13). Red and blue branches
correspond to state-1 and state-2 infected hosts respectively. [24]

When we move over the phylogenetic tree backwards in time, so upwards in Figure 5, four events can hap-
pen. The first possible event is a coalescence of two red branches, which can be seen in the bottom left
part of the figure. This event represents a transmission by a state-1 infected individual forwards in time.
The second possible event is a coalescence of a blue and a red branch, seen on the bottom right part of
the figure, representing a transmission by a state-2 infected individual forwards in time. The third possible
event is a state transition from a blue to a red branch, denoted by S.T. in the right part of the figure.
This event corresponds to a change in state from a state-1 to a state-2 infection forwards in time. The
last and fourth possible event is an invisible transition from a red to a blue branch, denoted by I.T. in
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the left part of the figure. This event is the least obvious one. Forwards in time, it represents a transmis-
sion by a state-2 infection which is not ancestral to the sample itself. Normally we would have expected a
coalescence denoting this transmission event. However, in this case the infecting host transmits and initi-
ates a line of descent that is eventually sampled, but has no other line of descent that is (eventually) sampled.

We didn’t include invisible events where the state isn’t changed over a branch, for example an invisible trans-
mission by a state-2 infected host which is ancestral to the sample itself but the host it infects isn’t. These
are not important since we are only interested in the events that change the probability that a lineage is in
a certain state, including all possible coalescent events. Note that a coalescence of two blue branches isn’t
possible since a state-2 infected individual cannot transmit to a state-2 infected host; an infected individual
always becomes state-1 infected first.

Now we have illustrated the possible events moving over a phylogenetic tree, representing the two-state model
in Equation (13), backwards in time, we can generalize this for the coalescent model with m different states
and underlying SIR model (8). We denote by A(s) the number of lineages at time s in the past and by Ai(s)
the number of these lineages in state i. A(s) denotes the set of all lineages at time s in the past. The indexes
k and l are used to denote lineages from the phylogenetic tree. Furthermore, pki(s) equals the probability

that a branch k is in state i at time s in the past, so Ai(s) =
∑A(s)
k=1 pki(s). For simplicity the variable s is

dropped from future expressions. However, keep in mind that all state variables and rates are time dependent.

Starting with the probability that a lineage is in a certain state, this changes backwards in time due to
possible state transitions (migrations) and invisible transmission events. Over a branch k, the probability
that the lineage is in state i can change backwards in time due to:

1. A migration from state i to j at rate gi,j causing the state of branch k to change from j to i with
probability pkj/Ij : the probability that branch k is in state j times the probability that from all
lineages in state j branch k is the one that changes state.

2. A migration from state j to i at rate gj,i causing the state of branch k to change from i to j with
probability pki/Ii: the probability that branch k is in state i times the probability that from all lineages
in state i branch k is the one that changes state.

3. A transmission from state i to j at rate fi,j causing the state of branch k to change from j to i with
probability (pkj/Ij)((Ii −Ai)/(Ii)): the probability that lineage k changes state from j to i times the
probability that the transmitting host is not among the Ai ancestral lineages.

4. A transmission from state j to i at rate fj,i causing the state of branch k to change from i to j with
probability (pki/Ii)((Ij −Aj)/(Ij)): the probability that lineage k changes state from i to j times the
probability that the transmitting host is not among the Aj ancestral lineages.

These events can be summarized in Equation (15) which represents the change in the probability that a
lineage k is in state i backwards in time.

d

ds
pki =

m∑
j=1

(
pkj
Ij
gi,j −

pki
Ii
gj,i +

pkj
Ij

Ii −Ai
Ii

fi,j −
pki
Ii

Ij −Aj
Ij

fj,i

)
(15)

With this equation the probability of being in each state over a certain branch, starting from the leaf nodes
of the phylogenetic tree and moving backwards in time until a coalescent event is reached, can be calculated.
Directly after a coalescent event the probability that the new branch is in a certain state depends on the rate
that its two daughter lineages are coalescing. Suppose for example that lineages k and l are coalescing. The
coalescence rate corresponding to this event then equals the rate of a transmission from state i to j (fi,j)
times the probability that lineage k and l coalesce given this transmission event, summed over all possible
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states i and j. This last probability equals the probability that lineage k is in state i and lineage l is in
state j plus the probability that lineage k is in state j and lineage l is in state i, times the probability that
lineages k and l are both coalescing. In formula the total coalescence rate for lineages k and l equals

λ̃kl =

m∑
i=1

m∑
j=1

fi,j
IiIj

(pkiplj + pkjpli) . (16)

Following a coalescent event, the probability that a new branch α is in state i then equals the rate of lineage
k infecting l or lineage l infecting k, summed over all possible states of the newly infected individual and
divided by the total rate that lineages k and l coalesce. In other words, this probability pαi equals the
fraction of the total coalescence rate between lineages k and l for which the infecting individual is in state
i. pαi is given in Equation (17).

pαi =
1

λ̃kl

m∑
j=1

fi,j
IiIj

(pkiplj + pkjpli) (17)

With Equations (15), (16) and (17) we can calculate the probability that a branch at time s in the past
is in state i where i ∈ {1, . . . ,m}. Here we use that for each leaf node of the phylogenetic tree the initial
probability that the lineage is in a certain state equals 1 for its known state and zero otherwise. These
probabilities are necessary for calculating the rates of all coalescence events which are in turn needed for
calculating the probability of observing all these coalescence events.

Before we can give an equation for the probability of observing the coalescence events in a given phylogenetic
tree, we need to calculate the rate that each two lineages coalesce and the probability that lineages haven’t
coalesced prior to the real time of coalescence. We denote by C the set of all coalescence events (k, l, sα).
Here k and l denote the lineages that coalesce and sα equals the time in the past at which the coalescence
event took place. The probability that no coalescent events occurred during an internode interval [s0, s] in
the phylogenetic tree, will be denoted by θ(s) and equals

θ(s) = e
−

∫ s
s′=s0

Λ̃(s′)ds′
. (18)

Here Λ̃(s) =
∑
k,l∈A(s),k 6=l λ̃kl(s)/2 equals the total rate at which the lineages at time s coalesce. Note that

we divide by 2 since λ̃kl = λ̃lk: each pair of lineages is counted twice in the summand. The duration of an
internode interval is exponentially distributed with parameter Λ̃(s) and therefore has density Λ̃(s)θ(s).

The probability that a coalescence event between lineages k and l occurs after the internode interval [s0, s]
equals the probability that two lineages coalesce after the internode interval [s0, s] times the probability that
the coalescence happens between lineages k and l. This last probability equals λ̃kl(s)/Λ̃(s). The probability
that two lineages coalesce after s can be seen as the density of the duration of the internode interval [s0, s].
The probability that lineages k and l coalesce after internode interval [s0, s] therefore becomes

qkl(s) = Λ̃(s)θ(s)
λ̃kl(s)

Λ̃(s)
= λ̃kl(s)θ(s). (19)

The likelihood of the parameters given the phylogenetic tree equals the probability of observing all coalescence
events (k, l, sα) in C and can now be written down by

L(C) =
∏

(k,l,sα)∈C

qkl(sα) =
∏

(k,l,sα)∈C

λ̃kl(sα)θ(sα). (20)
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5.2.3 Hepatitis B specific coalescent model

The transmission dynamics of hepatitis B can be translated into the coalescent model where the number of
types equals 2 (an infection can be acute or chronic). The corresponding parameters are given in Table 2
where 1 denotes the acute state and 2 the chronic state.

β1,1 the rate at which an acutely infected individual transmits to a new acutely infected individual
at the beginning of an epidemic when almost all individuals are susceptible.

β2,1 the rate at which a chronically infected individual transmits to a new acutely infected individual
at the beginning of an epidemic when almost all individuals are susceptible.

γ1 the rate at which an acutely infected individual recovers or dies from the disease
γ2 the rate at which a chronically infected individual recovers or dies from the disease
γ1,2 the rate at which an acutely infected individual progresses to the chronic state.

Table 2: The parameters for the coalescent model describing hepatitis B. 1 and 2 represent the acute and
chronic state respectively.

The parameters β1,2, β2,2 and γ2,1 aren’t included in this table since it isn’t possible to transmit from an
acute or chronic state to an individual in the chronic state; an infected individual always becomes acutely
infected first. Furthermore, an individual cannot change from the chronic to the acute state of infection.

Translating the population dynamics of hepatitis B into a standard SIR model we get Equation 13. Upon
infection an individual always becomes acutely infected. From the acute state an individual can transmit
with rate β1,1

S
N , recover or die from the infection with rate γ1 and progress to the chronic state with rate

γ1,2. From the chronic state an individual transmits with rate β2,1
S
N and recovers or dies from the disease

with rate γ2.

However, the population dynamics of hepatitis B among MSM in the Netherlands doesn’t behave like an
epidemic but the number of infected individuals is more or less constant over time. In order for the SIR
model to represent a constant population over time the system should be in equilibrium: the inflow and
outflow of the MSM population in the Netherlands should be equal. Therefore a new parameter ψ, which
denotes the rate at which an individual has a change in behavior or dies a natural death, is added to the
SIR model. Because we expect that transmission mostly takes place among active MSM, N denotes the
total active MSM population in the Netherlands. The adapted SIR model is given in Equation (21). For a
schematic representation see Figure 6.

d

dt
S(t) = −S(t)

N
(β1,1I1(t) + β2,1I2(t)) + ψN − ψS

d

dt
I1(t) =

S(t)

N
(β1,1I1(t) + β2,1I2(t))− γ1,2I1(t)− γ1I1(t)− ψI1

d

dt
I2(t) = γ1,2I1(t)− γ2I2(t)− ψI2

d

dt
R(t) = γ1I1(t) + γ2I2(t)− ψR.

(21)

Note that the total inflow into the population equals the total outflow (ψN = ψ(S + I1 + I2 + R)). In-
tuitively the total inflow represents the number of new men changing their behavior to the active MSM
population. By assuming only an inflow into the susceptible population, we assume that these new men
haven’t had the infection before. This is a reasonable assumption since probably most infections are spread
among active MSM. Furthermore, the outflow from the recovered compartment also includes men who died
from the disease. Intuitively this doesn’t make sense. Nevertheless, we don’t want these individuals to be be
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Figure 6: A schematic representation of the SIR model in equilibrium, representing the population dynamics
of hepatitis B among MSM in the Netherlands.

in the system forever and therefore treat them as being recovered from the disease. We furthermore expect
chronically infected individuals to leave the active population before they die from the disease, so the rate
for this type of death will be small.

For this two-type coalescent model the reproduction number R0, the expected number of secondary infections
caused by a single infected individual in a completely susceptible population, is given in Equation (22).
During the time an infected individual resides in the acute state, this individual spreads the disease to a
new acutely infected individual with rate β1,1. On average the infected individual will therefore cause β1,1

times the average time of being in the acute state new infections during its acute period, denoted by the first
term in the equation. When an infected individual leaves the acute state it is possible that the individual
becomes chronically infected with the disease. If this happens the infected individual spreads the disease to a
new acutely infected individual at rate β2,1, during the time the individual resides in the chronic state. The
average number of infections caused by the infected individual during its chronic period therefore equals the
probability of moving from the acute to the chronic state of infection multiplied with β2,1 and the average
time in the chronic state. This average number of infections is denoted by the second term of the equation.

R0 =
β1,1

γ1 + γ1,2 + ψ
+

γ1,2

γ1 + γ1,2 + ψ

β2,1

γ2 + ψ
. (22)

Together with the assumption that the SIR model is in equilibrium, the number of susceptible, acute and
chronically infected and recovered individuals should be constant over time. These numbers can be found
by setting the differential equations in Equation (21) to zero, and solve for S, I1, I2 and R. This yields

S =
1

R0
N

I1 =
ψN(1− 1

R0
)

γ1 + γ1,2 + ψ

I2 =
ψγ1,2N(1− 1

R0
)

(γ2 + ψ)(γ1 + γ1,2 + ψ)

R =
N(1− 1

R0
)(γ1(γ2 + ψ) + γ2γ1,2)

(γ2 + ψ)(γ1 + γ1,2 + ψ)
.

(23)

Notice that this isn’t the only possible solution, another possible solution is S = N and I1 = I2 = R = 0.
However, this ‘disease-free’ solution is not relevant if we consider a phylogenetic tree in which there is at least

22



one infected individual. The number of recovered individuals R isn’t needed for calculating the likelihood in
Equation (20) but we mention it here for completeness.

The calculation of the likelihood in Equation (20) is performed by the use of R 3.0.1 [21]. The codes can be
found in Appendix C.4.

5.3 Estimation of the model parameters

The multi-type birth-death branching model and coalescent model introduced above can be used to calculate
the likelihood of a certain parameter set given the phylogenetic tree estimated from the data. In order to
find the model parameters corresponding to the maximum likelihood, the Maximum Likelihood Estimators
(MLEs), we use two different optimization methods.

Both optimization methods are performed by the use of R 3.0.1 [21]. Codes can be found in Appendix C.5.

5.3.1 Optimization method based on a pre-specified grid

The first method is based on finding the maximum likelihood, i.e., minimum negative log likelihood, by
calculating the negative log likelihood for the parameter sets in a pre-specified grid. From the parameter
set corresponding to the minimum negative log likelihood calculated for this grid, we then proceed in two
different ways. One possibility is to repeat the previous step by taking a finer grid which includes the MLE of
the first grid. The second possibility is to start from the MLEs and for each parameter calculate the negative
log likelihood in case only this parameter changes with a certain step size (both in positive and negative
direction) and the other parameters remain the same. Subsequently the new parameter set is chosen for
which the negative log likelihood is minimal. From this new parameter set we proceed in the same way until
the minimum is reached, so we walk over an imaginary grid. In case we use the first possibility, we also use
the second possibility afterwards in order to find the parameter set corresponding to the minimum negative
log likelihood. We can repeat these steps as often as we want, with different step sizes for each parameter.
This method can be used as we expect that the likelihood is continuous in the parameters.

5.3.2 Monte Carlo Markov Chain (MCMC)

A Monte Carlo Markov Chain, the Metropolis-Hastings algorithm, is used to generate a sequence of sampled
parameter values from a desired probability distribution π of this parameter. The general idea of the method
is that a new value is generated from a proposal distribution Q based on the present value of the parameter,
and subsequently this new parameter value is accepted with an acceptance probability equal to the ratio of
the likelihood of both parameters. In case the new parameter is accepted this new value becomes the para-
meter value on which a new proposal distribution is based. In case it is not accepted the present parameter
value and corresponding proposal distribution is used again to generate a new value. This process is run
for a long time. After a ‘burn in’ period, the time needed for the MCMC method to find a good starting
point, the distribution of the parameter value will approximate the distribution π. What we only need for
this method to work is that the distribution Q should satisfy the condition that the probability of sampling
a new parameter value x given that the present parameter value is y, equals the probability of sampling the
new parameter value y given the present parameter value x: Q(x|y) = Q(y|x). If this isn’t the case we can
correct for this by adapting the acceptance ratio accordingly. This is the essential idea of the Hastings part
in the Metropolis-Hastings algorithm. We choose the proposal distribution Q to equal the folded normal
distribution which satisfies the condition Q(x|y) = Q(y|x) [29].

For our model parameters we will use the following algorithm given that our initial parameter set equals x.

1. For each parameter xi in the parameter set x generate a new value x′i from the folded normal distri-
bution with mean xi and a parameter specific standard deviation.
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2. Calculate the acceptance ratio L(x′)/L(x) where L denotes the likelihood of the parameter set given
the phylogenetic tree and for the method (multi-type birth-death branching model or coalescent model)
used.

3. In case the acceptance ratio is greater than or equal to one accept the new parameter set x′, take it
as the next parameter set x and start the process again. In case the acceptance ratio is smaller than
one, choose the new parameter set x′ with probability equal to L(x′)/L(x). If the new parameter set
isn’t accepted the present parameter set x is used again in the next iteration.

We will repeat this process 10, 000 times and after each step we will save the value of the parameter set.
For each parameter we then expect the distribution of the parameter value to converge to the desired dis-
tribution. Note that we took the folded normal distribution instead of the normal distribution because our
model parameters are rates or probabilities which cannot become negative.

From the results of the Metropolis-Hastings algorithm we can also easily derive the credibility intervals by
taking the parameter values between which 95% of the parameter values are situated. For these credibility
intervals we ignore the ‘burn in’ periods.

24



6 Results

We use the models introduced in Sections 4 and 5 to estimate the transmission dynamics of hepatitis B
among MSM in the Netherlands. Based on our data we build a phylogenetic tree, which is presented and
evaluated first. Afterwards we present and interpret for both the two-type birth death branching model
and the coalescent model the estimated parameter values corresponding to the maximum likelihood for a
phylogenetic tree of our data.

6.1 A phylogenetic tree generated from the data

For our data set we constructed a phylogenetic tree by using the method described in Section 4. This
phylogenetic tree is presented in Figure 7.
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Figure 7: A phylogenetic tree corresponding to our hepatitis B data by using the method in Section 4. The
labeled leaf nodes denote the sampled genetic sequences. The first letter of the label denotes the infection
state of the individual at the time of sampling the genetic sequence, A for acute and C for chronic, and it is
followed by an index number. The part between underscores denotes the origin of the sample: an ‘O’ or ‘A’
for a sample collected from one of the Municipal Health Services in the Netherlands (where the A is specific
for the Municipal Health Services in Amsterdam) and ‘ACS’ for samples collected from the Amsterdam
Cohort Studies. The number after the last underscore denotes the sampling date in years. Time is on the
horizontal axis.
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Our genetic sequences, denoted by the leaf nodes, are related by their ancestral lineages. While the second
and third sequence from above are closely related because they coalesce shortly back in time, the bottom
sequence is in distance far away from all other sampled genetic sequences. Its ancestor, which is also the
most recent common ancestor (MRCA) of all genetic sequences in the tree, is situated before the year 1500.
This suggests that the bottom sequence could be a misclassified genotype G sequence. Indeed, hepatitis B
viruses of genotype G are frequently found as a co-infection with the genotype A hepatitis B virus [30].

We illustrate two different ways of removing this genetic sequence from our phylogenetic tree. The first way
is by deleting this node and its branches to the rest of the tree by the use of the drop.tip function of the
R package ape [31], yielding the phylogenetic tree in Figure 8. The code we used for this can be found in
Appendix C.1.
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Figure 8: A phylogenetic tree for our hepatitis B data without the HBV sequence which is assumed to be of
genotype G. This tree is obtained from the phylogenetic tree in Figure 7 by the use of the drop.tip function
of the R package ape [31]. Time is on the horizontal axis.

The second way is to construct a phylogenetic tree by the use of the model described in Section 4, with the
genetic sequence assumed to be of genotype G not part of the data (see Figure 9). In case the constructed
phylogenetic tree in Figure 7 is a good representation of the real gene genealogy describing the ancestral
relationships between the pathogens, we expect these two different methods to generate a similar tree.
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Figure 9: The phylogenetic tree corresponding to our hepatitis B data without the HBV sequence assumed
to be of genotype G. This phylogenetic tree is created by using the method described in Section 4. Time is
on the horizontal axis.

When we compare the phylogenetic trees in Figure 8 and 9 we see that they don’t look quite the same. For
example, the genetic sequence with label A12 ACS 1996.060, the bottom leaf node in Figure 8, is far away
from all other sequences in this tree while in Figure 9 it is in the middle of all genetic sequences; it is more
related to the other sequences.
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6.2 Parameter inference for the two-type birth-death branching model

We apply the two-type birth-death branching model to the phylogenetic tree in Figure 8 and search for
the values of the parameters in Table 1 corresponding to the minimum negative log likelihood. Instead of
calculating the negative log likelihood over the whole phylogenetic tree, we only calculate it until about
82 years back in time, corresponding to one of the internal nodes, and sum the negative log likelihoods of
the separate trees. By doing this we don’t loose much information while we prevent problems like infinite
negative log likelihoods because of a very small probability density of the whole tree. Indeed, how longer the
branches become, the less information they contain; all kind of events could have occurred over the branch.
Furthermore, we don’t use the restriction R0 > 1 (the reproduction number can also be between zero and
one) and λ1,2 = λ2,2 = γ2,1 = 0 are fixed parameters. The details of the optimization method used for
finding the parameter estimators are given in Appendix B.1.

6.2.1 Two-type birth-death branching model with constant sampling fractions

For the two-type birth-death branching model with constant sampling fractions we assume a sampling frac-
tion of 0.05 per year, for both acutely and chronically infected individuals. This means that 5% of the
acutely infected individuals that become non-infectious each year are subsequently sampled. The same holds
for chronically infected individuals.

The parameter values in rates per year, found by optimizing the negative log likelihood for the phylogenetic
tree in Figure 8, are presented in Table 3. The corresponding reproduction number and negative log likelihood
are also given.

Parameter MLE
λ1,1 1.193
λ2,1 0.008
d1 0.0001
d2 0.0001
γ1,2 1.19
R0 81.00

Negative Log Likelihood -276.40

Table 3: Two-type birth-death branching model parameters for the hepatitis B data using the phylogenetic
tree in Figure 8 and a constant sampling fraction of 5% for both acutely and chronically infected individuals.
λ1,1, λ2,1, d1, d2 and γ1,2 are the rates per year.

We can interpret these results by looking at the probability that an infected individual in the acute or chronic
state infects a new acutely infected individual and at the probability that an acutely infected individual moves
to the chronic state before leaving the acute state. We present these probabilities in the following matrix
which we denote by P . Note that the probability from a chronic to a chronic infection equals 0 since a newly
infected individual always becomes acutely infected first and a state transition from a state to itself isn’t
possible.

P =

( A C

A
λ1,1

λ1,1+d1+γ1,2

γ1,2
d1+γ1,2

C
λ2,1

λ2,1+d2
0

)
=

( A C

A 0.501 1.000
C 0.988 0

)
The probability that an acutely infected individual gives birth to a new acutely infected individual equals
this birth rate per year divided by the rate per year that a birth, death or state transition takes place. For
a chronically infected individual the probability of giving birth to an acutely infected individual equals the
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birth rate per year divided by the rate per year that a birth or death event occurs (a state change isn’t
possible). The probability that an acutely infected individual progresses to the chronic state before leaving
the acute state equals this state transition rate per year divided by the total rate per year of a death or state
change.

We can interpret these results as follows. Once an individual from the MSM population becomes infected
with HBV its average time in the acute state equals 1/(d1 +γ1,2) = 0.840 years, i.e. over 10 months. During
this time the acutely infected individual infects a new individual with probability 0.501 and the average
number of infections caused equals λ1,1/(d1 + γ1,2) = 1.002. At the end of its acute period the infected
individual progresses to the chronic state with probability close to 1. An infected individual in the chronic
state resides here for about 1/d2 = 10, 000 years. During this time it infects a new individual with probabil-
ity 0.988 and the average number of infections caused equals λ2,1/d2 = 80. Because an infected individual
almost always goes through both the acute and chronic state of infection and the total number of infections
caused during these periods is very high, the reproduction number R0 given in Table 3 is also high. Despite
of this high reproduction number, the transmission dynamics are very slow because of the long acute and
chronic period. Therefore the infected population will grow slowly over time.

These results are unrealistic and contrast with our current knowledge of the dynamics of an HBV infection
(Section 3); the average times in the acute and chronic period are estimated too high, just like the rate for
an acutely infected individual to progress to the chronic state of infection.

6.2.2 Two-type birth-death branching model with variable sampling fractions over time

For the two-type birth-death branching model with variable sampling fractions over time, where the infected
population is assumed to be constant over time (see Section 5.1.2), the sampling fraction per year equals
a state dependent constant multiplied with the number of acutely or chronically sampled individuals that
year. While these last numbers are known from our data, the state dependent constants become parameters
of our model. We can estimate these two parameters together with the other parameters of the model given
in Table 1 by finding the minimum negative log likelihood. The results are presented in Table 4.

Parameter MLE
λ1,1 1.423
λ2,1 0.001
d1 0.0001
d2 0.0001
γ1,2 1.271
c1 0.00001
c2 0.0001
R0 11.12

Negative Log Likelihood -623.80

Table 4: Two-type birth-death branching model parameters for the hepatitis B data using the phylogenetic
tree in Figure 8 and a variable sampling fraction. λ1,1, λ2,1, d1, d2 and γ1,2 are the rates per year.

The matrix P that denotes the probabilities of an infection or state transition becomes

P =

( A C

A 0.528 1.000
C 0.909 0

)
.

The results imply that when an individual becomes infected with hepatitis B it remains for about 1/(d1 +
γ1,2) = 0.787 years, i.e. over 9 months, in the acute state. During this acute period the infected individual in-
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fects a new acutely infected individual with probability 0.528 and will cause on average λ1,1/(d1+γ1,2) = 1.120
new acute infections. With probability almost one the acutely infected individual will progress to the chronic
state. The average time that an infected individual resides in the chronic state equals 1/d2 = 10, 000 years.
During this time the chronically infected individual gives birth to a new acutely infected individual with
probability 0.909 and on average he causes λ2,1/d2 = 10 new infections. Although the reproduction number
R0 is much lower than in the case of constant sampling fractions, the results still imply slow transmission
dynamics.

Again the average times of an acute and chronic HBV infection are overestimated; over 9 months and 10,000
years respectively. Also the probability that an acute infection progresses to the chronic state is far too high.
The very small values for c1 and c2 imply that we have a very large population of acutely and chronically
infected MSM that became non-infectious per year; in total over 110,000. In comparison with the total num-
ber of MSM in the Netherlands, which is estimated to be in the range 278,000-392,000 [32], this is far too high.

We correct for this by adding prior information to the model, namely by assuming that the rate per year to
leave the acute state of infection is between three and four (d1 + γ1,2 ∈ [3 : 4]). This implies that an acute
infections lasts on average three to four months. This yields the results given in Table 5.

Parameter MLE
λ1,1 2.3
λ2,1 0.06
d1 1.1
d2 0.087
γ1,2 1.99
c1 0.001
c2 0.001
R0 1.19

Negative Log Likelihood -18.392

Table 5: Two-type birth-death branching model parameters for the hepatitis B data using the phylogenetic
tree in Figure 8, a variable sampling fraction and as prior information that an acute infection lasts for about
3 to 4 months. λ1,1, λ2,1, d1, d2 and γ1,2 are the rates per year.

The corresponding probabilities of infection and the probability to progress from the acute to the chronic
state are denoted in the matrix P below.

P =

( A C

A 0.427 0.644
C 0.408 0

)
With these results an infected individual is on average 1/(d1 + γ1,2) = 0.324 years, i.e. almost 17 weeks,
in the acute state from which it infects a new acutely infected individual with probability 0.427. On aver-
age an infected individual will cause λ1,1/(d1 + γ1,2) = 0.744 new acute infections during its acute period.
An acutely infected individual will progress to the chronic state in about 64% of the cases. An infected
individual will reside on average 1/d2 = 11.494 years in the chronic state. During this period a chronically
infected individual will give birth to a new acutely infected individual with probability 0.408 and will cause
on average λ2,1/d2 = 0.690 new infections. The estimated reproduction number R0 is slightly above one, so
the model expects the infected population to grow slowly over time.

In comparison with the results for the previous two models, these results seem more reliable. However,
the probability for an acute infection to progress to a chronic infection remains high (64%). Furthermore
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we assumed a constant infected population size while the R0 implies exponential growth of the infected
population. We also still have small values for c1 and c2. As mentioned in Appendix B.1 a decrease in these
numbers even leads to a lower negative log likelihood and therefore to an improvement of the parameter
set. This implies that there is no sampling, while from our data it is known that there are actually infected
individuals sampled. Therefore the infected population size equals infinity. This shows that the two-type
birth-death model, with or without constant sampling fractions and prior information, is not sufficient for
our data.

6.3 Parameter inference for the coalescent model

In this section we apply the coalescent model to the phylogenetic tree in Figure 8 and calculate the maximum
likelihood estimators, in our case minimum negative log likelihood estimators, for the parameters in Table 2.
Instead of cutting the phylogenetic tree at a certain time in the past, we calculate the negative log likelihood
over the whole phylogenetic tree. Furthermore we assume R0 ≥ 1 since otherwise the equilibrium values for
the number of susceptible, infected and recovered individuals become negative. The total population size is
assumed to equal N = 24000, which is estimated to be the part of the Dutch MSM population in the three
highest risk groups [33]. We only look at this part of the Dutch MSM population because mostly these men
will contribute to the transmission of the disease since they are sexually active. For the rate at which an
individual changes in behavior or dies a natural death we use ψ = 0.1. This means that an individual resides
on average 10 years in the active MSM population.

We will also show the results for applying the MCMC method described in Section 5. Finally, we will
compare the parameter values calculated for the phylogenetic tree in Figure 8 with the parameter values
found when we apply the coalescent model to the phylogenetic tree in Figure 9. The detailed optimization
steps used to estimate the parameter values of the coalescent model for both phylogenetic trees can be found
in Appendix B.2.

Coalescent model applied to the phylogenetic tree in Figure 8

We estimate the parameter values of the coalescent model for the phylogenetic tree in Figure 8. The param-
eter values in rates per year, the corresponding reproduction number and negative log likelihood, and the
number of susceptibles and acutely and chronically infected individuals at each moment of time are presented
in Table 6. Note that we don’t present the number of recovered individuals since these do not affect the
minus log likelihood calculated and therefore aren’t relevant to the system.

Parameter MLE
β1,1 5.501
β2,1 0.001
γ1 4.116
γ2 0.007
γ1,2 0.105
R0 1.273
S 18848.48
I1 119.2205
I2 116.9921

Negative Log Likelihood 307.099

Table 6: Coalescent model parameters for the hepatitis B data using the phylogenetic tree in Figure 8,
N = 24000 and ψ = 0.1. β1,1, β2,1, γ1, γ2 and γ1,2 are the rates per year.

We can present the results in the probability matrix P, denoting the probabilities at which acutely and
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chronically infected individuals transmit to a new acutely infected individual at the beginning of the epidemic
when almost all individuals are susceptible, and the probability of moving from the acute to the chronic state
of infection.

P =

( A C

A
β1,1

β1,1+γ1+γ1,2+ψ
γ1,2

γ1+γ1,2+ψ

C
β2,1

β2,1+γ2+ψ 0

)
=

( A C

A 0.560 0.024
C 0.009 0

)
These results imply that an infected individual resides on average 1/(γ1 + γ1,2 + ψ) = 0.231 years, i.e.,
over 12 weeks, in the acute state. At the beginning of the epidemic, an acutely infected individual will
infect a new acutely infected individual with probability 0.560 and during his acute period the individual
causes on average β1,1/(γ1 + γ1,2 + ψ) = 1.273 new acute infections. About 2, 4% of the acutely infected
individuals is estimated to progress to the chronic state and the average duration of a chronic period equals
1/(γ2 + ψ) = 9.346 years. A chronically infected individual will infect new acutely infected individuals with
probability 0.009 and during the chronic period the individual will cause on average β2,1/(γ2 + ψ) = 0.009
new infections, both at the beginning of the epidemic when almost all individuals are susceptible. The
estimated reproduction number equals 1.273 so an infected individual will on average cause 1.273 secondary
infections in a totally susceptible population. In our situation only a fraction S/N of our total population is
susceptible and therefore the effective reproduction number equals R0 · SN = 1. This satisfies our assumption
that the infected population size is constant over time.

The equilibrium value for the number of acutely infected MSM equals 119.2205, so at each moment of time
there are 119.2205 acutely infected MSM in the population. With the average duration of an acute period
of infection we can calculate the expected number of new acute infections per year. This therefore equals
119.2205 · (1/0.231) = 515.15 new acute infections per year, which seems a realistic value. The equilibrium
value for the number of chronically infected MSM at each moment of time equals 116.9921. We therefore
expect 116.9921 · (1/9.346) = 12.518 new chronic infections per year. This number seems very low; the num-
ber of chronically infected MSM in the Netherlands is said to be around 1% of the total MSM population
that ranges from 278, 000 to 392, 000 [32]. A possible problem could be that we assumed ψ, the rate per
year at which an individual has a change in behavior or dies a natural death, to be equal for all different
compartments of the SIR model. For example, it could be that a chronic infection occurs mostly at later
ages and therefore the infected individual leaves the active MSM population earlier than when an individ-
ual is acutely infected. Another explanation for the low value of new chronically infected individuals each
year could be that a lot of the chronically infected MSM are not active and therefore not in our population N .

From above results we can conclude that the acutely infected individuals are mainly responsible for the new
infections among MSM in the Netherlands. While a chronically infected individual only infects on average
0.009 new individuals, an acutely infected individual causes on average 1.273 new infections.

In Figure 10 we see how the probability of being in a certain state changes over a lineage backwards in time,
with the lineages starting from a leaf node in the acute or chronic state. When we look at Figure 10a and
10b we see that for a lineage starting from a leaf node in the acute state the probability of being in the
acute state changes slowly backward in time, even in case the branch is very long. For a lineage starting
from a leaf node in the chronic state, Figure 10c and 10d, the probability of the lineage being in the chronic
state decreases very fast over time. For a long branch the probability even tends to zero, implying that a
progression from the acute to the chronic state and an infection by a chronically infected individual is rare.
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(a) (b)

(c) (d)

Figure 10: The course of the probability that a lineage is in a certain state for four different lineages. In
Figure (a) and (b) we look at the course of the probability that the lineage is in the acute state for a short and
long branch respectively. Both lineages start from a leaf node in the acute state. Figures (c) and (d) show
the course of the probability that the lineage is in the chronic state for a short and long branch respectively.
In this case both lineages start from a leaf node in the chronic state. The horizontal axis denotes the number
of years until the present (time 0).

These are the probabilities over a branch until a coalescent event occurs. However, we are also interested in
the probability that the lineage after a coalescence event is in the acute state because this tells us whether
mostly acutely or chronically infected individuals cause new infections. In Figure 11 this probability is given
for all lineages following a coalescence event.

Figure 11: The probability that at each time of coalescence the lineage following this event is in the acute
state. The horizontal axis denotes the number of years between the time of the coalescence event and the
present (time 0).

Both the results in Figure 10 and in Figure 11 confirm that the acutely infected individuals cause most new
infections; the lineage on the left of a coalescence event is with very high probability in the acute state and
over a branch an individual is almost always with high probability in the acute state.
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The results we found for the coalescent model using the phylogenetic tree in Figure 8 seem reasonable.
Therefore we will use the MCMC method described in Section 5 to re-estimate these parameters and their
corresponding credibility intervals. We used as the initial values for the parameters (β1,1, β2,1, γ1, γ2, γ1,2) =
(5.5, 0.1, 4, 0.12, 0.1) and we tried multiple different standard deviations for each of these parameters. Note
that this initial parameter set is one of the interim values found when searching for the parameter values
corresponding to the minimum negative log likelihood, see Appendix B.2. In Figure 12 we present the results
for the parameter values using 10, 000 iterations and standard deviations (1.1, 0.02, 0.5, 0.015, 0.02) for the
parameters β1,1, β2,1, γ1, γ2 and γ1,2 respectively.

(a) (b)

(c) (d)

(e)

Figure 12: Estimation of the parameters of the coalescent model by the use of the MCMC method described
in Section 5 with 10,000 iterations and the initial parameter set (β1,1, β2,1, γ1, γ2, γ1,2) = (5.5, 0.1, 4, 0.12, 0.1).
The corresponding standard deviations used are equal to (1.1, 0.02, 0.5, 0.015, 0.02) respectively. The param-
eter values are the rates per year.
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We clearly see from the figures that the distributions of the parameter values didn’t reach convergence yet,
especially for the distributions of the parameters β1,1, β2,1 and γ1,2. Two possible explanations could be
the use of too low standard deviations or the use of a too low number of iterations. Increasing the number
of iterations would lead to a computational cost; for 10, 000 iterations it already took several days. There-
fore this method doesn’t seem to be efficient for this model. However, these pictures seem to imply that
the values for β1,1 and γ1 are far higher than we expect. The average value of β1,1 in Figure 12a equals
44.227 and the average number of γ1 in Figure 12c equals 7.760. For example, using the parameter values
(β1,1, β2,1, γ1, γ2, γ1,2) = (44, 0.001, 7.86, 0.002, 0.77) gives us indeed a lower negative log likelihood (307.053)
than for our results in Table 6 (307.0988). Although the difference is very small, the MCMC method is
going to find the parameters corresponding to the minimum negative log likelihood, so probably with very
high values for β1,1 and γ1. In the example given this would mean that an acutely infected individual will
infect on average 5.04 individuals during its acute period which lasts on average 6 weeks. This is not realistic.

Using prior information about the parameter values will therefore be necessary in order for the coales-
cent model to find reliable results. The way in which we calculated the parameters in Table 6 already
made use of some priors, namely by specifying grids in which we are searching for the minimum negative
log likelihood (see Appendix B.2). However, what also can be seen is that some of the parameter val-
ues found are on the boundaries of our grids. This could imply that we excluded some parameter sets
corresponding to an even lower negative log likelihood. For example for values of β2,1, γ2 and γ1,2 tend-
ing to zero or for values of β1,1 between 5.5 and 6. By expanding our grid we found for instance that
(β1,1, β2,1, γ1, γ2, γ1,2) = (5.46, 0.002, 4.05, 0, 0.183) gives a lower negative log likelihood (306.401). This neg-
ative log likelihood is even smaller than the smallest value calculated with the MCMC method (306.450).
This suggests that it is indeed reasonable to set some priors.

Although we didn’t find the parameter set corresponding to the real minimum negative log likelihood, our
results in Table 6 seem to be close to the real optimal values. They also seem to reflect the transmission
dynamics well. Regardless of whether we look at these results or the two better parameter sets discussed
above, in all these three cases the acutely infected individuals cause almost all new infections and the
contribution of the chronic infections is of minor importance.

Coalescent model applied to the phylogenetic tree in Figure 9

In order to check whether the model presented in Section 4 constructs a good phylogenetic tree, we compare
the results from the previous section with the parameter values estimated for the phylogenetic tree in Figure
9. The results are presented in Table 7. Note that we also included the results from Table 6 to make it easy
to compare.

The results for the phylogenetic tree in Figure 9 can be presented in the probability matrix P, denoting the
probabilities of infection at the beginning of an epidemic when almost all individuals are susceptible and the
probability for a transition from the acute to the chronic state of infection.

P =

( A C

A 0.566 0.025
C 0.001 0

)
.

We can interpret these results as follows. When an individual becomes infected, it stays on average
1/(γ1 + γ1,2 + ψ) = 0.261 years, i.e., over 13 weeks, in the acute state. At the beginning of the epi-
demic, when almost all individuals are susceptible, an acutely infected individual infects a new acutely
infected individual with probability 0.566 and during his acute period the individual infects on average
β1,1/(γ1 + γ1,2 + ψ) = 1.302 new acute individuals. About 2, 5% of the acutely infected individuals is es-
timated to progress to the chronic state. The chronic period last on average 1/(γ2 + ψ) = 10 years. A
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Parameters
MLE based on

Figure 9 Figure 8
β1,1 4.99 5.501
β2,1 0.0001 0.001
γ1 3.636 4.116
γ2 0 0.007
γ1,2 0.096 0.105
R0 1.302217 1.273
S 18430.11 18848.48
I1 145.3521 119.2205
I2 139.5380 116.9921

Negative Log Likelihood 331.2661 307.099

Table 7: Coalescent model parameters for the hepatitis B data using the phylogenetic tree in Figure 9,
N = 24000 and ψ = 0.1. β1,1, β2,1,γ1, γ2 and γ1,2 are the rates per year. For convenience the results from
Table 6 are presented in the third column.

chronically infected individual will infect new acutely infected individuals with probability 0.001 and during
his chronic period the individual causes β2,1/(γ2 + ψ) = 0.001 new infections, both at the beginning of an
epidemic. The estimated reproduction number equals 1.302, so an infected individual will on average cause
1.302 new infections in a totally susceptible population. The effective reproduction number equals R0 · SN = 1,
which corresponds to our assumption that the infected population is constant over time.

The total number of new acute infections per year equals on average 145.3521 · (1/0.261) = 556.989 and the
expected number of new chronic infections per year equals 139.5380 · (1/10) = 13.954.

When we compare these results with the results for the phylogenetic tree in Figure 8 we don’t see large
differences. We therefore conclude that despite the great visual differences between the phylogenetic trees
in Figures 8 and 9, parameter inference gives us comparable results. Therefore the model used to generate a
phylogenetic tree seems to perform well. Again the acutely infected individuals are almost totally responsible
for the new infections.
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7 Discussion

We estimated the transmission dynamics of hepatitis B among MSM in the Netherlands by fitting two
different transmission models to a phylogenetic tree generated from the data. The first was a two-type
birth-death branching model with constant birth, death and state transition rates for each type. We found
results implying an infinite population size of infected individuals, even in case we added prior information
to the model. The second model used for parameter inference was a coalescent model with type-specific
birth, death and state transition rates depending on the number of susceptible and infected individuals in
the population. For this model we found results that are consistent with observed prevalence of infection,
indicating that acutely infected individuals are mostly responsible for the new infections among MSM in the
Netherlands.

An important difference between the two models is the stochastically varying infected population size in the
two-type birth-death branching model and the deterministic population size in the coalescent model. Where
in the coalescent model the infected population size is determined by the dynamics of the SIR model and
is included in the birth, death and state transition rates, the infected population size in the two-type birth-
death branching model isn’t explicitly stated. For each time interval it can be deduced from the number of
sampled individuals, the sampling fraction and the death rate since the number of infected individuals of
a certain type equals the number of these infected individuals becoming-non-infectious, i.e. the number of
sampled individuals of this type divided by its sampling fraction, multiplied with the type-specific death rate.
A second difference is that in the two-type birth-death branching model the sampling times are part of the
data while in the coalescent model we condition on these times. In the two-type birth-death branching model
the (constant) sampling fractions imply random sampling. However, for the coalescent model it isn’t known
how the samples are taken. We suspect that in this model random sampling is ensured by the underlying
SIR model. Each susceptible individual is equally likely to become infected and in each state of infection all
individuals have equal infection rates, which implies a homogeneous population. In a homogeneous popula-
tion sampling will be random because all individuals are of the same type.

For this study we assumed that an infected individual is immediately infectious. In reality it takes some
time before the infected individual is infectious itself. This assumption made it possible to assume that at
each time of the phylogenetic tree an infection could occur. A susceptible-exposed-infected-recovered (SEIR)
model could be used to account for this possibility. Just like for the compartments of the SIR model, the
duration of the exposed period is assumed to be exponentially distributed. Although the distributions of
these periods seem more Gaussian distributed, the SIR and SEIR model seem fair approximations of the
real population dynamics.

To estimate the transmission parameters for both models we needed the time of a bifurcation event in the
phylogenetic tree to equal the time of transmission. Furthermore each infected host should correspond to a
single lineage in the phylogenetic tree. These requirements were equivalent to assuming a single pathogen
sequence per infected host, which can mutate during the time within this host, and equal rates for replication
of the pathogen and transmission between hosts. Because for our data the number of sequenced pathogens
is relatively small compared to the total number of infected individuals each year, the difference in time
between bifurcation and transmission events will be small [6]. Furthermore superinfection, multiple infec-
tions of different HBV genotypes, is rare [34]. Therefore our requirements seem to be fair approximations.
The assumption that each infected host has only one pathogen sequence also implies that the mutation rate
equals the substitution rate, which is needed for generating a phylogenetic tree.

Another assumption made for both models is that at the moment of sampling an individual is also recovered.
If this wasn’t the case an individual could have transmitted to one of the other sampled individuals after it has
been sampled, but then the bifurcation event in the phylogenetic tree relating these two sampled individuals
cannot be seen as a transmission event and we couldn’t use the models for parameter inference. However,
where this assumption is suitable for an infectious disease like HIV where sampled individuals receive a
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treatment reducing their infectivity, it doesn’t hold for individuals with an HBV infection; while chronically
infected individuals are often treated by reducing the viral replication, acutely infected individuals almost
never receive treatment because they will often cure fast and on their own. In case of the previous example
where a sampled individual infected another sampled individual after it was sampled, the branch lengths
in the phylogenetic tree from these two individuals to their common ancestor could be overestimated. We
especially expect this to be a problem for chronically infected individuals because they still can be infectious
for a long time after they got sampled. It is less probable that acutely infected individuals will cause infec-
tions after they got sampled because they are only shortly infectious. However, after being sampled acutely
infected individuals can progress to the chronic state from which new infections can be caused. We therefore
expect both an underestimation of the number of infections caused by chronically infected individuals and an
underestimation of the rate at which acutely infected individuals progress to the chronic state. This would
result in less infections caused by acutely infected individuals.

In the two-type birth-death branching model constant rates for birth, death and state transition are as-
sumed. In case these rates correspond to a reproduction number R0 > 1 the total infected population will
grow exponentially over time. This is a shortcoming of the model because eventually the exponential growth
of the infected population needs to be slowed down due to saturation effects; transmission decreases due to
depletion of the group of susceptibles. From our results we saw that in case a constant infected population
over time is assumed or expected from the data, the number of infected individuals became infinite in order
to satisfy the exponential growth of the infected population size. A possible solution would therefore be
variable birth, death and state transition rates over time, directly depending on the infected population size
by using a saturation effect.

For the coalescent model also a constant infected population size over time is assumed. By using prior
information about the intervals in which the parameters are situated, we defined grids over which we min-
imized the negative log likelihood. This resulted in good parameter values and estimates for the number
of susceptibles and acutely infected individuals. The number of chronically infected individuals seemed too
low, although this might be explained if infected individuals in the chronic state are mostly inactive and
therefore do not belong to our total population, or if a chronic infection occurs at a later age, which im-
plies an incorrect assumption that the rate ψ of leaving the population due to a natural death or change
in behavior is equal for each state of infection. An improvement of the method would be to use the real
prevalence of hepatitis B under MSM in the Netherlands. In this case we also do not need to use a constant
ψ anymore. Furthermore, the MCMC chain applied to estimate the parameter values and their credibility
intervals showed that the distributions of the parameters didn’t reach convergence yet. A first reasonable
explanation could be that the number of iterations used for the MCMC chain might be too small. Increasing
this number would lead to a great computational cost; it took us already several days to perform 10, 000
iterations. Another possible explanation could be that the credibility intervals are very wide due to a lack
of data. Therefore our results might not be very precise, although we don’t expect this to change our main
finding that the acutely infected individuals are most important in the spread of hepatitis B among MSM
much. It could be valuable to add data and check whether this gives us more precise results. For this study
there are still some HBV sequences available from Dutch MSM, also including partners. However, these
sequences are not full length but they only cover the C or S gene from the virus.

Whether both models can be used for estimating the transmission dynamics of hepatitis B among MSM in
the Netherlands can be tested by simulating our epidemic. Using different parameter sets we can simulate
our epidemic by using each of the transmission models. By randomly choosing the sampled sequences we can
re-estimate our parameters by applying the same transmission model. In case we get the same parameter
values as used for simulating the epidemic, the models are valid. This is an important step for future research.

To generate the phylogenetic tree we used the HKY substitution model with equal rates at which different
sites evolve. In case of the coalescent model we checked the results for two different phylogenetic trees for the
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same data. They gave similar results and therefore we expect the model used to generate phylogenetic trees
to perform well. However, a better way for estimating the parameters for each model would be by averaging
the optimal parameter values estimated for a large number of phylogenetic trees generated from BEAST,
weighted according to their posterior probabilities. Ideally the phylogenetic tree and the transmission rates
will be inferred at the same time instead of subsequently generating the phylogenetic tree from the data and
fitting a transmission model to the tree. In this case it is possible to apply different substitution rates for
each different type and time; the estimated state of the individual at a certain branch and time can be used
to generate the phylogenetic tree. This relaxes the molecular clock hypothesis assumed in this study. We
recommend this simultaneous estimation together with using different substitution rates for future research.

This study shows the great importance of using the right transmission model for phylogenetic inference.
The assumptions made are restrictive and may not be well-defined for our situation and can therefore lead
to wrong parameter estimates. The two-type birth-death branching model with constant rates doesn’t fit
our data and can be improved by using variable birth, death and state transition rates over time. In re-
cent literature a new transmission model building on the birth-death branching model but using saturation
effects has been published [35]. In this model the population dynamics behave like a stochastic susceptible-
infected-susceptible (SIS) model. Although it can be extended to the SIR model, this would lead to a large
computational cost. Furthermore, the transmission model is only suitable for infectious diseases with one
state of infection. An extension has to be made in order to let it be appropriate for the spread of hepatitis
B.

The results found by the coalescent model confirm our current knowledge of the HBV infection. We estimated
that an acute infection lasts about 12 weeks, an acute infection progresses in about 2.4% of the cases to the
chronic state and the number of new acute infections each year is about 500. The results also show us that
new infections are almost all caused by acutely infected individuals, which wasn’t known before. Further
research should confirm whether we could rely on these results.
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Appendices

A Construction of the phylogenetic tree: technical details

To construct a phylogenetic tree from our sequence data we follow the next steps.

1. Aligned genetic sequences, so with a maximum number of matching nucleotides at each site, and their
sampling times are provided to BEAST [20]. We use the Hasegawa-Kishino-Yano (HKY) substitution
model with equal rates at which sites evolve. As a tree prior we use the linear Extended Bayesian
Skyline plot, calculating the effective population size through time, i.e., the population size of interest
in an idealized model. This Extended Bayesian Skyline plot is used when minimal assumptions about
the population growth are desirable. The population grows or declines linearly between two points of
change in the effective population size.

2. We let BEAST produce 1001 posterior phylogenetic trees by using a Monte Carlo Markov Chain
analysis.

3. These 1001 trees are summarized into one phylogenetic tree by using TreeAnnotator which is part of
the BEAST package [20]. This single tree is the maximum clade credibility tree; for each posterior tree
the posterior clade probabilities, the probability that a clade (a collection of an ancestor and all of its
descendants) is present in all posterior trees, are multiplied and the tree corresponding to the highest
product is chosen. The node heights are based on the median heights for the clades in the maximum
clade credibility tree.

4. In case the maximum clade credibility tree consists of branches with negative-lengths, so one of the
descendent nodes is older than its direct ancestor, we correct for these by using R [21] by placing the
descendent node one-tenth year after its direct ancestor. These negative branches can occur when
the times of two adjacent nodes are derived from different sets of posterior trees and therefore may
not have any direct ancestor-descendent relationship. This can happen when one of the clades of the
maximum clade credibility tree is at low frequency in the total posterior sample of trees and tends not
to occur in those trees that have the maximum clade credibility tree’s ancestral clade [20].

5. Assign the states to each of the leaf nodes by using R [21].

6. The resulting tree is visualized by FigTree [22], using a reversed time scale.

We use the generated tree as the phylogenetic tree for our data. The code for adapting the phylogenetic tree
by the use of R [21] can be found in Appendix C.1.
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B Determination of the optimal parameters using a pre-specified
grid

B.1 Two-type birth-death branching model

Parameter estimation in case of constant sampling fractions over time

To determine the maximum likelihood estimators of the parameters of the two-type birth-death branching
model with constant sampling fractions over time, we applied the optimization method using the grids sum-
marized from left to right in Table 8. After applying these grids we applied the path methods denoted in
Table 9. Note that for the used parameter optimization method we determine the MLEs by finding the
parameters corresponding to the minimum negative log likelihood.

Parameters
Grid 1 Grid 2

Interval Step size MLE Interval Step size MLE
λ1,1 [1:6] 1 1 [0.5:3] 0.5 0.5
λ2,1 [0.5:2.5] 0.5 0.5 [0.3:1.5] 0.3 0.3
d1 [0.5:5] 0.5 4.5 [3:5] 0.5 3
d2 [0.02:0.1] 0.02 0.02 [0.01:0.1] 0.01 0.01
γ1,2 [0.4:2] 0.4 0.4 [0.1:0.5] 0.1 0.5

Table 8: Determination of the parameters corresponding to the hepatitis B specific two-type birth-death
branching model with constant sampling fractions using different grids. For each applied grid the interval
and step size for each parameter are given and we denote the value of the parameter corresponding to the
minimum negative log likelihood (MLE). The order in which the grids are applied is from left to right; the
MLEs found from the previous grid are included in the intervals used for the next grid.

Parameters
Path 1 Path 2 Path 3

Step size MLE Step size MLE Step size MLE
λ1,1 0.01 0.5 0.01 1.08 0.001 1.193
λ2,1 0.01 0.08 0.01 0.02 0.001 0.008
d1 0.01 0.01 0.001 0.001 0.0001 0.0001
d2 0.01 0.01 0.001 0.001 0.0001 0.0001
γ1,2 0.01 1.86 0.01 1.19 0.001 1.19

Table 9: Determination of the parameters corresponding to the hepatitis B specific two-type birth-death
branching model with constant sampling fractions using different paths after applying the grids in Table 8.
For each applied path and each parameter the step sizes and the MLE, the parameter corresponding to the
minimum negative log likelihood, are given. The order in which the paths are applied is from left to right.
The MLEs from the previous path are used as the initial values for the next path.

As can be seen the MLEs found for the second grid in Table 8 are all on the boundaries of the grid. This
suggests that the optimal parameter values are outside this grid. This can also be seen from our results in
Table 9.

Parameter estimation in case of variable sampling fractions over time

For the two-type birth-death branching model with variable sampling fractions over time we determined
the MLE by applying the steps described in Table 10. Again we find the maximum likelihood estimator by
taking the parameter value corresponding to the minimum negative log likelihood. Note that we have two
extra parameters in this model which we need to estimate: c1 and c2.
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Parameters
Grid 1 Path 1 Path 2 Path 3

Interval Step size MLE Step size MLE Step size MLE Step size MLE
λ1,1 [1:5] 1 1 0.1 1.1 0.01 1.42 0.001 1.423
λ2,1 [0.25:1] 0.25 0.25 0.01 0.03 0.001 0.001 0.0001 0.001
d1 [1:4] 1 2 0.1 0.1 0.001 0.001 0.0001 0.0001
d2 [0.025:0.1] 0.025 0.1 0.001 0.001 0.0001 0.0001 0.00001 0.0001
γ1,2 [0.25:1] 0.25 1 0.01 1.27 0.001 1.271 0.001 1.271
c1 [0.01:0.04] 0.01 0.01 0.001 0.001 0.0001 0.0001 0.00001 0.00001
c2 [0.01:0.04] 0.01 0.01 0.001 0.001 0.0001 0.0001 0.00001 0.00001

Table 10: Determination of the parameters corresponding to the hepatitis B specific two-type birth-death
branching model with variable sampling fractions using a grid and multiple paths. For the applied grid the
interval and step size for each parameter is given and we denote the value of the parameter corresponding to
the minimum negative log likelihood by the MLE. For each applied path and each parameter the step sizes
and the MLE, the parameter corresponding to the minimum negative log likelihood, are given. The order in
which the steps are applied is from left to right; the MLEs found from the grid are used as initial values for
the first path and so on.

We saw that in case d1, d2, c1 and c2 tend to zero, the negative log likelihood even became smaller. Because
this means that we could have proceed further infinitely long by taking smaller step sizes, we decided to stop
after path 3. Note that the MLEs found for the grid, except the MLE for d1, are on the boundaries of the
grid. This implies our optimal parameter values are outside the grid.

Parameter estimation in case of variable sampling fractions over time and using prior infor-
mation

In case we use the prior information that d1 + γ1,2 ∈ [3 : 4] together with the 2-type birth-death branching
model with variable sampling fractions over time, the optimal model parameters are estimated by the steps
summarized in Table 11.

Parameters
Grid 1 Path 1

Interval Step size MLE Step size MLE
λ1,1 [1:5] 1 1 0.1 2.3
λ2,1 [0.25:1] 0.25 0.25 0.01 0.06
d1 [1:4] 1 2 0.1 1.1
d2 [0.025:0.1] 0.025 0.1 0.001 0.087
γ1,2 [0.25:1] 0.25 1 0.01 1.99
c1 [0.01:0.04] 0.01 0.01 0.001 0.001
c2 [0.01:0.04] 0.01 0.01 0.001 0.001

Table 11: Determination of the parameters corresponding to the hepatitis B specific two-type birth-death
branching model with variable sampling fractions using one grid and path. We furthermore use the prior
information that d1 +γ1,2 ∈ [3 : 4]. For the applied grid the interval and step size for each parameter is given
and we denote the value of the parameter corresponding to the minimum negative log likelihood (MLE).
For the applied path the step sizes and the MLE, corresponding to the minimum negative log likelihood, for
each parameter are given. The order in which the methods are applied is from left to right; the MLEs found
from the grid are used as initial values for the path.

A lower negative log likelihood can be obtained in case c1 and c2 become smaller and tend to zero. However,
we decided to stop here. Note that the MLEs for all parameters except d1 are on the boundaries of the grid
we optimized over. This suggests our optimal parameter values are outside the grid, which is also suggested
by the final results in Table 11.
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B.2 Coalescent model

Parameter estimation for the phylogenetic tree in Figure 8

We use that our data is represented by the phylogenetic tree in Figure 8. Estimation of the parameter values
corresponding to the minimum negative log likelihood when using the coalescent model is then performed
by applying the optimization method summarized in Table 12 and 13.

Parameters
Grid 1 Grid 2

Interval Step size MLE Interval Step size MLE
β1,1 [1:6] 1 5 [2:5.5] 0.5 5.5
β2,1 [0.5:2.5] 0.5 0.5 [0.1:1] 0.1 0.1
γ1 [0.5:5] 0.5 5 [3.2:5.2] 0.4 4
γ2 [0.02:0.1] 0.02 0.1 [0.04:0.16] 0.04 0.12
γ1,2 [0.4:2] 0.4 0.4 [0.1:1] 0.1 0.1

Table 12: Determination of the parameters corresponding to the hepatitis B specific coalescent model using
different grids. The phylogenetic tree used is in Figure 8. For each applied grid the interval and step size for
each parameter are given and we denote the value of the parameter corresponding to the minimum negative
log likelihood (MLE). The order in which the grids are applied is from left to right; the MLEs found from
the previous grid are included in the intervals used for the next grid.

Parameters
Path 1 Path 2 Path 3

Step size MLE Step size MLE Step size MLE
β1,1 0.01 5.5 0.01 5.5 0.001 5.501
β2,1 0.001 0.013 0.001 0.001 0.0001 0.001
γ1 0.01 4 0.01 4.12 0.001 4.116
γ2 0.01 0.01 0.001 0.007 0.001 0.007
γ1,2 0.001 0.1 0.001 0.104 0.001 0.105

Table 13: Determination of the parameters corresponding to the hepatitis B specific coalescent model using
different paths after applying the grids in Table 12. The phylogenetic tree used is in Figure 8. For each
applied path and each parameter the step sizes and the MLE, the parameter corresponding to the minimum
negative log likelihood, are given. The order in which the paths are applied is from left to right. The MLEs
from the previous path are used as the initial values for the next path.

Note that the MLEs found by optimizing over the second grid are partially on the boundaries of this grid.
This suggests these parameter values might be outside the pre-defined ranges. The results from Table 13
also show this.
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Parameter estimation for the phylogenetic tree in Figure 9

We use the phylogenetic tree in Figure 9 to represent our data. To estimate the parameter values corre-
sponding to the minimum negative log likelihood when using the coalescent model we apply the optimization
method summarized in Table 14 and 15.

Parameters
Grid 1 Grid 2

Interval Step size MLE Interval Step size MLE
β1,1 [1:6] 1 4 [2:5.5] 0.5 5
β2,1 [0.5:2.5] 0.5 0.5 [0.1:1] 0.1 0.1
γ1 [0.5:5] 0.5 4 [3.2:5.2] 0.4 3.6
γ2 [0.02:0.1] 0.02 0.1 [0.04:0.16] 0.04 0.12
γ1,2 [0.4:2] 0.4 0.4 [0.1:1] 0.1 0.1

Table 14: Determination of the parameters corresponding to the hepatitis B specific coalescent model using
different grids. The phylogenetic tree used is in Figure 9. For each applied grid the interval and step size for
each parameter are given and we denote the value of the parameter corresponding to the minimum negative
log likelihood (MLE). The order in which the grids are applied is from left to right; the MLEs found from
the previous grid are included in the intervals used for the next grid.

Parameters
Path 1 Path 2 Path 3

Step size MLE Step size MLE Step size MLE
β1,1 0.01 5 0.01 4.99 0.001 4.99
β2,1 0.001 0.012 0.001 0.001 0.0001 0.0001
γ1 0.01 3.6 0.01 3.64 0.001 3.636
γ2 0.01 0.01 0.001 0 0.001 0
γ1,2 0.001 0.1 0.001 0.098 0.001 0.096

Table 15: Determination of the parameters corresponding to the hepatitis B specific coalescent model using
different paths after applying the grids in Table 14. The phylogenetic tree used is in Figure 9. For each
applied path and each parameter the step sizes and the MLE, the parameter corresponding to the minimum
negative log likelihood, are given. The order in which the paths are applied is from left to right. The MLEs
from the previous path are used as the initial values for the next path.

Note that the MLEs shown for the second grid in Table 14 are partially on the boundaries of the grid. We
therefore expect some of these parameter values to lie outside the grid. We also see this from Table 15.

44



C Codes

C.1 Correction of the phylogenetic tree generated by TreeAnnotator [20]

# Set the working d i r e c t o r y and load the packages we need
setwd ( ”N: /Data h e p a t i t i s b” )
l ibrary ( ape )

# Load the g ene t i c sequences from the data
x <− read . dna ( ” acuutenchron i sch goed2 . f s t a ” , format=’ f a s t a ’ )
N <− dim( x ) [ 1 ]

# Read the t r e e genera ted by Tree Annotator
t r e e b e a s t <− read . nexus ( ”BEAST/outputTreeAnnotator acuutenchroni sch goed . txt ” )

# In case o f nega t i v e branch l eng th s , p l a ce i t s descending note 0.01 year
a f t e r the ances tor

# Also r ep l a c e the edge l e n g t h s .
for ( i in 1 : ( 2∗N−2) ) {

i f ( t r e e b e a s t $edge . length [ i ] < 0 & t r e e b e a s t $edge [ i , 2 ] > N) {# for
branches t ha t connect two i n t e r n a l nodes

t r e e b e a s t $edge . length [ t r e e b e a s t $edge [ ,1]== t r e e b e a s t $edge [ i
, 2 ] ] [ 1 ] <− t r e e b e a s t $edge . length [ t r e e b e a s t $edge [ ,1]==
t r e e b e a s t $edge [ i , 2 ] ] [ 1 ] + t r e e b e a s t $edge . length [ i ] − 0 .01

t r e e b e a s t $edge . length [ t r e e b e a s t $edge [ ,1]== t r e e b e a s t $edge [ i
, 2 ] ] [ 2 ] <− t r e e b e a s t $edge . length [ t r e e b e a s t $edge [ ,1]==
t r e e b e a s t $edge [ i , 2 ] ] [ 2 ] + t r e e b e a s t $edge . length [ i ] − 0 .01

t r e e b e a s t $edge . length [ i ] <− 0 .01
}
else {# for branches corresponding to a l e a f node

i f ( t r e e b e a s t $edge . length [ i ] < 0 & t r e e b e a s t $edge [ i , 2 ] <= N) {
t r e e b e a s t $edge . length [ t r e e b e a s t $edge [ ,2]== t r e e b e a s t $

edge [ i , 1 ] ] <− t r e e b e a s t $edge . length [ t r e e b e a s t $edge
[ ,2]== t r e e b e a s t $edge [ i , 1 ] ] + t r e e b e a s t $edge . length
[ i ] − 0 .01

j <− which( t r e e b e a s t $edge [ ,1]== t r e e b e a s t $edge [ i , 1 ] &
t r e e b e a s t $edge [ , 2 ] !=t r e e b e a s t $edge [ i , 2 ] )

t r e e b e a s t $edge . length [ j ] <− t r e e b e a s t $edge . length [ j ] −
t r e e b e a s t $edge . length [ i ] + 0 .01

t r e e b e a s t $edge . length [ i ] <− 0 .01
}

}
}

# Save the cor r ec t ed t r e e
write . nexus ( t r e ebeas t , f i l e = ”BEAST/outputTreeAnnotator acuutenchron i sch goed

modi f i ed . txt ” , t r a n s l a t e = FALSE)

# Remove t i p ”A35 A 1999.288” from the phy l o g ene t i c t r e e
t r e e <− t r e e b e a s t
t r e e <− drop . t i p ( t r e ebea s t , c ( ”A35 A 1999.288 ” ) )
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# Denote the s t a t e s to the l e a f nodes ( check t r e e$ t i p . l a b e l to check f o r the
order o f the l e a f nodes )

t r e e $ s t a t e s <− rep ( c ( 1 , 2 ) , t imes=c (56 ,27) )

# Save the tree , note t ha t the f i r s t N nodes ( so r t ed ) correspond to the l e a f
nodes , node N+1 equa l s the roo t o f the t r e e and N+2 t/m 2∗N−1 are the
o ther i n t e r n a l nodes in descending order

save ( t ree , f i l e=”R/ t r e e 2 without A35” )
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C.2 Two-type birth-death branching model with constant sampling fractions

# Function f o r c a l c u l a t i n g the l i k e l i h o o d o f a c e r t a i n parameter s e t par g iven
a phy l o g ene t i c t r e e

# brpo in t=0 means we c a l c u l a t e the l i k e l i h o o d f o r the whole phy l o g ene t i c t ree ,
e l s e b rpo in t e qua l s the number o f years back in time from the presen t at

which we cut the t r e e . I t shou ld at l e a s t be g r ea t e r than the time (number
o f years from the presen t ) o f the l e f t −most l e a f node but sma l l e r than

the time (number o f years from the presen t ) o f the roo t o f the t r e e .
# par must be ( lambda11 , lambda12 , lambda21 , lambda22 , death1 , death2 ,

gamma12 , gamma21)
# f i x determines which parameters are con s t r a i n t when op t imi z ing i s performed .

F i r s t row s p e c i f i e s the parameters be ing con s t r a i n t (1 f o r lambda11 , 2
f o r lambda12 e t c ) . Second row : ( i ) I f en try (2 , j ) i s non−nega t i ve , say x ,
then parameter (1 , j ) i s f i x e d to x . ( i i ) I f en try (2 , j ) i s nega t i ve , say −
m, then parameter (1 , j ) i s f i x e d to parameter m times entry (3 , j ) (
excep t i on i s m=0.4: then the parameter lambda22 i s f i x e d to lambda21∗
lambda12/ lambda11 , used in S t ad l e r e t a l [ 2 4 ] f o r superspreaderdynamics )

# s u r v i v a l=1 cond i t i on s the l i k e l i h o o d on sampling at l e a s t one t i p ( or one
t i p per roo t descendant i f roo t=1)

# posR=1 cons t ra in s the parameters (when op t imi z ing ) on R0>1
# unknownStates=FALSE means t ha t the s t a t e s o f the l e a f nodes are known
# root=0 i n d i c a t e s t ha t t h e r e i s an edge above the roo t (mrca) in the t r e e

phy lo . roo t=1 i n d i c a t e s t ha t t h e r e i s no edge above the roo t .
# s t a t e s [ i ] b e l ong s to l e a f i
# The sampling f r a c t i o n s are cons tant
# setwd (”N:/Data h e p a t i t i s b/R”)
# With sourceDirec tory (” Funct ies Tanja ” , modif iedOnly=FALSE) ; we can load a l l

f unc t i on s at once
# Also load the phy l o g ene t i c t r e e

bdtypes . s t t . l i k . s tatechange <− function ( brpoint , par , phylo , f ix=rbind ( c ( 0 , 0 ) , c
( 0 , 0 ) ) , sampfrac , s u r v i v a l =0,posR=0,unknownStates=FALSE, root =0){

prpar <− FALSE
maxpar <− 100
partemp <− vector ( )
k <− 1
for ( i in 1 : 8 ) {

index <− which( i == f ix [ 1 , ] )
i f ( length ( index )>0){

i f ( f ix [ 2 , index ]>=0){
partemp <− c ( partemp , f ix [ 2 , index ] )

}
else {

temp <− − f ix [ 2 , index ]
i f ( temp == 0 . 4 ) {#make lambdas in same r a t i o

partemp <− c ( partemp , partemp [ 3 ] ∗
partemp [ 2 ] /partemp [ 1 ] )

}
else {

partemp <− c ( partemp , partemp [ temp ] ∗ f ix
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[ 3 , index ] )
}

}
}
else {

partemp <− c ( partemp , par [ k ] )
k <− k+1

}
}
#pr in t ( partemp )

death <− partemp [ 5 : 6 ]
l <− partemp [ 1 : 4 ]
gamma <− partemp [ 7 : 8 ]
p s i <− death∗sampfrac
m <− death∗(1− sampfrac )

i f ( root==1){
cut <− phylo$edge [ 1 , 1 ]
for ( i in 1 : length ( phylo$edge [ , 1 ] ) ) {

i f ( phylo$edge [ i , 1 ] >= cut ) {phylo$edge [ i , 1 ] <− phylo$
edge [ i ,1 ]+1}

i f ( phylo$edge [ i , 2 ] >= cut ) {phylo$edge [ i , 2 ] <− phylo$
edge [ i ,2 ]+1}

}
phylo$edge <− rbind ( c (cut , phylo$edge [ 1 , 1 ] ) , phylo$edge )
phylo$edge . length <− c (0 , phylo$edge . length )

}

outmatrix <− vector ( ) # needed f o r c u t t i n g o f t r e e at t=brpo in t
summary <− get . t imes2 ( phylo )
out <− 10ˆ10
temp <− 1
R0temp <− try ( R0types . s tatechange ( l [ 1 ] , l [ 2 ] , l [ 3 ] , l [ 4 ] , death [ 1 ] , death

[ 2 ] ,gamma[ 1 ] ,gamma [ 2 ] ) )
i f ( posR==1 && class (R0temp)==”numeric ” && R0temp<1){temp <− 0}
i f ( posR==1 && class (R0temp)==” try−e r r o r ” ) {temp <− 0}
check <− ( ( length (which( partemp==”NaN” ) )>0) | | ( min( l , p s i ) )<0 | | m<0 | |

max( l ,m, p s i )>maxpar | | ( temp==0))
i f (check ) {out <− 10ˆ10}
else {

i f ( brpo int==0){
l i k <− try (BDSSnum. help . s ta techange ( brpoint , phylo , 1 , l ,

gamma,m, ps i ,summary, unknownStates ) )
i f ( class ( l i k ) !=” try−e r r o r ” ) {

LambMu <− l [1]− l [4 ]−(m[1 ]+ p s i [1 ]+gamma [ 1 ] ) +(m
[2]+ p s i [2 ]+gamma [ 2 ] )

c <− sqrt (LambMuˆ2 + 4∗ ( l [2 ]+gamma [ 1 ] ) ∗ ( l [3 ]+
gamma [ 2 ] ) )

f 1 <− ( c+LambMu)/ ( c+LambMu+2∗ ( l [2 ]+gamma [ 1 ] ) )
out <− try(−log ( ( l i k [ 3 ] ∗ f 1 )/(1− l i k [ 1 ] ) ˆ(
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s u r v i v a l ) + ( l i k [ 4 ] ∗(1− f 1 ) )/(1− l i k [ 2 ] ) ˆ(
s u r v i v a l ) ) )

i f ( ( class ( out ) !=”numeric ” ) | | ( out==”NaN” ) | |
( out==” I n f ” ) ) {out <− 10ˆ10}

}
else {out <− 10ˆ10}

}
else {

for ( i in 1 : length ( phylo$edge [ , 1 ] ) ) {# ca l c u l a t e
nega t i v e l o g l i k e l i h o o d f o r a l l s epara ted t r e e s

i f (round(summary [ phylo$edge [ i , 1 ] , 1 ] , d i g i t s
=6)>round( brpoint , d i g i t s =6) && round(
summary [ phylo$edge [ i , 2 ] , 1 ] , d i g i t s =6)<=
round( brpoint , d i g i t s =6) ) {

l i k <− try (BDSSnum. help . s ta techange (
brpoint , phylo , i , l ,gamma,m, ps i ,
summary, unknownStates ) )

i f ( class ( l i k ) !=” try−e r r o r ” ) {
LambMu <− l [1]− l [4 ]−(m[1 ]+ p s i

[1 ]+gamma [ 1 ] ) +(m[2]+ p s i
[2 ]+gamma [ 2 ] )

c <− sqrt (LambMuˆ2 + 4∗ ( l [2 ]+
gamma [ 1 ] ) ∗ ( l [3 ]+gamma [ 2 ] ) )

f 1 <− ( c+LambMu)/ ( c+LambMu+2∗ (
l [2 ]+gamma [ 1 ] ) )

out <− try(−log ( ( l i k [ 3 ] ∗ f 1 )/
(1− l i k [ 1 ] ) ˆ( s u r v i v a l ) + (
l i k [ 4 ] ∗(1− f 1 ) )/(1− l i k [ 2 ] )
ˆ( s u r v i v a l ) ) )

i f ( ( class ( out ) !=”numeric ” ) | |
( out==”NaN” ) | | ( out==”
I n f ” ) ) {out <− 10ˆ10}

}
else {out <− 10ˆ10}
outmatrix <− rbind ( outmatrix , c ( out , i ) )

}
}
out <− sum( outmatrix [ , 1 ] )# sum the nega t i v e l o g

l i k e l i h o o d s o f a l l s epara ted t r e e s
}

}

i f ( out>=10ˆ10){out <− 10ˆ1000}
i f ( prpar==TRUE) {print (par ) }
out <− c ( out , par , R0temp)
out

}

# Function to genera te a matrix wi th f o r each node o f the phy l o g ene t i c t r e e
i t s time ( the number o f years from the presen t ) and type (0 f o r a l e a f
node , 1 f o r an i n t e r n a l node )
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get . t imes2 <− function ( t r e e ) {
nodes <− sort (unique ( c ( t r e e $edge ) ) )
ttype <− ( 1 : length ( nodes ) )∗0
t imes <− ttype
ttype [ t r e e $edge [ 1 , 1 ] ] <− 1
for ( j in ( t r e e $edge [1 , 1 ]+1) : length ( nodes ) ) {

ttype [ j ] <− 1
temp <− which( t r e e $edge [ ,2]== j )
ance s to r <− t r e e $edge [ temp , 1 ]
t imes [ j ] <− t imes [ ance s to r ]+ t r e e $edge . length [ temp ]

}
for ( j in 1 : ( t r e e $edge [1 ,1 ] −1) ) {

temp <− which( t r e e $edge [ ,2]== j )
ance s to r <− t r e e $edge [ temp , 1 ]
t imes [ j ] <− t imes [ ance s to r ]+ t r e e $edge . length [ temp ]

}
maxt <− max( t imes )
t imes <− −t imes+maxt
out <− cbind ( times , t type )
out

}

# Function f o r c a l c u l a t i n g R 0

R0types . s tatechange <− function ( l11 , l12 , l21 , l22 , death1 , death2 , gamma12 , gamma21)
{

R0 <− ( l 11+l12 )/ ( death1+gamma12)+(gamma12/ ( death1+gamma12) )∗ ( ( l 22+l21 )
/ ( death2+gamma21) )

R0
}

# Function f o r c a l c u l a t i n g the vec t o r (E 1( t 0) , E 2( t 0) ,D {O1}( t 0) ,D {O2}( t
0) ) f o r the phy l o g ene t i c t r e e

BDSSnum. help . s ta techange <− function ( brpoint , phylo , rootedge , l ,gamma,m, ps i ,
summary, unknownStates ) {

newroot <− phylo$edge [ rootedge , 2 ]
newtrees <− which( phylo$edge [ ,1]== newroot )
tyoung <− summary [ phylo$edge [ rootedge , 2 ] ]

i f ( brpoint >0){
t o ld <− min( brpoint ,summary [ phylo$edge [ rootedge , 1 ] ] )

}
else {

t o ld <− summary [ phylo$edge [ rootedge , 1 ] ]
}

i f ( length ( newtrees )==0) {# i f the edge corresponds to a l e a f node
i f ( unknownStates==FALSE && phylo$ s t a t e s [ newroot ]>0){

s t a t e <− phylo$ s t a t e s [ newroot ]
i n i t p s i <− c ( 0 , 0 )
i n i t p s i [ s t a t e ] <− log ( p s i [ s t a t e ] )
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}
else {

i n i t p s i <− c ( log ( p s i [ 1 ] ) , log ( p s i [ 2 ] ) )
}
i n i t y 1 <− i n t e g r a t o r 2 . s tatechange ( c ( 1 , 1 ) , l ,gamma,m, ps i , c (0 ,

tyoung ) )
r e s <− i n t e g r a t o r . s tatechange ( i n i t=c ( i n i ty1 , i n i t p s i ) , l ,gamma,m

, ps i , c ( tyoung , t o ld ) )
}
else {# i f the edge connects two i n t e r n a l nodes

l i k l e f t <− BDSSnum. help . s ta techange ( brpoint , phylo , newtrees [ 1 ] ,
l ,gamma,m, ps i ,summary, unknownStates )

l i k r i g h t <− BDSSnum. help . s ta techange ( brpoint , phylo , newtrees
[ 2 ] , l ,gamma,m, ps i ,summary, unknownStates )

r e s1 <− c ( l i k l e f t [ 1 ] , l i k l e f t [ 3 ] ∗ l i k r i g h t [ 3 ] ∗ l [ 1 ] ∗2+ l i k l e f t [ 3 ]
∗ l i k r i g h t [ 4 ] ∗ l [2 ]+ l i k l e f t [ 4 ] ∗ l i k r i g h t [ 3 ] ∗ l [ 2 ] ) # s t a t e 1
above j o i n i n g at tyoung

r e s2 <− c ( l i k l e f t [ 2 ] , l i k l e f t [ 4 ] ∗ l i k r i g h t [ 4 ] ∗ l [ 4 ] ∗2+ l i k l e f t [ 3 ]
∗ l i k r i g h t [ 4 ] ∗ l [3 ]+ l i k l e f t [ 4 ] ∗ l i k r i g h t [ 3 ] ∗ l [ 3 ] ) # s t a t e 2
above j o i n i n g at tyoung

r e s <− i n t e g r a t o r . s tatechange ( i n i t=c ( r e s1 [ 1 ] , r e s2 [ 1 ] , log ( r e s1
[ 2 ] ) , log ( r e s2 [ 2 ] ) ) , l ,gamma,m, ps i , c ( tyoung , t o ld ) )

}
r e s

}

# Function f o r s o l v i n g the d i f f e r e n t i a l e qua t i ons f o r E 1 and E 2

i n t e g r a t o r 2 . s tatechange <− function ( i n i t , l ,gamma,m, ps i , t imes ) {
ode <− function ( times , y , p) {

lambda11 <− p [ 1 ]
lambda12 <− p [ 2 ]
lambda21 <− p [ 3 ]
lambda22 <− p [ 4 ]
gamma12 <− p [ 5 ]
gamma21 <− p [ 6 ]
mu1 <− p [ 7 ]
mu2 <− p [ 8 ]
p s i 1 <− p [ 9 ]
p s i 2 <− p [ 1 0 ]

yd1 <− mu1−(lambda11+lambda12+gamma12+mu1+ps i 1 )∗y [1 ]+ lambda11∗
y [ 1 ] ∗y [1 ]+ lambda12∗y [ 1 ] ∗y [2 ]+gamma12∗y [ 2 ]

yd2 <− mu2−(lambda21+gamma21+lambda22+mu2+ps i 2 )∗y [2 ]+ lambda21∗
y [ 1 ] ∗y [2 ]+ lambda22∗y [ 2 ] ∗y [2 ]+gamma21∗y [ 1 ]

l i s t ( c ( yd1 , yd2 ) )
}
p <− c ( l ,gamma,m, p s i )
out <− l s oda ( i n i t , times , ode , p) [ 2 , 2 : 3 ]
out

}
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# Function f o r s o l v i n g the d i f f e r e n t i a l e qua t i ons f o r E 1 , E 2 , l o g (D 1) and
l o g (D 2)

i n t e g r a t o r . s tatechange <− function ( i n i t , l ,gamma,m, ps i , t imes ) {
ode <− function ( times , y , p) {

lambda11 <− p [ 1 ]
lambda12 <− p [ 2 ]
lambda21 <− p [ 3 ]
lambda22 <− p [ 4 ]
gamma12 <− p [ 5 ]
gamma21 <− p [ 6 ]
mu1 <− p [ 7 ]
mu2 <− p [ 8 ]
p s i 1 <− p [ 9 ]
p s i 2 <− p [ 1 0 ]

yd1 <− mu1−(lambda11+lambda12+gamma12+mu1+ps i 1 )∗y [1 ]+ lambda11∗
y [ 1 ] ∗y [1 ]+ lambda12∗y [ 1 ] ∗y [2 ]+gamma12∗y [ 2 ]

yd2 <− mu2−(lambda21+gamma21+lambda22+mu2+ps i 2 )∗y [2 ]+ lambda21∗
y [ 1 ] ∗y [2 ]+ lambda22∗y [ 2 ] ∗y [2 ]+gamma21∗y [ 1 ]

yd3 <− −(lambda11+lambda12+gamma12+mu1+ps i 1 ) + 2∗lambda11∗y [ 1 ]
+ lambda12∗y [ 1 ] ∗exp( y [4]−y [ 3 ] ) + lambda12∗y [ 2 ] + gamma12∗

exp( y [4]−y [ 3 ] )
yd4 <− −(lambda22+lambda21+gamma21+mu2+ps i 2 ) + 2∗lambda22∗y [ 2 ]

+ lambda21∗y [ 2 ] ∗exp( y [3]−y [ 4 ] ) + lambda21∗y [ 1 ] +gamma21∗
exp( y [3]−y [ 4 ] )

l i s t ( c ( yd1 , yd2 , yd3 , yd4 ) )
}
out <− l s oda ( i n i t , times , ode , c ( l ,gamma,m, p s i ) ) [ 2 , 2 : 5 ]
out [ 3 : 4 ] <− exp( out [ 3 : 4 ] ) # to ge t the va l u e s f o r D 1 and D 2 in s t ead

o f l o g (D 1) and l o g (D 2)
out

}
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C.3 Two-type birth-death branching model with variable sampling fractions

# Function f o r c a l c u l a t i n g the l i k e l i h o o d o f a c e r t a i n parameter s e t par g iven
a phy l o g ene t i c t r e e

# brpo in t=0 means we c a l c u l a t e the l i k e l i h o o d f o r the whole phy l o g ene t i c t ree ,
e l s e b rpo in t e qua l s the number o f years back in time from the presen t at

which we cut the t r e e . I t shou ld at l e a s t be g r ea t e r than the time (number
o f years from the presen t ) o f the l e f t −most l e a f node but sma l l e r than

the time (number o f years from the presen t ) o f the roo t o f the t r e e .
# par must be ( lambda11 , lambda12 , lambda21 , lambda22 , death1 , death2 ,

gamma12 , gamma21 , c1 , c2 )
# f i x determines which parameters are con s t r a i n t when op t imi z ing i s performed .

F i r s t row s p e c i f i e s the parameters be ing con s t r a i n t (1 f o r lambda11 , 2
f o r lambda12 e t c ) . Second row : ( i ) I f en try (2 , j ) i s non−nega t i ve , say x ,
then parameter (1 , j ) i s f i x e d to x . ( i i ) I f en try (2 , j ) i s nega t i ve , say −
m, then parameter (1 , j ) i s f i x e d to parameter m times entry (3 , j ) (
excep t i on i s m=0.4: then the parameter lambda22 i s f i x e d to lambda21∗
lambda12/ lambda11 , used in S t ad l e r e t a l [ 2 4 ] f o r superspreaderdynamics )

# s u r v i v a l=1 cond i t i on s the l i k e l i h o o d on sampling at l e a s t one t i p ( or one
t i p per roo t descendant i f roo t=1)

# posR=1 cons t ra in s the parameters (when op t imi z ing ) on R0>1
# unknownStates=FALSE means t ha t the s t a t e s o f the l e a f nodes are known
# root=0 i n d i c a t e s t ha t t h e r e i s an edge above the roo t (mrca) in the t r e e

phy lo . roo t=1 i n d i c a t e s t ha t t h e r e i s no edge above the roo t .
# s t a t e s [ i ] b e l ong s to l e a f i
# The sampling f r a c t i o n s d i f f e r per year
# setwd (”N:/Data h e p a t i t i s b/R”)
# With sourceDirec tory (” Funct ies Tanja ” , modif iedOnly=FALSE) ; we can load a l l

f unc t i on s at once
# Also load the phy l o g ene t i c t r e e

bdtypes . s t t . l i k . s tatechange . s <− function ( brpoint , par , phylo , f ix=rbind ( c ( 0 , 0 ) , c
( 0 , 0 ) ) , s u r v i v a l =0,posR=0,unknownStates=FALSE, root =0){

prpar <− FALSE
maxpar <− 100
partemp <− vector ( )
k <− 1
for ( i in 1 : 1 0 ) {

index <− which( i == f ix [ 1 , ] )
i f ( length ( index )>0){

i f ( f ix [ 2 , index ]>=0){
partemp <− c ( partemp , f ix [ 2 , index ] )

}
else {

temp <− − f ix [ 2 , index ]
i f ( temp == 0 . 4 ) {# make lambdas in same r a t i o

partemp <− c ( partemp , partemp [ 3 ] ∗
partemp [ 2 ] /partemp [ 1 ] )

}
else {

partemp <− c ( partemp , partemp [ temp ] ∗ f ix
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[ 3 , index ] )
}

}
}
else {

partemp <− c ( partemp , par [ k ] )
k <− k+1

}
}
#pr in t ( partemp )

death <− partemp [ 5 : 6 ]
l <− partemp [ 1 : 4 ]
gamma <− partemp [ 7 : 8 ]
c1 <− partemp [ 9 ]
c2 <− partemp [ 1 0 ]

# de f i n e the sampling f r a c t i o n f o r each s t a t e ( rows ) and each year (
columns )

# the f i r s t column denotes a l l years b e f o r e 1985 ( the year in which
the l e f t −most l e a f node o f the phy l o g ene t i c t r e e i s sampled )

# the second column denotes year 1985 , the t h i r d year 1986 e t c . u n t i l
the 28 th column which denotes 2011 ( the year in which the r i gh t−
most l e a f node o f the phy l o g ene t i c t r e e i s sampled )

# the v e c t o r s o f numbers equa l the number o f sampled a cu t e l y and
c h r on i c a l l y i n f e c t e d i n d i v i d u a l s during each year

s f <− matrix (NA, 2 , 2 8 )
s f [ 1 , ] <− c ( 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 3 , 0 , 2 , 0 , 2 , 0 , 1 , 1 , 2 , 0 , 7 , 6 , 3 , 4 , 6 , 7 , 6 , 1 )∗

c1
s f [ 2 , ] <− c ( 0 , 1 5 , 4 , 0 , 0 , 1 , 0 , 2 , 0 , 1 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 )∗

c2

oneminussf <− matrix (NA, 2 , 2 8 )
for ( i in 1 : 2 8 ) {

oneminussf [ , i ] <− 1− s f [ , i ]
}

p s i <− matrix (NA, 2 , 2 8 )
p s i [ 1 , ] <− death [ 1 ] ∗ s f [ 1 , ]
p s i [ 2 , ] <− death [ 2 ] ∗ s f [ 2 , ]

m <− matrix (NA, 2 , 2 8 )
m[ 1 , ] <− death [ 1 ] ∗oneminussf [ 1 , ]
m[ 2 , ] <− death [ 2 ] ∗oneminussf [ 2 , ]

i f ( root==1){
cut <− phylo$edge [ 1 , 1 ]
for ( i in 1 : length ( phylo$edge [ , 1 ] ) ) {

i f ( phylo$edge [ i ,1]>=cut ) {
phylo$edge [ i , 1 ] <− phylo$edge [ i ,1 ]+1

}
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i f ( phylo$edge [ i ,2]>=cut ) {
phylo$edge [ i , 2 ] <− phylo$edge [ i ,2 ]+1

}
}
phylo$edge <− rbind ( c (cut , phylo$edge [ 1 , 1 ] ) , phylo$edge )
phylo$edge . length <− c (0 , phylo$edge . length )

}

outmatrix <− vector ( ) # needed f o r c u t t i n g o f t r e e at t=brpo in t
summary <− get . t imes2 ( phylo )
out <− 10ˆ10
temp <− 1
R0temp <− try ( R0types . s tatechange ( l [ 1 ] , l [ 2 ] , l [ 3 ] , l [ 4 ] , death [ 1 ] , death

[ 2 ] ,gamma[ 1 ] ,gamma [ 2 ] ) )
i f ( posR==1 && class (R0temp)==”numeric ” && R0temp<1){temp <− 0}
i f ( posR==1 && class (R0temp)==” try−e r r o r ” ) {temp <− 0}

# In case we use p r i o r in format ion
i f ( death [1 ]+gamma[1]<3 | | death [1 ]+gamma[1 ]>4) {

temp <− 0
}

check <− ( ( length (which( partemp==”NaN” ) )>0) | | ( min( l , p s i ) )<0 | | min(m)
<0 | | max( l ,m, p s i )>maxpar | | ( temp==0))

i f (check ) {
out <− 10ˆ10

}
else {

i f ( brpo int==0){
l i k <− try (BDSSnum. help . s ta techange . s ( brpoint , phylo , 1 ,

l , death ,gamma,m, ps i ,summary, unknownStates ) )
i f ( class ( l i k ) !=” try−e r r o r ” ) {

LambMu <− l [1]− l [4 ]−(m[1 ]+ p s i [1 ]+gamma [ 1 ] ) +(m
[2]+ p s i [2 ]+gamma [ 2 ] )

c <− sqrt (LambMuˆ2 + 4∗ ( l [2 ]+gamma [ 1 ] ) ∗ ( l [3 ]+
gamma [ 2 ] ) )

f 1 <− ( c+LambMu)/ ( c+LambMu+2∗ ( l [2 ]+gamma [ 1 ] ) )
out <− try(−log ( ( l i k [ 3 ] ∗ f 1 )/(1− l i k [ 1 ] ) ˆ(

s u r v i v a l ) + ( l i k [ 4 ] ∗(1− f 1 ) )/(1− l i k [ 2 ] ) ˆ(
s u r v i v a l ) ) )

i f ( ( class ( out ) !=”numeric ” ) | | ( out==”NaN” ) | |
( out==” I n f ” ) ) {out <− 10ˆ10}

}
else {

out <− 10ˆ10
}

}
else {

for ( i in 1 : length ( phylo$edge [ , 1 ] ) ) {# ca l c u l a t e
nega t i v e l o g l i k e l i h o o d f o r a l l s epara ted t r e e s

i f (round(summary [ phylo$edge [ i , 1 ] , 1 ] , d i g i t s
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=6)>round( brpoint , d i g i t s =6) && round(
summary [ phylo$edge [ i , 2 ] , 1 ] , d i g i t s =6)<=
round( brpoint , d i g i t s =6) ) {

l i k <− try (BDSSnum. help . s ta techange . s (
brpoint , phylo , i , l , death ,gamma,m,
ps i ,summary, unknownStates ) )

i f ( class ( l i k ) !=” try−e r r o r ” ) {
LambMu <− l [1]− l [4 ]−(m[1 ]+ p s i

[1 ]+gamma [ 1 ] ) +(m[2]+ p s i
[2 ]+gamma [ 2 ] )

c <− sqrt (LambMuˆ2 + 4∗ ( l [2 ]+
gamma [ 1 ] ) ∗ ( l [3 ]+gamma [ 2 ] ) )

f 1 <− ( c+LambMu)/ ( c+LambMu+2∗ (
l [2 ]+gamma [ 1 ] ) )

out <− try(−log ( ( l i k [ 3 ] ∗ f 1 )/
(1− l i k [ 1 ] ) ˆ( s u r v i v a l ) + (
l i k [ 4 ] ∗(1− f 1 ) )/(1− l i k [ 2 ] )
ˆ( s u r v i v a l ) ) )

i f ( ( class ( out ) !=”numeric ” ) | |
( out==”NaN” ) | | ( out==” I n f
” ) ) {out <− 10ˆ10}

}
else {

out <− 10ˆ10
}
outmatrix <− rbind ( outmatrix , c ( out , i ) )

}
}
out <− sum( outmatrix [ , 1 ] ) # sum the nega t i v e l o g

l i k e l i h o o d s o f a l l s epara ted t r e e s
}

}

i f ( out>=10ˆ10){out <− 10ˆ1000}
i f ( prpar==TRUE) {print (par ) }
out <− c ( out , par , R0temp)
out

}

# Function to genera te a matrix wi th f o r each node o f the phy l o g ene t i c t r e e
i t s time ( the number o f years from the presen t ) and type (0 f o r a l e a f
node , 1 f o r an i n t e r n a l node )

get . t imes2 <− function ( t r e e ) {
nodes <− sort (unique ( c ( t r e e $edge ) ) )
ttype <− ( 1 : length ( nodes ) )∗0
t imes <− ttype
ttype [ t r e e $edge [ 1 , 1 ] ] <− 1
for ( j in ( t r e e $edge [1 , 1 ]+1) : length ( nodes ) ) {

ttype [ j ] <− 1
temp <− which( t r e e $edge [ ,2]== j )
ance s to r <− t r e e $edge [ temp , 1 ]
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t imes [ j ] <− t imes [ ance s to r ]+ t r e e $edge . length [ temp ]
}
for ( j in 1 : ( t r e e $edge [1 ,1 ] −1) ) {

temp <− which( t r e e $edge [ ,2]== j )
ance s to r <− t r e e $edge [ temp , 1 ]
t imes [ j ] <− t imes [ ance s to r ]+ t r e e $edge . length [ temp ]

}
maxt <− max( t imes )
t imes <− −t imes+maxt
out <− cbind ( times , t type )
out

}

# Function f o r c a l c u l a t i n g R 0

R0types . s tatechange <− function ( l11 , l12 , l21 , l22 , death1 , death2 , gamma12 , gamma21)
{

R0 <− ( l 11+l12 )/ ( death1+gamma12)+(gamma12/ ( death1+gamma12) )∗ ( ( l 22+l21 )
/ ( death2+gamma21) )

R0
}

# Function f o r c a l c u l a t i n g the vec t o r (E 1( t 0) , E 2( t 0) ,D {O1}( t 0) ,D {O2}( t
0) ) f o r the phy l o g ene t i c t r e e

BDSSnum. help . s ta techange . s <− function ( brpoint , phylo , rootedge , l , death ,gamma,m,
ps i ,summary, unknownStates ) {

newroot <− phylo$edge [ rootedge , 2 ]
newtrees <− which( phylo$edge [ ,1]== newroot )
tyoung <− summary [ phylo$edge [ rootedge , 2 ] ]

i f ( brpoint >0){
t o ld <− min( brpoint ,summary [ phylo$edge [ rootedge , 1 ] ] ) }

else {
t o ld <− summary [ phylo$edge [ rootedge , 1 ] ]

}

i f ( length ( newtrees )==0){# i f the edge corresponds to a l e a f node
# ca l c u l a t i o n o f l o g (D 1) and l o g (D 2) at the l e a f node
i f ( unknownStates==FALSE && phylo$ s t a t e s [ newroot ]>0){

s t a t e <− phylo$ s t a t e s [ newroot ]
i n i t p s i <− c ( 0 , 0 )
i n i t p s i [ s t a t e ] <− log ( p s i [ s ta te ,max( f loor ( get . t imes2 . s

( phylo ) [ newroot , 1 ] ) −1983 ,1) ] ) #1983 equa l s the
sampling year o f the l e f t −most l e a f node minus two

}
else {

i n i t p s i <− c ( log ( p s i [ 1 ,max( f loor ( get . t imes2 . s ( phylo ) [
newroot , 1 ] ) −1983 ,1) ] ) , log ( p s i [ 2 ,max( f loor ( get .
t imes2 . s ( phylo ) [ newroot , 1 ] ) −1983 ,1) ] ) )

}
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b <− max( get . t imes2 . s ( phylo ) [ , 1 ] )−f loor (max( get . t imes2 . s ( phylo
) [ , 1 ] ) )

i n i t y 1 <− i n t e g r a t o r 2 . s tatechange . s ( c ( 1 , 1 ) , l , death ,gamma,m, ps i
, c (0 , b ) )

# ca l c u l a t i o n o f E 1 and E 2 at the l e a f node
i f ( tyoung−b>=1){

for ( i in 1 : f loor ( tyoung−b) ) {
i n i t y 1 <− i n t e g r a t o r 2 . s tatechange . s ( i n i ty1 , l ,

death ,gamma,m, ps i , c (b−1+i , b+i ) )
}
i n i t y 1 <− i n t e g r a t o r 2 . s tatechange . s ( i n i ty1 , l , death ,

gamma,m, ps i , c (b+i , tyoung ) )
}
else {

i n i t y 1 <− i n t e g r a t o r 2 . s tatechange . s ( i n i ty1 , l , death ,
gamma,m, ps i , c (b , tyoung ) )

}

r e s <− c ( i n i ty1 , i n i t p s i )
e <− ( tyoung+(get . t imes2 . s ( phylo ) [ newroot ,1]− f loor ( get . t imes2 .

s ( phylo ) [ newroot , 1 ] ) ) )
r e s <− i n t e g r a t o r . s tatechange . s ( res , l , death ,gamma,m, ps i , c (

tyoung , e ) ) # t h i s g i v e s us D 1 and D 2 , not l o g (D 1) and
l o g (D 2)

# ca l c u l a t i o n o f (E 1 ,E 2 ,D 1 ,D 2) at time t o l d
i f ( to ld−e>=1){

for ( i in 1 : f loor ( to ld−e ) ) {
r e s <− i n t e g r a t o r . s tatechange . s ( c ( r e s [ 1 ] , r e s

[ 2 ] , log ( r e s [ 3 ] ) , log ( r e s [ 4 ] ) ) , l , death ,gamma
,m, ps i , c ( e−1+i , e+i ) )

}
r e s <− i n t e g r a t o r . s tatechange . s ( c ( r e s [ 1 ] , r e s [ 2 ] , log (

r e s [ 3 ] ) , log ( r e s [ 4 ] ) ) , l , death ,gamma,m, ps i , c ( e+i ,
t o ld ) )

}
else {

r e s <− i n t e g r a t o r . s tatechange . s ( c ( r e s [ 1 ] , r e s [ 2 ] , log (
r e s [ 3 ] ) , log ( r e s [ 4 ] ) ) , l , death ,gamma,m, ps i , c ( e , t o ld )
)

}
}
else {# i f the edge connects two i n t e r n a l nodes

l i k l e f t <− BDSSnum. help . s ta techange . s ( brpoint , phylo , newtrees
[ 1 ] , l , death ,gamma,m, ps i ,summary, unknownStates )

l i k r i g h t <− BDSSnum. help . s ta techange . s ( brpoint , phylo , newtrees
[ 2 ] , l , death ,gamma,m, ps i ,summary, unknownStates )

r e s1 <− c ( l i k l e f t [ 1 ] , l i k l e f t [ 3 ] ∗ l i k r i g h t [ 3 ] ∗ l [ 1 ] ∗2+ l i k l e f t [ 3 ] ∗
l i k r i g h t [ 4 ] ∗ l [2 ]+ l i k l e f t [ 4 ] ∗ l i k r i g h t [ 3 ] ∗ l [ 2 ] )# s t a t e 1
above j o i n i n g at tyoung
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r e s2 <− c ( l i k l e f t [ 2 ] , l i k l e f t [ 4 ] ∗ l i k r i g h t [ 4 ] ∗ l [ 4 ] ∗2+ l i k l e f t [ 3 ] ∗
l i k r i g h t [ 4 ] ∗ l [3 ]+ l i k l e f t [ 4 ] ∗ l i k r i g h t [ 3 ] ∗ l [ 3 ] )# s t a t e 2
above j o i n i n g at tyoung

r e s <− c ( r e s1 [ 1 ] , r e s2 [ 1 ] , log ( r e s1 [ 2 ] ) , log ( r e s2 [ 2 ] ) )
g <− ( tyoung+(get . t imes2 . s ( phylo ) [ newroot ,1]− f loor ( get . t imes2 .

s ( phylo ) [ newroot , 1 ] ) ) )
r e s <− i n t e g r a t o r . s tatechange . s ( res , l , death ,gamma,m, ps i , c (

tyoung , g ) )

# ca l c u l a t i o n o f (E 1 ,E 2 ,D 1 ,D 2) at time t o l d
i f ( to ld−g>=1){

for ( i in 1 : f loor ( to ld−g ) ) {
r e s <− i n t e g r a t o r . s tatechange . s ( c ( r e s [ 1 ] , r e s

[ 2 ] , log ( r e s [ 3 ] ) , log ( r e s [ 4 ] ) ) , l , death ,gamma
,m, ps i , c ( g−1+i , g+i ) )

}
r e s <− i n t e g r a t o r . s tatechange . s ( c ( r e s [ 1 ] , r e s [ 2 ] , log (

r e s [ 3 ] ) , log ( r e s [ 4 ] ) ) , l , death ,gamma,m, ps i , c ( g+i ,
t o ld ) )

}
else {

r e s <− i n t e g r a t o r . s tatechange . s ( c ( r e s [ 1 ] , r e s [ 2 ] , log (
r e s [ 3 ] ) , log ( r e s [ 4 ] ) ) , l , death ,gamma,m, ps i , c ( g , t o ld )
)

}
}
r e s

}

# Function to genera te a matrix wi th f o r each node o f the phy l o g ene t i c t r e e
i t s time ( p r o s p e c t i v e l y in years ) and type (0 f o r a l e a f node , 1 f o r an
i n t e r n a l node )

get . t imes2 . s <− function ( t r e e ) {
nodes <− sort (unique ( c ( t r e e $edge ) ) )
ttype <− ( 1 : length ( nodes ) )∗0
t imes <− ttype
ttype [ t r e e $edge [ 1 , 1 ] ] <− 1
for ( j in ( t r e e $edge [1 , 1 ]+1) : length ( nodes ) ) {

ttype [ j ] <− 1
temp <− which( t r e e $edge [ ,2]== j )
ance s to r <− t r e e $edge [ temp , 1 ]
t imes [ j ] <− t imes [ ance s to r ]+ t r e e $edge . length [ temp ]

}
for ( j in 1 : ( t r e e $edge [1 ,1 ] −1) ) {

temp <− which( t r e e $edge [ ,2]== j )
ance s to r <− t r e e $edge [ temp , 1 ]
t imes [ j ] <− t imes [ ance s to r ]+ t r e e $edge . length [ temp ]

}
maxt <− max( t imes )
t imes <− −t imes+maxt
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out <− cbind (2011.115− times , t type ) # 2011.115 denotes the sampling
time o f the r i gh t−most l e a f node o f the phy l o g ene t i c t r e e

out
}

# Function f o r s o l v i n g the d i f f e r e n t i a l e qua t i ons f o r E 1 and E 2

i n t e g r a t o r 2 . s tatechange . s <− function ( i n i t , l , death ,gamma,m, ps i , t imes ) {
ode <− function ( times , y , p) {

lambda11 <− p [ 1 ]
lambda12 <− p [ 2 ]
lambda21 <− p [ 3 ]
lambda22 <− p [ 4 ]
death1 <− p [ 5 ]
death2 <− p [ 6 ]
gamma12 <− p [ 7 ]
gamma21 <− p [ 8 ]
m1 <− p [ 9 ]
m2 <− p [ 1 0 ]

yd1 <− m1−(lambda11+lambda12+gamma12+death1 )∗y [1 ]+ lambda11∗y
[ 1 ] ∗y [1 ]+ lambda12∗y [ 1 ] ∗y [2 ]+gamma12∗y [ 2 ]

yd2 <− m2−(lambda21+gamma21+lambda22+death2 )∗y [2 ]+ lambda21∗y
[ 1 ] ∗y [2 ]+ lambda22∗y [ 2 ] ∗y [2 ]+gamma21∗y [ 1 ]

l i s t ( c ( yd1 , yd2 ) )
}
index <− max(1 , f loor (2011.115− t imes [ 2 ] ) −1983) # the number o f the

column of the matrix m corresponding to the year over which we
i n t e g r a t e

# 2011.115 i s the sampling time o f the r i gh t−most l e a f node o f the
phy l o g ene t i c t r e e used , 1983 equa l s the sampling year o f the l e f t −
most l e a f node minus two

out <− l s oda ( i n i t , times , ode , c ( l , death ,gamma,m[ 1 , index ] ,m[ 2 , index ] ) )
[ 2 , 2 : 3 ]

out
}

# Function f o r s o l v i n g the d i f f e r e n t i a l e qua t i ons f o r E 1 , E 2 , l o g (D 1) and
l o g (D 2)

i n t e g r a t o r . s tatechange . s <− function ( i n i t , l , death ,gamma,m, ps i , t imes ) {
ode <− function ( times , y , p) {

lambda11 <− p [ 1 ]
lambda12 <− p [ 2 ]
lambda21 <− p [ 3 ]
lambda22 <− p [ 4 ]
death1 <− p [ 5 ]
death2 <− p [ 6 ]
gamma12 <− p [ 7 ]
gamma21 <− p [ 8 ]
m1 <− p [ 9 ]
m2 <− p [ 1 0 ]

60



yd1 <− m1−(lambda11+lambda12+gamma12+death1 )∗y [1 ]+ lambda11∗y
[ 1 ] ∗y [1 ]+ lambda12∗y [ 1 ] ∗y [2 ]+gamma12∗y [ 2 ]

yd2 <− m2−(lambda21+gamma21+lambda22+death2 )∗y [2 ]+ lambda21∗y
[ 1 ] ∗y [2 ]+ lambda22∗y [ 2 ] ∗y [2 ]+gamma21∗y [ 1 ]

yd3 <− −(lambda11+lambda12+gamma12+death1 )+2∗lambda11∗y [1 ]+
lambda12∗y [ 1 ] ∗exp( y [4]−y [ 3 ] )+lambda12∗y [2 ]+gamma12∗exp( y
[4]−y [ 3 ] )

yd4 <− −(lambda22+lambda21+gamma21+death2 )+2∗lambda22∗y [2 ]+
lambda21∗y [ 2 ] ∗exp( y [3]−y [ 4 ] )+lambda21∗y [1 ]+gamma21∗exp( y
[3]−y [ 4 ] )

l i s t ( c ( yd1 , yd2 , yd3 , yd4 ) )
}
index <− max(1 , f loor (2011.115− t imes [ 2 ] ) −1983) # the number o f the

column of the matrix m corresponding to the year over which we
i n t e g r a t e

# 2011.115 i s the sampling time o f the r i gh t−most l e a f node o f the
phy l o g ene t i c t r e e used , 1983 equa l s the sampling year o f the l e f t −
most l e a f node minus two

out <− l s oda ( i n i t , times , ode , c ( l , death ,gamma,m[ 1 , index ] ,m[ 2 , index ] ) )
[ 2 , 2 : 5 ]

out [ 3 : 4 ] <− exp( out [ 3 : 4 ] ) # to ge t the va l u e s f o r D 1 and D 2 in s t ead
o f l o g (D 1) and l o g (D 2)

out
}
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C.4 Coalescent model

# Function f o r c a l c u l a t i n g the l i k e l i h o o d o f a phy l o g ene t i c t r e e
# As input we need a phy l o g ene t i c t r e e wi th de f ined s t a t e s f o r the l e a f nodes
# Sta t e 1 and 2 denote the acute and chronic s t a t e r e s p e c t i v e l y
# In t h i s code Y denotes I from the SIR model
# setwd (”N:/Data h e p a t i t i s b/R”)
# With sourceDirec tory (” Funct ies Erik ” , modif iedOnly=FALSE) ; we can load a l l

f unc t i on s at once
# Also load the phy l o g ene t i c t r e e

l i k e l i h o o d p h y l o <− function (par , t r e e ) {
beta1 <− par [ 1 ]
beta2 <− par [ 2 ]
gamma1 <− par [ 3 ]
gamma2 <− par [ 4 ]
gamma12 <− par [ 5 ]
mu <− 0 .1
N <− 24000

R0 <− ( beta1∗ (mu+gamma2)+beta2∗gamma12)/ ( (mu+gamma2)∗ (mu+gamma1+
gamma12) )

# Times (number o f years from presen t ) and type s (0= l e a f node , 1=
in t e rne node ) f o r a l l nodes ( so r t ed )

nodes <− sort (unique ( c ( t r e e $edge ) ) )
t imesandtype <− get . t imes . type ( t ree , nodes )

# Determine t imes (number o f years from presen t and sor t ed ) from a l l
nodes ( t s o r t e d ) but a l s o on ly those from in t e r n a l nodes ( s s o r t e d )

t s o r t e d <− sort ( t imesandtype [ , 1 ] )
s s o r t e d <− sort ( t imesandtype [ t imesandtype [ , 2 ]==1 ,1 ] )

# We assume a cons tant popu la t i on over time , us ing the SIR dynamics
outSIR <− matrix ( ,nrow=length ( t s o r t e d ) , ncol=4,dimnames=l i s t (NULL, c ( ”

time ” , ”S” , ”Y1” , ”Y2” ) ) )
outSIR [ , 1 ] <− t s o r t e d
outSIR [ , 2 ] <− rep (N/R0 , length ( t s o r t e d ) )
outSIR [ , 3 ] <− rep (mu∗N∗(1−(1/R0) )/ (mu+gamma1+gamma12) , length ( t s o r t e d ) )
outSIR [ , 4 ] <− rep (mu∗N∗gamma12∗(1−(1/R0) )/ ( (mu+gamma2)∗ (mu+gamma1+

gamma12) ) , length ( t s o r t e d ) )

## I f we do not assume a cons tant popu la t i on over time we use the
d i f f e r e n t i a l e qua t i ons f o r the SIR model and some i n i t i a l v a l u e s (
t h e s e are gues se s )

#Si <− 21000
#Y1i <− 300
#Y2i <− 3350
#outSIR <− d i f f . SIR( Si , Y1i , Y2i , beta1 , beta2 , gamma12 , gamma1 ,

gamma2 , mu, N, t so r t ed , R0)
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# Stop i f R 0<1 and g i v e −1 f o r the nega t i v e l o g l i k e l i h o o d as a
r e s u l t

i f (R0 < 1) {
return ( c(−1 , outSIR [ 1 , 2 : 4 ] , par , R0) )

}

# Stop i f one o f the parameters i s be low 0 and re turn −2 f o r the
nega t i v e l o g l i k e l i h o o d

i f (par [1]<0 | | par [2]<0 | | par [3]<0 | | par [4]<0 | | par [5 ]<0) {
return ( c(−2 , outSIR [ 1 , 2 : 4 ] , par , R0) )

}

# Determine the i n i t i a l chance f o r a l l l e a f nodes to be in the acute
or chronic s t a t e

p . nodes <− matrix ( , length ( nodes ) , 2 )
for ( i in 1 : ( t r e e $edge [1 ,1 ] −1) ) {

i f ( t r e e $ s t a t e s [ i ]==1){
p . nodes [ i , ] <− c (1 , 0)

}
else {

p . nodes [ i , ] <− c (0 , 1)
}

}

# I n i t i a l v a l u e s f o r A1 and A2
A1i <− i f e l s e ( t r e e $ s t a t e s [ which .min( t imesandtype [ , 1 ] ) ]==1, 1 , 0)
A2i <− i f e l s e ( t r e e $ s t a t e s [ which .min( t imesandtype [ , 1 ] ) ]==2, 1 , 0)
# I n i t i a l v e c t o r f o r A1 and A2
A1 <− c ( A1i )
A2 <− c ( A2i )
# I n i t i a l matrix f o r the lambdas t ha t need to be saved f o r c a l c u l a t i n g

the l i k e l i h o o d
lambda . needed <− matrix ( , length ( nodes ) , length ( nodes ) )
# I n i t i a l v e c t o r f o r Lambda
Lambda <− c (0 )

## I n i t i a l matrix to c a l c u l a t e the p r o b a b i l i t y o f an i n d i v i d u a l to be
in the acute or chronic s t a t e immediate ly a f t e r a coa l e s cence
event

#p . nodes . a lpha <− matrix ( , l e n g t h ( nodes ) ,2)

## I n i t i a l v e c t o r f o r the p r o b a b i l i t i e s o f an i n d i v i d u a l to be in the
acute and chronic s t a t e over a branch s t a r t i n g at the l e a f node
and ending at a coa l e s cence event

#poverbranch <− c (1 ,0) # in t h i s case we choose a l e a f node ( nr . 8)
which i s c o l l e c t e d from an acu t e l y i n f e c t e d i n d i v i d u a l

# I n i t i a l va lue f o r s topp ing the proces s (0=proceed , 1=s top )
ges topt <− 0

# Ca lcu l a t e the change in p . nodes over the tree , the coa l e s cence r a t e s
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and Lambda
for ( j in 2 : length ( t s o r t e d ) ) {# t s o r t e d [1]=0 and f o r t h i s l e a f node we

a l r eady know p . nodes
id . branches <− vector ( )
S <− outSIR [ j −1 ,2]
Y1 <− outSIR [ j −1 ,3]
Y2 <− outSIR [ j −1 ,4]

for ( i in 1 : length ( t r e e $edge [ , 1 ] ) ) {# We use round because
t imesandtype [ , 1 ] and t s o r t e d don ’ t have the same number o f
d i g i t s

i f (round( t imesandtype [ t r e e $edge [ i , 1 ] , 1 ] , d i g i t s =6)>=
round( t s o r t e d [ j ] , d i g i t s =6) & round( t imesandtype [
t r e e $edge [ i , 2 ] , 1 ] , d i g i t s =6)<round( t s o r t e d [ j ] ,
d i g i t s =6) ) {# For the i n t e r n a l nodes

id . branches <− c ( id . branches , t r e e $edge [ i , 2 ] )
outP <− d i f f .P( i , j , beta1 , beta2 , gamma12 ,

gamma1 , gamma2 , N, t ree , p . nodes , t so r ted ,
S , Y1 , Y2 , A1 , A2) # so l v i n g d i f f e r e n t i a l
e qua t i ons f o r the p r o b a b i l i t i e s o f be ing

in each s t a t e
# Stop i f the p r o b a b i l i t i e s become nega t i v e or

b i g g e r than 1 ( or NaN)
i f ( outP [ 2 , 2 ] < 0 | | outP [ 2 , 3 ] < 0 | | outP

[ 2 , 2 ] > 1 | | outP [ 2 , 3 ] > 1 | | outP [2 ,2]== ”
NaN” | | outP [2 ,3]== ”NaN” ) {

ges topt <− 1
break

}
else {

p . nodes [ t r e e $edge [ i , 2 ] , 1 ] <− outP [ 2 , 2 ]
# Replace the p r o b a b i l i t i e s

p . nodes [ t r e e $edge [ i , 2 ] , 2 ] <− outP [ 2 , 3 ]
}

}
else {# For the l e a f nodes

i f ( t imesandtype [ t r e e $edge [ i ,2 ] ,2 ]==0 & round(
t imesandtype [ t r e e $edge [ i , 2 ] , 1 ] , d i g i t s =6)
==round( t s o r t e d [ j ] , d i g i t s =6) ) {

id . branches <− c ( id . branches , t r e e $edge
[ i , 2 ] )

} # We do not need to r ep l a c e the
p r o b a b i l i t i e s cause they are a l r eady known
fo r the l e a f nodes

else { id . branches <− id . branches }
}

}

## Save the p r o b a b i l i t y f o r the branch corresponding to l e a f
node 8

#poverbranch <− rb ind ( poverbranch , p . nodes [ 8 , ] )

64



# Stop proces s i f g e s t o p t=1
i f ( ge s topt == 1) {

break
}

# Save the v e c t o r s f o r A1 and A2 over t s o r t e d (sum of p . nodes
[ , 1 ] and p . nodes [ , 2 ] f o r a l l l i n e a g e s at time t s o r t e d [ j ] )

nA1 <− 0
nA2 <− 0
for ( i in 1 : length ( id . branches ) ) {

nA1 <− nA1 + p . nodes [ id . branches [ i ] , 1 ]
nA2 <− nA2 + p . nodes [ id . branches [ i ] , 2 ]

}
A1 <− c (A1 , nA1)
A2 <− c (A2 , nA2)

# Ca lcu l a t e the coa l e s cence r a t e s f o r a l l l i n e a g e s at time
t s o r t e d [ j ]

lambda <− coa l . a l l (N, beta1 , beta2 , id . branches , S , Y1 , Y2 , p .
nodes )

# Determine which node corresponds to time t s o r t e d [ j ]
node . alpha <− which(round( t imesandtype [ , 1 ] , d i g i t s =6)==round(

t s o r t e d [ j ] , d i g i t s =6) )

# Save the coa l e s cence ra t e f o r the r e a l coa l e s cence event at
time t s o r t e d [ j ]

lambda . needed <− coa l ( t ree , node . alpha , lambda , timesandtype ,
lambda . needed , id . branches )

# Save the p r o b a b i l i t i e s o f be ing in each s t a t e a f t e r a
coa l e s cence event

p . nodes [ node . alpha , ] <− p . coa l (N, beta1 , beta2 , node . alpha ,
lambda . needed , S , Y1 , Y2 , p . nodes , timesandtype , t ree , id .
branches )

## Save the p r o b a b i l i t i e s o f be ing in each s t a t e immediate ly
immediate ly a f t e r a coa l e s cence event

#p . nodes . a lpha [ node . alpha , ] <− p . coa l (N, beta1 , beta2 , node .
alpha , lambda . needed , S , Y1, Y2, p . nodes , t imesandtype ,
t ree , id . branches )

# Save Lambda( s ) f o r t s o r t e d [ j ]
Lambda <− c (Lambda , sum( lambda )/2)

}

# Create a vec t o r t h e t a ( s )
theta <− get . theta ( s sor ted , t so r ted , Lambda)

# Ca lcu l a t e the l i k e l i h o o d and nega t i v e l o g l i k e l i h o o d o f the
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phy l o g ene t i c t r e e
Lik <− get . l i k ( t ree , timesandtype , s so r ted , lambda . needed , theta )
minus l og l i k <− −log ( Lik )

i f ( ( class ( m inus l og l i k ) !=”numeric ” ) | | ( m inus l og l i k==”NaN” ) | | (
m inus l og l i k==” I n f ” ) | | ges topt == 1) {

minus l og l i k <− 10ˆ100
}

return ( c ( minus log l ik , outSIR [ 1 , 2 : 4 ] , par , R0) )
}

get . t imes . type <− function ( t ree , nodes ) {
ttype <− ( 1 : length ( nodes ) )∗0
t imes <− ttype
ttype [ t r e e $edge [ 1 , 1 ] ] <− 1
for ( j in ( t r e e $edge [1 , 1 ]+1) : length ( nodes ) ) {

ttype [ j ] <− 1
ance s to r <− t r e e $edge [ t r e e $edge [ ,2]== j , 1 ]
t imes [ j ] <− t imes [ ance s to r ]+ t r e e $edge . length [ t r e e $edge [ ,2]== j ]

}
for ( j in 1 : ( t r e e $edge [1 ,1 ] −1) ) {

ance s to r <− t r e e $edge [ t r e e $edge [ ,2]== j , 1 ]
t imes [ j ] <− t imes [ ance s to r ]+ t r e e $edge . length [ t r e e $edge [ ,2]== j ]

}
maxt <− max( t imes )
t imes <− −t imes+maxt
timesandtype <− cbind ( times , t type )

return ( t imesandtype )
}

d i f f . SIR <− function ( Si , Y1i , Y2i , beta1 , beta2 , gamma12 , gamma1 , gamma2 , mu,
N, t sor ted , R0) {

i n i tS IR <− c (S=Si , Y1=Y1i , Y2=Y2i )
timesSIR <− t s o r t e d
parmsSIR <− c ( beta1=beta1 , beta2=beta2 , gamma12=gamma12 , gamma1=gamma1

, gamma2=gamma2 , mu=mu, N=N, R0=R0)

odeSIR <− function ( timesSIR , x , parmsSIR ) {
with ( as . l i s t ( c ( parmsSIR , x ) ) ,{

dS <− (S/N)∗ ( beta1∗Y1+beta2∗Y2) − mu∗N + mu∗S
dY1 <− (−S/N)∗ ( beta1∗Y1+beta2∗Y2) + gamma12∗Y1 + gamma1∗Y1 +

mu∗Y1
dY2 <− −gamma12∗Y1 + gamma2∗Y2 + mu∗Y2
#dR <− −gamma1∗Y1 − gamma2∗Y2 + mu∗R
l i s t ( c (dS , dY1 , dY2) )#,dR) ) # we l e a v e out dR because the va lue

f o r R isn ’ t needed to c a l c u l a t e the l i k e l i h o o d
})
}
outSIR <− l s oda ( in i tSIR , timesSIR , odeSIR , parmsSIR )
return ( outSIR )
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}

d i f f .P <− function ( i , j , beta1 , beta2 , gamma12 , gamma1 , gamma2 , N, t ree , p .
nodes , t so r ted , S , Y1 , Y2 , A1 , A2) {

i n i tP <− c (P1 = p . nodes [ t r e e $edge [ i , 2 ] , 1 ] , P2 = p . nodes [ t r e e $edge [ i
, 2 ] , 2 ] )

timesP <− c ( t s o r t e d [ j −1] , t s o r t e d [ j ] )
parmsP <− c ( beta1=beta1 , beta2=beta2 , gamma12=gamma12 , gamma1=gamma1 ,

gamma2=gamma2 ,N=N)

odeP <− function ( timesP , x , parmsP ) {
with ( as . l i s t ( c (parmsP , x ) ) ,{

dP1 <− (P2/Y2)∗gamma12∗Y1 − (P1/Y1)∗ ( (Y2−A2 [ j −1])/Y2)∗ ( beta2/N
)∗S∗Y2

dP2 <− −1∗ (P2/Y2)∗gamma12∗Y1 + (P1/Y1)∗ ( (Y2−A2 [ j −1])/Y2)∗ (
beta2/N)∗S∗Y2

l i s t ( c (dP1 , dP2) )
})
}
outP <− l s oda ( in i tP , timesP , odeP , parmsP )
return ( outP )

}

coa l . a l l <− function (N, beta1 , beta2 , id . branches , S , Y1 , Y2 , p . nodes ) {
lambda <− matrix ( , length ( id . branches ) , length ( id . branches ) )
for ( i in 1 : length ( id . branches ) ) {

for ( k in 1 : length ( id . branches ) ) {
i f ( i==k ) {

lambda [ i , k ] <− 0
}
else {
lambda [ i , k ] <− 2∗ ( ( S/N)∗beta1∗Y1/ (Y1∗Y1) )∗ (p . nodes [ id .

branches [ i ] , 1 ] ∗p . nodes [ id . branches [ k ] , 1 ] ) +((S/N)∗
beta2∗Y2/ (Y1∗Y2) )∗ (p . nodes [ id . branches [ i ] , 2 ] ∗p .
nodes [ id . branches [ k ] , 1 ] + p . nodes [ id . branches [ i
] , 1 ] ∗p . nodes [ id . branches [ k ] , 2 ] )

}
}

}
return ( lambda )

}

coa l <− function ( t ree , node . alpha , lambda , timesandtype , lambda . needed , id .
branches ) {

i f ( t imesandtype [ node . alpha ,2]==1){
node . i <− t r e e $edge [ t r e e $edge [ ,1]== node . alpha , 2 ] [ 1 ]
node . j <− t r e e $edge [ t r e e $edge [ ,1]== node . alpha , 2 ] [ 2 ]
lambda . needed [ node . i , node . j ] <− lambda [ which( id . branches []==

node . i ) , which( id . branches []==node . j ) ]
lambda . needed [ node . j , node . i ] <− lambda [ which( id . branches []==

node . i ) , which( id . branches []==node . j ) ]
}
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return ( lambda . needed )
}

p . coa l <− function (N, beta1 , beta2 , node . alpha , lambda . needed , S , Y1 , Y2 , p .
nodes , timesandtype , t ree , id . branches ) {

i f ( t imesandtype [ node . alpha ,2]==1){
node . i <− t r e e $edge [ t r e e $edge [ ,1]== node . alpha , 2 ] [ 1 ]
node . j <− t r e e $edge [ t r e e $edge [ ,1]== node . alpha , 2 ] [ 2 ]
p . nodes [ node . alpha , ] <− (1/lambda . needed [ node . i , node . j ] ) ∗c (2∗

( ( S/N)∗beta1∗Y1/ (Y1∗Y1) )∗ (p . nodes [ node . i , 1 ] ∗p . nodes [ node . j
, 1 ] ) , ( ( S/N)∗beta2∗Y2/ (Y1∗Y2) )∗ (p . nodes [ node . i , 2 ] ∗p . nodes [
node . j ,1 ]+p . nodes [ node . i , 1 ] ∗p . nodes [ node . j , 2 ] ) )

}
return (p . nodes [ node . alpha , ] )

}

get . theta <− function ( s sor ted , t so r ted , Lambda) {
i n t <− 0
t . at . in . s <− which(round( t s o r t e d [ ] , d i g i t s =6)==round( s s o r t e d [ 1 ] ,

d i g i t s =6) )
for ( j in 1 : ( t . at . in . s−1) ) {

i n t <− i n t + ( t s o r t e d [ j +1]− t s o r t e d [ j ] ) ∗(1/2)∗abs (Lambda [ j +1]−
Lambda [ j ] )

}
theta <− c (exp(−1∗ i n t ) )

for ( i in 2 : length ( s s o r t e d ) ) {
t . at . s <− which(round( t s o r t e d [ ] , d i g i t s =6)==round( s s o r t e d [ i ] ,

d i g i t s =6) )
t . at . pre . s <− which(round( t s o r t e d [ ] , d i g i t s =6)==round( s s o r t e d [

i −1] , d i g i t s =6) )
i n t <− 0
for ( j in t . at . pre . s : ( t . at . s−1) ) {

i n t <− i n t + ( t s o r t e d [ j +1]− t s o r t e d [ j ] ) ∗(1/2)∗abs (
Lambda [ j +1]−Lambda [ j ] )

}
theta <− c ( theta , exp(−1∗ i n t ) )

}
return ( theta )

}

get . l i k <− function ( t ree , timesandtype , s so r ted , lambda . needed , theta ) {
Lik <− 1
for ( i in 1 : length ( s s o r t e d ) ) {

alpha <− which(round( t imesandtype [ , 1 ] , d i g i t s =6)==round(
s s o r t e d [ i ] , d i g i t s =6) )

a lpha i <− t r e e $edge [ t r e e $edge [ ,1]== alpha , 2 ] [ 1 ]
a lpha j <− t r e e $edge [ t r e e $edge [ ,1]== alpha , 2 ] [ 2 ]
Lik <− Lik∗ ( lambda . needed [ a lphai , a lpha j ] ∗ theta [ i ] )

}
return ( Lik )

}
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C.5 Optimization methods

# Functions f o r the op t im i za t i on method based on a pre−s p e c i f i e d g r i d

# load the working d i r e c t o r y and needed packages
setwd ( ”N: /Data h e p a t i t i s b” )
l ibrary ( ape )
l ibrary ( deSolve )
l ibrary (R. u t i l s )

# load a l l f unc t i on s
sou r ceD i r e c to ry ( ”R/Funct ie s Tanja” , modif iedOnly=FALSE) ;
sour ceD i r e c to ry ( ”R/Funct ie s Erik ” , modif iedOnly=FALSE) ;

# load the phy l o g ene t i c t r e e
load ( ”R/ t r e e 2 without A35” )

# ca l c u l a t e the nega t i v e l o g l i k e l i h o o d over a c e r t a i n g r i d f o r the two−type
b i r t h−death branching model wi th cons tant sampling f r a c t i o n s

l o g l i kve cT <− c ( )
for ( i in 1 : 6 ) {

for ( j in 1 : 5 ) {
for ( k in 6 : 1 0 ) {

for ( l in 1 : 1 0 ) {
for (m in 1 : 5 ) {

l o g l i kve cT <− rbind ( log l ikvecT , bdtypes . s t t . l i k . s tatechange (
brpo int=get . t imes2 ( t r e e ) [ 8 8 ] , par=c ( 0 . 5∗ i , 0 . 3 ∗ j , 0 . 5 ∗k
, 0 . 0 1∗ l , 0 . 1 ∗m) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c ( 0 , 0 , 0 ) , c
( 1 , 1 , 1 ) ) , sampfrac=c ( 0 . 0 5 , 0 . 0 5 ) , s u r v i v a l =1,posR=0,
unknownStates=FALSE, root =1) )

save ( l i s t = l s ( a l l = TRUE) , f i l e = ”R/Funct ie s Tanja/
l o g l i kve cT . RData” )

}
}

}
}

}

# Find the minimum nega t i v e l o g l i k e l i h o o d f o r the two−type b i r t h−death
branching model wi th cons tant sampling f r a c t i o n s by wa lk ing over a path

padmatrixT <− c ( )
par <− c ( 0 . 5 , 0 . 3 , 3 , 0 . 0 1 , 0 . 5 ) # the parameter s e t corresponding to the minimum

nega t i v e l o g l i k e l i h o o d o f a g r i d

n <− 1
doorgaan <− 1

while ( doorgaan==1){
min log l i k <− bdtypes . s t t . l i k . s tatechange ( brpo int=get . t imes2 ( t r e e ) [ 8 8 ] ,

par=par , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c ( 0 , 0 , 0 ) , c ( 1 , 1 , 1 ) ) , sampfrac=
c ( 0 . 0 5 , 0 . 0 5 ) , s u r v i v a l =1,posR=0,unknownStates=FALSE, root =1)
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# se t up a matrix f o r the nega t i v e l o g l i k e l i h o o d s around par
parm <− matrix ( , 10 , 7 )
parm [ 1 , ] <− bdtypes . s t t . l i k . s tatechange ( brpo int=get . t imes2 ( t r e e ) [ 8 8 ] ,

par=par−c ( 0 . 0 1 , 0 , 0 , 0 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c ( 0 , 0 , 0 ) , c
( 1 , 1 , 1 ) ) , sampfrac=c ( 0 . 0 5 , 0 . 0 5 ) , s u r v i v a l =1,posR=0,unknownStates=
FALSE, root =1)

parm [ 2 , ] <− bdtypes . s t t . l i k . s tatechange ( brpo int=get . t imes2 ( t r e e ) [ 8 8 ] ,
par=par+c ( 0 . 0 1 , 0 , 0 , 0 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c ( 0 , 0 , 0 ) , c
( 1 , 1 , 1 ) ) , sampfrac=c ( 0 . 0 5 , 0 . 0 5 ) , s u r v i v a l =1,posR=0,unknownStates=
FALSE, root =1)

parm [ 3 , ] <− bdtypes . s t t . l i k . s tatechange ( brpo int=get . t imes2 ( t r e e ) [ 8 8 ] ,
par=par−c ( 0 , 0 . 0 1 , 0 , 0 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c ( 0 , 0 , 0 ) , c
( 1 , 1 , 1 ) ) , sampfrac=c ( 0 . 0 5 , 0 . 0 5 ) , s u r v i v a l =1,posR=0,unknownStates=
FALSE, root =1)

parm [ 4 , ] <− bdtypes . s t t . l i k . s tatechange ( brpo int=get . t imes2 ( t r e e ) [ 8 8 ] ,
par=par+c ( 0 , 0 . 0 1 , 0 , 0 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c ( 0 , 0 , 0 ) , c
( 1 , 1 , 1 ) ) , sampfrac=c ( 0 . 0 5 , 0 . 0 5 ) , s u r v i v a l =1,posR=0,unknownStates=
FALSE, root =1)

parm [ 5 , ] <− bdtypes . s t t . l i k . s tatechange ( brpo int=get . t imes2 ( t r e e ) [ 8 8 ] ,
par=par−c ( 0 , 0 , 0 . 0 1 , 0 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c ( 0 , 0 , 0 ) , c
( 1 , 1 , 1 ) ) , sampfrac=c ( 0 . 0 5 , 0 . 0 5 ) , s u r v i v a l =1,posR=0,unknownStates=
FALSE, root =1)

parm [ 6 , ] <− bdtypes . s t t . l i k . s tatechange ( brpo int=get . t imes2 ( t r e e ) [ 8 8 ] ,
par=par+c ( 0 , 0 , 0 . 0 1 , 0 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c ( 0 , 0 , 0 ) , c
( 1 , 1 , 1 ) ) , sampfrac=c ( 0 . 0 5 , 0 . 0 5 ) , s u r v i v a l =1,posR=0,unknownStates=
FALSE, root =1)

parm [ 7 , ] <− bdtypes . s t t . l i k . s tatechange ( brpo int=get . t imes2 ( t r e e ) [ 8 8 ] ,
par=par−c ( 0 , 0 , 0 , 0 . 0 1 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c ( 0 , 0 , 0 ) , c
( 1 , 1 , 1 ) ) , sampfrac=c ( 0 . 0 5 , 0 . 0 5 ) , s u r v i v a l =1,posR=0,unknownStates=
FALSE, root =1)

parm [ 8 , ] <− bdtypes . s t t . l i k . s tatechange ( brpo int=get . t imes2 ( t r e e ) [ 8 8 ] ,
par=par+c ( 0 , 0 , 0 , 0 . 0 1 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c ( 0 , 0 , 0 ) , c
( 1 , 1 , 1 ) ) , sampfrac=c ( 0 . 0 5 , 0 . 0 5 ) , s u r v i v a l =1,posR=0,unknownStates=
FALSE, root =1)

parm [ 9 , ] <− bdtypes . s t t . l i k . s tatechange ( brpo int=get . t imes2 ( t r e e ) [ 8 8 ] ,
par=par−c ( 0 , 0 , 0 , 0 , 0 . 0 1 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c ( 0 , 0 , 0 ) , c
( 1 , 1 , 1 ) ) , sampfrac=c ( 0 . 0 5 , 0 . 0 5 ) , s u r v i v a l =1,posR=0,unknownStates=
FALSE, root =1)

parm [ 1 0 , ] <− bdtypes . s t t . l i k . s tatechange ( brpo int=get . t imes2 ( t r e e ) [ 8 8 ] ,
par=par+c ( 0 , 0 , 0 , 0 , 0 . 0 1 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c ( 0 , 0 , 0 ) , c
( 1 , 1 , 1 ) ) , sampfrac=c ( 0 . 0 5 , 0 . 0 5 ) , s u r v i v a l =1,posR=0,unknownStates=
FALSE, root =1)

a <− which .min(parm [ , 1 ] )

i f (parm [ a , 1 ] <= min l og l i k [ 1 ] ) {
par <− parm [ a , 2 : 6 ]

}
else {

doorgaan <− 0
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}

padmatrixT <− rbind ( padmatrixT , m in l og l i k )

# Stop when the path hops between the same parameter s e t s
i f (n>3){

i f ( padmatrixT [ n,2]==padmatrixT [ n−2 ,2] & padmatrixT [ n,3]==
padmatrixT [ n−2 ,3] & padmatrixT [ n,4]==padmatrixT [ n−2 ,4] &
padmatrixT [ n,5]==padmatrixT [ n−2 ,5]

& padmatrixT [ n,6]==padmatrixT [ n−2 ,6 ]) {
doorgaan <− 0
}

}
save ( l i s t = l s ( a l l = TRUE) , f i l e = ”R/Funct ie s Tanja/padmatrixT . RData”

)
n <− n+1

}

# ca l c u l a t e the nega t i v e l o g l i k e l i h o o d over a c e r t a i n g r i d f o r the two−type
b i r t h−death branching model wi th v a r i a b l e sampling f r a c t i o n s

l o g l i kve cT . s <− c ( )
for ( i in 1 : 5 ) {

for ( j in 1 : 4 ) {
for ( k in 1 : 4 ) {

for ( l in 1 : 4 ) {
for (m in 1 : 4 ) {

for ( o in 1 : 4 ) {
for (p in 1 : 4 ) {

l o g l i kve cT . s <− rbind ( l og l i kve cT . s , bdtypes . s t t . l i k .
s tatechange . s ( brpo int=get . t imes2 ( t r e e ) [ 8 8 ] , par=c
( i , 0 . 2 5∗ j , k , 0 . 0 2 5∗ l , 0 . 2 5∗m, 0 . 0 1∗o , 0 . 0 1∗p) , phylo=
tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c ( 0 , 0 , 0 ) , c ( 1 , 1 , 1 ) ) ,
s u r v i v a l =1,posR=0,unknownStates=FALSE, root =1) )

save ( l i s t = l s ( a l l = TRUE) , f i l e = ”R/Funct ie s Tanja
/ l o g l i kve cT . s . RData” )

}
}

}
}

}
}

}

# Find the minimum nega t i v e l o g l i k e l i h o o d f o r the two−type b i r t h−death
branching model wi th v a r i a b l e sampling f r a c t i o n s by wa lk ing over a path

padmatrixT . s <− c ( )
par <− c ( 1 , 0 . 2 5 , 2 , 0 . 1 , 1 , 0 . 0 1 , 0 . 0 1 ) # the parameter s e t corresponding to the

minimum nega t i v e l o g l i k e l i h o o d o f a g r i d

n <− 1
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doorgaan <− 1 # 1=proceed , 0=s top

while ( doorgaan==1){
min log l i k <− bdtypes . s t t . l i k . s tatechange . s ( brpo int=get . t imes2 ( t r e e )

[ 8 8 ] , par=par , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c ( 0 , 0 , 0 ) , c ( 1 , 1 , 1 ) ) ,
s u r v i v a l =1,posR=0,unknownStates=FALSE, root =1)

# se t up a matrix f o r the nega t i v e l o g l i k e l i h o o d s around par
parm <− matrix ( , 14 , 9 )
parm [ 1 , ] <− bdtypes . s t t . l i k . s tatechange . s ( brpo int=get . t imes2 ( t r e e )

[ 8 8 ] , par=par−c ( 0 . 1 , 0 , 0 , 0 , 0 , 0 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c
( 0 , 0 , 0 ) , c ( 1 , 1 , 1 ) ) , s u r v i v a l =1,posR=0,unknownStates=FALSE, root =1)

parm [ 2 , ] <− bdtypes . s t t . l i k . s tatechange . s ( brpo int=get . t imes2 ( t r e e )
[ 8 8 ] , par=par+c ( 0 . 1 , 0 , 0 , 0 , 0 , 0 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c
( 0 , 0 , 0 ) , c ( 1 , 1 , 1 ) ) , s u r v i v a l =1,posR=0,unknownStates=FALSE, root =1)

parm [ 3 , ] <− bdtypes . s t t . l i k . s tatechange . s ( brpo int=get . t imes2 ( t r e e )
[ 8 8 ] , par=par−c ( 0 , 0 . 0 1 , 0 , 0 , 0 , 0 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c
( 0 , 0 , 0 ) , c ( 1 , 1 , 1 ) ) , s u r v i v a l =1,posR=0,unknownStates=FALSE, root
=1)

parm [ 4 , ] <− bdtypes . s t t . l i k . s tatechange . s ( brpo int=get . t imes2 ( t r e e )
[ 8 8 ] , par=par+c ( 0 , 0 . 0 1 , 0 , 0 , 0 , 0 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c
( 0 , 0 , 0 ) , c ( 1 , 1 , 1 ) ) , s u r v i v a l =1,posR=0,unknownStates=FALSE, root =1)

parm [ 5 , ] <− bdtypes . s t t . l i k . s tatechange . s ( brpo int=get . t imes2 ( t r e e )
[ 8 8 ] , par=par−c ( 0 , 0 , 0 . 1 , 0 , 0 , 0 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c
( 0 , 0 , 0 ) , c ( 1 , 1 , 1 ) ) , s u r v i v a l =1,posR=0,unknownStates=FALSE, root =1)

parm [ 6 , ] <− bdtypes . s t t . l i k . s tatechange . s ( brpo int=get . t imes2 ( t r e e )
[ 8 8 ] , par=par+c ( 0 , 0 , 0 . 1 , 0 , 0 , 0 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c
( 0 , 0 , 0 ) , c ( 1 , 1 , 1 ) ) , s u r v i v a l =1,posR=0,unknownStates=FALSE, root =1)

parm [ 7 , ] <− bdtypes . s t t . l i k . s tatechange . s ( brpo int=get . t imes2 ( t r e e )
[ 8 8 ] , par=par−c ( 0 , 0 , 0 , 0 . 0 0 1 , 0 , 0 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c
( 0 , 0 , 0 ) , c ( 1 , 1 , 1 ) ) , s u r v i v a l =1,posR=0,unknownStates=FALSE, root =1)

parm [ 8 , ] <− bdtypes . s t t . l i k . s tatechange . s ( brpo int=get . t imes2 ( t r e e )
[ 8 8 ] , par=par+c ( 0 , 0 , 0 , 0 . 0 0 1 , 0 , 0 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c
( 0 , 0 , 0 ) , c ( 1 , 1 , 1 ) ) , s u r v i v a l =1,posR=0,unknownStates=FALSE, root =1)

parm [ 9 , ] <− bdtypes . s t t . l i k . s tatechange . s ( brpo int=get . t imes2 ( t r e e )
[ 8 8 ] , par=par−c ( 0 , 0 , 0 , 0 , 0 . 0 1 , 0 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c
( 0 , 0 , 0 ) , c ( 1 , 1 , 1 ) ) , s u r v i v a l =1,posR=0,unknownStates=FALSE, root =1)

parm [ 1 0 , ] <− bdtypes . s t t . l i k . s tatechange . s ( brpo int=get . t imes2 ( t r e e )
[ 8 8 ] , par=par+c ( 0 , 0 , 0 , 0 , 0 . 0 1 , 0 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c
( 0 , 0 , 0 ) , c ( 1 , 1 , 1 ) ) , s u r v i v a l =1,posR=0,unknownStates=FALSE, root =1)

parm [ 1 1 , ] <− bdtypes . s t t . l i k . s tatechange . s ( brpo int=get . t imes2 ( t r e e )
[ 8 8 ] , par=par−c ( 0 , 0 , 0 , 0 , 0 , 0 . 0 0 1 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c
( 0 , 0 , 0 ) , c ( 1 , 1 , 1 ) ) , s u r v i v a l =1,posR=0,unknownStates=FALSE, root =1)

parm [ 1 2 , ] <− bdtypes . s t t . l i k . s tatechange . s ( brpo int=get . t imes2 ( t r e e )
[ 8 8 ] , par=par+c ( 0 , 0 , 0 , 0 , 0 , 0 . 0 0 1 , 0 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c
( 0 , 0 , 0 ) , c ( 1 , 1 , 1 ) ) , s u r v i v a l =1,posR=0,unknownStates=FALSE, root =1)

parm [ 1 3 , ] <− bdtypes . s t t . l i k . s tatechange . s ( brpo int=get . t imes2 ( t r e e )
[ 8 8 ] , par=par−c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 . 0 0 1 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c
( 0 , 0 , 0 ) , c ( 1 , 1 , 1 ) ) , s u r v i v a l =1,posR=0,unknownStates=FALSE, root =1)

parm [ 1 4 , ] <− bdtypes . s t t . l i k . s tatechange . s ( brpo int=get . t imes2 ( t r e e )
[ 8 8 ] , par=par+c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 . 0 0 1 ) , phylo=tree , f ix=rbind ( c ( 2 , 4 , 8 ) , c
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( 0 , 0 , 0 ) , c ( 1 , 1 , 1 ) ) , s u r v i v a l =1,posR=0,unknownStates=FALSE, root =1)

a <− which .min(parm [ , 1 ] )

i f (parm [ a , 1 ] <= min l og l i k [ 1 ] ) {
par <− parm [ a , 2 : 8 ]

}
else {
doorgaan <− 0
}

padmatrixT . s <− rbind ( padmatrixT . s , m in l og l i k )

# Stop when the path hops between the same parameter s e t s
i f (n>3){

i f ( padmatrixT . s [ n,2]==padmatrixT . s [ n−2 ,2] & padmatrixT . s [ n
,3]==padmatrixT . s [ n−2 ,3] & padmatrixT . s [ n,4]==padmatrixT . s
[ n−2 ,4] & padmatrixT . s [ n,5]==padmatrixT . s [ n−2 ,5] &
padmatrixT . s [ n,6]==padmatrixT . s [ n−2 ,6] & padmatrixT . s [ n
,7]==padmatrixT . s [ n−2 ,7] & padmatrixT . s [ n,8]==padmatrixT . s
[ n−2 ,8 ]) {

doorgaan <− 0
}

}
save ( l i s t = l s ( a l l = TRUE) , f i l e = ”R/Funct ie s Tanja/padmatrixT . s .

RData” )
n <− n+1

}

# ca l c u l a t e the nega t i v e l o g l i k e l i h o o d over a c e r t a i n g r i d f o r the coa l e s c en t
model

l o g l i k v e c E <− c ( )
for ( i in 4 : 1 1 ) {

for ( j in 1 : 1 0 ) {
for ( k in 8 : 1 3 ) {

for ( l in 1 : 4 ) {
for (m in 1 : 10 ) {

l o g l i k v e c E <− rbind ( l og l i kvecE , l i k e l i h o o d p h y l o ( c ( 0 . 5∗ i , 0 . 1 ∗ j
, 0 . 4 ∗k , 0 . 0 4∗ l , 0 . 1 ∗m) , t r e e ) )

save ( l i s t = l s ( a l l = TRUE) , f i l e = ”R/Funct ie s Erik/
l o g l i k v e c E . RData” )

}
}

}
}

}

# Find the minimum nega t i v e l o g l i k e l i h o o d f o r the coa l e s c en t model by
wa lk ing over a path

padmatrixE <− c ( )
par <− c ( 5 . 5 , 0 . 1 , 4 , 0 . 1 2 , 0 . 1 ) # the parameter s e t corresponding to the minimum
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nega t i v e l o g l i k e l i h o o d o f a g r i d

n <− 1
doorgaan <− 1 # 1=proceed , 0=s top

while ( doorgaan==1){
min log l i k <− l i k e l i h o o d p h y l o (par , t r e e )

# se t up a matrix f o r the nega t i v e l o g l i k e l i h o o d s around par
parm <− matrix ( , 10 , 10 )
parm [ 1 , ] <− l i k e l i h o o d p h y l o (par=par−c ( 0 . 0 1 , 0 , 0 , 0 , 0 ) , t r e e )
parm [ 2 , ] <− l i k e l i h o o d p h y l o (par=par+c ( 0 . 0 1 , 0 , 0 , 0 , 0 ) , t r e e )
parm [ 3 , ] <− l i k e l i h o o d p h y l o (par=par−c ( 0 , 0 . 0 0 1 , 0 , 0 , 0 ) , t r e e )
parm [ 4 , ] <− l i k e l i h o o d p h y l o (par=par+c ( 0 , 0 . 0 0 1 , 0 , 0 , 0 ) , t r e e )
parm [ 5 , ] <− l i k e l i h o o d p h y l o (par=par−c ( 0 , 0 , 0 . 0 1 , 0 , 0 ) , t r e e )
parm [ 6 , ] <− l i k e l i h o o d p h y l o (par=par+c ( 0 , 0 , 0 . 0 1 , 0 , 0 ) , t r e e )
parm [ 7 , ] <− l i k e l i h o o d p h y l o (par=par−c ( 0 , 0 , 0 , 0 . 0 1 , 0 ) , t r e e )
parm [ 8 , ] <− l i k e l i h o o d p h y l o (par=par+c ( 0 , 0 , 0 , 0 . 0 1 , 0 ) , t r e e )
parm [ 9 , ] <− l i k e l i h o o d p h y l o (par=par−c ( 0 , 0 , 0 , 0 , 0 . 0 0 1 ) , t r e e )
parm [ 1 0 , ] <− l i k e l i h o o d p h y l o (par=par+c ( 0 , 0 , 0 , 0 , 0 . 0 0 1 ) , t r e e )

a <− which .min(parm [ , 1 ] )
# Remove the cases when the nega t i v e l o g l i k e l i h o o d equa l s −1 ( i f R

0<1) and −2 ( i f a t l e a s t one o f the parameters i s nega t i v e )
while (parm [ a,1]==−2 | | parm [ a ,1]==−1){

parm <− parm[−a , ]
a <− which .min(parm [ , 1 ] )

}

i f (parm [ a , 1 ] <= min l og l i k [ 1 ] ) {
par <− parm [ a , 5 : 9 ] }

else {
doorgaan <− 0

}

padmatrixE <− rbind ( padmatrixE , m in l og l i k )

# Stop when the path hops between the same parameter s e t s
i f (n>3){

i f ( padmatrixE [ n,5]==padmatrixE [ n−2 ,5] & padmatrixE [ n,6]==
padmatrixE [ n−2 ,6] & padmatrixE [ n,7]==padmatrixE [ n−2 ,7] &
padmatrixE [ n,8]==padmatrixE [ n−2 ,8] & padmatrixE [ n,9]==
padmatrixE [ n−2 ,9 ]) {

doorgaan <− 0
}

}
save ( l i s t = l s ( a l l = TRUE) , f i l e = ”R/Funct ie s Erik/padmatrixE . RData” )
n <− n+1

}

# Function f o r the MCMC method app l i e d to the coa l e s c en t model
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theta = c ( 5 . 5 , 0 . 1 , 0 . 1 , 4 , 0 . 1 2 ) # i n i t i a l parameter s e t
NRuns = 10000
Savetheta <− matrix (nrow=NRuns , ncol=length ( theta ) )
SaveL <− numeric ( )
AcceptedTheta = theta
AcceptedL = − l i k e l i h o o d p h y l o ( theta , t r e e ) [ 1 ] # we use the l o g l i k e l i h o o d here
sd = c ( 0 . 7 , 0 . 0 2 5 , 0 . 0 2 5 , 0 . 5 5 , 0 . 0 1 5 ) # standard d e v i a t i on s used f o r each

parameter
Accepted = 0

for (b in 1 : NRuns) {
print ( ”b” )
print (b)
theta = abs (rnorm( length ( theta ) ,mean=AcceptedTheta , sd=sd ) )

L = − l i k e l i h o o d p h y l o ( theta , t r e e ) [ 1 ]
print ( ”L” )
print (L)

RescaleL = max(L , AcceptedL )+5 # t r i c k f o r avo id ing the exponent in the
next r a t i o to become zero

AcceptYN = runif (1 ,min=0,max=1) <= exp(L−RescaleL )/exp( AcceptedL−
RescaleL ) & L !=−I n f # check whether the new candida te sampled from
the proposa l d i s t r i b u t i o n i s accepted

i f (AcceptYN) {
Accepted = Accepted+1
AcceptedTheta = theta
AcceptedL = L

}

# sav ing the parameter s e t f o r each i t e r a t i o n and the corresponding
l o g l i k e l i h o o d

Savetheta [ b , ] = AcceptedTheta
SaveL [ b ] = AcceptedL

}
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