
Interactive Exploration of Flow

Fields Using Commodity

Hardware
A thesis submitted in partial fulfillment for the

degree of Master of Science

by

Clara Thöne
ICA-3766349

UNIVERSITY OF UTRECHT

Faculty of Science

Department of Information and Computing Sciences

Supervisors:

dr. ir. A. Frank van der Stappen, Faculty of Science, University of Utrecht

Dr. Paul Benölken, Regional Computing Centre, University of Cologne

February 2014

Abstract

Flow visualization is a widely-used technique to explore flow fields, which occur in many

different research areas. Until now these visualizations are usually performed in tradi-

tional desktop settings. But the emergence of tablet PCs offers new possibilities in terms

of user interaction. Additionally it facilitate new ways to incorporate flow visualizations

into the work process.

The aim of this project is to examine the potential and limitations of tablet PCs for flow

field visualization. Therefore two flow field visualization apps for iPads are created, one

standalone and one client-server system. These applications are equipped with common

visualization techniques and utilize the tablet PC’s specific user interaction methods.

Furthermore the apps are tested with technical performance tests and a user study.

The results show that the applications in general received very positive responses from

the test-users. Some interaction methods need to be improved, but overall they were

perceived as intuitive and easy to understand. Moreover the standalone version per-

formed surprisingly well in the technical tests. The client-server app proved to be a

good extension in terms of reducing the processing time.

Contents

Abstract i

List of Figures iii

List of Tables iv

1 Introduction 1

1.1 Related Research . 2

1.2 Structure of the Thesis . 3

2 Fundamentals 5

2.1 Flow Field Datasets . 5

2.2 Visualization Techniques . 7

2.2.1 Grid Surface . 7

2.2.2 Colour Mapping . 7

2.2.3 Cross Section . 8

2.2.4 Iso-Surfaces . 9

2.2.5 Volume Rendering . 9

2.3 Vector Field Visualization . 10

2.3.1 Direct Flow Visualization . 11

2.3.2 Dense, Texture-based Flow Visualization 11

2.3.3 Geometric Flow Visualization . 12

2.3.4 Feature-based Flow Visualization 13

3 Implementation 14

3.1 Requirements . 14

3.1.1 Visualization of Flow Fields . 14

3.1.2 Examining the Potential of Tablet PCs 15

3.1.3 Design Decisions . 15

3.1.4 User Interaction Techniques . 15

3.2 Visualization Libraries . 16

3.2.1 VTK . 17

3.2.2 VES . 18

3.2.3 Kiwi . 18

3.3 General Design . 19

3.3.1 Delegation . 19

3.3.2 Model-View-Controller . 20

ii

Contents iii

3.3.3 Visualization Pipeline . 23

3.4 The Standalone Version . 25

3.5 The Server-Client System . 26

3.5.1 Client-Side . 26

3.5.2 Server-Side . 27

3.5.3 The Communication . 28

3.6 User Interface . 31

4 Performance Testing 34

4.1 Datasets . 34

4.2 General Time Measurements . 35

4.2.1 Experiment Setting . 35

4.2.2 Results . 36

4.3 The Client-Server Application . 39

4.3.1 Experiment Setting . 39

4.3.2 Results . 40

4.4 Frame-Rate . 43

4.4.1 Experiment Settings . 43

4.4.2 Results . 43

5 Usability Evaluation 45

5.1 What is Usability . 45

5.2 Evaluating Usability . 46

5.2.1 SUS - the System Usability Scale 48

5.3 The Questionnaire . 48

5.4 Experiment Settings . 49

5.5 Results . 50

5.5.1 Answers to Open Questions . 51

6 Conclusion and Future Work 53

6.1 Summary . 53

6.2 Conclusion . 54

6.3 Future Work . 54

A Results of the Performance Tests 56

B The Questionnaire 59

C The Results of the Questionnaire 66

Bibliography 69

List of Figures

1.1 Flow Visualization of the Car Dataset . 1

2.1 Point and Cell Data . 5

2.2 Structured Grids . 6

2.3 Unstructured Grid . 7

2.4 Two Cross Section Options . 8

2.5 Inside/Outside Test for Points against a Plane 9

2.6 Iso-Surface of the Carotid Dataset . 10

2.7 Flow Visualization Techniques . 11

2.8 LIC Visualizations of the Car and the Turbine Dataset 12

2.9 Different Types of Field Lines . 13

3.1 Relation of VTK, VES and Kiwi . 17

3.2 The VTK Pipeline . 17

3.3 Main Run Loop of iOS . 20

3.4 Model-View-Controller Scheme . 21

3.5 The VTK-Pipeline . 23

3.6 TabletVis Standalone App . 25

3.7 Standalone Communication . 25

3.8 TabletVis Client-Server App . 26

3.9 Client Server Communication . 29

3.10 The Touch Gestures . 31

3.11 Clipping of the Turbine Dataset . 32

3.12 Streamlines of the Car Dataset . 33

4.1 General Timing Test: Turbine Model . 36

4.2 General Timing Test: Component Model 36

4.3 General Timing Test: Noise Model . 38

4.4 General Timing Test: Carotid Model . 38

4.5 General Timing Test: Car Model . 38

4.6 Experiment Setting Client-Server Tests . 39

4.7 Results of Client-Server Tests . 41

4.8 Transmitted Bytes . 42

4.9 Results of the Frame-Rate Tests . 43

4.10 Scenes for the Frame-Rate Tests . 44

5.1 Results of the Questionnaire . 51

iv

List of Tables

4.1 Properties of the Utilized Datasets . 34

A.1 Results of the General Timing Tests . 56

A.2 Results of the Client-Server Tests on the Turbine Dataset in ASCII Mode 57

A.3 Results of the Client-Server Tests on the Turbine Dataset in Binary Mode 57

A.4 Results of the Client-Server Tests on the Component Dataset in ASCII
Mode . 57

A.5 Results of the Client-Server Tests on the Component Dataset in Binary
Mode . 57

A.6 Results of the Client-Server Tests on the Noise Dataset in ASCII Mode . 57

A.7 Results of the Client-Server Tests on the Noise Dataset in Binary Mode . 58

A.8 Results of the Client-Server Tests on the Carotid Dataset in ASCII Mode 58

A.9 Results of the Client-Server Tests on the Carotid Dataset in Binary Mode 58

A.10 Results of the Client-Server Tests on the Car Dataset in ASCII Mode . . 58

A.11 Results of the Client-Server Tests on the Car Dataset in Binary Mode . . 58

C.1 Numerical Results of the Questionnaire 67

C.2 Answers to Open Questions of the Questionnaire 68

v

Chapter 1

Introduction

The exploration and analysis of flow fields is part of many research areas. That includes

for example the examination of the circulation around vehicles, aircraft or vessels, the

observation of atmospheric flow for the weather forecast or the analysis of the character-

istics of fluids in technical facilities. The flow data can result from measurements as well

as from simulations. For a long time researchers use the techniques of flow visualization

for the interactive exploration of these flow fields. The visualization plays an important

role in the efficient analysis and communication of the characteristics of flow datasets.

Figure 1.1: A visualization of a flow field resulting from numerical simulations with
a car model.

So far these visualizations are usually performed in traditional desktop settings. But the

emergence of tablet PCs and their availability in typical office environments, provides

some interesting new possibilities. First of all tablet PCs offer new ways of user interac-

tion such as touch gestures or the use of the gyroscope. Additionally the mobility and

wireless use open up new ways of incorporating visualizations into the work process. The

tablet PC can easily be brought along to meetings, factory workshops or ward rounds

1

Chapter 1. Introduction 2

in a hospital. Thus collaboration and communication could be improved by using tablet

PCs.

In this project the suitability of interactive exploration of flow fields on tablet PCs should

be examined. That includes the evaluation of the user interaction techniques with regard

to flow visualization. Moreover the limitations of the hardware should be studied.

In order to achieve these goals, a system for interactive exploration of flow fields will be

created. The hardware platform will be a tablet PC with touch and gyroscope sensors.

1.1 Related Research

So far it has been established that the new interaction possibilities offered by tablet

PCs can enhance the user experience. Especially the touch interface has received good

response. In 2011 Isenberg discussed the use of direct-touch interaction in scientific

visualization in a position paper [Isenberg11]. He closes his review of related work with

the conclusion that direct-touch interaction could enable the use of scientific visualization

in many different display and user settings. Moreover this technique could be useful

in the exploration process, facilitating a discussion or the collaborative creation and

manipulation of scientific data.

In contrast to touch gestures, the success of interaction methods based on the gyroscope

depends heavily on the application. In 2004 Eißele et al. [ESWE04] examined an

augmented reality system on a mobile device, for which the user interaction was based on

inertial orientation sensing. They developed five different interaction methods in three

different application scenarios. The first application is an AR explorer that displays

a virtual object, with additional information, at the same location and orientation as

the real world object. The inertial sensor was used to navigate and rotate the view

of the object. Furthermore vertical tilt gestures could also be used to select different

parts of the virtual object, which then could be modified with horizontal tilt gestures.

Additionally the inertial sensor was utilized to scroll through text or a website in two

different application settings. At last a marble game was developed, in which the marble

was steered by tilting the device.

The different interaction methods were evaluated with a small user poll with seven par-

ticipants, which tested four aspects: handling, advantage, precision, intuitively usable.

The ratings varied for the different applications and methods. Scrolling in texts for

example was perceived well in terms of handling, precision and as very intuitive to use.

For websites, which included hyper-links, the reactions were rather negative. Overall the

gaming application received the best ratings overall and was the only one that received

a ’very good’ for its precision.

Other research on utilizing the inertial sensors of mobile devices mainly focuses on game-

related applications or virtual reality. For example Hürst and Helder [HH11] examined

different 3D visualization concepts for 3D games and virtual reality environments on mo-

bile devices in 2011. As part of that, they also evaluated interactions such as navigation

Chapter 1. Introduction 3

and selection of objects. The main difference to applications for scientific visualization,

or more specifically flow visualization, is, that in a game the user usually wants to ex-

plore a virtual world, not an object. So the task is to navigate through a scene and not

to examine an object from different views and angles. Therefore results on game-related

applications or virtual reality can not simply be transferred to scientific visualization.

Thus further examinations have to be done.

The LiverExplorer [MEVIS] for mobile devices developed by the Fraunhofer MEVIS

institute demonstrates that tablet PCs can be of great use in the medical field. Moreover

it is a good example for the use of mobile devices in augmented reality applications.

The app supports surgeons by providing interactive access to patient data during liver

surgery. It offers augmented reality features, such as the overlay of planning data over

the actual liver on the operation table. Moreover the app enables the surgeon to adapt

to new intra-operative situations. One can for example measure the length of vessel

branch sections with touch gestures or compute the volume drained or supported by any

branch. The app was first tested in August 2013.

Other research shows that tablet PCs could also be useful for applications concerned

with flow fields. Mouton et al. for example studied current systems and future trends in

collaborative visualization in 2011 [MSG11]. In their review they included a transatlantic

collaborative visualization with [ParaViewWeb], for which they utilized an iPad amongst

others.

As mentioned before, one research focus is utilization of mobile devices in augmented

reality applications. One example, that is concerned with flow fields, was presented by

Eißele et al. in 2008 [EKE08]. They presented a visualization system that used a tablet

PC as AR window and rendered visualizations of a flow simulation directly onto a flow

channel in the real world. The rendering was remote.

In general the existing systems for flow visualization on tablet PCs are usually based on

rendering clusters that can be accessed through a browser, such as [ParaViewWeb], or

use remote rendering. That restricts the mobility aspects of mobile devices significantly.

Therefore this project explores the possibilities of a standalone system and a client-server

approach.

1.2 Structure of the Thesis

In Chapter 2 the fundamentals of flow visualization are introduced. That includes a

description of flow datasets as well as an overview over common visualization techniques.

Within that the aspects of flow visualization are emphasized.

Next the implementation process is described in Chapter 3. First the requirements for

this project are stated. Then the utilized visualization libraries are introduced. After a

description of the general design ideas, the implementation of the two applications, that

were created for this project, are explained in more detail. The chapter concludes with

an introduction to the user interface.

Chapter 1. Introduction 4

Then the next two chapters are concerned with the testing and evaluation of the ap-

plications. Chapter 4 treats the performance tests that were conducted. After shortly

introducing the utilized datasets, the three experiments are explained and the results are

given. In Chapter 5 the usability evaluation is described. First the notion of usability

is introduced, followed by an overview over evaluation techniques. Then the evaluation

setting, chosen for this project, is explained, including the utilized questionnaire. At

last the results are given.

This thesis concludes with a short summary and a discussion of this work in Chapter 6.

Additionally a proposal for future work is given.

Chapter 2

Fundamentals

In this chapter an overview over the fundamentals of flow visualization is given. First

the typical structure of flow datasets is introduced in Section 2.1. Then some common

visualization techniques for grids and scalar fields are described in Section 2.2. Finally

in Section 2.3 flow visualization techniques are presented.

2.1 Flow Field Datasets

The aim of scientific flow visualization is to display scalar, vector and/or tensor fields

such that the user gains more insight on their structure. The data is usually generated

by a numerical simulation, but it can also result from experiments. A dataset can consist

of several different attributed data fields. These data attributes can be time-variant.

In order to discretize the data fields, different types of grids are used. In these grids, the

data attributes, i.e. the scalar or vector values, are associated either to the intersection

points or to the cells, which are topological objects. In Figure 2.1 the differences between

scalar point and cell data is shown. Scalar values are usually indicated by colouring. In

Figure 2.1(a) the scalar values of the points are interpolated over the rectangles. Whereas

the association of the scalar values to the rectangle cells, as shown in Figure 2.1(b), result

in a constant color. Usually the data attributes are associated with points. The colour

mapping is described in more detail in Section 2.2.2.

(a) Point Data (b) Cell Data

Figure 2.1: The difference between associating scalar values to points or to cells.

As mentioned before, there are different types of grids, depending on the type of data

and the way the data was accumulated. In Figure 2.2 the characteristics of structured

grids are depicted with the example of 2D data.

5

Chapter 2. Fundamentals 6

(a) Uniform Rectilinear (b) Rectilinear (c) Curvilinear

Figure 2.2: The characteristics of the different types of structured of grids, exemplified
with 2D data.

There are three types of structured grids: uniform rectilinear, non-uniform rectilinear

and curvilinear. In a structured grid, the cells can be indexed with a unique integer

tuple. In this way it is easy to determine neighbouring cells.

Structured grids always consist of one cell type. In 2D the common cell types are

rectangular and sometimes triangular, while in 3D hexahedrons and tetrahedrons are

used.

In Figure 2.2(a) a uniform rectilinear grid, also called Cartesian grid or in 2D image

Data, is shown. It consists of par-axial cells with the same edge length. It is the easiest

to store and process. But at the same time it is very limited in terms of adjusting to the

characteristics of a specific dataset. All regions of the grid have the same resolution.

The non-uniform rectilinear grid, depicted in Figure 2.2(b), is slightly more flexible. It

consists also of par-axial cells, but sizes of these cells may differ.

In Figure 2.2(c) a curvilinear grid is shown. It is also structured, i.e. provides a unique

integer tuple mapping to the cells, but the cells are not necessarily par-axial. The lines

of the grid can be defined by parametric curves. This allows for a better adjustment to

different datasets.

The higher the resolution of a grid, the more exact the data is represented. For flow field

data, the information in some regions of the grid, for example close to the surface of an

object, can be more important than others. So it can be useful to adjust the resolution

of the grid to the structure of the dataset. This can be achieved by using unstructured

grids. These grids have no regular cell structure and they can contain polyhedron cells.

Figure 2.3 shows an unstructured grid of a shuttle dataset. It can be seen that the cells

of the grid have different sizes. Close to the surface of the shuttle, the cells are smaller,

i.e. the resolution of the grid is higher. Moreover it can be observed that some cells

close to the surface are rectangular, while most of the other cells are triangular.

Although the adaptive resolution of the grid reduces the amount of data, the processing

of unstructured grids is more complex compared to structured grids. The vertices of the

grids have to be stored explicitly. Moreover the cell formation provides no neighbour

structure.

Chapter 2. Fundamentals 7

Figure 2.3: The unstructured grid of a flow simulation of a shuttle, provided by
[NASA].

2.2 Visualization Techniques

Flow field datasets usually contain a lot of information and in most cases it is not

possible to get an understanding of all aspects of the dataset in just one visualization.

So in order to examine different aspects of the dataset, different visualization techniques

are utilized. In the following common techniques for flow field data are introduced.

2.2.1 Grid Surface

The most basic visual representation of a dataset is its surface. Depending on the type

of grid, the extraction of the surface faces is accomplished with different methods. For

structured grids, the extraction of the surface is fairly easy, since the surface vertices are

determined by their indices. Moreover the formation of the surface vertices, i.e. which

vertices form a face, is also given by the uniform indexing. So the surface of structured

grids can be constructed from the list of indexed vertices.

That does not hold for unstructured grids. But another property can be used: A face

belongs to the surface if and only if it is part of exactly one cell of the grid. So in order

to extract the surface of an unstructured grid, all faces of the grid have to be examined

on whether they belong to one or to two cells.

2.2.2 Colour Mapping

A common technique to visualize scalar data is the colouring of the rendered surfaces.

First a transfer function needs to be defined. This function maps colours to scalar values.

For the visualization it is discretized to a look-up table, where the scalar values serve as

indices and the entries are colour values. Scalar values, that exceed the boundaries of

the look-up table, are clamped.

Chapter 2. Fundamentals 8

The design of the transfer function is crucial for the comprehensibility of the visualiza-

tion. For example scalar data representing temperatures are usually displayed such that

low values are blue and high values are red. But when the scalar data refers to landscape

heights, color maps normally range from blue for the sea level, i.e. the smallest scalar

values, over green for fields, brown for mountains up to white for the highest scalar

values, the mountain tops. In medical images on the other hand, the luminance color

map, ranging from black over grey to white, has come to be accepted.

2.2.3 Cross Section

The extraction of cross sections is a common technique to explore 3-dimensional datasets.

It allows for the user to examine the inside of a volume.

(a) A Dataset (b) Clipping (c) Cutting

Figure 2.4: The two cross section visualizations, clipping and cutting. The transpar-
ent grey plane is the cross section and the arrow represents its normal vector.

Usually there are two methods to visualize a cross section: clipping and cutting. In

Figure 2.4 these two methods are shown. While Figure 2.4(a) depicts some dataset,

Figure 2.4(b) and Figure 2.4(c) display a cross section plane and the corresponding

clipped, respectively cut, dataset.

With clipping the dataset is divided into two parts. The first one contains the data in

front of the plane, defining the cross section, and the second part contains the rest, i.e.

the data behind and in the plane. As a result only the second part is displayed, see

Figure 2.4(b). Cutting on the other hand results in only the data in the cross section

plane being rendered, see Figure 2.4(c).

The algorithms for clipping and cutting are similar. For all cells of the dataset it is

checked whether the cell is intersected by the cross section plane, i.e. if there is at

least one vertex of the cell on each side of the plane. In the clipping algorithm it is

additionally determined which cells lie entirely behind the plane. For those cells which

are intersected by the plane, the intersection with the plane is computed.

It is easily computed whether a vertex lies in front of, in or behind the cross section

plane. Figure 2.5 depicts the three cases. It can be observed that these cases can be

distinguished by the angle θ. That is by the angle between the plane’s normal ~n and a

vector
−−→
BX from some point B in the plane to X, the point in question.

Chapter 2. Fundamentals 9

~n

B

X

θ

(a) In Front of the Plane

~n

B
X θ

(b) In the Plane

~n

B

X

θ

(c) Behind the Plane

Figure 2.5: A point X is either in front of, in or behind a plane. These three different
cases can be distinguished by the angle θ, that lies between the plane’s normal ~n and

the vector
−−→
BX, from some point B on the plane to the point X.

A point X lies in the plane for θ = π
2 and for θ = 3π

2 . Moreover it lies in front of the

plane for θ ∈ [0, π2 [and θ ∈]3π2 , 2π]. For θ ∈]π2 ,
3π
2 [the point lies behind the plane.

With the dot product of two vectors given by ~v · ~w = ‖~v‖‖~w‖ cos(θ), it follows that:

• X lies in front of the plane if
−−→
BX · ~n > 0

• X lies on the plane if
−−→
BX · ~n = 0

• X lies behind the plane if
−−→
BX · ~n < 0

As a consequence the runtime of both cutting and clipping depends on the overall amount

of cells and also on the number of cells that intersect with the cross section plane.

2.2.4 Iso-Surfaces

To examine scalar data, the visualization of iso-surfaces is a widely-used technique. An

iso-surface is similar to a contour line. It is a surface that represents the set of points

with the same constant scalar value. In Figure 2.6 an example of an iso-surface of the

carotid dataset is given.

For the computation of an iso-surface the marching cubes algorithm is used. The algo-

rithm examines the scalar values of the vertices of each cell in order to detect whether

the cell is intersecting the iso-surface or not. That is if at least one value is equal, or

at least one value is greater and one is smaller than the iso-value. By case distinction

depending on the geometry of the cells, the resulting iso-surface can be computed. If

necessary the intersection points are interpolated on the edges and connected to a sur-

face. The time complexity of the algorithm is O(n+k), where n is the number of vertices

and k is the number of cells that intersect the iso-surface. For more details see Preim

and Botha [PB13].

2.2.5 Volume Rendering

Volume rendering is used to create 2-dimensional graphic representations of scalar data

defined on 3-dimensional grids. The basic idea is to make some boundaries of an object

Chapter 2. Fundamentals 10

Figure 2.6: An iso-surface of the carotid dataset.

transparent, such that on can see inside and ultimately get a better understanding of

the dataset.

There are two fundamental types of volume rendering: direct volume rendering and in-

direct volume rendering, also called surface-fitting rendering. Indirect volume rendering

methods create surfaces, that are generally opaque. It includes for example the marching

cube algorithm, i.e. iso-surface extraction.

With direct volume rendering on the other hand, the data can be considered as semi-

transparent material and the user decides which parts of the object should be transparent

or opaque. The voxels, i.e. cells, are mapped directly on pixels by integrating physical

characteristics. Each voxel is projected in visibility order onto the image plane. In this

way the pixel’s final color and opacity is composed incrementally. As a consequence these

methods are usually computational intensive and therefore not interactive. A common

technique is ray casting.

For more information on volume rendering see Preim and Botha [PB13].

2.3 Vector Field Visualization

Due to the complexity of flow data and the variety of applications, there are many

different techniques for flow visualization. There are 2D and 3D solutions as well as

there are different methods for steady and for time-dependent flow fields.

In 2004 Laramee et al. gave a state of the art report on flow visualization [LHDVPW04].

In this paper the following distinction of the different techniques was made:

• Direct Flow Visualization: The direct visualization of raw flow data.

Chapter 2. Fundamentals 11

• Dense, Texture-based Flow Visualization: In order to generate a dense flow repre-

sentation, similar to the direct flow visualization, a texture is computed from the

flow data.

• Geometric Flow Visualization: Integration-based techniques are used to create

geometric objects, such as lines, to represent flow properties.

• Feature-based Flow Visualization: First specific features of the flow data are ex-

tracted, such as important phenomena or topological information of the flow. Then

this derived data is visualized.

Figure 2.7 depicts a schematic overview over the different flow visualization techniques.

Direct Flow
Visualization:

arrows,
color coding,

etc.

Texture-based Flow
Visualization:

spot noise,
line integral

convolution, etc.

Geometric Flow
Visualization:

computation of
fieldlines,

flow volume, etc.

Visualization

Feature-based Flow
Visualization:

extraction of
features, i.e.
vortices, etc.

Visualization

Data Acquisition

User Perception

Figure 2.7: The different flow visualization techniques.

2.3.1 Direct Flow Visualization

This category of techniques makes direct use of the flow data. Unlike techniques from

other categories, in direct flow visualization no preprocessing of the data is performed.

That results in fast visualizations that allow for immediate examination of the data.

Especially in 2D the resulting images can be very intuitive.

Common techniques are the drawing of arrows on the rendered surfaces, or color coding

of the velocity of the flow.

2.3.2 Dense, Texture-based Flow Visualization

Texture-based flow visualization techniques apply the directional structure of a flow field

on random textures. They are mainly used for visualizing flow in two dimensions or on

surfaces.

A common techniques is called Line-Integral-Convolution (LIC). It was first proposed

by Cabral and Leedom in 1993 [CL93] and has been picked up and developed further

Chapter 2. Fundamentals 12

by many others since then. The idea is to start with a white noise texture. Then for

every pixel of the texture, the forward and backward streamline of a fixed arc length is

computed. Finally the grey levels of all pixels that lie on this streamline are convoluted

with a suitable convolution kernel, in order to get the grey value for the current pixel.

As a result the grey values along one streamline strongly correlate, while the values show

almost no correlation in other directions. In the resulting image the streamlines are set

apart and become visible. Moreover this technique gives an overview over the entire flow

on the 2D texture.

(a) Car Dataset (b) Turbine Dataset

Figure 2.8: Two different Line-Integral-Convolution textures, on the left a basic LIC
texture and on the right an oriented LIC, also called OLIC, texture, from Benölken

[B05].

For more details on dense, texture-based flow visualization, see Laramee et al. [LHDVPW04].

2.3.3 Geometric Flow Visualization

The first step in geometric flow visualization is the extraction of some geometry of the

flow data. These geometric objects, that are directly related to the data, are usually

based on integration. Examples of extracted geometry are field lines, stream surfaces,

time surfaces, or flow volumes.

In a vector field, different kinds of field lines can be determined. These lines highlight

different aspects of the vector field and help to gain insight on the characteristics of the

flow field. In Figure 2.9 three types of field lines are shown.

Pathline A pathline is the trajectory a fluid particle follows, if it is set in the vector

field at a specific place for a specific time. Figure 2.9(a) depicts a pathline and

the corresponding vector field at time t4. The first parts of the line were shaped

by the vector field in earlier time steps.

Streamlines A streamline is connected to one point in time. For the vector field of this

point in time, the streamline is tangent to the velocity vectors of the flow. It can

be thought of as the pathline of a particle for a steady flow field. In Figure 2.9(b)

Chapter 2. Fundamentals 13

t1
t2

t3

t4

(a) Pathline

ti ti
ti

ti

ti

(b) Streamline

ti

ti

ti

(c) Streakline

Figure 2.9: The characteristics of the different types of field lines.

a streamline and the corresponding vector field at time ti are depicted. It can be

observed that the streamline follows the vector field of this instant in time.

Streakline A streakline is the locus of particles that have earlier passed through a

prescribed point. Dye injected into a flow field at a fixed point extends along the

streakline. Figure 2.9(c) shows a streakline and three grey pathlines. Each of

the pathlines passed the same point at a different instant of time. The streakline

corresponds to the time ti.

If the flow field is steady, i.e. it does not change over time, pathlines and streamlines

coincide.

For flow field visualization, the computation of streamlines is a common technique. The

vector field is interpreted as a velocity field, which serves as a differential equation. With

a given starting point, also called seed-point, the generation of a streamline is equal to

solving the initial value problem with a steady flow field as differential equation.

The initial value problem can be solved using numerical integration algorithms such as

Runge-Kutta. For a detailed description see [Telea07].

2.3.4 Feature-based Flow Visualization

In feature-based flow visualization techniques the visualization is not based on the entire

flow data, but on some extracted features. In a first step these features, such as important

phenomena or topological information of the flow, are determined. Next these features

are visualized, which may require further geometry extraction, depending on the specific

technique. This approach allows for a compact and efficient way to visualize large and/or

time-dependent datasets.

Common techniques include the extraction of vortices, i.e. turbulences, and shock waves,

which are characterized by discontinuities in physical flow quantities. Both the definition

on what interesting features are, as well as the way these features are extracted and

visualized depend on the dataset, the application and the research area. For more

details see Post et al. [PVHLD03].

Chapter 3

Implementation

In this chapter the design process and the final applications, that were implemented

for this project, are described. First the main requirements are deducted from the task

description in Section 3.1. Then the utilized visualization libraries are introduced in

Section 3.2. In Section 3.3 the three main design ideas are explained with regard to

the implementation, which gives a first overview over the structure of the applications.

It follows a more detailed description of the standalone app in Section 3.4 and of the

client-server app in Section 3.5. The chapter is concluded with an introduction to the

user interface in Section 3.6.

3.1 Requirements

The objective of this project is to create a system for the interactive exploration of flow

fields on a tablet PC. Furthermore this system shall be used to examine the possibilities

and the limits of scientific visualization on tablet PCs with regard to flow fields.

From this task description two sets of requirements arise.

3.1.1 Visualization of Flow Fields

Firstly, the application should be able to process flow field datasets. Such a dataset

usually includes a 3-dimensional grid with optional scalar, vector or tensor values. In

order to give an overview over the suitability of a tablet for flow visualization, it suffices

to restrict the datasets to scalar and vector fields. The use of advanced techniques for

time-variant datasets is not addressed.

In order to explore a flow field dataset, different visual representations are used. That in-

cludes cut-planes, iso-surfaces and streamlines. It follows that the application is required

to offer these common visualization techniques.

Additionally the rendering should be fluent, so that the application is interactive. The

user needs to be able to rotate, translate and zoom the visualized content, in order to get

14

Chapter 3. Implementation 15

a good understanding of the dataset. So the application is required to provide real-time

rendering, i.e. the rendering has to be fast enough for the user not to notice any delay.

The user should experience dynamic movements and not separated images.

3.1.2 Examining the Potential of Tablet PCs

To examine the potential and the constraints of a tablet PC for flow field visualization,

the application should be rendered on a tablet PC. Furthermore the use of additional

hardware should not limit the mobility of the tablet PC. The mobility is the main

advantage and difference of the tablet PC compared to desktop or laptop PCs. A tablet

PC functions wireless and can easily be carried around without spatial limitations. So

the application should be constructed in a way that this advantage can still be used.

Otherwise there is not much difference to a desktop or laptop PC.

Additionally the user interaction possibilities of the tablet PC should be utilized. The

biggest difference to traditional desktop or laptop PCs is the touch screen. But other

options, such as the gyroscope, should also be explored.

3.1.3 Design Decisions

Due to the aforementioned requirements and external circumstances three general deci-

sions were made for this project.

Firstly, it was decided to use the iPad 4 as basis of this project. At the time when this

project started, in the beginning of 2013, only iOS- or Android-based tablet PCs were

available. And since the University of Cologne has a master agreement with Apple and

the iPad provides powerful hardware, it was the best choice.

Secondly, VTK was chosen as auxiliary library for the scientific visualization. It is a

widely-used, open-source library that provides a wide range of visualization techniques

for flow fields. Additionally there exists a viewer app for iOS based on VTK, which was

used as starting point for this project. A detailed description is given in Section 3.2.

Thirdly, it was decided to create two versions of the same application, one standalone

and one based on a client-server system. Since the processing of flow field datasets

is computationally intensive, it is expected that the tablet PC reaches its limits with

larger datasets. So in order to examine these limits and explore a possible solution, a

client-server system will be created. This system should be wireless. Moreover it should

be realized on a private network for safety reasons.

3.1.4 User Interaction Techniques

A requirement for this project is the design of user interaction methods that use the

advantages of a tablet PC and enhance applications for flow visualization. The main

differences in terms of use interaction between a desktop PC and a tablet PC are the

Chapter 3. Implementation 16

touch screen, the accelerometer and the gyroscope. So the interaction methods imple-

mented for this project should use these possibilities.

The touch screen is used to navigate the scene. As described in Section 3.6, there are

five different touch gestures to rotate, translate and zoom the scene.

Additionally an auxiliary plane widget is implemented. It is used to place cut-planes

and seed-points. The widget is navigated with touch gestures.

Utilizing the Gyroscope

There were also attempts to utilize the gyroscope. The idea was to implement a rotation

of the scene linked to the gyroscope, such that tilting the tablet PC into one direction,

for example left, would result in the scene being rotated in the opposite direction, i.e.

right. The desired effect would have been to create the illusion of navigation to the left

in the virtual world. A similar approach is described by Hürst and Helder [HH11]. The

rotation was implemented as an optional feature, that could be turned on and off with

a button.

But it became clear early in the project, that this technique is not suitable. The biggest

issue was the imprecision. It was very difficult to tilt the tablet PC accurately to achieve

the desired rotation, even with different sensor sensitivities. Mainly because it was not

easy to control the device such that it tilted exactly in one direction.

Moreover the range, in which the screen can be tilted with the user still being able to

view the scene, is limited. The maximum tilt angle is about 30◦ in each direction from

the starting orientation. So the maximum range is about 60◦ in each direction. So either

one maps these 60◦ to 60◦ of rotation range, which seems intuitive, or to 360◦ in order

to enable a full turn of the scene with one gesture. The first option works only if the

tilting can be activated with a button. Then exploring the scene becomes very complex,

with activating the rotation, performing the tilting, deactivating the rotation, tilting

back to the starting point, activating the rotation, etc. . That does not only impede the

exploration of the scene, but it is also very difficult to maintain a precise rotation. But

mapping the 60◦ of tilting range to 360◦ of rotation also does not result in a satisfying

interaction method. The rotation gets so sensitive, that the movements are even harder

to control.

So after testing and tweaking different options, it became clear that the gyroscope-based

rotation has no advantages to touch-based rotation. It was bulky and inaccurate. As a

consequence this interaction method was withdrawn from the applications.

3.2 Visualization Libraries

The visualization for this project is based on three libraries, VTK, VES and Kiwi. These

libraries are built up on each other, which is depicted in Figure 3.1. Whereas VTK is

Chapter 3. Implementation 17

used for scientific visualization, VES extends VTK for embedded systems and Kiwi

facilitates the use of VTK and VES in an Android or iOS application.

VTK
OpenGL ES

VES

Kiwi Android Kiwi iOS

Kiwi

Custom Application

Figure 3.1: The relation of the visualization libraries VTK, VES and Kiwi.

3.2.1 VTK

VTK [VTK] is a software for 3D computer graphics, image processing and visualization

that was initially created in 1993 as part of the book ”The Visualization Toolkit: An

Object-Oriented Approach to 3D Graphics” published by Prentice-Hall. Since 1998 it is

developed by Kitware, Inc. . It is free and open-source, licensed under the BSD license.

It consists of a C++ library and several interpreted interface layers including Python,

Tcl/Tk and Java. Moreover it is cross-platform and runs on Linux, Windows, Mac and

Unix platforms. The newest version 6.0 was released on 27. June 2013.

VTK offers several visualization algorithms including vector, tensor, texture and volu-

metric methods. Furthermore the tool kit provides advanced modelling techniques such

as implicit modelling, polygon reduction, mesh smoothing, cutting, contouring and De-

launay triangulation. Additionally it contains an information visualization framework

and supports parallel processing.

The framework also includes support for user interaction, for example with a suite of

3D interaction widgets. Moreover it integrates with various databases on GUI tool kits

such as Qt or Tk.

The fundamental structure of VTK is the data flow pipeline, transforming a source of

information into a rendered image. This pipeline is depicted in Figure 3.2. The first

part of the pipeline, marked blue and green in the figure, is the visualization pipeline.

Here the data is read and filtered and then the essential parts for the visualization

are extracted. The second part of the pipeline, marked green and yellow in the figure,

handles the graphical model, i.e. the transformation from a set of polygons in 3D to

pixels on the screen. The green element, the mapper, belongs to both parts of the

pipeline.

Sources Filters
(optional)

Mappers Actors Renderer

Figure 3.2: The visualization pipeline of the Visualization Toolkit VTK. The blue
colouring specifies the visualization pipeline, the graphics model is indicated in yellow

and green part belongs to both of them.

Chapter 3. Implementation 18

3.2.2 VES

VTK is used to build desktop applications and some modules, most importantly the

rendering module, are based on OpenGL. VES [VES] provides an OpenGL ES 2.0 based

rendering library that integrates with the rest of VTK. The framework is also free and

open-source, released under the Apache 2.0 license. The VES library dependencies are

VTK and Eigen [Eigen], a linear algebra library which is licensed with the MPL 2.0

license.

VES is also developed by Kitware, Inc. and the latest version is 1.0.0 that was released

24. January 2012.

VES enables the use of a lot of VTK modules for mobile applications. However there

are still VTK modules that are based on OpenGL, for which VES does not provide an

OpenGL ES solution. For example the module vtkRenderingAnnotationModule, which

is needed to use color bars, is not yet available.

In the VTK pipeline from Figure 3.2, VES replaces the graphic model part, i.e. the

mappers, actors and the renderer. Moreover it provides a scene graph structure addi-

tionally to the pipeline. This scene graph is used to organize the different objects in the

scene both spatially and logically. While the VTK pipeline is still used to transform a

source of information into data that can be rendered, the rendering process is handled

by the scene graph. Therefore the actors also serve as nodes in the scene graph.

Different from VTK, VES only renders polygon sets of type vtkPolyData and no grids

or point sets. Therefore other datasets have to be converted, which can be done with

VTK.

In addition VES provides standard shaders such as Blinn-Phon, Gouraud and Toon, and

supports textures.

3.2.3 Kiwi

The Kiwi framework [VES] consists of C++ classes that facilitate the use of VTK and

VES in an Android or iOS application. It bundles together the required rendering

components, I/O routines and scene objects into a set of interfaces. Additionally Kiwi

provides 3D widgets designed for touch screens that allow for data manipulation and

interaction with the 3D scene by the user.

KiwiViewer

The KiwiViewer [Kiwi] is an open-source application created with the VES and Kiwi

libraries that is published under the Apache 2.0 license by Kitware, Inc. . With this

application geometric datasets can be explored on multi-touch mobile devices. The first

version 0.0.2 was released on 19 January 2012. The latest release was version 2.0 on 6

March 2013.

Chapter 3. Implementation 19

The early versions support the rendering of geometric 2D or 3D datasets with scalar

attributes as colour. The model can be navigated, i.e. rotated or zoomed, with touch

gestures. In the latest app various ways for sharing data were added. Moreover the

visualization engine was improved and more file formats are supported. The viewer now

allows for textured meshes, time-series data and animations. Furthermore there is the

possibility to connect to a ParaView desktop application for remote rendering, although

this technology is not yet fully developed.

In contrast to the applications developed for this project, the KiwiViewer is a solely a

viewer. It reads datasets or animations from files and displays the content. There is

no interactive visualization, with for example cut-planes or streamlines, applicable for

all datasets. Although there is one interactive example scene utilizing cut-planes, the

SPL-PNL Brain Atlas, that functionality is customized for this one demo dataset only.

3.3 General Design

There are three basic design principles underlying the TabletVis app. The delegation

pattern is used as basis for the main run loop of the app. The interaction of user input,

layout and logical components is organized following the Model-View-Controller pattern.

Furthermore the VTK related logic is based on a pipeline-design.

3.3.1 Delegation

The delegation pattern describes a relationship between two objects, the delegator and

the delegate, see [Gamma94]. In iOS-based apps, the delegator is always the UIAppli-

cation object, whereas the delegate is an app-specific custom object.

The delegator, i.e. the UIApplication object, keeps a reference to the delegate. When-

ever necessary the delegator notifies its delegate of events it is about to handle or has

just handled. Then the delegate may react to this message by updating its state, its

appearance or other objects in the application. In this way the control over the app’s

behaviour is centralized in one object, the application delegate.

The use of this pattern also influenced the design of the main run-loop.

The Main Run-Loop

When the application is launched, the UIMainApplication is called. Amongst other

things, this function creates the UIApplication singleton for the application. This object

then initiates the main run loop that is depicted in Figure 3.3.

The main run loop is responsible for processing all user-related events in the application.

It starts with some kind of user interaction, for example a touch on the screen. When

this touch is detected, the operating system translates it into the corresponding system

events.

Chapter 3. Implementation 20

UIApplication Object

App

Delegate

ObjObj

Event Loop

Event Queue
Port

OS

User Interaction

Screen

Figure 3.3: A schematic view of the main run loop in an iOS application.

Via a special port that was set up by UIKit, these events get transmitted to the event

queue. From here the events get dispatched one-by-one to the event loop of the appli-

cation. From this loop the events finally reach the UIApplication object.

The UIApplication object is the delegator object in the application. Depending on the

type of event and the concrete implementation, the UIApplication object performs the

corresponding event handling with or without notifying the application delegate.

If the delegate gets notified this may provoke additional actions from other core objects.

Touch events for example usually get dispatched to the main window object, which then

notify the respective view for further actions.

3.3.2 Model-View-Controller

The Model-View-Controller pattern is used for implementing user interfaces, see [Gamma94].

It separates a program into three different interconnected parts. The exact responsibil-

ities and interactions between these parts may differ slightly for different implementa-

tions.

An overview over the TabletVis standalone app arranged in the Model-View-Controller

grouping is given in Figure 3.4. The yellow marked objects are iOS system objects. The

objects that are part of both the standalone as well as the client-server app are marked

green. The blue objects are also part of both versions, but are fairly modified. These

modifications are described in Section 3.4 and Section 3.5.

In the TabletVis standalone app, the model contains the app-specific logic, i.e. the

scientific visualization functionalities, and the data. The view handles the visual output

and the user interaction. The controller acts as the link between the model and the

view. It processes the user input, updates the model if necessary and passes changes

concerning the visual output to the view.

Chapter 3. Implementation 21

Controller

Model

View

UIApplication TabletVisAppDelegate

GLViewController

ES2Renderer

LoadDataController

TabletVisApp

UIWindow

EAGLView

InfoView

TabletVisWidget

UIButtons, etc.Event Loop

Figure 3.4: The core objects of the TabletVis standalone application arranged in the
Model-View-Controller grouping.

As described in Section 3.3.1, the delegator, the UIApplication object, is notified about

events such as a touch interaction by the event loop. It then passes the relevant events

to its delegate. In the TabletVis app, the delegate is the TabletVisAppDelegate. In

Figure 3.4 it can be observed that the delegate is the center of all other parts of the

application.

TabletVisApp

The TabletVisApp object has different properties in the two versions of the app. In any

case it provides access to the scenegraph. The scenegraph is hidden in the vesRenderer.

But the TabletVisApp provides a limited interface, which includes the creation and

deletion of nodes and the positioning in the scene.

In the standalone version the TabletVisApp also holds the VTK-related logic and the

data. A description of the VTK-based parts of the app is given in Section 3.3.3. The

detailed specifications for the different app versions are given in Section 3.4 and Sec-

tion 3.5.

TabletVisAppDelegate

The TabletVisAppDelegate is the central controller and all user interaction events are

handled here. That includes the behaviour when a certain button was tapped or a touch

gesture performed. Additionally the delegate is the only part of the app that controls

the model, i.e. the TabletVisApp object. The detailed specifications for the different

app versions are given in Section 3.4 and Section 3.5.

Chapter 3. Implementation 22

GLViewController

The GLViewController represents an interface to the app’s main window layout. In this

class all sub-views of the main view are declared. So although the TabletVisAppDelegate

controls for example the behaviour triggered by a button, this view-controller is the only

object with access to the location and the appearance of the buttons.

The GLViewController serves as the root view-controller of the UIWindow of the dele-

gate. That means that whenever the screen of the tablet is touched, the UIApplication

object notifies the delegate, which refers the event to the window. The window then

informs its root view-controller, in order to find out if a sub-view, i.e. a button, was

tapped.

Moreover additional characteristics of the main view are controlled here, for example

whether the view rotates correspondingly when the device is rotated or if it does not.

ES2Renderer

The ES2Renderer controls the rendering of the model-related content, i.e. the output

of the VTK computations. It serves as an interface to the rendering functionality given

by the TabletVisApp.

EAGLView

The EAGLView is the view which presents the visual output of the model. It wraps iOS

classes such as CAEAGLLayer and provides a view into which an OpenGL ES scene can

be rendered. The EAGLView uses the ES2Renderer in order to get the visual output of

the TabletVisApp.

LoadDataController

The LoadDataController organizes a drop-down menu, which offers the available datasets.

The TabletVisAppDelegate controls when this menu is displayed. When an item in the

menu is tapped, the delegate is notified.

InfoView

The InfoView is a small view, which displays some basic information about the current

dataset. That includes the number of triangles, vertices and the current frame-rate. The

TabletVisAppDelegate controls when this view is displayed.

Chapter 3. Implementation 23

TabletVisWidget

The TabletVisWidget is an auxiliary interaction element. It consists of a plane with a

normal. It is used to define cut-planes and to place seed-points for the generation of

streamlines.

The TabletVisWidget class extends vesKiwiPlaneWidget. The widget can be in three

different states: inactive, visible or seed-points. The inactive widget is not rendered and

therefore receives no user input. The visible widget is used for cut-planes. It is rendered

and can be manipulated with touch gestures. The seed-point state extends the visible

state such that double tap gestures on the plane of the widget create seed-points.

The set of seed-points and its visual representation in the scenegraph is handled by the

TabletVisWidget object, since the visibility of the seed-points is linked to the state of

the widget.

3.3.3 Visualization Pipeline

As described in Section 3.2.1 the processing of datasets with VTK is realized with data

flow pipelines. This system of pipelines is located differently in the two different app

versions, which is explained in Section 3.4 and Section 3.5. In the standalone app, it is

contained in the TabletVisApp as depicted in Figure 3.5. In the client-server app, the

pipeline system is built the same, but it is contained in the server.

TabletVisApp

vtkXMLDataReader

vtkDataReader

TabletVisWidget

currentIsoValue

vtkSurfaceFilter

vtkContourFilter

vtkCutter

vtkClipDataSet

vtkStreamTracer

vtkRibbonFilter

vtkTubeFilter

surfaceRep

isoRep

cutplaneRep

streamlineRep

Figure 3.5: The pipeline built of VTK-modules.

In Figure 3.5 the blue elements represent the sources, the green elements are filters and

the yellow elements are representations of polygon sets, i.e. nodes in the scenegraph.

While the pipeline system is fully contained in the TabletVisApp class, some filters need

input from the TabletVisWidget such as the coordinates of a cut-plane.

Chapter 3. Implementation 24

The distinction between the two data reader sources is that one reads the XML-based

VTK-formats and the other one the other VTK-formats. Depending on the file-ending

the corresponding reader is chosen and used as source.

There are three steps in the activation of a pipeline branch. First, when the correspond-

ing perspective in the user interface is opened, the filters are initiated. Next the branch

is executed. This second step is then repeated as often as the user requests. When the

perspective is closed in the user interface, the filters get finalized and the corresponding

visual representation is removed from the scenegraph.

The Surface Branch

After the dataset was read from the file, the vtkSurfaceFilter is used to extract the

polygon set that represents the surface. Afterwards it is transferred to the surface

representation in the scenegraph.

The Iso-Surface Branch

In order to extract an iso-surface, first the dataset is read. Next the vtkContourFil-

ter extracts the polygon set representing the iso-surface for a given iso-value that was

provided by the TabletVisApp. At last the resulting polygon set is transferred to the

scenegraph representation.

The Cut-Plane Branch

For the cut-plane branch there exist two different filters. The vtkCutter extracts only a

slice of the model, i.e. the filter produces a plane. The vtkClipDataSet filter clips a part

of the model, such that the resulting polygon set represents the surface of one part of

the model.

Both filters take the dataset and and the coordinates of the cut-plane as input. Depend-

ing on the user input either the slice or the clipping filter are used. Only one cut-plane

filter result is then transferred to the scenegraph representation.

The Streamline Branch

The integration of the vector field, i.e. the generation of the streamlines, is executed in

the vtkStreamTracer filter. It takes the dataset and a set of seed-points as input. The

seed-points are provided by the TabletVisWidget.

The vtkStreamTracer produces poly-lines, sets of consecutive points. There are two

different options to visualize these results, tubes and ribbons. In order to compute

polygon sets that represent the computed streamlines, one of two additional filters are

used. The vtkTubeFilter produces tube-shaped and the vtkRibbonFilter ribbon-shaped

polygon sets. Only one set of streamline representations is passed to the scenegraph.

Chapter 3. Implementation 25

3.4 The Standalone Version

In Figure 3.6 the main objects relevant for the visualization in the standalone TabletVis

application are shown.

TabletVisAppDelegate

TabletVisApp

VTK Data
TabletVisWidget

vesRenderer

OS

User Interaction

Screen

Figure 3.6: A schematic view of the standalone version of the TabletVis app.

TabletVisAppDelegate

The TabletVisAppDelegate object manages all app-specific behaviour. This is were all

app-related objects are bundled and managed. The user input is passed from the UIAp-

plication object to the delegate. Touch gestures get passed on to the TabletVisApp

and the TabletVisWidget objects. Moreover the behaviour of buttons is defined in the

delegate.

Whenever the user requests an action that requires the use of VTK functionality or a

change in the scene, the delegate notifies the TabletVisApp and/or the TabletVisWidget.

In Figure 3.7 it is shown how the standalone app handles the request for a clipping

plane.

TabletVis-
Widget

TabletVis-
App-
Delegate

TabletVis-
App

User Input: clip button tapped

To vesRenderer: update
scenegraph

get plane

~n, ~b

clip: ~n, ~b

Figure 3.7: The standalone communication for the computation of a clipping plane.

The TabletVisAppDelegate gets notified of user input that require the clipping by a cut-

plane. It then inquires the plane equation of the TabletVisWidget, which defines the

cut-plane. Next the delegate orders the TabletVisApp to perform a clipping action with

Chapter 3. Implementation 26

the given plane equation. The TabletVisApp performs the clipping, and updates the

scenegraph.

TabletVisApp

The VTK logic, i.e. the pipeline system presented in Section 3.3.3, is contained in

the TablteVisApp class which extends vesKiwiViewerApp. Additionally the TabletVis-

App class handles the rotation, translation and zoom of the scene. Furthermore the

TabletVisApp stores the paths to the available dataset files.

3.5 The Server-Client System

The server-client version of the TabletVisApp is derived from the standalone version. It

enables client-side rendering, where all computations are performed by the server. An

overview over the relevant classes is shown in Figure 3.8.

The communication of client and server is realized using BSD sockets and the IPv6

protocol. Moreover [Bonjour], Apple’s so called zero-configuration networking service,

is used to establish the connection.

CLIENT SERVER

TabletVisAppDelegate

TabletVisAppTabletVisWidget

vesRenderer

OS

User Interaction

Screen

TabletVisClient

TabletVisClientConnection TabletVisServerConnection

TabletVisServer

FileManager

Data

VTKModel

VTK

Figure 3.8: A schematic view of the client-server version of the TabletVis app.

To start the system, both the server and the client application are started, without a

specific order. But it is important that both devices are connected to the same local

network, so that the client can detect the server. After a few seconds, the client app will

show all available servers and one has to be chosen to start a connection.

Additionally to the functionality of the standalone version, the client-server system

provides also the possibility to switch the scalar data of a model. Datasets can contain

several data fields and it is not uncommon that more than one scalar field is included,

for example temperature and pressure values. This functionality can also be added to

the standalone version, if it proves capable of handling large datasets.

Chapter 3. Implementation 27

3.5.1 Client-Side

After establishing a connection the client asks the server for the list of names of the

available datasets, in order to build the dropdown menu. Then the app waits for user

input.

TabletVisAppDelegate

Similar to the standalone app, the user input is handled and transferred by the TabletVis-

AppDelegate. Whenever a computation from the server is needed, the delegate provides

the TabletVisClient with the necessary information, such as the coordinates of the plane

widget or an iso-value, to request the computation from the server. The delegate is

also responsible for handling the messages from the server that are translated by the

TabletVisClient. The detailed communication process is described in Section 3.5.3.

TabletVisApp

In contrast to the standalone version of the application, the TabletVisApp in the client

does not contain any VTK logic. But it still provides an interface to the scenegraph.

Moreover it also still holds the list of available datasets that was sent by the server.

TabletVisClient

The TabletVisClient is used as an interface to the server for the TabletVisAppDelegate.

It translates the requests of the delegate into a message, that can be read by the server.

Additionally it also translates messages from the server into actions for the delegate.

That may include decompressing the server’s answer.

For the communication with the sever the TabletVisClient uses a TabletVisClientCon-

nection object.

TabletVisClientConnection

The TabletVisClientConnection bundles the low level connection details on the client-

side. That includes controlling the socket and its input- and output-streams. The

TabletVisClient passes the message for the server to the TabletVisClientConnection

which is then responsible for transferring it to the server. When the server answers,

the TabletVisClientConnection gathers all incoming bytes until it reaches the coding

for the end of the message. Only then does it transfer the complete message to the

TabletVisClient.

Chapter 3. Implementation 28

3.5.2 Server-Side

TabletVisServerConnection

The TabletVisServerConnection is the counterpart to the TabletVisClientConnection.

Since the server is designed such that it could be extended to handle several clients, the

sockets are controlled by the TabletVisServer. The TabletVisServerConnection controls

the input- and output-streams. Additionally it is responsible for the compression of the

answers sent to the client.

Whenever the TabletVisServerConnection receives information from the client it passes

the complete message to the TabletVisServer.

TabletVisServer

The TabletVisServer is the main controller on the server-side, which includes the han-

dling of the sockets. Moreover it is responsible for performing the client’s request with

the use of the VTKModel and the FileManager. First it receives a message form the

TabletVisServerConnection, which it translates into an action request. Then it executes

this action and answers the result to the client.

VTKModel

The VTKModel contains the VTK functionality. It stores a synchronized version of the

TabletVisApp from the client-side. That means, if the iso-surface perspective is opened

on the client, the VTKModel has the necessary filters prepared. It therefore also needs

to get notified is a perspective is closed.

FileManager

The FileManager handles the available files. When the server is started, the path to

the data directory has to be passed. From this directory all files in a VTK format are

detected and proposed to the client. In contrast to the standalone version of the app,

the client-server system does not support the loading of files from Dropbox.

3.5.3 The Communication

The general process of communication between server and client starts with the client.

And the server always answers, even if there is no data that needs to be transmitted. In

this way the client knows that the server received its message.

In order to reduce the amount of transmitted data, the compression of messages from

the server-side can be activated. That is explained in more detail at the end of this

section.

Chapter 3. Implementation 29

TabletVis-
Widget

TabletVis-
App

TabletVis-
App-
Delegate

TabletVis-
Client

TabletVis-
Client-
Connection

TabletVis-
Server-
Connection

TabletVis-
Server

VTKModel

User Input: clip button tapped

To vesRenderer:
update scene-
graph

get plane

~n, ~b Request:
clip, ~n, ~b

string

bytes

string

Clip: ~n, ~b

polygon
setstring

(compressed)
bytes(compressed)

bytespolygon
setpolygon

set

Figure 3.9: The client-server communication for the computation of a clipping plane.

In Figure 3.9 the communication between client and server is depicted using the example

of a clipping request.

It starts with some input from the user, in this case the clip-button was tapped, which

is passed to the TabletVisAppDelegate. Since the positioning of the TabletVisWidget is

required for the clipping computation, the delegate demands it plane equation. Then it

passes the request and the plane equation to the TabletVisClient.

The TabletVisClient translates the request into a code that can be read by the server. In

general this code starts with a request number. There are 14 different types of requests

and each can be identified by its request number. Then some additional information,

such as the plane equation, might follow. Depending on this additional information, the

code is formatted slightly different. But since the server knows which request is followed

by which additional information, it knows how to interpret the message. In case of a

clipping request, the message looks as follows:

2|n1 n2 n3 b1 b2 b3|

Clipping has the request number 2, ~n represents the normal and ~b the origin of the

cut-plane.

From the TabletVisClient this message gets transferred to the TabletVisClientConnection

which transmits it to the TabletVisServerConnection. There the message is gathered and

the complete set of bytes is passed to the TabletVisServer. This is where the message is

read and translated into actions.

Chapter 3. Implementation 30

After the TabletVisServer demanded the VTKModel to perform the clipping with the

sent plane equation, it receives the resulting set of polygons. With this the TabletVis-

Server assembles the answer for the client, which is coded similarly to the initial request.

It starts with the request number of the handled action. Then some additional infor-

mation may follow. In some cases there is no such information, for example when the

client notified the server that a certain perspective in the user interface was closed. But

in most cases the server transfers a set of polygons. The serialization of the set is done

using VTK and by default in binary coding. It is written in the VTK legacy file format.

In case of a clipping request, the answer in ASCII coding would look like the following:

2|# vtk DataFile Version x.0 name ASCII DATASET POLYDATA

POINTS n float x1 y1 z1 ... xn yn zn

POLYGONS m p f1 va vb vc ... fm vi vj vk

POINT DATA n SCALARS name float 1 LOOKUP TABLE default s1 ... sn|

Since clipping has the request number 2, the message starts with that number. The first

line represents the VTK header, which specifies the utilized VTK version, the type of

the coding and of the dataset.

In the next line the coordinates of the n vertices of the polygon set are listed. It follows

the specification of the m polygons. The integer p indicates how many integers are going

to follow. For each polygon the number of vertices fi is stated first. Then an ordered

list of the indices of these vertices follows. The indices are related to the order in which

the coordinates of the vertices were declared in the line before.

In the last line the colours of the vertices are given in form of a scalar set. With a lookup

table each scalar value is assigned to a colour. The keyword POINT DATA specifies that

the scalars are associated with the vertices and not with cells. Next it is declared that

each scalar is a float and that each scalar consists of only one number. It is possible to

define custom lookup tables, but in this project only the default is used. Then in the

order the vertices were defined, the corresponding scalar values are given.

This message is then passed to the TabletVisServerConnection, where it may be com-

pressed. In that case the ending ’|end|’ is added to the compressed byte set, so that

the client knows when the byte stream is finished. Then the data is transferred to the

TabletVisClientConnection.

After all data was received, the TabletVisClientConnection passes the complete message

to the TabletVisClient. If compression is activated, the TabletVisServer decompresses

the message for further encoding. Then it is read which request was answered and the

corresponding additional data is extracted. In case of a polygon set, VTK is used to

read the serialized information.

Chapter 3. Implementation 31

The extracted data is then passed to the TabletVisAppDelegate. In case of a clipping

request, the polygon set is transferred to the TabletVisApp, which updates the visual

representation cut-plane node in the scenegraph.

Optional Compression

In order to reduce the amount of data that is transmitted from server to client, especially

when large polygon sets are sent, the app can be set to compress these messages. Due to

the fact that the amount of data sent from the client is usually small, the compression

is only used in the direction server to client. The compressions is optional, i.e. the user

can disable it at any time.

For this purpose [ZLIB] is used. An open-source, cross-platform library that enables

lossless compression. It uses an LZ77 method called deflate, which is a type of dictionary

coder combined with Huffman coding. This method is also used for the ZIP archive file

format. It gives good compression results on different types of data while using few

resources.

The compression can be set to levels from 0 to 9, while 0 means no compression and 9

is the highest level.

3.6 User Interface

The user can choose from a set of datasets to load. The standalone app provides the

possibility to download files from Dropbox or via email, while the client-server app

restricts the set of datasets to the ones stored on the server. For each dataset the surface

of the dataset is shown. Furthermore there are three additional representations of the

dataset which can be displayed simultaneously. In order to examine these additional

representations with respect to the whole dataset, the surface of the dataset can be

set to opaque, transparent or not to be rendered. In Figure 3.11 and Figure 3.12 the

combination of different dataset representations with a transparent surface can be seen.

(a) Rotation (b) Rotation (c) Translation (d) Zoom in (e) Zoom out

Figure 3.10: The different touch gestures for rotation, translation and zoom.

The displayed content can be navigated with common touch gestures as depicted in

Figure 3.10. There are two gestures for the rotation. With wiping gestures with one

finger, as shown in Figure 3.10(a), the scene is rotated along an axis parallel to the

screen. The direction of the finger movement is orthogonal to that rotation axis. In

Chapter 3. Implementation 32

order to rotate the object along the axis orthogonal to the screen, two fingers are used.

As depicted in Figure 3.10(b), one touch is fixed and the other one describes a circular

movement around it.

The translation of the scene is executed with wiping gestures with two touches, as

depicted in Figure 3.10(c). The scene can be zoomed in by extending two touches, as in

Figure 3.10(d). With a pinching gesture, shown in Figure 3.10(e), the scene is zoomed

out.

The first additional representation is the cut-plane. There are two modes for the cut-

plane: slice and clip. In slice mode, a cut-plane is displayed. Clipping results showing

the surface of that part of the dataset that lies behind the cut-plane, see Figure 3.11.

Figure 3.11: A clipping of the turbine dataset.

The positioning of the cut-plane is done with a plane widget. This widget consists of

a plane and a normal with a small ball, see Figure ??. The navigation gestures of the

widget consist of two steps. The first touch selects either the normal or the plane. The

selected item then turns green. Then a wiping gesture moves the widget. If the gesture

starts with touching the normal, a rotation is initiated. A translation starts by selecting

the plane.

The second representation is the iso-surface, which is used on scalar fields. The iso-

surface connects points that have the specified iso-value similarly to the way that contour

lines connect points of equal value or elevation. An example is shown in Figure 2.6.

Chapter 3. Implementation 33

For the extraction of iso-surfaces, the app offers eleven equidistant, scalar set specific

iso-values, for which a surface can be shown. This method was chosen for demonstration

purposes. In this way it is made sure that the chosen iso-value actually corresponds to

a surface. To gain more flexibility it could be easily changed, so that the user can type

in an iso-value directly.

The third representation consists of streamlines, see Figure 3.12. Streamlines are curves,

which tangents follow the directions of the vector field. One streamline shows the path

of a particle in a vector field. In order to compute a streamline, a seed-point has to

be defined. This seed-point is then used as starting point for the computation. The

TabletVis app supports only vector fields that are constant over time, i.e. vector fields

at one given time.

Figure 3.12: A set of streamlines of the car dataset.

The streamlines can be displayed in two modes, tubes and ribbons.

Seed-points are also set by using the plane widget. A double tap on the plane of the

widget creates a seed-point at that exact position. It is then marked with a small red

ball, as can be seen in Figure 3.12.

Chapter 4

Performance Testing

Scientific visualization usually requires dealing with large datasets. These datasets need

to be processed in a reasonable time to ensure interactivity. In order to explore the

possibilities and limitations of both the standalone and the client-server version of the

TabletVis app, three experiments were conducted.

For this project, an iPad 4 (model MD511FD/A) equipped with a 1.4 GHz Apple A6X

processor and 1GB RAM was used. The server was implemented on an iMac equipped

with a 3,4 GHz Quad-Core Intel Core i5 processor and 2 times 4GB RAM.

This chapter begins with a short introduction of the five datasets used for the perfor-

mance testing in Section 4.1. Then the three conducted experiments are described and

their results given. In the first experiment, described in Section 4.2, some general time

measurements of both the standalone and the client-server version of the app are taken.

Then the client-server system and its different parts are examined in Section 4.3. At

last the frame-rates of the standalone app are taken, which is described in Section 4.4.

4.1 Datasets

In order to get an overview of the behaviour of the TabletVis apps, five datasets of

different sizes were selected for the experiments. Table 4.1 lists the basic properties of

these datasets.

Table 4.1: Properties of the five datasets used for the experiments.

Attribute Data: Surface:
Name Grid Type Cells Points Scalar Vector Triangles Vertices File

Turbine Unstructured 15 474 22 932 4 1 2 150 1 047 1.6 MB
Component Curvilinear 43 008 47 025 3 1 15 616 8 262 1.7 MB
Noise Rectilinear 117 649 125 000 1 1 28 812 14 408 13 MB
Carotid Rectilinear 158 400 167 580 1 1 36 048 18 698 2.6 MB
Car Unstructured 210 650 227 476 3 1 67 048 33 530 25 MB

34

Chapter 4. Performance Testing 35

The component, noise and carotid dataset were provided by VTK. The other two

datasets were part of the [VISICADE] project. Visualizations of different represen-

tations of the datasets are given in Appendix A.

4.2 General Time Measurements

With this experiment a general overview is given over the timing of both the standalone

and the client-server version of the TabletVis app. From the beginning of this project

it was expected that the standalone version would reach its limits with larger datasets.

That was the reason for implementing a client-server app. So this experiment should

test that hypothesis.

There are several aspects that are examined with this experiments. First of all it should

be determined whether any of the two applications can handle the processing of large

scientific datasets. Moreover which version performs better for different dataset sizes or

different visualization techniques. It is expected that the computation on the server is

faster than on the tablet PC. But it is not clear how the transmission of data between

server and client impacts the overall processing time, compared to the standalone version.

4.2.1 Experiment Setting

For each app version the following set of actions was executed alternately and its time

measured:

• 5 times a cut-plane in slice-mode

• 5 times a cut-plane in clip-mode

• 5 times an iso-surface for 3 different iso-values

From all measurements of each action the average was taken in order to eliminate the

influence of internal scheduling.

To ensure reproducibility, the cut-planes were all conducted with the widget in default

position. Moreover the three iso-values were chosen from the pre-selected equidistant

values. The computation of streamlines is difficult to reproduce with the same parame-

ters. Therefore this part of the applications was left out for these tests.

It is obvious that comparing the results of different datasets for actions such as cut-plane

or iso-surface extraction is difficult. For iso-surfaces the run time of the marching cube

algorithm depends on the size and location of the iso-surface and the complexity of the

underlying grid. Nevertheless the timing of these actions can still give an impression of

the processing times.

All server client tests were conducted with a network band width of 54 Mbps and a

compression rate of 2.

Chapter 4. Performance Testing 36

4.2.2 Results

Out of all tests, the clipping took the longest for all models. Besides that the results of

the datasets differ a lot.

Turbine Dataset

For the turbine dataset the standalone version of the app was faster in all cases but the

clipping test, see Figure 4.1. Although the server was faster in computing, processing

and transmitting the data took longer in most cases. At the same time, the differences

are very small and barely noticeable for the user.

load slice clip iso 1 iso 2 iso 3

time in [sec]

1
Computation Tablet
Overall Tablet
Computation Client-Server
Overall Client-Server

Figure 4.1: The results of the general timing tests with the turbine model.

Component Dataset

In Figure 4.2 it is shown that the client-server system was more than three times faster

in the tests with the component dataset than the standalone version. That is due to

the fact that the computations on the tablet took so much longer. In comparison to the

noise dataset in Figure 4.3, which has more than 2.5 times more points and cells, the

component dataset performs worse. The iso-surface times of different datasets are not

comparable. But the component dataset takes almost twice as much time for the load

and slice test with the client-server system. For the tablet version it takes about ten

times as long as the noise dataset.

load slice clip iso 1 iso 2 iso 3

time in [sec]

1

2

3

4
Computation Tablet
Overall Tablet
Computation Client-Server
Overall Client-Server

Figure 4.2: The results of the general timing tests with the component model.

Chapter 4. Performance Testing 37

Noise Dataset

For the noise dataset the server-client system is slightly slower than the standalone

version in all tests but the clipping, see Figure 4.3.

Carotid Dataset

The longest computation times were measured for the carotid dataset, see Figure 4.4.

The client-server system’s computation times are more than five times faster than the

tablet’s. That results in overall processing times that are between four and five times

faster.

Car Dataset

For the car dataset the client-server system performed slightly better for all tests, but the

loading, see Figure 4.5. The clipping shows again a more significant difference between

the two versions of the app.

It stands out how fast the standalone version can process this dataset. It is more than

twice as fast as the processing on the component dataset. The differences are less

noticeable for the client-server system.

Overall

In summary it can be observed that the client-server system is faster handling compu-

tationally intensive operations. That includes the processing of complex datasets, such

as the carotid dataset, or methods such as clipping. That was expected. But it is also

shown that the client-server communication does not impact the overall performance too

much. Only for the turbine dataset and the faster computations of the noise dataset did

the server perform a faster computation but the standalone version had a better overall

processing. And in these cases the time difference was very small.

Moreover the impact of expensive operations is much higher in the standalone version

of the TabletVis app. It did result in processing times of over 6 seconds for a clipping

operation on the carotid dataset. The client-server version on the other hand did not

take longer than 2 seconds in any test.

Furthermore it can be observed that the client-server system is not always faster than the

standalone version, not even just for the larger datasets. For example for the turbine and

the car dataset, the standalone version was faster loading the surface. The carotid and

component dataset on the other hand, were loaded faster by the client-server application.

A look into Table 4.1 shows, that neither the amount of cells, points, triangles and

vertices of the surface nor the file size gives an indication on why the standalone version

is sometimes faster and sometimes slower than the client-server version.

Chapter 4. Performance Testing 38

load slice clip iso 1 iso 2 iso 3

time in [sec]

1

2
Computation Tablet
Overall Tablet
Computation Client-Server
Overall Client-Server

Figure 4.3: The results of the general timing tests with the noise model.

load slice clip iso 1 iso 2 iso 3

time in [sec]

1

2

3

4

5

6
Computation Tablet
Overall Tablet
Computation Client-Server
Overall Client-Server

Figure 4.4: The results of the general timing tests with the carotid model.

load slice clip iso 1 iso 2 iso 3

time in [sec]

1

2

3
Computation Tablet
Overall Tablet
Computation Client-Server
Overall Client-Server

Figure 4.5: The results of the general timing tests with the car model.

Chapter 4. Performance Testing 39

But comparing the times of each version of the different datasets, it seems as though

some datasets, for example the carotid and the component dataset, are computationally

more intensive than others. And this complexity can not be read from basic information

such as the amount of cells or in case of the surface extraction triangles or vertices.

4.3 The Client-Server Application

In the client-server app computationally intensive operations are transferred from the

client to the server. This enables faster processing of bigger datasets. The aim of

this experiment is to understand the influence of the different parts of the processing

sequence in order to see if there is room for improvement. Moreover the influence of the

compression level was examined.

For this experiment different parts of the loading process of a dataset were inspected.

The loading process was chosen since its parameters are constant. That is useful for

comparisons. Moreover it results in sending the whole surface of the dataset, which is

a large amount of data that is transmitted from server to client. That enables a better

examination of the limitations of the transmission process.

This experiment was conducted both with ASCII and binary encoding of the transmitted

polygon data. In the case of this project, the client could easily read binary data created

on the server. But that might not be the case when using a different tablet type or a

different server. So in order to get a good overview, the overall processing times of the

experiments in ASCII mode are included in the results.

4.3.1 Experiment Setting

Alternately different datasets were loaded and for each four times were taken, see Fig-

ure 4.6. The overall time TC1 represents the time from tapping a button to having the

dataset displayed. The time of a request from the client TC2 starts when the request

string is sent up to the time the answer string is received. Additionally the overall server

time TS1 , from the moment a request string is received up to the time an answer is sent,

was taken. The computation time TS2 measures the time taken by the VTK dataset.

Button Tapped
Client Server

VTK

Client
Display

TS2

TS1

TC2

TC1

Figure 4.6: A schematic overview of the client-server experiments depicting the time
spans that were measured.

The loading process was measured for ten different compression levels, where 0 means

no compression and 9 is the greatest compression.

Chapter 4. Performance Testing 40

Since the processing time can vary due to side effects such as internal scheduling, each

experiment was repeated five times. Moreover all experiments were conducted with a

constant network band width of 54 Mbps.

4.3.2 Results

The detailed results are given in Appendix A. The graphs in Figure 4.7 are based on

the averaged results.

In Figure 4.7 it can be seen that for the turbine dataset all time measurements from the

binary experiments are between 0.01 and 0.1 seconds. So it is difficult to argue with this

data, since conclusions from these small values are more error prone and less significant.

Client- and Server-Side Processing

The results for all datasets have several similarities. First the computing time is constant

for all different compression levels. That was expected, since the parameters for the

computation did not change. But the processing time of the client, which is depicted

with the dashed red line, is also constant for all experiments, from level 1 on. That

means that the time needed for the decompression is independent from the level of

compression. Moreover the client-side processing time is similar for all datasets. The

increase for larger datasets is only marginal.

Furthermore the overall server-side processing time shows a slight increase for all datasets

beginning at level 0. Towards the higher levels, starting at level 5 or 6, the graph

increases more and more. The larger the dataset have a steeper increase in the higher

levels. This could be traced back to the fact that the compression becomes more time

consuming for higher levels. And since the larger datasets tend to have larger data to

compress, this factor weighs in more.

Transmission Time and Compression Rate

Another similarity is that the transmission time is also very stable for all datasets. After

a subtle decline from no compression to compression level 1, the time for transmitting

the data is almost constant. The larger the dataset, the larger the decrease is. Only the

transmission time graph of the noise dataset and the car dataset show a slight increase

in the higher compression levels. That can be explained by looking at Figure 4.8. First

of all it can be observed that the amount of transmitted data drops significantly from

level 0 to 1 for all datasets in both modes. The greater the starting amount is, the

steeper the fall. And although the starting amounts differ for ASCII and binary mode

of each dataset, from level 1 on the amount of bytes for the two modes are similar.

After compression level 1, the ASCII graphs and most binary graphs are slightly decreas-

ing. Again the larger datasets such as the car dataset show a more noticeable decrease

than the smaller datasets such as the turbine dataset. But it can also be observed that

Chapter 4. Performance Testing 41

Compression Level
1 2 3 4 5 6 7 8 9

time in [sec]

1

2

3 Tc1 ASCII

Tc1 Binary

Tc2 Binary

Tc1 − Tc2 Binary

Ts1 Binary

Ts2 Binary
Tc2 − Ts1 Binary

Turbine

Compression Level
1 2 3 4 5 6 7 8 9

time in [sec]

1

2

3 Tc1 ASCII

Tc1 Binary

Tc2 Binary

Tc1 − Tc2 Binary

Ts1 Binary

Ts2 Binary
Tc2 − Ts1 Binary

Component

Compression Level
1 2 3 4 5 6 7 8 9

time in [sec]

1

2

3 Tc1 ASCII

Tc1 Binary

Tc2 Binary

Tc1 − Tc2 Binary

Ts1 Binary

Ts2 Binary
Tc2 − Ts1 Binary

Noise

Compression Level
1 2 3 4 5 6 7 8 9

time in [sec]

1

2

3 Tc1 ASCII

Tc1 Binary

Tc2 Binary

Tc1 − Tc2 Binary

Ts1 Binary

Ts2 Binary
Tc2 − Ts1 Binary

Carotid

Compression Level
1 2 3 4 5 6 7 8 9

time in [sec]

1

2

3 Tc1 ASCII

Tc1 Binary

Tc2 Binary

Tc1 − Tc2 Binary

Ts1 Binary

Ts2 Binary
Tc2 − Ts1 Binary

Car

Figure 4.7: The results of the client-server tests.

Chapter 4. Performance Testing 42

Compression Level
1 2 3 4 5 6 7 8 9

transmitted Data in MB

0.4

0.8

1.2

1.6

2.0
Car ASCII Binary
Carotid ASCII Binary
Noise ASCII Binary
Component ASCII Binary
Turbine ASCII Binary

Figure 4.8: The amount of bytes transmitted per model in the client-server experi-
ments.

the binary graph of the car dataset is slightly increasing from compression level 3 on.

The binary graph of the noise dataset increases a little from level 4 on. That explains

the slight increase in the transmission time in Figure 4.7. Overall the compression levels

2 and 3 give the fastest results. But at the same time the compression enhances the

result only slightly, since the transmission time is not a big part of the overall loading

time.

Overall it can be seen that the time to transmit data to the client is only a small portion

of the overall processing time. For the smaller datasets such as the component dataset it

ranges between 0.179 to 0.104 seconds for compressed binary data. The largest dataset,

the car dataset, takes between 0.289 to 0.317 seconds for compressed binary data.

Overall

As noticed in the results from the first experiment in Section 4.2, it can be observed that

the overall processing time for the loading of a dataset is not proportional to the amount

of cells, points of a dataset or triangles and vertices of the surface. Although there is

a tendency that larger datasets take longer to be processed, that does not hold for all

datasets. The carotid dataset for example took longer to load than the car dataset.

It stands out that both the component and the carotid dataset have relatively high

computing times, compared to the other datasets. The computation time takes up to

two thirds of the whole loading time for these datasets, while the noise and car dataset

spent less than half of the loading time on computation.

Furthermore it is noticeable that the transmission time is only a small part of the

overall loading time. Moreover the compression and decompression of the data are

Chapter 4. Performance Testing 43

also negligible for lower compression levels. The time spent on computation is the

determining factor for the processing time of the client-server application.

4.4 Frame-Rate

As described in Section 3.1 was that the scene should be rendered in real-time. In order

to examine the rendering limits of the TabletVis app, the frame-rates of standalone app

were measured. Since the client-server app is based on client-side rendering, there is no

difference in the rendering capabilities of both app versions.

4.4.1 Experiment Settings

For this experiments the two largest datasets were used, the carotid and the car dataset.

With each dataset a complex scene was created as depicted in Figure 4.10(a) and Fig-

ure 4.10(b). Then the scenes were rotated and the frame-rate was sampled.

4.4.2 Results

The results of the frame-rate experiment are shown in Figure 4.9.

1 2 3 4 5 6 7 8 9 10
time in [sec]

frames per sec

10

20

30

40

50

60

(a) Carotid

1 2 3 4 5 6 7 8 9 10
time in [sec]

frames per sec

10

20

30

40

50

60

(b) Car

Figure 4.9: The results of the frame-rate experiment.

For the carotid dataset the average frame-rate during the test was 56.1 frames per second.

It ranged between 50 and 60 frames per second.

For the car dataset the average frame-rate during the test was 57.9 frames per second.

It ranged between 55 and 60 frames per second.

An application is said to be rendering in real-time if it displays more than 15 frames per

second [AHH11]. From about 72 fps up, differences in the display rate are effectively

not detectable. So a frame-rate of 55-60 fps is not only real-time, but also pretty good.

Chapter 4. Performance Testing 44

(a) The scene created with the carotid dataset consisting of 153 344 triangles and 78 670 vertices.

(b) The scene created with the car dataset consisting of 296 666 triangles and 149 077 vertices.

Figure 4.10: The two scenes used for the frame-rate tests.

Chapter 5

Usability Evaluation

Next to the technical suitability of tablets for scientific visualization, which was discussed

in Chapter 4, the usability in terms of user interaction is equally important.

Compared to desktop applications for scientific visualization, the TabletVis app provides

three new concepts for user interaction: the manipulation of the 3D model by touch, the

touch manipulation of the plane widget and the tapping gesture for setting seed points.

Hence the main focus of this chapter is the usability of these concepts.

Due to the time constraints of this project, most design aspects of the user interface,

such as the layout, remained basic and did not become a priority. Therefore I abstained

from extensive usability inspection, usability testing or comparisons to other established

visualization systems.

Nevertheless a user study can give some insight on the app’s usability and on existing

problems. The aim of the conducted study is to examine the earlier mentioned new

interaction concepts and to fathom the appeal of a scientific visualization application

for tablets, irrespective of the appearance or design of the TabletVis app.

This chapter begins with an introduction of the term usability in Section 5.1. Next

in Section 5.2 a short overview over evaluation methods for usability is given and it is

explained which method was chosen for this project and why. Then the design and the

design process of the utilized questionnaire is presented Section 5.3. Additionally the

experiment setting is described in Section 5.4. This chapter finishes with a presentation

of the results in Section 5.5.

5.1 What is Usability

Usability comes from usable and describes the ”ability or fit to be used” [OD]. That

is a very general description and it is not sufficient to cover all aspects of this quality

with regard to user interfaces. Over the years there have been many attempts to find

an adequate definition.

45

Chapter 5. Usability Evaluation 46

The International Organization of Standardization (ISO) defines usability as the ”ex-

tent to which a product can be used by specified users to achieve specified goals with

effectiveness, efficiency and satisfaction in a specified context of use” [ISO9241].

The usability expert Nielsen gave the much-quoted definition, that usability is a ”quality

attribute that assesses how easy user interfaces are to use” [N12]. He extends the ISO

definition to a list of five quality components:

Learnability How easy is it for users to accomplish basic tasks the first time they

encounter the design?

Efficiency Once users have learned the design, how quickly can they perform tasks?

Memorability When users return to the design after a period of not using it, how

easily can they re-establish proficiency?

Errors How many errors do users make, how severe are these errors, and how easily

can they recover from the errors?

Satisfaction How pleasant is it to use the design?

5.2 Evaluating Usability

There are many different methods that are used to evaluate the usability of an interface.

They vary in cost, complexity and at which time in the design process they are used.

In general one distinguishes between two types of usability evaluation methods, usability

inspection and usability testing methods. Usability inspection methods are executed by

usability experts who examine the user interface. In usability testing methods real,

potential users test the interface and their behaviour and/or opinion is recorded.

Usability Inspection Methods

One of the most used inspection method is the heuristic evaluation. A usability specialist

examines the interface with regard to a set of guidelines, the heuristics. The most popular

heuristics are Nielsen’s heuristics [N94].

Other widely exploited methods are cognitive or pluralistic walkthroughs [LW97]. In a

cognitive walkthrough a usability expert reviews the interface by performing a specific

task or use case step-by-step. In the pluralistic version not only a usability expert, but

also a real user and a product developer perform the walkthrough.

The main advantage of expert-based usability evaluation methods is that less partici-

pants are needed to find more usability problems [N92]. Therefore these test are faster

and potentially more thorough.

Chapter 5. Usability Evaluation 47

On the other hand real users may have different needs or problems than the expert

imagines. So testing with experts only does not ensure to find all problems. Additionally

it can be difficult to find usability specialists and they may be more expensive than a

group of real users.

Usability Testing Methods

A widely used usability testing method is called thinking aloud [L82]. The user performs

a specific task with the interface while saying out loud all of his thoughts. These thoughts

and the steps taken in the interface are recorded and analysed later.

Usability testing also includes performance measurements that produce quantitative

data. Popular measurements are for example the time to complete a specific task,

number of user errors, time spent to recover from errors or the frequency of the use of

the manual. The collected data can be used to compare different systems.

Another way of conducting a usability test is through interviews or questionnaires. After

the user has performed a specific task with the interface, he answers several questions

that are later analysed. The questions are often based on standardized test. In that way

the results can be compared and a certain amount of reliability and validity is provided.

While interviews allow for direct and individual questions, questionnaires are rigid but

therefore enable structure an comparability.

The main advantage of user-based usability evaluation methods is that the opinions

and problems of real users are detected. That increases the probability that the most

important usability issues are found.

On the other hand the findings of each user are subjective and the validity of the overall

result depends on the number of participants. A thorough test might need a lot of users

which can be very time-consuming. Additionally some usability testing methods such

as thinking aloud produce data that is difficult to analyse.

For this study a usability testing method was chosen. Since the main focus of the test

are interaction concepts, such as touch gestures, the feedback of real users seems more

valuable than an expert’s opinion.

Using a questionnaire is the best choice for this project. It gives a good overview over

the usability of the TabletVis app within a reasonable amount of cost and complexity.

Moreover this method fits the time restrictions of this project.

The questionnaire, that is described in more detail in Section 5.3, is based on a stan-

dardized test, the System Usability Scale.

Chapter 5. Usability Evaluation 48

5.2.1 SUS - the System Usability Scale

The System Usability Scale (SUS) was developed in 1986 by John Brooke in order to give

a global view of subjective assessments of usability [Brooke86]. It is kept very general

so that it can be used for a variety of interfaces and systems. Moreover it also enables

the test to be used for the comparison of different systems.

The SUS questionnaire consists of ten statements for which the agreement of the user

is measured on a Likert Scale from 1 (strongly disagree) to 5 (strongly agree). In the

original version, which was used for this project, the statements are phrased alternately

in a positive and negative manner. The statements cover usability aspects such as the

need for support, training, and complexity.

For the analysis of the collected data the answers to the questions are scaled to the

interval [0,4]. That is done by subtracting 1 from the positive statements’ scores and by

subtracting the negative statements’ scores from 5. Then the sum of all scaled scores is

multiplied by 2.5 to get the SUS score that ranges between 0 and 100.

The SUS has been examined in several studies such as [TS04] or [BKM08]. The results

imply that this scale is both valid and reliable and serves as a good measure for user

satisfaction.

5.3 The Questionnaire

The questionnaire, given in Appendix B, starts with three questions that aim to assess

the respondent’s experience with mobile devices and scientific visualization software.

Next nine questions are posed that are specifically about the TabletVis app. Then the

ten SUS statements are given. At last the participants are asked to name aspects the

liked or disliked.

The app-specific questions target those interaction features in which the TabletVis app

differs the most from a system developed for a desktop PC. That includes the manip-

ulation by touch of the 3D model, the touch manipulation of the plane widget and the

tapping gesture for setting seed points.

The questions 4-12 are based on Nielsen’s five quality components of usability, Sec-

tion 5.1. Due to the experiment setting, memorability was not examined. Moreover

the error handling was not explicitly tested. It was assumed that the most important

aspects for these interaction features are covered by learnability (questions 4, 7, 10),

efficiency (questions 5, 8, 11) and satisfaction (questions 6, 9, 12).

Since these questions are specific to this application, there were no standard surveys to

derive them from. Therefore this part of the study has not been tested for reliability,

validity, objectivity or sensitivity. Nevertheless the questions were designed following

several guidelines which are supported by statistical evidence.

Chapter 5. Usability Evaluation 49

Alternating Positive and Negative Statements

Besides the SUS, many often used Usability questionnaires use both positive and neg-

ative phrasing. It is believed that this reduces the acquiescent bias, the tendency of a

respondent to agree to everything, and the extreme response bias, the tendency to give

extreme ratings. On the other hand one could argue that the alternation of positive and

negative statements can lead to misunderstandings or mistakes by the respondent and

to misinterpretation by the researcher.

In 2011 Sauro and Lewis published a study [SL11] comparing SUS scores conducted with

only positive and with alternating positive and negative statements in an unmoderated

setting. They concluded that there was no significant difference between the results

obtained with the positive or with the original SUS questionnaire.

Given this result and the assumption that a small moderated study reduces the risk of

misinterpretation by the respondents, the questioning is kept alternating. In this way

the original SUS test can be used and the additional questions are in the same style.

The Number of Scale Points

An article by Finstad [F10] implies that 7-point Likert Scales provide a more accurate

measure of the user’s opinion than 5-point Likert Scales. However the benefits were

considered small. At the same time the SUS, which is also part of the questionnaire for

this project, uses a 5-point scale.

Since the results of Finstad’s study give no indication on how the potential inaccuracy

of the scale impacts the results of a study, the additional questions are supplied with

5-point Likert Scales.That ensures consistency with the SUS part.

Extreme Phrasing

In 2008 Karn et al. conducted a user study [KLNSKAN08] examining the influence of

extreme phrasing in a user evaluation questionnaire. They found that extreme phrasings

such as ’I think that this is one of my all-time favourite web sites.’ or ’I thought

the web site was very difficult to use.’ lead to more extreme answers than moderate

phrasings. Overall users tended to disagree more with extreme statements, both positive

or negative.

With this result in mind, extreme phrases using words such as ’very’, ’never’, ’especially’

or ’immediately’ were avoided in the additional questions.

Chapter 5. Usability Evaluation 50

5.4 Experiment Settings

The model carotid.vtk used in the user study was provided by Kitware, Inc. via VTK.

It contains a 3D scan of carotid arteries. Additionally it includes a vector field of flow

data and a scalar field with speed values.

The experiment begins with a short introduction of the TabletVis app. Its features and

the navigation are explained briefly using a manual.

Then the following task description is handed out and talked through.

Task Description

1. Open the TabletVis app

2. Choose model carotid to be displayed

3. Examine the model from all angles

4. Cut the model both with the Clip and the Slice method

5. Load iso-surfaces for a few different values

6. Place a few seed points and display the resulting streamlines both as tubes and

ribbons

Afterwards the participant fills out the questionnaire that is given in Appendix B.

5.5 Results

The detailed answers to the questionnaire are given in the Appendix C, Table C.1. In

Figure 5.1 the scaled and averaged answer scores a depicted.

Ten users participated in this user study. Out of these ten participants, six declared to

have worked with scientific visualization software before. The list of software included

ParaView, COVISE, VisIt, AutoCAD, OpenCover and genomic viewer. These six par-

ticipants estimated their experience in visualization software on average with a score of

3 out of 4, i.e. experienced.

All ten participants declared to have used a smartphone or tablet PC before. The

average estimated experience level was a score of 3 out of 4, i.e. experienced.

The scaled and averaged refers to the method with which the SUS is calculated. The

scores of the negative statements are reversed by first subtracting 5 and then taking the

absolute value. Then all scores are scaled to the range [0,4] by subtracting 1 from each.

As a result the average scaled score for each question can be interpreted with 4 being

the best and 0 being the worst value.

Chapter 5. Usability Evaluation 51

model
manipulation

4 5 6

widget

7 8 9

seed-points

10 11 12

SUS

13 14 15 16 17 18 19 20 21 22

averaged,
scaled score

1

2

3

Figure 5.1: The scaled and averaged results of the questionnaire.

In Figure 5.1 it can be observed that out of the three examined interaction methods,

the touch gestures for the model manipulation was rated best, with an average of 3.52

of the three questions. The widget got rated 3.17 on average and the seed-points got

2.94. For both the widget and the seed-point manipulation, the precise positioning was

scored the worst.

For the SUS section, all results lie above three, but the first. That questions was whether

the participant could imagine to use the TabletVis app regularly. Only 6 out of ten

users answered this particularly question. Given that most participants did not come

from a field of work where the TabletVis app could be used regularly, this score is not

meaningful.

The highest ratings in the SUS section are for questions 16, 18 and 19. These questions

were about needed support, inconsistencies and the learning speed of the app. This

indicates that the participants in the study perceived the app as easy to learn.

The SUS score for this study amounts to 81.925. It is calculated by multiplying 2.5

to the sum of all scaled average scores of the questions 13-22. This number on its

own is difficult to interpret, since the SUS is usually used to compare different systems

or different versions of one system. Moreover the study was conducted with only ten

participants. Bangor et al. compared 3,500 surveys in 273 studies to examine what an

individual SUS score means, [BKM08]. They discovered that the median score of all

surveys was at 70.5 and the fourth quartile ranged between 77.8 and 93.9. From that it

can be deducted that a SUS score of 81.925 is above average and a good result.

Chapter 5. Usability Evaluation 52

5.5.1 Answers to Open Questions

The translated answers to the last two questions are given in Table C.2. The critique

can be distinguished in four different parts.

Interaction Issues

The main interaction issue was the widget. It was said to be difficult to precisely

navigate. For another user the widget lacked visual cues, that would indicate the options

of navigation. Additionally it was mentioned that moving the model while displaying

the widget was also difficult.

The second interaction issue was the loading time. The user tests were conducted with

the standalone version of the app with a rather large model. Therefore the processing

times of different operations were not interactive.

Additionally the simultaneous display of the model and some additional functionality

lead to confusion. In one answer it was mentioned that when the participant first

tapped the iso-surface button, the app did not behave as expected. Since the model was

in opaque mode, the iso-surface was not displayed. The user did not know that setting

the model to transparent or not displayed would have resolved the issue.

Requested Features

Some participants listed features they thought were missing or could be helpful. These

requests included the following:

• the possibility to enter an exact iso-value

• an online help menu

• an undo-button

• a way of saving results, for example with a built-in screenshot functionality

• a button that resets everything, extending the Home-button such that all addi-

tional visualizations (iso-surfaces, streamlines,...) are deleted as well

Layout Issues

The positioning of the data menu button was found faulty. Moreover the overall UI-

Design was listed as negative by one participant.

Chapter 5. Usability Evaluation 53

Positive Aspects of the Interface and the Interaction Possibilities

Overall the manipulation of the model via touch was received positively. It was described

with terms such as ’familiar’, ’intuitive’, pleasant’ and ’easy to understand’. Addition-

ally several participants approved of the clearly arranged menu and the simplicity of

the app. One user mentioned that the ’visualization algorithms are relevant’ and that

’slicing, clipping, iso-surfaces and streamlines cover the whole spectrum’. Furthermore

it remarked that it was positive that the app runs on a tablet and that the different

functions could be used simultaneously.

Chapter 6

Conclusion and Future Work

6.1 Summary

This work discusses the use of tablet PCs for flow visualization. At first the fundamentals

in scientific visualization, with the focus on flow fields, are introduced briefly. Then it

is stated which requirements a system must fulfil so that it can be used to examine the

potential and limitations of tablet PCs with regard to flow visualization. There are three

requirements concerning the visualization: the ability to process flow field datasets, the

availability of common visualization techniques and real-time rendering. Additionally

it is required that the system should preserve the mobility of the device. Moreover the

system should make use of the user interaction possibilities offered by the tablet PC,

namely touch gestures and the gyroscope.

From these requirements the major design decisions are deducted. It is stated why the

iPad was chosen as hardware and that the visualization is based on VTK. Furthermore it

is explained that within the scope of this project two applications should be developed,

one standalone version and one with local rendering and a client-server system. Next the

design decisions concerning the user interaction are given. That includes a description

of the failed attempt to utilize the gyroscope for navigation in the scene.

In the next sections the visualization libraries VTK, VES and Kiwi are introduced. Then

the general design ideas, that both versions of the application are based on, are briefly

explained with regard to the concrete implementation. The first pattern is the delegation

pattern which is used in the iOS main run loop. Secondly the model-view-controller

pattern is used to structure the entire application. And thirdly there is the visualization

pipeline, which is the main concept of all VTK-based libraries. These general ideas

are then followed by detailed descriptions of the implementations of the two versions

of the application, i.e. the standalone and the client-server version. That includes an

explanation of the client-server communication and the optional compression. Last but

not least the user interface is presented and explained in detail.

Then follows a description of the performance testing and its results. Three experiments

are conducted. First some general time measurements of both versions of the application

54

Chapter 6. Conclusion and Future Work 55

are taken. Then the client-server system is examined in detail. At last the frame-rates

of the standalone version are measured.

Additionally the usability of the application is evaluated. After shortly introducing

the notion of usability and a brief review of usability evaluation methods, the method

chosen for this project, a SUS-based questionnaire, is presented. After describing the

experiment settings, the results of the test are discussed.

6.2 Conclusion

Overall the results of this project show that tablet PCs offer great opportunities for flow

visualization. We developed a standalone system, i.e. wireless and independent from

network connections, for tablet PCs that allows for the exploration of flow data sets

with common visualization techniques. The system is capable of processing datasets

with over 200.000 cells and over 220.000 points. Although the computation times are

capable of improvement, even larger scenes are rendered in real-time.

In general the proposed user interaction methods were received well by the participants

of the user study. It turned out that the plane widget needs more work in order to

be more predictable and accurate. But overall the touch interaction was said to be

’familiar’, ’intuitive’ and ’easy to understand’.

The client-server version was developed in case the tablet PC was not able to handle

larger datasets. And it has proven itself has a reliable and efficient extension. The local

rendering seems to be a good balance for tablet PCs to improve processing time, while

keeping the data traffic low. The client-server system performed evenly well for different

datasets and decreased the processing time for computationally intensive operations

significantly, compared to the standalone version.

6.3 Future Work

The applications created in this project can be used as a basis for further studies on

flow visualization on tablet PCs. Due to the time restrictions of this project, there was

not enough time to thoroughly optimize the interaction methods. Especially the plane

widget has the potential to be a useful interaction tool. Additionally the client-server

application could be extended for the use of several clients.

Moreover the use of a desktop PC as server, enables the use of more advanced visual-

ization techniques, such as Line Integral Convolution (LIC), see Section 2.3. So far the

LIC algorithms are not implemented to run with OpenGL ES. But the computations

could be performed on the server and the output could be processed such that the tablet

PC was able to render it. With that said, the use of LIC combined with touch gestures

offers interesting interaction possibilities. For example the selection of regions, for which

the resolution of the LIC texture should be increased.

Chapter 6. Conclusion and Future Work 56

Furthermore the application could be extended for other research fields such as medicine

or biology. That would entail the implementation of other visualization techniques. And

with other visualization techniques there might come new ways to utilize the touch and

gyroscope interaction.

Appendix A

Results of the Performance Tests

T
a
b
l
e

A
.1

:
T

h
e

av
er

ag
ed

an
d

ro
u

n
d

ed
re

su
lt

s
of

th
e

g
en

er
a
l

ti
m

in
g

te
st

s.

S
ta

n
d
a
lo
n
e
:

C
li
e
n
t
S
id

e
:

S
e
rv

e
r
S
id

e
(C

.-
L
e
v
e
l
2
):

D
a
ta

se
t

T
a
sk

O
v
e
ra

ll
C
o
m
p
u
ta

ti
o
n

P
ro

c
e
ss
in

g
O
v
e
ra

ll
R
e
q
u
e
st

P
ro

c
e
ss
in

g
O
v
e
ra

ll
C
o
m
p
u
ta

ti
o
n

T
ra

n
sm

is
si
o
n

T
1

T
2

T
1
−

T
2

T
C
1

T
C
2

T
C
1

−
T
C
2

T
S
1

T
S
2

T
C
2

−
T
S
1

lo
a
d

0
.0
4
6
3

0
.0
3
2
6

0
.0
1
3
7

0
.0
6
9
5

0
.0
5
0
1

0
.0
1
9
4

0
.0
2
2
9

0
.0
1
6
8

0
.0
2
7
2

T
u
r
b
in

e
sl
ic
e

0
.0
3
5
6

0
.0
2
7
3

0
.0
0
8
3

0
.0
6
0
4

0
.0
3
6
2

0
.0
2
4
2

0
.0
1
1
1

0
.0
0
8
8

0
.0
2
5
1

c
li
p

0
.0
8
5
1

0
.0
7
3
7

0
.0
1
1
4

0
.0
7
5
4

0
.0
6
0
6

0
.0
1
4
8

0
.0
2
5
4

0
.0
2
0
9

0
.0
3
5
2

is
o

1
0
.0
3
7
1

0
.0
2
8
4

0
.0
0
8
7

0
.0
6
1
0

0
.0
4
8
3

0
.0
1
2
8

0
.0
1
1
1

0
.0
0
7
7

0
.0
3
7
2

is
o

2
0
.0
3
7
8

0
.0
2
9
0

0
.0
0
8
8

0
.0
6
8
1

0
.0
5
3
9

0
.0
1
4
2

0
.0
1
1
2

0
.0
0
7
5

0
.0
4
2
6

is
o

3
0
.0
6
3
5

0
.0
5
2
1

0
.0
1
1
4

0
.0
6
6
4

0
.0
5
0
4

0
.0
1
6
0

0
.0
1
6
0

0
.0
0
9
6

0
.0
3
4
4

lo
a
d

3
.3
2
6
4

3
.2
2
5
9

0
.1
0
0
5

0
.8
5
0
6

0
.7
2
2
4

0
.1
2
8
2

0
.6
1
2
9

0
.5
8
8
6

0
.1
0
9
5

C
o
m

p
o
n
e
n
t

sl
ic
e

3
.2
3
3
7

3
.2
2
4
0

0
.0
0
9
7

0
.6
4
2
0

0
.6
2
6
2

0
.0
1
5
8

0
.5
7
1
4

0
.5
6
5
5

0
.0
5
4
8

c
li
p

3
.8
0
0
3

3
.7
6
1
8

0
.0
3
8
5

1
.0
0
7
6

0
.9
2
3
4

0
.0
8
4
2

0
.8
2
5
2

0
.7
9
6
3

0
.0
9
8
2

is
o

1
3
.2
3
5
4

3
.2
2
5
0

0
.0
1
0
4

0
.6
4
2
4

0
.6
2
4
7

0
.0
1
7
7

0
.5
6
4
4

0
.5
5
6
5

0
.0
6
0
3

is
o

2
3
.2
5
2
1

3
.2
3
7
6

0
.0
1
4
5

0
.7
1
6
4

0
.6
6
5
5

0
.0
5
0
9

0
.5
7
8
0

0
.5
6
5
6

0
.0
8
7
5

is
o

3
3
.2
5
9
3

3
.2
4
2
7

0
.0
1
6
6

0
.7
3
9
7

0
.7
0
7
3

0
.0
3
2
4

0
.5
8
0
3

0
.5
6
3
9

0
.1
2
7
0

lo
a
d

0
.3
8
3
4

0
.2
0
7
2

0
.1
7
6
2

0
.4
6
5
8

0
.2
5
4
8

0
.2
1
1
0

0
.1
3
5
7

0
.0
9
1
2

0
.1
1
9
1

N
o
is
e

sl
ic
e

0
.1
6
7
3

0
.1
5
5
1

0
.0
1
2
2

0
.2
8
2
4

0
.1
0
0
4

0
.1
8
2
0

0
.0
6
0
9

0
.0
5
1
3

0
.0
3
9
5

c
li
p

1
.6
9
3
1

1
.6
1
1
4

0
.0
8
1
7

1
.1
4
3
4

0
.9
4
3
4

0
.2
0
0
0

0
.7
6
4
6

0
.7
0
5
4

0
.1
7
8
7

is
o

1
0
.2
2
9
9

0
.2
1
0
9

0
.0
1
9
0

0
.3
3
0
5

0
.1
4
4
8

0
.1
8
5
7

0
.0
7
3
8

0
.0
5
4
3

0
.0
7
1
0

is
o

2
0
.3
4
1
7

0
.3
1
1
9

0
.0
2
9
8

0
.5
0
0
2

0
.2
9
9
1

0
.2
0
1
0

0
.1
3
8
4

0
.0
8
2
1

0
.1
6
0
7

is
o

3
0
.1
9
6
9

0
.1
8
1
7

0
.0
1
5
2

0
.3
6
3
3

0
.1
7
3
0

0
.1
9
0
3

0
.0
8
5
6

0
.0
5
9
5

0
.0
8
7
4

lo
a
d

5
.4
6
5
7

5
.2
5
5
4

0
.2
1
0
3

1
.4
6
6
6

1
.2
0
9
0

0
.2
5
7
6

1
.0
5
5
5

1
.0
0
4
7

0
.1
5
3
5

C
a
r
o
t
id

sl
ic
e

5
.2
6
7
4

5
.2
5
5
8

0
.0
1
1
6

1
.0
2
8
7

1
.0
0
7
4

0
.0
2
1
3

0
.9
4
7
8

0
.9
4
8
4

0
.0
5
9
6

c
li
p

6
.7
2
9
6

6
.6
7
5
7

0
.0
5
3
9

1
.7
7
5
8

1
.6
7
7
0

0
.0
9
8
8

1
.5
2
0
3

1
.4
7
0
8

0
.1
5
6
6

is
o

1
5
.2
7
1
6

5
.2
5
3
1

0
.0
1
8
4

1
.1
7
9
0

1
.1
2
6
5

0
.0
5
2
5

0
.9
6
7
8

0
.7
7
2

0
.1
5
8
7

is
o

2
5
.2
5
7
0

5
.2
4
4
8

0
.0
1
2
3

1
.0
4
8
6

1
.0
2
2
0

0
.0
2
6
6

0
.9
4
1
9

0
.9
2
5
7

0
.0
8
0
1

is
o

3
5
.2
5
4
6

5
.2
4
4
6

0
.0
1
0
0

1
.0
1
9
9

1
.0
0
3
1

0
.0
1
6
8

0
.9
3
0
1

0
.9
2
4
2

0
.0
7
3
0

lo
a
d

0
.9
0
8
7

0
.5
1
1
8

0
.3
9
6
9

1
.0
5
1
1

0
.5
9
5
2

0
.4
5
5
9

0
.3
3
1
0

0
.2
4
2
2

0
.2
6
4
1

C
a
r

sl
ic
e

0
.3
0
3
6

0
.2
9
0
1

0
.0
1
3
5

0
.1
7
3
2

0
.1
5
1
4

0
.0
2
1
7

0
.1
0
6
7

0
.0
9
5
5

0
.0
4
4
7

c
li
p

3
.0
4
9
6

2
.9
4
7
0

0
.1
0
2
7

1
.8
5
1
4

1
.7
0
0
6

0
.1
5
0
8

1
.4
8
1
8

1
.4
0
0
5

0
.2
1
8
8

is
o

1
0
.3
8
7
7

0
.3
6
4
8

0
.0
2
2
9

0
.2
9
6
8

0
.2
4
6
5

0
.0
5
0
3

0
.1
4
9
8

0
.1
1
9
7

0
.0
9
6
7

is
o

2
0
.2
8
5
4

0
.2
7
2
0

0
.0
1
3
4

0
.1
9
5
7

0
.1
6
4
4

0
.0
3
1
2

0
.1
0
4
6

0
.0
8
9
6

0
.0
5
9
8

is
o

3
0
.2
6
4
7

0
.2
5
3
2

0
.0
1
1
6

0
.1
4
6
4

0
.1
3
0
0

0
.0
1
6
4

0
.0
9
0
0

0
.0
8
3
5

0
.0
4
0
0

57

Appendix A. Results of the Performance Tests 58

Table A.2: The averaged and rounded results of the client-server tests using the
turbine model in ASCII mode.

Client Side: Server Side:
Compression Overall Request Processing Overall Computation Transmission Transmitted

Level Oc Rc Oc − Rc Os Cs Rc − Os Data in kB
0 0.295 0.080 0.214 0.024 0.018 0.057 13.3718
1 0.188 0.064 0.124 0.029 0.020 0.034 5.1774
2 0.191 0.067 0.124 0.027 0.017 0.040 4.9934
3 0.186 0.061 0.125 0.029 0.018 0.032 4.8506
4 0.190 0.066 0.124 0.028 0.017 0.037 4.6864
5 0.201 0.076 0.126 0.032 0.017 0.037 4.4686
6 0.196 0.071 0.126 0.038 0.018 0.033 4.4360
7 0.214 0.088 0.126 0.043 0.017 0.045 4.4177
8 0.206 0.081 0.125 0.051 0.017 0.029 4.4004
9 0.215 0.090 0.125 0.056 0.017 0.034 4.3998

Table A.3: The averaged and rounded results of the client-server tests using the
turbine model in Binary mode.

Client Side: Server Side:
Compression Overall Request Processing Overall Computation Transmission Transmitted

Level Oc Rc Oc − Rc Os Cs Rc − Os Data in kB
0 0.085 0.068 0.017 0.019 0.017 0.049 9.4769
1 0.081 0.061 0.021 0.023 0.017 0.038 5.0790
2 0.070 0.050 0.019 0.023 0.017 0.027 5.0363
3 0.077 0.057 0.020 0.024 0.017 0.033 5.0469
4 0.078 0.058 0.020 0.026 0.018 0.032 4.9875
5 0.082 0.063 0.019 0.026 0.018 0.031 4.9600
6 0.085 0.065 0.019 0.028 0.017 0.037 4.9598
7 0.082 0.060 0.021 0.032 0.018 0.029 4.9351
8 0.101 0.080 0.021 0.046 0.018 0.034 4.9323
9 0.121 0.102 0.019 0.062 0.017 0.040 4.9296

Table A.4: The averaged and rounded results of the client-server tests using the
component model in ASCII mode.

Client Side: Server Side:
Compression Overall Request Processing Overall Computation Transmission Transmitted

Level Oc Rc Oc − Rc Os Cs Rc − Os Data in kB
0 1.702 0.939 0.763 0.613 0.587 0.326 78.7615
1 1.475 0.766 0.710 0.641 0.594 0.125 29.8473
2 1.474 0.760 0.714 0.631 0.582 0.129 28.9150
3 1.482 0.768 0.713 0.650 0.591 0.118 27.9572
4 1.466 0.754 0.712 0.644 0.586 0.110 27.3364
5 1.478 0.763 0.715 0.668 0.588 0.109 26.0537
6 1.524 0.812 0.712 0.700 0.585 0.112 25.8041
7 1.540 0.827 0.713 0.712 0.584 0.115 25.7667
8 1.571 0.858 0.714 0.751 0.587 0.106 25.7217
9 1.608 0.894 0.715 0.773 0.585 0.120 25.7094

Table A.5: The averaged and rounded results of the client-server tests using the
component model in binary mode.

Client Side: Server Side:
Compression Overall Request Processing Overall Computation Transmission Transmitted

Level Oc Rc Oc − Rc Os Cs Rc − Os Data in kB
0 0.891 0.773 0.118 0.594 0.590 0.179 55.4023
1 0.849 0.721 0.129 0.610 0.587 0.111 25.0021
2 0.851 0.722 0.128 0.613 0.589 0.110 25.0852
3 0.843 0.716 0.128 0.615 0.587 0.100 25.0504
4 0.861 0.737 0.124 0.619 0.590 0.118 24.9010
5 0.858 0.733 0.125 0.632 0.587 0.112 24.9574
6 0.880 0.756 0.124 0.647 0.590 0.109 24.7793
7 0.908 0.782 0.127 0.666 0.589 0.115 24.1636
8 0.973 0.847 0.126 0.743 0.584 0.104 24.1454
9 1.057 0.931 0.125 0.674 0.592 0.257 24.1415

Table A.6: The averaged and rounded results of the client-server tests using the noise
model in ASCII mode.

Client Side: Server Side:
Compression Overall Request Processing Overall Computation Transmission Transmitted

Level Oc Rc Oc − Rc Os Cs Rc − Os Data in kB
0 1.594 0.508 1.087 0.134 0.093 0.374 147.7864
1 1.390 0.327 1.064 0.177 0.098 0.150 51.5372
2 1.393 0.327 1.066 0.178 0.095 0.148 49.5887
3 1.393 0.332 1.060 0.195 0.093 0.137 48.3140
4 1.399 0.332 1.067 0.191 0.093 0.140 46.8550
5 1.477 0.409 1.068 0.230 0.092 0.143 44.9493
6 1.514 0.449 1.065 0.304 0.092 0.145 44.1179
7 1.581 0.516 1.065 0.361 0.092 0.155 43.9684
8 1.785 0.718 1.067 0.573 0.092 0.146 43.7994
9 1.936 0.865 1.071 0.702 0.093 0.164 43.7380

Appendix A. Results of the Performance Tests 59

Table A.7: The averaged and rounded results of the client-server tests using the noise
model in binary mode.

Client Side: Server Side:
Compression Overall Request Processing Overall Computation Transmission Transmitted

Level Oc Rc Oc − Rc Os Cs Rc − Os Data in kB
0 0.519 0.323 0.196 0.098 0.091 0.225 84.4497
1 0.483 0.268 0.215 0.129 0.090 0.138 41.6833
2 0.466 0.255 0.211 0.136 0.091 0.119 41.1390
3 0.483 0.273 0.210 0.152 0.092 0.121 41.7222
4 0.471 0.266 0.204 0.149 0.091 0.117 41.0604
5 0.496 0.292 0.204 0.205 0.093 0.117 41.7147
6 0.627 0.425 0.202 0.225 0.092 0.201 41.6890
7 0.674 0.470 0.204 0.272 0.090 0.198 41.2823
8 0.783 0.578 0.205 0.442 0.092 0.136 40.3105
9 0.990 0.787 0.203 0.623 0.092 0.164 40.3014

Table A.8: The averaged and rounded results of the client-server tests using the
carotid model in ASCII mode.

Client Side: Server Side:
Compression Overall Request Processing Overall Computation Transmission Transmitted

Level Oc Rc Oc − Rc Os Cs Rc − Os Data in kB
0 2.718 1.427 1.292 1.041 0.990 0.386 151.3562
1 2.558 1.263 1.295 1.083 0.986 0.180 50.6921
2 2.538 1.247 1.291 1.081 0.989 0.166 48.7715
3 2.559 1.261 1.298 1.101 0.987 0.160 47.1604
4 2.549 1.254 1.295 1.103 0.996 0.152 44.6632
5 2.579 1.290 1.289 1.140 0.999 0.155 40.7245
6 2.647 1.363 1.283 1.213 0.998 0.150 40.5021
7 2.698 1.407 1.290 1.270 0.993 0.137 40.4724
8 3.064 1.771 1.293 1.609 0.985 0.162 40.6726
9 3.347 2.053 1.294 1.885 0.995 0.167 40.6433

Table A.9: The averaged and rounded results of the client-server tests using the
carotid model in binary mode.

Client Side: Server Side:
Compression Overall Request Processing Overall Computation Transmission Transmitted

Level Oc Rc Oc − Rc Os Cs Rc − Os Data in kB
0 1.697 1.440 0.257 1.004 0.995 0.436 135.3265
1 1.461 1.206 0.255 1.036 0.989 0.170 45.6611
2 1.467 1.209 0.258 1.055 1.005 0.154 44.9949
3 1.458 1.207 0.251 1.058 0.994 0.149 44.7515
4 1.459 1.208 0.251 1.059 0.995 0.149 44.4559
5 1.475 1.226 0.249 1.085 1.000 0.147 44.3860
6 1.547 1.296 0.250 1.141 0.990 0.155 44.8397
7 1.610 1.362 0.248 1.206 0.987 0.157 43.3896
8 2.020 1.767 0.253 1.625 0.998 0.142 42.9829
9 2.745 2.493 0.252 2.326 0.994 0.167 43.6650

Table A.10: The averaged and rounded results of the client-server tests using the car
model in ASCII mode.

Client Side: Server Side:
Compression Overall Request Processing Overall Computation Transmission Transmitted

Level Oc Rc Oc − Rc Os Cs Rc − Os Data in kB
0 3.314 1.028 2.286 0.326 0.240 0.703 278.0156
1 3.067 0.747 2.321 0.408 0.244 0.339 108.1403
2 3.056 0.716 2.340 0.414 0.240 0.302 105.2489
3 3.053 0.726 2.328 0.444 0.236 0.282 102.1906
4 3.054 0.717 2.337 0.444 0.237 0.273 99.2549
5 3.144 0.810 2.334 0.521 0.238 0.271 95.7760
6 3.225 0.898 2.327 0.639 0.241 0.259 94.4658
7 3.326 0.987 2.339 0.720 0.235 0.267 94.0596
8 3.639 1.295 2.345 0.994 0.236 0.301 93.6151
9 3.770 1.427 2.343 1.140 0.235 0.287 93.5270

Table A.11: The averaged and rounded results of the client-server tests using the car
model in binary mode.

Client Side: Server Side:
Compression Overall Request Processing Overall Computation Transmission Transmitted

Level Oc Rc Oc − Rc Os Cs Rc − Os Data in kB
0 1.280 0.864 0.417 0.251 0.237 0.613 196.4740
1 1.058 0.606 0.451 0.317 0.236 0.289 92.7002
2 1.051 0.595 0.456 0.331 0.242 0.264 92.9802
3 1.071 0.619 0.452 0.352 0.245 0.268 92.1360
4 1.076 0.635 0.441 0.354 0.242 0.281 91.8414
5 1.078 0.644 0.433 0.381 0.242 0.282 91.2789
6 1.187 0.748 0.439 0.487 0.245 0.261 91.0854
7 1.270 0.824 0.447 0.586 0.245 0.238 90.9956
8 1.588 1.142 0.447 0.892 0.245 0.249 90.9631
9 1.883 1.437 0.446 1.120 0.245 0.317 90.9838

60

Appendix B. The Questionnaire 61

Appendix B

The Questionnaire

1. How would you describe your level of experience with smartphones/tablets?
Wie würden Sie Ihre Erfahrung mit Smartphones/Tablet PCs einschätzen?

� no experience keine Erfahrung
� little experience wenig Erfahrung
� experienced erfahren
� very experienced sehr erfahren

2. Did you already work with scientific visualization software?
Haben Sie schon einmal mit Software für Wissenschaftliche Visualisierung gearbeitet?

� No Nein
� Yes, namely Ja, und zwar

3. How would you describe your level of experience with scientific visualization soft-
ware?
Wie würden Sie Ihre Erfahrung mit Software für Wissenschaftliche Visualisierung einschätzen?

� no experience keine Erfahrung
� little experience wenig Erfahrung
� experienced erfahren
� very experienced sehr erfahren

4. When moving the 3D model, the rotation and zoom behaved as I expected.
Beim Bewegen des 3D Models hat sich die Rotation und der Zoom verhalten wie von mir
erwartet.

strongly
disa-
gree

stimme
überhaupt
nicht zu

undecided
weder
noch

strongly
agree
stimme
voll und
ganz zu

don’t
know
weiß
nicht

2 2 2 2 2 2

5. It was difficult to manipulate the 3D model into the position I wanted.
Es war schwierig das 3D Modell in die von mir gewünschte Position zu bringen.

strongly
disagree
stimme

überhaupt
nicht zu

undecided
weder noch

strongly
agree

stimme voll
und ganz

zu

don’t
know

weiß nicht

2 2 2 2 2 2

6. The manipulation of the 3D model was straightforward.
Es war unkompliziert das 3D Modell zu rotieren/verschieben/zoomen.

strongly
disagree
stimme

überhaupt
nicht zu

undecided
weder noch

strongly
agree

stimme voll
und ganz

zu

don’t
know

weiß nicht

2 2 2 2 2 2

7. It was difficult to understand how I could control the plane widget.
Es war schwierig zu verstehen wie ich das Ebenen Widget kontrollieren kann.

strongly
disagree
stimme

überhaupt
nicht zu

undecided
weder noch

strongly
agree

stimme voll
und ganz

zu

don’t
know

weiß nicht

2 2 2 2 2 2

8. It was easy to manipulate the plane widget into the position I wanted it in.
Es war einfach das Ebenen Widget in die gewünschte Position zu bringen.

strongly
disagree
stimme

überhaupt
nicht zu

undecided
weder noch

strongly
agree

stimme voll
und ganz

zu

don’t
know

weiß nicht

2 2 2 2 2 2

Appendix B. The Questionnaire 62

9. It was unsatisfying to work with the plane widget.
Es war unbefriedigend mit dem Ebenen Widget zu arbeiten.

strongly
disagree
stimme

überhaupt
nicht zu

undecided
weder noch

strongly
agree

stimme voll
und ganz

zu

don’t
know

weiß nicht

2 2 2 2 2 2

10. It was easy to understand how I could set a seed point.
Es war einfach zu verstehen wie ich einen Startpunkt setzen kann.

strongly
disagree
stimme

überhaupt
nicht zu

undecided
weder noch

strongly
agree

stimme voll
und ganz

zu

don’t
know

weiß nicht

2 2 2 2 2 2

11. It was difficult to set the seed points exactly were I wanted them.
Es war schwierig die Startpunkte an genau den Stellen zu platzieren, wo ich sie haben
wollte.

strongly
disagree
stimme

überhaupt
nicht zu

undecided
weder noch

strongly
agree

stimme voll
und ganz

zu

don’t
know

weiß nicht

2 2 2 2 2 2

12. Setting the seed points was straightforward.
Das Setzen der Startpunkte war unkompliziert.

strongly
disagree
stimme

überhaupt
nicht zu

undecided
weder noch

strongly
agree

stimme voll
und ganz

zu

don’t
know

weiß nicht

2 2 2 2 2 2

Appendix B. The Questionnaire 63

13. I think that I would like to use the tabletVis app frequently.
Ich kann mir sehr gut vorstellen, die tabletVis App regelmäßig zu benutzen.

strongly
disagree
stimme

überhaupt
nicht zu

undecided
weder noch

strongly
agree

stimme voll
und ganz

zu

don’t
know

weiß nicht

2 2 2 2 2 2

14. I found the tabletVis app unnecessarily complex.
Ich empfinde die tabletVis App als unnötig komplex.

strongly
disagree
stimme

überhaupt
nicht zu

undecided
weder noch

strongly
agree

stimme voll
und ganz

zu

don’t
know

weiß nicht

2 2 2 2 2 2

15. I thought the tabletVis app was easy to use.
Ich empfinde die tabletVis App als einfach zu benutzen.

strongly
disagree
stimme

überhaupt
nicht zu

undecided
weder noch

strongly
agree

stimme voll
und ganz

zu

don’t
know

weiß nicht

2 2 2 2 2 2

16. I think that I would need the support of a technical person to be able to use
the tabletVis app.
Ich denke, dass ich technischen Support brauchen würde, um die tabletVis App zu nutzen.

strongly
disagree
stimme

überhaupt
nicht zu

undecided
weder noch

strongly
agree

stimme voll
und ganz

zu

don’t
know

weiß nicht

2 2 2 2 2 2

Appendix B. The Questionnaire 64

17. I found the various functions in the tabletVis app were well integrated.
Ich finde, dass die verschiedenen Funktionen der tabletVis App gut integriert sind.

strongly
disagree
stimme

überhaupt
nicht zu

undecided
weder noch

strongly
agree

stimme voll
und ganz

zu

don’t
know

weiß nicht

2 2 2 2 2 2

18. I thought there was too much inconsistency in the tabletVis app.
Ich finde, dass es in der tabletVis App zu viele Inkosistenzen gibt.

strongly
disagree
stimme

überhaupt
nicht zu

undecided
weder noch

strongly
agree

stimme voll
und ganz

zu

don’t
know

weiß nicht

2 2 2 2 2 2

19. I would imagine that most people would learn to use the tabletVis app very
quickly.
Ich kann mir vorstellen, dass die meisten Leute die tabletVis App schnell zu beherrschen
lernen.

strongly
disagree
stimme

überhaupt
nicht zu

undecided
weder noch

strongly
agree

stimme voll
und ganz

zu

don’t
know

weiß nicht

2 2 2 2 2 2

20. I found the tabletVis app very cumbersome to use.
Ich empfinde die Bedinung der tabletVis App asl sehr umständlich.

strongly
disagree
stimme

überhaupt
nicht zu

undecided
weder noch

strongly
agree

stimme voll
und ganz

zu

don’t
know

weiß nicht

2 2 2 2 2 2

Appendix B. The Questionnaire 65

21. I felt very confident using the tabletVis app.
Ich habe mich bei der Nutzung der tabletVis App sehr sicher gefühlt.

strongly
disagree
stimme

überhaupt
nicht zu

undecided
weder noch

strongly
agree

stimme voll
und ganz

zu

don’t
know

weiß nicht

2 2 2 2 2 2

22. I needed to learn a lot of things before I could get going with the tabletVis app.
Ich musste eine Menge Dinge lernen, bevor ich mit der tabletVis App arbeiten konnte.

strongly
disagree
stimme

überhaupt
nicht zu

undecided
weder noch

strongly
agree

stimme voll
und ganz

zu

don’t
know

weiß nicht

2 2 2 2 2 2

23. What did you like about the tabletVis app?
Was hat Ihnen an der tabletVis App gefallen?

. .

. .

. .

24. What did you dislike about the tabletVis app?
Was hat Ihnen an der tabletVis App nicht gefallen?

. .

. .

. .

Appendix B. The Questionnaire 66

Appendix C

The Results of the Questionnaire

The results are given for each participant.

Additionally the table contains the average and the scaled average for each question.

For the questions 1 and 3 no experience translates to a value of 1 and very experienced

to a value of 4. For the questions 4-22, strongly disagree relates to a value of 1 and

strongly agree to a value of 5.

The scaled average refers to the method with which the SUS is calculated. The scores of

the negative statements are reversed by first subtracting 5 and then taking the absolute

value. Then all scores are scaled to the range [0,4] by subtracting 1 from each. As a

result the average scaled score for each question can be interpreted with 4 being the best

and 0 being the worst value.

67

Appendix C. Results of the Questionnaire 68

Table C.1: The answers to the questionnaire, the average and the average scaled to
the range [0,4].

Participant:

1 2 3 4 5 6 7 8 9 10 average
scaled
average

1 4 2 3 2 3 3 3 3 3 4 3 -
2 No No Yes No Yes Yes Yes Yes No Yes - -
3 1 1 3 1 3 4 3 2 2 3 2.30 -
4 5 5 4 4 4 4 5 5 5 4 4.50 3.50
5 1 1 1 1 1 2 1 1 2 1 1.20 3.80
6 5 5 5 5 5 2 5 5 1 5 4.30 3.30
7 1 2 1 1 4 2 1 1 2 1 1.60 3.40
8 5 4 4 2 2 4 5 5 5 4 4.00 3.00
9 1 1 2 2 4 1 - 2 2 2 1.89 3.11
10 1 5 5 3 5 5 - 4 5 5 4.22 3.22
11 1 1 2 3 3 3 4 4 1 1 2.30 2.70
12 5 5 4 3 3 3 2 4 5 5 3.90 2.90
13 3 - - 1 5 5 2 - 2 - 3.00 2.00
14 3 1 1 2 2 1 1 2 4 2 1.90 3.10
15 5 5 4 4 4 5 4 4 4 4 4.30 3.30
16 1 1 1 1 1 1 2 1 3 1 1.30 3.70
17 4 4 4 5 3 5 3 5 5 4 4.20 3.20
18 1 2 1 - 1 1 - - 2 - 1.33 3.67
19 5 5 5 5 5 4 4 5 5 5 4.80 3.80
20 1 1 1 2 2 1 3 2 1 2 1.60 3.40
21 5 5 5 3 3 5 3 4 4 5 4.20 3.20
22 1 3 1 2 1 1 3 1 2 1 1.60 3.40

Appendix C. Results of the Questionnaire 69

Table C.2: The answers to the open questions of the questionnaire, paired by partic-
ipant.

What did you like about the TabletVis app? What did you dislike about the TabletVis app?

clearly arranged, functional UI-Design, loading- and waiting-times

precise view due to zoom, etc. very complex

the possibilities of visualization, the iso-surfaces

• using rotation, translation and zoom was intu-
itive

• the visualization algorithms are relevant, slic-
ing, clipping, iso-surfaces and streamlines cover
the whole spectrum

• it is positive that the app runs on a tablet

• the calculations are not interactive, it would
have been nicer to have remote rendering

• it should be possible to for example to enter the
exact iso-value

navigation familiar from Touch-UI widget gives only few visual cues

• manipulation of the model met expectations

• simultaneous use of the functions

• simplicity/clarity

• precise manipulation of the widget is difficult

• display of the iso-surface unclear (trans-
parency) [when choosing the iso-surface while
displaying the solid model, the iso-surface is not
visible]

• waiting time: if I want to look at iso-value 0, I
have to start at 5 and tap the stepper 5 times
and wait

• error correction [for example an ’undo’-button]

no sub-menus with sub-items, simple layout a simple online-help would be good

clearly arranged menu , handling is easy to under-
stand

the handling of the widget, it should be easier to
rotate/translate the model including the widget

very pleasant and intuitive to use, it is easy to achieve
the goal • the folder-symbol could have been placed left

or right at the bottom, the upper row is very
crowded, there is plenty of space at the bottom

• the functionality of the ’Home’-button is incon-
sistent: the widget is reset, but cut-planes and
field-lines remain. How can you reset every-
thing?

very intuitively operable it should be possible to save the results

Bibliography

[AHH11] T. Akenine-Mller, E. Haines, N. Hoffman (2011): Real-time Rendering,

Third Edition, CRC Press

[B05] Paul Benölken (2005): Effiziente Visualisierungs- und Interaktionsmethoden

zur Analyse numerischer Simulationen in virtuellen und erweiterten Realitäten, Darm-

stadt University of Technology 2005, p. 1-129

[BKM08] Aaron Bangor, Philip T. Kortum, James T. Miller (2008): An Em-

pirical Evaluation of the System Usability Scale, International Journal of Human-

Computer Interaction, Volume 24, Issue 6, p. 574 594

[Bonjour] http://www.apple.com/support/bonjour/

[Brooke86] John Brooke (1986): SUS: A quick and dirty usability scale, In: Jordan,

P. W., Thomas, B., Weerdmeester, B. A., McClelland (eds.) Usability Evaluation in

Industry, Taylor & Francis, London, UK, p. 189-194

[CL93] Brian Cabral, Leith Leedom (1993): Imaging Vector Fields Using Line In-

tegral Convolution, Proceedings of the 20th Annual Conference on Computer Graphics

and Interactive Techniques, p. 263-270

[Eigen] Eigen Library http://www.eigen.tuxfamily.org/

[ESWE04] M. Eißele, S. Stegmaier, D. Weiskopf, T. Ertl (2004): Orienta-

tion as an additional User Interface in Mixed-Reality Environments, Proceedings of

Workshop Virtuelle und Erweiterte Realität of the GI-Fachgruppe AR/VR, p. 79-90

[EKE08] M. Eißele, M. Kreiser, T. Ertl (2008): Context-Controlled Flow Visual-

ization in Augmented Reality, GI 08: Proceedings of Graphics Interface, p. 8996

[F10] Kraig Finstad (2010): Response Interpolation and Scale Sensitivity: Evidence

Against 5-Point Scales, Journal of Usability Studies, Volume 5, Issue 3, p. 104 - 110

[Gamma94] E. Gamma, R. Helm, R. Johnson,J. M. Vlissides (1994): Design Pat-

terns: Elements of Reusable Object-Oriented Software, Addison-Wesley Professional

[HH11] Wolfgang Hürst and Matthias Helder (2011): Mobile 3D Graphics and

Virtual Reality Interaction, Proceedings of the 8th International Conference on Ad-

vances in Computer Entertainment Technology

70

Appendix C. Results of the Questionnaire 71

[Isenberg11] Tobias Isenberg (2011): Position Paper: Touch Interaction in Scien-

tific Visualization, Proceedings of the Workshop on Data Exploration on Interactive

Surfaces, p. 24-27

[ISO9241] ISO 9241-11 (1998): Ergonomic requirements for office work with visual

display terminals (VDTs) - Part 11: Guidance on usability, Technical report, Inter-

national Organization for Standardization

[Kiwi] Visualization App http://www.kiwiviewer.org/

[KLNSKAN08] K. Karn, A. Little, G. Nelson, J. Sauro, J. Kirakowski, W.

Albert, K.Norman (2008): Subjective Ratings of Usability: Reliable or Ridiculous?,

Panel Presentation at the Usability Professionals Association Conference Baltimore,

MD

[L82] Clayton Lewis (1982): Using the thinking-aloud method in cognitive interface

design, IBM Research Report RC 9265, Yorktown Heights, NY

[LHDVPW04] R. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, D.

Weiskopf (2004): The State of the Art in Flow Visualization: Dense and Texture-

Based Techniques, Computer Graphics Forum, Volume 23(2), p. 203221

[LW97] Clayton Lewis, Cathleen Wharton (1997): Cognitive Walkthroughs, In:

Martin G. Helander, Thomas K. Landauer, Prasad V. Prabhu (Eds.): Handbook of

Human-Computer Interactions, Elsevier Press, Amsterdam, p. 717732

[MEVIS] Fraunhofer MEVIS (2013): Mobile Liver Explorer,

http://www.mevis.fraunhofer.de/en/solutions/mobile-liver-explorer.html (accessed

January 16, 2014)

[MSG11] C. Mouton, K. Sons, I. Grimstead (2011): Collaborative Visualization:

Current Systems and Future Trends, Proceedings of the 16th International Conference

on 3D Web Technology, New York, NY, p. 101-110

[NASA] An unstructured grid http://fun3d.larc.nasa.gov/merged grid.jpg

[N92] Jakob Nielsen (1992): Finding usability problems through heuristic evaluation.,

Proceedings of the SIGCHI conference on Human factors in computing systems, New

York, NY, p. 373380

[N94] Jakob Nielsen (1994): Heuristic Evaluation, In Nielsen, J., and Mack, R.L.

(Eds.), Usability Inspection Methods, John Wiley & Sons, New York, NY

[N12] Jakob Nielsen (2012): Usability 101: Introduction to Usability,

http://www.nngroup.com/articles/usability-101-introduction-to-usability/ (accessed

October 2, 2013)

[ParaViewWeb] ParaViewWeb framework http://www.paraview.org/Wiki/ParaViewWeb

[PB13] Bernhard Preim, Charl Botha (2013): Visual Computing for Medicine:

Theory, Algorithms, and Applications, 2nd edition, Morgan Kaufmann, Waltham,

MA

Appendix C. Results of the Questionnaire 72

[PVHLD03] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, H. Doleisch

(2003): The State of the Art in Flow Visualisation:Feature Extraction and Tracking,

Computer Graphics Forum, Volume 22(4), p. 1-17

[SL11] Jeff Sauro, James R. Lewis (2011): When Designing Usability Question-

naires, Does It Hurt to Be Positive?, Proceedings of the SIGCHI Conference on Hu-

man Factors in Computing Systems, New York, NY, p. 2215-2224

[Telea07] Alexandru C. Telea (2007): Data Visualization: Principles and Practice,

A K Peters Ltd

[TS04] Thomas S. Tullis, Jacqueline N. Stetson (2004): A Comparison of Ques-

tionnaires for Assessing Website Usability, Usability Professionals Association Con-

ference, Minneapolis, MN

[OD] Oxford Dictionaries Oxford University Press.

http://oxforddictionaries.com/definition/english/usable (accessed September 30,

2013)

[VES] VTK OpenGL ES Rendering Toolkit http://www.vtk.org/Wiki/VES

[VISICADE] P. Benl̈ken; U. Bossong; H. Graf (2002): VISICADE - interaktive

Simulationen in integrierten Prozessen, ProduktDaten Journal 9, p. 38-41

[VTK] Visualization Toolkit http://www.vtk.org/

[ZLIB] Compression Libraryhttp://www.zlib.net/

	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Related Research
	1.2 Structure of the Thesis

	2 Fundamentals
	2.1 Flow Field Datasets
	2.2 Visualization Techniques
	2.2.1 Grid Surface
	2.2.2 Colour Mapping
	2.2.3 Cross Section
	2.2.4 Iso-Surfaces
	2.2.5 Volume Rendering

	2.3 Vector Field Visualization
	2.3.1 Direct Flow Visualization
	2.3.2 Dense, Texture-based Flow Visualization
	2.3.3 Geometric Flow Visualization
	2.3.4 Feature-based Flow Visualization

	3 Implementation
	3.1 Requirements
	3.1.1 Visualization of Flow Fields
	3.1.2 Examining the Potential of Tablet PCs
	3.1.3 Design Decisions
	3.1.4 User Interaction Techniques

	3.2 Visualization Libraries
	3.2.1 VTK
	3.2.2 VES
	3.2.3 Kiwi

	3.3 General Design
	3.3.1 Delegation
	3.3.2 Model-View-Controller
	3.3.3 Visualization Pipeline

	3.4 The Standalone Version
	3.5 The Server-Client System
	3.5.1 Client-Side
	3.5.2 Server-Side
	3.5.3 The Communication

	3.6 User Interface

	4 Performance Testing
	4.1 Datasets
	4.2 General Time Measurements
	4.2.1 Experiment Setting
	4.2.2 Results

	4.3 The Client-Server Application
	4.3.1 Experiment Setting
	4.3.2 Results

	4.4 Frame-Rate
	4.4.1 Experiment Settings
	4.4.2 Results

	5 Usability Evaluation
	5.1 What is Usability
	5.2 Evaluating Usability
	5.2.1 SUS - the System Usability Scale

	5.3 The Questionnaire
	5.4 Experiment Settings
	5.5 Results
	5.5.1 Answers to Open Questions

	6 Conclusion and Future Work
	6.1 Summary
	6.2 Conclusion
	6.3 Future Work

	A Results of the Performance Tests
	B The Questionnaire
	C The Results of the Questionnaire
	Bibliography

