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1 Abstract

In this paper the Mobilarium is analyzed. A device built in such a way that its motion, caused
by wind, is chaotic. I will try to provide a working model of the device, and understand its
properties. Equilibrium states will be found and I will research their stability. I will also make
approximations for certain situations, like oscillations around equilibrium positions, to find exact
solutions. I will test numerical solutions to my model with data from the motion of the real device
and suggest future improvements that could be done to the model.

2 Introduction

Chaotic behavior is one of the most interesting aspects of mechanics. Besides it being such a
rich subject it has many applications since the real world is often chaotic in its nature. While it
is an interesting field it is also a complex field. Approximations must be made in many cases to
come to a solution that might not always be satisfying.

I will be looking at a device showing rich and chaotic behavior in my research. The Mobi-
larium, as it is called, was designed by artist Bruno Mertens. It was designed in 1968 and built
in 1970. It has been operational since then, except for some moments of maintenance. Since
the device is a system of three coupled rotors, pendulums with infinite equilibrium positions,
it is very sensitive to the wind force that creates its motion. The device is a particularly large
metaphor for non-linear coupled systems as often found in physical systems in the ocean or the
atmosphere. This is also the reason that the device is interesting to research. While there is no
real comparable physical system, research to the motion of the Mobilarium might help in future
research or a comparable system might be found in the future.
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3 Properties of the Mobilarium

The real Mobilarium is a three story high device. It consists of two identical systems attached to
a giant pole. Both systems contain a large rotor, with a smaller rotor attached to it’s end, and
an even smaller one attached to the end of the second rotor. Friction is minimized so motion
is almost completely independent. A rotation in the first rotor will not cause a rotation in the
second or third. An interesting thing about the way the Mobilarium is built is that is has a
constant gravitational potential energy. Gravity does not affect it. All the rotors have been
balanced and attached in such a way that there is a perfect balance. Therefore the only force
working on it is the wind. While the device has been standing and working for around thirty
years, except for some maintenance every five years, it has never stopped turning. Suggesting,
interestingly enough, that it has no stable equilibrium positions. This makes it a very interesting
device in a physicists perspective. The real lengths of its rotors are 12, 7.5 and 5 meters and
the rotors width and depth are 1 meter. The density is constant throughout the device. The
following image gives a simple outline of one of the sides of the Mobilarium. While this drawing

Figure 1: A schematic view of the mobilarium

is not accurate, we can see the basic mechanism. Notice how the center of mass of the first and
second rotor is not the same as the attachment point. The device is built this way to create
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balance and make the device independent on gravity. We will choose our axes as follows: The
z-axis as the axis the rotors rotate around. The x-axis is horizontal and the y-axis vertical. Now
that we know the properties of the device, we can start setting up the equations of motion.

4 Equations of Motion

The obvious complexity of the wind-driven systems makes analytically solving the equations of
motion next to impossible. Even setting up the equations of motion would be impossible. As a
first way of solving an approximation of the system we will be using a constant force to replace
the complex force of the wind. With this force, equations of motion can be found and solved
both in a numerical and analytic way.

4.1 Coordinate system and variables

As stated we will use the following coordinate system: three Cartesian axes with the y-axis
vertically up from the ground and the x-z plane lies along the ground. The z-axis goes trough
the center of the device. The rotors will be rotating only around the z-axis. We will denote
the angles of the different rotors with θi as the angle with respect to the positive x-axis, going
counterclockwise. Here i = 1 denotes the largest rotor and, for example in the real device, i = 3
denotes the smallest or third rotor. If the rotor is not symmetrical, the angle is the angle of the
shorter side. For the last one this does not matter since it is always attached in the middle. The
wind will be chosen to go from the negative x direction to the positive x direction, being constant
everywhere. The coordinate system does not move with the Mobilarium. It is inertial and at a
constant position relative to the ground. We will denote the dimensions of the rotors with length
li width ai and depth bi. While the rotors are 3-dimensional, we will act as if the width of the
rotors is zero in the calculations. This way, a distance from the attachment point to a point on
the outside of the rotor can be simply expressed independent of the width of the rotor. Also, the
drag force and lift force from the wind on the outer sides of the rotors can be neglected. It is
important to note that there is no real distinction between the two sides of the smallest rotor. It
is attached to the middle rotor in its center of mass and therefore it is symmetrical. As we will
see later, there is no difference in force and therefore motion if we choose either one of the sides
as the reference point for the angle the rotor has. We will, however, be consistent after choosing
either one in a calculation.

4.2 Rigid body mechanics

From basic mechanics (Goldstein, 1950) we know that for the rotational motion of a rigid object,

given the Torque ~T and the moment of inertia I, the angular acceleration is given by

~T = I~α (1)

Considering the motion of the Mobilarium is completely in one rotational direction we can
simplify this. We will take the rotation to be around the z-axis. By taking only the third
component of the above equation and substituting αx = 0 and αy = 0

Izz θ̈ =
∑

Tz = Izzαz (2)
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Figure 2: Coordinate system and variables that we chose

In the Mobilarium forces are not always working on the center of mass of an object. If an
object has an a-central force working on it we can state the following for rotation

~T = ~r × ~F (3)

and for translation

m~a =
∑

~F (4)

Since the rotors are restricted from any translation except by rotation of its attachment point,
the translational force will act as a torque on the rotor it is attached to. Except of course for the
biggest rotor, which is not attached to another rotor and is not at all able to have translation.

4.2.1 A-central force problem2

While the conclusions drawn from basic rigid-body mechanics seem basic, there is a fundamental
dilemma when dealing with a-central forces on rigid bodies. Let’s consider the case when a rigid
body in free space is pushed by a force, acting it’s center of mass. Using the above equations we
know that the object starts to accelerate and after a certain distance the energy of the object is
given by its translational kinetic energy. If we however let the force act on a point other than
the center of mass, after the same distance, there will be a translational motion and a rotational
motion. The energy is now given by the sum of the translational kinetic energy and the rotational
kinetic energy. Seemingly, the same force acting on the same body, but on a different point on
that body, has done more work. This is, of course, not possible. An explanation for this can be
found looking at a the path the different points on the body make in space. If you look at the
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Figure 3: The a-central force problem: the path of an a-central force is longer

path the point on the body makes, it is visible that the path of the a-central force is longer than
the path that a central force causes. Thus, by the formula

W =

∫
F ds (5)

we know that the amount of work done is also more. We can see that, while one would expect
that only a fraction of the force creates rotation and a fraction causes translation, it is quite
reasonable that in fact the force fully creates both.The reasoning used here does not however
work when dealing with short exchanges of momentum. There, the amount of work done is fixed,
and the path used to transfer the momentum can be taken infinitesimally small. Since we are
using forces we can use the reasoning above.

Now that we have the basic shape of the equations of motion we can try to find the different
parts. We will start with the expression for the force provided by the wind, after which we will
calculate the moment of inertia. Finally we will calculate the total forces on the different rotors.

4.3 Wind force approximation

The force provided by the wind on an area A will be approximated by two force components.
Drag force and lift force. Air density will be considered constant throughout this model and, at
first, wind speed will be considered constant too. We will also, at first, ignore friction. Wind
will, as stated before, be going to the positive x-direction.

4.3.1 Derivation

The derivation of this expression can be done as follows (White, 1986): The total force caused
by wind can be divided in to three parts, with different causes. The first cause is form drag,
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caused by pressure difference along the outside of the object. Frictional drag is the second cause
and wave drag the last.

We can neglect the second and third cause for force provided by wind. This is because of two
reasons. First of all, for wave drag to be important, the typical velocity of the object moving in
the fluid must be in the same order as the velocity of waves in the liquid.

The formula can be found using the Buckingham π theorem. This states that for a formula
Fa with a certain number of variables, say n, with a certain number of physical units, say u, we
can state the following: There are n−u dimensionless variables from which the formula can also
be stated. In mathematical form

Fb(π1, ..., πn−u) = 0 (6)

Where Fa and Fb are functions and where πi is the ith dimensionless variable. To find such
dimensionless variables we can use a matrix called the dimensional matrix. Let the equation for
the wind force be stated as

fa(FD, u, A, ρ, ν) = 0 (7)

Where fa is a function involving all physically important variables for drag, where FD is the
drag force, u the velocity of the wind relative to the object,ρ the density,ν the viscosity and
A the area of the projection of the affected object perpendicular or parallel (perpendicular for
drag force and parallel for lift force) to the wind direction. We know the dimension of all the
parameters. Their dimensions are combinations of distance, time, mass since

[FD] = mass1distance1time−2 (8)

[u] = distance1time−1 (9)

[A] = distance2 (10)

[ρ] = mass1distance−3 (11)

[ν] = mass1distance−1time−1 (12)

The Buckingham π theorem now states this formula can be expressed in a shape involving only
2 dimensionless parameters. We can construct a matrix called the dimensional matrix to find
combinations of the variables which are dimensionless. This matrix is constructed by finding the
powers in which the variables are dependent of the physical unit. The columns will represent the
variables in the same order as above. The rows will be in the order: mass, distance, time. The
matrix will thus become a 5x3 matrix and the first column for FD will contain (1, 1,−2). The
entire matrix becomes

Mdimensional =

 1 0 0 1 1
1 1 2 0 −1
−2 −1 0 −3 −1

 (13)
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We are now looking for the kernel, or zero-space, of the matrix. This will give us solutions
for the equation

Mdimensional


p1
p2
p3
p4
p5

 = 0 (14)

Where pi is the power in which the ith variable needs to be raised to get a dimensionless param-
eter. Since we have 3 equations and 5 variables in our matrix there are 2 solutions to this system
of equations, and thus 2 dimensionless variables. One dimensionless variable for each solution.
These can be stated in different ways. The most convenient however is the following:

π1 =
u
√
A

ν
, (15)

also called the Reynolds number Re and

π2 =
FD

1
2ρAu

2
, (16)

also called the drag coefficient Cd.
We now know that a function exists that can be stated as

fb(
u
√
A

ν
,

FD
1
2ρAu

2
) = 0 (17)

With fb a function. Solving for FD now gives us

FD =
1

2
ρu2Afc(Re) (18)

where fc(Re) = CD is some function of the Reynolds number. The dependence on the Reynolds
number can be found experimentally giving us the following expression:

FD =
1

2
CDρu

2A (19)

Now we only need to find the dependence on the angle θ relative to the positive x-axis which
is, in our case, the angle relative to the wind direction.

4.3.2 Dependence on the angle

It had been experimentally found that the dependence on the angle can be stated by

~FD ≈
1

2
CDρu

2A

sin θ
cos θ

0

 2 sin θ (20)

which becomes the final expression

~FD =
1

2
CDρu

2A

1− cos 2θ
sin 2θ

0

 (21)
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For the area A we will be using Ai = libi for the ith rotor.
The big question is, however, where the extra term 2 sin(θ) comes from. As we know, the area

projected either parallel or perpendicular to the wind direction gives the sin(θ) and cos(θ) for
the drag and lift force. There is however an extra term 2 sin(θ) needed to get a match between
the formula and the experiments. An experiment done by physics instrument producer Phywe
(Nikhef, 2014) shows the relation between the size of the force a plate in the wind experiences
and the angle it has relative to the wind. Comparing this with a graph of our functions gives a
striking resemblance.

Figure 4: Comparison of the dependence of drag and lift force on the angle of the plate. The
found functions and the measurements are very similar.

A simple explanation for this could be provided by the pressure difference causing wind. If
there is a linear gradient in pressure from one point to another and an object with a certain depth
is influenced by the wind caused by the pressure difference. If the object is then rotated, the
pressure difference between the 2 sides of the object becomes dP ∗ sin(θ). And the force acting
on the object must thus also scale with sin(θ). We note however that, the same reasoning does
not hold in a similar situation. If there is no pressure difference, and therefore no wind, but the
object has a velocity trough the air, it still experiences wind. It does not, however, experience a
pressure difference between the 2 sides of the object, and still has a force acting on it, because
the situation is practically the same.

4.3.3 Do the approximations work?

Now that we have seen how we derived the expression we can try to see if it makes sense in
our situation. Do the approximations hold up and produce probable results? We first note the
resulting force at special angles. Take the angle θ = 0. The drag force will be zero, while the
lift force becomes zero too. This makes sense since the rotor is shaped symmetrically and θ = 0
means it is horizontal. Taking a look at another angle, θ = π

2 , we find a maximum in the drag
force and again a zero in the lift force. Since θ = π

2 means a vertical rotor this is certainly not an
unexpected result. Since other angles yield similar probable results it seems the approximations
hold for our situation.
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4.3.4 D’Alamberts Paradox

The derivation of the drag equation can, as we have seen, be made without the direct use of
the Navier Stokes equations. They can however prove that when the viscosity of the fluid is
zero, in an ideal fluid, the drag coefficient vanishes. This conclusion is in contradiction with
measurements and is therefore called d’Alamberts paradox.(Landau Lifhitz, 1987) The reason
the drag coefficient vanishes is that the total force on an object in a fluid is given by integrating
the pressure around its border. Since we are looking at a thin oriented plate, we can just look at
the pressure differences. If the viscosity vanished, the pressure differences will become zero and
the drag force vanishes. The proof of this result will not be given here since it does not really
affect our situation.

We will calculate the moment of inertia first and look at the expression for the total force
and torque afterwards.

4.4 Solving the attachment point

An essential property of the Mobilarium is the constant gravitational potential energy. It doesn’t
accelerate due to gravity. To make this possible, the attachment point of the rotors must be just
right. While in the real device the smaller rotors are attached a small distance from the end,
we will act like they are attached on the very end of the rotor they are attached to, to keep
the calculations clean. A small distance could be easily inserted if needed. To calculate the
attachment point we need to find the total torque provided left and right of the attachment
point by gravity. If we take a horizontal rotor with 1 smaller rotor attached at one end we
can calculate the distance the attachment point needs to be from the center. Let us consider
two coupled rotors. The first one with length l1, width a1 and depth b1. The second one with
length l2, width a2 and depth b2. We will introduce a variable representing the distance from
the attachment point to the center of mass of the rotor; da or dai for the ith rotor.

∫ 1
2 l1−da

0

xρ1ga1b1 dx+ (
1

2
l1 − da)l2ρ2ga2b2 =

∫ 1
2 l1+da

0

xρ1ga1b1 dx (22)

In our case, when the densities of both rotors is the same, this equation simplifies to:

da =
1
2 l1l2

l1 + l2
(23)

This will give the distance from the attachment point to the center of mass of the rotor in
which gravitational balance is achieved.

4.5 Moment of inertia

For a single rotor rotating symmetrically around the z-axis the moment of inertia will be given
by (Taylor, 2005):

Izz = I =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ρ(x, y, z)(x2 + y2) dx dy dz (24)
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With ρ(x, y) the density of the object on a point x, y, z. Combining this with the shape of the
object (length l, width b, depth a) gives us:

Izz = I =

∫ 1
2 l

− 1
2 l

∫ 1
2a

− 1
2a

∫ 1
2 b

− 1
2 b

ρ(x, y, z)(x2 + y2) dx dz dy (25)

Integrating gives us the final expression for the moment of inertia of a single rotor:

I = ablρ(
1

12
b2 +

1

12
l2) (26)

and for an a-symmetrically attached rotor (attachment point moved a distance da from its
center of mass

Izz = I =

∫ 1
2 l−da

− 1
2 l−da

∫ 1
2a

− 1
2a

∫ 1
2 b

− 1
2 b

ρ(x, y, z)(x2 + y2) dx dz dy (27)

Integrating gives us the final expression

I = ablρ(
1

12
b2 +

1

12
l2 + d2a) (28)

Which is the same as before.
Now, if we were to rotate the object around the z-axis, the moment of inertia would stay the

same, since we could just rotate the entire axis with it. We are free to choose our coordinate
system, and thus the moment of inertia is independent of rotation. In the real Mobilarium, there
are 3 rotors attached to each other. We Therefore need to find an expression for the added
moments of inertia because of an extra rotor attached to the first one. For this, we will use the
parallel axis theorem

I = Icenterofmass +md2 (29)

with d the distance the center of mass of the object to the z-axis and m the mass. Since the
mass is equal to ρlab (density times volume). For a rotor with the same dimensions as before
the moment of inertia would be would be

I = ablρ(
1

12
b2 +

1

12
l2) +Md2 = ablp(

1

12
b2 +

1

12
l2) + ρlabd2 (30)

for the total moment of inertia we would just need tot add this expression for each extra
attached rotor.

Now we have seen that the moment of inertia of a displaced rotor can be calculated in 2 ways,
yielding the same result. Using the results from this we can state the final expressions for the
moment of inertia that we are going to use in the equations of motion.

4.5.1 2 Rotors

For two rotors the system is fairly simple. Both the first bigger rotor, and the second smaller
one are rotors at a constant distance from the center of our coordinate system.

The second rotor will have the following moment of inertia for its own equation of motion.

I2 = a2b2l2ρ2(
1

12
b22 +

1

12
l22) (31)
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The first rotor will have the moment of inertia of itself (note that it is not attached in its
center of mass, but at a distance d1), and the moment of inertia of the smaller one. The smaller
one will be displaced by a distance 1

2 l1 − d1. The moment of inertia for the bigger rotor now
becomes

I1 = a1b1l1ρ1(
1

12
b21+

1

12
l21)+ρ1l1a1b1(d1)2+a2b2l2ρ2(

1

12
b22+

1

12
l22)+ρ2l2a2b2(

1

2
l1−da,1)2 (32)

4.5.2 3 Rotors

For three rotors the system is a little bit more complicated. To determine the moment of inertia
for the three independent rotors we can do the following. For the first two, the moments of
inertia become the same as in the situation with two rotors.

The smallest rotor has the same moment of inertia

I3 = a3b3l3ρ3(
1

12
b23 +

1

12
l23) (33)

and the middle one in this case

I2 = a2b2l2ρ2(
1

12
b22+

1

12
l22)+ρ2l2a2b2(da,2)2+a3b3l3ρ3(

1

12
b23+

1

12
l23)+ρ3l3a3b3(

1

2
l2−da,2)2 (34)

Now, for the largest one, we need to realize that we can see the moment of inertia of the largest
rotor as a sum of two moment of inertia. Firstly from the largest rotor itself (again displaced by
a distance da,1) and then from the two other rotors. The two other rotors are exactly the same
as the system with just 2 rotors, except the entire system of 2 rotors is displaced from its center
of mass to a distance 1

2 l1 − d1. We know that the entire system is attached to its center of mass
because the entire device is built to be balanced, and not be influenced by gravity. The moments
of inertia of the largest rotor in the 3-rotor case now becomes:

I1 = a1b1l1ρ1(
1

12
b21 +

1

12
l21)+ρ1l1a1b1(da,1)2 +(a2b2l2ρ2(

1

12
b22 +

1

12
l22)+ρ2l2a2b2(da,2)2+ (35)

a3b3l3ρ3(
1

12
b23 +

1

12
l23) + ρ3l3a3b3(

1

2
l2 − da,2)2) + (ρ3l3a3b3 + ρ2l2a2b2)(

1

2
l1 − da,1)2

4.5.3 Moment of Inertia by direct integration

To check if the found values are correct, we will also use direct integration to find the moments
of inertia. For the case of two rotors, we will directly find the moment of inertia of the bigger
rotor by integration. To make sure the independence on the angle is also correct, we will try two
situations as seen in Figure 5.

One in which the first and the second rotor are both at an angle zero (θ2 = θ1 = 0), and
another one where the angle of the smaller rotor is π. θ1 = 0 θ2 = 1

2π
The expression for the moment of inertia becomes

I1 =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ρ(x, y, z)(x2 + y2) dx dy dz = (36)

∫ 1
2 l1−da,1

− 1
2 l1−da,1

∫ 1
2a

− 1
2a

∫ 1
2 b

− 1
2 b

ρ(x, y, z)(x2+y2) dx dz dy+

∫ 1
2 l2−(

1
2 l1−da,1)

− 1
2 l2−(

1
2 l1−da,1)

∫ 1
2a

− 1
2a

∫ 1
2 b

− 1
2 b

ρ(x, y, z)(x2+y2) dx dz dy
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Figure 5: The two situations we will use to check if our moments of inertia are correct.

(37)

= a1b1l1ρ1(
1

12
b21 +

1

12
l21)+ρ1l1a1b1(d1)2 +a2b2l2ρ2(

1

12
b22 +

1

12
l22)+ρ2l2a2b2(

1

2
l1−da,1)2 (38)

This completely agrees with the expressions we found earlier. We now rotate the smaller rotor
to an angle of θ2 = 1

2π. The integral now becomes:

∫ 1
2 l1−da,1

− 1
2 l1−da,1

∫ 1
2a

− 1
2a

∫ 1
2 b

− 1
2 b

ρ(x, y, z)(x2+y2) dx dz dy+

∫ 1
2 b−(

1
2 l1−da,1)

− 1
2 b−(

1
2 l1−da,1)

∫ 1
2a

− 1
2a

∫ 1
2 l2

− 1
2 l2

ρ(x, y, z)(x2+y2) dx dz dy

(39)

= a1b1l1ρ1(
1

12
b21 +

1

12
l21)+ρ1l1a1b1(d1)2 +a2b2l2ρ2(

1

12
b22 +

1

12
l22)+ρ2l2a2b2(

1

2
l1−da,1)2 (40)

Again we see that the result is the same.
Since these expressions are constants and rather large, we will be using It,i to denote the

moments of inertia from here on.

4.6 Force

The force acting on the different rotors can be divided into two parts. There is a direct force of
the wind on the rotor causing rotation (only present if the torques don’t cancel out - it is not
attached symmetrically). Furthermore, if the rotor is attached to a bigger one, the force of the
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wind on the smaller rotor will eventually act on the attachment point and it will provide a torque
for the bigger rotor. This is the force that couples the rotors (apart from friction).We will call
the first torque Tdirect and the second one Tindirect.

Ttotal = Tdirect + Tindirect (41)

The sum of all the torques is always in the z-direction. This is because the only rotation
possible is around axes parallel to the z-axis. Any other torque will not have any effect. As
mentioned earlier, the rotors are in balanced so there is no influence of gravity. This however
causes the bigger rotors to be attached a-central to make sure the mass of the smaller rotors
attached to it is compensated for on the other side. A solution for the attachment point was
already found. We will call it da.

4.6.1 Direct wind force

To calculate the torque directly provided by the wind for a given angle θ we need to calculate
the cross product. Combining ~T = ~r × ~F and 21 gives us the following integral for a rotor with
dimensions l,a,b

Tdirect = ~Fdrag × ~r + ~Flift × ~r dx (42)

With r being the vector from the attachment point to the working point of the force. The
cross product can be derived from geometric reasoning. As we can see in the image the angle
between ~Fdrag and ~r is equal to θ and the angle between ~Flift and ~r is equal to − 1

2π + θ. We
know that

|~a×~b| = |~a||~b| ∗ sin(α) (43)

and, for example, that

|~r × ~Fdrag| = |~Fdrag||~r| ∗ sinα (44)

with α the angle between the two vectors. The length of ~r, |~r|, is equal to a variable da that
represents the distance from the attachment point to the center of mass of the rotor. The length
of the drag and lift forces have been given earlier. So, the expression for Tdirect becomes:

Tdirect = da
1

2
lbρu2(sin(θ)(1− Cos(2θ)) + sin(−1

2
π + θ)(sin(2θ)) (45)

sin(− 1
2π + θ) is equal to Cos(θ) and the expression becomes

Tdirect = da
1

2
lbρu2(sin(θ)(1− Cos(2θ)) + Cos(θ)(sin(2θ)) (46)

Simplification can give (using Cos(2x) = Cos(x)2− sin(x)2 1 = Cos(x)2 + sin(x)2 and sin(2x) =
2 sin(x)Cos(x)

Tdirect = da
1

2
lbρu2(sin(θ)(Cos(θ)2+sin(θ)2−Cos(θ)2+sin(θ)2)+Cos(θ)(2 sin(θ)Cos(θ)) (47)

which equals

Tdirect = da
1

2
lbρu2(2 sin(θ)3+2 sin(θ)Cos(θ)2 = daρu

2 sin(θ)(sin(θ)2+Cos(θ)2 = daρu
2 sin(θ)
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Figure 6: A schematic view of the Mobilarium with the direct force on a rotor. We can see how
the force of the wind is a-central and therefore produces torque.

(48)

We will not, however, be using this expression. This will simplify notation later on.
Note how the expression is negative for a positive angle. This is because of our choice of

coordinate system. We can also state that the torque will become zero when the attachment
point is in the middle( da = 0).

4.6.2 Indirect wind force

For the torque caused by the wind force on the smaller rotor we can do a similar thing. We
integrate to find the total force acting on the rotor after which we let that be a force on the
bigger rotor on the attachment point. Then multiplication by the distance to the center of the
bigger rotor gives the torque. In mathematical form

~Tindirect = ~r × ~Findirect = ~r ×


1
2pu

2((1− Cos(2θ))
1
2pu

2(sin(2θ))
0

 (49)

17



Here l, a and b are not the same as in the direct force. The dimensions of the smaller rotor are
used because the wind is acting on the smaller rotor in this case, since the force is independent of
the position on the rotor. The total force on the center of mass of the smaller rotor is independent
of its attachment point. This is also visible in the resulting expression for the indirect torque.

~Tindirect = ~r × ~Findirect = ~r × 1

4
lpu2

1− Cos(2θ)
sin(2θ)

0

 = ~r × ~Fdrag + ~r × ~Flift (50)

As a last step we calculate the cross product and get a final expression for the indirect torque.
This can also be seen from geometric reasoning because we can only have rotation around the
z-axis.

Figure 7: A schematic view of the Mobilarium. We can see how the wind provides a force on the
smallest rotor, that in turn provides that force to the middle rotor at it’s attachment point

.

To calculate the cross products we will again use

|~a×~b| = |~a||~b| ∗ sin(α) (51)

This time ~r is the vector to the attachment point from which the indirect torque is applied. ~Fdrag
and ~Flift are the wind forces acting on the smaller rotor. For example

|~r × ~Fdrag| = |~Fdrag||~r| ∗ sin(α) (52)
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Since the angle between ~Fdrag and ~r is equal to θ and the angle between ~Flift and ~r is equal to
− 1

2π + θ we can express the indirect torque using this.
Combining this we can express the indirect torque depending on indices i an j, indicating the

ith and jth rotor. So for the indirect force from the wind working on rotor j, acting on rotor i
we find

Tindirect,i,j = ljbj(li − da,i) ∗ ρu2 ∗ (sin(θi)(1− Cos(2θj)) + sin(−1

2
π + θi)(sin(2θj)) (53)

And, using that sin(− 1
2π + θi) = Cos(θi)

Tindirect,i,j = ljbj(li − da,i) ∗ ρu2 ∗ (sin(θi)(1− Cos(2θj)) + Cos(θi)(sin(2θj)) (54)

We now have all the piece to create equations of motion for the Mobilarium given our approx-
imations (constant wind force etc..). We will be solving several systems with 2 and 3 coupled
rotors.

4.7 2 Coupled rotors

The first situation we will be solving consists of two coupled rotors. The first one with length
l1, width a1 and depth b1. The second one with length l1, width a1 and depth b1. We will
denote the rotation and their derivatives with respect to time as θ1, θ2,θ′1, etc... Substituting
this system in the equations derived earlier gives a set of differential equations that can be solved
given boundary conditions. We will be using equations2, 30, 54 and 48. In the interest of making
the equations readable, we will use the following variables:

Mi = aibiliρi (55)

Ki = libida,iρu
2 (56)

Vi,j = ljbj(li − da(i))ρu2 (57)

And as mentioned before, the moments of inertia will be given by It,i or It,i. As a last variable
we will introduce Wi,j

Wi,j = (sin(θi)(1− Cos(2θj) + Cos(θi) sin(2θj)) (58)

Which we van simplify to (using sin(2x) = 2 sin(x)Cos(x) and sin(x) sin(y) + Cos(x)Cos(y) =
Cos(x− y)

Wi,j = (sin(θi)(2 sin2(θj)) + Cos(θi)2Cos(θj) sin(θj)) (59)

= 2 sin(θj)(sin(θi) sin(θj + Cos(θi) sin(θj) = sin(θj)(Cos(θi − θj) (60)

For the second rotor, only direct torque is present. The equation of motion becomes

θ′′2a2b2l2ρ2(
1

12
b22 +

1

12
a22) =

1

4
((

1

2
l2 + da2)2 − ((−1

2
l2 + da2)2))ρu2(sin(θ2)) (61)

19



or

θ′′2 It,2 = K2W2,2 (62)

Considering now that da2 = 0 and thus K2 = 0, we can simplify to

θ′′2 = 0 (63)

For the first rotor, we need to add an extra term to the moment of inertia and the total
torque. Again using 2, 30, 54 and 48

θ′′1 (It,1) = K1W1,1 + V1,2W1,2 (64)

We will now divide both sides by K1.

θ′′1
It,1
K1

= W1,1 +
V1,2
K1

W1,2 (65)

To simplify the formula we will change the time-scale in this problem to

T =

√
It,1
K1

t (66)

The equation now becomes

θ′′1 = W1,1 +
V1,2
K1

W1,2 = sin(θ1) +
V1,2
K1

sin(θ2)Cos(θ2 − θ1) (67)

As a last step we can take a closer look at the constant
V1,2

K1
. We can see that (note that ρu2

cancels out)

V1,2
K1

=
l2b2(l1 − da,1)ρu2

l1b1da,1ρu2
=
l2b2(l1 − da,1)

l1b1da,1
(68)

We will give this variable the name Hi,j with

Hi,j =
ljbj(li − da,i)
l1b1da,1

(69)

The final expression for the equations of motion for a 2-rotor system now becomes:

θ′′2 = 0 (70)

and

θ′′1 = sin(θ1) +Hi,j sin(θ2)Cos(θ2 − θ1) (71)

With the correct boundary conditions, we can solve the motion of this system.
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4.8 3 Coupled rotors

In this case, the system will be as before except a third rotor attached to the end of the second
rotor with length l3, width a3 and depth b3. The rotation and it’s derivatives will be denoted as
θ3,θ′3, etc... We will use the same variables as before.

For the third rotor, only direct torque is present. The equation of motion becomes

θ′′3 I3 = K3W3,3 (72)

Considering now that da3 = 0 and thus K3 = 0, we can simplify to

θ′′3 = 0 (73)

For the second rotor, we need to add an extra term to the moment of inertia and the total
torque. Again using 2, 30, 54 and 48

θ′′2 (It,2) = K2W2,2 + V2,3W2,3 (74)

For the first rotor, we need to add an extra term to the moment of inertia and the total
torque. Again using 2, 30, 54 and 48

θ′′1 It,1 = K1W1,1 + V1,2W1,2 + V1,3W1,3 (75)

We can now change the time variable as done before. We divide both sides by K1 and change
t:

T =

√
It,1
K1

t (76)

This way, our final equations for a 3 rotor system become:

θ′′3 = 0 (77)

K1

It,1

It,2
K2

θ′′2 = W2,2 +
V2,3
K2

W2,3 = sin(θ2) +
V2,3
K2

sin(θ3)Cos(θ2 − θ3) (78)

θ′′1 = W1,1+
V1,2
K1

W1,2+
V1,30
K1

W1,3 = sin(θ1)+
V1,2
K1

sin(θ2)Cos(θ1−θ2)+
V1,30
K1

sin(θ3)Cos(θ1−θ3)

(79)

4.9 Friction

To make our model realistic we need to add friction to our equations. To do this we will introduce
a friction constant called Cf . The torque provided by fricion between rotor i and rotor j, working
on rotor j, can now be expressed as

Tfriction,i,j = −Cf (θ′i − θ′j) (80)

Using the difference in rotational velocity between the rotor and the rotor it is attached to
is necessary. There needs to be zero friction at the attachment point when both rotors rotate at
the same rotational speed and any deviation from that should provide a negative torque slowing
the rotational velocity of the rotor down.
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4.10 Properties of the equations

There are several noticeable things. First of all, we notice the differential equation for the last
rotor. The equation becomes zero, meaning that there is no motion in the smallest and last
rotor. This can be explained from the approximation of the wind force. The force is independent
of the position on the rotor it is working on. Therefore, when the attachment point is the middle
of the rotor, as is the case with the smallest one, the total torque becomes zero since all the force
beneath the attachment point gets canceled by the force above the attachment point. While
this seems unrealistic, it can be explained and, when friction is also calculated the rotor will
move because of that. Now that we have found our equations of motion we can solve them
both numerically and analytically. First however, we will try to find interesting states of the
mobilarium to focus on. These are for example the equilibrium positions.

5 Equilibrium State

To find the equilibrium positions we need to find all the states of the system where the sum of
all forces and all torques is zero on every object. In this state, the system is stable en will not
move. After doing this we can determine the stability of the state by seeing if the system keeps
deviating further or gets pushed back after introducing small disturbances. Mathematically we
are solving:

n∑
i=0

Ti = 0 (81)

and

n∑
i=0

Fi = 0 (82)

There are 2 basic solutions for this. Either all the forces are zero, or the forces compensate each
other. The first one is easy to find, All forces are only zero when all the rotors are tangent to
the wind direction, or if only the smallest rotor has an angle π

2 (the smallest rotor is attached
in the middle, so it experiences no torque because of the wind). So, if the wind moves from the
negative x direction to the positive x direction we get the solutions as seen in Figure 8.
Since there are 3 rotors a lot of possibilities are almost the same. The precise orientation may

however influence the stability of the equilibrium state so we need to investigate them all. For
the second case numerically checking gives no other equilibrium positions.

6 Analytic solution

To create an analytic solution we cannot use the equations as they are. We need to solve for
certain special cases. We will first take a closer look at the equations of motion for a 2-rotor
system, without friction, and with the small-angle approximation. Let’s consider one of the
suggested equilibrium positions of the Mobilarium.

6.1 2 Coupled rotors around θ1 = θ2 = 0

We will solve this situation for small deviations from the equilibrium position. This way, we can
use the small angle approximation. We will approximate sin(θi) and Cos(θi) with sin(θi) ≈ θi
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Figure 8: All the possible equilibirum positions of a mobilarium with 3 rotors

and Cos(θi) ≈ 1. We are first going to put the approximations in the variables defined earlier,
before putting them in the equations of motion. All variables stay the same, except for Wi,j

Wi,j = θj (83)

We were already using It,i to denote the total moment of inertia for the rotation of a rotor.
Putting this in the equations gives

θ′′2 = 0 (84)

and thus

θ2 = AT + C (85)

If we take the initial angular velocity and the initial angle to be zero we can derive the equation
and find A = C = 0, and therefore (without initial velocity and with no initial angle).

θ2 = 0 (86)

Now we can use this to calculate θ1(t) which depends on θ2(t). Again using the small angle
approximation, we can express the second equation as:

θ′′1 = θ1 +
V1,2
K1

θ2 (87)

And, using the solution for the first one, we can write:

θ′′1 = θ1 (88)
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This has a basic solution

θ1(T ) = C1e
−T + C2e

T (89)

This solution however inevitably leads to deviation from the equilibrium state. And since our
approximation does not work when θ is not small, we can not continue with this case. We can,
however, say that the equilibrium state is not a stable one. An initial small motion will cause
the rotor to deviate further and further from it.

6.2 2 Coupled rotors around θ1 = θ2 = Pi

6.2.1 First order approximation

We will use the same variables as before. The only difference however is that we need to approx-
imate sin(θ) and Cos(θ) a different way. We know that

Cos(π + θ) = −Cos(θ) ≈ −1 (90)

sin(π + θ) = − sin(θ) ≈ −θ (91)

Cos(2π + 2θ) = Cos(2θ) ≈ 1 (92)

sin(2π + 2θ) = sin(2θ) ≈ 2θ (93)

For angles that are small. With

Wi,j = (sin(π+θi)(1−Cos(2π+2θj)+Cos(π+θi) sin(2π+2θj)) ≈ (−2∗θj)+(−2∗θj) = −4θj (94)

Putting this in the equations gives

θ′′2 = 0 (95)

Again, without friction, the smallest rotor has no torque, and no angular acceleration since
K2 = 0. We now have the solution

θ2 = AT + C (96)

If we take the initial angular velocity and the initial angle to be zero we can derive the equation
and find A = C = 0. And therefore (without initial velocity and initial angle)

θ2 = 0 (97)

Now we can use this to calculate θ1(t) which depends on θ2(t). Again using the small angle
approximation we can express the second equation as:

θ′′1 = −4θ1 − 4
V1,2
K1

θ2 (98)
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And, using the solution for the first one, we can write:

θ′′1 = −4θ1 (99)

This has a basic solution

θ1(t) = C1e
−i 12T + C2e

i 12T (100)

With its real part:

θ1(t) = C1 cos
1

2
T + C2 sin

1

2
T (101)

Furthermore, we have the boundary conditions θ′1(0) = ω1,0 and theta1(0) = 0. We can now
find our coefficients C1 and C2. The first can be found by filling in the first boundary condition

0 = C1(1) + C20 (102)

and after taking the derivative we can also find the other coefficient

θ′1(T ) =
1

2
C1 sin

1

2
T +

1

2
C2 cos

1

2
T (103)

giving us

ω1,0 =
1

2
C1(0) +

1

2
C2(1) (104)

which means

C2 = ω1,0
1

2
(105)

This gives us a final expression for θ1(T ).

θ1(T ) = ω1,0 sin(
1

2
T ) (106)

6.2.2 Second order approximation

Again we will solve the situation for small deviations from the equilibrium position. This way, we
can use the small angle approximation. We will approximate sin(θi) and Cos(θi) with sin(θi) ≈
θi − 1

6θ
3
i and Cos(θi) ≈ 1 − 1

2θ
2
i . We are first going to put the approximations in the variables

defined earlier, before putting them in the equations of motion. We will use the same variables
as with the first order approximation. The only one that changes is w

Wi,j = (θi −
1

6
θ3i )(

1

2
(2θj)

2) + (1− 1

2
θ2i )((2θj)−

1

6
(2θj)

3) (107)

For the second rotor the equation of motion now becomes

θ′′2 I2 = −K2(θ2 −
1

6
θ32) = 0 (108)
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Again we can see that, since K2 = 0, θ2 becomes zero without initial velocity. Therefore W2,2

becomes zero. Using this solution we can express the equation of motion for the bigger rotor in
the following way

θ′′1 = −W1,1 +
V1,2
K1

W2,1 (109)

which equals

θ′′1 = −(θ1 −
1

6
θ31) (110)

Solving this requires the following trick. First we will multiply both sides by θ′1 which gives
us

θ′1θ
′′
1 = (θ′1θ1 −

1

6
θ′1θ

3
1) (111)

We now know that

δ

δT
θ21 = 2θ1θ

′
1 (112)

δ

δT
θ41 = 4θ31θ

′
1 (113)

δ

δT
(θ′1)2 = 2θ′1θ

′′
1 (114)

Using this we can integrate the equation on both sides with respect to time giving us

∫
θ′1θ
′′
1 dT =

∫
−(θ′1θ1 −

1

2
θ′1θ

3
1) dT (115)

1

2
(θ′1)2 = −1

2
(θ21 −

1

24
θ41) (116)

Now, multiplication on both sides with θ21 will give

1

2
((θ1)2(θ′1)2) = −1

2
(θ41 −

1

24
θ61 + Cθ21) (117)

And since

((θ1)2(θ′1)2) = (θ1θ
′
1)2 =

1

4
(
δ

δT
((θ1)2))2 (118)

we can write

1

8
(
δ

δT
((θ1)2))2 = −1

2
(θ41 −

1

24
θ61 + Cθ21) (119)
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We can now substitute β = θ21 and get

1

8
(β′)2 = −(

1

2
β2 − 1

24
β3 + Cβ) (120)

It is not easy to find a solution to this differential equation. We can however use computational
methods to find the solutions for different values of the integration constant C. For example when
C = 0. The differential equation then becomes:

(β′)2 = −(β2 − 1

12
β3) (121)

Here the time variable has been scaled by a factor 2. Scaling β by a factor 12 will give

(β′)2 = −(β2 − β3) (122)

This differential equation has a solution in the form of

β =
1

cosh(t)

2

(123)

Since both sides then become

tanh(T )

cosh(T )

2

(124)

and thus

θ =

√
(2)

cosh(T )
(125)

These solutions resemble the same oscillating motion as before in the beginning. After some
time however it starts to deviate from the first order approximation. This can be seen in Figure
9 .

Figure 9: Comparing the first order and second order solutions

As we can now see in the solutions to the first two situations, the stability of the equilibrium
positions is mainly dependent on the angle of the largest rotor. If the long side of the largest
rotor is pointing in the same direction as the wind, there is a stable equilibrium state. This
does not, however, mean that the device will stay in that state. It only means that for small
oscillations it will return to it.
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6.3 3 Coupled rotors around θ1 = θ2 = θ3 = π

If we now want to calculate a solution for this using the same approximations as before, we can
use the same solutions for the first two equations. Namely: θ3(T ) and θ2(T ) have exactly the
same differential equations of motion as in the case with 2 rotors, except for a change in the time
variable. This can be compensated by adding a constant before T and before any velocity. In
the case of 3 rotors we now get

θ3(T ) = 0 (126)

θ2(T ) = ω2,0

√
K1

It,1

It,2
K2

sin(

√
K1

It,1

It,2
K2

T ) (127)

We will name the constants:

A =

√
K1

It,1

It,2
K2

(128)

We will be substituting this variable in the entire solution to keep things clean.
To find the equation of motion for the biggest rotor we need to use the approximations again.

We use the approximations used before

Cos(π + θ) = −Cos(θ) ≈ −1 (129)

and

sin(π + θ) = − sin(θ) ≈ −θ (130)

to rewrite W1,1

Wi,j = (sin(π+θi)(1−Cos(2π+2θj)+Cos(π+θi) sin(2π+2θj)) ≈ (−2∗θj)+(−2∗θj) = −4θj

(131)

So

W1,1 = (sin(θ1)(1− Cos(2θ1) + Cos(θ1) sin(2θ1)) ≈ (−2θ1 − 2 ∗ θ1) = −4θ1 (132)

The original equation of motion for the bigger rotor was

θ′′1 It,1 = K1W1,1 + V1,2W1,2 + V1,3W1,3 (133)

And, using the solution for the two smaller rotors, we can write:

θ′′1 = −4θ1 +
V1,2
−4K1

ω2,0A sin(AT ) (134)

Where we will name:

B =
V1,2
−4K1

ω2,0 (135)
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Solving this differential equation is, unfortunately, not as straight forward as the first one.
This time, we have a term involving T. To solve this we need to apply the following theorem. If
a differential equation has a forcing term, the total solution is the sum of one particular solution
and the solution to the homogeneous differential equation. By rewriting the equation it becomes:

θ′′1 + 4θ1 = BA sin(AT ) (136)

Since the homogeneous differential equation is almost the same as the first equation, we can
use the solution we found there. Again we will give the rotor no initial position. only a small
initial velocity will be given. Using the same method we find:

θ1 = ParticularSolution+ ω1,0
1

2
sin(

1

2
T ) (137)

Note that again we use an initial velocity ω1,0. The initial angle is again zero. A particular
solution can be found by using a solution of the type

θ1 = b sin (at) (138)

as suggested by the forcing term. The constant can be derived by filling in the suggested solution.
Which, after solving for the coefficients, gives

a =
AB

4 +A2
(139)

b = B (140)

θ1 =
AB

4 +A2
sin(AT ) + ω1,0

1

2
sin(

1

2
T ) (141)

Now, the final solution is

θ3(T ) = 0 (142)

θ2(T ) = ω2,0A sin(AT ) (143)

θ1(T ) =
AB

4 +A2
sin(AT ) + ω1,0

1

2
sin(

1

2
T ) (144)

Filling in all the numbers from the real device we get an oscillating motion around the
equilibrium position. The result is comparable to the numerical solution of the equations of
motion. We notice, however, that there are small disturbances in the numerical solution. We can
find those in an analytic way by expanding the sin and cos more than done in the basic small
angle approximation.
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6.4 2 Coupled rotors with friction around θ1 = θ2 = π

We will now look at the case where we include friction in our model. First, we will approximate
a 2 rotor system around θ1 = θ2 = 0.

As seen before, the equations of motion with friction become (after adding the extra terms
for the friction force)

θ′′2 = −Fc,2(θ′2 − θ′1) (145)

θ′′1 = −Fc,1θ′1 + sin(θ1) +Hi,j sin(θ2) cos(θ2 − θ1) (146)

To find a solution for this system of equations we need to choose Fc,2 = 0. This way the
friction term for the second rotor vanishes. The equation of motion for the second rotor now
becomes:

θ′′2 = 0 (147)

And as a general solution we have aT + b and we take a = b = 0

θ2 = aT + b = 0 (148)

The equation of motion for the first rotor becomes

θ′′1 = −Fc,1θ1 + sin(θ1) (149)

And using the small angle approximation around θ1 = θ2 = 0

θ′′1 = −Fc,1θ′1 − θ1 (150)

The general solution now becomes dependent on our value of the friction coefficient. We can
solve the characteristic equation of the differential equation to find:

λ2 + Fc,1λ+ 1 = 0 (151)

And the solutions are therefore:

λ1,2 = −Fc,1 ±
√
−4 + F 2

c,1 (152)

If |Fc,1| < 2 the values for λ will be complex. Therefore there will be two types of general
solutions. For complex values the solution becomes:

θ1 = e−Fc,1t(A cosT +B sinT ) (153)

and for real values:

θ1 = Ae(−Fc,1+
√
−4+Fc,1)T +Be−(−Fc,1−

√
−4+Fc,1)T (154)

These are the solutions of a damped harmonic oscillator. The physical meaning of the solutions
of the characteristic equation being complex is that the system is over damped. For real solutions
of the characteristic equations the system is just like a normal harmonic oscillator, oscillating
around it’s equilibrium position, but with exponentially decreasing amplitude.

We have now seen that there are analytic solutions of the equations of motions with approx-
imations. We will now look at certain special cases without the small-angle approximation.
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6.5 2 Coupled rotors with θ2 = 0

The first and most simple, yet interesting, case that can be solved without approximations is the
case of two rotors without friction and without initial velocity or an initial angle of the second
rotor. We have seen that the solution for the differential equation of the smallest rotor can have
any solution in the form of:

θ2 = θ2,0 + ω2,0T (155)

Which is a simple linear function with an initial angle θ2,0 and an initial angular velocity
ω2,0. First we will choose ω2,0 = 0 and θ2,0 = 0. Substituting this in the equation for θ′′1 yields

θ2 = 0 (156)

θ′′1 = Sin(θ1) +Hi,jSin(θ2) cos(θ2 − θ1) = Sin(θ1) (157)

While the differential equation seems relatively simple, it is an equation that can not be
solved with normal techniques because of the non-linear Sin(θ1). This non-linear term can be
removed using the small-angle-approximation as we used in an earlier example of an analytic
solution. For this, however, we are able to find the period of the motion of the Mobilarium, and
compute the phase-diagram.

6.5.1 Period of the motion

To find the period of the motion, we need to compare our situation to that of a simple pendulum
influenced by gravity (Och, 2011). In that case we know from conservation of energy that if the
object on the pendulum, with length l, drops a certain distance h its kinetic energy will gain the
same amount that its gravitational potential energy loses. Thus:

v =
√

2gh = l
dθ

dt
(158)

and if the pendulum starts falling from an angle θ0 we can state this as:

dθ

dt
=

√
2g

l
(cos(θ)− cos(θ0) (159)

Now we can inverse this equation and find:

dt

dθ
=

√
l

2g

1

(cos(θ)− cos(θ0)
(160)

after which we can integrate this to find the total time used for the pendulum tot complete a
cycle. That is, four times the time it takes to complete a quarter-cycle.

T = 4

√
l

2g

∫ 0

theta0

1√
(cos(θ)− cos(θ0)

dθ (161)
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And using that sin(x2 )2 − Sin(a2 )2 = 1
2 (cos(a)− cos(x)) we can write

T = 4

√
l

2g

∫ 0

θ0
2

1√
1− (csc( θ02 ))2 sin(u)2

csc(
θ0
2

) du (162)

Using the substitution sin(u) =
sin( θ2 )

sin(
θ0
2

This integral can be written as

T = 4

√
l

2g
K(sin(

θ0
2

)) (163)

With K(sin( θ02 )) the complete elliptic integral of the first kind:

K(x) =

∫ π
2

0

1√
1− x2 sin2(u)

du (164)

We now remember that we changed the timescale when we stated the equations of motion. Of
course now

T =

√
It,1
K1

t (165)

and in our differential equation the term l
g = 1 so the period becomes

tperiod =

√
K1

It,1
4

√
1

2
K(sin(

θ0 − β
2

)) (166)

6.5.2 Exact solution

From the integral we calculated to know the time from its position, we can also solve for the
position given a certain time. This starts with realizing that we have already found an expression
for the time it takes the Mobilarium to get from a certain angle to the angle π

2 . For the device
to get from its initial angle to a certain angle θ the time becomes

t(θ) =

√
K1

It,1
4

√
1

2
K(sin(

θ0 − β
2

))−

√
K1

It,1
4

√
1

2
F (θ, sin(

θ0 − β
2

)) (167)

With F (a, x) the incomplete elliptic integral of the first kind.

F (a, x) =

∫ a

0

1√
1− x2 sin2(u)

du (168)

Using that the inverse of the incomplete elliptic integral of the first kind is the Jacobi elliptic
function, or if F (x, a) = u then x = sn(u, a). Where sn(a, b) is the Jacobi elliptic function.

Solving this equation for θ gives

sin(
θ

2
) = sin(

θ0
2

)sn(K(sin2(
θ0
2

))− t, sin2(
θ0
2

)) (169)

and therefore

θ(t) = 2arcsin(sin(
θ0
2

)J(K(sin2(
θ0
2

))− t, sin2(
θ0
2

))) (170)
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6.5.3 Phase-diagram

We can numerically create a phase-diagram using properties of the pendulum. The result is
shown in the following image:

Figure 10: The phase diagram for the differential equation θ′′1 = Sin(θ1)

We can clearly see how the motions in the phase-space are centered around the stable points
at θ = 0,±2π,±4π, ... And if the velocity is high enough it will stay above the border-case in
which it almost makes a full rotation, and than goes back.

6.6 2 Coupled rotors with θ2 = θ2,0

We will now see what happens if the function

θ2 = θ2,0 (171)

Which is a simple linear function with an initial angle θ2,0 and an initial angular velocity
ω2,0. First we will choose ω2,0 = 0 and θ2,0 = 0. Substituting this in the equation for θ′′1 yields

θ′′1 = Sin(θ1) +Hi,jSin(θ2) cos(θ2 − θ1) = Sin(θ1) +Hi,jSin(θ2,0) cos(θ2,0 − θ1) (172)

We can now see that the smaller rotor provides an extra term in the equation of motion.
We now use the identity cos(x− y) = cos(x)cos(y) + sin(x) sin(y) , and get:

θ′′1 = Sin(θ1) +Hi,jSin(θ2,0)(cos(θ2,0)cos(θ1) + sin(θ2,0) sin(θ1)) (173)

θ′′1 = Sin(θ1)(1 +Hi,j sin(θ2,0)2) +Hi,jSin(θ2,0)cos(θ2,0)cos(θ1) (174)

We will now write

(1 +Hi,j sin(θ2,0)2 = Asin(β) (175)
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(Hi,jSin(θ2,0)cos(θ2,0) = Acos(β) (176)

Which allows us to rewrite the equation of motion as:

θ′′1 = Sin(θ1)A sin(β) +Acos(β))cos(θ1) = A sin(θ1 − β) (177)

The solutions for the constants A and β can be given by

A2 = 1/2(2 +Hi,j(2 +Hi,j)−Hi,j(2 +Hi,j) cos(2θ2,0)) (178)

β = ArcTan(
Hi,jCot(θ2,0)

(Hi,j + Csc(θ2,0)2)
) (179)

We can now again change the time variable to include the constant A and get the differential
equation

θ′′1 = sin(θ1 − β) (180)

Note how this equation is similar to the pendulum equation except for the extra β in the sine.
This causes the stationary point to be at another angle θ = β, β ± pi, ... instead of θ = 0,±pi, ...

6.6.1 Period of the motion

To find the period we again need to look at a similar case with a pendulum. Except for the change
in timescale we have a similar equation. We can use the same method to state the period:

of course now,

T = A ∗
√
It,1
K1

t (182)

and thus

tperiod = A

√
K1

It,1
4

√
l

2g
K(sin(

θ0 − β
2

)) (183)

6.6.2 Exact solution

To find the exact solution we can use the same reasoning as before. This time we know the
device will oscillate around the angle β. The equation therefore becomes (translating the angle
by β)

θ = β + 2arcsin(sin(
θ0 − β

2
)J(K(sin2(

θ0 − β
2

))− t, sin2(
θ0 − β

2
))) (184)

with J(a, b) the Jacobi elliptic function.
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Figure 11: The phase diagram for the differential equation θ′′1 = sin(θ1 − β) with β = 2

6.6.3 Phase-diagram

We can clearly see the influence of the extra term β in the sine. This causes the stationary point
to be at another angle θ = β, β ± pi, ... instead of θ = 0,±pi, ...

7 Comparing

The ultimate test for the found solutions, both numerical and analytic, is of course comparing it
to the real device. To do this we will compare some filmed motion of the Mobilarium with our
solutions. In these solutions we will use the initial conditions also present in the real device.

7.1 Comparison 1

Here we have compared 60 seconds of motion of the Mobilarium from analyzed video images to
the numerically found solution to the equations of motion with the same initial conditions. The
result are plotted together in Figure 12 .

In this particular case the motion is seemingly correctly solved. The motion solved from the
equations of motions seems to follow the real motion of the device.

7.2 Comparison 2

Here we have compared 30 seconds of motion of the Mobilarium from analyzed video images to
the numerically found solution to the equations of motion with the same initial conditions. The
result are plotted together in Figure 13 .

In this particular case the equations of motions seem to provide a different motion than the
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Figure 12: A first comparison of the model with the real motion of the device

Figure 13: A second comparison of the model with the real motion of the device
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Mobilarium has in reality with the same initial conditions. The motion of the rotors seems to
have a shorter period than in the model. This could be caused by the wind not being constant
in reality. Something that is used in the model.

8 Conclusion

The Mobilarium is a device that has more to it than meets the eye. Its motion features complex
behavior and simple differential equations depending on the domain looked at and the approxi-
mations used.

The model created does have a lot of similarities with the motion of the real device. The
numerical solutions to the equations of motion are not always correct when compared to the
evolution of the real system. The approximations around certain angles for the rotors do seem
to give recognizable motion around the equilibrium positions.

One of the properties found, that for the device to have a equilibrium position the largest
rotor must have its long side in the same direction as the wind, is very recognizable in the real
motion of the device. While the real device seems to behave completely chaotic and seems to
have no stable stationary equilibrium positions, after closer inspection one can notice how the
device has the tendency to be in a state with the largest rotor with its long side in the same
direction as the wind. The device does not however stay in this position. This is not necessarily
a problem since the complexity and chaotic behavior of the wind can cause more than just small
oscillations from the equilibrium position, causing the device to deviate from it.

In our model we used a constant wind force, independent of time and place, and that causes
the rotors in the model to behave much more periodically than the real device. This does,
however, lead to the conclusion that the chaotic behavior is created by one of two options.
Either the chaotic behavior of the device is created just by the complexity of the wind. Or it is
created by a combination of the parameters of the system being the right way to make escaping
the equilibrium positions easier and the complexity of the wind.

9 Future research

It is possible to say a lot more about the Mobilarium than I have done. Due to the limitations on
my research there where certain subjects that where impossible to include in this paper. Some
of them will be mentioned here as suggestions for future research.

9.1 2 Coupled rotors with θ2 = θ2,0 + ω2,0t

It would be interesting to see what happens with the function

θ2 = θ2,0 + ω2,0t (185)

in the case of a 2-rotor system.
Which is a simple linear function with an initial angle θ2,0 and an initial angular velocity

ω2,0. The equation of motion for θ1 would than become

θ′′1 = sin(θ1) +Hi,j sin(θ2) cos(θ2− θ1) = sin(θ1) +Hi,j sin(θ2,0) cos((θ2,0 +ω2,0t)− θ1) (186)

A solution for this differential equation is one that can not be found as a variant on the
pendulum equation.
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Figure 14: An example of linearly growing wind speed from the surface level

9.2 Bifurcation map

For some approximations and assumptions the system converges to a certain state depending on
the parameters of the system. Investigation could be done if a bifurcation map could be made
showing those states and how they depend on the parameters.

9.3 More complex models

In my discussion of the Mobilarium I have made many assumptions. A more realistic model
could be made using a more complex account of the forces acting on the device. One of the
assumptions made is that I have not accounted for the fact that the speed of the rotors relative
to the wind also determines the strength of the force. If a long rotor has an angular velocity, the
end of that rotor has a different velocity relative to the wind than the other end of the rotor,
except of course if the rotor is parallel to the wind direction. This effect influences the motion
of the device greatly. Another assumption made is the independence of the wind speed on any
position. It is, however, common to take the wind force to be zero at surface level. Future
research could include a model using a wind speed linearly increasing with height. The effect is
drawn in Figure 14 . The equations of motion will consequently be a lot more complex.
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