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Abstract

In this thesis, we consider the parameterised version of Multicut in Trees. The prob-
lem consists of a tree T = (V,E), a set P of pairs of distinct nodes in V called demand
pairs, and a non-negative integer k. We want to find a set E′ ⊆ E, with |E′| ≤ k, such that
there is no path between the two nodes of every demand pair when we remove every edge
e ∈ E′ from T .

The problem is closely related to Vertex Cover. Finding a new or improved algorithm
for either problem could yield the same improvement for the other.

In this research, we evaluated two kernelisation algorithms for Multicut in Trees.
The first is by Guo and Niedermeier [23] and computes a kernel of size O(k3k). The second
algorithm is by Bousquet et al. [4] and results in a kernel of size O(k6).

We tested these algorithms on different instances, using various methods to generate
the input tree and the set of demand pairs. We introduced some of these methods in this
research.

This research partially fills a gap in the area of kernelisation algorithms. It is one of the
first studies to practically evaluates these algorithms.

We aimed to answer five questions. We wondered what instances are easy or difficult to
compute a small kernel on for the algorithms, how the kernel size and the running time scale
with the size of the instance, and how usable the newly introduced ways to generate demand
pairs are. Then, we wanted to know which reduction rules in the algorithms take the most
time. Finally, we answered how the two algorithms compare in terms of both kernel size
and running time. To measure the running time, we counted the number of operations that
the algorithms perform.

Instances with a caterpillar tree generally resulted in smaller kernels than instances with
a tree based on a Prüfer sequence. The newly introduced Degree3 trees were present in
the most challenging instances. The algorithms could easily compute a small kernel on
instances with long paths between every demand pair’s two nodes or a tiny solution. When
the instance contained demand pairs such that the path between the nodes of most pairs is
short, the algorithms computed a large kernel on these instances.

In most cases, the size of the kernel depended on the size of the instance, and the running
time did as well.

The first newly introduced demand pair generation method generates demand pairs such
that the length of the path between the two nodes in the pair can be influenced. This
method resulted in excellent instances and is quite usable. The other newly introduced
method generates demand pairs such that the solution of the instance is known beforehand.
This method, however, is not very usable in its current state.

Each algorithm had one reduction rule that took the majority of the time. This rule
was not the same between the two algorithms. The rules were the Dominated Edge, and
Disjoint Paths rule, respectively.

We also saw that the sizes of the kernels obtained by the two algorithms only differed in
a few cases. Both algorithms had instances on which they computed a smaller kernel than
the other algorithm. The algorithm by Guo and Niedermeier was in our implementation
faster than the algorithm by Bousquet et al.
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1 Introduction

In this thesis, we study Multicut in Trees. This problem exists in the area of graph theory
and knows its applications in networking [11]. For instance, one can use the problem to evaluate
robustness in telecommunication and transportation networks. The problem is exciting because
of its close connection to the widely known Vertex Cover problem. We explain this connection
in more detail later in this thesis.

Minimum s-t Cut. Multicut in Trees is closely related to the better known
Minimum s-t Cut problem. In this problem, we are given a graph G = (V,E), with n = |V |
and m = |E|, and two distinct nodes s, t ∈ V . Our task is to remove edges from G, such that
no path between s and t remains. It relates to the Min-Cut Max-Flow theorem, introduced
by Ford and Fulkerson in 1962 [19].

Minimum s-t Cut can be solved using the Edmonds-Karp algorithm [16] in O(nm2) time.
This algorithm is based on the Ford-Fulkerson method [18].

Faster algorithms exist, like the algorithm that combines the algorithms by King et al. [33]
and Orlin [47]. This combination algorithm has a time complexity of O(nm).

Multicut. Multicut is a generalisation of Minimum s-t Cut. It has multiple pairs of
nodes that need to be separated. The input of this problem consists of a graph G = (V,E),
with n = |V | and m = |E|, and a set P of p pairs of distinct nodes in V . A single node can
appear in multiple pairs in P , but it cannot appear twice in a single pair. To solve the problem,
we need to find a set E′ ⊆ E of minimum size, such that there exists no path in G between the
two nodes of every pair in P after we remove every edge e ∈ E′ from G.

Hu introduced Multicut in 1969 [27]. Obviously, for p = 1, Multicut is equivalent to
Minimum s-t Cut. We can then solve it in polynomial time. For p = 2, Multicut can still
be solved in polynomial time, for instance using an algorithm by Itai [29] in O(n3) time. For
any fixed p ≥ 3, Multicut is NP-complete, as shown by Dahlhaus et al. [13].

Multicut in Trees. This research considers a particular version of Multicut, namely
Multicut in Trees. Here, our input graph G must be a tree. We give a more formal definition
of the exact version we study in Section 2. Garg et al. [21] showed that Multicut in Trees
is NP-complete as well, using a reduction from Vertex Cover.

In particular, this thesis considers the parameterised version of Multicut in Trees. In
this version, the input contains an extra parameter k ∈ N0. Instead of finding a set E′ ⊆ E
of minimum size of edges that we need to remove, we want to find a set E′′ ⊆ E, such that
|E′′| ≤ k. We also give a proper definition of this problem in Section 2.

Let us now show a small example of the parameterised version of Multicut in Trees.
After that, we explain the goal of this research and the outline of this thesis.

1.1 Example

To help understand the parameterised version of Multicut in Trees, we give a small example
here. The example is visualised in Figure 1. Consider an instance with a tree consisting of 10
nodes, labelled 1, . . . , 10, parameter k = 2 and P = {(1, 6), (4, 5), (8, 10)}. See also Subfigure 1a,
in which the two nodes of each pair in P have the same colour.

To separate a pair in P , we have to include an edge on the path between the two nodes
of that pair in the solution. We need to find a solution that includes such an edge for every
pair in P to separate all pairs. The paths between the two nodes of every pair are visible in
Subfigure 1b, with the same colours as the nodes of that pair.
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Subfigure 1c shows a possible solution, visualised by the red edges, that includes an edge on
each of the coloured paths. However, this solution includes three edges, but k, the maximum
size the solution is allowed to have, equals two. It is thus not a valid solution.

Finally, in Subfigure 1d, the red edges form another possible solution. This solution consists
of only two edges. Indeed, the solution includes an edge on each of the coloured paths. This
solution is valid for this instance.

1.2 Research Goals

In this research, we evaluate two kernelisation algorithms for Multicut in Trees. We explain
kernelisation in Section 2.

Many different algorithms for different variations of Multicut in Trees exist, but we were
not able to find any practical evaluations of them. Of course, proofs for the performance of
different algorithms do exist. These proofs give some insight into how well these algorithms work,
but factors like the tightness of the used analyses could significantly influence the theoretical
performance. A practical evaluation of such algorithms can help better understand how the
algorithms perform compared to each other. This understanding can be helpful for those who
wish to use these algorithms in their own applications.

The two algorithms we study are an algorithm by Guo and Niedermeier from 2005 [23] and
an algorithm from 2009 by Bousquet et al. [4]. We explain these algorithms in Section 4. For
this research, we implement these algorithms and see how they perform on different instances.
We try to answer five research questions for these two algorithms.

To understand the research questions, we introduce a few definitions here. We give the
formal definitions in Section 2. First, a kernel is a generally smaller version of an instance for

1

2 3 4

6 7 8 95 10

(a) The input tree with 10 nodes and three pairs
to be separated. The pairs in P are each coloured
in a different colour.

1

2 3 4

6 7 8 95 10

(b) The paths between the pairs in P .

1

2 3 4

6 7 8 95 10

(c) Edges in the solution are coloured red. Remov-
ing one edge from the path of each pair separates
all pairs. However, there are three edges in this
solution, and parameter k equals two, so this solu-
tion is not valid.

1

2 3 4

6 7 8 95 10

(d) Another possible solution. Edges in the solu-
tion are again coloured red. The solution contains
only two edges: one for each path between the two
nodes of every pair in P . This solution is valid.

Figure 1: An example of an instance for the parameterised version of Multicut in Trees.
Given a tree with 10 nodes, parameter k = 2, and a set P = {(1, 6), (4, 5), (8, 10)}.
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a problem, such that the problem can be solved on the kernel if and only if the problem can
be solved on the original instance. The kernelisation algorithms compute such a kernel from an
instance using reduction rules, which determine how to reduce the size of the instance. Finally,
the pairs of nodes in P that need to be separated are called demand pairs, and the path between
the two nodes of a demand pair is called a demand path.

Easy and difficult instances. Between different graphs that are all trees, there can still
be many differences. The depth of a tree and the maximum degree of a node in a tree could
potentially influence the performance of the algorithms we study.

The pairs that need to be separated can also influence the performance. For example, there
could be differences when the two nodes of each pair are very close together or very far apart.
The amount of overlap between the demand paths can also influence the performance.

The first research question is about identifying which instances are easy for the tested al-
gorithms and which are complex.

Research Question 1. What types of instances are easy or difficult for the kernelisation
algorithms?

To answer this question, we consider the following subquestions.

Research Question 1a. For which types of instances does the kernelisation process result in
a small kernel in little time?

This question looks for easy instances. The following looks for difficult instances.

Research Question 1b. For which types of instances does the kernelisation process result in
a large kernel in much time?

Finally, the last subquestion is about instances that we generated using methods used in
NP-completeness proofs for Multicut in Trees. We explain these methods and from which
proofs they originate in Section 6.

Research Question 1c. How difficult are instances based on NP-completeness proofs?

Scaling of the kernel size. The second question is about the scaling of a kernel with the
size of an instance. With more demand pairs, the expected amount of overlap between their
demand paths is higher than with fewer demand pairs. This overlap could mean that the size of
the kernel is also larger. Maybe, however, this overlap allows the algorithms to compute kernels
more efficiently.

Similarly, with more nodes in the tree, the overlap between the demand paths can decrease.
Does this then mean that the size of the kernel decreases?

We also look at the computation time to compute these kernels. With a larger instance,
it can be the case that an algorithm needs to perform more modifications to compute a small
kernel.

The question we want to answer about this topic is as follows.

Research Question 2. Do kernels scale with the size of the instance?

We answer the following four subquestions.

Research Question 2a. Does increasing the number of nodes in an instance mean that the
kernel becomes larger?

Research Question 2b. Does increasing the number of demand pairs in an instance mean
that the kernel becomes larger?
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Research Question 2c. Does increasing the number of nodes in an instance mean that the
computation of the kernel takes longer?

Research Question 2d. Does increasing the number of demand pairs in an instance mean
that the computation of the kernel takes longer?

Different ways to generate demand pairs. Generating demand pairs is possible by uni-
formly at random picking two distinct nodes in the tree for each demand pair. We use this
method in our experiments, but we also use two other methods. One generates demand pairs,
such that the length of their respective demand paths is in a particular range, and the other
generates demand pairs in such a way that the solution has a specific size. We explain these
methods in more detail in Section 6.

In particular, we look at the difficulty of the instances with different parameters for these
extra demand pair generation methods. The main research question we want to answer is as
follows.

Research Question 3. How usable are the demand pair generation methods we introduce?

For demand paths with a certain length, we compare instances with mostly short demand
paths to instances with mostly long demand paths. We explain which lengths we used in
Section 7. For this method, we answer two subquestions.

Research Question 3a. Do instances with mostly short demand paths result in a smaller or
larger kernel than instances with mostly long demand paths?

Research Question 3b. Does computing a kernel on an instance with mostly short demand
paths take shorter or longer than computing a kernel on an instance with mostly long demand
paths?

For the other generation method, we vary the size of the solution. We also explain how we
varied this size in Section 7. For this method, we answer two subquestions as well.

Research Question 3c. Do instances with demand pairs generated using a small solution
result in a smaller or larger kernel than instances with demand pairs generated using a large
solution?

Research Question 3d. Does computing a kernel on an instance with demand pairs generated
using a small solution take shorter or longer than computing a kernel on an instance with demand
pairs generated using a large solution?

Dominating reduction rules. We can divide the time spent by an algorithm into roughly
two parts. One is performing the modifications to reduce the size of the instance, and the
other one is determining which modifications the algorithm can perform on the instance. The
reduction rules do this second part.

If one of these rules is a lot slower than the other rules in the same algorithm, that rule
influences the time performance of that algorithm the most. The fourth research question is
about identifying these dominant reduction rules.

Research Question 4. Which reduction rules take the most time during kernelisation?

The dominating rule can differ between various difficulties of instances. In two subquestions,
we look at both the easy and difficult instances as identified in Research Question 1.

Research Question 4a. Which reduction rules take the most time on easy instances?

Research Question 4b. Which reduction rules take the most time on difficult instances?
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Comparing both algorithms. Our final research question is about the difference between
the two algorithms. We talk more about the algorithms in Sections 3 and 4, but in the literature,
the newer algorithm by Bousquet et al. [4] results in a smaller kernel than the algorithm by Guo
and Niedermeier [23]. Both algorithms are proven to run in polynomial time, but tight analyses
of their running times are not present in the papers.

With the following research question, we want to see how these two algorithms compare in
practice.

Research Question 5. Is the kernelisation algorithm by Bousquet et al. [4] better than the
kernelisation algorithm by Guo and Niedermeier [23]?

In the two subquestions, we look separately at the kernel size and the running time of both
algorithms.

Research Question 5a. Does the algorithm by Bousquet et al. result in smaller kernels than
the algorithm by Guo and Niedermeier?

Research Question 5b. Does the algorithm by Bousquet et al. take less time to compute
kernels than the algorithm by Guo and Niedermeier?

1.3 Outline

Section 2 explains some preliminary knowledge and definitions needed to understand this re-
search. Section 3 provides context about the problem and the literature that exists about
Multicut in Trees. Then, Section 4 explains the reduction rules used in the three kernelisa-
tion algorithms for Multicut in Trees, and Section 5 how we implemented the two algorithms
for this research. After that, we discuss how we generated instances in Section 6. Section 7 ex-
plains our experimental setup, and in Section 8 we show and discuss our results and answer our
research questions. Finally, Section 9 summarises research and provides ideas for future work.

2 Preliminaries

This section explains most of the definitions necessary to understand this research. We assume
the reader to be proficient with basic graph theory. For more information about this topic,
see the book by West et al. [53]. Furthermore, we assume knowledge about computational
complexity theory. The reader can find more information about this topic in the book by Arora
and Barak [3].

2.1 Problem Definition

In Section 1, we used Multicut and Multicut in Trees to define the problem we study in
this research. However, we can find three different variations of this problem throughout the
literature. These are Edge Multicut (EMC), Restricted Vertex Multicut (RVMC),
and Unrestricted Vertex Multicut (UVMC). The difference between these three prob-
lems is what we remove from the graph to achieve the goal. In EMC, we remove edges from the
graph. In both RVMC and UVMC, we remove nodes. RVMC restricts which nodes we can
remove. In this version, we cannot remove nodes that belong to one or more pairs that need to
be separated. In UVMC, we can remove any node.

All these problems exist in general graphs. However, in this research, we are more interested
in the problems in trees. Călinescu et al. [8] showed UVMC in Trees is solvable in polynomial
time. In the same article, they showed EMC in Trees and RVMC in Trees are NP-hard
for bounded-degree trees.
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Throughout this research, we only consider Edge Multicut in Trees. We refer to this
problem by simply Multicut in Trees, unless it is clear from the context that we mean
another version. Let us give a formal definition of the problem.

Definition 1 (Multicut in Trees).
Input: A tree T = (V ,E), n = |V |, and a set P of pairs of nodes in V , called demand pairs,
P = {(si, ti) | si, ti ∈ V, si 6= ti, 1 ≤ i ≤ p)}.
Task: Find a set E′ ⊆ E of minimum size, such that the removal of each e ∈ E from T separates
each demand pair in P .

We say a demand pair between nodes u and v is separated when there is no path between u
and v in T . Note that this is never possible in a single tree. We can only separate demand pairs
when we remove edges from T , so we separate them in the forest F that is left after we have
removed the edges. The unique path between u and v in T is called its demand path. We say a
demand path is destroyed when its demand pair is separated.

2.2 Fixed-Parameter Tractability

In this research, we study the fixed-parameter tractable (FPT) version of Multicut in Trees.
We give a basic definition of FPT in this subsection. The reader can find more information
about this topic in, for instance, the book by Downey and Fellows [14].

We say a problem is fixed-parameter tractable when, given the input I for the problem and
a parameter k ∈ N0, the problem can be solved in O(f(k) · g(|I|)) time, for any computable
function f , and a polynomial function g.

Kernelisation. A way to show that a problem is FPT is by giving a kernel for the problem
through kernelisation. Let P be a problem, with input I and parameter k. We want to map
(I, k) to (I ′, k′), such that:

• (I, k) has a solution for P if and only if (I ′, k′) has a solution for P,

• |I ′| ≤ h(k), for some computable function h,

• k′ ≤ l(k), for some computable function l, and

• the conversion from (I, k) to (I ′, k′) takes time polynomial in |I| and k.

We call I ′ the reduced input or instance. We can also call it a kernel for P. The conversion
from (I, k) to (I ′, k′) is done using a set of reduction rules. With a kernel for P, it is possible to
solve the current instance I in the required running time of O(f(k) · g(|I|)).

The parameterised version of Multicut in Trees is defined as follows.

Definition 2 (Parameterised Multicut in Trees).
Input: A tree T = (V,E), n = |V |, a set P of pairs of nodes in V , called demand pairs,
P = {(si, ti) | si, ti ∈ V, si 6= ti, 1 ≤ i ≤ p)}, and a parameter k ∈ N0.
Task: Find a set E′ ⊆ E, |E′| ≤ k, such that the removal of each e ∈ E from T separates each
demand pair in P .

From now on, we refer to Parameterised Multicut in Trees simply by
Multicut in Trees, unless it is clear from the context we mean another version.

2.3 Problem-related Definitions

This final subsection contains more definitions that are necessary to understand the literature
and algorithms studied. The definitions explained here can also be found in Appendix A.
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Modifications to the instance during kernelisation. The algorithms studied in this re-
search preprocess an instance for Multicut in Trees to a kernel for the problem. They do this
using a set of reduction rules. Each of these rules can trigger one of four possible modifications
to the instance.

First, we can contract an edge. Let e be an edge between nodes u and v. When we contract
e, we create a new node w and connect it to all neighbours of u and all neighbours of v, except
for u and v themselves. Then, we replace u and v in T by w. All demand pairs in the instance
that started at either u or v now start at w.

The second modification is removing a demand pair. This modification should speak for
itself.

The third modification is changing the endpoint of a demand pair. For instance, we can
change a demand pair between nodes u and v to be between v and w. In the studied algorithms,
this only happens when w is on the path between u and v. The new demand path is thus a
strict subset of the old path.

Finally, we can cut an edge in T . When we cut an edge e, we add e to the solution and
decrease k by one. Then, we remove all demand paths that go over e, and finally, we contract e.

Types of nodes. In the input tree T , nodes are separated into leaves and internal nodes. A
leaf is a node with precisely one neighbour, and an internal node is a node with at least two
neighbours.

The internal nodes in T are further divided into three types: I1-nodes, I2-nodes, and I3-
nodes. From these, I1-nodes have at most one neighbour that is an internal node. I2-nodes have
precisely two neighbours that are internal nodes. Finally, I3-nodes have at least three neighbours
that are internal nodes.

In a similar way, we can divide the leaves of T into three types: L1-leaves, L2-leaves, and
L3-leaves. L1-leaves are leaves connected to I1-nodes, L2-leaves are connected to I2-nodes, and
L3-leaves to I3-nodes.

Furthermore, an inner node is an I2-node without leaves.
Leaves can either be good or bad. Let u be a leaf, and let v be the neighbour of u. We say

u is a good leaf , if there exists a demand pair between u and a node w, such that w is a leaf
connected to v. If u is not a good leaf, it is a bad leaf .

Caterpillars. A caterpillar is a tree consisting of a path of I2-nodes with an I1-node at each
end, and the leaves connected to all these nodes. There are no I3-nodes in a caterpillar. The
path of I2-nodes is called the backbone of a caterpillar.

In a tree T , we can define a caterpillar component as a maximal induced subgraph of T
consisting only of I2-nodes and L2-leaves. A caterpillar in T is a maximal induced subgraph of
T consisting only of I1-nodes, I2-nodes, L1-leaves and L2-leaves.

The extremities of a caterpillar C in T are the two internal nodes in C that would become
leaves in C if we would remove all leaves of C. In other words, they are the two nodes at the
end of the path of internal nodes in C. Should C only consist of a single internal node v, v is
both extremities of C.

Demand paths in the same direction. Let us define demand paths going in the same
direction. If zero or one demand paths start at a node v, we say its demand paths go in the
same direction.

On the other hand, if two or more demand paths start at a node v, we need to consider two
cases.

In the first case, v is an internal node. Its demand paths go in the same direction if the first
edge on their paths from v to their other endpoint is the same for all these demand paths.

12



In the other case, v is a leaf. Its demand paths go in the same direction if the second edge
on their paths from v to their other endpoint is the same for all these paths.

Minimal demand paths. The internal path of a demand path is the subset of the demand
path consisting only of edges between two internal nodes. Consequently, the internal length of
a demand path is the length of its internal path.

We say a demand path starting at a node v is a minimal demand path if its internal path is
not a superset of the internal path of any other demand path starting at v.

Let u be the other endpoint of a minimal demand path starting at v. We call u the closest
P -neighbour of v, and v the closest P -neighbour of u. Note that a node can have multiple closest
P -neighbours.

Wingspans. Let v be a bad L2-leaf, and let w be its neighbour. Call the two edges between two
internal nodes connected to w the “left” and “right” edge without loss of generality. Determine
the two minimal demand paths starting at v, such that one of these paths goes over the left edge
and the other over the right edge. Call them P1 and P2.

We define the wingspan W of v to be the union of the internal nodes of P1 and P2.
The subcaterpillar of W consists of all nodes in W and all leaves connected to these nodes.
Finally, W dominates a demand pair between nodes y and z if both y and z belong to the

subcaterpillar of W .

Covering a caterpillar. Let v be a bad L2-leaf of a caterpillar (in T ) C. If we remove the
neighbour of v and all its leaves from T , we are left with two connected components. We call
these two components A(v) and B(v). We define a(v) as the extremity of C in A(v). If this
extremity does not exist, define a(v) as the neighbour of v. Likewise, define b(v) to be the
extremity of C in B(v). Finally, define P1 and P2 as the minimal demand paths going left and
right from the neighbour of v, like before. We say v covers C if P1 and P2 together go over the
entire backbone of C.

3 Related Literature

There exist more algorithms for Multicut in Trees than the kernelisation algorithms we
focus on in this study. This section discusses some related problems to provide more context
and mention some algorithms for Multicut in Trees.

3.1 Related Problems

This subsection discusses some problems that are related to Multicut in Trees.

Minimum s-t Cut. We have already seen Minimum s-t Cut in Section 1. Multicut
with a single demand pair is equal to Minimum s-t Cut. As mentioned in Section 1,
Minimum s-t Cut is solvable in polynomial time. We have also seen Multicut with two
demand pairs is solvable in polynomial time, using a two-commodity flow algorithm, like the
one by Itai [29]. Dahlhaus et al. showed that Multicut is NP-hard for any fixed p ≥ 3 [13].

Multiway Cut. Another related problem is Multiway Cut. Instead of having a set P
of p demand pairs, we have a set H of h terminal nodes. The goal is to separate each pair of
terminal nodes.

Multiway Cut is known to be NP-complete for any fixed h ≥ 3, as shown by Dahlhaus
et al. in 1992 [12]. This is not entirely surprising, as Multiway Cut with h = 3 has three
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pairs of nodes to be separated. It can thus be compared to Multicut with p = 3, which is an
NP-complete problem.

Multiway Cut has three variants, just like Multicut. For Multicut, these variants
were explained in Subsection 2.1. From these, Marx [34] showed Node Multiway Cut is
FPT. For this problem, the best-known approximation algorithm, by Sharma et al. [51], has an
approximation ratio of 1.2965.

Generalised Multiway Cut. The final related problem we mention is
Generalised Multiway Cut. In contrast to Multiway Cut, we have a setQ = {S1, . . . , Sq}
of sets of nodes, instead of a single set of nodes H. The goal is to separate each pair of nodes
within each set Si from each other.

If all sets in Q contain precisely two nodes, Generalised Multiway Cut is equivalent to
Multicut. With this knowledge, it is possible to reduce Generalised Multiway Cut to
Multicut. We thus know Generalised Multiway Cut is also NP-complete and FPT.

3.2 FPT Algorithms for Multicut in Trees

Kernelisation, as explained in Section 2, is only one way to show that a problem is fixed-
parameter tractable. Remember the only requirement for FPT is that the problem with an
instance I and parameter k ∈ N0 can be solved in O(f(k) · g(|I|)) time, for any computable
function f and a polynomial function g. We can also achieve this running time using a bounded
search-tree algorithm through branching.

This subsection explains a branching algorithm to solve Multicut in Trees, shows the
results the three kernelisation algorithms achieve, and highlights two of the fastest algorithms
to solve Multicut in Trees.

A branching algorithm for Multicut in Trees. The first algorithm that showed
Multicut in Trees is FPT is a branching algorithm from 2005 by Guo and Niedermeier [23].
This algorithm runs in O(2k · pn) time, where n is the number of nodes in the tree, p is the
number of demand pairs, and k is the maximum size of the solution.

The algorithm uses the least common ancestor of each demand pair. The least common
ancestor of two nodes u and v is the node in the rooted tree with the greatest distance from
the root r on both the path from u to r and from v to r. For a demand pair, its least common
ancestor is the least common ancestor of the endpoints of this demand pair.

For each demand pair, the algorithm branches on at most two cases. It either includes in the
solution the edge from the least common ancestor of the demand pair towards the first endpoint
of the demand pair, or the edge from the least common ancestor towards the second endpoint of
the demand pair. If one of the endpoints of the demand pair itself is the least common ancestor,
it does not branch and includes the edge from this least common ancestor to the other endpoint
of the demand pair in the solution.

Kernelisation algorithms for Multicut in Trees. Three kernelisation algorithms for
Multicut in Trees exist. In this research, we study two of them. We explain all three
algorithms in more detail in Section 4.

A first algorithm. Guo and Niedermeier presented the first kernelisation algorithm for
Multicut in Trees in the same paper as their branching algorithm [23]. Their algorithm
uses eight reduction rules. With these reduction rules, Guo and Niedermeier proved the exist-
ence of a kernel on caterpillars of size O(k2k+1). With the same algorithm on general trees, they
could reduce an instance to one of size O(k3k). This kernel has exponential size.
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They referenced an interleaving technique introduced by Niedermeier and Rossmanith in
2000 [46], with which they could solve the problem on their kernel in O(k3k + p3n+ n3p) time.

One of the questions Guo and Niedermeier raised was whether a polynomial kernel would
exist for Multicut in Trees.

The second algorithm. This question was answered in 2009 by Bousquet et al. [4]. Their
algorithm results in a kernel of size O(k5) on caterpillars and one of size O(k6) on general trees.

To compute this kernel, they used a set of seven reduction rules. From these, three were
entirely new, and three were also present in the algorithm by Guo and Niedermeier. The last rule
seems to be an improved version of a combination of two other rules that Guo and Niedermeier
used.

Bousquet et al. said they focused on proving a polynomial kernel and mentioned that their
analysis of the kernel size might not be very tight. They expressed the hope that an even smaller
kernel could be proven using the same set of reduction rules.

The third and final algorithm. Chen et al. presented the smallest known kernel for
Multicut in Trees in 2012 [10]. Their kernel has a size of O(k3) for general trees. In contrast
to the other two articles, no separate proof for the size of the kernel on caterpillars was present
in this paper.

Chen et al. explicitly looked at the connection that exists between Multicut in Trees and
Vertex Cover. This connection is visible in their algorithm, as they used two reduction rules
that use (parts of) kernelisation algorithms for Vertex Cover.

Chen et al. used a slightly different problem definition for Multicut in Trees. Instead of
restricting the input graph to a tree, they restricted it to a forest. During their algorithm, it is
also possible that reduction rules split a tree into multiple smaller trees.

The algorithm uses 12 reduction rules. Guo and Niedermeier already used four of these rules,
and Chen et al. used one rule Bousquet et al. presented in their algorithm. One rule is specific
for the forest variant of the problem. That leaves six new rules, of which two are related to
Vertex Cover. The other four are very detailed and specific rules with much overlap.

To conclude, there exists quite some overlap between the three kernelisation algorithms. The
most general rules are present in each of them.

Algorithms to solve Multicut in Trees. Besides presenting their kernel of O(k3) size,
Chen et al. gave an algorithm to solve Multicut in Trees in O∗(ρk) time, where ρ =

√
5+1
2 ≈

1.618 [10]. Strikingly, they used four more reduction rules in this algorithm, which they did not
use to compute the kernel.

In the conclusion of their article, they mentioned that an O∗(ρ′k) time algorithm to solve
Multicut in Trees is possible, where ρ′ =

√√
2 + 1 ≈ 1.554. They would have had to handle

more cases in branching rules and give a more detailed case-by-case analysis to prove this running
time. They deemed this analysis unworthy of being presented in their paper.

A faster algorithm to solve Multicut in Trees. Three years later, Kanj et al. gave
the analysis for this improved algorithm [31]. By further using the connection between
Multicut in Trees and Vertex Cover, they proved their running time of O∗(ρk), where
ρ =

√√
2 + 1 ≈ 1.554.

This result also means that Generalised Multiway Cut in Trees, a problem they also
studied in the same article, is solvable with the same time complexity.

They wondered if an even better algorithm for Multicut in Trees is possible, by exploiting
the connection to Vertex Cover further, as an O∗(σk) time algorithm, where σ ≈ 1.2738,
exists for Vertex Cover [9]. As far as we know, this algorithm by Kanj et al. is the fastest
algorithm to solve Multicut in Trees.
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3.3 Approximation Algorithms for Multicut in Trees

Garg et al. [21] gave the best-known approximation algorithm for Multicut in Trees. They
presented a primal-dual approximation algorithm with an approximation ratio of two.

Garg et al. showed in the same paper that Multicut in Trees is at least as hard to
approximate as Vertex Cover. Khot and Regev [32] showed that Vertex Cover is hard
to approximate with a factor 2 − ε for any ε > 0, assuming the unique games conjecture. This
means that the 2-approximation algorithm by Garg et al. could very well be the best possible
approximation algorithm for Multicut in Trees.

Details about the approximation algorithm. The algorithm by Garg et al. computes the
multi-commodity flow in the tree, where the commodities are the demand pairs in the instance.
They proved that the size of the minimum solution for a Multicut in Trees instance is
between the maximum integral multi-commodity flow in that instance and twice that flow value.
Reduction Rule 4.1.5 partially reuses this result.

3.4 Multicut on General Graphs

Multicut on general graphs is also proven to be FPT. This proof was given independently
by Marx et al. [36] and Bousquet et al. [6] within weeks of each other. The preprints of their
respective papers are both from 2010 [35, 5].

Marx et al. presented an O∗(2O(k3)) time algorithm for the problem, and Bousquet et al. an
algorithm that runs in O∗(kO(k6)) time. Both groups of authors noted that their focus was not
to give an efficient algorithm.

An approximation algorithm. Garg et al. [20] presented the best-known approximation
algorithm for Multicut in general graphs. This algorithm has an approximation ratio of
O(log p), where p is the number of demand pairs to be separated.

Another parameter than k. All results mentioned above are achieved using k, the maximum
size of the solution, as a parameter. Gottlob and Lee [22] showed Multicut on general graphs is
FPT for a parameter ω∗, instead of k. This ω∗ represents the treewidth of the “input structure”.
The input structure contains an extra edge between the two nodes of every demand pair.

A practical algorithm based on dynamic programming was given later by Pichler et al. [48].
Their algorithm runs in O(22ω

∗ logω∗ · |I|) time, where |I| is the size of this input structure.

4 Algorithms

This section explains the reduction rules used in the algorithms by Guo and Niedermeier [23],
Bousquet et al. [4] and Chen et al. [10]. Even though we do not use the algorithm by Chen
et al. in this research, we explain their reduction rules in Subsection 4.3. It is safe to skip the
subsection about their algorithm.

We gave all definitions necessary to understand the first two algorithms in Subsection 2.3.
Appendix A contains these definitions as well. We explain the definitions for the third algorithm
between the reduction rules where needed.

We note that the notation and definitions used in this section sometimes differ from the
original notation. We refer the reader to the original articles for proofs regarding the correctness
of the reduction rules and the kernel size.
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4.1 Guo and Niedermeier: An O(k3k) Sized Kernel

Guo and Niedermeier [23] were the first to prove that a kernel for Multicut in Trees exists.
Their resulting kernel is one of size O(k3k), and they used eight reduction rules to achieve this
kernel.

Reduction Rule 4.1.1 (Idle Edge).
If there is an edge in the instance with no demand path passing through it, contract this edge.

This straightforward rule gets rid of all unnecessary edges in the instance.

Reduction Rule 4.1.2 (Unit Path).
If a demand path has length one, cut its corresponding edge.

This edge is the only candidate to destroy the demand path of length one. We have to include
it in the solution.

Reduction Rule 4.1.3 (Dominated Edge).
If all demand paths that pass through an edge e1 also pass through another edge e2, contract e1.

It is never better to include e1 in the solution than to include e2. Since cutting e2 would destroy
at least the same demand paths as cutting e1, we do not have to consider e1 by itself.

Reduction Rule 4.1.4 (Dominated Path).
If Pi ⊆ Pj for two distinct demand paths Pi, Pj ∈ P , remove Pj.

Cutting any edge on Pi also destroys Pj . Since we have to destroy Pi, we do not need to consider
Pj separately.

Reduction Rule 4.1.5 (Disjoint Paths).
If the instance has more than k pairwise edge-disjoint demand paths, there is no solution with
parameter value k.

To destroy two pairwise edge-disjoint demand paths, we need to cut at least two edges. In order
to cut k+1 pairwise edge-disjoint demand paths, we need to cut at least k+1 edges, which we
are not allowed to do.

Reduction Rule 4.1.6 (Overloaded Edge).
If more than k length-two demand paths pass through an edge e, cut e.

If we were not to cut e, we would have to cut the other edge for each of these more than k
demand paths. Given that we applied Reduction Rule 4.1.4 exhaustively, this would mean we
have to cut more than k edges, which we are not allowed to do.

Reduction Rule 4.1.7 (Overloaded Caterpillar).
If there are k + 1 demand pairs (v, u1), (v, u2), . . ., (v, uk+1) such that nodes u1, u2, . . ., uk+1

all belong to the same caterpillar component that does not contain v, then (one of) the longest
of these demand paths can be removed.

Let C be the caterpillar component u1, u2, . . ., uk+1 belong to. Because all paths in a tree are
unique, all demand paths going from the nodes u1, u2, . . ., uk+1 to v have to leave C over the
same edge. In order to separate these k + 1 demand pairs, we need to cut an edge that is on
at least two demand paths. Given that we applied Reduction Rule 4.1.4 already, we will always
destroy one of the longest of these paths.

Reduction Rule 4.1.8 (Overloaded L3-leaves).
If there are k + 1 demand pairs (v, u1), (v, u2), . . ., (v, uk+1) such that nodes u1, u2, . . ., uk+1

are all L3-leaves of the same I3-node u, remove all these demand pairs and add a new demand
pair (u, v).
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To separate these k + 1 demand pairs, we have to cut an edge e that is on at least two of the
corresponding demand paths. Given that we have applied Reduction Rule 4.1.4 exhaustively
already, we know that e is on the path from u to v. Cutting e thus separates all of the k + 1
demand pairs. Thus, we can replace these demand pairs with the single demand pair (u, v).

4.2 Bousquet et al.: An O(k6) Sized Kernel

Bousquet et al. [4] were the first to prove that a kernel with polynomial size exists. They used
seven reduction rules in their algorithm.

Reduction Rule 4.2.1 (Unit Path).
If a demand path has length one, cut its corresponding edge.

This is the same rule as Reduction Rule 4.1.2.

Reduction Rule 4.2.2 (Disjoint Paths).
If the instance has more than k pairwise edge-disjoint demand paths, there is no solution with
parameter value k.

This is the same rule as Reduction Rule 4.1.5.

Reduction Rule 4.2.3 (Unique Direction).
If all demand paths starting at a leaf u go in the same direction, contract the edge incident to
u. If all demand paths starting at an inner node v go in the same direction, contract the edge
incident to v that is not on any demand path that starts at v.

This rule takes care of most edges without demand paths passing through them and dominated
edges. This rule seems to be an optimised combined version of Reduction Rules 4.1.1 and 4.1.3
that we mentioned in Subsection 3.2.

Reduction Rule 4.2.4 (Dominated Path).
If Pi ⊆ Pj for two distinct demand paths Pi, Pj ∈ P , remove Pj.

This rule is the same as Reduction Rule 4.1.4.

Reduction Rule 4.2.5 (Common Factor).
Let P0 be a demand path. If there are k + 1 other distinct demand paths P1, P2, . . ., Pk+1 that
each intersect P0, such that for each i, j ∈ {1, 2, . . . , k + 1}, i 6= j, the intersection of Pi and Pj

is a subset of P0, remove P0 from P .

This rule only works if we have already applied Reduction Rule 4.2.4 exhaustively. Any solution
must include an edge e that lies on at least two of P1, P2, . . ., Pk+1. Since the intersection of
any combination of these demand paths is a subset of P0, cutting e destroys P0.

Reduction Rule 4.2.6 (Bidimensional Dominating Wingspan).
If u is a bad L2-leaf of a caterpillar C with a wingspan W such that W ∩ C dominates at least
k + 1 endpoint-disjoint demand paths, contract the edge incident to u.

Reduction Rule 4.2.7 (Generalised Dominating Wingspan).
Assume u is a bad L2-leaf of a caterpillar C, and that u covers C. If, for every closest
P -neighbour z of u in A(u), there exist k + 1 endpoint-disjoint demand paths between nodes
lying on the path from b(u) to u and nodes on the path from z to a(u), contract the edge incident
to u.

We can implement both these reduction rules using a matching algorithm on an auxiliary graph.
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4.3 Chen et al.: An O(k3) Sized Kernel

Chen et al. [10] showed an algorithm that results in a kernel with size O(k3). We only explain
this algorithm for the sake of completeness. It is safe to skip this subsection.

In their paper, the authors use an input forest F instead of an input tree T . The most
considerable difference between the modifications the reduction rules can make is that an edge
removal can replace an edge contraction. When cutting an edge e, the algorithm also removes
e from F instead of contracting e. This does not lead to any problems, as we remove all
demand paths over e when we cut e. We can easily modify the rules to contract edges instead
of removing them to make the algorithm work on a single tree. As we do not use this algorithm
in our experiments, we have chosen to present them here the way they work on a forest.

Reduction Rule 4.3.1 (Idle Edge).
If there is an edge e in the instance with no demand path passing through it, remove e from F .

This rule is mostly the same as Reduction Rule 4.1.1.

Reduction Rule 4.3.2 (Useless Demand Pair).
If there is a demand pair Pi between nodes u and v, where u and v are in different trees of F ,
remove Pi from the set of demand pairs.

Obviously, u and v are already separated if they are in different trees of F . We can never apply
this rule when we restrict the instance to a single tree.

Reduction Rule 4.3.3 (Unit Path).
If a demand path has length one, cut its corresponding edge.

This rule is identical to Reduction Rule 4.1.2.

Reduction Rule 4.3.4 (Disjoint Paths).
If the instance has more than k pairwise edge-disjoint demand paths, there is no solution with
parameter value k.

This rule is the same as Reduction Rule 4.1.5.

Reduction Rule 4.3.5 (Unique Direction).
If all demand paths starting at a leaf u go in the same direction, contract the edge incident to
u. If all demand paths starting at an inner node v go in the same direction, contract the edge
incident to v that is not on any demand paths that starts at v.

This rule is the same as Reduction Rule 4.2.3. However, the definition of an inner node differs
between the two reduction rules. Remember the inner node explained in Subsection 2.3 as an
I2-node without leaves.

The definition of an inner node given by Chen et al. for this reduction rule does not contain
the restriction that the neighbours of the internal node cannot be leaves. Here, an inner node
is an internal node with precisely two neighbours, which can be leaves.

Reduction Rule 4.3.6 (Dominated Path).
If Pi ⊆ Pj for two distinct demand paths Pi, Pj ∈ P , remove Pj.

This is the same rule as Reduction Rule 4.1.4.

Introducing an auxiliary graph. For some of the following rules, we need to define an
auxiliary graph G. We create a node in G for each good leaf in F . The edges in G exist between
two nodes u and v if a demand pair between the corresponding leaves in F exists, such that
these corresponding leaves are connected to the same neighbour.
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Reduction Rule 4.3.7 (Bound on Good Leaves).
Apply Buss’s kernelisation algorithm for Vertex Cover [7] on G with parameter k: For each
node u in G with degree at least k+1, cut the edge in F incident to the leaf corresponding to u.
If the number of good leaves in F after the application of Buss’s kernelisation algorithm is more
than 2k2, there is no solution with parameter value k.

All edges in G correspond to demand paths of length two, so this rule partially overlaps with
Reduction Rule 4.1.6. As with that rule, we need to apply Reduction Rule 4.3.6 before this rule.

For the following rules, the authors assume Reduction Rules 4.3.1 to 4.3.7 are not applicable
on the instance.

Reduction Rule 4.3.8 (Crown Reduction).
Apply the Crown Reduction algorithm [1] to G with parameter k to partition the nodes of G into
three sets H, I, and O. If |O| > 3k or |H| > k, there is no solution with parameter value k.

We named the sets H, I, and O after the original paper by Abu-Khzam et al. [1]. They have
the following properties: First, I is an independent set of G, and there exists no edge between
the nodes in I and those in O. Furthermore, there exists a minimum Vertex Cover in G that
contains all nodes in H. There also exists a matching M that matches every node in H to a
node in I, and finally |O| ≤ 3k if a solution for Vertex Cover on G with parameter k exists.

Groups. For the last four rules, we need to divide the nodes in F into three different types
of groups: Type-I, Type-II and Type-III groups. A Type-I group consists of an internal node u
that has at least one good leaf and all u’s leaves. This group is formed by u. A Type-II group
consists of an I3-node v that does not have any good leaves, together with all v’s leaves. Node
v forms this group. Finally, we need to remove all Type-I and Type-II groups from T to define
Type-III groups. The resulting connected components are caterpillars in which no leaves are
good leaves. These caterpillars are then divided greedily into subcaterpillars such that there is
no demand pair between two nodes in the same subcaterpillar. These subcaterpillars are called
Type-III groups.

We refer to a Type-I, Type-II, or Type-III group simply by group, unless a specific type of
group is required.

For any group γi, the number of edges with one endpoint in γi and one endpoint outside of
γi is denoted by di.

Finally, these rules use π(u) to denote the neighbour of a leaf u.

Reduction Rule 4.3.9 (Bound on the Number of Bad Leaves in a Group That Form a Demand
Pair with a Certain Node).
Let u be a node, and let γi be a group. If there exist ` ≥ di bad leaves in γi that each form a
demand pair with u, replace the longest ` − di + 1 of these demand pairs between a node v and
u with the demand pair (π(v), u).

Offsets. Consider two distinct groups γi and γj . Let u be a bad leaf in γi. If u forms a demand
pair with an internal node w in γj , we call w the node-offset of u with respect to γj , or, in short,
n-offsetj(u). Similarly, if u forms a demand pair with any bad leaves in γj , consider w to be any
such leaf with the minimum distance to u. Then we call w the leaf-offset of u with respect to γj ,
or l-offsetj(u).

An ordering based on offsets. Consider two distinct groups γi and γj again. Let u be the
node in γj that has the minimum distance to the nodes in γi. Then, for any two bad leaves w and
z in γi we say w 4n

j z if the distance from the n-offsetj(w) to u is not larger than the distance
from the n-offsetj(z) to u. Similarly, we say that w 4l

j z if the distance from the l-offsetj(w) to
u is not larger than the distance from the l-offsetj(z) to u.
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Reduction Rule 4.3.10 (Bound on the Number of Bad Leaves in a Group That Form a
Demand Pair with Internal Nodes of Another Group).
Let γi and γj be two distinct groups. If there are ` ≥ di bad leaves in γi that each form a demand
pair with internal nodes of γj, replace the largest `− di +1 with respect to the order 4n

j of these
demand pairs between such a bad leaf u ∈ γi and an internal node v ∈ γj with the demand pair
(π(u), v).

Reduction Rule 4.3.11 (Bound on the Number of Bad Leaves in a Group That Form a
Demand Pair with Bad Leaves in Another Group).
Assume Reduction Rule 4.3.9 does not apply. Let γi and γj be two distinct groups. If there are
` ≥ dj(di − 1) + 1 bad leaves in γi that each form a demand pair with bad leaves of γj, replace
the largest `− dj(di − 1) with respect to the order 4l

j of these demand pairs between such a bad
leaf u ∈ γi and a bad leaf v ∈ γj with the demand pair (π(u), v).

Obviously, this rule requires Reduction Rule 4.3.9 to be applied exhaustively before this rule.

The set OUTu for a node u. Finally, the last reduction rule requires the notation of OUTu
for a node u that forms a Type-I group. Remember the auxiliary graph G consisting of good
leaves and their demand pairs defined above. Let Gu be the subgraph of G induced by the good
leaves attached to u. Reduction Rule 4.3.8 split G into the sets H, I and O. Consider the sets
Hu, Iu and Ou to be the intersection of the nodes of Gu and H, I and O respectively. The
matching M in G that matches H into I induces a matching Mu in Gu that matches Hu into
Iu. Finally, define OUTu to be the set of nodes in Iu that are not matched by Mu.

Reduction Rule 4.3.12 (Bound on the Number of Bad Leaves in a Group That Form a
Demand Pair with Good Leaves in OUTu for a Type-I Group γi Formed by a Node u).
Assume Reduction Rule 4.3.9 does not apply. Let u be a node that forms a Type-I group γi, and
let γj be another group. If there are ` ≥ dj(di− 1)+ 1 bad leaves in γi that each form a demand
pair with nodes in OUTu, replace the longest `− dj(di − 1) of these demand pairs between a bad
leaf v in γi and a node w in OUTu with the demand pair (π(v), w).

Again, it is clear Reduction Rule 4.3.9 must not be applicable on the instance when executing
this rule. Because we need OUTu, we also need to execute Reduction Rule 4.3.8 before this
rule.

5 Implementation Details

This section explains the implementation details for the algorithms and their reduction rules.
We implemented the algorithms in C#. The code and scripts used to run all experiments are
available on GitHub 1. There will be a footnote to Microsoft’s documentation site when we
mention a built-in data structure for the first time.

5.1 Data Structures

Many data structures, like the set of demand pairs or the edges on a demand path, are modified
often. Ideally, we want to add, remove, and check whether an element is present in this data
structure in O(1) time. We have created our own data structure, as existing data structures do
not achieve these time complexities. For instance, a HashSet 2 [41] would allow us to add and
remove elements in O(1) time, as well as checking whether it contains a specific element, but

1https://github.com/stevenheinen/Thesis---Multicut-in-Trees
2https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.hashset

-1?view=net-5.0
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its enumeration is slower than that of a List 3 [43]. On the other hand, a List with faster
enumeration and a preserved order of elements cannot remove an element in O(1) time.

Our own data structure consists of a Dictionary 4 [40] and a LinkedList 5 [42]. It might
be best compared to an OrderedDictionary 6 [44], except that it is explicitly typed. We
refer to this data structure throughout this thesis as “OrderedDictionary” 7 . We use the
Dictionary to check the presence of an element in the data structure in expected O(1) time,
as well as to go to the correct node in the LinkedList given an element. For enumeration,
we use the LinkedList. Other operations, like adding and removing elements, can be done in
O(1) time, making this data structure perfect for how we want to use it.

5.2 Algorithm Data Structures

An algorithm contains multiple data structures with the information required to compute a
kernel. For instance, many reduction rules need information about which demand paths go over
a certain edge. This is saved as a Dictionary with per edge an OrderedDictionary with
demand pairs. We used a similar data structure to store, for each node, the demand pairs that
start at that node. We compute these data structures when the algorithm starts and update
them each time the instance gets modified. The data structures do not contain edges with no
demand path passing through them or nodes that are not the starting point of a demand pair.
When a reduction rule needs information from one of these data structures, it can just grab it.

Data structures in reduction rules. Reduction rules themselves have access to three more
data structures. These data structures contain information about parts of the instance that the
algorithm modified. A reduction rule can use this data to restrict the part of the instance it
needs to check. We talk more about this in Subsection 5.4. First, we explain how the different
input modifications work.

5.3 Input Modifications

Performing a modification like an edge contraction might be more complicated than expected
because we need to update multiple data structures. This subsection explains the four modific-
ations that the reduction rules can apply to the instance.

5.3.1 Contracting Edges

The first input modification we explain is the edge contraction. When contracting an edge
between nodes u and v, we replace u and v by a new node w that is connected to all neighbours
of u and v, except for u and v themselves.

Updating the caterpillar components. Some reduction rules depend on the information
about which caterpillar component a node is in. This information can change when the algorithm
contracts an edge and thus needs to be updated. For instance, contracting an edge between an

3https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1?v
iew=net-5.0

4https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionar
y-2?view=net-5.0

5https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.linkedlis
t-1?view=net-5.0

6https://docs.microsoft.com/en-us/dotnet/api/system.collections.specialized.order
eddictionary?view=net-5.0

7In the code, the data structure is called a CountedCollection. We explain the reason for the prefix
“Counted” in Subsection 7.1. It is not to be confused with the existing Collection 8 [39] data structure.

8https://docs.microsoft.com/en-us/dotnet/api/system.collections.objectmodel.colle
ction-1?view=net-5.0
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I1-node and an I2-node means that the I2-node becomes an I1-node. It will then not be a part
of a caterpillar component anymore. Most of the time, we can easily update this information.
When an I3-node becomes an I2-node, we must merge two caterpillar components. In such a
case, all caterpillar components are recomputed instead of updated. We recompute them later.

Contracting the edge. In this step, we contract the edge in the tree. We start by updating
the type (I1/L2/etc.) of the edge’s endpoints, and potentially their neighbours and the leaves
of those neighbours. After that, we choose one of the edge’s endpoints as the node that results
from the edge contraction. Let us call it v and let u be the other endpoint of the edge. We
change the endpoint of the edges connected to u from u to v. We can then remove u from the
graph.

At this moment, we recompute the caterpillar components if necessary.

Updating demand pairs and paths. We also need to update the demand paths that went
over the contracted edge e. We remove e from each demand path over e. If e is either the first
or last edge on the demand path, we update the endpoint of its corresponding demand pair.
Finally, we remove e from the Dictionary with information about demand pairs per edge.

We need to update more demand pairs. The edge contraction can also mean that an endpoint
of a demand path that does not use e changes. All demand paths that start at u now begin at
v. So, for each demand pair that starts at u, we change its endpoint from u to v. This change
does not change its demand path since we already changed the edge previously connected to u.
We then remove u from the Dictionary with demand pairs per node.

Provide the reduction rules with information. The final thing we have to do is update the
information available to the reduction rules. We provide each reduction rule with the following
information: the contracted edge, the node resulting from this edge contraction, and the demand
paths that use this edge.

Time complexity. Let us briefly analyse the time required for an edge contraction. Updating
caterpillar components is done using a depth-first search and takes O(n) time. The same goes
for updating the endpoint of the edges connected to the contracted edge and updating the nodes’
types. We loop over O(p) demand pairs twice to update their endpoints and path. These updates
are constant time operations, so this part takes O(p) time in total. Providing the reduction rules
with information takes O(1) time, as the number of reduction rules is constant. These operations
sum up to O(n+ p) time.

5.3.2 Removing Demand Pairs

Removing a demand pair is simpler than contracting an edge. The process of removing a demand
pair Pi is as follows.

Modification details. We start by providing the reduction rules with the information that
we removed Pi. We then remove Pi from the demand pairs that start at its endpoints in the
data structure in the algorithm. The other data structure that needs to be updated is the one
containing demand pairs per edge. By looping over the edges on its demand path, we can remove
Pi from these edges in this data structure. Finally, we remove Pi from the set of demand pairs.

Time complexity. Updating the demand pairs per edge is the only operation that we cannot
do in constant time. Instead, this part requires O(n) time. Since all other operations require
constant time, the time complexity of removing a demand pair is O(n).
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5.3.3 Changing Demand Pairs

The third operation is changing the endpoint of a demand pair. Remember that we can only
change a demand pair by removing edges from one of the ends of its corresponding demand
path. Let us consider changing the endpoint of a demand pair Pi from u to v.

Modification details. First, we gather the edges that we will remove from the demand path
by walking over the path from u until we encounter v, and we remove the encountered edges
from Pi. We then remove Pi from the demand pairs starting at u and add Pi to the demand pairs
starting at v. We provide the reduction rules with information about this instance modification:
the edges removed from Pi and Pi itself. Finally, for each edge removed from Pi, we remove Pi

from the demand paths over this edge.

Time complexity. Looping over the demand path to gather the edges that we must remove
and looping over these edges again to update the data structure in the algorithm takes O(n)
time in total. We can perform all other operations in constant time, so this modification takes
O(n) time.

5.3.4 Cutting Edges

The final instance modification is cutting an edge. This modification mostly overlaps with
contracting an edge and removing demand pairs. Consider cutting an edge e.

Modification details. We start by adding e to the partial solution the algorithm found and
decrease k by one. Then, we remove all demand pairs that go over e using the method described
in Subsection 5.3.2. We contract e, using the method described in Subsection 5.3.1. These two
methods already provide the reduction rules with the information they need, so we do not need
to do anything else.

Time complexity. Adding e to the solution takes O(1) time. Removing the O(p) demand
pairs takes O(n) time each, for a total of O(np) time. Contracting e requires O(n+ p) time. In
total, this instance modification thus takes O(np) time.

5.4 Reduction Rules Implementations

This subsection explains how we implemented each reduction rule. We start by providing some
general details for reduction rules. Then, we describe the implementation details for each unique
reduction rule. When we analyse the time of a reduction rule, this time does not include the
time needed for the modifications themselves.

Applying a set of reduction rules. In the original algorithms, the authors present the
reduction rules in a specific order. In our implementation, we apply the reduction rules in the
same order. We only apply a rule if all rules before it are not applicable on the instance. After
the algorithm applies a rule successfully, it tries to apply the first rule again. If it applies a rule
unsuccessfully, it moves on to the next rule. Some rules can determine that an instance is not
solvable. In such a case, the algorithm stops. Otherwise, the algorithm keeps applying reduction
rules until it no rule is applicable on the instance.

Two ways to apply a reduction rule. There are two possible ways to apply a reduction
rule. Each time we execute a reduction rule, we can either apply it on a single edge or demand
pair or scan the entire instance to find all possible edges or demand pairs the rule can modify.
In the second case, we find all places where we can modify the instance before applying any of
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these modifications. Both options should lead to the same result. In this research, we used the
second option where possible.

Restricting the part of the instance to check. The first time a reduction rule is applied,
we check the entire instance to see if it is applicable. For some rules, it is possible to restrict
the part of the instance it needs to check when we apply it after its first application. We use
the three data structures mentioned earlier with information about which parts of the instance
were modified to achieve this. For instance, Reduction Rule 4.1.2 looks for demand paths of
length one. When we apply it for the ith time, we do not need to consider demand paths that
did not change since the i − 1st application of this rule since it would give the same results on
these demand paths as it did then.

5.4.1 Reduction Rule 4.1.1 (Idle Edge)

Remember that the Idle Edge rule contracts edges that are not used by any demand path. To
implement this rule, we are using the information about which demand paths go over which
edge.

First application. During the first application of this rule, we loop over all edges in the tree.
We gather all edges that are not used by any demand path in a set. Once we have looped over
all edges, we contract all edges in the set. In total, gathering the edges to be contracted takes
O(n) time.

Later applications. In later applications of this rule, we only need to check edges that were
used by a demand path and are no longer used by that demand path. This situation exists when
the algorithm deleted a demand pair from the instance or changed a demand path. We check
every edge on all removed demand paths and all edges that are no longer part of shortened
demand paths. These are first gathered in a HashSet to ensure we check each edge at most
once. Since we check O(n) edges during a later application, this rule takes O(n) time in later
applications 9.

5.4.2 Reduction Rules 4.1.2 and 4.2.1 (Unit Path)

The Unit Path rule finds demand paths of length one and cuts their edge.

First application. We check the length of each demand path in the first application of this
rule. This operation can be done in O(1) time for each of the O(p) demand paths, leading to a
running time of O(p).

Later applications. In later applications, we check demand paths for which their length
decreased. This happens when the algorithm changes a demand path but can also happen when
it contracts an edge. As with the previous rule, we first gather the set of demand pairs to check
in a HashSet. For a contracted edge, we add all demand paths that used that edge to this set.
We add every modified demand pair as well. Since we check O(p) demand paths, this rule takes
O(p) time in a later application 10.

9Technically, gathering the edges to be checked takes O(np) time additionally in the current implementation.
It is possible to eliminate this time by gathering these edges when we perform the modifications on the instance.

10Gathering the set of demand paths to be checked takes O(np) time in the current implementation. Again, it
is possible to eliminate this time by gathering the set when we apply the modifications
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5.4.3 Reduction Rule 4.1.3 (Dominated Edge)

The Dominated Edge reduction rule is slightly more complicated than the two rules before. It
checks for two edges e1 and e2 whether the set of demand paths that go through e1 is a subset
of the demand paths that go through e2. If that is the case, we contract e1.

A more efficient way to check applicability. A naive implementation of this rule would
check every combination of two edges in the tree. However, most of the time, checking just a
few of these combinations is sufficient.

Observation 3.
When applying the Dominated Edge rule on an edge e, we only need to compare its demand paths
to the demand paths of all edges (except for e) on one of the demand paths that go through e.

Proof. Let e be an edge in the tree, let Pe be the set of demand paths through e, and let P0 be
any demand path in Pe. We have two cases. Either P0 has a length of one, or P0 is longer.

In the first case, e will never be contracted by the Dominated Edge reduction rule, as Pe will
never be a subset of the demand paths through any edge other than e. We thus do not need to
compare Pe to the set of demand paths on any other edge.

Let us now consider the other case, when P0 has a length of at least two. Consider an
arbitrary edge e′, e′ 6= e, in the tree. Denote by Pe′ the set of demand paths through e′. If
Pe ⊆ Pe′ , we need to have P0 ∈ Pe′ as P0 ∈ Pe. This is only the case when e′ is on P0.

To conclude, we only need to compare Pe to the set of demand paths that use e′′, for every
edge e′′ 6= e on P0.

Applying the rule. To apply this reduction rule, we compare each edge e to all edges e′ 6= e
on the shortest demand path through e. We find this shortest demand path by looping over all
demand paths through e. This takes O(p) time, and result in O(n) candidate edges e′. Checking
whether the set of demand paths through e is a subset of the set of demand paths through e′

can be done in O(p) time using HashSets. Once we determine the demand paths through e
are a subset of the demand paths through an edge e′, we mark e and move on to the next edge.
Per edge, this reduction rule takes O(np) time. After we have checked every edge, we contract
the marked edges.

Edges dominating each other. With the description above, edges can dominate each other.
Consider as an example a small tree with three nodes: u, v and w. Let u and v be leaves and
w an internal node. Denote by e1 the edge between u and w, and by e2 the edge between v and
w. Let there be a single demand pair in this instance, between u and v. We give a visualisation
of this example in Figure 2. The set of demand paths that use e1 is a subset of the set of
demand paths that use e2 and vice versa. This means that this rule would contract both e1 and
e2. However, this should not be allowed as we then remove a demand pair from the instance
without separating it.

To resolve this, we add another restriction to the edges we compare each edge e to. Besides
only comparing e to all edges e′ 6= e on the shortest demand path through e, we require every
edge e′ not to be marked. This way, at least one edge per demand path will be left in the
instance after applying this reduction rule.

First application. In its first application, we apply this rule on every edge. For each of the
O(n) edges, the rule needs O(np) time to check whether we can contract this edge. The first
application of this reduction rule thus takes O(n2p) time.

26



u

w

v

e1 e2

Figure 2: A small tree with an internal node w, leaves u and v, two edges: e1 between u and w
and e2 between v and w, and a single demand pair (displayed as a dotted blue line) between u
and v.

Later applications. In later applications, we only check edges that had their set of demand
paths change. These edges are all edges on every removed demand path and all edges that are
no longer part of shortened demand paths. The running time of a later application of this rule
is also O(n2p), as we still check O(n) edges.

5.4.4 Reduction Rules 4.1.4 and 4.2.4 (Dominated Path)

The Dominated Path reduction rule removes demand paths from the instance that are a superset
of another demand path in the instance.

Avoiding subset checks. We seem to have to check whether a set is a subset of another set,
the sets here being the respective edges on two demand paths. However, we can use knowledge
about our instance to make this check easier.

Observation 4.
When applying the Dominated Path rule on demand paths Pi and Pj, we only need to check
whether the first and last edge of Pi are on Pj or the other way around.

Proof. Consider two distinct demand paths Pi and Pj . Let e1 be the first edge of Pi, and let e2
be the last edge of Pi.

Assume e1 and e2 are part of Pj . Path Pj thus consists of a (potentially empty) set E′ of
edges from the start of Pj to e1, a set E′′ from e2 to the end of Pj , and a set E′′′ with the
path from e1 to e2. We know that paths in a tree are unique. In other words, there is only one
possible path E′′′ from e1 to e2. All edges in E′′′ are part of Pi, since Pi goes from e1 to e2.
Because of the definition of E′′′, all edges in E′′′ are also part of Pj .

Thus, we can conclude that Pi ⊆ Pj if the first and last edge of Pi are part of Pj .

Applying the rule. We now explain how exactly we apply this reduction rule for a demand
path Pi. We find all demand paths that are a superset of Pi and remove these. To gather the
set of demand paths to compare Pi to, we use similar reasoning as in the implementation of
Reduction Rule 4.1.3. All demand paths that are a superset of Pi must go over the first edge of
Pi. We can directly query for which demand paths this is the case.

We check whether the last edge of Pi is part of any of these demand paths. If so, we mark
this other demand path.

We can check whether an edge is part of a path in O(1) time using our own data structure.
Because we loop over O(p) demand paths that go over the first edge of Pi, this reduction rule
requires O(p) time per demand path.

Once we checked every demand path, we removed those that were marked.
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Demand paths dominating each other. We run into a similar problem as we saw with the
previous reduction rule. Two demand paths can dominate each other.

Consider a simple tree with three nodes and two edges. Let u and v be the tree’s leaves
and w its internal node. Let there be two demand pairs: (u, v) and (v, u). See Figure 3 for
a figure of this example. Both demand paths use both edges in the tree, and they are thus a
subset of each other. With the implementation described above, the algorithm would remove
both demand paths from the instance.

However, we want to remove at most one demand pair. We only consider as possible subset
demand paths the demand paths that are not already marked. By this, we mean that we do
not try to find demand paths that are a superset of a demand path that the rule will already
remove.

In our small example, we mark one of the paths. Then, the algorithm cannot remove the
other path since there is no candidate demand path in the tree that is a subset of this other
path. Because of the transitivity of subsets, this does not break the reduction rule.

First application. During the first application, we apply this rule to all demand paths. Since
the rule required O(p) time per demand path, its first application requires O(p2) time.

Later applications. We can restrict the set of demand paths this rule checks in later applic-
ations. We check all demand paths that went over contracted edges and demand paths that
changed. Additionally, we make sure not to check any removed demand paths. Since we check
O(p) demand paths, the rule still requires O(p2) time 11.

5.4.5 Reduction Rules 4.1.5 and 4.2.2 (Disjoint Paths)

This reduction rule checks whether more than k edge-disjoint demand paths exist in the instance.
We used the maximum multi-commodity flow in trees algorithm by Garg et al. [21] to implement
this rule. We refer the reader to Theorem 4.1 in the paper by Garg et al. for details about this
algorithm.

Applying the reduction rule. We directly used the multi-commodity flow algorithm for
this reduction rule. When providing the algorithm with the endpoints of the demand pairs as
commodities, the resulting flow is equal to the number of edge-disjoint demand paths.

We apply this algorithm in each application of the reduction rule and do not use any inform-
ation about modified parts of the graph to speed it up. Trying to do so would have required
complicated changes to the original algorithm, and we chose not to spend time on that.

11Gathering the set of demand paths to be checked takes O(np) time in the current implementation. As before,
it is possible to eliminate this time by creating this set when we perform the modifications

u

w

v

e1 e2

Figure 3: A small tree with an internal node w, leaves u and v, two edges: e1 between u and w
and e2 between v and w, and two demand pairs: one between u and v (displayed as a dotted
blue line) and one between v and u (displayed as a dotted red line).
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The paper by Garg et al. [21] tells us that the running time of this reduction rule is O(n2p).

5.4.6 Reduction Rule 4.1.6 (Overloaded Edge)

The Overloaded Edge rule tries to cut edges that are used by more than k demand paths of
length two. We discuss how we apply the rule and why we cannot cut multiple edges with it
in one application. Then, we look at the rule during its first application and discuss why later
applications are the same as the first application.

Applying the rule. We apply the reduction rule by looping over all demand paths. The rule
only considers paths of length two. We keep track of how many times each edge occurred on
these paths. Once we encounter an edge for the k + 1st time, we cut it and stop executing this
reduction rule.

Applying the rule on multiple edges in one application. Trying to cut multiple edges
in one application of this rule is not easy. Since the rule depends on k, and k decreases when
we cut an edge, we must consider this when checking edges. We can encounter an edge exactly
k times, and later another edge k+1 times. When we cut the second edge, we would have to go
back to all edges we already checked and check whether they occurred k times and cut those.
However, the occurrences of those edges can decrease. When we cut an edge, we namely also
remove demand pairs from the instance. We decided not to modify the rule to make this work
and instead chose to apply it on at most one edge in each application.

First application. During the first application, we check every demand path. We do a con-
stant amount of work per demand path, so the running time of the first application is O(p).

No smarter way in later applications. This rule cannot use information about modified
parts of the instance to restrict what it checks in later applications. This is again because it
depends on k. Consider a case where an edge e occurs s times on demand paths of length two,
and let s = k. Now, we cut an edge on the other side of the graph. Assume e still occurs s
times. Now, s = k+1, so we would have to cut e. However, since there were no modifications in
the instance where e is, we would not look at it. Thus, we decided to check the entire instance
every time this reduction rule is applied. The rule thus has a running time of O(p) in later
applications as well.

5.4.7 Reduction Rule 4.1.7 (Overloaded Caterpillar)

The Overloaded Caterpillar reduction rule tries to find k + 1 demand pairs from a node v in
caterpillar component C to nodes in a caterpillar component C ′, C 6= C ′.

Applying the rule. The rule loops over all nodes, skipping nodes that are not I2-nodes or
L2-leaves, as these are not part of a caterpillar component. It also skips nodes where at most
k demand pairs start. For each node v, we check the caterpillar component C ′ of the other
endpoint of the demand pairs that start at v. If C ′ is the same as the caterpillar component of
v, we skip this demand pair. We store the demand pairs per destination caterpillar component.
After checking all demand pairs, we check if at least k+1 go to the same destination caterpillar
component. If so, we remove the longest of the demand paths corresponding to these pairs and
stop executing this rule.

As before, we do not apply the rule on multiple demand pairs in one application, as it
depends on k.
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An application of the rule. This rule is the first in the algorithm where caterpillar compon-
ents are required. We compute these components in the first application of this rule. The rule
does not recompute the caterpillar components in later applications, as the algorithm updates
them during modifications. Computing the caterpillar components takes O(n) time.

Per node, we need to loop over all O(p) demand pairs starting at that node. All other
operations require constant time. We check each demand pair at most twice, so in total, we also
check O(p) demand pairs. The running time of this rule then sums to O(n+ p).

As with the previous rule, we did not restrict the part of the graph the rule checks in later
applications because it depends on k.

5.4.8 Reduction Rule 4.1.8 (Overloaded L3-leaves)

The Overloaded L3-leaves reduction rule tries to find k+1 demand pairs between a node v and
L3-leaves connected to the same I3-node u.

Applying the rule. There are many similarities between the implementations of this rule
and the previous rule. We loop over each node v where at least k + 1 demand pairs start. For
each of these demand pairs, we check its other endpoint w. We track how many times each
I3-node occurred as the second-last node on the corresponding demand paths. If w is an L3-leaf,
we grab its neighbour u and store the demand pair. After checking all demand pairs, we check
whether an I3-node occurred at least k + 1 times. If so, we remove all but one of the demand
pairs between v and leaves connected to this node. We then change the endpoint of the final
demand pair from the L3-leaf to its neighbour.

Again, we only apply this rule at most once during each application since it depends on k.

Running time. Using a similar argument as for the previous rule, the running time of this
rule is O(n+ p).

There are no differences between the different applications of this rule as it depends on k.

5.4.9 Reduction Rule 4.2.3 (Unique Direction)

The Unique Direction reduction rule checks whether all demand paths starting at a node go in
the same direction. If so, it contracts an edge.

Demand paths going in the same direction. The rule works differently on leaves and
inner nodes. Remember, an inner node is not the same as an internal node. For each node v,
the reduction rule checks whether v is a leaf, inner node, or neither.

First, we handle the case when v is a leaf. If zero or one demand paths start at this node,
we can apply the rule here. Otherwise, we grab the second edge (from v) of the first demand
path that starts at v. Call this edge e. For each other demand path that starts at v, we check
whether e is part of this demand path. If not, not all demand paths from v go in the same
direction. If we determine that all demand paths from v go in the same direction, we mark the
edge connected to v and move on to the next node.

If v is an inner node, the process is similar. Instead of looking at the second edge of the
demand paths, we look at the first edge. Call this edge e again. If all demand paths from v go
in the same direction, we mark the edge connected to v that is not e.

Once we have processed every node, we contract all marked edges.

Contracting too many edges. When the process described above is applied, we risk re-
moving demand pairs without separating them. We have seen this complication before, in the
Dominated Edge rule. We resolve it similarly.
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First, let us give an example of how this can happen. Consider a small graph with three
nodes: an internal node w, and two leaves u and v. Let P0 be a demand pair between u and
v, and let us apply the Unique Direction reduction rule to this instance. Figure 2 shows this
small example. All demand paths starting at u go in the same direction, and all demand paths
starting at v as well. This means we would mark and contract both edges in the graph. The
demand pair P0 would disappear without being separated.

We modify the process described above slightly to make sure at least one edge per demand
path remains. Before we mark a certain edge, we look at all demand paths that use that edge.
If there are none, we can safely contract the edge. Otherwise, we check for each of these paths
whether all other edges on that path are already marked. If so, we cannot contract this edge,
and we skip it.

In the small example, assume we marked one of the edges. Then, we cannot contract the
other one, as that would mean that there would be no edges left on P0.

First application. We try to apply the reduction rule on every node in the first application.
Checking whether all demand paths go in the same direction takes O(p) time per node. However,
the additional check to ensure we can contract a certain edge takes O(np) time per candidate
edge.

We check all demand pairs at most twice. We can sum the running time to check whether
all demand pairs go in the same direction to O(p) time. However, we still need to perform the
additional check for O(n) edges. The total running time thus is O(n2p).

Later applications. In later applications of this rule, we can apply this rule only on modified
parts of the graph. We check the endpoints of each removed demand pair and the endpoints
of the edges that are no longer part of a shortened demand path. Additionally, we check each
node that resulted from an edge contraction, as contracting an edge can also lead to a different
endpoint of a demand pair. Since we still check O(n) nodes, the running time of this reduction
rule is O(n2p) during later applications as well.

5.4.10 Reduction Rule 4.2.5 (Common Factor)

This reduction rule wants to find, for a demand path P0, k + 1 other (distinct) demand paths
that each intersect P0, and whose pairwise intersections are all a subset of P0.

Applying the rule. Bousquet et al. [4] explained how this rule could be applied using a
matching algorithm. We compute the matching in an auxiliary graph. Consider a demand path
P0 on which we want to apply this rule.

To create the auxiliary graph, we create a set Z of edges that do not lie on P0 but share a
node with P0. We also gather all demand paths that start at nodes on P0. Because of Reduction
Rule 4.2.4, we know that these demand paths leave P0. We gather the edges through which
these demand paths leave P0 in a set Y . We loop over all edges in Z and check whether a
demand path on this edge starts at P0 to find Y . It is possible to identify |Y | demand paths
that intersect P0 and do not pairwise intersect each other outside of P0.

We still need to consider demand paths that leave P0 over two edges. For this, we use the
auxiliary graph. We create a node for each edge in Z \Y . Then, we create an edge between two
nodes if a demand path uses both edges that correspond to these nodes.

Finally, we compute a matching in the auxiliary graph. If a matching of size k + 1 − |Y |
exists, we can remove P0.

Running time. Gathering Z can be done in O(n) time and gathering all demand paths that
start at a node on P0 in O(n + p) time. Computing Y requires O(n + p) time since, for each
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edge in Z, we need to consider all demand paths that start in P0. The total number of checked
demand paths sums to O(p).

The auxiliary graph has O(n) nodes. Finding the edges is done in O(n2 + p) time. For each
combination of two nodes in the auxiliary graph, we check O(p) demand paths. This way, we
check each demand path at most twice, so this factor sums to O(p).

To compute the matching in the graph, we use the blossom algorithm by Edmonds [15]. The
auxiliary graph has O(n) nodes and O(p) edges. Computing the matching thus takes O(n2p)
time.

The total time complexity of this reduction rule is O(n2p) per demand path.
A faster matching algorithm, like the algorithm by Micali and Vazirani [38], would run in

O(
√
np) time on the auxiliary graph. With this algorithm, the time complexity of this reduction

rule would be O(
√
np+ n2) per demand path. We have chosen not to use this algorithm, as we

could not find an easily usable implementation, and it was too complicated to implement in the
available time.

An application of the rule. This reduction rule depends on k as well. As before, we only
apply it on at most one demand path per application. Additionally, we do not reduce the part
of the instance that the rule checks in later applications. The rule thus runs in O(n2p2) time in
all its applications.

5.4.11 Reduction Rule 4.2.6 (Bidimensional Dominating Wingspan)

The Bidimensional Dominating Wingspan rule tries to find a bad L2-leaf u, such that the
intersection of the caterpillar C and the wingspan W of u dominates at least k + 1 endpoint-
disjoint demand pairs. As in the proof in the paper by Bousquet et al. [4], we used an auxiliary
graph per bad L2-leaf and computed a matching in this graph.

Consider we want to apply the reduction rule on a L2-leaf u. Let C be the caterpillar u is
part of.

Finding the wingspan. To find the wingspan W of u, we need to know the two minimal
demand paths that start at u and go in different directions from the neighbour of u. Call the
two edges between internal nodes from the neighbour of u the “left” and “right” edge without
loss of generality. For each demand pair that starts at u, check whether its path goes over this
left or right edge. The rule keeps track of the minimal demand path for both of these edges.
After checking every demand pair that starts at u, the other endpoints of the two minimal
demand paths are saved as the endpoints of the wingspan of u. If such an endpoint is a leaf,
the neighbour of that leaf is the endpoint of W instead. Finally, if there is no minimal demand
pair going left or right, we say the neighbour of u is the endpoint of W for that side.

In this step, we also identify if u is a good leaf. If we encounter a demand path that does
not use the left or the right edge, u is a good leaf, and we move on to the next leaf.

Finding the intersection between W and C. To find the intersection between W and C,
we first find the path between the endpoints of W . We loop over each node on this path and
check if it is in C. Denote by c the caterpillar component of u. A node is in C when it is in c,
or when it is an I1-node connected to an I2-node in c. All leaves of the nodes on this path in
the intersection are part of the intersection as well.

Creating the auxiliary graph. The nodes in the intersection between W and C form the
nodes in the auxiliary graph. We add an edge to the auxiliary graph between two nodes if a
demand pair exists between the two corresponding nodes in the original instance. We create
these edges by looping over all demand pairs and checking their endpoints.
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We compute a matching using Edmonds’s blossom algorithm [15]. Once the first matching
of size k + 1 is found, we stop the rule and contract the edge connected to u.

We only contract at most one edge per application, as this rule also depends on k.

Running time. For a brief analysis of the running time of this reduction rule, we start by
finding the endpoints of a wingspan. This process takes O(p) time. It takes O(n) time to find
the path between the wingspan’s endpoints and the intersection between the caterpillar and the
wingspan. Creating the edges in the auxiliary graph takes O(p) time. The matching can then
be computed in O(n2p) time, leading to a total running time of O(n2p) per leaf 12.

An application of the rule. For this reduction rule, we need to know the caterpillar compon-
ent for each node again. Just like Reduction Rule 4.1.7, this is the first rule in the algorithm that
needs this data. We start the first application by computing this information. Later applications
will not compute the caterpillar components again.

Then, we perform the process described above for each leaf. This leads to a total running
time of O(n3p). Since the rule depends on k, there is no efficient way to run the rule in a later
application.

5.4.12 Reduction Rule 4.2.7 (Generalised Dominating Wingspan)

The Generalised Dominating Wingspan can apply on a bad L2-leaf u that covers its caterpillar
C. It also tries to find a set of k + 1 endpoint-disjoint demand paths, but the area where these
demand paths start slightly differs from the previous rule.

Finding whether u covers C. We find the minimal demand paths going left and right from
u using the method described in the previous reduction rule. The rule then finds the extremities
of C, using the available information about caterpillar components. These extremities should
each lie on one of the minimal demand paths. If so, u covers C.

Computing the closest P -neighbours. The next step is computing the closest P -neighbours
of u. Using the length of the minimal demand paths, we can find these P -neighbours by looping
over all demand paths that start at u. If a demand path goes to the left and its internal length
is at most the internal length of the minimal demand pair going left, the other endpoint of
this path is (one of) the closest P -neighbour(s) of u. If this other endpoint is a leaf, this leaf’s
neighbour is (one of) the closest P -neighbour(s) of u instead of the leaf itself. We do the same
for demand paths to the right.

The auxiliary graph. We create an auxiliary graph for each of the found P -neighbours.
Without loss of generality, assume that the current closest P -neighbour z of u lies to the left of
u. We find the path between z and the left extremity of C. The nodes on this path, and their
leaves, will be nodes in the auxiliary graph. We call these nodes in the auxiliary graph the “left”
nodes for now.

We then find the path between u and the right extremity of C. The nodes on this path and
their leaves are nodes in the auxiliary graph as well. We call these the “right” nodes.

We add an edge between a node on the left and a node on the right if a demand pair exists
between the corresponding nodes in the original graph. We do this by looping over all demand
pairs.

We use Edmonds’s algorithm [15] again to compute a matching in this auxiliary graph. Once
we find a matching of sufficient size, we contract the edge connected to u and stop the reduction
rule.

12This running time could be improved using the matching algorithm by Micali and Vazirani [38].
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Running time. The analysis of the running time of this rule is similar to the analysis used
for the previous rule. Finding whether u covers C can be done in O(n + p) time. Finding
the O(min(n, p)) closest P -neighbours requires O(p) time. Creating the auxiliary graph takes
O(n+ p) time, and computing the matching O(n2p) time 13. For a single L2-leaf, the reduction
rule requires O(min(n, p) · n2p) time.

An application of the rule. This reduction rule also needs to know the caterpillar component
for each node. As the previous rule already computed this information, we do not have to
calculate it here.

We apply the rule on every L2-leaf in the instance. This results in a total running time of
O(min(n, p) · n3p). This rule does not run differently in later applications, as it depends on k.

5.4.13 Reflection

In hindsight, we would have refrained from trying to implement the reduction rules smartly. The
smarter implementations include getting rules to perform multiple modifications per application,
restricting the part of the instance looked at during later applications, and restricting the number
of checked combinations of instance elements like Reduction Rule 4.1.3 does. We fear that most
rules that do not depend on the value of k have an unfair advantage over rules that do depend
on k, as we could not improve those in any way.

6 Instance Generation

This research uses both instances generated from scratch with different methods and instances
generated from instances for other problems. The following subsections discuss ways to generate
trees, demand pairs, and complete instances from other instances. We explain which existing
instances and which parameters we used during instance generation in Subsection 7.2.

6.1 Trees Generation Methods

The three types of generated trees are random trees, caterpillars, and trees where many nodes
have a degree equal to three. Each tree used in this research is a labelled tree. This allowed us
to use Prüfer sequences to generate random trees.

6.1.1 Prüfer Trees

We wanted to use trees that are as random as possible, to use as a baseline for our experiments.
One way to create these trees is using a Prüfer sequence. These sequences were, for instance,
used by Prüfer in a proof of Cayley’s formula [49].

Theorem 5 (Cayley’s Formula).
For every positive integer n, the number of trees on n labelled nodes is nn−2.

We refer from now on to the trees created using a Prüfer sequence as Prüfer trees. Each tree
can be associated with a unique Prüfer sequence, and we can directly convert them to and from
each other. A Prüfer sequence for a tree with n nodes contains n − 2 integers, each having n
possible values. Thus, there are nn−2 unique Prüfer sequences, and each can be associated with
one of the nn−2 labelled trees that are possible on n nodes. When generating a Prüfer sequence
uniformly at random, each of these nn−2 trees has an equal probability of appearing.

13We can again improve the running time of the matching algorithm to O(
√
np) using the algorithm by Micali

and Vazirani [38]. Since the auxiliary graph is bipartite, we can achieve the same faster running time using the
algorithm by Hopcroft and Karp [26].
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6.1.2 Caterpillars

Another type of tree used in our experiments is a caterpillar.

Different kernel sizes. Both Guo and Niedermeier [23] and Bousquet et al. [4] proved in
their respective articles a kernel for Multicut on caterpillars. Only after discussing this kernel,
they moved on to the kernel for Multicut on general trees. The bound on the kernel size on
caterpillars differed in both papers from the bound on the kernel size on general trees. Guo and
Niedermeier showed a kernel of size O(k2k+1) for caterpillars, and one of size O(k3k) for general
trees. Bousquet et al. proved a kernel of size O(k5) for caterpillars and one of size O(k6) on
general trees. This difference between these bounds makes caterpillars an exciting choice as a
tree type.

Restriction on applicable reduction rules. Another argument for using caterpillars is that
not all reduction rules can apply to caterpillars. For instance, Reduction Rule 4.1.7 (Overloaded
Caterpillar) only works when there are multiple caterpillar components in an instance. This is
not the case in a caterpillar. Another example is Reduction Rule 4.1.8 (Overloaded L3-leaves).
This rule requires the presence of L3-leaves in the instance, but caterpillars do not have any.

Observation 6.
The number of I3-nodes in a Multicut in Trees instance cannot increase when applying one
of the two studied kernelisation algorithms.

Proof. The modifications that remove demand pairs or modify them do not change the type of
any nodes. It suffices to handle edge contractions.

When contracting an edge between an internal node and a leaf, the number of internal
nodes amongst the neighbours of the internal node does not increase. We only consider an edge
contraction between two internal nodes.

Let us try to create an I3-node w during an edge contraction between nodes u and v. After
the edge contraction, we want w to have at least three neighbours that are internal nodes. Let
du be the number of neighbours of u that are internal nodes, let dv be the number of neighbours
of v that are internal nodes, and let dw be the number of neighbours of w that are internal nodes.
We get dw = du + dv − 2. The minus two is because we counted u as an internal neighbour of
v, and the other way around.

To get dw ≥ 3, we must have du + dv − 2 ≥ 3. This can be rewritten to du + dv ≥ 5. This
can only be the case when either du ≥ 3 or dv ≥ 3. So, at least one of u and v should have been
an I3-node.

In conclusion, we cannot create an I3-node during an edge contraction where both the end-
points of the contracted edge are not I3-nodes. The number of I3-nodes in an instance thus
cannot increase.

There must be at least one I3-node in an instance for L3-leaves to exist. Caterpillars, by
definition, have zero I3-nodes, and according to Observation 6, we do not create any I3-nodes
during the execution of a kernelisation algorithm. To conclude, Reduction Rules 4.1.7 and 4.1.8
will never be applicable on caterpillars.

Creating caterpillars. To create a caterpillar, we randomly pick how many internal nodes
we will use for the backbone. The remaining nodes will be leaves.

We do not want the caterpillars to consist mainly of internal nodes, as such a tree would
greatly resemble a path. In a path, a Multicut in Trees instance would probably not be
challenging to solve.

To ensure the number of internal nodes is not too large, we do not pick this number uniformly
at random. Instead, we use a beta distribution with parameters α = 2 and β = 8. Figure 4
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Figure 4: A beta distribution with α = 2 and β = 8.

shows this distribution. We chose to use a beta distribution because it gives us plenty of influence
over its shape and thus the caterpillar backbone length. It is perfect for mainly getting small
backbone sizes while still sometimes encountering larger backbone sizes.

To create a caterpillar with n nodes, we pick a random number i from the beta distribution
described above, scale i to the interval [0, n− 4], and round it to the nearest integer. We scale
i to at most n − 4 because we create four nodes manually. We create two I1-nodes manually
and give them each a leaf. We then create the path between the two I1-nodes going through i
I2-nodes. Finally, we create n− i− 4 leaves and connect them each to any of the internal nodes
uniformly at random.

6.1.3 Degree3 Trees

The last generated type of instance is the Degree3 tree.

Restriction on applicable reduction rules. One of the reasons to use caterpillars was that
we cannot apply all reduction rules on caterpillars. We used a similar argument as motiva-
tion for Degree3 trees. For instance, Reduction Rule 4.1.7 (Overloaded Caterpillar) only works
when there are multiple caterpillar components. For these to exist, there must be multiple I2-
nodes, and they should not be all connected to each other. Some reduction rules, like Reduction
Rule 4.2.6 (Bidimensional Dominating Wingspan) and Reduction Rule 4.2.7 (Generalised Dom-
inating Wingspan) require an instance to have L2-leaves. This means there need to be I2-nodes
in the instance. We designed the Degree3 trees to have as few I2-nodes as possible.

Description of Degree3 trees. We can compare Degree3 trees best to complete binary trees.
A binary tree has one obvious I2-node: the root node. Degree3 trees differ from binary trees
because the root note has three neighbours instead of two.

Figure 5 shows an example of a Degree3 tree with 17 nodes. In this example, we have five
I1-nodes: 4, 5, 6, 7 and 8, zero I2-nodes, and three I3-nodes: 1, 2 and 3. All leaves: 9, 10, 11,
12, 13, 14, 15, 16 and 17 are L1-leaves. Note that Degree3 trees can still have an I2-node. In
our example, if we remove node 17, node 3 would become an I2-node. However, there can not
be more than one I2-node.

Creating a Degree3 tree. We now show how to create a Degree3 tree with n nodes. We use
a Queue 14 [45] to make sure nodes get neighbours in an order such that the levels of the tree

14https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.queue-1?v
iew=net-5.0
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Figure 5: A Degree3 tree with 17 nodes.

get filled from left to right. We start by creating the root node and add it to the Queue. We
also manually create the first neighbour of the root node and add it to the Queue. Then, we
repeat the following process until we have reached the required number of n nodes. Grab a node
v from the Queue. Create a neighbour for v and add it to the Queue. If the current number of
nodes in the tree is smaller than n, create another neighbour for v and add it to the Queue.

Note that this generation method, in contrast to the other two, does not include any ran-
domness.

6.2 Demand Pairs Generation Methods

We also have three possibilities to generate demand pairs: uniformly at random, using a length
distribution and generation through a solution.

6.2.1 Uniformly at Random Demand Pairs

The most obvious way to generate a demand pair given a tree is by picking two distinct nodes
in the tree uniformly at random and mark them as the endpoints of this demand pair. That is
exactly how this method works.

Creating demand pairs uniformly at random. Consider we want to create demand pairs
in a tree with n nodes. For each demand pair, we pick a number i ∈ Z in the interval [1, n]
uniformly at random. Then, we pick another number j ∈ Z in the interval [1, n−1] uniformly at
random. If j ≥ i, we increment j. After this step, j lies in the interval [1, i− 1] ∪ [i+ 1, n]. We
then create a demand pair between nodes i and j and repeat this process until we have created
enough demand pairs.

6.2.2 Demand Pairs from a Length Distribution

The second way to generate demand pairs is using a distribution on the preferred demand path
length. We created this method because we were interested in how the different algorithms work
on instances with mostly short or mostly long demand paths. A reduction rule like Reduction
Rule 4.1.6 works best when there are many demand paths of length two. On the other hand,
rules like Reduction Rules 4.2.6 and 4.2.7 can benefit from longer paths as the wingspan of a
node can then be larger.

Explanation of the method. The demand path range distribution consists of tuples of a
range of numbers and the chance for that range to occur. To generate a demand pair, pick one
of these ranges from the distribution according to their respective probabilities. The result from
this distribution is a range for the length of the current demand path. Say we want the length
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of this path to be in the interval [s, t]. The method then picks a pair of nodes, such that the
path between those two nodes is in this interval.

Implementation of the method. The method needs to know the path between every pair of
two nodes. This knowledge allows it to immediately pick all possible node pairs, given a certain
path length. Then, for each demand pair, it picks a path length range. It grabs all possible
node pairs in this range. If there are not enough demand pairs (by default: ≤ 4), it expands the
search range by one on both sides until it has found enough possible node pairs. Then, it grabs
one of these pairs uniformly at random and denotes these nodes as the endpoints of the current
demand pair.

6.2.3 Demand Pairs Through a Solution

In contrast to the two methods described above, this method gives us direct influence on the
value of parameter k. It works by creating demand paths through a solution of size k. We
determine the solution by picking k edges in the tree uniformly at random. Then, we create k
edge-disjoint demand paths, each going through precisely one of these edges. Finally, we create
the remaining p− k demand pairs.

Creating the first k edge-disjoint demand paths. We create edge-disjoint demand paths
rather trivially. Consider an edge e in the solution between nodes u and v. Let P ′ be the set
of demand paths that we have already generated. We say that all edges on the paths in P ′ are
forbidden edges. The edges in the solution are forbidden as well. Create a set U with nodes, such
that, for every node u′ ∈ U , the path between u and u′ does not go over any of the forbidden
edges. Similarly, create a set V with nodes reachable from v without going over forbidden edges.
Pick a node u′ from U and a node v′ from V uniformly at random. Then, create a demand pair
between u′ and v′. Note that the corresponding demand path goes over e, no other solution
edge, and does not intersect any other demand path.

An example of creating k edge-disjoint demand paths. We give an example of creating
three demand pairs through a solution of size two in Figure 6. The edges in the solution are
coloured red in Subfigure 6a.

The first demand path we want to create goes over the edge between nodes 3 and 5. Let
u be node 3, and v node 5. We find U = {1, 2, 3, 4} and V = {5, 6, 7}. Assume we pick node
u′ = 1 and v′ = 6. The first demand pair goes from node 1 to node 6; see Subfigure 6b.

For the second demand pair, say u is node 6, and v is node 8. We then find U = {6, 7} and
V = {8, 9, 10}. Assume we pick nodes 7 and 8 as endpoints for the second demand pair; see
Subfigure 6c. We have now generated two edge-disjoint demand paths through a solution.

We first explain how to generate the remaining demand paths before we finish this example.

Creating the remaining demand paths. Now we show how to create the remaining p− k
demand paths. The only requirement is that these go through at least one of the edges in the
solution.

For each edge e in the solution between nodes u and v, we create a set U again, with all
nodes that we can reach from u without going through e. Similarly, we create a set V with
nodes reachable from v.

Then, for each demand pair, pick an edge in the solution uniformly at random. Pick a
node u′ from the corresponding set U and a node v′ from the corresponding set V , uniformly
at random. Finally, create a demand pair between u′ and v′, and repeat this process for the
remaining demand pairs.

38



5

3 6

8

74

2

1

9

10

(a) A tree for the example. The edges in the solution are coloured red.
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(b) We have generated the demand pair for the left solution edge and coloured its endpoints and path
in blue.
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(c) We have generated demand pair for the right solution edge and coloured its endpoints and path in
green.
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(d) We have generated the demand paths through the solution. We randomly selected the left solution
edge for the current demand path to pass through, generated it, and coloured its endpoints and path in
yellow.

Figure 6: An example of creating demand pairs through a solution of size 2.
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Example of creating the remaining p − k demand paths. We continue on the example
above. We have already generated two of the three demand pairs, which Subfigure 6c shows. We
need to create one additional demand pair. Assume we pick the left solution edge as the edge
the final demand path must go through. Let u be node 3, and v node 5. We find U = {1, 2, 3, 4}
and V = {5, 6, 7, 8, 9, 10}. Assume we pick node 4 from U and node 10 from V . We create a
demand path through these two nodes; see Subfigure 6d. This concludes the generation of the
three demand pairs through a solution of size two.

A limitation of this method. The way we generate edge-disjoint demand paths in this
method has a significant limitation. A generated demand path can restrict the other demand
paths that still must be generated by a lot.

Take a look at Figure 7. We have a solution of size four, displayed in red. We already
generated the first demand path and gave it a blue colour. The three other solution edges are
between nodes 6 and 9, between nodes 7 and 9, and between nodes 8 and 9. The demand paths
we generate through these edges will only consist of the solution edges themselves. They cannot
go anywhere else as the first demand path blocks node 9’s incident edges. These demand paths
will never use the whole part of the graph to the right of the blue demand path.

An alternative would be to allow overlap between the demand paths. We tried this method,
but it resulted in an optimal solution that was, in some cases, way smaller than we expec-
ted. Sometimes, the size of the solution was less than half of the expected size. Retrying the
generation method until we found a solution almost as large as the expected solution was also
unsuccessful. Sometimes, we needed over 10,000 trials to find an acceptable solution size. We
opted to use the generation method described above, and we hope that its limitation does not
result in weird demand paths very often.

6.3 Instance Generation from Instances of Other Problems

Besides generating Multicut in Trees instances from scratch, we also used two ways to gener-
ate them from instances for other problems: Vertex Cover and CNF-SAT. Both these ways
generate the tree and demand pairs, so we do not combine them with the generation methods
described above.

6.3.1 Instances from Vertex Cover Instances

The way to generate Multicut in Trees instances from Vertex Cover instances is based
on the NP-hardness proof for Multicut in Trees by Garg et al. [21]. In Section 3 of their
article, they showed the equivalence of Vertex Cover on general graphs and Multicut on
trees of height one and unit capacities.

Constructing the instance. Let G = (V,E) be a general graph. Construct a star graph H
with an internal node u0 and a leaf ui for each vi ∈ V . For each edge e ∈ E, create a demand
pair in H. Assume e has vi and vj as endpoints. We create a demand pair in H between ui and
uj . This concludes the creation of the Multicut in Trees instance. The optimal k for this
Multicut in Trees instance is equal to the size of the minimum Vertex Cover in G.

6.3.2 Instances from CNF-SAT Instances

Generating a Multicut in Trees instance from a CNF-SAT instance is slightly more com-
plicated than the previous generation method. This method is based on another NP-hardness
proof for Multicut in Trees, this time by Călinescu et al. [8]. In Theorem 11 of their art-
icle, they proved Multicut on binary trees is NP-hard using a reduction from 3-SAT. We
have taken a more general approach by creating the instances from CNF-SAT instances, where
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Figure 7: An example of the limiting factor of generating the edge-disjoint demand paths used
in the demand pair generation method that generated demand pairs through a solution. A part
of the tree is visible here. The tree continues where we placed triple dots. The solution has
three edges, coloured red: between 1 and 2, between 6 and 9, between 7 and 9, and between 8
and 9. We generated the first demand path through the edge between 1 and 2. Assume it goes
from 1 to 14. The figure displays this demand path in blue. The three demand paths that we
need to generate through the other three solution edges will only have one edge, as they cannot
go anywhere from node 9.

clauses can all have any size. The generated tree is still a binary tree. We first explain how we
create a Multicut in Trees instance from a 3-SAT instance. After that, we explain how the
generation method for CNF-SAT differs.

Creating the instance from 3-SAT. Given a set of n variables x1, . . . , xn and m clauses
c1, . . . , cm. We create a structure for each variable, a different structure for each clause, and
connect them to form a tree. We took the following examples from the article by Călinescu et
al. [8].

The variable structure. Subfigure 8a shows the structure for a variable xi. We have a node
representing xi and one representing ¬xi. We connect them to a parent node and create a
demand pair between xi and ¬xi.

The clause structure. For each clause, we create a structure like the one in Subfigure 8b.
The clause shown there is the clause ci = (xj ,¬xk,¬xl). There is a demand pair between xj
and ¬xk, and one between ¬xl and the neighbour of xj and ¬xk.

Creating the tree. We create the total tree by connecting all clause structures and all variable
structures. We connect all variable structures to a backbone. Likewise, we connect all clause
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structures to a different backbone. Finally, we connect these two backbones through a root
node. They are all connected in such a way that the result is a binary tree.

Adding more demand pairs. Finally, we add demand pairs between the nodes in the variable
structures and the clause structures. Let I = c1 ∧ c2, where c1 = (x1,¬x2, x3) and c2 =
(¬x1, x2, x3) be a 3-SAT instance. We create a demand pair between node x1 in the variable
structure of x1, and node x1 in the clause structure of c1. We then create a demand pair
between node ¬x2 in the variable structure of x2, and node ¬x2 in the clause structure of c1.
Similarly, we create a demand pair for x3 in c1, and for all variables in c2. Subfigure 8c shows
the Multicut in Trees instance generated from the 3-SAT instance I.

From the proof by Călinescu et al., we know that the optimal solution size for this
Multicut in Trees instance is n+2m, where n is the number of variables, and m the number
of clauses.

Creating the instance from CNF-SAT. The generation of a Multicut in Trees in-
stance from a CNF-SAT instance follows roughly the same lines. The only difference is in the
generation of the clause structures.

Since clauses can be smaller or bigger than three, the structures for the clauses themselves
also need to be smaller or bigger. The generation method for these structures is similar to the
method for structures for clauses of length three. Figure 9 contains an example of a structure
for a clause of length five.

As the structures can be smaller or bigger, the number of demand pairs in each structure can
also be smaller or bigger. The proof by Călinescu et al. can easily be adapted to work on these
differently sized structures if we add a demand pair between every two nodes on the same level
of the structure. For the structure of a clause ci, with length li, we add li − 1 demand pairs.

This also influences the size of the optimal solution for the Multicut in Trees instance.
Remember that for instances created from 3-SAT instances, the optimal solution for the
Multicut instance is n+2m, where n is the number of variables, and m the number of clauses.
Let li be the length of clause ci, for i = 1, . . . ,m. Note that n + 2m = n +

∑m
i=1(li − 1) for a

3-SAT instance. We can use the right part of this equation to compute the optimal solution
size for a Multicut in Trees instance from a CNF-SAT instance.

Adding randomness. We added one more step during the conversion process. When creating
a clause structure, we do not necessarily attach the nodes corresponding to the variables in a
clause to the backbone of the clause in the order they are present in the clause itself. Instead,
we shuffle the order of the nodes and attach them to the backbone in this random order. We do
the same when we attach variable structures and clause structures to their respective backbones.
The shuffling does not influence the working of any algorithm, and the proof by Călinescu et
al. still holds, but it still gave us slightly more variation in the instance trees.

7 Experimental Setup

To measure the performance of the kernelisation algorithms, we consider both the size of the
resulting kernel and the time spent to compute that kernel. The following subsection describes
how we measured the time spent by each algorithm and presents the exact instances we used.

7.1 Counting Operations

One of the obvious performance measurements for an algorithm is its running time. In theoretical
research, we can analyse the running time using the Big O notation. For more practical studies,
like this one, that does not always suffice.
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xi x̄i

(a) The structure for a variable xi. The bar on
variables in a node represents the logical not (¬).
The dotted line represents a demand pair between
xi and ¬xi.

x̄l

xj x̄k

(b) The structure for a clause ci = (xj ,¬xk,¬xl).
The bar on variables in a node represents the lo-
gical not (¬). The dotted lines represent demand
pairs.

x1 x̄1 x2 x̄2 x3 x̄3

x3

x1 x̄2

x3

x̄1 x2

(c) An example of the binary tree for Multicut in Trees generated for the 3-SAT instance c1 ∧ c2,
where c1 = (x1,¬x2, x3) and c2 = (¬x1, x2, x3). The bar on variables in a node represents the logical
not (¬). We do not explicitly show the demand pairs in this example. The ones in the structures for
each variable and each clause should be obvious. There are seven such demand pairs. Then, there are
six more demand pairs: between x1 in the variable structure of x1 and x1 in the structure of the first
clause, between ¬x2 in the variable structure of x2 and ¬x2 in the structure of the first clause, between
x3 in the variable structure of x3 and x3 in the structure of the first clause, and likewise three for the
second clause.

Figure 8: Structures for variables and clauses for the generation of a Multicut in Trees
instance from a 3-SAT instance, and an example of the result of such a conversion.
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Figure 9: The structure for a clause ci = (x1, x2,¬x3,¬x4, x5), as used during the generation
of a Multicut in Trees instance from a CNF-SAT instance. The bar on variables in a node
represents the logical not (¬). The dotted lines represent demand pairs.

The stopwatch approach. An easy alternative is using a stopwatch to measure the time
spent by an algorithm. This method has its limitations, like external factors. These include, for
instance, background tasks in the operating system and the hardware the algorithm runs on.

System-independent metrics. Angriman et al. [2] wrote a paper about experimental re-
search in network analysis. In Section 4.6, they wrote about performance metrics. A category
of these is system-independent metrics. These metrics should give the same result, regardless of
the system they run on. Other external factors should also not influence the measurements.

Examples of system-independent metrics. McGeoch [37] gave an excellent example of a
system-independent metric. They dedicated Chapter 3 of their book to what one should measure
during practical algorithm analysis. More specifically, Section 3.1.1 is about adding counters to
the source code to measure dominant operations. For instance, when measuring the performance
of a sorting algorithm, the number of comparisons it makes can be a good measure. Sadly, for
the kernelisation algorithms studied in this research, no such single dominant operation exists.

We still use counters in this research to measure the time spent by each algorithm as an
alternative to the stopwatch approach. These counters count the number of operations performed
on custom data structures. We explain these data structures in the following subsection.

Besides being reproducible on other machines, another advantage of using counters is that
the measured performance is entirely deterministic. We do not need to do multiple repetitions
of the same experiment.

Hardware. Just for the sake of completeness: all experiments were conducted on the same
machine running Windows 10 with an Intel Core i7-7700K running at 4.7GHz and 32GB of
RAM. We implemented each algorithm without parallelism.

7.1.1 Data Structures

We created wrappers around existing data structures to make counting the number of operations
more straightforward. Additionally, we created an object called a Counter to keep track of
how many operations the algorithm performed.
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The CountedList. For instance, we implemented a CountedList. This data structure
uses a List to store elements, and it exposes most methods that a List itself also exposes.
For example, an element can be added to a CountedList using the Add method. However,
this method requires an extra parameter: a Counter object. The CountedList updates the
Counter and adds the new element to its internal List. A table with how many operations
are counted for each method of the CountedList can be found in Table 4 in Appendix B.

We also used a counted version of a Dictionary and the OrderedDictionary explained
in Subsection 5.1. These are called the CountedDictionary and the CountedCollection
respectively. Tables with the number of operations that get counted for the methods of these
data structures are also present in Appendix B.

Almost every data structure we used in our implementation is one of these Counted data
structures.

Enumerating over the custom data structures. Enumerating over the elements in the
Counted data structures is possible using a foreach-loop. We can ask the data structures
for a CountedEnumerable to enumerate over. This enumerable automatically updates the
counter by one for each accessed element.

7.1.2 Correctness

We are reasonably confident the counters work in most cases. One exception we know of is when
a reduction rule computes many matchings. In that case, we do not count enough operations.

Consider, for instance, Figure 10, where we tested the counters on instances with caterpillars
with 384 nodes and demand pairs through a solution of size 50, with the algorithm by Guo and
Niedermeier [23]. In Subfigure 10a, we see the number of operations, and in Subfigure 10b the
number of ticks. One tick is 100 nanoseconds. There is no one-to-one correspondence between
the counters and the ticks, but the shapes of both graphs are very similar.

The results on the same instances, but using the algorithm by Bousquet et al. [4] are present
in Figure 11. Here, the shape is still similar, but it becomes clear that reduction rules with
matchings do not count enough operations. Even so, we think the operation counters are good
enough to use in our experiments.

Finally, we show one result that is frankly a mess. On the instances generated from the
Vertex Cover instances, especially when there are 385 nodes, there are significant differences
between the measured number of operations and ticks. The differences can be seen in Figure 39
in Appendix C. We strongly believe that the computation of matchings causes the difference
between the ticks and operations, so we do not worry too much about the differences.

7.2 Used Instances

We explained how we generate instances in Section 6. This subsection discusses the parameters
we used for each of these instances and which existing instances we used.

7.2.1 Instances from Scratch

The instances we generated ourselves have a number of nodes and demand pairs ranging between
128 and 1,024 each, in steps of 128. So, we have 64 different combinations of the number of nodes
and the number of demand pairs. We also used every combination of the three tree generation
methods and the three demand pair generation methods.

For demand pairs through a solution, we used five different values for k: 5, 10, 20, 50 and
100. How we used demand pairs generated using the length distribution requires a bit more
explanation.
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(a) The number of operations.
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(b) The number of ticks.

Figure 10: Box plots of the number of operations and ticks per reduction rule in the algorithm
by Guo and Niedermeier [23] to compute kernels on caterpillars with 384 nodes and demand
pairs generated through a solution of size 50. For each number of demand pairs, there were 50
experiments.
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Figure 11: Box plots of the number of operations and ticks per reduction rule in the algorithm by
Bousquet et al. [4] to compute kernels on caterpillars with 384 nodes and demand pairs generated
through a solution of size 50. For each number of demand pairs, there were 50 experiments.
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Demand pairs using the length distribution. We created instances with mostly short
demand paths and ones with mostly long demand paths. Short demand paths are paths with a
length in the interval [2, s]. The length of long demand paths lies in the interval [l,m], where
m is the longest path possible in the instance. The values of s, l and m differ per instance type
and size.

Approach. To determine s, l and m per instance type and size, we first computed the trees
for all instances. In these trees, we computed the length of the path for every pair of two nodes.
We used this data to create a histogram per tree type and size. We then used these histograms
to determine s, l and m. We tried to create a logical formula for each type of tree to compute
s and l. The value of m for each tree type and size equals the highest value in the histogram.

Prüfer trees. We use at the expected diameter of Prüfer trees. Since these are random trees,
their expected diameter is 3.342171

√
n, where n is the number of nodes in the tree. Szekeres [52]

gave this value in a paper from 1983. For l, we settled on approximately three-quarters of this
value. For s, we used slightly over 10% of this value. Ultimately, for Prüfer trees, we use
s = 0.35

√
n and l = 2.5

√
n, rounded to the nearest integer.

Caterpillars. We generate the size of the backbone of our caterpillars using a beta distribution.
Since we only add leaves to this backbone, we use the distribution to develop sensible values for s
and l. For this, we use the inverse regularised beta function Ix(α, β). We wanted the short paths
to be at most approximately 5% of the backbone length and long paths to be bounded by about
75% of the backbone length. We computed xs in Ixs(2, 8) = 0.05 and xl in Ixl

(2, 8) = 0.75. This
resulted in xs ≈ 0.0410232 and xl ≈ 0.2722695. For caterpillars, we used s = xsn and l = xln,
rounded to the nearest integer.

Degree3 trees. Since we generate Degree3 trees without randomness, it should be easy to
determine the formulas for them. We can view a Degree3 tree as three binary trees attached
by their respective roots to a general root node. We say that the expected number in each of
these three binary subtrees is n−1

3 . Because we do not know how many nodes the lowest level in
each subtree contains, we compensate for this by dividing the number of nodes in this subtree
by two. This division ensures that we do not consider the nodes in the lowest layer. We can use
the base-2 logarithm to compute the height of this subtree. The expected height of the tree is
one longer: the edge between the root of the binary subtree and the general root of the tree. A
long path can be twice as long as this number by existing between two leaves in two different
binary subtrees. This results in the following calculation for a long path:

2(log2

((
n−1
3

)
2

)
+ 1) = 2 log2

(
n− 1

3

)
− 2 log2(2) + 2

= 2 log2

(
n− 1

3

)
.

For s, we used 35% of this value, and for l 85%. We gathered the percentages using the
histograms. So, for Degree3 trees, we use s = 0.7 log2

(
n−1
3

)
and l = 1.7 log2

(
n−1
3

)
.

Finishing the instances. Once we computed s and l for each tree type and size, we recom-
puted the instances. In these instances, the trees are the same as those used to compute the
path length histograms.

For half of the instances, we preferred short demand paths. We told the algorithm to use the
distribution for short paths for 90% of the demand pairs and the distribution for long paths for
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10% of the demand pairs. For the other half of the instances, we used the distribution for short
paths for 10% of the demand pairs and the distribution for long paths for 90% of the demand
pairs.

Randomness and seeding. We seeded all experiments for repeatability. The tree and de-
mand pair generation methods used their own random number generator with a different seed.
No two seeds used should be the same.

We generated the initial random seeds using the integer set generator from random.org 15 [50].
We generated a single set with 10,000 unique random integers in the range of 1 to 10,000,000.

Multiple experiments per instance type and size. As mentioned before, we did not run
multiple repetitions of the same experiment. However, we did use multiple instances with the
same generation methods and sizes. For instance, for Prüfer trees with 256 nodes and 896
demand pairs generated through a solution of size 20, we performed 50 experiments. Let the
initial seed for tree generation be t, the initial seed for demand pair generation d, and let E
be the number of experiments to run. The experiments then used t + i and d + i as seed, for
0 ≤ i < E. We give an overview of how many experiments we ran for each combination of tree
generation method and demand pair generation method in Table 1.

7.2.2 Instances from Other Problems

The other types of instances we used are the ones generated from instances for Vertex Cover,
3-SAT and CNF-SAT.

Vertex Cover. We used the simple G(n,m) Erdős-Rényi model [17] to create our own
graphs to use as Vertex Cover instances. This model creates a general graph with n nodes
and m edges. For these graphs, we used nodes and edges in the range between 128 and 1,024
in steps of 128, just like the generated instances explained in the previous subsection. For each
combination of number of nodes and edges, we created 100 graphs that were each converted to
a Multicut in Trees instance. We also used seeds from the set of random integers explained
above to generate these graphs.

3-SAT and CNF-SAT. For the 3-SAT and CNF-SAT instances we only used existing
instances. All used instances are from the SATLIB library 16, by Hoos and Stützle [25]. In

15https://www.random.org/integer-sets/
16The original website as used in the article is not used anymore. The library can still be found at https:

//www.cs.ubc.ca/~hoos/SATLIB/index-ubc.html

Demand pair
generation method

Tree generation
method Prüfer trees Caterpillars Degree3 trees

Uniformly at random 100 100 100
Length distribution 100 100 100
Through a solution 50 50 50

Table 1: The number of experiments run for each combination of tree generation method and
demand pair generation method.
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particular, we used the uniform random 3-SAT instances 17. For CNF-SAT we used instances
created by Hooker 18 that were part of the DIMACS benchmark suite for SAT problems 19 [30].

We divided the instances into categories based on their number of nodes. We present these
categories for the 3-SAT instances in Table 2 and for the CNF-SAT instances in Table 3.

7.2.3 Determining the Optimal Solution

We do not know the size of the optimal solution for every used instance. Since some reduction
rules use the value for k, we thought it fair to let k equal the optimal solution.

If we provided the reduction rules with a value for k that is smaller than the optimal value,
all algorithms would probably stop because of Reduction Rule 4.1.5 (Disjoint Paths) before
reaching the smallest kernel. On the other hand, if the value of k is too big, some reduction
rules might not decide to perform a modification that they would have performed with a smaller
value of k.

Finding the optimal solution. To find the optimal solution, we used the Gurobi MIP
solver 20 [24]. Let I be a Multicut in Trees instance, consisting of a tree T = (V,E) and a
set P of demand paths. We create a variable ei for each edge in E. This variable ei will be 1
if we include its corresponding edge in the solution for I and 0 if we do not include it. We also
create a linear expression Pj for each demand path in P . Each Pj is the sum of all variables ei
that correspond to the edges on the demand path that Pj represents.

17https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/RND3SAT/descr.html
18https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/DIMACS/JNH/descr.html
19The original site is no longer available. An archive can be found at: http://archive.dimacs.rutgers

.edu/pub/challenge/satisfiability/benchmarks/cnf/
20https://www.gurobi.com/

Category Number Number of Original instance name(s)of nodes instances

(u)uf50-218 1,507 1,000 + 1,000 uf50-0x.cnf, for x = 1, . . . , 1, 000
uuf50-0y.cnf, for y = 1, . . . , 1, 000

(u)uf75-325 2,249 100 + 100 uf75-0x.cnf, for x = 1, . . . , 100
uuf75-0y.cnf, for y = 1, . . . , 100

(u)uf100-430 2,979 1,000 + 1,000 uf100-0x.cnf, for x = 1, . . . , 1, 000
uuf100-0y.cnf, for y = 1, . . . , 1, 000

(u)uf125-538 3,727 100 + 100 uf125-0x.cnf, for x = 1, . . . , 100
uuf125-0y.cnf, for y = 1, . . . , 100

(u)uf150-645 4,469 100 + 100 uf150-0x.cnf, for x = 1, . . . , 100
uuf150-0y.cnf, for y = 1, . . . , 100

(u)uf175-753 5,217 100 + 100 uf175-0x.cnf, for x = 1, . . . , 100
uuf175-0y.cnf, for y = 1, . . . , 100

(u)uf200-860 5,959 100 + 99 uf200-0x.cnf, for x = 1, . . . , 100
uuf200-0y.cnf, for y = 1, . . . , 99

(u)uf225-960 6,659 100 + 100 uf225-0x.cnf, for x = 1, . . . , 100
uuf225-0y.cnf, for y = 1, . . . , 100

(u)uf250-1,065 7,389 100 + 100 uf250-0x.cnf, for x = 1, . . . , 100
uuf250-0y.cnf, for y = 1, . . . , 100

Table 2: Categories used for the 3-SAT instances, their size, the number of instances in each
category, and the original instance names.
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Category Number Number of Original instance name(s)of nodes instances

8,175-8,323 nodes 8,175-8,323 19 jnh20x.cnf, for x = 2, . . . , 9
jnh2y.cnf, for y = 10, . . . , 20

8,651-8,783 nodes 8,651-8,783 20 jnhx.cnf, for x = 2, . . . , 20
jnh201.cnf

9,129-9,707 nodes 9,129-9,707 11
jnh1.cnf

jnh30x.cnf, for x = 1, . . . , 9
jnh310.cnf

Table 3: Categories used for the CNF-SAT instances, their size, the number of instances in
each category, and the original instance names.

The problem then becomes
minimise

∑
ei∈E

ei

s. t. ∑
e∈Pj

e ≥ 1 ∀ Pj ∈ P

ei ∈ {0, 1} ∀ ei ∈ E.

We used the resulting objective value directly as k.

8 Results

This section presents the main results obtained in our experiments and answers the questions
we posed in Subsection 1.2. Appendix C contains additional figures for some results. We refer
to the corresponding figures if this is the case.

Throughout this section, we refer to the algorithm by Guo and Niedermeier [23] as the
GN-algorithm. We refer to the algorithm by Bousquet et al. [4] as the BQ-algorithm.

We also abbreviate the description of the instances. To talk about a set of instances, we
use Prüfer, Caterpillar and Degree3 to indicate the tree type in these instances. After
a dash symbol (-), we use Random to indicate uniformly at random demand pairs, Short for
mostly short demand paths, Long for mostly long demand paths, TS for demand pairs generated
through a solution of undetermined size, and TSx for TS instances with a solution of size x. For
instance, we abbreviate instances with a caterpillar and demand pairs generated through a
solution of size 10 as Caterpillar-TS10. We can also refer to all instances with a Prüfer tree
simply by Prüfer and similarly for the other tree types and demand pair generation types.

We start by explaining the figures we use to visualise the results. Then, we show the required
results to answer each research question and give a final answer for each question.

8.1 Explanation of Figures

We explain what the figures we use to visualise our results represent and how we generated
them. We used two types of figures to show the size of a kernel. One is a box plot, and the other
a contour plot. We also used a contour plot to show the total running time of an algorithm over
a set of instances. To show the dominant reduction rule, we used a modified heat map. We can
also show a box plot for the dominant reduction rules.
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8.1.1 Box Plot for Kernel Size

The first figure we use to show the kernel size is a box plot.

The figure. In a single figure, the tree generation method, demand pair generation method,
algorithm and number of nodes in the original instance are constant. A single figure shows two
box plots: one for the number of nodes in the kernel (in blue) and one for the number of demand
pairs in the kernel (in orange). The x-axis shows the different numbers of demand pairs in the
original instance, and the y-axis the size of the kernel.

The computation of the box and whiskers. The box goes from the first quartile (Q1) to
the third quartile (Q3). The size of the box, Q3 − Q1, shows the interquartile range (IQR). It
thus contains half of the data points. Inside the box, a horizontal line represents the median
(Q2) of the data. There are two whiskers. One whisker starts at Q3 and goes to the largest
point in the data that is at most 1.5 times the IQR away from Q3. The other whisker starts at
Q1 and goes to the smallest point in the data that is at most 1.5 times the IQR away from Q1.
Diamonds mark any data points outside of the box and whiskers.

An example box plot computed using the GN-algorithm on Prüfer-Random can be
found in Figure 12.

A note on outliers. External factors do not cause any outliers that occur in our experiments.
The kernelisation algorithms cannot stop before they have applied all reduction rules exhaust-
ively. Another reason for the existence of outliers is related to the running time of an algorithm.
Since the counters we use to measure the running time of an algorithm are entirely deterministic
and unaffected by external factors, the outliers in running time figures are also legitimate.

Any outlier that occurred during our experiments can occur in the real world. We cannot
simply ignore them.
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Figure 12: A box plot showing the remaining number of nodes and demand pairs in kernels
computed by the algorithm by Guo and Niedermeier [23] on instances with a Prüfer tree with
768 nodes and uniformly at random demand pairs. For each number of demand pairs, there
were 100 experiments.
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8.1.2 Contour Plot for Kernel Size

The box plots described above only show the results for a constant number of nodes. We created
a contour plot to show more results in a single plot and get more insight into the results on all
instances of a particular type.

The figure. In a single contour plot, the tree generation method, demand pair generation
method and algorithm are still constant. We also cannot show both the number of nodes and
demand pairs in a kernel. To resolve this, we made one contour plot for the nodes and one for
the demand pairs in the kernels.

The x-axis of a contour plot shows the different numbers of nodes we tested, and the y-axis
the number of demand pairs. Per grid point, the contour plot shows the base-10 logarithm of
one plus the median of the instances corresponding to that grid point. These graphs are created
using the countour and contourf functions in the matplotlib library for Python 21 [28].

All contour plots that show the kernel size use the same logarithmic scale between 0 and 3,
in 20 steps of 0.15 each. The colours go from a dark blue at zero to a dark red at three. Using
the same scale for all plots makes it easier to see the results on different instances without first
interpreting the scale. We use a logarithmic scale to still show differences between “small” and
“tiny” kernels, and we do not mind putting both “large” and “huge” kernels in one category.

Subfigure 13a shows an example contour plot of the number of nodes in kernels computed
by the GN-algorithm on Prüfer-Random.

A note on the spread of the data. An obvious advantage of using the box plots over
the contour plots is that they show all data points instead of one summary point. This single
summary point in the contour plot tells us nothing about the spread of the data. To battle
this, we show a different contour plot with the base-10 logarithm of the IQR for each grid point
every time we use a contour plot to talk about kernel size. These plots are also logarithmic,
but they use a slightly different scale than the kernel size contour plots. The scale for the IQR
contour plots goes from 0 to 2.4, in 20 steps of 0.12 each. The colour of this different contour
plot indicates how certain we can be about the value displayed in the kernel size contour plot.
Subfigure 13b shows the IQR contour plot corresponding to Subfigure 13a.

21https://www.matplotlib.org/
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Figure 13: Contour plots of the number of nodes in the kernels computed by the algorithm by
Guo and Niedermeier [23] on Prüfer trees with uniformly at random demand pairs. Each grid
point is computed using 100 experiments.
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8.1.3 Contour Plot for Running Time

To show the running time of an algorithm, we used a contour plot as well. This plot is created
the same way as the plots for the kernel size, except that a grid point represents the base-10
logarithm of the median of the sums of all operations of all reduction rules. Since it contains
different data, the scale is different as well. It goes from 3.8 to 9 in 20 steps of 0.26 each. Note
that the scale does not start at zero. Subfigure 14a shows an example of such a contour plot for
the number of operations by the GN-algorithm on Prüfer-Random.

For each of these contour plots, we also used a different contour plot showing the IQR. These
plots use contour levels from 1.5 to 8.3, in 20 steps of 0.34 each. Subfigure 14b shows the contour
plot with the spread corresponding to Subfigure 14a.

8.1.4 Heatmap for Dominant Reduction Rule

To show which reduction rule takes the most time, we used a graph comparable to a heatmap.
We created a graph per combination of algorithm, tree generation method, and demand pair
generation method. The x-axis shows the number of nodes in the instance, and the y-axis the
number of demand pairs.

Each cell represents a grid point, with the colour corresponding to a particular reduction
rule. On the right, the legend indicates which colour corresponds to which reduction rule. Each
cell contains the fraction of the total time spent by the dominant reduction rule. We computed
this fraction as follows. For each reduction rule, we grabbed the median number of operations
it took to run. We then summed these medians to get the total “median” time. Finally, we
computed the fraction of time spent by each reduction rule by dividing its median time by the
total summed medians.

Figure 15 shows an example of such heatmap for the dominant reduction rules in the
GN-algorithm on Prüfer-Random.

Note that these graphs only show one reduction rule. If two rules take approximately equal
time, this is not clear from the heatmap. Such a situation could exist around 128 nodes and
384 demand pairs, or 128 nodes and 512 demand pairs in Figure 15, as between these two grid
points, the dominant reduction rule changes from Dominated Edge to Unit Path. If such a
situation exists, we can also show a box plot, which we explain in the following subsection.
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Figure 14: Contour plots of the number of operations to compute kernels using the algorithm by
Guo and Niedermeier [23] on Prüfer trees with uniformly at random demand pairs. Each grid
point is computed using 100 experiments.
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Figure 15: Dominant reduction rule in the algorithm by Guo and Niedermeier [23] on Prüfer
trees with uniformly at random demand pairs. The text in each cell is the fraction of the sum
of the median times of all reduction rules spent by the dominant reduction rule. These results
were obtained using 100 experiments per cell.

8.1.5 Box Plot for Dominant Reduction Rule

We also used box plots to show the number of operations per reduction rule. These box plots
are very similar to those that show the kernel size, as explained above. Instead of showing two
boxes per number of demand pairs, these plots show r boxes, where r is the number of reduction
rules in the algorithm that computed the results shown in that box plot.

Figure 16 shows an example box plot showing operations of the reduction rules in the
GN-algorithm on Prüfer-Random with 128 nodes.

Insight in k. A weakness of all our figures is that they provide no insight into the parameter
k. Exceptions are, of course, TS and instances from 3-SAT and CNF-SAT instances.

Since every experiment used the minimum solution size as k, which differs per instance, we
could not easily give a single value for k for a set of instances. Knowing how large k is can
influence the expectations for the size of a kernel.

We did not find an acceptable way to give insight into the value of k for our experiments
without making the figures unclear.

8.2 Easy and Difficult Instances

This subsection focuses on both time and kernel size results to identify easy and difficult
instances. It also discusses the instances generated from instances for Vertex Cover and
CNF-SAT, and whether these could be identified as easy, difficult, or somewhere in between.

Research Question 1. What types of instances are easy or difficult for the kernelisation
algorithms?

We briefly answer each subquestion before moving on to showing the results that led to these
answers.

Research Question 1a. For which types of instances does the kernelisation process result in
a small kernel in little time?
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Figure 16: Box plot of the number of operations per reduction rule in the algorithm by Guo and
Niedermeier [23] to compute kernels on Prüfer trees with 128 nodes and uniformly at random
demand pairs. For each number of demand pairs, there were 100 experiments.

TS5, TS10 and TS100 seem easy. Furthermore, there are more easy instances in
Caterpillar than in Prüfer. Prüfer contains, in turn, more easy instances than Degree3.

Instances in Caterpillar also take less time than instances in Prüfer and Degree3.

Research Question 1b. For which types of instances does the kernelisation process result in
a large kernel in much time?

Short seem the most difficult. We again see that Degree3 are more complex than Prüfer.
Caterpillar are not difficult. Furthermore, instances generated from CNF-SAT and 3-SAT
instances are also difficult.

Research Question 1c. How difficult are instances based on NP-completeness proofs?

From the previous subquestion, we know that instances generated from CNF-SAT and
3-SAT instances are challenging. Instances generated from Vertex Cover instances can be
considered easy and difficult, depending on the number of nodes and demand pairs in the in-
stance.

A final answer. Generally, Caterpillar are easy, as are instances with demand pairs
through a very small or too large solution. Degree3 is the most difficult. Additionally, Short
and instances from 3-SAT and CNF-SAT instances are difficult as well. Finally, instances from
Vertex Cover instances can be easy or difficult.

8.2.1 Easy Instances

We look for dark blue contour plots with a small IQR and no high running time to determine
easy instances. There were plenty of these plots.

For both tested algorithms, Caterpillar-TS5, Caterpillar-TS10 and
Caterpillar-TS100 were all easy. Caterpillar-Long were pretty easy as well.
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However, the IQR on these instances was slightly larger on a small tree with many demand
pairs than on Caterpillar-TS. Prüfer-TS5, Prüfer-TS10 and Prüfer100 are also easy
to compute a kernel on, though on Prüfer-TS10, the IQR is slightly more prominent again.
Finally, Degree3-TS5 were also easy for the algorithms.

In short, it is easy to compute a kernel on instances with demand pairs through a tiny
solution. The same is true for instances with demand pairs through a solution that is too large
for the size of the tree. These cases are both intuitive.

The contour plots for these instances look almost identical, so we only show the one for
Caterpillar-TS10 computed by the BQ-algorithm. Figure 17 shows these plots. In par-
ticular, Subfigure 17a shows the number of nodes in the kernels, and Subfigure 17b the IQR.

Figure 18 shows the IQR of the number of nodes in the kernel computed by the
GN-algorithm on Prüfer-TS10. The contour plot with the number of nodes in the ker-
nels on these instances can be seen in Figure 40, and a box plot at 896 nodes in Figure 42, both
in Appendix C.

Figure 19 shows the IQR of the number of nodes in the kernel on Caterpillar-Long. The
contour plot of the number of nodes in the kernel on these instances is displayed in Figure 41,
and a box plot at 128 nodes in Figure 43, both in Appendix C again.

The BQ-algorithm also has not much trouble with Degree3-TS10; see Subfigure 20b.
For these instances, the GN-algorithm results in somewhat larger kernels on larger trees with
few demand pairs; see Subfigure 20a. The IQRs for these instances can be found in Figure 44
in Appendix C.

Running time on the easy instances. Though the instance types we discussed all result in
small kernels, there are some differences in the time required to compute these kernels. In short,
the algorithm can compute kernels on easy instances in Caterpillar faster than on other easy
instances. Subfigure 21a shows contour plots of the running times of the BQ-algorithm on
Caterpillar-TS100, and Subfigure 21b for Prüfer-TS5. The IQR plots for these figures
can be found in Figure 45 in Appendix C.
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(a) Base-10 logarithm of the median number of
nodes in the kernels.
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Figure 17: Contour plots of the number of nodes in kernels computed by the algorithm by
Bousquet et al. [4] on caterpillars with demand pairs through a solution of size 10. Each grid
point is determined using 50 experiments.
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Figure 18: Contour plot of the base-10 logar-
ithm of the IQR of the number of nodes in ker-
nels computed by the algorithm by Guo and
Niedermeier [23] on Prüfer trees with demand
pairs through a solution of size 10. Each grid
point is determined using 50 experiments.
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Figure 19: Contour plot of the base-10 logar-
ithm of the IQR of the number of nodes in ker-
nels computed by the algorithm by Bousquet
et al. [4] on caterpillars with mainly long de-
mand paths. Each grid point is determined
using 100 experiments.
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(a) Guo and Niedermeier [23].
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(b) Bousquet et al. [4].

Figure 20: Contour plots of the base-10 logarithm of the median number of nodes in kernels com-
puted on Degree3 trees with demand pairs through a solution of size 10, using both algorithms.
Each grid point is determined using 50 experiments.
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(a) Instances with caterpillars and demand pairs
generated through a solution of size 100.
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(b) Instances with Prüfer trees and demand pairs
generated through a solution of size 5.

Figure 21: Contour plots of the base-10 logarithm of the median total number of operations
needed to compute kernels using the algorithm by Bousquet et al. [4] on two different types of
instances. Each grid point is determined using 50 experiments.

8.2.2 Difficult Instances

At the other end of the spectrum, there are difficult instances. The contour plots show that the
two most difficult instances are Degree3-Short and Degree3-Random. The first has both a
large number of nodes and a large number of demand pairs in its kernels. The latter has fewer
nodes but still many demand pairs. Figure 22 shows the contour plots for the number of demand
pairs in the kernels as computed by the BQ-algorithm for these two types of instances. The
IQR of these two plots can be found in Figure 46 in Appendix C.

Prüfer-Short were also pretty difficult.
It seems that Short result in large kernels. With many short demand paths, we expect the

number of edges that an algorithm needs to cut to separate each demand pair to be significant,
as there is just a small chance for each combination of two demand paths to overlap. With a
large value for k, the expected size of the kernel is larger than for a smaller value for k. This
could be a reason why Short are difficult.
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(a) Mostly short demand paths.
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(b) Uniformly at random demand pairs.

Figure 22: Contour plots of the base-10 logarithm of the median number of demand pairs in
kernels computed by the algorithm by Bousquet et al. [4] on Degree3 trees, for two different
types of demand pairs. Each grid point is determined using 100 experiments.
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Interesting instances were Degree3-TS50. If there are either few nodes or few demand
pairs in the instance, the kernel becomes very small. If both these numbers increase, the size of
the kernel also quickly grows, especially considering the demand pairs. Subfigures 23a and 23b
show the contour plots with the number of nodes and demand pairs in kernels computed using
the BQ-algorithm. The IQR for both of these plots can be found in Figure 47 in Appendix C.
For some instance sizes, these instances can be considered difficult, and for some, easy.

Running time on the difficult instances. The contour plots of the instance types we talked
about are all very similar, and we do not think they show anything meaningful, so we opted not
to include them.

8.2.3 Instances Generated from Vertex Cover Instances

Now, we discuss the results on the instances generated from Vertex Cover instances.

Kernel size. The size of the kernel of instances from Vertex Cover instances is highly
dependent on the size of the instance. The kernel becomes tiny with more nodes than demand
pairs, but it becomes huge with more demand pairs than nodes. This result is quite intuitive,
considering that the graph used is a star graph. The amount of overlap between demand paths
and how many edges are used by demand paths are factors that influence the size of the kernel.

The number of nodes and demand pairs in the kernels computed using the BQ-algorithm
can be seen in Figure 24, with the IQR being present in Figure 48 in Appendix C.

The IQR shows a large spread in the data around the border between the easy and difficult
instances. On the parts where the kernel is large or small, the spread is pretty tiny again.

Running time. For the running time on these instances, we again have interesting results.
These instances took the least time out of all generated instances for the GN-algorithm. On
the other hand, they took the most time out of all generated instances for the BQ-algorithm.
Contour plots for the operations of both algorithms can be seen in Figure 25, with the spread
in Figure 49 in Appendix C.

We note that only the instances resulting in a large kernel required much time for the
BQ-algorithm. The instances with a small kernel did not take that much time.
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(a) Base-10 logarithm of the median number of
nodes in the kernels.
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(b) Base-10 logarithm of the median number of
demand pairs in the kernels.

Figure 23: Contour plots of the median number of nodes and demand pairs in kernels computed
by the algorithm by Bousquet et al. [4] on Degree3 trees with demand pairs through a solution
of size 50. Each grid point is determined using 50 experiments.
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(a) Base-10 logarithm of the median number of
nodes in the kernel.
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(b) Base-10 logarithm of the median number of
demand pairs in the kernel. The white part in the
top left of the plot means more than 1,000 demand
pairs.

Figure 24: Contour plots of the median number of nodes and demand pairs in kernels computed
by the algorithm by Bousquet et al. [4] on instances generated from Vertex Cover instances.
Each grid point is determined using 100 experiments.
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(a) Guo and Niedermeier [23].
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(b) Bousquet et al. [4].

Figure 25: Contour plots of the base-10 logarithm of the median total number of operations
needed to compute kernels on instances generated from Vertex Cover instances, using both
algorithms. Each grid point is determined using 100 experiments.
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8.2.4 Instances Generated from CNF-SAT Instances

Both the 3-SAT and CNF-SAT instances proved to be difficult for both algorithms. Over
all 3-SAT instances, both algorithms removed approximately 0.5% of the demand pairs. The
GN-algorithm removed about one-third of the nodes, but the BQ-algorithm could only
remove about 0.5% of the nodes. Both algorithms removed no demand pairs in the instances
from CNF-SAT instances. Here, the percentage of nodes removed was about 22% for the
GN-algorithm, and the BQ-algorithm only came as far as about 0.01%.

Box plots with the kernel size results on the CNF-SAT instances for both algorithms can
be found in Figure 26. For the 3-SAT instances, these plots can be found in Figure 50 in
Appendix C.

We can explain this difference by looking at the reduction rules used. Reduction Rule 4.1.3
(Dominated Edge) can remove edges on these instances. The rule that seems to be its replace-
ment in the second algorithm, Reduction Rule 4.2.3 (Unique Direction), does not work on all
nodes. Since there are only a few inner nodes, and the demand paths from leaves often do not
go in the same direction, the conditions for this rule are not optimal.

The instances created from CNF-SAT and 3-SAT instances can be compared quite well to
Degree3-Short, which were also very difficult. Differences between the instances include that
the root node in instances from CNF-SAT and 3-SAT instances only has two children and that
the location of the short demand paths is fixed. Nevertheless, the similarities can explain that
both types of instances are complex for the algorithms.

8.3 Scaling of Kernels with the Instance Size

The contour plots give us an excellent insight into the scaling of kernels with the size of the
instance. We can identify specific patterns that occur, like the kernel size increasing closer to a
corner of the contour plot. These patterns help us to answer Research Question 2.

Research Question 2. Do kernels scale with the size of the instance?

Again, we start by answering the research question before moving on to the relevant results.

Research Question 2a. Does increasing the number of nodes in an instance mean that the
kernel becomes larger?

We cannot answer this subquestion for instances that were solved entirely, as there is no
kernel to analyse.

For almost all instances in Degree3 and Prüfer, increasing the number of nodes in the
instance means that the kernel size increases. An exception is Prüfer-Long, where the number
of nodes in an instance does not seem to influence the size of the kernel. On instances created
from 3-SAT or CNF-SAT instances, the size of the kernel increases as well as the number of
nodes in the instance increases.

For Caterpillar-Short and Caterpillar-Random, the size of the kernel decreases
when we add more nodes to the instance. The same goes for the instances created from
Vertex Cover instances.

Research Question 2b. Does increasing the number of demand pairs in an instance mean
that the kernel becomes larger?

Again, we cannot answer this subquestion for instances the algorithms solved completely.
Except for one instance type per algorithm, all other instances resulted in a larger kernel

when the instance contained more demand pairs. For the GN-algorithm, the exception was
Degree3-TS10, where the kernel size decreases if we add more demand pairs to the instance.
The BQ-algorithm differed on Degree3-TS20. At first, the kernel size increased when we
added more demand pairs to the instance, but after a while, it decreased again.
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(a) Guo and Niedermeier [23].
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Figure 26: Box plots of the number of nodes and demand pairs left in kernels computed on the
CNF-SAT instances, using both algorithms. We explained the instance categories displayed
here in Table 3.
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Research Question 2c. Does increasing the number of nodes in an instance mean that the
computation of the kernel takes longer?

On almost all tested instances, the time to compute a kernel increases when the number of
nodes in the instance increases. Only the instances from Vertex Cover instances, in combin-
ation with the BQ-algorithm, resulted in a running time that decreases the more nodes we
add to the instance. Adding more nodes to these instances means that edges are used by fewer
demand paths, which apparently results in a quicker kernelisation process.

Research Question 2d. Does increasing the number of demand pairs in an instance mean
that the computation of the kernel takes longer?

Both algorithms needed more time to compute a kernel for all tested instances when the
number of demand pairs in the instance increased.

A final answer. We only answer this research question for instances that were not easy. That
is, only for instances that resulted in a kernel and were not immediately solved. In many cases,
the kernel size and computation time increase as the instance size grows. In a few cases, the size
of the kernel decreases when the instance grows.

Approach. We look separately at patterns we can identify in contour plots that show the
kernel size and contour plots that show the IQR of the kernel size. We do not explicitly look
at the patterns in the contour plots with the number of operations, as they all show the same
pattern. Subfigure 21b shows an example of this pattern. This figure shows a contour plot
of the operations required by the BQ-algorithm on Prüfer-TS5. The only exception on
this is the plot with the running time for the BQ-algorithm on instances created from the
Vertex Cover instances. We have seen this plot before; see Subfigure 25b.

8.3.1 Patterns Identified in the Kernel Size

The patterns we identified in contour plots showing the number of nodes are identical to those
observed in the contour plots with the number of demand pairs. There are six main patterns:
nothing, top right, top left, bottom right, top and right.

No pattern. We have already seen contour plots that show no scaling of the kernel size, for
instance, in Subfigure 17a. We observed this pattern in 11 of the 25 instance types for which we
created contour plots. This pattern happened on Caterpillar-Long, Caterpillar-TS5,
Caterpillar-TS10, Caterpillar-TS20, Caterpillar-TS50, Caterpillar-TS100,
Degree3-TS5, Prüfer-TS5, Prüfer-TS10, Prüfer-TS20, and Prüfer-TS100.

Top right. The next most occurring pattern was top right. This pattern was present in
8 of the 25 contour plots. These plots occurred for Degree3-Short, Degree3-Long,
Degree3-Random, Degree3-TS50, Degree3-TS100, Prüfer-Short, Prüfer-Random,
and Prüfer-TS50. Figure 22 shows an example of this pattern.

Top left. The top left pattern occurred three times: on Caterpillar-Short and
Caterpillar-Long, and on instances generated from Vertex Cover instances. This
last one does not entirely go to the top left corner, but we felt it belonged in this cat-
egory. We already showed the contour plots for these instances; see Figure 24. The graph
for Caterpillar-Short is still interesting to show. It can be found in Figure 27 for the
GN-algorithm, and the IQR for that plot in Figure 51 in Appendix C.
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Top. One pattern remains that occurred for both algorithms. This pattern means that the
number of nodes does not seem to impact the size of the kernel and occurred on Prüfer-Long.
Figure 28 shows the contour plot for this scenario as computed using the GN-algorithm. The
IQR for Figure 28 can be found in Figure 52 in Appendix C.

Bottom right. We observed the bottom right case for Degree3-TS10. The contour plot
with the result of the BQ-algorithm shows no scaling here at all; see Subfigure 20b. The
GN-algorithm shows a more interesting pattern, which Subfigure 20a shows. The IQR for
this plot is present in Appendix C in Figure 44.

Right. The last case refers to Degree3-TS20. Using the results obtained using the
GN-algorithm, we would classify this type as going to the top right; see Subfigure 29a. How-
ever, the BQ-algorithm shows a different pattern. This pattern can be seen in Subfigure 29b.
The IQR of these plots is shown in Figure 53 in Appendix C. This pattern implies that having
either a few or many demand pairs results in a small kernel and that a number of demand pairs
somewhere in the middle results in a larger kernel.

8.3.2 Patterns Identified in the Spread of the Kernel Size

The contour plots with the IQR of the kernel size show essentially the same patterns as the
normal contour plots. Though, they are not all as clear. As an example, consider Subfigure 53a
in Appendix C, which shows the IQR of the number of nodes in kernels computed by the
GN-algorithm on Degree3-TS20. In this subfigure, we see a pattern going to the right, but
plenty of height differences make it difficult to say how the IQR scales on these instances.

Different patterns compared to kernel size plots. We briefly mention the types of in-
stances where the pattern observed in the contour plot with the IQR differs from the pattern
seen in the contour plots with the kernel size.

Caterpillar-TS50 go from having no pattern to having a pattern towards the top. This
change can be seen in Figure 54 in Appendix C. Note that this figure only shows the results of
the BQ-algorithm. For the GN-algorithm, the pattern is the same.
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Figure 27: Contour plot of the base-10 logar-
ithm of the median number of nodes in kernels
computed by the algorithm by Guo and Nie-
dermeier [23] on instances with a caterpillar
and mostly short demand paths. Each grid
point is determined using 100 experiments.
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Figure 28: Contour plot of the base-10 logar-
ithm of the median number of nodes in ker-
nels computed by the algorithm by Guo and
Niedermeier [23] on instances with a Prüfer
tree and mostly long demand paths. Each grid
point is determined using 100 experiments.
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(a) Guo and Niedermeier [23].
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(b) Bousquet et al. [4].

Figure 29: Contour plots of the base-10 logarithm of the median number of nodes in kernels
computed on instances with a Degree3 tree and demand pairs going through a solution of size
20 for both algorithms. Each grid point is determined using 50 experiments.

Specifically for the results with the GN-algorithm, the pattern on Degree3-Long changes
from top right to top. A visualisation can be found in Figure 55 in Appendix C.

Degree3-TS20 swap patterns between the two algorithms. The pattern in the plot of the
GN-algorithm goes from top right to right. The pattern in the plot of the BQ-algorithm
goes from right to top right. Figure 29 shows the contour plots with the kernel size, and Figure 53
in Appendix C the contour plot with the IQR.

Then, the pattern on Prüfer-TS20 for the GN-algorithm goes from nothing to right, as
can be seen in Figure 56 in Appendix C.

Finally, the pattern on instances generated from the Vertex Cover instances goes from
somewhat top left to something we cannot easily classify. The pattern achieved by the
BQ-algorithm can be seen in Figure 48 in Appendix C.

8.4 Demand Pair Generation Methods

In this subsection, we discuss the results of the two slightly more advanced ways to generate
demand pairs. With the results presented in this subsection, we answer Research Question 3.

Research Question 3. How usable are the demand pair generation methods we introduce?

As before, we answer the subquestions and then show the results that led to these answers.
Finally, we briefly discuss the limitations of both methods and which approach we favour.

Research Question 3a. Do instances with mostly short demand paths result in a smaller or
larger kernel than instances with mostly long demand paths?

Short result in a larger kernel than Long with the same tree type.

Research Question 3b. Does computing a kernel on an instance with mostly short demand
paths take shorter or longer than computing a kernel on an instance with mostly long demand
paths?

The algorithms required less time to compute a kernel on Short than Long with the same
tree type.

Research Question 3c. Do instances with demand pairs generated using a small solution
result in a smaller or larger kernel than instances with demand pairs generated using a large
solution?
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We cannot answer this subquestion for Caterpillar-TS, as these were all solved.
TS50 resulted in the largest kernels, followed by TS20. The other three possible solution

sizes all resulted in smaller kernels.
The answer for this subquestion is consequently yes, until the solution becomes too large.

Research Question 3d. Does computing a kernel on an instance with demand pairs generated
using a small solution take shorter or longer than computing a kernel on an instance with demand
pairs generated using a large solution?

For this subquestion, we ignore TS100, as the solution size used for these was too large for
the size of the instances. We briefly explain this later.

Both algorithms needed the least time to compute kernels on TS50. Caterpillar-TS5
and Caterpillar-TS10 were the subsequent fastest of Caterpillar-TS. Prüfer-TS5 and
Prüfer-TS10 were also the following fastest of Prüfer-TS. The slowest instances were TS20.
Degree3-TS20 took less time than Degree3-TS5 and Degree3-TS10.

If we consider 20 to be neither a small nor a large solution, we can conclude that the
algorithms needed more time to compute kernels on instances with demand pairs through a
small solution than on instances with demand pairs through a large solution. If 20 is a large
solution, we cannot answer this question for all tree types.

A final answer. How usable the demand pair generation methods are, depends on the context.
We assume the methods will be used to generate instances that are difficult to compute

a kernel on. Short were the most challenging. The method that generated demand paths
according to a length distribution would get our recommendation over the others. However,
both methods are not perfect.

8.4.1 Demand Pairs From a Length Distribution

We used either mostly long or mostly short demand paths for instances that use this method.

Mostly short demand paths. Again, the results for nodes and demand pairs in the kernel are
pretty similar, as are the results of the two algorithms. We show a mixture here. We have men-
tioned the results for nodes in kernels on Caterpillar-Short before. The GN-algorithm
computed these results, which Figure 27 shows. In Appendix C, Figure 51 shows the IQR. We
have also used the results showing the number of demand pairs in kernels on Degree3-Short
computed by the BQ-algorithm before. They can be found in Subfigure 22a, and the IQR in
Subfigure 46a in Appendix C. Finally, Figure 30 shows the number of demand pairs in kernels
on Prüfer-Short as computed by the GN-algorithm.

Caterpillar-Short were the easiest for the algorithms to compute a kernel on, and
Prüfer-Short and Degree3-Short quite tricky. Degree3-Short were slightly more dif-
ficult than Prüfer-Short. Finally, there were no significant differences in computation time
for all of these instances.

Mostly long demand paths. We show a mixture of results for Long. Figure 41 in Ap-
pendix C shows the number of nodes in kernels computed using the BQ-algorithm on
Caterpillar-Long. The IQR for these results is present in Figure 19. For Degree3-Long,
we show the number of nodes in the kernel again, computed using the GN-algorithm. The
results can be seen in Figure 55 in Appendix C. Finally, for the number of nodes in kernels
computed on Prüfer-Long using the GN-algorithm, see Figure 28 and its IQR in Figure 52
in Appendix C.

Long all seem to result in smaller kernels than Short. They also require less time than
Short. For instance, consider Prüfer-Long and Prüfer-Short; see Figure 31. The IQR
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(a) Base-10 logarithm of the median number of
demand pairs in the kernels.
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(b) Base-10 logarithm of the IQR of the number
of demand pairs in the kernels.

Figure 30: Contour plots of the number of demand pairs in kernels computed on instances with
Prüfer trees and mostly short demand paths, using the algorithm by Guo and Niedermeier [23].
Each grid point is determined using 100 experiments.

for these situations can be found in Figure 57 in Appendix C. From this last figure, it is also
clear that there is more spread in the time required to compute the kernels on Long. The larger
spread occurs in all cases, except for Caterpillar-Long and the BQ-algorithm, where it
is the other way around.

Possible explanations. We saw that Long resulted in a smaller kernel than Short. One
reason for this could be that longer demand paths have a larger chance of being removed from
the instance when the algorithm cuts an edge, making computing the kernel on the remainder
of the instance easier. On the other hand, with short demand paths, edges are generally used
by fewer demand paths. Apparently, that does not make computing a kernel easier.

We also saw that the computation of kernels on Long took less time than on Short. An
apparent reason is that the kernels on Short are larger than on Long. The algorithms need
to perform more operations to compute the smaller kernel on Long, so they need more time.
Another argument could again be about how many demand paths use a certain edge. For
instance, reduction rules like Reduction Rules 4.1.3 and 4.2.3 benefit from edges being used by
fewer demand paths.

8.4.2 Demand Pairs Through a Solution

The sizes of the solutions we generated demand pairs through are 5, 10, 20, 50 and 100. We do
not look at all of these sizes but rather at three categories: small, large, and in between.

A small solution. TS5 and TS10 contain hardly any useful results. There are no kernels, or
they are tiny. TS10 has slightly larger kernels than TS5.

Some results can be seen in figures we have shown before. In particular, Subfigure 17a shows
the number of nodes in kernels computed by the BQ-algorithm on Caterpillar-TS10, and
Subfigure 17b the corresponding IQR. Figure 20 shows the number of nodes in kernels computed
on Degree3-TS10 by both algorithms, and Figure 44 in Appendix C the corresponding plot
with the IQR. Finally, in Appendix C, Figure 40 shows the number of nodes in kernels computed
on Prüfer-TS10 using the GN-algorithm. The IQR plot can be found in Figure 18.
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(a) Mostly short demand paths.
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(b) Mostly long demand paths.

Figure 31: Contour plots of the base-10 logarithm of the median total number of operations
required to compute kernels on instances with Prüfer trees for two demand pair generation
methods, using the algorithm by Guo and Niedermeier [23]. Each grid point is determined using
100 experiments.

A large solution. In TS100, we again see either no or tiny kernels. Only Degree3-TS100
with many nodes and many demand pairs resulted in a large kernel. This can be seen in
Figure 32. Caterpillar-TS100 and Prüfer-TS100 resulted in mostly no kernels, so they
are not interesting to show.

A solution of size 100 is too large for the size of instances we used. Let us consider the
extreme case of instances with 128 nodes. There are 127 edges, from which we choose 100 to
put in the solution. The first 100 demand pairs we generate have a path that goes through
exactly one of these edges, and they have to be pairwise edge-disjoint. This restriction means
that there are at least 73 demand paths of length one. The algorithm will, of course, quickly
cut the corresponding edges, and the remaining instance will be a lot smaller.

A medium solution. That leaves us with TS20 and TS50. These generally resulted in larger
kernels than instances with demand pairs generated through a smaller or larger solution.

For Caterpillar-TS, however, only a few small kernels were computed. The algorithms
could solve the other instances. Figure 54 in Appendix C shows the number of nodes in kernels
on Caterpillar-TS50 achieved by the BQ-algorithm.

We obtained similar results on Prüfer-TS20 and Prüfer-TS50. There are only some
kernels for instances with many nodes and demand pairs. For instance, the number of nodes
in the kernel computed by the GN-algorithm on Prüfer-TS20 can be seen in Figure 56 in
Appendix C.

Finally, let us consider Degree3-TS. These are the most interesting of the tree types.
Depending on the algorithm, Degree3-TS20 can result in larger kernels than Degree3-TS50.
Consider Figure 29, where the number of nodes in the kernels computed by both algorithms is
displayed on Degree3-TS20. The corresponding plot with IQR can be found in Figure 53 in
Appendix C. The number of nodes in kernels on Degree3-TS50 is similar for the two algorithms.
For the BQ-algorithm, these results are displayed in Figure 23, with the IQR in Figure 47 in
Appendix C.

Suppose we do not take TS100 into account. In that case, we can confidently say that
instances with demand pairs through a small solution result in a smaller kernel than instances
with demand pairs through a large solution. Of course, this result is not entirely unexpected.
We used the size of the solution for our parameter k. As both algorithms result in a kernel that
becomes larger as k grows, we do not see any weird behaviour.
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(a) Base-10 logarithm of the median number of
nodes in the kernels.
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Figure 32: Contour plots of the number of nodes in kernels on instances with Degree3 trees and
demand pairs through a solution of size 100, using the algorithm by Guo and Niedermeier [23].
Each grid point is determined using 50 experiments.

Running time. The running time on Caterpillar-TS is less for both algorithms than on
instances with the other tree types. The algorithms require fewer operations for instances with
a small or huge solution. They require the most time for TS20 and TS50.

One could expect that instances with a small solution would take less time than instances
with a large solution. With our generation method, cutting an edge will, on average, remove
more demand pairs from the instance when the solution size is small than when the solution
size is large. However, the edges in the solution are each used by more demand paths, which
could mean that some reduction rules take more time. Our experiments seem to show that this
second argument has more impact than the first argument.

8.4.3 A Small Evaluation of Both Methods

We briefly evaluate both demand pair generation methods and explain why we think generating
mostly short demand paths is the best option from all of these. As mentioned earlier, both
methods have their limitations.

First, to generate demand paths of a certain length, we need information about the length
of all paths in the tree. Computing this can take much time if an instance is large. On the
other hand, to generate short demand paths, we could take a more greedy approach by picking
a node uniformly at random and using a BFS or DFS algorithm to find all nodes within a certain
distance of the first node. For long demand paths, we fear that method would not work.

Secondly, while it can be advantageous to be able to influence the size of the solution directly,
our method of generating demand pairs through a solution is not optimal. It is easy to choose
a solution size that is way too big. We expect this to be because of the limitation we talked
about in Subsection 6.2. We cannot recommend this method with this limitation. It may be
possible to improve this method by generating the first k pairwise edge-disjoint demand paths
iteratively, so they do not limit each other. Additionally, it can be wise to ensure that there are
no demand paths of length one, as the algorithm would almost immediately remove these and
all demand paths through the corresponding solution edges.

So, when mainly generating short demand paths, the limitation of having to compute the
length of the path between each pair of nodes can somewhat be avoided. Plus, these instances
seem to be the most difficult, making them more usable in future experiments to stretch the
limits of kernelisation algorithms.
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8.5 Dominant Reduction Rules

Research Question 4. Which reduction rules take the most time during kernelisation?

We answer the subquestions and then show the results that we used to find the answers.

Research Question 4a. Which reduction rules take the most time on easy instances?

There was mainly one dominant reduction rule in each algorithm. For the GN-algorithm,
this was Reduction Rule 4.1.3 (Dominated Edge). On some of the easy instances, with demand
pairs through a (too) large solution, Reduction Rule 4.1.2 (Unit Path) took most of the time.

In the BQ-algorithm, Reduction Rule 4.1.5 (Disjoint Paths) was the dominant rule. In a
very few cases, again with demand pairs through a (too) large solution, Reduction Rule 4.2.1
(Unit Path) dominated the running time.

Research Question 4b. Which reduction rules take the most time on difficult instances?

On the difficult instances, the dominating reduction rule in the GN-algorithm was
again Reduction Rule 4.1.3 (Dominated Edge). In arguably the most difficult instances
(Degree3-Short), Reduction Rule 4.1.5 (Disjoint Paths) would sometimes dominate the run-
ning time.

The BQ-algorithm had one clear dominating reduction rule: Reduction Rule 4.2.2 (Dis-
joint Paths). This rule was only overtaken by Reduction Rule 4.2.5 (Common Factor) in some
instances from Vertex Cover instances and most instances from 3-SAT and CNF-SAT in-
stances.

A final answer. The dominating rule in the GN-algorithm was in most cases Reduction
Rule 4.1.3 (Dominated Edge). For the BQ-algorithm, Reduction Rule 4.2.2 (Disjoint Paths)
dominated the running time.

After comparing the times spent by these two rules, we concluded that the Disjoint Paths
rule was the overall dominating reduction rule.

The results. Both algorithms have one reduction rule that took the most time in many cases.
It did not seem to matter whether an instance was easy or difficult.

8.5.1 Dominant Reduction Rules in the GN-algorithm

Reduction Rule 4.1.3 (Dominated Edge) dominated the running time of the GN-algorithm.
In 9 of the 25 types of generated instances, all grid points show that this rule took the most
time. On Prüfer-Long, this looks like Figure 33.

The second rule that appears most in the heatmaps is Reduction Rule 4.1.2 (Unit Path).
This one dominated the running time when there were many demand pairs in an instance with
few nodes; see, for instance, the results on Prüfer-Random in Figure 15. Specifically, this
happened on TS50 and TS100, with the rule dominating more instances in the latter case.
Another example on Degree3-TS50 is present in Figure 34.

There are three more rules that dominated the running time in a minimal number of cases.
First, Reduction Rule 4.1.4 (Dominated Path) sometimes dominated the running time when
there were few nodes and many demand pairs in Caterpillar-Short. Then, Reduction
Rule 4.1.5 (Disjoint Paths) dominated the running time on Degree3-Short with many nodes
and many demand pairs. This rule also dominated the running time on the instances from
3-SAT and CNF-SAT instances. Finally, Reduction Rule 4.1.2 (Unit Path) dominated the
running time on Degree3-TS100 with many nodes and few demand pairs. The heatmaps for
these cases can be found in Figure 58, Figure 59, Figure 60 (only 3-SAT) and Figure 61 in
Appendix C respectively.
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Figure 33: Dominant reduction rule in the algorithm by Guo and Niedermeier [23] on Prüfer
trees with mostly long demand paths. Each cell is determined using 100 experiments. The text
in each cell is the fraction of the total time spent by the dominant reduction rule.

There is one final interesting heatmap: the one on the instances generated from the
Vertex Cover instances. The heatmap can be found in Appendix C in Figure 62. Four
different reduction rules dominated the running time on these instances, depending on the size
of the instance. However, we do not consider this heatmap, as we have shown in Subsection 7.1.2
that in this case, there are quite some differences between the actual time and the measured
number of operations.

8.5.2 Dominant Reduction Rules in the BQ-algorithm

The results achieved by the BQ-algorithm tell a more straightforward story. The rule that
dominated the running time in most of the experiments is Reduction Rule 4.2.2 (Disjoint Paths).
For instance, for Prüfer-Long, Figure 35 shows the heatmap. Reduction Rule 4.2.2 (Disjoint
Paths) dominated the running time entirely in 17 of the 25 types of instances and in at least
three-quarters of all other types of instances. The only two exceptions are the instances generated
from the Vertex Cover instances and those from 3-SAT and CNF-SAT instances.

For the instances from Vertex Cover instances, we again got a mixture of dominating
rules, as can be seen in Figure 63 in Appendix C.

For instances from CNF-SAT and 3-SAT instances, Reduction Rule 4.2.5 (Common Factor)
was the dominating reduction rule. This can be seen in Figure 64 for 3-SAT in Appendix C.
For CNF-SAT, the results are very similar.

The only other rule that dominated the running time in some cases was Reduction Rule 4.2.1
(Unit Path). This rule dominated the running time for some instance types with few nodes
and many demand pairs. Again, this happened mainly on TS; see for instance Figure 65 in
Appendix C, in which we show the dominant reduction rule on Caterpillar-TS100.

Final notes. We concluded that the Disjoint Paths reduction rule was the overall dominating
reduction rule. This rule is present in both algorithms: Reduction Rules 4.1.5 and 4.2.2. We
concluded this because the rule dominated the running time in the BQ-algorithm, and this
algorithm was the slowest of the two.

The reduction rule was also present in the GN-algorithm. Here, it occurred way later in the
ordering of reduction rules: fifth instead of second. The other ordering means that the algorithm
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Figure 34: Dominant reduction rule in the algorithm by Guo and Niedermeier [23] on Degree3
trees with demand pairs going through a solution of size 50. Each cell is determined using
50 experiments. The text in each cell is the fraction of the total time spent by the dominant
reduction rule.

checked the rule less often, but also that the earlier four rules might have decreased the instance
size by a lot already. The Disjoint Paths rule generally needed less time on smaller instances. In
the BQ-algorithm, the algorithm applied the rule after almost every single modification. It
was thus checked more often and on larger instances. We would be very interested to see what
would happen if this rule were the last in both algorithms. Sadly, we did not have enough time
to test this.

In Section 4, we mentioned that Reduction Rule 4.2.3 (Unique Direction) seems to take care
of the same edges as Reduction Rule 4.1.1 (Idle Edge) and Reduction Rule 4.1.3 (Dominated
Edge). The time complexity of the first rule in the current implementation is O(n2p). The other
two rules together have the same time complexity. We would also be interested to see how these
rules behave when we directly compare them to each other. Assume Disjoint Paths is the last
rule in both algorithms. Reduction Rule 4.1.3 (Dominated Edge) was the dominating rule in
the GN-algorithm. Would that mean that Reduction Rule 4.2.3 (Unique Direction) would be
the dominating rule in the BQ-algorithm? Again, we did not have enough time to test this.

8.6 Comparing the Two Kernelisation Algorithms

Finally, to answer Research Question 5, we compare the two kernelisation algorithms we studied.

Research Question 5. Is the kernelisation algorithm by Bousquet et al. [4] better than the
kernelisation algorithm by Guo and Niedermeier [23]?

We start by answering the subquestions and then show the results.

Research Question 5a. Does the algorithm by Bousquet et al. result in smaller kernels than
the algorithm by Guo and Niedermeier?

In most cases, both algorithms resulted in the same or approximately the same kernel size.
In two of the tested cases, the BQ-algorithm resulted in a marginally smaller kernel. The
GN-algorithm could compute a smaller kernel on instances from 3-SAT and CNF-SAT in-
stances.
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Figure 35: Dominant reduction rule in the algorithm by Bousquet et al. [4] on Prüfer trees with
mostly long demand paths. Each cell is determined using 100 experiments. The text in each
cell is the fraction of the total time spent by the dominant reduction rule.

Research Question 5b. Does the algorithm by Bousquet et al. take less time to compute
kernels than the algorithm by Guo and Niedermeier?

The BQ-algorithm was (much) slower than the GN-algorithm in all but two of the
tested cases. These two cases were Caterpillar-Long and Caterpillar-Random. The
IQR of the running time of the BQ-algorithm was also higher across the board than that of
the GN-algorithm.

A final answer. The BQ-algorithm did not always result in the smallest kernel. It did in
a few cases but resulted in larger kernels in a few other cases. For most tested cases, there were
no significant differences in the size of the resulting kernels.

The BQ-algorithm required a lot more time than the GN-algorithm.
With these results, we cannot say the BQ-algorithm is better than the GN-algorithm.

For most cases, we would personally prefer the GN-algorithm, as its kernels are still small, it
takes less time, and it is much easier to understand and implement.

8.6.1 Kernel Size

Let us first consider the size of the kernels that both algorithms computed. Remember the
GN-algorithm has a claimed kernel size of O(k3k). The BQ-algorithm should result in a
kernel of size O(k6). It seems like the second algorithm should result in smaller kernels, but
in most of our experiments, the kernels were very similar. Look, for instance, at the number
of demand pairs in kernels computed on Degree3-Random. Figure 37 shows these results for
the GN-algorithm, and Subfigure 22b the results for the BQ-algorithm. The IQR for these
plots can be found in Figure 67 and Subfigure 46b respectively in Appendix C. In just one or
two grid points, the colour of the contour differs.

Small differences. In almost all cases where the kernel size did differ on more points, the
BQ-algorithm resulted in a slightly smaller kernel. Figure 20 shows the number of nodes in
kernels on Degree3-TS10 as an example. In Appendix C, we show the IQR of these plots in
Figure 44.
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Only in the instances created from 3-SAT and CNF-SAT instances, we see that the
BQ-algorithm computed larger kernels than the GN-algorithm. Figures for these results
can be found in Figure 26 and Figure 50, the latter being located in Appendix C.

Differences in the IQR. The IQR of the size of the kernels computed by both algorithms
was also similar in most cases. Consider, for instance, Figure 36, where we show the IQR of the
number of nodes in kernels computed on Caterpillar-Random. The IQRs of these results
can be found in Appendix C in Figure 66.

In a few cases, the IQR of the results by the BQ-algorithm was better than the results
obtained by the GN-algorithm. One such case, the IQR of the number of nodes in kernels on
Degree3-TS10, can be seen in Figure 44 in Appendix C.

Sometimes, however, the results obtained by the GN-algorithm show a slightly lower
spread. For instance, look at the spread in the number of nodes in kernels computed on
Degree3-TS20 in Figure 53 in Appendix C. Figure 29 contains the contour plot with the
number of nodes in the kernel for these instances.

Expectation versus reality. We saw that there were not many significant differences in
kernel size between the two algorithms. When the GN-algorithm resulted in a smaller kernel,
the kernel was quite a bit smaller. When the BQ-algorithm resulted in a smaller kernel, the
kernel was only a bit smaller.

These results are fascinating, as the presented bounds on the kernel sizes (O(k3k) for the
GN-algorithm, O(k6) for the BQ-algorithm) seem to tell us differently. The most logical
reason is that the difference is not caused by the set of used reduction rules but rather by the
tightness of the analyses of the kernel size.

8.6.2 Running Time

We can observe more significant differences in the running time.
Consider the instances from the Vertex Cover instances. We have already shown the

running time for both algorithms in Figure 25. The IQR of these contours can be found in Fig-
ure 49 in Appendix C. We see that the GN-algorithm is way faster than the BQ-algorithm
in many grid points.
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(a) Guo and Niedermeier [23].
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(b) Bousquet et al. [4].

Figure 36: Contour plots of the base-10 logarithm of the median number of nodes in kernels on
instances with caterpillars and uniformly at random demand pairs, using both algorithms. Each
grid point is determined using 100 experiments.

75



A more typical example. The instances from Vertex Cover instances are an extreme
example. Most of the time, the GN-algorithm was faster than the BQ-algorithm. Consider
the results obtained on Prüfer-Random. Subfigure 14a shows the number of operations re-
quired by the GN-algorithm. The results for the BQ-algorithm are displayed in Figure 38.
The IQRs for both of these plots can be found in Subfigure 14b and Figure 68 respectively, with
the latter being located in Appendix C. From the colours, we can see that the BQ-algorithm
required more time than the GN-algorithm. We note that both algorithms took approximately
equal time in very few cases, like on Caterpillar-Long.

IQR. The contour plots with the IQR show similar results. The IQR of the time required by
the GN-algorithm was generally smaller than the IQR for the BQ-algorithm. This can be
seen in Subfigure 14b and in Figure 68 in Appendix C again. These results were obtained on
Prüfer-Random.

Theoretical running time. Let us take a look at the theoretical running time of both al-
gorithms. We do this by summing the theoretical times of the reduction rules.

• GN-algorithm: O(n)+O(p)+O(n2p)+O(p2)+O(n2p)+O(p)+O(n+p)+O(n+p) =
O(n2p+ p2).

• BQ-algorithm: O(p)+O(n2p)+O(n2p)+O(p2)+O(n2p2)+O(n3p)+O(min(n, p)·n3p) =
O(n3p ·min(n, p) + p2) 22.

The sum of the theoretical running times of the reduction rules in the BQ-algorithm is
higher than the sum for the GN-algorithm. This seems like an easy explanation for the results
we obtained. However, if the earlier reduction rules already remove 90% of the instance, the
later ones work on a much smaller instance, which influences the real world time they need. For
instance, in our experiments, we found that a rule that takes O(n2p) time took way more time

22Assuming p ≤ n2 after Reduction Rule 4.2.4. If we assume the input does not contain duplicate demand
pairs, the factor p2 disappears.
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Figure 37: Contour plot of the base-10 logar-
ithm of the median number of demand pairs
in kernels computed by the algorithm by Guo
and Niedermeier [23] on instances with a De-
gree3 tree and uniformly at random demand
pairs. Each grid point is determined using 100
experiments.
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than the rule that takes O(min(n, p) · n3p) time. Asymptotically, this should not hinder our
analysis.

The smart ways to run rules during their later applications can also help reduce the actual
required time. For the first algorithm, we used such a later smart application for the first four
rules. The second algorithm’s first, third, and fourth reduction rules also benefited from later
smart applications. However, the second rule (Reduction Rule 4.2.2 (Disjoint Paths)) did not.
This could also be a reason why there are such significant differences in the running time.

Again, we would be interested to see what happens to the running times if the Disjoint Paths
reduction rule would be placed last in both algorithms.

9 Conclusion

This section summarises this research and provides concise answers to the research questions.
We also mention some ideas for future research.

9.1 Summary and Concise Answers

We have experimented with two kernelisation algorithms for Multicut in Trees. The liter-
ature tells us that the first algorithm, by Guo and Niedermeier [23], computes a kernel of size
O(k3k). The second algorithm, by Bousquet et al. [4], results in a kernel of size O(k6).

We listed each of the reduction rules these algorithms used and explained how we implemen-
ted them. We also explained three tree types and three demand pair generation types, some of
which are our own creations. Other instances we used were created from Vertex Cover,3-SAT
and CNF-SAT instances.

We analysed these algorithms on different sets of instances and compared the size of the
kernel they computed and the time they needed to compute this kernel. We used counters
throughout the code to measure the time to ensure external factors did not influence the results.

With the results from the experiments, we answered our five research questions.
We concluded that instances with a caterpillar are easy to compute a kernel on and that

instances with a Degree3 tree are difficult. Also, instances with mostly short demand paths
result in the largest kernels. Finally, instances from Vertex Cover, 3-SAT and CNF-SAT
instances were quite difficult, though one should think about the number of nodes and demand
pairs in these instances.

We observed that in most cases, the size of the kernel grows when the number of nodes or
demand pairs in the instance increases, but there were some exceptions. Increasing the size of
the kernel does mean that the time required to compute the kernel increases.

From the two demand pair generation methods we introduced, we found that the technique
that creates demand pairs through a solution can be improved by a lot. The other method, which
creates demand paths with a certain length, is a lot more functional. This method created the
most difficult instances.

We looked at which reduction rule dominated the running time of an algorithm. In almost
all cases, for the algorithm by Guo and Niedermeier, this was Reduction Rule 4.1.3 (Dominated
Edge). For the algorithm by Bousquet et al., Reduction Rule 4.2.2 (Disjoint Paths) was the
dominating rule. Looking at the total time spent by the algorithms, we concluded that the
Disjoint Paths reduction rule was the overall dominating reduction rule.

Finally, we looked at the differences between the performance of both algorithms. We ex-
perienced that the algorithms computed kernels of approximately equal size in almost all tested
cases. In two cases, the algorithm by Bousquet et al. resulted in a marginally smaller kernel. On
instances from 3-SAT or CNF-SAT instances, the algorithm by Guo and Niedermeier resulted
in a kernel that was quite a bit smaller. The algorithm by Bousquet et al. was slower than the
algorithm by Guo and Niedermeier in all cases, except for two. In these two cases, the running
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time was approximately the same. To conclude, we cannot say that one algorithm is always
better than the other.

9.2 Future Research

We explain a few ideas for future research.

The third kernelisation algorithm. There exist three kernelisation algorithms for
Multicut in Trees. We have only used two of these in this research. According to the
literature, the last one, by Chen et al. [10], computes a kernel of size O(k3).

It would be fascinating to see what this algorithm can do in practice. The reduction rules
that are unique in the two tested algorithms did not contribute much to the size of the kernel.
We wonder if this would also be the case in the third algorithm. If so, we do not think that the
kernels it computes would be smaller than those of the first two algorithms.

Difficult instances. We have tried to design instances that would be difficult to compute a
kernel on for the tested algorithms. Instances with Degree3 trees seem to be the most difficult
from the ones we tested. However, the kernels on these instances are still smaller than the
claimed bound.

Another interesting direction for future research is creating even more difficult instances. For
instance, one could try to find out what makes an instance difficult and, with that information,
create a set of instances on which the algorithms reach their claimed kernel bound.

Different values for parameter k. We have only used the optimal value for parameter k in
each of our experiments. With a smaller value, the algorithms could stop the computation of
the kernel earlier, and with a larger value, some reduction rules would fire less often. Still, it
could be interesting to see what happens when we combine the instances we used with a value
for k that is slightly smaller or bigger than the size of the optimal solution. Testing with a k
that is way smaller or larger than the optimal solution size could also yield interesting results.

Defining the size of a kernel. In most literature we studied, the size of the kernel is defined
only by the number of nodes in that kernel. This is technically sufficient, because we can assume
that the number of demand pairs in the kernel is at most the number of nodes in the kernel
squared. In our experiments, the number of demand pairs was almost always approximately
equal to the number of nodes. Only when the instance contained a Degree3 tree could the
number of demand pairs be noticeably higher than the number of nodes. This result could
indicate that we also need to consider the number of demand pairs when determining the kernel
size.

For instance, consider two kernels. Kernel A has 13 nodes and 13 demand pairs, and kernel B
has 13 nodes and 19 demand pairs. Both these kernels could occur after applying the algorithm
by Guo and Niedermeier [23] exhaustively. The difference in the number of demand pairs is
caused by the shape of the remaining tree. If we only consider the number of nodes in these
kernels, we would conclude that the kernels are equally large. However, we would say that kernel
A is smaller than kernel B if we consider both the number of nodes and the number of demand
pairs in the kernels.

For more theoretical research, it could be interesting to see a good measure for kernel size
that encapsulates both the number of nodes and the number of demand pairs.

Improving the demand pair generation methods. The demand pair generation method
that generates demand paths from a length distribution helped create difficult instances. We
have also talked about its most significant limitation: we need to know the length of the path
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between every pair of two nodes. This information is not always readily available and can take
quite some time to compute on larger instances.

Additionally, to define what a “long” path would be in a tree, we have to compute all possible
paths in that tree before being able to generate demand paths of that length. In the current
implementation, we have to compute the path between every pair of two nodes twice.

It would be handy if the implementation of this generation method could be improved so
that it works consistently on as many graphs as possible. Ideally, this should work without
having to compute the path between every pair of nodes.

How to choose realistic lengths for each path remains an open question.
The other demand pair generation method we introduced generates demand pairs through

a solution of a given size. This method was not as usable as we had hoped. We talked about a
giant flaw where our method of generating the first edge-disjoint demand paths can immediately
lead to a very easy instance. Plus, we saw that the size of the solution should depend on the
size of the instance. Improving the generation method for the first edge-disjoint demand paths,
maybe iteratively, and finding some formula for the perfect solution size are both exciting topics
to look at in the future.

Modifying the algorithms. Finally, one more interesting topic for future research is modify-
ing the existing algorithms. Think, for instance, about changing the order in which an algorithm
applies the reduction rules or only using a subset of the rules.

Changing the order of reduction rules could lead to differences in running time. Consider
the algorithm by Guo and Niedermeier [23]. Reduction Rule 4.1.3 runs in O(n2p) time and can
reduce n. The next rule, Reduction Rule 4.1.4, runs in O(p2) and can reduce p. Executing
Reduction Rule 4.1.3 before Reduction Rule 4.1.4 does not mean that Reduction Rule 4.1.4
runs faster. But, executing Reduction Rule 4.1.4 before Reduction Rule 4.1.3 does mean that
Reduction Rule 4.1.3 can run faster, as p can be smaller.

The dominant reduction rule can also change, which could lead to different insights into the
performance of the algorithms. Consider, for instance, Reduction Rule 4.2.2, which was the
dominant rule in the algorithm by Bousquet et al. [4] for almost all experiments. Moving this
rule to later in the ordering might improve the overall running time a bit.

Using only a subset of the rules might also improve the running time by a lot, though it could
come at the cost of a slightly larger kernel. Imagine if a rule performed almost no modifications
to the input but still took about half of the time. Then, we could consider the algorithm to be
better if we do not use that rule. Another example is leaving out a rule that performs many
modifications. Maybe the other rules will perform the same modifications, or perhaps the size
of the kernel would increase by a lot.

Using a combination of different rules from different algorithms could also be interesting.
With this, it might be possible to find an algorithm that results in an even smaller kernel than
the existing algorithms do.

9.3 Closing Words

With this research, we hope to have partially filled the gap of the missing practical research in
the area of Multicut in Trees. In contrast to pure theoretical results, we hope this research
provides insight into what is possible in practice. We also hope to have given ideas for other
things that can be done in this area.
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A List of Definitions and Abbreviations

This part of the appendix contains definitions and abbreviations used throughout this thesis.

Definition Explanation Page

A(v) Let v be a bad L2-leaf of a caterpillar (in a tree) C.
Remove the neighbour of v and all its leaves from the
graph. The two connected components that are left are
called A(v) and B(v).

13

a(v) Let v be a bad L2-leaf of a caterpillar (in a tree) C. Cre-
ate A(v) and B(v). The extremity of C in A(v) is called
a(v). If this extremity does not exist, the neighbour of
v is a(v).

13

B(v) Let v be a bad L2-leaf of a caterpillar (in a tree) C.
Remove the neighbour of v and all its leaves from the
graph. The two connected components that are left are
called A(v) and B(v).

13

b(v) Let v be a bad L2-leaf of a caterpillar (in a tree) C. Cre-
ate A(v) and B(v). The extremity of C in B(v) is called
b(v). If this extremity does not exist, the neighbour of v
is b(v).

13

Backbone The path of I2-nodes in a caterpillar. 12

Bad leaf A leaf v, such that there exists no demand pair between v
and another leaf u, where u is connected to the neighbour
of v.

12

BQ-algorithm Abbreviation for the algorithm by Bousquet et al. [4]. 51

Caterpillar (1) By itself: A tree consisting of a path of I2-nodes with
an I1-node at each end, and all leaves connected to all
these nodes.

12

Caterpillar (2) In a tree: A maximal induced subgraph of the tree
consisting only of I1-nodes, I2-nodes, L1-leaves and L2-
leaves.

12

Caterpillar Abbreviation for instances with a caterpillar. 51

Caterpillar component A maximal induced subgraph of a tree consisting only of
I2-nodes and L2-leaves.

12

Caterpillar-Long Abbreviation for instances with a caterpillar and mostly
long demand paths.

51

Caterpillar-Random Abbreviation for instances with a caterpillar and uni-
formly at random demand pairs.

51

Caterpillar-Short Abbreviation for instances with a caterpillar and mostly
short demand paths.

51

Caterpillar-TS Abbreviation for instances with a caterpillar and demand
pairs through a solution.

51
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Definition Explanation Page

Caterpillar-TSx Abbreviation for instances with a caterpillar and demand
pairs through a solution of size x.

51

Closest P -neighbour A closest P -neighbour of a node v is the other endpoint
of a minimal demand path starting at v.

13

Contract If we contract an edge between nodes u and v, we replace
u and v in the tree by a new node w that is connected to
all neighbours of u and v, except for u and v themselves.

12

Cover Let v be a bad L2-leaf of a caterpillar (in a tree) C. Let
P1 and P2 be two minimal demand paths that start at
v, such that P1 and P2 use a different edge between two
internal nodes connected to the neighbour of v. Leaf v
covers C if P1 and P2 together go over the entire back-
bone of C.

13

Cut When we cut an edge e, we remove all demand paths
that go over e, decrease k by one, and contract e.

12

Degree3 Abbreviation for instances with a Degree3 tree. 51

Degree3 tree A tree that looks like a binary tree, except that the root
node has three neighbours.

36

Degree3-Long Abbreviation for instances with a Degree3 tree and
mostly long demand paths.

51

Degree3-Random Abbreviation for instances with a Degree3 tree and uni-
formly at random demand pairs.

51

Degree3-Short Abbreviation for instances with a Degree3 tree and
mostly short demand paths.

51

Degree3-TS Abbreviation for instances with a Degree3 tree and de-
mand pairs through a solution.

51

Degree3-TSx Abbreviation for instances with a Degree3 tree and de-
mand pairs through a solution of size x.

51

Demand pair A pair of distinct nodes in T that needs to be separated. 11

Demand path The path between the two nodes of a demand pair. 11

Destroyed A demand path is destroyed when its corresponding de-
mand pair is separated.

11

Dominate A wingspan W dominates a demand pair between nodes
u and v if both u and v belong to the subcaterpillar of
W .

13

E The set of edges in a Multicut in Trees instance. 11

EMC Abbreviation of Edge Multicut. 10

Extremity The extremities of a caterpillar C in a tree are the two
internal nodes in C that would become leaves if all leaves
in the tree would be removed.

12
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Definition Explanation Page

Fixed-parameter tractable We say a problem is fixed-parameter tractable when,
given the input I for the problem and a parameter
k ∈ N0, the problem can be solved in O(f(k) · g(|I|))
time, for any computable function f , and a polynomial
function g.

11

FPT Abbreviation of fixed-parameter tractable. 11

GN-algorithm Abbreviation for the algorithm by Guo and Nieder-
meier [23].

51

Good leaf A leaf v, such that there exists a demand pair between v
and another leaf u, where u is connected to the neighbour
of v.

12

I1-node Internal node with at most one neighbour that is an in-
ternal node.

12

I2-node Internal node with at precisely two neighbours that are
internal nodes.

12

I3-node Internal node with at least three neighbours that are
internal nodes.

12

Inner node I2-node without leaves. 12

Internal length The internal length of a demand path is the length of its
internal path.

13

Internal node A node in a tree with more than one neighbour. 12

Internal path The internal path of a demand path is the subset of
the demand path consisting only of edges between two
internal nodes.

13

Interquartile range For a set of data: Q3 −Q1. 52

IQR Abbreviation for interquartile range. 52

k The maximum number of edges we are allowed to remove
from the tree to separate all demand pairs.

11

Kernel A generally smaller input I ′ for a problem computed
from an input I such that the problem can be solved
on I ′ if and only if it can be solved on I.

11

Kernelisation The process of computing a kernel. 11

L1-leaf Leaf connected to an I1-node. 12

L2-leaf Leaf connected to an I2-node. 12

L3-leaf Leaf connected to an I3-node. 12

Leaf A node in a tree with precisely one neighbour. 12

Long Abbreviation for instances with mostly long demand
paths.

51
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Definition Explanation Page

Minimal demand path A demand path starting at a node v is a minimal demand
path if its internal path is not a superset of the internal
path of any other demand path starting at v.

13

n The number of nodes in a Multicut in Trees in-
stance.

11

P The set with demand pairs in a Multicut in Trees
instance.

11

p The number of demand pairs in a Multicut in Trees
instance.

11

Prüfer Abbreviation for instances with a Prüfer tree. 51

Prüfer tree A tree generated using a Prüfer sequence. 34

Prüfer-Long Abbreviation for instances with a Prüfer tree and mostly
long demand paths.

51

Prüfer-Random Abbreviation for instances with a Prüfer tree and uni-
formly at random demand pairs.

51

Prüfer-Short Abbreviation for instances with a Prüfer tree and mostly
short demand paths.

51

Prüfer-TS Abbreviation for instances with a Prüfer tree and de-
mand pairs through a solution.

51

Prüfer-TSx Abbreviation for instances with a Prüfer tree and de-
mand pairs through a solution of size x.

51

Q1 The first quartile of a set of data. 52

Q2 The second quartile or median of a set of data. 52

Q3 The third quartile of a set of data. 52

Random Abbreviation for instances with uniformly at random de-
mand pairs.

51

Reduced A reduced input for a problem is also called a kernel. 11

Reduction rules A set instructions that run in polynomial time used to
compute a kernel.

11

RVMC Abbreviation of Restricted Vertex Multicut. 10

Same direction If zero or one demand paths start at a node v, its demand
paths go in the same direction. If two or more demand
paths start at a leaf u, and the second edge (from u) of
all demand paths starting at u is the same, u’s demand
paths go in the same direction. If two or more demand
paths start at an internal node w, and the first edge
(from w) of all demand paths starting at w is the same,
w’s demand paths go in the same direction.

12

Separated A demand pair between nodes u and v is separated if
there exists no path between u and v.

11
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Definition Explanation Page

Short Abbreviation for instances with mostly short demand
paths.

51

Subcaterpillar The subcaterpillar of a wingspan W consists of all nodes
in W and all leaves connected to those nodes.

13

T The tree in a Multicut in Trees instance. 11

TS Abbreviation for instances with demand pairs generated
through a solution.

51

TSx Abbreviation for instances with demand pairs generated
through a solution of size x.

51

UVMC Abbreviation of Unrestricted Vertex Multicut. 10

V The set of nodes in a Multicut in Trees instance. 11

Wingspan The wingspan of a bad L2-leaf v is the union of internal
nodes of the minimal demand paths P1 and P2 that start
at v, such that P1 and P2 use a different edge between
two internal nodes connected to the neighbour of v.

13
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B Number of Operations Counted for Methods in the Counted
Data Structures

This section of the appendix contains tables with the number of operations that are counted in
the Counted data structures explained in Subsection 7.1.

CountedList
Method Operations
[ ] 1.
Add 1.
AddRange j: The number of elements to be added.
Clear n: The number of elements in the CountedList.
Contains i: The index of the requested element, or n if it is not part of the CountedList.
Count 1.
Insert n− i: The number of elements in the CountedList minus the index where an

element is inserted.
Remove n: The number of elements in the CountedList.
RemoveAt n− i: The number of elements in the CountedList minus the index where an

element is removed.

Table 4: The number of operations counted for the methods in a CountedList.

CountedDictionary
Method Operations
[ ] 1.
Add 1.
Clear n: the number of elements in the CountedDictionary.
ContainsKey 1.
Count 1.
GetKeys 1. Resulting CountedEnumerable is also counted.
GetValues 1. Resulting CountedEnumerable is also counted.
Remove 1.
TryGetValue 1.

Table 5: The number of operations counted for the methods in a CountedDictionary.
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CountedCollection
Method Operations
Add 1.
ChangeElement 1.
Clear n: the number of elements in the CountedCollection.
Contains 1.
Count 1, or n: 1 if the number of elements in the

CountedCollection is queried, n if a predicate is used
to count the number of elements that fit a certain condition.

ElementBeforeAndAfter 2.
First 1, i, or n: 1 if the first element is queried, i if we want the

first element that fits a predicate, where i is the index of that
element, or n when we use a predicate but no fitting element
is present.

FirstOrDefault 1, i, or n: 1 if the first element is queried, i if we want the
first element that fits a predicate, where i is the index of that
element, or n when we use a predicate but no fitting element
is present.

Last 1. This menthod has no predicate options.
Remove 1.
RemoveFromEnd i: the number of elements to be removed.
RemoveFromEndWhile 2i + 1: i + 1 elements for which we check a condition, and i

elements that will be removed. Removing the elements does
not update the counter again.

RemoveFromStart i: the number of elements to be removed.
RemoveFromStartWhile 2i + 1: i + 1 elements for which we check a condition, and i

elements that will be removed. Removing the elements does
not update the counter again.

Table 6: The number of operations counted for the methods in a CountedCollection.
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C Additional Results

This part of the appendix contains additional figures.
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(a) The number of operations.
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Figure 39: Box plots of the number of operations and ticks per reduction rule in the algorithm
by Guo and Niedermeier [23] to compute kernels on instances with 385 nodes generated from
Vertex Cover instances. For each number of demand pairs, there were 100 experiments.
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Figure 40: Contour plot of the base-10 logar-
ithm of the median number of nodes in ker-
nels computed by the algorithm by Guo and
Niedermeier [23] on Prüfer trees with demand
pairs through a solution of size 10. Each grid
point is determined using 50 experiments.
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Figure 41: Contour plot of the base-10 logar-
ithm of the median number of nodes in ker-
nels computed by the algorithm by Bousquet
et al. [4] on caterpillars with mostly long de-
mand paths. Each grid point is determined
using 100 experiments.
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Figure 42: Box plot showing the remaining number of nodes and demand pairs in kernels
computed by the algorithm by Guo and Niedermeier [23] on Prüfer trees with 896 nodes and
demand pairs through a solution of size 10. For each number of demand pairs, there were 50
experiments.
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Figure 43: Box plot showing the remaining number of nodes and demand pairs in kernels
computed by the algorithm by Bousquet et al. [4] on caterpillars with 128 nodes and demand
pairs through a solution of size 10. For each number of demand pairs, there were 100 experiments.
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(a) Guo and Niedermeier [23].
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(b) Bousquet et al. [4].

Figure 44: Contour plots of the base-10 logarithm of the IQR of the number of nodes in ker-
nels computed on Degree3 trees with demand pairs through a solution of size 10, using both
algorithms. Each grid point is determined using 50 experiments.
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(a) Instances with caterpillars and demand pairs
generated through a solution of size 100.
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(b) Instances with Prüfer trees and demand pairs
generated through a solution of size 5.

Figure 45: Contour plots of the base-10 logarithm of the IQR of the total number of operations
needed to compute kernels using the algorithm by Bousquet et al. [4] on two different types of
instances. Each grid point is determined using 50 experiments.
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(a) Mostly short demand paths.
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(b) Uniformly at random demand pairs.

Figure 46: Contour plots of the base-10 logarithm of the IQR of the number of demand pairs
in kernels computed by the algorithm by Bousquet et al. [4] on Degree3 trees, for two different
types of demand pairs. Each grid point is determined using 100 experiments.

94



128 256 384 512 640 768 896 1,024
Nodes in the instance

128

256

384

512

640

768

896

1,024

De
m

an
d 

pa
irs

 in
 th

e 
in

st
an

ce

0.00

0.36

0.72

1.08

1.44

1.80

2.16

(a) IQR of the number of nodes in the kernels.
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(b) IQR of the number of demand pairs in the
kernels.

Figure 47: Contour plots of the base-10 logarithm of the IQR of the number of nodes and
demand pairs in kernels computed by the algorithm by Bousquet et al. [4] on Degree3 trees with
demand pairs through a solution of size 50. Each grid point is determined using 50 experiments.
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(a) IQR of the number of nodes in the kernels.
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(b) IQR of the number of demand pairs in the
kernels.

Figure 48: Contour plots of the base-10 logarithm of the IQR of the number of nodes and demand
pairs in kernels computed by the algorithm by Bousquet et al. [4] on instances generated from
Vertex Cover instances. Each grid point is determined using 100 experiments.
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(a) Guo and Niedermeier [23].
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(b) Bousquet et al. [4].

Figure 49: Contour plots of the base-10 logarithm of the IQR of the number of operations
needed to compute kernels on instances generated from Vertex Cover instances, using both
algorithms. Each grid point is determined using 100 experiments.
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(a) Guo and Niedermeier [23].
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(b) Bousquet et al. [4].

Figure 50: Box plots of the number of nodes and demand pairs left in kernels computed on the
3-SAT instances, using both algorithms. We explained the instance categories displayed here
in Table 2.
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Figure 51: Contour plots of the base-10 logar-
ithm of the IQR of the number of nodes in ker-
nels computed by the algorithm by Guo and
Niedermeier [23] on instances with a caterpil-
lar and mostly short demand paths. Each grid
point is determined using 100 experiments.
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Figure 52: Contour plots of the base-10 logar-
ithm of the IQR of the number of nodes in ker-
nels computed by the algorithm by Guo and
Niedermeier [23] on instances with a Prüfer
tree and mostly long demand paths. Each grid
point is determined using 100 experiments.
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(a) Guo and Niedermeier [23].

128 256 384 512 640 768 896 1,024
Nodes in the instance

128

256

384

512

640

768

896

1,024

De
m

an
d 

pa
irs

 in
 th

e 
in

st
an

ce

0.00

0.36

0.72

1.08

1.44

1.80

2.16

(b) Bousquet et al. [4].

Figure 53: Contour plots of the base-10 logarithm of the IQR of the number of nodes in kernels
computed on instances with a Degree3 tree and demand pairs going through a solution of size
20, using both algorithms. Each grid point is determined using 50 experiments.
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(a) Base-10 logarithm of the number of nodes in
the kernels.
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(b) Base-10 logarithm of the IQR of the number
of nodes in the kernels.

Figure 54: Contour plots of the number of nodes in kernels computed by the algorithm by
Bousquet et al. [4] on caterpillars with demand pairs through a solution of size 50. Each grid
point is determined using 50 experiments.
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(a) Base-10 logarithm of the median number of
nodes in the kernels.
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(b) Base-10 logarithm of the IQR of the number
of nodes in the kernels.

Figure 55: Contour plots of the number of nodes in kernels computed by the algorithm by
Guo and Niedermeier [23] on Degree3 trees with mostly long demand paths. Each grid point is
determined using 100 experiments.
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(a) Base-10 logarithm of the median number of
nodes in the kernels.
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(b) Base-10 logarithm of the IQR of the number
of nodes in the kernels.

Figure 56: Contour plots of the number of nodes in kernels computed by the algorithm by Guo
and Niedermeier [23] on Prüfer trees with demand pairs going through a solution of size 20.
Each grid point is determined using 50 experiments.
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(a) Mostly short demand paths.
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(b) Mostly long demand paths.

Figure 57: Contour plots of the base-10 logarithm of the IQR of the total number of operations
required to compute kernels on instances with Prüfer trees for two demand pair generation
methods, using the algorithm by Guo and Niedermeier [23]. Each grid point is determined using
100 experiments.
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Figure 58: Dominant reduction rule in the algorithm by Guo and Niedermeier [23] on caterpillars
with mostly short demand paths. Each cell is determined using 100 experiments. The text in
each cell is the fraction of the total time spent by the dominant reduction rule.
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Figure 59: Dominant reduction rule in the algorithm by Guo and Niedermeier [23] on Degree3
trees with mostly short demand paths. Each cell is determined using 100 experiments. The text
in each cell is the fraction of the total time spent by the dominant reduction rule.
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Figure 60: Box plots of the number of operations required to compute kernels on the 3-SAT in-
stances, using the algorithm by Guo and Niedermeier [23]. We explained The instance categories
displayed here in Table 2.
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Figure 61: Dominant reduction rule in the algorithm by Guo and Niedermeier [23] on Degree3
trees with demand pairs generated through a solution of size 100. Each cell is determined using
50 experiments. The text in each cell is the fraction of the total time spent by the dominant
reduction rule.
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Figure 62: Dominant reduction rule in the algorithm by Guo and Niedermeier [23] on instances
generated from Vertex Cover instances. Each cell is determined using 100 experiments. The
text in each cell is the fraction of the total time spent by the dominant reduction rule.
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Figure 63: Dominant reduction rule in the algorithm by Bousquet et al. [4] on instances generated
from Vertex Cover instances. Each cell is determined using 100 experiments. The text in
each cell is the fraction of the total time spent by the dominant reduction rule.
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Figure 64: Box plots of the number of operations required to compute kernels on the 3-SAT
instances, using the algorithm by Bousquetet al. [4]. We explained the instance categories
displayed here in Table 2.
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Figure 65: Dominant reduction rule in the algorithm by Bousquet et al. [4] on caterpillars
with demand pairs generated through a solution of size 100. Each cell is determined using
50 experiments. The text in each cell is the fraction of the total time spent by the dominant
reduction rule.
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(a) Guo and Niedermeier [23].
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(b) Bousquet et al. [4].

Figure 66: Contour plots of the base-10 logarithm of the IQR of the number of nodes in kernels
on instances with caterpillars and uniformly at random demand pairs, using both algorithms.
Each grid point is determined using 100 experiments.
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Figure 67: Contour plot of the base-10 log-
arithm of the IQR of the number of demand
pairs in kernels computed by the algorithm by
Guo and Niedermeier [23] on instances with
a Degree3 tree and uniformly at random de-
mand pairs. Each grid point is determined
using 100 experiments.
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Figure 68: Contour plot of the base-10 logar-
ithm of the IQR of the total number of opera-
tions required to compute kernels on instances
with a Prüfer tree and uniformly at random
demand pairs using the algorithm by Bousquet
et al. [4]. Each grid point is determined using
100 experiments.
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