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B
oth microarray and next generation
sequencing platforms generate copious
amounts of data for each experiment.

Thus, computational tools are required to
handle and process such experiments.

For microarray analysis, many open-source
R packages have been developed, most of
which are available through the BioConduc-
tor project. With certain microarray plat-
forms, it is now possible to perform the entire
analysis chain using only BioConductor tools.
A comprehensive next-generation sequencing
toolchain in pure R/BioConductor has until
so far not been possible. Next-generation
sequencing analysis still requires the use of
disparate tools on disparate platforms: only
some of them in R.

This literature review reviewed the existing
BioConductor toolsets for both approaches,
and highlights key differences and similari-
ties.

Introduction

Both microarray and next-generation sequencing
techniques require adequate bioinformatics tools to
process and analyse data. Bioinformatics repositories
exist for many programming languages, but the Bio-
Conductor repository for the R statistical language
is one of the biggest collection of bioinformatics tools
[1]. As of January 2014, the BioConductor R repos-
itory contains over 1,500 individual packages. The
majority of packages are annotation packages, leav-
ing about 600 non-annotation packages (see figure 1
and table 1).
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Figure 1: BioConductor package classifications

Of these remaining 600 packages, 225 packages
are specifically targeted at microarray analysis. Just
half of this amount is specifically tailored to next-
generation sequencing (including RNA-seq and ChIP-
seq). Many packages are generic packages that model
statistical models, offer visualization tools, provide
BioConductor data structures (e.g. expressionSets),
or offer ways to connect to other non-BioConductor
tools (e.g. Ensembl) (see table 1).

Microarray platforms

All microarray platforms are based on the hybridiza-
tion of short probes to some target sequence on to a
so-called “array”. The target sequences are directly
or indirectly labeled with some fluorescent dye. Using
this fluorescence, the abundance of target sequence
can be measured. This is the so-called one-color ap-
proach, used by Affymetrix and Illumina. Two-color
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Type Count

Annotation 713

Infrastructure 267

Microarray 225

Datapackage 138

NGS 63

RNA-seq 31

Cytometry 29

MassSpectrometry 26

ChIP-seq 25

ArrayCGH 18

Other 52

- -

Total 1587

Table 1: BioConductor package classifications

approaches also exist, as used by Agilent 1. In this
approach, two samples are labeled with fluorescent
dyes, each sample with a different color. Both sam-
ples are then simultaneously hybridized to the same
array. The measured values in this approach are thus
a relative measure.

Arrays have been developed for many purposes.
The traditional purpose is to measure gene expres-
sion. In this setup, total RNA is extracted from
a sample, then reverse-transcribed into cDNA and
optionally retranscribed into cRNA (Affymetrix [2]).
The resulting cDNA or cRNA is then directly or
indirectly fluorescently labeled, and hybridized onto
an array containing many probes. The probes used
here generally target known transcripts. A special
case of gene expression arrays is the exon array. In
this case, probes are targeted to different (potential)
splice variants of a gene. As such, different splice
variants can be detected.

Four other types of experiments for which microar-
ray platforms have proved useful are array-CGH
(aCGH), array-based SNP profiling, ChIP-on-chip
and MeDIP-on-chip platforms. With aCGH, genomic
DNA is extracted from a sample, fluorescently la-
beled and subsequently hybridized onto an array.
Instead of measuring the expression state, this ap-
proach measures the abundance of specific genomic
regions. As such, chromosomal abnormalities can
be detected. With array-based SNP profiling, the
probes on the array target known single nucleotide
polymorphisms (SNPs). As with aCGH, genomic
DNA is extracted from the sample. Thus, this allows
the detection of the abundance of SNPs in a sample.

1It is also possible to use Agilent chips in a one color approach

However, new SNPs are not discovered.

Arrays technologies can be combined with pre-
cipitation technologies, such as ChIP-on-chip and
MeDIP-on-chip technologies. During ChIP-on-chip,
sequences of DNA are first immunoprecipitated by
targeting a DNA-bound protein with an antibody.
The precipitated sequences are then analyzed by
DNA array. MeDIP-on-chip precipitates DNA by
targeting methylated DNA with an antibody, after
which the sequences are analyzed by DNA array.
These two technologies thus enable one to image the
epigenetic landscape.

Next-generation sequencing platforms

For decades, sequencing was a tedious and slow pro-
cess. For example, the human genome project, com-
pleted in 2001, took 11 years to complete and cost
over a billion dollars. The predominant technique
back then was so-called Sanger sequencing 2. Sanger
sequencing is based on a PCR reaction with modified
nucleotides. Apart from normal deoxynucleotides
(dNTPs), the reaction mix also contains fluorescently
labeled dideoxynucleotides (ddNTPs). The incorpo-
ration of these ddNPTs into the DNA chain prevents
the polymerase from elongating the chain any fur-
ther. The incorporation of ddNPTs is a stochastic
process, thus the reaction mix eventually contains
many different DNA molecules, each progressively
longer. This resulting mixture is then separated by
capillary chromatography, and the fluorescence is
measured.

In recent years, several vendors have introduced
new ways of sequencing. These next-generation se-
quencing platforms are orders of magnitude faster
than traditional Sanger sequencing. This allows the
sequencing of entire genomes in as little as a few days.
The costs have also plummeted [3], with the most
current platforms skimming the $1000 per genome
goal [4]. This “revolution” in sequencing has allowed
the creation of entirely new fields, such as RNA-seq
(gene expression analysis using sequencing tools), ex-
ome sequencing, ChIP-seq (protein affinity analysis)
and MeDIP-seq (DNA methylation analysis).

The chemistry involved in these platforms is very
diverse, but generally involves some sort of ampli-
fication on a surface. Current next-generation se-
quencing platforms available are Illumina’s HiSeq, Il-
lumina’s MiSeq, Life Technologies’ Ion Torrent PGM,
Life Technologies’ SOLiD sequencing, Roche’s 454

2Even today, Sanger sequencing is still considered to be the
“gold standard” in terms of quality
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sequencing, and Pacific BioSystems’ RS system. Ex-
pected technologies in the short to medium term
future include nanopore sequencing.

454 sequencing was the first to enter the market in
2005, and relies on pyrosequencing [5]. Fragments are
attached to emulsified beads. Amplification of frag-
ments on the beads is then performed while still in
emulsion [6]. The beads are subsequently transferred
to “pico-titer plate”, where the final pyrosequencing
step takes place.

Illumina HiSeq sequencing utilizes the “sequencing-
by-synthesis” technology. This relies on clonal clus-
ters of fragments on an eight-lane flow cell [7]. Se-
quencing then starts by a new round of amplification
with reversible terminator dNTPs. These reversible
terminator dNTPs are fluorescently labeled. After
each addition of a base, the reaction stops, and the
fluorescent signal is measured. The fluorescent tag
(the terminator) is then cleaved off enzymatically,
and a new cycle of synthesis can start [7, 8].

With SOLiD sequencing, the sequence method is
not direct. Instead, it uses 2-base encoding, which
means the sequence of a fragment can be deduced
after a coverage of 5 [8]. As with 454 sequencing,
clonal amplification is performed on beads, after
which sequencing occurs by ligation [9].

Ion Torrent Personal Genome Sequencer (PGM)
was the first next-generation desktop sequencer. It
aims to provide quick and easy sequencing. DNA
fragments are ligated with specific adapter sequences,
and then clonally amplified in emulsion on mi-
crobeads [10]. The Ion Torrent technology then
builds sequences sequentially. When bases are
incorporated into the growing molecule, protons
are released proportionally to the amount of bases
incorporated [10], and this is then measured by
semiconductor-based technology.

Another emergent technology Pacific Biosystems’
RS system. All other systems feature an early am-
plification step before sequencing commences. The
RS system differs from here in that it is a single-
molecule real time (SMRT) sequencing method [10].
A single DNA molecule is amplified once by a poly-
merase. The polymerase is attached to the bottom
of a zero-mode waveguide nanostructure. Fluores-
cently labeled dNTPs are only excited when they are
being incorporated in the growing DNA chain [11].
The fluorescent tag is removed when incorporation
is complete. In this manner, single molecules can be
sequenced in real time [11].

This review

To classify BioConductor packages, this review has
classified packages with their most specific biocViews.
Popularity of packages was determined by package
download statistics and citation count in Google
Scholar (if available).

Raw data processing

The very first step in any analysis is acquiring raw
data. This raw data comes in a wide variety of
formats, and as such many vendors have integrated
raw data processing into their hardware units.

Microarray

In most microarray platforms, the entire microarray
plate is measured at the same time. This results
in whole-plate image files as being the raw data
format for many platforms. These are subsequently
processed into a table format by most vendors.

Of the two biggest vendors - Affymetrix GeneChip
and Illumina BeadArray - affymetrix provides the
most transparent file format. This is partly due to
each Illumina BeadArray being unique; the probes
are randomly located on the array [12]. This requires
a location file for each and every array, whereas
Affymetrix GeneChip arrays have a fixed and well-
known location for their probes. The Affymetrix CEL
file format is furthermore well-documented. This
makes it relatively easier for developers to work with
Affymetrix files. The BioConductor affy package
can read and process affymetrix CEL files natively
without any previous processing [13].

Many chips can be read by some third-party scan-
ners, such as GenePix. Output by GenePix scanners
is supported by the BioConductor limma package,
as per the read.maimages function [14, 15], which
thus makes it possible to process some highly specific
microarray platforms such as Agilent microarrays.

Next-generation sequencing

Data output formats for microarray platforms
are extremely diverse. Contrary to this trend, an
informal standard has been developed for next
generation sequencing. Almost all NGS platforms
eventually output a FASTQ file, which resembles
a normal FASTA format sequence file, with phred
quality scores attached to every base. One entry is
usually present for each and every read. A phred
quality score refers to the chance of a wrongly called
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base. It is an inverse logarithmic scale, where a
higher score means an ever smaller chance of a
wrongfully called base (see formula (1)). Higher is
therefore better. See listing 1 for an example of a
FASTQ entry.

Q = −10log10P (1)

where:
Q = quality
P = chance of wrongfully calling a base

The phred scores are represented by an ASCII
character in FASTQ files. Several encodings of
phred scores exist. The Sanger institute uses ASCII
values 33 to 126 to represent phred scores from 0
to 93 [16]. Newer versions of Illumina (>1.8) will
use sanger encodings for their FASTQ files. FASTQ
files are human-readable files completely in ASCII
format.

@s om e s e qu en ce id en t i f i e r
AAAAAAAAAA
+
! ! ! ! ! ! ! ! ! !

Listing 1: ”An example FASTQ entry of a sequence of
adenines with the lowest possible quality score
(!)”

Quality control

Microarray

An essential step for microarray analysis is quality
control, as array-based technologies produce inher-
ent biases. Many BioConductor packages have been
developed to asses the quality of experiments. For
spotted arrays the arrayQuality can be used. The
arrayQualityMetrics [17] package utilizes the Bio-
Conductor container formats for array experiments,
such as ExpressionSets, and is therefore very use-
ful for analysis of Affymetrix chips. However, it
does support both one-color and two-color exper-
iments, and is thus not essentially limited to one
platform. More specific quality control packages
targeting just one platform include affyExpress.
Several Affymetrix-specific quality control packages
exist, such as ArrayTools [18], affyQCReport [19],
simpleaffy [20], yaqcaffy (which is a wrapper for
simpleaffy), and affyPLM [21].

Next-generation sequencing

Quality control for NGS applications is somewhat
less of an issue than with microarray applications. As
most sequencers output FASTQ files, which already
include quality measures, quality control has partially
already been accounted for. Nevertheless, quality
control can be helpful, and in many cases required.
As such, packages have been developed for quality
control for NGS applications. The most prominent
of these is htSeqTools [22].

Preprocessing

An essential step in any microarray or NGS anal-
ysis is preprocessing of the raw data. Microarray
technologies require normalization, whereas most
next-generation sequencing workflows demand an
alignment step.

Microarray

The normalization of microarray data is dependent
on the platform used. The most common platforms,
Affymetrix GeneChip and Illumina BeadArray, re-
quire very different methods of normalization.

Affymetrix GeneChip

Most microarray normalization tools targeting the
Affymetrix GeneChip platform use either one of the
following two normalization algorithms: Robust Mul-
tichip Average (RMA) [23–25] or the outdated MAS5.
MAS5 is the traditional normalization tool but has
become outdated, whereas RMA is somewhat newer.
RMA has the advantage of being significantly faster
than MAS5. Whereas RMA normalizes expression
over multiple arrays (hence the Multichip denomi-
nator), MAS5 normalizes each array independently.
This results in MAS5 being more suited when just
very few samples are available. RMA is thus more
suited to analyses which feature many samples. Both
methods are provided by the bioconductor affy pack-
age [13]. The affy package only processes older
Affymetrix expression arrays. Newer arrays will have
to be processed with the oligo package, which is also
able to process SNP and exon arrays. An improved
version of the RMA algorithm exists which uses the
probe sequence to give a better normalization. This
method is called gcRMA, and is implemented in
the gcrma package [26]. Affymetrix has published a
newer normalization method in BioConductor, which
they call “Probe Logarithmic Error Intensity Esti-
mate”, and is implemented in the plier [27] package.
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Illumina BeadArray

The lumi BioConductor package provides many
methods relating to Illumina BeadArray anal-
ysis, including normalization [28]. The pack-
age contains several methods of normalizing
BeadArray data (the adjColorBias.quantile),

smoothQuantileNormalization,

adjColorBias.ssn, lumiMethyN, lumiN,

normalizeMethylation.quantile,

normalizeMethylation.ssn, rankinvariant,

rns, ssn, and normalize.loess functions.
The lumiExpresso function does all processing
steps automatically.

The adjColorBias.quantile and
normalizeMethylation.quantile functions are
wrappers for the smoothQuantileNormalization

function, which does the actual work. Like-
wise, functions adjColorBias.ssn and
normalizeMethylation.ssn are wrappers for
the ssn function.

With quantile normalization, the test sample is
“aligned” to a reference sample, in such manner that
the test sample will eventually have to same statis-
tical properties as the reference sample [23]. Loess
normalization uses local regressions of the log ratios
of expression.

Furthermore, the large BioConductor microarray
analysis package limma can analyse Illumina BeadAr-
ray data since version 3.0.0 [14].

Agilent

The package limma can also analyze two-color mi-
croarray packages such as those used by Agilent [14,
29]. When Agilent arrays have been analyzed with
GenePix scanners, they can be loaded with the limma
function read.maimages, upon which they can be
normalized with the normalizeWithinArrays func-
tion [14], using six different normalization methods
[15, 29]. The currently supported normalization
methods are loess, print-tip loess, composite,
control and robust spline [29].

The loess method normalizes the array with local
regressions of the general log ratios of expression of
the array [29]. The print-tip loess method refines
this method by using loess regressions based on the
print-tip location [29]. The composite method uses
additional information regarding control spots, if
available [29]

Next-generation sequencing

Once the FASTQ files have been acquired, the next
step a Next-Generation Sequencing workflow gener-
ally involves mapping the acquired reads to a refer-
ence genome. The prime tool in existence for this is
Bowtie [30]. Two versions of Bowtie exists, Bowtie
1 and Bowtie 2 [31]. Bowtie 1 is mainly useful for
NGS machines utilizing small reads (<50 bp/read).
Bowtie 2, on the other hand, is the recommended ver-
sion for NGS machines utilizing reads of more than
50 bp, and therefore most suited to newer machines.
Bowtie 2 also handles gapped alignments better than
Bowtie 1 [31]. Bowtie 2 is not an update of Bowtie
1; rather, it is designed for a different use case. As
such, both versions are in active development. An
R/bioconductor wrapper for Bowtie exists, and is
called RBowtie [32]. A BioConductor wrapper for
Bowtie2 does not exist as of January 2014.

BowTie and related tools output Sequence Align-
ment Maps - SAM files. A SAM file is a human-
readable format containing alignments. These SAM
files can be very large, and are therefore often con-
verted into BAM files, which is a compressed binary
format. The main tool to analyse SAM/BAM files
is SAMtools [33], which has been partially ported
to R/Bioconductor as RSamtools [34]. SAMtools is
used to sort and index SAM/BAM files. Further-
more, it can convert between the two formats, and it
is possible to merge samples. The tool can be used
to create sub-alignments; for instance, only those
alignments on chromosome 1. As of January 2014,
Rsamtools can only process BAM files; SAM files
are not supported, and conversion from/to BAM files
is not possible either. Therefore, users of Rsamtools
still need the standalone version of SAMtools.

de novo sequencing

When no reference genome is available, it is neces-
sary to assemble the genome from scratch. Many
assemblers for FASTQ files have been developed, in-
cluding ABySS [35], ALLPATHS [36], Geneious [37],
IDBA [38], MIRA, Newbler, SeqMan NGen, SeqPrep,
Sequencher, SOAPdenovo [39], and Velvet [40]

Velvet [40] is one of the most popular assemblers
for de novo sequencing. The mathematics behind
Velvet relies on De Bruijn graphs. Its memory usage
is quite high; it requires at least 12GB of RAM mem-
ory. It supports most common sequencing formats
(FASTA (and compressed version), FASTQ (and com-
pressed version), SAM, BAM, eland and gerald files).
Velvet can read from standard input, which means
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that it can work directly with the output of another
program. This means that it is not necessary to save
(very large) input files, but instead go directly to
assembly. Velvet - and other De Bruijn assemblers -
split sequence reads into hashes of length k, so-called
k -mers. The size of k is an important factor in assem-
bler performance. Therefore, it is necessary to run
Velvet with a number of k values. A BioConductor
package wrapping or implementing Velvet unfortu-
nately does not exist yet. Other assemblers are also
not yet supported by BioConductor.

RNAseq

RNA-seq is a special case as it uses the technologies
of next-generation sequencing for expression profiling.
As such, it has unique workflow that requires a taste
of both worlds.

With RNA-seq, the read counts are important, as
they not only provide information about the qual-
ity of the sequence, but also about the amount of
RNA present for this particular sequence, and thus
provides information about the expression state of a
particular transcript.

Generally speaking, RNA-seq data must be aligned
first, using methods described above. But whereas
preprocessing stops with general sequencing, RNA-
seq requires an additional microarray-like normaliza-
tion step. This, firstly introduces some format issues:
the main BioConductor package for RNA-seq, edgeR
[41], requires its input data to be in a tab-delimited
file of read counts with gene symbols in one column
[42]. This can be supplied by an other BioConduc-
tor package, namely the htSeqTools quality control
package [22].

The edgeR package does not try to estimate ab-
solute expression values [41, 42]. Instead, it only
tries to estimate relative expression values between
samples. This makes normalization somewhat less
complicated. For normalization, edgeR uses an exper-
imental scaling normalization method called TMM
normalization [41–43]. TMM normalization is meant
to improve upon earlier normalization methods that
tend to use scaling to library size [43–46] or quantile
normalization [47].

Apart from edgeR, several other RNA-seq analysis
tools exist, such as ERANGE [46].

Post-processing

Microarrays

Gene Expression

Both the affy and lumi packages - respectively tar-
geting Affymetrix and Illumina arrays - and associ-
ated packages (such as affycoretools) are useful
for normalization and data processing, but in them-
selves do generally not provide functions to calculate
differentially expressed genes. The limma package
is, for many applications, the workhorse calculating
differentially expressed genes, making venn diagrams
and heatmaps.

Many specialized packages exist that target a spe-
cific analysis. These are generally independent from
one another. For instance, for Bayesian analysis
of differential gene expression - which is not cov-
ered in limma - 13 different BioConductor packages
exist; BAC [48, 49], BGmix [50], bgx [51], BHC [52],
birta [53], bridge [54, 55], iBMQ [56], iChip [57, 58],
iterativeBMA [59], iterativeBMAsurv [60], mBPCR
[61], siggenes [62] and XDE. It is beyond the scope
of this review to exhaustively list all packages for
microarray analysis.

SNP arrays

There are several packages specifically targeted for
SNP arrays. For Illumina BeadArray SNP arrays,
there is beadarraySNP. For Affymetrix GeneChip
SNP arrays, there is the RLMM package, as well as
the crlmm package which is able to process both
platforms. It uses the Corrected Robust Linear
Model with Maximum likelihood distance (CRLMM)
method [63–68]. The crlmm package is an improve-
ment of the earlier oligo package, which also imple-
ments the CRLMM method [65]. The crlmm package
can natively process Affymetrix CEL files.

The SNPchip package can be used to visualize copy
number alterations and SNPs [69].

SNP array techniques have enabled genome-wide
association (GWAS) studies to be conducted on large
scales. As such, several BioConductor packages have
been developed for GWAS studies. The main Bio-
Conductor GWAS package is GWASTools [70]. It con-
tains several classes for GWAS data representation,
and is able to perform analyses. The installation
of GWASTools is non-trivial, and depends on the in-
stallation of the non-R NetCDF program. Outside of
BioConductor, the *ABEL family of R packages pro-
vides rich tools for analyzing genomics experiments.
The GenABEL package, available through CRAN,
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provides a comprehensive toolset for GWAS studies
[71].

Next-generation sequencing

The BioConductor package QuasR [72] is an amal-
gamation of several R/BioConductor packages for
next-generation sequencing. It is meant to provide
a single package through which all common steps in
NGS analysis can be carried out, from start to end.
Core packages utilized by QuasR include IRanges

and RSamtools. As of January 2014, it contains
functions for the analysis of ChIP-seq, RNA-seq and
Bi-seq experiments. As a backend for alignments,
it uses either Bowtie [30] or SpliceMap [73] through
the Rbowtie package. There is clear documentation
for QuasR, for both inexperienced and experienced R
users.

The GenomicRanges [74, 75] package, in concur-
rence with the IRanges [76] package, is an important
infrastructural package for sequencing data in Bio-
Conductor. It supplies a data structure - a GRanges

object - that allows users to work with sequences.

SNPs

Ultra-high throughput sequencing technologies al-
low the identification of variants from individual
genomes. This essentially allows the detection of rare
variants. Unfortunately, not many BioConductor
packages targeting variant detection from sequence
data have as of yet been developed. Two highly inter-
related data infrastructure packages, SeqArray [77]
and SeqVarTools [78] have so far been developed.
These packages allow handling variant data without
requiring large amounts of RAM memory. In stead,
they store the (compressed) data on disk.

Other packages aiming to detect variants are
hapFabia [79] and deepSNV [80]. The deepSNV pack-
age aims to detect sub-clonal variants from ultra-deep
sequencing data.

RNA-seq

RNA-seq is a potentially far more powerful tech-
nique to measure gene expression than microarray.
Whereas background noise is persistent in microarray
platforms, this is almost non-existing with RNA-seq,
resulting in a very high dynamic range [81]. Fur-
thermore, it opens up the possibility of detecting
previously unknown splice variants, which is impossi-
ble with probe-based platforms such as microarrays.

Tools to discover de novo splice junctions from
RNA-seq data are available, for BioConductor users

most prominently in the form of SpliceMap. This
works by alignment two split reads of 25 bases each
with Bowtie. The unaligned half-reads are then used
to determine the locations of previously unmapped
splice junctions [73]. Interestingly, SpliceMap has
been included in the RBowtie package [32]. It out-
puts data in SAM/BAM format. Several other non-
R tools exist to detect splice junctions, including
ABMapper [82]

A comprehensive RNA-seq analysis tool is Cuf-
flinks [83–85], which - apart from calculating dif-
ferential expression and regulation - can assemble
transcripts. It uses the TopHat gapped read aligner
[85, 86]. BioConductor packages cummeRbund [83]
and spliceR [87] can be used to visualize the results
of Cufflinks.

Two high-level BioConductor packages for the de-
tection of differential expression of RNA-seq data are
DESeq [88, 89] and DEXSeq [90, 91]. DESeq is useful
for detecting differential expression at the gene level,
whereas DEXSeq is useful for detecting differential
expression at the exon level. Both packages were
developed by the same lab. The input required by
DESeq is a simple table with sequence read count per
gene (rows) per sample (columns). Such a data struc-
ture can be constructed by using the GenomicRange

infrastructure package. DEXSeq, however, requires
the use of a Python package and a species-specific
“General Transfer Format” (GTF) annotation file
downloaded from Ensembl to build the data struc-
ture required. Both packages then normalize the
data and call differentially expressed genes. These
two packages are richly documented.

ChIP-seq

ChIP-seq assays - and other affinity assays, such
as MeDIP-seq - feature peak calling. In this setup,
“peaks” of bound protein to some genomic region
are called. In a typical ChIP-seq analysis, this peak
calling occurs after alignment of sequences. See figure
2 for a schematic of a typical ChIP-seq analysis.

Several BioConductor packages exist for the anal-
ysis of ChIP-seq data. The most obviously named
of these are chipseq and ChIPseqR [92], but many
others exist: BayesPeak [93, 94], CSAR [95], DBChIP
[96], DiffBind [97, 98], iSeq [57, 58, 99], jmosaics
[100], mosaics [101, 102], nucleR [103] and triform

[104].

The three most popular packages (as determined
by BioConductor download statistics) are chipseq,
DiffBind and BayesPeak.

DiffBind is a useful package for identifying dif-
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Figure 2: Workflow diagram for a typical ChIP-seq anal-
ysis

ferentially bound sites on the genome. It is thus
primarily useful for ChIP-seq experiments which two
or multiple states (e.g. to screen for drug-induced al-
terations in protein affinity to certain genomic sites).
It borrows some statistical models from RNA-seq
tools such as edgeR, since ChIP-seq also relies on
count data as RNA-seq does. It also contains several
plot functions, such as heatmaps, to visualize ChIP-
seq results. It requires the use of both BAM files and
a csv file containing so-called “peaksets” - i.e. a csv
file containing sets of candidate binding sites in the
form of genomic intervals. These are then internally
converted into a GRanges object.

Discussion

BioConductor is a rich source of R packages for
both microarray and next-generation sequencing plat-
forms. As of January 2014, BioConductor contains
packages for both microarray and NGS analysis.
Overall, microarray analysis is still BioConductor’s
main focus point. However, in recent years, next-
generation sequencing tools have been added to Bio-
Conductor, together with NGS infrastructure pack-
ages such as GenomicRanges and IRanges, making
BioConductor a useful repository for NGS analysis
as well.

The analysis of Microarray experiments tends to
be separated over many packages, each tailored to a
specific set of problems. This reflects UNIX philoso-
phy where the common paradigm is that programs

Figure 3: Workflows for microarray (green) and NGS
(blue) analysis. RNA-seq highlighted in pink

should do only one thing and do it well. The analysis
of next-generation sequencing data - while requiring
more non-R tools - is generally more focused on a
small number of central packages which provide a
total work flow (such as QuasR and edgeR). Surely
this makes for better user-friendliness.

There are several areas of note which require more
adequate thought. Issues that might well harm Bio-
Conductor in the short or long term are areas of
compatibility, technical problems in R itself, and
community (or lack thereof) issues.

Compatibility

One major area of concern in comparing microar-
ray tools and next-generation sequencing tools is the
incompatibility of data formats. Especially in the
microarray community, standardization is lacking.
Many different file and data formats exist, which
makes interoperability complex and confusing. This
is partly due to inherent technological differences
between different vendors. In a microarray setup,
probes have to be mapped to fluorescence values.
Vendors differ tremendously in probes or probesets,
which makes comparing microarray data from differ-
ent vendors inherently complex.

Sequencing data, on the other hand, has a clear
final data output: a DNA sequence with some quality
score. This is eventually vendor-independent, making
standardization relatively easy. Nevertheless, even
here, file formats have not been entirely standardized.
FASTQ files still can come in different encodings for
quality scores.

The lack of standardization is undoubtedly harm-
ful for software development and analysis of high-
throughput data.

BioConductor’s Biobase meta-package supplies
an ExpressionSet object (commonly referred to
as an eSet), which aims to provide a single data
structure for microarray analysis packages [1, 105].
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A) B)

Figure 4: Use of Biobase and GenomicRange packages
in BioConductor. A: Absolute number of anal-
ysis packages using Biobase or GenomicRange.
B: Relative amount of packages using Biobase
or GenomicRange, as a percentage of total
amount of analysis package for Microarray or
NGS

The ExpressionSet class natively works well for
Affymetrix data, but additions are required for the
lumi package [28, 106]. Furthermore, the popular
limma package does not use ExpressionSet objects
internally, although it can process them. Interally,
limma uses a class called RGList.

For NGS analysis, the GenomicRange package sup-
plies the GRanges class. This class can contain se-
quences and ranges of sequences [74, 75], making it
ideal for any sequencing tools.

BioConductor does not enforce the use Biobase

or GenomicRanges. The adoption of these data stan-
dards is therefore up to the developers of each individ-
ual package. The result is that most packages do not
support those two core packages. Using the Depends

On Me and Imports Me fields in the BioConductor
pages for Biobase and GenomicRanges, it is possible
to find those packages that use these packages. As
can be seen in figure 4, overall adoption of Biobase
is almost 50 percent for microarray analysis packages,
whereas 25 percent of NGS packages use Biobase.
Conversely, slightly more than 40 percent of NGS
packages use GenomicRanges, whereas the use of this
package by microarray analysis packages is, at 6 per-
cent, very small. As GenomicRanges is a younger
package than Biobase, it is to be expected that use
of GenomicRanges will increase over time.

The diversity of microarray chips requires ade-
quate annotation for each individual chips. This
is currently the easiest for Affymetrix arrays, as
Affymetrix supplies Chip Description Files (CDF)
for each platform. Earlier Affymetrix chips have
a somewhat complicated annotation infrastructure
in BioConductor, requiring three different packages
per platform (a cdf package, a probe package and
an annotation package). In more recent years, in
concurrence with the more general oligo package,

this has been streamlined, with the advent of Plat-
form Design Information (pdInfo) packages. The an-
notation information contained in Affymetrix CDF
files is based on UniGene information available to
Affymetrix at the time of chip creation. Over the
years, UniGene information has been refined tremen-
dously, requiring CDF files to be updated [107].
Affymetrix does not provide updated CDF files. As
such, some independent projects exist to update CDF
files, the most prominent of which is the “BrainAr-
ray Custom CDF” project. These custom CDF files
can then be loaded in a so-called “CDF environ-
ment” by the makecdfenv package, which can be
used in concurrence with affy, or one can use the
pdInfoBuilder package to create a pdInfo package
for use with oligo. Illumina annotation is provided
by the lumiHumanAll.db, lumiHumanIDMapping and
illuminaHumanv1BeadID.db packages, which pro-
vide mappings of Illumina IDs to reference genome
IDs. These can then be read with the generic
annotate package. For species other than human, it
is necessary to use the nuID system [12, 108].

R

Some aspects of R make it rather difficult to work
with from a next-generation sequencing point of view.
The R language traditionally puts all data in working
memory. When large files are read with R, the entire
contents of said file enter the working memory. This
makes R very memory intensive. For microarrays,
this is generally a smaller issue, as array files are
not too large. FASTQ and SAM/BAM files used
for NGS, on the other hand, can be on the order of
hundreds of gigabytes. Loading all this data into
RAM memory is impossible on anything smaller than
a cluster. Two proprietary versions of R - Oracle R
Enterprise and Revolution R Enterprise - exist that
aim to solve this problem.

To receive updates for packages, BioConductor
requires its users to have the most recent version of
R, which as of January 2014 is R 3.0.2. R version
3.0 was released in April 2013. R version 3.0, while
requiring the re-installation of all packages, contains
some important updates of interest to large datasets.
In R versions 2.x and lower, the maximum vector
length was 231−1, (roughly 2.1 billion elements). As
a matrix in R is a single vector (unlike a data frame,
which is a list of vectors), this had some serious
implications. Namely, the maximum dimensions of
an n-by-n matrix are just 46,430 by 46,430 elements.
These dimensions are easily achieved by analysis
of microarray or next-generation sequencing data
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sets. In R 3.0, the maximum size of a vector has
been raised to 252 elements (roughly 4.5 quadrillion
elements). The maximum size of an n-by-n matrix is
now with n = 94,906,266. The memory requirements
for such a vector are, at over 33TB, however, gigantic.

As the amount of generated data by biologic exper-
iments grows phenomenally, systems that attempt
to put all this data in RAM become unsustainable.
If R and BioConductor want to stay in the game,
some solution will have to be found. One solution
that does not require a complete overhaul of R is the
use of some form of compression. Some attempts at
this have already been done. The IRanges package,
which itself forms the basis of the GenomicRanges

meta-package, uses run-length encoding to compress
sequences [76]. Since sequencing data is at core sim-
ple text, a large part of which is highly repetitive,
it is fortunately highly compressible: a 30 gigabyte
FASTQ file compressed with gzip will generally re-
sult in a file on the order of 10GB, thus having a
compression ratio of approximately 60-70%. Using
modern compressors such as xz, compression ratios
around 80% should be attainable.

Community

One requirement of BioConductor packages is that
they are Open Source. This means that, in principle,
anyone can modify the code. Many Open Source
projects feature an active community, where bugs
are reported and fixed by members other than the
original authors. Unfortunately, Bioconductor has no
community-driven approach. Access to repositories
is only given to the original author(s) of the package.
While write-access to scientific software is in all like-
lihood not a smart idea, having the option to at least
suggest features, upgrades, bug-fixes etcetera in a
user-friendly way would most likely enhance usability
of BioConductor products. This makes modern bug
reporting practically non-existent, apart from a cum-
bersome mailing list system. BioConductor could
potentially learn from the R-Forge project, where
many CRAN R packages are maintained in a more
community-based system.
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