
Master Thesis Artificial Intelligence

Investigating the Use of Active Learning for
Classification of Ship Waste Dumping in the

North Sea
Active Learning, Anomaly Detection, Time Series

by

Samuel Meyer
first supervisor

Georg Krempl
second supervisor

Arno Siebes
external supervisors

Jasper van Vliet
Paul Merkx

Submitted to

Utrecht University

on

September 29, 2021

For further questions contact: Samuel Meyer: s.j.meyer2@students.uu.nl, 5648122



Samuel Meyer
Utrecht University

Master Thesis

Abstract

Detecting occurrences of ships discharging waste into the sea is important to reduce sea pollution,

but difficult due to data and resource limitations. The act of inspecting whether a ship has discharged

waste is expensive and true occurrences are expected to be rare. This makes it difficult to collect

enough labels to use for classification by supervised machine learning. This thesis investigated the

use of several active learning approaches (uncertainty sampling, density-weighted sampling, QBC

sampling and xPAL sampling) to help increase the rate of learning using fewer training instances to

classify looping behavior (a proxy variable for waste discharging). Trajectories were summarized to

single instances to allow established active learning methods to select them to be queried. Experi-

ments were performed for different selection/learning pipelines to classify both complete trajectories

(post hoc) and partial (initial steps to real time) trajectories. Almost all active learning methods

significantly improved learning for complete trajectory classification, on average reaching a macro F1

performance plateau of at least ∼90% within 50 queried instances, compared to ∼78% for random

sampling after 100 instances. Different models were trained for different points in elapsed time in

the trajectories for partial trajectory classification. Most active learning approaches either matched

or outperformed random sampling for partial trajectory classification, depending on the evaluated

time point. At the best time point the well performing methods, on average, reached a macro F1

performance plateau of at least ∼60% within 100 queried instances, compared to ∼50% for random

sampling after the same amount of instances. These results suggest that active learning methods

are a suitable approach to decreasing labelling efforts for the problem of looping detection for both

complete and partial trajectories, and possibly for similar problems involving trajectories and/or

high class imbalance.
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1 Introduction

The Human Environment and Transport Inspectorate (ILT) is the supervising entity of the Ministry of

Human Infrastructure and Water Management. Through inspections they see to it that laws regarding

transportation and the environment are upheld. They are looking to improve the allocation of their

inspection resources through the use of data science and machine learning. This exploration is done

by their Innovation and Data lab (IDlab). While a significant amount of data regarding a variety of

problems may be obtainable by the IDlab with relative ease, it is usually very difficult to obtain labels

for this data regarding specific illicit activities of interest. This is because these labels can usually only

be acquired either through either real world inspections or through inspectors making judgements based

on historical data. In addition, for many problem domains the expectation is that violations are rela-

tively rare occurrences. Thus obtaining labels is not only expensive, but only very few positive labels

are acquired, making the use of relevant data for machine learning purposes difficult. To help reduce

the amount of labels needed to train their machine learning models, this research project served as the

first step into investigating the use of active learning for their use cases. While the overall intent was

general knowledge generation regarding the use of active learning for high class imbalance situations, this

thesis used the IDlab’s waste discharge (”zeezwaaien”) detection project as a benchmark case. While

little is known regarding occurrences of zeezwaaien, it is expected to be an anomaly. This provided an

interesting case for machine learning approaches with regards to a high class imbalance.

Zeezwaaien is a Dutch term describing the discharge of waste and/or chemical residues by ships

into the sea. This type of waste discharge behavior has been regulated by law in appendix II of The

International Convention for the Prevention of Pollution from Ships (MARPOL) agreement[1] in order

to limit sea pollution via harmful chemicals. Strict limitations on how and when zeezwaaien is allowed

are in place.

While zeezwaaien is a well defined event, it is not well documented. Even though it is known to

occur, it is not known exactly when, where, and how often this occurs. The Innovation and Data lab

(IDlab) of the ILT has been working on anomaly classification models to detect zeezwaaien. Their first

step was in the form of a thesis project by Shpat Cheliku [2]. The project focused on using supervised

machine learning to classify zeezwaaien en route for tanker ships. Compared to classifying a complete

trajectory, classifying en-route meant having less information to make a prediction the earlier in the

trajectory a tanker is. To obtain labels for the zeezwaaien problem, experts looked at visualizations of

historical complete tanker trajectories and applied labels using their expertise. However, only tanker

trajectories for looping trips can be labeled as positive or negative zeezwaaien cases by experts post hoc.

A ship makes a loop when it returns to the same port from which it departed within a period of 48 hours
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without visiting any other ports. Looping behavior was determined by experts to be behavior where

the occurrence of zeezwaaien is likely, and has patterns in visual trajectory representations from which

experts can distinguish zeezwaaien labels. Thus, the only cases of zeezwaaien that can be established in

the data are looping zeezwaaien cases. Due to a lack of labeled data, the scope of the prior research and

this thesis is restricted to the detection of looping behavior, which is essentially a proxy for zeezwaaien

in many cases.

Other than detection of zeezwaaien, the problem of detection of anomalous instances in trajectory

data is a common problem for the IDlab. This thesis project was an exploration in the use of active

learning for this type of problem, with the detection of zeezwaaien as the benchmark case. To maintain

cohesion with the research already performed by IDlab on the topic of zeezwaaien detection (described

above), this research explores the extension of methods used in their prior and ongoing research with

active learning. The purpose of using active learning is to reduce the number of labeled instanced needed

in this setting to gain satisfactory model performance for looping detection. The specific attributes of this

problem (supervised learning, high class imbalance, trajectory classification) has little to no research with

regards to active learning. The following sections will give a more detailed look at the problem description

and the research questions for this thesis. Section 2 goes over background knowledge that is useful for

the context of the rest of the thesis. Section 3 places this thesis into the broader context of related

literature. The description of the data used for this thesis and the applied processing steps are discussed

in section 4. The methodology established to summarize (per definition multi-instance) trajectories to

allow active learning approaches to query trajectory-wide labels, as well as pipeline designs to make use

of this summarization are described in Section 5. Section 6 discusses the performed experiments and

the achieved results for Task 1: Complete trajectory classification including some additional analysis,

and Task 2: Partial trajectory classification. Section 7 summarizes the results and offers concluding

discussion and future work.

1.1 Problem Description

This research is a first exploration into the use of active learning for the IDlab. A variety of the IDlab’s

problem domains share the problems of expected high class imbalance, trajectory/time-series data, and

a lack of labels which are often difficult and/or expensive to obtain. The IDlab’s zeezwaaien research

project shares all of these attributes while having the largest amount of labeled data available than other

comparable projects, making it useful for experimentation and analysis. Thus, thhis thesis expands upon

prior research within the zeezwaaien project for the detection of looping cases in the North Sea using

supervised learning methods [2]. While the final purpose of this overarching project is to detect waste

discharging behavior, there are very few waste discharging labels available. The benefit of the looping
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target is that inspectors judge looping behavior to be a good proxy of waste discharging, and the looping

label can easily be applied to all trajectories in the available historical dataset. This allowed for the

simulation of an oracle labelling any instance selected by an AL approach. To keep the approach from

being too specific to the zeezwaaien problem, some additional limitations were considered. This included

the assumption of minimal prior labels available and no exact knowledge about the domain distribution

other than an assumption of high class imbalance.

Classifying looping behavior given a complete trajectory is trivial, since it is clear a tanker has re-

turned to port within 48 hours as soon as it has returned to port. The zeezwaaien project’s aim is to

be able to make a prediction while a tanker is en route, meaning only information regarding a tanker’s

trajectory up to a certain point in time is available. Considering looping is frequently an indicator for

zeezwaaien, being able to classify whether a tanker will make a loop is already useful information for

inspectors in practice. It would ideally allow for inspectors to approach high risk tankers during or

before possible illicit activity, or otherwise wait for a high risk ship at the destination port to conduct

an investigation there. While this goes beyond the general scope of the problem as described above, the

exploration of active learning regarding en route classification was considered an interesting extension of

the methodology designed to approach the more general problem.

Thus, the problem can be described as two-fold. These two sub-problems were divided into two sepa-

rate tasks, the second one building on the methods and findings of the first. The designed methodologies

were designed with regard to maintaining as much coherence with the overarching zeezwaaien project

and approaches as possible.

1.2 Research Questions

Given the exploratory nature of this research, a general main research question was posed with a num-

ber of sub-questions to address particular aspects of the main question. The second research question

addresses the extension into the more specific problem of en route classification.

How can active learning approaches be applied to improve supervised machine learning classifiers of high

class imbalance trajectory data with little to no prior information (using looping detection of tankers in

the North Sea leaving the port of Rotterdam as an example)?

• How can the active learning pipeline be adjusted to suit trajectory data with trajectory-wide labels?

• Can active learning approaches increase the rate of learning given the described problem scenario?

Can the approaches designed to answer the main research question be extended to improve learning
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performance for en route classification of looping behaviors?

• How can the design be adjusted to classify partial trajectories rather than full trajectories?

• Can active learning approaches increase the rate of learning compared to passive learning for en

route looping detection?

2 Background

This section will provide a basic understanding of some background topics of relevance to this thesis, as

well as provide some relevant literature to serve as examples. A general overview of machine learning is

given in Section 2.1, followed by a look into bias in machine learning in Section 2.2 and evaluation in

machine learning in Section 2.3. Some examples of relevant decision tree-based classifiers are given in

Section 2.4. Since this thesis will explore the application of active learning, a general overview is given

in section 2.5, followed by a discussion on some more specific active learning methods in 2.6. Section ??

discusses the application domain of the research in this thesis, going into further detail about the data

being used and its implications.

2.1 Machine Learning

Machine learning is the sub-field of artificial intelligence regarding the study and implementation of

computer systems that improve with experience and training. The following definition is given by Tom

M. Mitchell in the introduction to his book Machine Learning [3]:

A computer program is said to learn from experience E with respect to some class of tasks T and

performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Machine learning methods allow for a program to perform a task without needing to explicitly de-

fine how its inputs should result in its outputs. This data-driven approach is particularly useful when

defining this relation is either very time-consuming or simply not feasible. An intuitive example of a

relevant application is in the field of computer vision. For the task of categorizing the type of object an

image depicts (e.g. what type of vehicle is present in this image), it is practically impossible for people

to explicitly define rules given such an image in a way that allows proper performance over a range of

different categories. A machine learning approach can perform well at this type of task, given enough

experience and representative data to learn from. In this case, a collection of images makes up the set

of data instances used for training this machine learning model. Each image would then have labels

corresponding to the objects they depict. The machine learning model learns the relationship between
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the features of these images and this label in order to learn how to categorize them. This problem

in particular is an example of supervised learning. This specific case is an example of a classification

problem, since the model has to classify each image as one of a finite set of possible classes of objects

(e.g. bicycle, car, truck etc.). It does this by finding the decision boundary between these classes in the

feature space of its inputs. Supervised learning models may also predict some numerical value, in which

case it is called a regression problem.

Besides supervised learning, the other main branches of machine learning are: unsupervised learning,

semi-supervised learning, and reinforcement learning [4]. Unsupervised learning typically attempts to

find patterns in data without being given labels. Semi-supervised learning falls between supervised and

unsupervised learning. Semi-supervised approaches typically combines a small amount of labeled data

together with a large amount of unlabeled data. Reinforcement learning approaches learn from their

environment by giving positive or negative rewards based on their behavior in this environment.

The amount of applications for machine learning approaches is vast, but a few recent notable ex-

amples of application domains in research include agriculture [5], financial market predictions [6] and

social media sentiment analysis [7]. While there are many applications for machine learning, there are

some significant limiting factors regarding the success of any machine learning approach. This includes

the availability of sufficient data, as well as the quality of the data used and the ability of the specific

approach to adequately capture relationships in this data.

2.2 Bias in Machine Learning

In any learning process, there is a danger of bias. For example, given the task of writing a summarizing

report regarding some historical conflict, your perception of this event is heavily influenced by the sources

you use or have previously encountered about this conflict. Using a book produced by one of the entities

that played an active role in the conflict may present different facts and may present these in a different

way than if it were produced elsewhere. Additionally your own preconceived notions and unique way

thinking may also influence the conclusions you draw from each source. The same is true for machine

learning. Any bias present in data or in the way a machine learning algorithm handles this data affects

its outcomes. While biases are needed to some extent for learning generalizations [8], they can also lead

to models not learning what they are intended to learn.

The following survey discusses a variety of sources of bias in machine learning [9]. Bias regarding

data tends to manifest itself through how well represented different groups are within a domain, and in
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the specific instance features that are in/excluded. If these groups aren’t well represented this results in

a misrepresentation of the domain the model is learning about with regards to its task. An example is

how machine learning models using historical data of humans performing a task are at risk of inheriting

the same biases present in the humans it is based on [10].

A type of bias relevant to active learning is sampling bias. This is bias introduced by non-random sam-

pling of different subgroups within the data. Particularly when not all of the available data is sampled,

selective sampling may result in the set of sampled instances not being representative of the underlying

data distribution [11]. Active learning uses selective methods to pick samples, so is inherently at risk for

sampling bias. Some methods have been developed with this in mind, with Hierarchical sampling being

an example [11].

There are different methods developed to reduce bias in data. A simple example is class balancing,

where majority classes get undersampled, or minority classes get oversampled to balance out representa-

tion in the data. More advanced recent methods use adversarial approaches for debiasing[12][13][14][15].

2.3 Evaluation in Machine Learning

In order to compare performance between different active learning approaches, or between passive and

active learning approaches, there needs to be some way of defining and measuring performance. How

high or low performance is defined is dependent on both the application domain and the desired outcome.

A common measure of performance is accuracy, which compares the proportion of correctly identified

instances to all classified instances (1).

Accuracy =
TruePositive + TrueNegative

Total
(1)

This generally works well as a performance measure, but if the target class we’re trying to classify

has far fewer instances in our data than the other classes (class imbalance), we can get a high accuracy

while not adequately classifying instances for our target class. The same is true for misclassification

error, which compares the proportion of all incorrectly classified instances to all classified instances (2).

Misclassificationerror =
FalsePositive + FalseNegative

Total
(2)

In a class imbalance situation precision would be a better performance measure. Precision looks at

the proportion of correctly positively classified cases to all positively classified cases (3). This shows how

well the classifier can identify a specific class, but doesn’t say anything about performance outside of
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this class.

Precision =
TruePositive

TruePositive + FalsePositive
(3)

Recall looks at the proportion of positive instances that were correctly identified (4). This is useful

in particular when missing instances of the positive class in classification is very undesirable.

Recall =
TruePositive

Positive
(4)

To get a balanced measure of precision and recall, an F1 score can be calculated (5). Usually a

combination of performance measures is used to get a broad idea of model performance.

F1 =
2 ∗ Precision ∗Recall

Precision + Recall
(5)

Additionally there is the area under the ROC curve measure (AUC). This shows how the ratio of the

true positive rate over the false positive rate changes depending on the model classification threshold.

This shows how well the model distinguishes between the different classes.

2.4 Decision Tree-Based Classifiers

A decision tree is a mapping of inductive inferences consisting of tests represented as internal nodes

linking to sub trees or leaf nodes labeled with a specific class [16]. An example of a decision tree for

predicting whether conditions are suitable for outside play is shown by Figure 1. The test in each node

is based on a specific feature of an instance of interest. In this example the first node is a test based

on whether the weather is sunny, cloudy, or rainy. Each non-leaf node has two or more outgoing edges

to other nodes, corresponding to the different number of answers to the test. Each non-root node only

has one incoming edge, with the root node having none. After a number of tests, a leaf node is reached.

This represents a class of the target variable about which one is trying to make a prediction. In this

case this could mean that, given the prior tests, the tree makes the prediction ’yes’, the conditions are

suitable for outside play. Given a training dataset, the specific tests in the nodes are decided by any of

a variety of measures deriving informativeness from how the tests split the dataset (or randomly).

7



Samuel Meyer
Utrecht University

Master Thesis

Figure 1: Example of a decision tree from [17] with outside play suitability as the target

2.4.1 Random Forests

Random forests are an ensemble learning method consisting of multiple decision trees. Predictions

are made for the same instance of interest by all of the decision trees, each of which casts a vote

fore the final prediction. A majority vote of all the decision tree prediction then constitutes the final

prediction. A method of producing the different decision trees is via a method called bagging (bootstrap

aggregating) [18]. Different subsets of the training data are produced (optionally with replacement)

selecting instances randomly. Each of these subsets is then used as the training set to produce a decision

tree. The process of bagging improves stability for random forests [18] and has demonstrated improved

classification performance over the use of single trees [19].

2.4.2 Gradient Boosting Machines

Gradient Boosting Machines create ensembles by producing weak learners iteratively instead of producing

them separately [20]. These weak learners are then combined to produce one strong learner. Each of

the sequentially produced models is done by sequential error fitting. The instances falsely classified by

the ensemble are used to train the next weak learner, which is optimized by minimising loss via gradient

descent [20]. One particular implementation of gradient bossintg machines is XGBoost [21]. XGBoost

stands for ”Extreme Gradient Boosting”. This specific implementation uses decision trees as its weak

learners, and has been optimized with the intent of being as efficient as possible.

2.5 Active Learning

This section briefly discusses what active learning is, as well as several key approaches. For a machine

learning problem, an important aspect is the data used to train the machine learning models. A typical
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approach would gather as much labeled data as possible or deemed necessary to train a machine learning

model to a point where it performs well. However, it may be desirable to reduce the amount of training

instances needed. An example is the case where getting a significant amount of data is not an issue but

obtaining labels for this data is expensive either in terms of time and/or resources. In this situation it

is desirable to be able to reach a point of high model performance with as few labels as possible. Active

learning addresses this problem by selecting the most useful unlabeled data instances, which are then to

be labeled as an active part of the training.

Active Learning by Burr Settles (2012) [22] gives an extensive overview of active learning and some of

its methods. The following paragraphs give a short version of this overview and relevant literature. The

general structure of an active learning approach consists of a data source, a query selection algorithm,

an oracle, and a machine learning model. First the query selection algorithm selects an instance from

the data source to be queried. This instance is presented to the oracle, which is the entity that can label

the given instance. This is usually a human domain expert. The labeled instance is then used to train

the machine learning model, and the cycle repeats. Each element in this pipeline can vary depending on

the specific problem and chosen active learning method.

Figure 2: The typical AL pipeline. An AL approach selects the best instance from U to be queried and
consequently labeled by an oracle. The labeled instance is then added to the set of all labeled instance L,
and the model (learner) is retrained with L as its training set. This is repeated until some pre-specified
number of instances has been queried or adequate performance has been reached
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2.5.1 Active Learning Categories

Many different query selection methods have been proposed. These are usually particular to different

scenarios regarding the form of the data. In the pool-based scenario, all training data is available at

once. The following overview will specifically discuss the pool-based scenario for classification problems,

since this the most relevant to this thesis. Another problem scenario is stream-based sampling, where

unlabeled instances are presented one at a time, and the decision of whether or not to label those

instance are made for each of them one at a time. Important to note is that for classification problems,

a model learns to find a decision boundary. A recent literature survey by Kumar and Gupta (2020)[23]

broadly categorizes query selection methods for the pool-based scenario into several categories. This

categorization will be used to discuss some of these query selection methods:

• Informative based methods look at the informativeness of the individual instances to determine

which one to select based on their uncertainty. The idea is that less certain instances are closer

to the decision boundary, so they provide more information on the distinction between possible

outputs in the feature space. One of the earliest and most common examples of this is uncertainty

sampling [24]. This method uses the output probability of a probabilistic classifier to determine

which instance the model is the most uncertain about. This instance is then selected for labelling

and training. This type of method is generally easy to implement and use. However, only sampling

close to the decision boundary may lead to sampling bias, and instances close the decision boundary

may be similar to each other, so these are less informative overall when sampled together.

• Representative based methods look at the structure of the data to determine which ones

to sample. The aim is to sample instances that best represent the feature space. A variety of

approaches have been proposed. An example is the density-based approach, which tries to sample

instances in the most densely populated regions of the feature space. An example of this is [25],

which summarizes the distance of each instance to its neighbors as a measure of density. The one

with the smallest distance is then queried. Due to the more representative instances being used to

train the model, representative based methods are less sensitive to sampling bias than informative

based methods. However, they generally need more instances to properly approximate the decision

boundary.

• Informative and representative based methods combine techniques from both previously

described methods to determine which instance to query. One possibility is to take individual

methods from both of these approaches and combine their ”usefulness” measures [26]. However,

more novel approaches to creating hybrids between these methods exist. Approaches that include

both informative and representative components need to make sure to balance the trade-offs of

these approaches appropriately.
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• Other methods are those that can’t be categorized as those mentioned above. These each have

their own methodology, strengths and weaknesses. An example is Expected Gradient Length[27],

which considers the most useful instance to be the one that produces the largest change in the

model. After a model has been trained on some labeled data, the expected change in model

parameters is calculated for each unlabeled instance. The instance that has the highest expected

model change is labeled. This method requires retraining the model for every every instance, for

every possible label. Thus, while it performs quite well, it is very computationally expensive.

Some query selection methods require the use of a specific classifier, while others are independent of

the classifier and can thus be used in combination with a variety of possible options. This, in combination

with how sensitive the query selection method is to the problem context, makes it difficult to determine

which method is the most appropriate given a specific problem.

2.5.2 Evaluation and Validation of Active Learning Strategies

Typically in machine learning performance is measured after having fully trained a classifier. However,

for active learning it is important to look at the performance in terms of a learning curve. We want to

be able to compare the performance of methods at different points of learning so we can see how quickly

each method learns from its (passively or actively) selected instances. Thus, performance is measured

every time after an instance has been labeled and added to the training pool.

To be able to test whether the models properly generalize, we need to do multiple runs with different

instance subsets. This is typically done via k-cross validation, where the instances are divided into k

folds. During each round, one fold is left out and used for validation while the rest is used for training.

Performance can vary greatly depending on the instances in the pool, so it is important to do multiple

repetitions of validation to account for random effects[28]. This is particularly true in the beginning of

the learning process, where there is generally a greater variance in performance.

It may also be the case that the goal is not just generalization, but to optimize performance on the

training set as well. An example of this is when a system is still learning while deployed, such as in

a streaming active learning scenario. In those cases a misclassification comes with a direct cost, so an

evaluation of whether an instance is at all predictable before attempting to do so can save resources. A

variety of rejection-models are available to estimate which instances to reject [29].

Some active learning specific evaluation methods have been proposed and used. These summarize

the learning curve into a specific value allowing for easy comparison of method. One example is the area

under the learning curve[30]. This typically uses the area under the ROC curve as its base measure for
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every point during learning. The area under the resulting curve is then the area under the ROC curve.

This measure is dependent on the total number of instances used, so all compared methods need to be

trained with the same number of instances for proper comparison. Another possibility is a deficiency

score[31] to compare two methods. This calculates the area between the learning curve for an algorithm

and its maximum performance line for two different algorithms, and compares these. While this is not

dependent on the number of instances used, it is less useful when trying to compare a large variety of

active learning techniques.

Validating performance differences between active learning methods introduces the difficulty of not

just validating performance from one set of predictions, but doing so over the course of the entire learning

process of the compared methods. A typical approach is to take the ALC as a single-value measure for

summarizing a method’s performance, and then applying the Wilcoxon signed-rank test on results for a

collection of different datasets [32]. The Wilcoxon signed-rank test is a non-parametric statistical test

that can be used to evaluate whether there is a difference between to paired performance sets. The null

hypothesis is that the median of the population difference between these sets is zero, and the alternative

hypothesis is that it is not [33]. In the case of active learning, each pair of ALC scores from the compared

approaches was obtained by evaluating the performance resulting from applying the different approaches

on the same dataset. The main difference from a paired student’s t-test is that the Wilcoxon signed-rank

test does not assume the data is distributed normally.

2.6 Active Learning Methods

While section 2.5 gave a broader overview of active learning, this section discusses some specific active

learning methods of relevance to this research. Considering that a broad goal of this thesis is to investigate

the use of active learning methods for this use case, a variety of methods that are representative of

different lines of thought in active learning research are considered. The specific methods discussed are

uncertainty sampling 2.6.1, query by committee 2.6.2, density weighting2.6.3, expected error reduction

2.6.4, and probabilistic active learning 2.6.5.

2.6.1 Uncertainty Sampling

As described in section 2.5.1, uncertainty sampling is an example of an informative based method.

Introduced by [24], this is a widespread method that is efficient and easy to implement. A probabilistic

classifier is applied to all available instances, and the most uncertain one is selected to be queried. For a

binary classification problem, this means the instance for which the classification of the positive class is

closest to 0.5. While generally effective, uncertainty sampling is myopic. Also, being an informative based

method, it has the previously described pitfalls of selection bias and redundant sampling. Considering
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the high class imbalance in the data for this thesis, the selection bias may be problematic. However, being

one the most widely used and easily implementable methods makes it a good baseline for comparison

with other active learning methods.

2.6.2 Query By Committee

The query by committee (QBC) method is an informative based method that uses predictions from

multiple classifiers (usually of the same type). The different classifiers represent different hypotheses

about how the data relates to the labels. Each classifier is a member of the committee, and the amount

of disagreement between the members gives the uncertainty for a specific classification. The instance

about which the classifiers disagree the most is queried. While first introduced by [34] in 1997, a variety

of different version with different underlying models have been created[35]. A machine learning approach

that uses a collection of models to make a prediction is called en ensemble approach. If it is already

clear that an ensemble method will be used for classification (like in this thesis), the use of QBC is a

logical extension. However, it is just as myopic as uncertainty sampling. The same problem with class

imbalance may also apply.

Ideally, the different classifiers all represent as different as possible hypotheses[35]. Thus, when

applying QBC to extend an ensemble method it may be beneficial to take additional measures to ensure

this. This may cause problems when comparing performance between QBC and other active learning

methods, since this also changes how the base ensemble forms its classifiers. Because of this it may

be necessary to keep the classifier ensemble and the QBC ensemble separate in such a performance

comparison scenario. Since this thesis will likely use a random forest and/or XGBoost approach, both

of which are ensemble methods, this will need to be considered.

2.6.3 Density Weighting

Density weighting approaches make use of the available data structure to determine instances that are

representative of the data. Specifically, they do this by looking at the specific distribution of the data

within the feature space. One example of such an approach uses the distance between instances to deter-

mine representativeness[25]. In this method, the distance between each instance and all other instances

is calculated and added together. The instance that has the shortest total distance is deemed the most

representative, and will be queried. This effectively gives instances in dense regions a higher priority.

This may not work particularly well in the case of skewed label distributions, since minority classes may

be less dense in the data purely through being represented less. This may also be balanced by applying

density weighting as a weighting factor for uncertainty sampling. Another method that could also work

better in such situations is the ACLStream method[36]. This first clusters instances (using K-means
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clustering), then ranks these clusters and their members in order to determine which instance to query.

This generally gives a wider view of the feature space than only using density. While the approach was

made from data-streams, it should be adaptable for the pool-based scenario.

Density Weighting methods are less myopic since they consider the relationships between instances.

Sampling instances over more of the feature space than just the decision boundary reduces the sampling

bias that is typical for informative based methods. If relevant clusters for minority classes can be detected

this may prove to be useful. However, these clusters need to be related to the label distribution for these

methods to work well.

2.6.4 Expected Error Reduction

Expected Error Reduction [37] looks at how the labeling of any instance is expected to change the model’s

performance. After training the model with a set of labeled instances, performance is then measured

based on a measure of choice. For this, a validation set of data needs to be kept aside. Then, an instance

x from the unlabeled instances with label y from possible labels Y to the training set and the model is

trained again to form a new hypothesis. The performance of this new hypothesis is then measured on

the validation set and compared to the prior performance. The resulting loss is then weighted by the

classifier’s output probability. This process is repeated for all labels y to get the average expected error

of adding instance x. This process is repeated for all instances in the pool, and the instance that results

in the lowest average expected error is queried.

Since this process requires training and validation of the model for every instance in the pool, for each

round of querying, this is a very computationally expensive method. However, due to the almost direct

optimization towards a specific performance measure, this method tends to do very well. Focusing on

performance measures that are relevant to a class imbalance setting may be promising for the scenario

in this thesis. However, the expected performance toward which the model is optimized is dependent on

the quality of the validation set.

2.6.5 Probabilistic Active Learning

Probabilistic Active Learning (PAL) is an approach introduced in 2014 by [38]. This can be seen as

a combination of informative and representative based methods. Additionally, this method also takes

inspiration error reduction .[23]. This approach computes the expected performance change when giving

an instance x a label y. To compute this without knowing label y, the smoothness assumption is used.

This is the assumption that instances close to each other in the feature space should have similar labels.

For each instance x a label statistic ls = (n, p̂) is computed. This contains the number of labeled in-

14



Samuel Meyer
Utrecht University

Master Thesis

stances n in the neighbourhood of x, and the posterior estimate p̂ of x’s label as the number of positive

labels in the neighbourhood over n.

Because the true posterior probability and label are unknown, the label statistics are used as param-

eters to model their distributions as random variables. The expected values over these variables with

regards to a performance measure are then calculated to get a probabilistic performance gain. The spe-

cific performance measure for which gain is calculated can be selected depending on the application. The

expected performance gain is weighted by the density of x’s neighborhood to represent the importance

of its neighborhood. The instance with the greatest density-weighted performance gain will be selected

for querying.

PAL is an efficient and effective active learning approach with the benefit of being able to select a

specific performance measure to optimize, but is dependent on the smoothness assumption. Considering

it makes use of labels of instances nearby the scarcity of positive labels in this thesis may make the

estimation of expected performance change difficult for many instances.

Further improvements to PAL have been made. Optimized Probabilistic Learning (OPAL) [39] is a

non-myopic version of PAL. This takes a given labeling budget and a difference in mislabeling costs for

different classes into consideration. A specific version for the multi-class setting, Multi-class Probabilistic

Learning [40] extends the approach beyond the binary class to multiple classes. xPAL is a generalized

version of probabilistic active learning using a Bayesian approach [41].

2.7 Anomaly Detection

When some pattern of behavior in data does not conform to what is expected under ’normal circum-

stances’, this can be defined as anomalous behavior. The field of study that deals with finding this type

of behavior is called anomaly detection[42]. This being a somewhat broad definition, the reason why it

would be desirable to find anomalies is very particular to the domain of application. The reason why

finding anomalous behavior is desirable is very dependent on the domain of application. It could simply

be to find outliers in data in order to remove them before using the data for some other purpose[43].

However, the outliers may also be the particular behavior we would like to detect. Effectively this comes

down to classifying a rare class in a highly imbalanced dataset. This imbalance makes bias an issue since

it can be difficult to properly represent the desired class during training. This is particularly the case

when the amount of available labeled positive cases is slim.

Different machine learning approaches can be applied depending on the available data and the specific
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problem. This thesis will build upon a supervised machine learning approach. Supervised machine learn-

ing approaches tend to achieve better performance than semi-supervised and unsupervised approaches,

but only if there is enough labeled data including the anomaly class to properly train them[44].

3 Related work

When it comes to the problem of detecting looping behavior and/or waste discharging in ships, the only

research available is the prior work at the IDlab this thesis will expand upon[2]. However, there is a

significant amount of research on problems with similar data, domains, and sub-topics.

The prior work was, in terms of broad topics, a problem of supervised anomaly detection with tra-

jectory data. While this is a very specific combination of topics, research with strong overlap of topics

has been performed. An example is [45], which uses semi-supervised learning for anomaly detection in

time series of water analysis. A more general method for time series anomaly detection was developed by

[46], using unsupervised machine learning. The main reason why supervised techniques are uncommon

for anomaly detection problems is because these types of problems usually lack labeled data. For the

zeezwaaien detection problem in this thesis, more labels can be acquired with the caveat that this is very

expensive. Since the prior research was even more specific due to focusing on time series, an approach

that uses supervised machine learning is even rarer.

The main type of data used in this thesis was Automated Identification System (AIS) data. Most

ships are required to emit AIS messages at frequent intervals detailing specific information about the

ship itself, as well as dynamic data such as positional data and timestamps. A more detailed description

will be given in Section 4.1. An overview of machine learning methods that have been used for experi-

mentation with AIS data is given by [47]. Particularly regarding anomaly detection with AIS data, this

overview groups problems into three main categories: position, speed, or time anomalies. This differs

from the target of this thesis where classification centered around a more abstract anomalous label that

is applied to a full trajectory.

There is also the direction of predicting ship trajectories. [48] is an example of this. They first used

an unsupervised method to cluster the data instances, then used each cluster to train a neural network

for predicting the ship’s motion. The resulting models were used as an ensemble to make one prediction.

This is likely the most similar research to the prior work, but still differs significantly in the prediction

target, which also translates to the specific methods used being quite different.

16



Samuel Meyer
Utrecht University

Master Thesis

Adding active learning to the mix makes this research even more specialized. The most similar re-

search topic wise is[49]. This is a semi-supervised time series anomaly detection problem that uses deep

reinforcement learning and active learning for real-world time series data. This, for the same reason as

described previously uses semi-supervised learning instead of supervised learning.

While this specific combination of topics is very specialized, there is a significant amount of papers

that focuses on different combinations of different sub-topics of this thesis. The following section will

first give an overview of the use of active learning methods in the maritime domain. This includes an

approach that is most similar to the current research. This section is followed by examples of literature

regarding the combinations of sub-topics relevant to this thesis.

3.1 Active Learning in the Maritime Domain

The overview of machine learning using AIS data mentioned in the prior section [47] gives a good idea of

uses of maritime data. However, none of the approaches in this paper discuss active learning. However,

there is a paper that uses AIS data with an active learning approach [50]. In this paper, a Gaussian

process model is used to model normal behavior for historical AIS data. A set of different active learning

methods were used to select individual AIS updates to use for training. This paper makes the assumption

that the historical data is a good example of normal ship trajectories, and generates anomalous trajec-

tories by transforming location data of full historical trajectories. This essentially mimics AIS spoofing,

which they are using as a proxy for general anomalous behavior. Anomalies are then detected by com-

paring deviancy from the combination of normal speed and location at any point during the trajectory.

Since they are using location-based deviancy from normal behavior, the sequential aspect of AIS

data is not particularly important to their methods. This differs from this thesis, which used supervised

machine learning methods for which behavior in different points of the trip were likely of importance for

classification. Because of this, having the active learning approach select individual AIS updates was not

considered a suitable approach for our purposes. Additionally, the assumption that all historical data is

normal is a stretch, but one they had to make due to a lack of labeled data. Considering research topics,

data, and domain, this paper is likely the closest to this thesis.

Beyond the use of AIS data, the only other research concerning active learning in the maritime

domain is the following paper with the topic of recognizing ship types from images [51]
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3.2 Active Learning and Anomaly Detection

For anomaly detection tasks, bias due to the imbalance in the data is an inherent issue that needs to

be addressed. Machine learning models trained on imbalanced data are likely to over-predict majority

classes [52]. Debiasing was discussed in section 2.2, but specifically for for class imbalances the use of

active learning may reduce the effects of bias in the data. A comparison was done by [53] between ran-

dom sampling and support vector machine (SVM) based query selection in highly imbalanced data. To

measure performance they used the geometric mean, which measures balance on performance between

classes. This should be poor if performance on the anomaly class is low. Their results showed that

the SVM based query selection method resulted in their model learning much faster compared to when

random sampling was used, considering the geometric mean. While this doesn’t necessarily mean all

possible bias is eliminated, it sets up active learning as a potentially useful method when faced with class

imbalances such as in anomaly detection.

As was discussed in section 2.7, anomaly detection approaches tend to be semi-supervised or unsu-

pervised due to the lack of labeled data for the minority class. This is still true for research that also

includes active learning. Some examples are research using active learning for deep learning anomaly

detection [54] or more general anomaly detection using mixture-model based active learning[55]. A par-

ticularly interesting approach first uses unsupervised methods to reduce an anomaly detection problem

to a ”normal” classification problem, and then uses active learning on the remaining classification task

[56].

3.3 Time Series in Active Learning

Considering time series and trajectories are overlapping domains, time series specific research is also of

relevance. When using time series data in machine learning, using data at individual time points as

data instances loses their relationship to other parts of the same series. Depending on the application,

this can mean information important for classification performance is lost. To preserve some of this

information to some extent, a variety of methods exist. An example is the sliding window approach,

which summarizes the last l instances in time by statistical functionals over these l instances for each

time point[57]. When using all instances prior to a time point, this is called an expanding window.

There are few active learning methods made with time series in mind. One of these methods is ACTS

[58]. This method uses a nearest neighbor classifier as its basis. It uses shapelet discovery methods[59]

to fit patterns onto the data. Probabilistic models over these patterns and the data are then used to

calculate uncertainty and utility measures used to select which instance to query.
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The paper [50] discussed in section 3.2 queried individual AIS updates out of a pool of historical tra-

jectories. Considering that the relationship between different parts of a trajectory are often important

for classification, time-relative information is lost. The updates taken out of the context of their whole

trip don’t mean as much individually as they would together.

To use time series with active learning methods, there needs to be some way to represent larger parts

of trips as a whole for the active learning methods to select from. This is particularly true for this thesis,

where a label (e.g. looping vs. non-looping) is applied to a whole trip after querying. It doesn’t make

much sense to select an individual out of context AIS update, to then label and train with the full trip.

The methodology used for the research that this current thesis builds on used sliding and expand-

ing window approaches to allow individual instances to retain information from a broader view of the

trajectory. The same data representations was used for the current thesis to retain cohesion with the

prior base approach. These representations were used to allow trip selection through active learning.

Complete trajectories (or trajectories up to a certain point) were represented by the last instance in

the expanding window. This summarizes the full trip to that point with a set of statistical functions.

Taking this point for different trips at the same (partway or final) time point allows for single-instance

comparisons of different trajectories. This is an easy to implement summarization, but is likely to lose

finer details of the trip. If a small portion, or a combination of smaller parts of the trajectory would be

of significant importance to the classification, this may be averaged out by the rest of the trajectory in

the statistical functions.

Another approach is to produce a higher-level representation of each trip through clustering. There is

a significant amount of research related to the clustering of trajectories. A broad review is given by [60].

Most methods cluster trajectories based on a global comparison of distance or density measures. This has

the same problem of averaging out more local parts of a trip of possible importance as summarizing by

global statistical functions does. A prominent example of a clustering algorithm is DBSCAN [61]. While

this density-based algorithm was not designed to cluster trajectories, it has been extended for, or the

basis of, other algorithm to do so. The TRACLUS algorithm first splits trajectories into segments before

clustering them using an approach similar to DBSCAN [62]. This allows clustering of sub-trajectories of

the full trajectories instead of only full trajectories. Only a small subset of trajectory-clustering research

is focused on generating features from these clusters to be used for classification via supervised learning.

The TraClass algorithm combines an adjusted version of the TRACLUS algorithm with a region-based

clustering algorithm, with the specific focus of generating features to be used for classification [63]. These
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features are in the form of trajectory memberships of the different region and segment clusters. The paper

introducing this algorithm particularly discusses the use for ship-related trajectory classification. This

seems like a very appropriate approach for the problem in this thesis. However, it is a very extensive

method and no implementation is available, so implementation of and experimentation with this method

may not be feasible given the scope of the project. Implementations of TRACLUS are available (e.g.

[64]), so experimentation would this method may be valuable.

3.4 Active Learning in Deployed Model

Informative based active learning methods tend to base their measure of informativeness on the un-

certainty about a specific instance. However, is are more than one type of uncertainty. The following

distinction between two types of uncertainty can be made. [65]. The first is epistemic uncertainty, which

is uncertainty about an instance as a result of a lack of knowledge. This uncertainty is reduced as more

instances are used for training. The second is aleatoric uncertainty, which is uncertainty that is inherent

to the data being used. Even training a model until its parameters are optimal won’t be able to reduce

this uncertainty. A method to model both of these types of uncertainty was proposed by [65]. Since

epistemic uncertainty can be reduced, this is generally the uncertainty that active learning methods want

to use to determine informativeness. Realistically the uncertainty measures used tend to include parts

of both.

[66] use the methods to model the two types of uncertainty proposed by [65], and then compares using

each of them for their own proposed active learning method. Here, aleatoric uncertainty isn’t shown to

be helpful in terms of performance when used for sample selection. As reducing the reducible uncertainty

as quickly as possible is generally seen as desirable for training, isolating epistemic uncertainty for the

purpose of selective sampling in active learning makes sense. Other than [66], another example of an

approach to achieve this is [67].

However, there is a possible use of aleatoric uncertainty. Approaches like the one in [66] can be

used to determine aleatoric uncertainty for unlabelled instances while training a classifier. If there is an

instance for which it can be identified that the model won’t be able to make an accurate prediction, an

oracle can then be used to classify it instead. This reduces the automation that a classifier provides, but

avoids low quality classifications by introducing expertise of an oracle where the classifier will inevitably

fall short. Estimations of aleatoric uncertainty can also be used to help estimate epistemic uncertainty

as was done in [67].
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4 Dataset description

The data used in this research was already preprocessed as a part of the overarching IDlab zeezwaaien

detection research project. To maintain coherence with the overarching project, no further changes were

made to this dataset. This section will give a description of the data used, the preprocessing steps taken

by the IDlab and the feature engineering methods used.

4.1 Data Sources

The data used for this thesis is a combination of Automatic Identification System (AIS) data collected

by Made Smart Group and port call data collected by the European Maritime Safety Agency (EMSA).

The purpose of using two datasets was to combine informative aspects of both of them to make a single

dataset.

As mandated by the International Maritime Organization, ships of 300 gross tonnage or more on

international voyages, cargo ships of 500 gross tonnage or more not on international voyages, and all

passenger ships regardless of size are required to have an AIS system emitting update messages with

high frequency at all times. These updates contain static information (part of which is entered into

the system by the crew), and dynamic information collected through a variety of sensors. The most

important dynamic features contained in each AIS update are: date and UTC time, latitude, longitude,

speed over ground, and and orientation. Examples of static features are a unique ship identifier (IMO

numbers), ship type, cargo type, length, and width. The AIS data obtained from Made Smart Group

for the zeezwaaien project spans the full year of 2020, for all tanker ships leaving the port of Rotterdam.

Port call data logs information regarding ships departing from or arriving at ports. This includes

the ship’s IMO number, actual time of arrival (ATA), actual time of departure (ADT), and more ship

specific descriptors. The port call data obtained from the EMSA spans all of their logged European port

calls over the course of the full year of 2020.

4.2 Preprocessing

The first step of preprocessing was feature selection. Based on prior initial testing done by the IDlab

the 6 most useful features were selected from the AIS dataset, which helped reduce the total number

of features to be produced by via feature engineering. The selected features that would later be used

for feature engineering were latitude, longitude, speed over ground, and orientation. Beside these, IMO
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number and date and UTC time were also kept. The important features from the port call dataset were

those that would be helpful for separating the AIS updates for tankers into specific trajectories, as well

as producing the labels for the looping target.

If a tanker had taken multiple trips in the year 2020, the trajectories from these trips would not

be explicitly separated in the AIS dataset. The AIS dataset and port call dataset were merged as to

make this separation. Using the date and UTC time feature from the AIS dataset as a key, and the

ADT feature from the port call dataset as a key, the pandas function merge asof()[68] was used for all

instances with matching IMO numbers. This allowed merging based on the AIS update closest to a

specific time of departure, as well as all updates within a certain time frame before or after this point.

The datasets were merged such that all AIS updates within 48 hours after the corresponding time of

departure were grouped into a specific trajectory. This meant that each trajectory was given its own

specific trip id. Considering a tanker needs to return to the same port within 48 hours for its behav-

ior to be defined as looping, this time frame in the data covers all cases that can contain looping behavior.

This merging still left differing periods of time at the start of trajectories where tankers were prac-

tically stationary at the port of Rotterdam. To make the trajectories more directly comparable, these

stationary periods were removed from the trajectories. This was done by setting a virtual ”gate” at the

exit of the port of Rotterdam. Any updates in trajectories prior to the tankers passing this gate were

removed. In addition to the date and UTC time feature, an additional time-based feature was added

called time elapsed s (time elapsed in seconds), with the elapsed time starting from the first trajectory

point after passing the ”gate”.

To create the looping target feature, another pass of filtering and merging with the port call dataset

was performed. This was done by matching port calls to trajectories to find out whether the tanker

returned to the port of Rotterdam by the end of its 48 hour duration. If this was the case, a trajectory

was given a positive looping label (label 1). If no such match could be found, it was given a negative

looping label (label 0).

The resulting dataset contained 5433 trajectories, of which 88 were positive looping instances. How-

ever, due to each trajectory being made up of thousands in individual instances, this dataset was un-

manageable given the available resources. To alleviate this, and given the rarity of the value of the

positive cases of which the loss was undesirable, a random selection of non-looping cases were removed.

The downside of this was that the class imbalance was shifted slightly in the favor of the minority class,

making it less extreme. Even still, the dataset now contained a total of 11,785,048 instances, making up
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1767 trajectories of which 88 looping trajectories. This gives each trajectory on average ∼6,600 instances.

Of these trajectories, with a prevalence for the looping class being ∼5%. While not as extreme as before,

this still constitutes as high class imbalance.

4.3 Feature engineering

The features of each individual AIS update in a trajectory only represent a specific point in time. Using

these for machine learning would then lose the relationship that point has to others in the trajectory.

To generate features that allow the retention of information regarding this relationship, the sliding win-

dow and expanding window approaches (as discussed in 3.3) were used to engineer new features. An

added benefit is that the calculation of statistical functions over windows for a set of features should

be feasible in real time for en route transformation of raw data to the new features. The prior research

experimented with windows of different sizes K, with the best results being obtained for a combination

of three different sizes [2]. These were window spanning the last 10 minutes, the last 60 minutes, and

the expanding window. For each of these time frames a set of eight statistical functions were calculated.

These were as follows:

Mean: the average of the K-sized window.

mean(x) = x̄ =

∑K
i=1 xi

K
(6)

Max: the maximum of the K-sized window.

max(x) = max xi
i

, where i ≤ K (7)

Min: the minimum of the K-sized window.

min(x) = min xi
i

, where i ≤ K (8)

Median: the median of the K-sized window.

median(x) =
obK

2 c + odK+1
2 e

2
, where o ordered list of Knumbers (9)

Std: the standard deviation of the K-sized window.

std(x) =

√√√√ 1

K − 1

K∑
i=1

(xi − x̄)2 (10)
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Range: the maximum of the K-sized window - the minimum of the K-sized window.

range(x) = max x
i

−min x
i

, where i ≤ K (11)

Relative location of the maximum: the relative location of the maximum value of the K-sized window

divided by the length of the K-sized window.

relative location max(x) =
argmax(xi)

K
,where i ≤ K (12)

Relative location of the minimum: the relative location of the minimum value of the K-sized window

divided by the length of the K-sized window.

relative location min(x) =
argmin(xi)

K
,where i ≤ K (13)

Applying these functions over the four base AIS features latitude, longitude, speed over ground, and

orientation, results in 32 new features per window, resulting in a total of 96 new features. Combined

with time elapsed s, and the original AIS features, this gave a total of 101 features.

5 Methodology

This section discusses the experimental methods and design of this thesis. All decisions were made with

regard to the specifications of the research problems as well as coherence with prior [2] and concurrent

[69] research and methods done by the IDlab for the zeezwaaien detection project.

5.1 The Base Classifier

The prior work in the zeezwaaien project tested performance of a variety of different types of classifiers.

Out of those compared, gradient boosting was a consistently among the top performers, with its specific

implementation XGBoost [21] also training significantly faster. Based on those results, the base classifier

used for this research was the same XGBoost classifier. Only one classifier type as used to allow the focus

of performance comparisons to be on the different active learning methods. Considering the restriction

of minimal prior initial labels, a parameter tuning set of sufficient size to make a difference seemed out

of the question. However, an initialization set of 10 instances that were newly selected each execution (3

positive, 7 negative) was used. The main reason an initialization set was included was due to the active

learning library ModAL [70] requiring at least one instance of each class to be supplied for initialization.

The initialization set size and distribution was the same for all tested methods, but for QBC this meant

24



Samuel Meyer
Utrecht University

Master Thesis

that they had to be divided over multiple individual models, each having the ModAL requirement of at

least one instance per class. The size of 10 instances was chosen to allow some initial differences in the

initialization sets of the individual committee members of the QBC approach.

The following sections discuss the selection and set up of the different active learning methods used for

this thesis, the steps taken to allow for them to be applied to the trajectory dataset, and the evaluation

methods used.

5.2 Active Learning Methods

A variety of methods from the active learning methods described in Section 2.6 was selected. These were

selected because they are representative of different categories of active learning approaches discussed in

Section2.5.1. One of the goals of this research was to produce results that to some extent inform the use

of active learning in a situation where there is little known about the available data and its distribution.

Because of this, for most methods the hyperparameters were chosen to be the ones that were set as

default or otherwise the most common. The exception to this was QBC, considering there is no standard

configuration of members for a committee.

5.2.1 Uncertainty Sampling

To allow for a comparison of the selected active learning methods to passive learning, a random sampling

strategy was implemented. The first active learning strategy implemented was uncertainty sampling.

Uncertainty sampling was chosen as an example of a basic informative method. It is both simple and

relatively common, and is still commonly being used as a basis of comparison when testing newer methods.

5.2.2 QBC Sampling

QBC shares the same reputation as a good testing benchmark method, often surpassing active learning

in performance. While still belonging to the class of informative methods, it comes into its own territory

with regard informativeness using disagreement between models as an informativeness measure as op-

posed to uncertainty. Due to there being no common configurations for QBC, a set of tests using different

configurations was performed and the best performing one was selected. These tests were performed for

the problem of classifying complete trajectories using summarized instances as will be discussed in Sec-

tion 6.2.1. The results can be foind in Appendix A. This allowed for the evaluation of the performance

of QBC with the assumption of a good starting configuration.
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5.2.3 Density-weighted Sampling

The specific implementation of density-weighted sampling used in this research used density as a weight

for uncertainty sampling. While density-weighted approaches are the typical example of a representative

active learning approach, a purely density-weighted approach would be likely to ignore the minority

class in a high class imbalance setting, assuming some separation between the classes in the feature

space. Using density as a weight for uncertainty sampling allowed for an exploration of the use of

a representative method while to some extent addressing the disadvantages introduced by the label

distribution for both density-weighted sampling and uncertainty sampling. As uncertainty sampling on

its own is also being used for experimentation, The inclusion of this hybrid method gives an indication of

how using a representative approach could add to or subtract from performance for the basic uncertainty

sampling approach.

5.2.4 xPAL Sampling

xPAL was chosen as an example of the more recent approach of probabilistic active learning. While the

method is potentially very powerful, not setting parameters is limiting. For a class imbalance case this was

particularly concerning given that the performance measure it optimized towards was misclassification

error. However, optimization toward class-balance sensitive measure such as error rate and accuracy are

common, making an investigation in their use for active learning an interesting addition for this specific

type of problem scenario. Considering XGBoost doesn’t produce kernel frequency estimates, these were

estimated separately from the classifier. Kernel frequency estimates were produced separately from the

classifier using the pairwise kernels method from sci-kit learn [71].

Sampling Method Parameters

Random NA

Uncertainty Informativeness given as proximity to decision boundary (instance with classifier

probability closest to 0.5 is best)

QBC A set of eight random forest models with base parameters. Training sets for QBC

learners randomized with replacement to form different hypotheses. Instances are

selected through max disagreement sampling

Density-weighted Density given as summary of cosine similarity between an instance and all other

instances.

xPAL Optimizes towards low misclassification error. Maximal number of hypothetically

acquired labels is two. Prior probability of 1 given for all class distributions.
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5.3 Summarizing Trajectories and AL Pipeline Design

One of the first challenges regarding the application of active learning for trajectory data stems from the

applications of labels to full trajectories. In our looping scenario, a full trajectory has either a positive

or negative label for the looping target, but each trajectory consists of thousands of individual instances.

Active learning approaches generally select a single instance in the dataset to be queried. To solve this

problem, the trajectories were summarized to single instances.

The possibility of generating new trajectory-wide features to represent trajectories as single instances

was considered to be out of the scope of this thesis and will likely be part of future research at the ID-

lab. Instead, advantage was taken of the summarizing characteristics of the features generated through

the sliding and expanding window approaches. Particularly, the expanding window features statistically

summarize the trajectory for all instances prior to a specific instance, given a time-ordered sequence of

trajectory instances. Therefore, the expanding window features of the last instance in each trajectory

summarizes the corresponding full trajectory. Figure 3 shows how the last instance of each trajectory

was used to represent its corresponding full trajectory in a new summarizing dataset.

Apart from keeping the research scope in check, the use of features that were engineered as part of the

overarching waste discharge detection project at IDlab was also motivated by the coherence it brings to

this overarching project. However, it should be noted that summarizing a trajectory by taking statistical

functions over all of its instances causes a loss of information. This includes the order of the instances

in the trajectory as well as smaller behaviors that could be indicative of the target behavior but are lost

due to the large number of instances per trajectory or time frame that are summarized over.

With the addition of the new dataset of summarized trajectories, there are now two datasets that

could potentially take individual roles in the active learning pipeline. Figure 4 shows the different

pipelines that were designed to make use of (one or more of) these two datasets. Figure 4a shows

how the typical AL pipeline (as seen in Figure 2) was adjusted to query instances from the unlabeled

summarized dataset Us to then label and add all instances of the corresponding full trajectory from

the unlabelled full trajectory dataset Uf to the labeled full trajectory dataset Lf . The learner is then

trained with the full labeled trajectories. The downside to this approach is that if the AL approach used

is dependent on the learner, it will be trained on a different kind of dataset than the one it is querying.

This may have caused low performance in early testing.

Figure 4b solves this problem by introducing an additional model called the producer. The producer

is a separate model that is exclusively used for querying the best instance from Us. In this scenario, the
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Figure 3: Diagram showing how the last instance of each individual trajectory in the dataset of full
trajectories (1) was used to represent the corresponding full trajectory in the new summarized dataset
(3). Considering the features (2) of each instance statistically summarize the time points prior to that
instance, and in particular the expanding window features of the last instance of a trajectory summarize
all prior points in the trajectory, these features for the last trajectory instance statistically summarize
the full trajectories.

learner model that is used to make the actual predictions is called the consumer. Every time an instance

from Us is queried and labeled, it is added to the set of labeled summarized instances Ls. The producer

is then retrained using Ls as training data. This splitting of tasks between two was inspired by the

topic of sample reusability [72]. However, while sample reusability looks to increase performance over a

one-classifier model by combining strengths of different model types on the same dataset, in this case the

same model type is used for both tasks but on different datasets. The rest of the process is the same as in

Figure 4a. An additional benefit of this method is that it is possible to use two different types of models

for the consumer or producer if so desired. The concern with this pipeline is that the informativeness of

instances selected by a model trained on the summarized set of trajectories may not properly translate

to the informativeness of the full trajectories. Additionally, there is the downside of having to train two

models, which increases training time. There is also no added benefit to the additional model when the

applied AL method does not make use of a model to select a query. For those that do, the pipeline in

4b seemed to perform better than the pipeline in 4a.

Figure 4c is practically identical to the typical AL pipeline shown in Figure2. In this pipeline design,

the full trajectories are fully removed from the equation, using only the summarized trajectories for

instance selection, training, and classification. This removes some versatility in terms of classification of

the learner, since it cannot be expected that the learner performs well outside of classification for the last

instances of the trajectory. However, it significantly cuts down on training time by reducing the ∼6000

instances per labeled trajectory to only one instance per labeled trajectory, as well as removing the issue

of possible informativeness translation errors from the summarized trajectories to the full trajectories.
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Figure 4d Follows the same principle as Figure 4c, but introducing the separate producer/consumer

models from Figure 4b. The idea is the same as for the design in Figure 4c, but allowing the flexibility

of choosing different, separate models for the producer and consumer.

Figure 4: The different possible pipeline designs used in this thesis. Designs a and b use the summarized
dataset only for instance selection and the full trajectories represented by the selected instances are
used for training the base classifier. Designs c and d train the base classifier directly with the selected
summarizing instances. Designs a and c only use the base classifier as the learner for both classifying
and instance selection. Designs b and d use a separate classifier (the producer) to select instances to be
queried, with the base classifier (consumer) is only used for classification.
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When choosing between one of these four designs, there are two main considerations that have to be

made:

• Should the predicting classifier be trained with all individual trajectory instances (a and b) or only

the summarizing instances (c and d)?

• Should the model used in querying instances be the same as the classifying model (a and c) or

separate from the classifying model (b and d)?

The first consideration may depend on a variety of factors such as attributes of the specific datasets

and/or method of trajectory summarization used. This thesis experimented with both options to be

able to offer a performance comparison given our research scenario. The second consideration is mostly

dependent on the specific active learning approach used. The appropriate designs for the active learning

methods used in this thesis are as follows:

Random selection does not use a model to select an instance to be queried, so there is no need for

there to be an additional model to be used for instance selection. This makes designs a or c suitable.

Uncertainty sampling, density weighted sampling, and xPAL make use of a single classifier to select

an instance to be queried. Considering the presumed performance difference between designs a and b in

this case, it makes sense to have a separate producer model when using all instances within trajectories

for training. This should not be needed when training on the summarized trajectories, unless using

different types of models for the consumer and the producer. Thus, the most suitable designs for these

three active learning methods in this case are designs b or c.

Considering the main classifier in this research was chosen to always be XGBoost with the same pa-

rameters, the models that make up the committee of QBC need to be separate from the main classifier.

To maintain this separation, the chosen design can only be b or d.

5.3.1 Summarizing Partial Trajectories

While for complete trajectory classification the last instance of each trajectory was used as the summa-

rizing instance, for partial trajectory classification the instance in each trajectory closest to a specific

time point X was used as the summarizing instance. A window of 30 minutes before this time point was

used to account for cases where there was a lot of time between consecutive AIS updates. However, an

oversight was the fact that part of the instances closest to the specific time point X were beyond time

point X. The 30 minute window only extending to the 30 minutes prior to this time point meant that
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those instances were not included for testing or training, shrinking the dataset. To allow for the inclusion

of shorter trajectories for training, the last instance of trajectories shorter than time point X (and its 30

minute window) were extracted to a separate dataset.

Figure 5: Diagram showing how the instance at a specific hour X of each individual trajectory in the
dataset of full trajectories (1) was used to represent the trajectory up to the time point designated by
X to create a new summarized dataset for training and testing (3). Considering the features (2) of each
instance statistically summarize the time points prior to that instance, and in particular the expanding
window features of the last instance of a trajectory summarize all prior points in the trajectory, these
features for the last trajectory instance statistically summarize the full trajectories.

5.4 Evaluation and Validation

The main performance measures (described in section 2.3) used to evaluate the performance for the

experiments in this thesis were macro precision, macro recall and macro F1. Precision was chosen as

an important measure due to the high expenses regarding an inspection in a real world scenario. Low

precision would mean a high amount of false positives, which could be seen as a waste of resources. Recall

was chosen because of the desire to correctly identify as many of the looping trajectories as possible. A

low recall would mean many of these cases would be missed. The cost of missing these is less well defined

than a direct cost of resources, but finding these (and eventually zeezwaaien cases in future work) is the

main reason for this research. To allow a quick indication of the balance between these two, the F1 score

was used.

Considering the target class is the minority class, the performance measures were macro-averaged.

Each macro score represents the average of the scores for each individual class. This keeps the majority

class from outweighing the minority class. These specific measures were also used in the prior research,

allowing for a more direct comparison between results of this research and the prior research. In the

rest of the thesis, the macro-averaged measures will generally be referred to without the macro descriptor.
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Given that this is an active learning setting however, the performance of a model was evaluated

every time a new instance had been queried instead of only after training. Particularly at the start of

learning this resulted in a lot of variance in performance, making it important to run many repetitions,

reducing this variance as much as possible. 5-fold cross validation was chosen as the method of testing

and evaluation, which was repeated as often as possible for each experimental setting. At the start of

all testing for a specific method, the same randomization seed was always set. This meant that the

different methods were always tested on the same folds generated over all repetitions. The performance

measures were averaged over all the performed repetitions for each individual point in learning (e.g. after

querying the fourth instance, after querying the fifth, etc.). The dispersion of the performance is shown

in interquartile ranges.

As an additional measure, the selected label ratio was used. This shows the averaged ratio of the

labels that were selected at each point in learning, with 1 representing only looping cases were selected,

and 0 representing only non-looping cases were selected. Considering the major variance in this measure,

no dispersion is shown in the corresponding figures. The purpose of this measure was to be an additional

source of information that could be related to reasoning behind performance differences.

A more active learning specific measure (discussed in Section 2.5.2) chosen for these experiments

was ALC. This allowed for a very quick comparison between learning performance of the different meth-

ods, represented via only single values. The main additional benefit of measure was that it could be

used for statistical significance testing. The ALC values for the different methods were used to perform

Wilcoxon signed-rank tests. However, an adaptation had to be made to the method described in Section

2.5.2. While typically the paired values in two compared sets correspond to performance given a specific

dataset, this research is specifically oriented toward performance on the available AIS-based dataset. It

is more of an exploration of performance for different active learning methods given this dataset (and

its specific characteristics e.g. class imbalance and trajectories), rather than a general performance com-

parison of the methods overall. To adjust the typical method in which the Wilcoxon signed-rank test is

used, pairs of ALC scores for compared methods correspond to performance for specific validation runs

over the dataset. Because the tests for comparing different active learning approaches all started with

the same seed, the train and test sets for each round of evaluation were the same for each method at the

same round of evaluation. Thus, their performances could be paired for these different test sets, which

all were identical subsets of the dataset of interest.

The prior research experimented with smoothing predictions by taking the majority vote of a set

of predictions within a certain timeframe. Because this did not seem to have any added benefit, this
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smoothing is excluded from this research. Thus, any prediction for the complete trajectories is made by

classifying its last instance. For partial trajectory classification, the instance at a time point of interest

is classified.

For partial trajectory classification, evaluating performance at a specific time point means that tra-

jectories that end before this time point should not be part of the evaluation set. This was the reason

the instances were split as shown in Figure 5. However, the shorter trips could still contribute to the

classifier’s learning. To keep these separated while still using the shorter trips and doing k-fold valida-

tion, first all instances at the specific time point were divided into the k-folds. Each time a new set of

folds was used for training, the shorter trajectories were added to the training set. This allowed for the

inclusion of shorter trajectories in training, while still only evaluating performance for trajectories at the

specific time point.

6 Experiments and Results

The following sections discuss the performed experiments and their results. These are first discussed for

Task 1, for which the methodologies discussed in section 5 were applied to the problem of classifying

complete trajectories. Some additional analysis was done to get a better idea of which trajectories

were selected often and why, as well as some analysis regarding important features. Afterwards, the

experiments and results for Task 2 are discussed. These built on the previously mentioned methodologies

and findings for Task 1 to tackle the problem of partial trajectory classification.

6.1 Task 1: Complete Trajectory Classification

The experimentation for classifying complete trajectories as looping or non-looping was done in two

parts. These two parts reflect the two possible pipeline considerations regarding whether to train the

predicting classifier on all trajectory instances or only the summarizing instances (discussed in Section

5.3). For quick reference, the defining features of the different designs shown in Figure 4 are re-iterated

in Table 1.

One model (learner) Separate models for classifi-
cation and selecting instances
(consumer and producer)

Train on all instances in se-
lected trajectories

a b

Train only on selected trajec-
tory summarizing instances

c d

Table 1: Defining characteristics of the different pipeline designs
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For the first part, pipelines a and b are used depending on the sampling method used. For the second

part, pipelines c and d are used depending on the sampling method used.

6.1.1 Training on all instances in selected trajectories

Using all instances in each selected trajectory for training meant that every time a trajectory from the

pool of unlabeled trajectories was queried and labeled, ∼6000 instances were added to the training set.

This rapidly growing number of instances that had to be used to retrain the XGBoost model every time

a new trajectory was queried strongly limited the amount of testing that could be done. This effect

was increased by the combination with the instance information-value operations that had to be applied

to the millions of instances in the pool. The parameters for the rounds of testing were set to keep the

amount of time required to obtain results reasonable. They are given below by Table 2.

Number of folds 5
Number of repetitions 3
Labeling budget 80 instances

Table 2: The experimentation parameters for training with all instances in trajectories

With these parameters, only a total of 15 runs of training and validation were done. This is far

fewer than would be considered desirable, but collecting results using these settings were already on the

border of unreasonable. Running the experiments for random sampling took∼seven hours, ∼11 hours for

uncertainty sampling. Since the training durations for xPAL and even more so for QBC were expected to

take significantly longer than for the others, these were excluded in this part of experimentation. Table

3 shows the pipeline designs used for each method.

Sampling Method Pipeline Design

Random Sampling a
Uncertainty Sampling b
Density-Weighted Sampling b

Table 3: The pipeline design used with each sampling method for training with all instances in trajectories

The averaged results and their interquartile ranges over all 15 runs for random sampling, uncertainty

sampling, and density sampling are shown in Figure 6.
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Figure 6: (Macro) F1, Recall, and Precision for training on all instances in selected trajectories, as well
as the percentage of selected positive labels.

While only 15 runs total were performed for each active learning method, the dispersion of the

performances is quite low for all three methods. This may be a result of the thousands of individual

instances used for training leading to consistent behavior. Uncertainty sampling starts sampling looping

trajectories with a high frequency, which corresponds to a quick rise in recall compared to the other two

methods. Density-weighted sampling’s recall even dips slightly while sampling only negative instances

in the beginning. After the first 40 instances, both uncertainty sampling and density-weighted sampling

reach very similar performance for all measures, showing greater performance compared to random

sampling. However, performance after 80 instances for both of these methods only reaches around 65%.

6.2 Training on selected trajectory summarizing instances

When using the trajectory summarizing instances not only for selecting trajectories, but also for training,

the speed at which experiments could be run increased dramatically. This allowed for the test parameters

to be as shown in table 4.
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Number of folds 5
Number of repetitions 30
Labeling budget 100 instances

Table 4: The experimentation parameters for training with trajectory summarizing instances

With these settings, a total of 150 runs of training and evaluation were performed for each tested method.

As well as getting a smoother picture of performance for these methods, it also allowed testing with the

QBC and xPAL approaches. The corresponding pipeline designs are shown in table 5.

Sampling Method Pipeline Design

Random Sampling c
Uncertainty Sampling c
QBC Sampling d
Density-Weighted Sampling c
xPAL c

Table 5: The pipeline design used with each sampling method for training with trajectory summarizing
instances

The averaged results and their interquartile ranges over all test runs for random sampling, uncertainty

sampling, QBC, density sampling, and xPAL sampling are shown in Figure 7. Results for corresponding

significance tests can be found in Appendix B, and will be referenced when relevant.

To gain additional analytical insight, pre-testing was performed comparing random sampling using

the dataset as described in Section 4 with random sampling when the majority class in the dataset was

undersampled. The non-looping/looping ratio in the base dataset was 20:1, while in the undersampled

dataset non-looping cases were removed at random to achieve a ratio of 4:1. The purpose of this exper-

iment was to investigate the effect of increasing the rate at which instances of the minority class were

sampled without the further bias or influence through the application of a guided selection strategy. The

results can be seen in Figure 41 in Appendix C. The results suggest that a higher sampling rate of the

minority looping trajectories results in a significant increase in the learning rate for macro recall and

a slight increase in the learning rate for precision initially, but slightly lower learning rate for precision

later on.

Looking at the performances for the active learning methods, we can see that all except xPAL clearly

outperformed the random sampling approach. Considering that early testing with parameter changes

had little effect on its performance (as discussed in Section 5.2) a possible explanation for the relatively

low performance of xPAL in this case is that it is optimizing towards lowest expected misclassification

error. Given a highly imbalanced dataset, a low misclassification score can easily be attained by always

predicting the majority class. This may have skewed the selection strategy to favor non-looping cases

over looping cases. As random selection also mostly selects the majority class due to the class imbal-
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Figure 7: (Macro) F1, Recall, and Precision for training on selected trajectory summarizing instances,
as well as the percentage of selected positive labels.

ance, this could lead to similar performance in precision. If this xPAL implementaion has enough of a

preference toward the majority class that samples the minority class even less than random sampling

does, this could explain that its recall performance is slightly worse.

Uncertainty sampling, QBC sampling, and density-weighted sampling all performed very similarly.

For both uncertainty sampling and QBC sampling a dip in F1 performance can be seen as the start of

training, as a result of this same initial dip in their precision scores. These dips may be explained by the

switch from training with the initialization set to using active learning methods. As discussed in Section

5.1, all models were first initialized with 10 instances that were randomly selected, but with a ratio

of 10:3 for the non-looping/looping ratio. As discussed above for the undersampled random sampling

experiment, this shifts performance towards the majority class and thus to precision. Once uncertainty

and QBC sampling are introduced, they start sampling looping cases with high frequency as can be seen

from their selected label ratios. This could then result in this drop in precision and rapid increase in

recall until they both stop sampling the looping cases so aggressively. Interestingly, the QBC strategy

returns to the aggressive selection of looping cases. At this point the model had likely been trained with
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enough instances for its ability to correctly classify the majority instances to not be affected as strongly.

This does cause it to have a slightly lower precision and slightly higher recall after these 100 instances of

training. Significance testing finds the performance difference between uncertainty sampling and QBC

sampling to be insignificant.

Density-weighted sampling shows no dip, and instead shows slightly slower learning for recall. Given

that it is likely that instances from the majority class will be in a more densely populated area of the

feature space, density-weighted sampling didn’t aggressively sample the minority class as much as un-

certainty sampling and QBC sampling did. While ths resulted in slower recall learning, it mitigated the

original drop in precision score, resulting in density-weighted sampling taking a short lead in F1 score

until the other two catch up.

From the prior observation that recall increases and precision decreases when simply selecting ran-

domly, it could be expected that for uncertainty sampling, query by committee sampling, and density-

weighed sampling, the precision should generally be lower than it was for random sampling judging

from the selected label ratios. However, all three of these outperform random sampling w.r.t. preci-

sion. This could be due to the increase in the rate at which precision improves for the minority looping

class being greater than the decrease in the rate at which precision improves for the majority class. It

could also be due to more specific qualities of the selected majority non-looping instances being more

informative than any randomly selected ones, as one would hope when using an active learning approach.

Comparing performance between all sampling methods when using all instances in trajectories for

training compared to using only the summarizing instances, it is clear that, for classification of com-

plete trajectories, the latter method is much more effective. These findings were used for designing

the approach to Task 2 for Section 6.3. However, first a further investigation was performed into the

summarized-instance models and the trajectories they selected.

6.2.1 Additional Analysis

As an additional step to this research, it was of interest to not only test the performance differences re-

sulting from using active learning methods, but to do some further analysis regarding important features

and interesting trajectories. This was only performed for training using instances summarizing complete

trajectories.
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For each sampling method, a table shows Gini importance over the course of training in Appendix

D. The training period was divided into nine bins, showing average importance within each bin. The

following are some interesting observations regarding these feature importances:

• Random sampling and xPAL sampling result in extremely similar feature importances in the re-

sulting models.

• The feature rolling std speed 60min (standard deviation of speed in the last 60 minutes) starts

with high importance for all methods, but loses importance for all but random sampling and

xPAL. Given both of these sampling methods mostly sample the non-looping trajectories, this

feature could be exclusively important for identifying non-looping trajectories. An example of how

this could happen is if, when speed varies little over the course of the last hour, this is a strong

indicator of a non-looping tanker that is still underway, while strong variations in speed could be

common to both looping and non-looping trajectories.

• The reverse case can be made for the feature expanding range lon (range of longitude over the

complete trajectory). This feature is only mildly important for random and xPAL sampling, while

gaining high importance for all other methods. That likely makes it a useful predictor for the

looping trajectories. One possible explanation is that over the course of their trajectories, the

looping cases will stay relatively close to the port of Rotterdam and have low longitudinal ranges,

while non-looping tankers will have further destinations (especially for international destinations)

and thus have to traverse farther longitudinally.

• Similarly, an important feature for all methods is rolling rel max lat 10min (relative maximum

latitude over the last 10 minutes). Latitude being important for the last 10 minutes of the trajectory

makes sense given that if the trajectory were to be looping, it should be close in latitude to the port

of Rotterdam. If it is non-looping, the odds of being close to specifically this latitude in the last

10 minutes of its trajectory are very slim. Interestingly, the relative minimum latitude in the last

10 minutes is not important for any method. Given that the window only covers the last minutes,

only one of the two would be needed to represent latitudinal proximity to the port of Rotterdam.

• The only method that results in importance for orientation-based features is uncertainty sampling.

This grows more toward the end of learning, specifically for features rolling max orientation 10min

and rolling median orientation 60min. This change is interesting because performance for uncer-

tainty sampling plateaus halfway through the active learning process. The increased importance on

orientation seems to neither harm or improve model performance. One could imagine orientation

to be of some use, considering it seems likely that a looping tanker would be oriented toward the

port of Rotterdam near the end of its trajectory, but there may be too much variation due to other

factors such as angles of approach.
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To get an overview of which trajectories were often selected by the different sampling methods,

as well as during what point in training, heat maps were plotted over the learning process for the

frequency selection of the trajectories. Because of the large amount of trajectories, minimum sampling

thresholds at each time point were used to leave out the less important trajectories. Different active

learning methods required different thresholds to produce heat maps that allowed a good overview for

a qualitative inspection. Random sampling was excluded since any frequently selected instance is only

frequently selected through random chance. The different trajectories are shown over the x-axis, where

green trip id’s represent looping trajectories and the red trip id’s represent non-looping trajectories.

Selection frequencies were binned over the y-axis for every 10 consecutive queries. The following are the

produced heat maps:

Figure 8: Uncertainty sampling selection frequency heat map. Minimum sampling threshold = 6

For uncertainty sampling there is a clear preference of a select few looping instances at the start of

learning, with a more divided preference towards the middle of learning while it is reaching its perfor-

mance plateau, with no specific preference toward the end.

Figure 9: QBC sampling selection frequency heat map. Minimum sampling threshold = 8

QBC shows preference for a select few positive instance at the start of learning, followed by a short

period of no preference for either class, followed by extreme preference toward a large set of specific

looping trajectories over the rest of learning, in a consistent order.
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Figure 10: Density-weighted sampling selection frequency heat map. Minimum sampling threshold = 14

Density-weighted sampling shows strong preference toward both specific looping and non-looping

trajectories in the start, after which preference for instances for both classes weakens over the course of

training.

Figure 11: xPAL sampling selection frequency heat map. Minimum sampling threshold = 3

xPAL sampling shows preference toward almost exclusively non-looping instances, in a practically

random distribution.

In terms of general preference toward looping or non-looping cases, the selected trajectories closely

correspond to the ratio as was shown in Figure 7. After this an exploration followed into the specific

instances that were frequently selected by the active learning approaches. First a few examples will be

show for trajectories frequently selected at the start of learning, and then a few trajectories frequently

selected near the end of learning. A larger selection of frequently selected trajectories can be found in

Appendix E. The color gradations in the figures indicate the speed in knots (nautical miles per hour) of

the tanker at that point in the trajectory:

The following figures show a few examples of looping trajectories that were frequently selected at the

start of learning.
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Figure 12: Looping trajectory frequently
selected near the start of learning (uncer-
tainty sampling and QBC sampling)

Figure 13: Looping trajectory frequently selected
near the start of learning (density-weighted sam-
pling)

The purpose of active learning approaches is to try and find the decision boundary between classes

as quickly as possible. Sampling instances near the decision boundary would mean that the selected tra-

jectories should be similar in terms of features. Both Figures 12 and 13 show clear looping trajectories.

However, trip 94 is moving slowly throughout most of the trajectory, and trip 6166 shows a point that is

likely stationary. Experts consider trajectories such as 6166 to be anchoring. This is behavior observed

when a tanker is anchored outside of port overnight to avoid having to pay fees. Since looping trajectories

are usually fairly short, the longer duration of both of these looping trajectories adds similarity to typical

non-looping trajectories.

The following figures show a few examples of non-looping instances that were frequently selected near

the start of learning.

Figure 14: Looping trajectory frequently selected
near the end of learning (density-weighted sampling) Figure 15: Looping trajectory frequently

selected near the end of learning (density-
weighted sampling)

Figure 14 shows a non-looping trajectory that is leaving the port of Amsterdam instead of the port of

Rotterdam. This is likely due to an error in preprocessing. The fact that the entire trajectory takes place

in a very small longitudinal space is similar to a looping trajectory in that respect. Figure 15 shows a

trajectory that takes place in its entirety just south of the United Kingdom, near Plymouth. Considering

this trajectory doesn’t start from the Port of Rotterdam either, this is also an erroneous trajectory. For

such an example similarities to typical looping trajectories are less clear, other than perhaps a period of
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slower movement that one might see for a looping tanker that is at its turning point.

The following figures show a few examples of looping instances that were frequently selected at near

the end of learning:

Figure 16: Non-looping trajectory frequently se-
lected near the end of learning (density-weighted
sampling)

Figure 17: Non-looping trajectory fre-
quently selected near the end of learning
(QBC sampling)

We can see for Figures 16 and 17 even more looping trajectories that are clearly of longer durations

than a non-stop looping trip would be. For looping trajectories seemingly not much has changed for

frequently selected trajectories. Considering it is the minority class these instances are likely still quite

informative toward the end of learning.

The following figures show a few examples of non-looping instances that were frequently selected near

the end of learning.

Figure 18: Non-looping trajectory frequently se-
lected near the start of learning (density-weighted
sampling)

Figure 19: Non-looping trajectory fre-
quently selected near the start of learning
(density-weighted sampling)

Figure 18 shows a trajectory for which a large part is missing. This shows a flaw in the interpolation

option used when extracting the original data. Similarity to looping trajectories may stem from the

fact that, due to the missing middle part, a relatively larger part of the trajectory instances is close to

the port of Rotterdam. This would affect the features generated by the sliding and expanding window

approaches. Figure 19 shows a trajectory that likely anchored and is making its way back to the port of

Rotterdam. That means it is likely that this would have performed a loop, but it was anchored outside

of the port for so long that the return trip was cut short by the 48 hour limit.
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From the examples seen, it generally seems that most of the looping trajectories that were selected

show similarities with typical non-looping trajectories, meaning that sampling is likely able to find the

decision boundary fairly effectively. This was also true for the non-looping trajectories, but especially

the last trajectories only share similarities to typical looping trajectories due to data processing errors.

6.3 Task 2: Partial Trajectory Classification

The experimental approach to partial trajectory classification was both guided by the prior research [2]

as well as informed by the experimentation and results for Task 1. To evaluate performance for partial

trajectories, a set of time points at specific full hours after departure within the maximum time period of

48 hours were selected. These time points were: 10h, 16h, 20h, 25h, 30h, 35h, and 40h. Based on expert

opinion, it is very unlikely that any anomalous behavior will occur in the first ten hours of a trajectory.

The purpose of en route classification is to eventually intervene before an act such as zeezwaaien can

occur, or at the least have the ability to mobilize inspectors to the port of arrival. Because of this, any

classification beyond 40 hours into the trajectory is likely too late.

Training a classifier using all instances within trajectories should allow for the classifier to make

predictions for different time points of trajectories. However, the additional overhead of re-training

classifiers with all these instances throughout the active learning process, as well as the relatively low

performance of the resulting classifiers, the choice was made to use pipeline designs c and d for training

only on summarizing instances. New datasets for each different time point were made in accordance to

what could be seen in Figure 5. With different datasets for different time points, a different classifier

was trained for each specific time point following the same methodology and settings as for Task 1. For

quick reference these are shown in Tables 6 and 7

Number of folds 5
Number of repetitions 30
Labeling budget 100 instances

Table 6: The experimentation parameters for training with partial trajectory summarizing instances

Following this methodology for partial trajectory classification, in practice, the resulting models would

be applied consecutively to an en route ship as soon as it reaches the corresponding time point. Given

enough time points, the time span between classifications should be short enough that the delay before

a new classification (compared to consistent real time classification) should still leave enough room for a

timely response.
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Sampling Method Pipeline Design

Random Sampling c
Uncertainty Sampling c
QBC Sampling d
Density-Weighted Sampling c
xPAL c

Table 7: The pipeline design used with each sampling method for training with partial trajectory sum-
marizing instances

To give some additional context to the results, Table 8 shows the label distributions at each time

point, including complete trajectories for reference. The upper two columns show the label distributions

for the different datasets produced for only training (pre-time point only) and both testing and training

(at or max. 30 minutes before time point). The bottom two columns show how these would be divided

on average between the train and test folds for k-fold validation. Figures 20 - 24 show the performance

for the different sampling methods at the different time points. Results for corresponding significance

tests can be found in Appendix B, and will be referenced when relevant.

Comp. 10h 16h 20h 25h 30h 35h 40h

Train 1 NA 4 16 26 39 60 70 78
only 0 NA 149 146 146 265 303 358 433
Train 1 88 44 36 35 29 15 10 7

& Test 0 1679 944 845 857 785 777 723 674

Avg. in 1 70 35 45 54 62 72 78 84
train folds 0 1343 755 822 832 893 925 936 972

Avg. in 1 18 9 7 7 6 3 2 1
test fold 0 336 189 169 171 157 155 145 135

Table 8: Label distributions for the complete trajectory and the different partial trajectory datasets, and
an average (rounded) label distribution for each train and test set produced for 5-fold cross validation.
Note that the partial trajectory datasets don’t include all available instances due to an oversight explained
at the end of Section 5.3
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Figure 20: Partial Trajectories at 10 hours. (Macro) F1, recall, and precision for training selected
trajectory summarizing instances, as well as the percentage of selected positive labels.

For most methods the performance at 10 hours was as expected. While uncertainty sampling initially

selected more looping trajectories than the other methods, thus giving an initial small increase in recall

and precision for the looping class, performance is generally quite low compared to learning with complete

trajectories. Considering this is very early in the trajectory, the differences between looping and non-

looping trajectories are likely to be very small. The outlying active learning method in this case is xPAL.

After ∼20 instances that were seemingly purely non-looping, there is a consistent switch to sampling

positive instances about 60% of the time on average until the ∼60th instance. This results in a significant

performance increase for recall, as well as a smaller one for precision, throughout this period. This may

have been a result of the presumed small differences between the trajectories of the different classes

up to this point in time. xPAL uses kernel density estimation as a part of its expected performance

impact calculations for label selection. Even if the initialization set is skewed toward the majority class,

combined with the issue of optimization toward misclassification error, if the trajectories in the different

classes are similar this increases the odds of selecting a trajectory from the minority class. In turn,

adding labels for the minority class also increases its representation in the kernel density estimate, thus

making minority class classification seem more valuable. Significance testing at this time point finds no
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significant difference between the performances of random sampling and density-weighted sampling, as

well as between random sampling and QBC sampling.

Figure 21: Partial Trajectories at 16 hours. (Macro) F1, recall, and precision for training selected
trajectory summarizing instances, as well as the percentage of selected positive labels.

After 16 hours a point was reached where the trajectories in the different classes likely weren’t sim-

ilar enough for xPAL to presume a high performance increase for labelling an instance that ends up

being a looping trajectory. No real performance increase for xPAL is seen across the rest of the tested

time points. Significant improvements were seen in precision, particularly for uncertainty sampling and

density-weighted sampling. Again this is accompanied by higher sampling rates for the looping class.

The dispersion of performance is very varied however. QBC sampling had some spiked periods of sam-

pling looping instances, but did not outperform random sampling. It may have been the case that at

this time point there weren’t enough properly informative positive instances available for training at this

point to allow the different committee members to form a good set of different hypotheses.
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Figure 22: Partial Trajectories at 30 hours. (Macro) F1, recall, and precision for training selected
trajectory summarizing instances, as well as the percentage of selected positive labels.

Over the course of the time points 20 hours, 25 hours (Appendix C), Figures ??, 43) there was a

consistent increases in learning rates for all methods in precision and consequently F1 scores, reaching a

peak at 30 hours (Figure 22). Uncertainty sampling and density-weighted sampling increased their lead

over the other methods in terms of precision with statistically insignificant differences both at 20, hour,s

30 ours, and beyond. QBC sampling’s learning rate gradually overtook random sampling with regard to

both recall and precision, with its recall and F1 score being very similar to those of uncertainty sampling

and density-weighted sampling. At 30 hours the difference between performance for QBC and both

uncertainty sampling and density-weighted sampling was not statistically significant. At this time point

here was also a notable increase in the dispersion of performances for all methods. This is likely due to

the increasingly small number of looping trajectories in the test set. As can be seen in Table 8, on average

only 3 looping trajectories were in the test set for each round of evaluation. This was due to trajectories

at time points ending before the current time point being used exclusively for training, as described in

Section 5.3.1. Because of this, when evaluating at later time points, more of the looping trajectories have

ended before this time point and were exclusively used for training. With only 3 looping trajectories in

the test set on average any one or more or less correct classifications of the looping trajectories resulted
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in large changes in performance.

Figure 23: Partial Trajectories at 35 hours. (Macro) F1, recall, and precision for training selected
trajectory summarizing instances, as well as the percentage of selected positive labels.

After 35 hours there is a general decrease in performance, with the exception of density-weighted

sampling showing no decrease for recall. With the number of looping trajectories in the training set

increasing, but the number of looping trajectories at the evaluated point in time decreasing (2 per eval-

uation round at this time point), there may have been an over-representation of the looping trajectories

at this point resulting in an increased number of occurrence of false positives where non-looping trajec-

tories were falsely classified as looping trajectories. From this time point on QBC showed no statistically

significant performance different with random sampling.

49



Samuel Meyer
Utrecht University

Master Thesis

Figure 24: Partial Trajectories at 40 hours. (Macro) F1, recall, and precision for training selected
trajectory summarizing instances, as well as the percentage of selected positive labels.

After 40 hours, with only a single looping trajectory in the evaluation set, the dispersion of perfor-

mance for recall was higher than at any of the former time points. However, a small average increase in

performance is seen for uncertainty sampling and density-weighted sampling over performance at the 35

hour time point. Only one looping trajectory on average was in the test set for each round of evaluation.

Considering both uncertainty sampling and density-weighted sampling had a greater tendency to sample

looping trajectories than the other methods, they likely had a greater chance at correctly classifying that

one instance, resulting in the looping-half of the macro scores to be significantly boosted. For all other

methods performance stayed roughly the same.

Similar to the results for classifying complete trajectories using summarizing instances, the active

learning approaches consistently matched or outperformed random sampling. However, for none of the

time points the performance matched that for complete trajectory classification.
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As a final overview, Table 25 gives a performance overview in terms of average ALC scores for both

complete and partial summarized trajectory classification. While this doesn’t capture how the learning

rate changed exactly over the course of training, the values do generally correspond to the impressions

given by the performance figures.

Figure 25: Average ALC scores for the different active learning methods over the summarized trajectory
learning scenarios. Since each time point used different training and test sets, scores should only be
compared between the active learning methods at each separate time point.
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7 Conclusions

This thesis consisted of an exploration into the use of active learning methods for the detection of

zeezwaaien. For the purpose of having enough labeled data available for experimentation and evalua-

tion, the feature looping behavior was used as a proxy for zeezwaaien. The approach taken was chosen to

be moderately non-specific to allow some insight into how the performance on this dataset could translate

to the more general problem of active learning for high class imbalance trajectory data given little prior

information. This section will first go over the posed research questions and their answers in the light of

the research performed for this thesis. This is followed by a more detailed discussion of specific aspects

of the findings in Section 7.1. Finally, some suggestions are made for future work in Section 7.2.

The first research question:

• How can active learning approaches be applied to improve supervised machine learning classifiers

of high class imbalance trajectory data with little to no prior information (using looping detection

of tankers in the North Sea leaving the port of Rotterdam as an example)?

By applying a variety of active learning approaches in general forms to the problem of classifying

looping behavior for these trajectories, this research was able to gain some insight into how these different

types of approaches perform as out-of-the-box solutions to this type of problem (Task 1). This question

was answered in two parts corresponding to the following posed sub-questions:

The first sub-question:

• How can the active learning pipeline be adjusted to suit trajectory data with trajectory-wide labels?

The key to applying active learning to trajectory data with trajectory-wide labels was the summariza-

tion of these trajectories to single instances. This allowed for the application of the traditional pool-based

active learning pipeline on the new dataset of summarized instances, with the exception of the use of a

separate classifier for sample selection for QBC sampling. For complete trajectory classification, a sum-

marization based on expanding and sliding window features resulted in satisfactory results. Concurrent

research at the IDlab using the same dataset [69] indicates that high performance can be achieved in a

non-active learning setting when training using all instances in trajectories. However, the active learning

experiments with pipeline adjustments to allow training with all instances in trajectories showed much

slower learning for complete trajectory classification.

The second sub-question:

• Can active learning approaches increase the rate of learning given the described problem scenario?
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All but one of the tested active learning approaches significantly increased the learning rate over

random sampling, resulting in better performance w.r.t. (macro) scores for F1, precision, and recall. No

statistically significant difference in performance was seen for performance between uncertainty sampling

and QBC sampling. Given the additional pre-testing and training time that were involved in QBC

sampling, this suggests that in this type of problem scenario the more simple uncertainty sampling

would likely preferable. Uncertainty sampling and density-weighted sampling plateau at approximately

the same levels of performance. The learning curves suggest uncertainty sampling would be a better

choice for the detection of anomalies early in learning due to a faster initial increase in recall, while

density-weighted sampling balances this with cost of misclassification through a more steady rise in

precision. The xPAL implementation optimizing towards reduction of misclassification error showed

similar learning to random sampling, with performance for recall being slightly worse.

The second research question:

• Can the approaches designed to answer the main research question be extended to improve learning

performance for en route classification of looping behaviors?

The findings for the first research question motivated the use of summarized trajectory instance train-

ing as the main approach to answering the second research question. The same active learning approaches

in their general forms were used, now for classifying looping behavior for partial trajectories (Task 2).

This question was also answered in two parts corresponding to the following posed sub-questions:

The first sub-question:

• How can the design be adjusted to classify partial trajectories rather than complete trajectories?

The same pipeline designs that were used for summarized complete trajectory classification could be

used for partial trajectory classification, but now summarizing trajectories up to specific points in time

into the trajectory. Different models were trained for different pre-specified points of elapsed time into

the trajectories. For each time point the active learning approaches were applied using only instances

summarizing trajectories up to that specific time point for training and evaluation. Summarizing in-

stances for complete trajectories of trips with shorter durations than the specified time point were only

used for training.

The second sub-question

• Can active learning approaches increase the rate of learning compared to passive learning for en

route looping detection?

Depending on the evaluated point in time, all active learning approaches other than xPAL showed

either matching or increased learning rates compared to random sampling. To apply this to en route clas-

sification in a real-world scenario, the different models for different time points would be used as a tanker
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reaches the specific time point. For the earliest time point into the trajectory these methods showed no

real improvement over random sampling. With later time points performance increased across the board,

with uncertainty sampling and density-weighted sampling showing faster increasing precision than QBC

sampling. Towards the end of the observed time points overall performance decreased, likely due to al-

most no looping trajectories being present at these later time points to be used for training or evaluation.

To summarize the above: Summarizing trajectories into single instances to use for selecting trajec-

tories and then training using the selected summarizing instances was an effective approach for using

active learning to classify trajectories given the problem scenario. When applied, active learning showed

improvements over the rate of learning in nearly all situations. Particularly uncertainty sampling and

density-weighted sampling never seemed at risk of underperforming compared to random sampling.

Considering the performance for the looping classification using minimal guided selection of parame-

ters (excluding QBC), active learning may be promising for other (trajectory) class imbalance scenarios

where there is little to no prior information available. These statements also hold for en route classifica-

tion, however there may be better approaches than multiple time-specific models, particularly when the

distribution of the labels is also imbalanced in relation to the specific time point.

7.1 Further Discussions

This section adds some additional discussion regarding the methodologies and experiments in this thesis.

• For a situation in which not much is known beforehand, the use of an approach with many different

hyperparameters is generally counter-intuitive. This was a problem for both QBC sampling and

xPAL. For QBC sampling the pre-experimentation to find the most suitable configuration of com-

mittee members is both not possible if no labeled data is available beforehand, and it disqualified

its performance as a look into general QBC performance for class imbalance trajectory classifica-

tion. xPAL allows for the measure toward which it is optimized to be changed [41], and with at

least the expectation of high class imbalance it would make sense to do so. However, this was not

part of the implementation used in this thesis, and changing it would have taken a considerable

amount of time that was not available during this thesis project. Its addition to this thesis is the

demonstration of how strong the effect of an active learning method that is not suited or set up

properly for the problem to which it is applied.

• The partial trajectory classification approach of training for and classifying at specific time points

did allow for en route classification, but performance was significantly lower than was achieved

in concurrent non-active learning research at the IDlab using the same dataset. For complete

trajectories, training on summarizing instances resulted in competing performances within a 100
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instances compared to concurrent research using all instances of all trajectories for training (hold-

out set excluded) [69]. This difference is likely explained by multiple factors. This includes the fact

that classifying looping earlier in trajectories is overall a more difficult problem than for complete

trajectories, so more instances are likely needed to get better performance. More specific to the

approach however, there is a lot of variation between trajectories at the same time point. At the end

of complete trajectories, all looping trajectories will be exhibiting behavior very specific to entering

the port of Rotterdam (captured particularly in the sliding window features for the last 10 and

60 minutes). However, after X hours, different looping trajectories will be at completely different

parts of their looping trajectories depending on the size of the loop and its speed. With more time

for experimentation it may have been worth trying to train a single classifier with instances from

summarized trajectories at multiple different time points.

• Particularly for the non-looping class, the additional analysis in Section 6.2.1 seemed to have a

tendency to select non-looping instances for which there were data-related issues. While not the

purpose of active learning, this may be a useful feature for data cleaning. Particularly in a pool-

based scenario, like a scenario where visualizations of complete trajectories are shown to inspectors

for labelling, effective active learning would then both increase the rate of learning while aiding

with data cleaning at the same time.

7.2 Future work

This section discusses some possible directions of future work based on the results from this thesis, as

well use-cases for the IDlab.

• Following the discussion about how trajectories with the same label at different points in time

may still exhibit lots of variation in behavior, it may be useful to look to other methods of feature

generation of summarization. ”Milestone” type features that relate to specific behaviors of the

traversing object that either have or haven’t occurred may be a very informative (e.g. for looping

classification, tanker rotated 180 degrees in the trajectory so far, tanker has left coastal area

during any time point in the trajectory so far, etc.). These would have to be crafted using domain

knowledge, being heavily dependent on the knowledge of inspectors. Other notable methods of

feature generation for trajectories include perennial object mining [73] and trajectory clustering

[63].

• The pool-based scenario in this thesis is of use specifically w.r.t. zeezwaaien detection for the

future purpose of reducing complete trajectory labeling. En route classification of zeezwaaien in

a deployed learning situation would likely be more akin to a stream-based scenario. In this case,

the decision has to be made to inspect a tanker or not while it is en route. This begs the question
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at which point during the trajectory to decide whether to inspect or not. A possible direction of

research for this is aleatoric uncertainty [67]. Estimating aleatoric uncertainty given an en route

tanker would give a measure of how high the irreducible uncertainty is for classifying this tanker at

this time point. With high aleatoric uncertainty, applying a label to the tanker would result in very

little classifying power gained, since its uncertainty is highly irreducible. Experimentation would

then involve finding the appropriate threshold of aleatoric uncertainty before considering whether

inspecting an instance will be informative for the learner.

• For a deployed learning situation, active learning could be used as a tool to help inspectors at the

ILT to decide when to perform inspections. However, there are more factors at play that go into

making such decisions. Active learning serves to streamline the exploration aspect of learning, with

the aim of faster learning for the classifier. At the same time it is desirable to exploit what we have

learned to identify illegal activities. Considering that the successful active learning approaches

significantly increased sampling of our target class, these approaches were beneficial with regard to

both of these factors. Since these approaches generally try to sample close the decision boundary

between classes, an increase in sampling of the minority class would be expected. A third important

factor is ethical concerns. Measures need to be taken to be able to address concerns of ethical

equity. Ways of addressing this include a randomization factor for inspections and explainable

methodologies. In order to estimate the optimal use of active learning for scenario’s closer to the

en route use-cases, experiments including these different factors and interplay between them would

have to be performed.
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[36] Dino Ienco, Albert Bifet, Indrė Žliobaitė, et al. “Clustering Based Active Learning for Evolv-
ing Data Streams”. In: Discovery Science. Ed. by Johannes Fürnkranz, Eyke Hüllermeier, and
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Appendix A QBC Tuning

The following figures were the result of testing different configurations of committees for QBC. Model
types tested were: Linear logistic regression (denotes as classifier 1), random forest (classifier 2), and
XGBoost (classifier 3). To limit the amount of test-configurations, the amount of different types of
models in a configuration was always balanced, and the committee could have a maximum of 8 members.
This maximum was only exceeded for the configuration using three of each model type.

Figure 26: (Macro) F1, recall, and precision for complete summarizing instance learning of QBC config-
urations only using linear logistic regression models.
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Figure 27: (Macro) F1, recall, and precision for complete summarizing instance learning of QBC config-
urations only using random forest models.

Figure 28: (Macro) F1, recall, and precision for complete summarizing instance learning of QBC config-
urations only using XGBoost models.
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Figure 29: (Macro) F1, recall, and precision for complete summarizing instance learning of QBC config-
urations using combinations of random forest and linear logistic regression models.

Figure 30: (Macro) F1, recall, and precision for complete summarizing instance learning of QBC config-
urations using combinations of XGBoost and logistic linear regression models.
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Figure 31: (Macro) F1, recall, and precision for complete summarizing instance learning of QBC config-
urations using combinations of random forest and XGBoost models.

Figure 32: (Macro) F1, recall, and precision for complete summarizing instance learning of QBC config-
urations using combinations of random forest, XGBoost, and linear logistic regression models.
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Appendix B Wilcoxon Signed-Rank Significance Tests

The following are the results for applying the Wilcoxon signed-rank test as described in Section 5.4 to
test whether the performance between the observed performance differences between the active learning
methods for the summarized instance training tests were significant. Red values mean the p-value was
below 0.05, thus the difference between the performances of the methods wasn’t statistically significant.

Figure 33: Wilcoxon-signed rank test results for the performances of different active learning methods
for complete trajectory classification

Figure 34: Wilcoxon-signed rank test results for the performances of different active learning methods
for partial trajectory classification at the 10 hour time point.

Figure 35: Wilcoxon-signed rank test results for the performances of different active learning methods
for partial trajectory classification at the 16 hour time point.
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Figure 36: Wilcoxon-signed rank test results for the performances of different active learning methods
for partial trajectory classification at the 20 hour time point.

Figure 37: Wilcoxon-signed rank test results for the performances of different active learning methods
for partial trajectory classification at the 25 hour time point.

Figure 38: Wilcoxon-signed rank test results for the performances of different active learning methods
for partial trajectory classification at the 30 hour time point.

Figure 39: Wilcoxon-signed rank test results for the performances of different active learning methods
for partial trajectory classification at the 35 hour time point.
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Figure 40: Wilcoxon-signed rank test results for the performances of different active learning methods
for partial trajectory classification at the 40 hour time point.
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Appendix C Additional Performance Graphs

Figure 41: (Macro) F1, recall, and precision for training on undersampled and not undersampled ran-
domly selected trajectory summarizing instances, as well as the percentage of selected positive labels.
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Figure 42: Partial Trajectories at 20 hours. (Macro) F1, recall, and precision for training selected
trajectory summarizing instances, as well as the percentage of selected positive labels.
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Figure 43: Partial Trajectories at 25 hours. (Macro) F1, recall, and precision for training selected
trajectory summarizing instances, as well as the percentage of selected positive labels.

Appendix D Feature Importances of Summarized Complete Tra-
jectory Classifiers

The following tables show the feature importances as a measure of gain for the classifiers resulting from
the different sampling methods for complete trajectory classification with summarized instance learning.
The importances were binned and averaged, with each column number showing the last included instance
in each bin.
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Figure 44: Classifier feature importances (gain) resulting from random sampling
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Figure 45: Classifier feature importances (gain) resulting from uncertainty sampling
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Figure 46: Classifier feature importances (gain) resulting from QBC sampling
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Figure 47: Classifier feature importances (gain) resulting from density-weighted sampling
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Figure 48: Classifier feature importances (gain) resulting from xPAL sampling
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Appendix E Frequently selected trajectories

Figure 49: Looping trajectory frequently
selected near the start of learning (uncer-
tainty sampling)

Figure 50: Looping trajectory frequently selected
near the start of learning (uncertainty sampling)

Figure 51: Looping trajectory frequently
selected near the start of learning (QBC
sampling)

Figure 52: Looping trajectory frequently selected
near the start of learning (density-weighted sam-
pling)

Figure 53: Looping trajectory fre-
quently selected near the start of learning
(density-weighted sampling)

Figure 54: Non-looping trajectory frequently se-
lected near the start of learning (QBC sampling)

Figure 55: Non-looping trajectory fre-
quently selected near the start of learning
(density-weighted sampling)

Figure 56: Non-looping trajectory frequently se-
lected near the start of learning (xPAL sampling)
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Figure 57: Looping trajectory frequently
selected around the middle of learning
(QBC sampling)

Figure 58: Looping trajectory frequently selected
around the middle of learning (QBC sampling)

Figure 59: Looping trajectory frequently
selected around the middle of learning
(QBC sampling)

Figure 60: Looping trajectory frequently selected
around the middle of learning (QBC sampling)

Figure 61: Non-looping trajectory fre-
quently selected near the middle of learn-
ing (uncertaintysampling)

Figure 62: Non-looping trajectory frequently se-
lected near the middle of learning (uncertainty sam-
pling)

Figure 63: Non-looping trajectory fre-
quently selected near the middle of learn-
ing (density-weighted sampling) Figure 64: Non-looping trajectory frequently se-

lected near the middle of learning (xPAL sampling)
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Figure 65: Looping trajectory frequently
selected near the end of learning (QBC
sampling)

Figure 66: Looping trajectory frequently selected
near the end of learning (QBC sampling)

Figure 67: Looping trajectory frequently
selected near the end of learning (xPAL
sampling)

Figure 68: Non-looping trajectory frequently se-
lected near the end of learning (xPAL sampling)
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