MSc Thesis

User modeling for Complex
Personalization Problems

A general methodology and BDI-agent-based framework

N 1 - innovation
= % Universiteit Utrecht m f ?-fat 0
%ﬂ l\§ oriite
A
Author: Supervisors:
C.C.M. van Rooij MSc. M.M.M. Peeters
ICA: 3412326

Prof. Dr. J-J. Ch. Meyer (UU)
Dr. K. van den Bosch (TNO)

submitted in fulfilment of the requirements for the degree of

Master of Science

in the programme
Technical Artificial Intelligence

at the
Department of Information and Computing Sciences
Utrecht University

January 16, 2014






Abstract

The research field of user modeling is concerned with the complex process of adding personalization to an
application with the use of a user model. In this thesis, to support developers and researchers with the
employment of personalization, a user modeling methodology and a framework for BDI-agent-based user
modeling are proposed. The methodology is meant as a dynamic approach to bridge the current gap between
domain-specific and (too) general user modeling methods. The framework is developed to employ the
modular, dynamic approach of the BDI-based intelligent agent paradigm to develop a user model for complex
personalization problems. By means of a thorough review of the user modeling field, a more abstract overview
is created and used to construct both the methodology and the framework. To validate and test the resulting
methods, both are applied to the problem of adding personalization to an adaptive educational game in First
Aid. The resulting application is verified by means of use cases analysis. The methodology proved to be a
thorough and useful method of designing a user model, by making a clear distinction between the conceptual
ideas underlying the personalization and the technical implementation of the user model. In this way, a
systematic and gradual construction of the model could take place. The framework proved to be a useful way
of capturing the processes and features of a user model, especially through the strict and clear architecture
imposed by the BDI paradigm. With the framework, developers can utilize the flexibility, robustness and pro-
activeness of intelligent agents for the implementation of their user model. Due to the extensiveness of both
methods, they are especially useful for more complex personalization problems and scientific research on user
modeling. Future work is mainly focused on applying the methodology and framework to additional
personalization problems and domains, to further validate and possibly expand them. We hope that this thesis
will serve as a (first) step for researchers, designers, and developers to get a better grip on their user modeling
problem.
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Chapter 1

Introduction

In the past few decades, due to the advancements in computer technology, computer systems have become
increasingly more important and omnipresent. With the rise of the computer for personal use, also the
personalization of computer applications has become important. Personalization within computer applications
aims to provide users with experiences that fit their specific background knowledge and objectives, and thus to
make applications more usable and useful (Fischer, 2001).

Nowadays, it is hard to imagine everyday life without personalization in computer applications. For
instance, web shops and social media constantly present you with personalized offers, topics you might like or
persons you might know; the fitness application on your smart phone provides you with tips for a healthier life
based on your recent activities; computer games keep you occupied by presenting suitably challenging
opponents; when using a search engine such as Google, the results are ordered and altered according to your
incentive; and even in your house a smart energy meter registers your energy usage and presents you an
overview and tips for energy savings.

Personalization of a computer application can be done in two ways. The first way is to equip the user with
the possibility to customize the application, for instance through the graphical user interface. However, this
requires a certain effort and knowledge from the user. The second way solves this problem by equipping the
application with the possibility to automatically adapt to the user’s need: the application is personalized
without explicit efforts from the user. Automated personalization will be the subject of this thesis.

Especially in the early days of employing personalization, the implementation of automated personalization
used to be application-specific. Because the personalization was constructed implicitly in the code, the method
of personalization was only usable within that single application, and therefore difficult and expensive to use in
other applications or domains. To solve these problems, the research field of user modeling evolved,
concerned with the process of constructing a separate module responsible for the personalization of the
application to the user’s needs. By clustering the different aspects related to personalization within one model,
the process of personalization and the resulting user model became adjustable, extendible and reusable
(McTear, 1993; Kobsa, 2001).

1.1 Problem description

When implementing automated personalization with the use of a user model, several problems and difficulties
arise. Often, developers can only anticipate on the tasks and contexts in which the application will be used.
Nonetheless, developers are burdened with the task to construct a user model at design time, that should be
able to provide the experience of a tailor-made product at use time (Fischer, 2001).

Considering the user modeling research field as a whole, there are many domains in which user modeling
for personalization can be applied. Each domain has its own requirements, possibilities and problems, making
the field broad and complex. For instance, when designing the personalization process of a web shop, you will
have to look at completely different aspects than when looking at the personalization process of an
educational application. Besides, due to the broad applicability of personalization within applications, many
problems associated with user modeling are also part of other research fields, such as knowledge
representation, information retrieval, and human-computer interaction, each associated with its own
challenges and open questions in their own research domain.

To make the process of user modeling easier, researchers have proposed various methodologies,
frameworks and architectures to aid the developer. However, due to the problems mentioned above,
researchers agree that it is hard to develop a single method to solve every user modeling problem (McTear,
1993; Kobsa, 2001; Fischer, 2001). This observation has resulted in a few general approaches for user modeling



and a wide variety of domain specific user modeling methods (Webb, et al., 2001; Lorenz, et al., 2005; Deepa,
et al., 2012), focusing only on one application domain or one specific way of personalization.

1.2 Thesis focus

The goal of this thesis is to help developers and researchers with the employment of personalization in their
application, by providing support for the process of user modeling. This is done by investigating two related
user modeling subjects: a user modeling methodology and a framework for BDI-agent-based user modeling.

The general user modeling methodology is meant to bridge the gap between the high-level, conceptual
user modeling methods, and the low-level domain-specific user modeling methods. Due to the difficulty of
developing a method applicable to each user model problem and domain, the aim is not to solve every
possible generic and domain-specific problem that can arise, but to formalize the general questions and an
extendible list of possible answers that should lead to a correct and optimal user model.

Supplementary to the methodology, to help developers with the actual implementation of a user model for
a personalization problem, a framework based on the intelligent agent paradigm is proposed. An intelligent
agent is an autonomous software entity, capable of performing goal-oriented actions in a certain environment
(Wooldridge, 2009). Intelligent agents possess interesting features, such as the possibility of flexible behavior,
robustness and pro-activeness, which make them an interesting implementation technique for a user model.
Agents have been used before for creating a user model (Kobsa, 2007; Razmerita, 2009), but an extensive
investigation to this combination has not been done before. To enforce more structure to the agent-based
user model framework, we look at the Beliefs-Desires-Intentions (BDI) architecture for intelligent agents. The
BDI paradigm provides a model for formalizing the way in which humans (think they) reason, forming goals
and using their knowledge and beliefs to construct a plan to achieve these goals.

In order to construct the methodology and framework, the user modeling field is extensively studied.
Through this review, the different concepts, properties, and functional components related to user modeling
are formalized and combined to compose the methodology. In addition, the review is used to combine the
field of user modeling with the field of intelligent agents, resulting in the agent-based user model framework.
To investigate the use and usefulness of the resulting methodology and framework, both are applied to an
adaptive educational game (AEG) in First Aid (Peeters, 2014a). The resulting application is verified by
comparing the behavior of the implementation and the desired personalization, formalized in use cases.

Summarizing, in this thesis, we present the design of a general user modeling methodology and an agent-
based user model framework. We evaluate the use of this methodology and framework to address the
following main question: “How can the process of adding personalization to an application with the use of a
user model be supported?”, with the sub-questions:

How can the gap be bridged between high-level and low-level user modeling methods?

2. How can the intelligent agent paradigm be used to develop a user model, how effective is a user
model based on a BDI-agent, and in what type of applications would a BDI-based user model be
useful?

1.3 Thesis outline

Chapter 2 presents an overview of the user modeling field. The general technical requirements, main
application domains and methods are discussed. In Chapter 3, this overview is used to construct a more
abstract view of user modeling, addressing the general concepts, properties, and functional components. This
abstract view is used to construct the general user modeling methodology. In Chapter 4, the intelligent agents
and BDI paradigm are introduced. In Chapter 5, the concepts from Chapter 3 are combined with the intelligent
agent paradigm, which results in an agent-based user model framework. Next, to investigate the use and
usefulness of both the methodology and framework, a user model is constructed for an Adaptive Educational
Game in First Aid. Chapter 6 discusses Adaptive Educational Games, and Chapter 7 describes the
implementation and verification of this user model. Lastly, Chapter 8 describes the discussion and conclusion
of the thesis.



Chapter 2

User Modeling Review

User modeling can be described as the process of creating a model of the user to personalize a system. The
user model is usually constructed as the user is working with the system. An example is an educational
application that teaches students a certain skill: according to the rules and knowledge in the user model, the
difficulty level of the exercises in the application is altered as the user progresses. We formally define user
modeling according to McTear (1993, p. 158): (user modeling is) the process of gathering information about
the users of a computer system and of using the information to provide services or information adapted to the
specific requirements of individual users (or groups of users). The resulting user model consists of a module
containing the operations that are needed to personalize the system, and the user profile, which contains the
personal data from the user ( Mohamad, et al., 2013).

System personalization through user modeling is tightly related to the research field of adaptive systems.
Adaptive systems are systems that automatically sense or track information from the environment, task,
system, or user and adapt to help applications to be more effective despite changing conditions (Feigh, et al.,
2012). In contrary to this more general field, user modeling is solely focused on systems in which there is
interaction with the user, for example through a graphical user interface. Because of this focus on the human
user, user modeling is a very cross disciplinary research topic, comprehending the domains of artificial
intelligence, computer science, and social science. Ideas have been co-opted from a large range of sub
domains, such as human—computer interaction, e-learning, information science, social computing, machine
learning, data mining, cognitive science, and so on (Kay, et al., 2012; Kobsa, 2001). New insights and
techniques developed in one of these areas, have led to quick advancements in the user modeling area as well.
An example of this is machine learning, a sub field of artificial intelligence, where developments led to
improvements in speed and efficiency of user preference prediction. In opposite direction, the user modeling
application area is also a tough crucible for any technique, making it a useful application and testing area.
There is interest in user modeling from both a scientific and commercial perspective (Razmerita, 2009).

In the literature, the term user modeling is also used for two other things. First, the term can be used for
the process of defining a user when designing a system. The resulting model is used to create and construct a
system, and to make sure that the system serves the end user’s means. Second, user modeling can refer to
simulating different kinds of users within a new system. Instead of using real humans for broadly testing and
evaluating the system, a ‘user model’ can be created, which is a computational representation of a certain
type of user, such as a novice or an expert. In contrary to the definition of user modeling in this thesis, both
static user models become useless after the design phase is over.

In this chapter, an overview of the user modeling field is given. The most important requirements and
application domain aspects will be discussed, according to the authors. In Section 2.1, the technical
requirements are discussed that are independent of the different application domains of user modeling. In
Section 2.2, an overview of the current major fields of appliance of user modeling is given. In Section 2.3, the
methodologies, architectures and frameworks used for user modeling will be discussed.

2.1 Technical software development requirements

In early attempts for personalization, adaptation of the system to the user was performed by the application
itself. No clear distinction was made between system components that served user modeling purposes and
components that performed other tasks (Kobsa, 2001). Around the mid-eighties, this separation was made
more clearly by using a modular approach to personalization, and thus the field of user modeling emerged. To
ease the process of user modeling, strong technical principles and requirements were defined, independent of
the specific demands a certain application domain might require. These principles and requirements have their



origin in paradigms and ideas from the software development research field (Fischer, 2001; Kobsa, 2001;
McTear, 1993). The most important requirements are:

e Software decomposition, meaning the strict separation between components belonging to the user
model and components belonging to the rest of the system, as well as the clear distinction between
the different kinds of data within the system. Considering decomposition, another thing that must be
taken into account is that the input and output of the different components should still correspond to
each other

e Madifiability, meaning the possibility for future developers to modify the user model, either for
maintaining or extending the system. This implies that the user model must be transparent and clear
for programmers

e Software reusability, meaning the possibility for programmers to use (part of) the user model in
future applications, possibly by constructing subsystems on which other systems can build on. User
models are desired to have a certain degree of generality, enabling the models to be usable in
multiple application and content domains, by extending the given structure.

To satisfy these different requirements, the user model must contain a certain level of abstraction. This also
gives rise to the desire that the user model must be minimal, making the model effective, efficient with data
and easier to comprehend.

Because the application domain and the desired functionalities also greatly influence the user modeling
process, it is not always possible to obtain all of the desired technical requirements in the user model. For
example, when using certain machine learning techniques such as a Bayesian network for implementing a
certain user model functionality, it might not be possible to make a clear distinction between the data
gathered and the functionalities for gathering this data.

2.2 Application Domains for user modeling

There are several major research and application domains in which personalization and thus user modeling
plays an important role. This section presents an overview of these domains. In order to bring some structure
in this overview, the different topics are divided into three general categories:

e supporting a user during a task
e giving a user a specific personalized experience
e training and educating a user

The categories especially differ in the kind of user data that is used. For each domain, the general purpose of
the domain and the more specific purpose of the user model are discussed. Additionally, the data associated
with the user model, the exact adaptation that takes place and other important details are discussed. The
aspects that are identified in this way, will be used in the next chapter to create a more abstract and general
view of the user modeling domain.

2.2.1 User models for providing task support

‘Task support systems’ is the generic term of systems that support a user during a task by either helping the
user perform the task or by completely taking over this task (Nurmi, et al., 2007; Brun, et al., 2010). An
example is an application that automatically categorizes the incoming emails of the user.

The general goals of the user model in these applications is to improve the efficiency of interactions with
the user, to simplify these interactions and to make complex systems more useable (Razmerita, 2009; Fischer,
2001). To accomplish this personalization, data is gathered through observations of the user. This data is
related to the user’s goals and needs, but especially to the task that the user currently is performing, like the
user’s task knowledge and background.

Much research has been done in the domain of task support systems, but because there are many isolated
research projects focusing on a specific task or topic (Sannes, 2011), it is hard to make generalizations or to
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identify one delimited research topic. Broadly discussed research topics are Decision Support Systems,
Adaptive Hypermedia and Adaptive Ubiquitous Systems, each having their own specific domain and way of
personalization.

Decision support systems:

Decision support systems are systems that help a user with making a decision in a complex, often professional
environment (Nurmi, et al., 2007). An example is a system used at a pharmacy for automatically checking valid
combinations of medicine. The system can be used to help the pharmacist in prescribing the right
combinations and to give information for making a decision when a problem occurs.

e The purpose of the user model in decision support systems is to present the user with the right and
appropriate information, giving different feedback or applying different decision steps according to
the characteristics of the user.

e The data that is used is often associated with the user’s task and background knowledge.

e The adaptation takes place by adapting the amount and the content of the feedback provided by the
system.

Decision support systems are traditionally rule - or logic based systems, in which all the relevant information is
represented in a knowledge base. This means that the content of the user model itself is also highly dependent
on the way the rules and knowledge are represented.

Adaptive Hypermedia

Strictly speaking, a hypermedia system is a system that allows users to freely scan an information network,
structured by means of nodes and links, in order to retrieve items of information (Nurmi, et al., 2007; Deepa,
et al,, 2012). An example of such an application is an Internet website.

e The purpose of the user model is to make the interface and structure of the system dynamic. This
enables the application to adapt to the user and to make it easier for the user to search for and
retrieve relevant information.

e The data that is used in the user model is related to the user’s abilities, knowledge, and goals in the
application.

e The adaptation takes place by adjusting the structure and the presentation style to the assumed
needs of the user. For example, by enhancing web search: promoting pages that might better
correspond to the user’s characteristics, or by providing navigation support, through highlighting
certain elements of a page (Razmerita, et al., 2012).

Adaptive ubiquitous systems

The research field of ubiquitous systems is concerned with information processing applications integrated into
everyday objects and activities (Nurmi, et al., 2007). An example is the smart energy meter, recording the
energy usage in a household through small devices distributed in a house, helping the user with regulating this
energy usage (Hargreaves, et al., 2010).

e The main purpose of the user model is to enhance the system, facilitate the user’s preferences and
thus make the overall use easier.

e Because the personalization can take place in every situation and location, the data is focused on the
user state and context. For example to enable the contextualization to a current environmental
change.

e The adaptation takes place by changing the behavior of, and the feedback given by the whole system.

In general, user modeling in ubiquitous systems builds on requirements and functionalities already seen in
other supportive systems, but because the personalization can take place in every situation and location, it



does introduce some interesting (technical) challenges (Specht, et al., 2006). In the network of small
applications surrounding the user, an open client-server network is often used. Traditionally, all data from the
user is centralized on the server side for analyzing and making a decision on adaptation, but because of the
distributed nature of these systems, the isolated parts also need a local presentation of the user and a certain
degree of autonomy to make adaptations on their own. This makes performing the user model purposes with
minimal means - both computationally and considering memory, important. On a higher, centralized and more
abstract level, user personalization also takes place. Balancing out this collaboration is an important and
delicate matter in ubiquitous systems.

2.2.2 User models for providing a personal experience

User models for providing the user with a personal experience have the goal to enhance the user experience
while using the system. This kind of user modeling is especially focused on more commercial fields, such as e-
commerce, marketing and computer games, and became popular with the rise of the Internet.

The data that is used from the user in this main domain is mostly focused on the information that defines
the user, such as the user’s preferences and interests. Because this information is often sensitive, privacy is a
big issue (Toch, et al., 2012). While in other domains the privacy of the user data is also important, in this
domain it is even a bigger point of discussion because the incentive of the application developers is often
contradictive to the incentive of the actual user, considering gaining and sharing the user’s personal
information. For example, user profiles are often shared between different components of the same
application, or even with other applications (Brun, et al., 2010; Karam, et al., 2012), which introduces
additional weaknesses and possible unwanted data sharing. Making sure personal information is not
accessible to all people, in addition to defining strict privacy policies, is thus essential in these user models.

Popular research topics in this domain are Recommender Systems and User Adaptive Computer Games.

Recommender Systems

Recommender systems are concerned with presenting the user with relevant information and
recommendations. They are mostly used on the Internet, for example on websites such as Facebook, to
provide the user with personalized news, targeted advertisements and possible new friends (Brun, et al.,
2010).

e The purpose of the user model is to provide the system with information that is assumed to be
relevant for the user.

e The data that is recorded for this purpose is associated with the preferences of the user to certain
objects, like products, music or people. To gain a classification of these objects, the interaction history
of the user is recorded, or the user is explicitly asked to rate certain objects.

e The content of the system is eventually adapted by presenting the newly inferred objects. These
objects can be inferred by looking at the properties of the objects in the user profile, or by looking at
the objects in other user profiles that are similar to the user (Kobsa, 2001; Kay, et al., 2012). Because
of the predominantly commercial goal of these systems, the adaptations often take place in a very
intrusive way, to make sure the user notices the change.

Most recommender systems are based on the Internet, which means that some typical technical difficulties
are associated with these kinds of user models. First, the user profile is often only saved during the user’s visit,
which means that fast and efficient adaption is important. Recommender systems often become more precise
when the user spends more time with the system. Second, the system’s structure is often split up in a client
and in a server side, where the client side solely gathers user information and sends it to the server, where the
actual computation takes place.



User Adaptive Computer Games

User Adaptive computer games are games that focus on increasing the perceived value by providing a strongly
individualized experience (Brisson, 2012). An example is a first-person shooter that adapts the behavior of the
opponents according to the shooting accuracy of the player.

e The main purpose of the user model is to identify or classify the user, so the appropriate adaptation in
the computer game can take place.

e The data that is used addresses the preferences and progress of the user, such as the user’s current
difficulty level or even the employed strategy. This data is often gained through the interactions of
the user with the game, and therefor first needs to be interpreted and formalized before it can be
used to infer conclusions on a higher level.

e The adaptation that takes place in the game concerns changing the content and behavior of the
game, such as the game difficulty, the behavior of non-player characters or even the background
music (Bakkes, et al., 2012)

Due to the focus on the user, user adaptive computer games have relatively a lot of processing power available
for personalization. This makes the user adaptive computer games domain a very interesting research domain.
Large amounts of (raw) data can be recorded and interpreted, resulting in the possibility for complex
adaptation and a large range of personalization possibilities.

2.2.3 User models for educational purposes

Educational systems are systems developed with a teaching purpose. They are broadly applied in e-learning,
where electronic media and ICT technologies are used for education. However, in most educational systems,
user modeling and adaptation plays a minor role. Content is simply presented, and only simple things such as
the student’s progress in the course are registered. By adding (more) personalization to these applications, the
learning value can greatly increase, ensuring that every learner achieves and reaches the highest standards
possible (Heller, et al., 2006). Also the experience of the teacher or supervisor can be enhanced through
personalization, for example through inferring and employing the preferred teaching style. However, here we
consider especially the student as the user to which the system will be personalized.

The data in user models for educational purposes generally concerns the student’s current knowledge state
and other individual characteristics, such as the student’s learning style and preferences. The data in the user
profile should also be accessible for humans, such as the student’s supervisor. Therefore, it is preferable that
the information saved in the user profile is interpretable by humans. When looking at the time of adaptation in
educational systems, we can make a clear distinction between adaptation while the student is performing an
exercise, which we will refer to as online adaptation, and adaptation that takes place afterwards, which we will
refer to as offline adaptation.

The most important research domains that do use extensive user modeling constructions are Intelligent
Tutoring Systems and Adaptive Educational Games.

Intelligent Tutoring Systems

Intelligent Tutoring Systems (ITS) are systems that provide students automated step-by-step guidance as the
students perform training tasks and/or work on exercises. An ITS has the purpose to complement or even
replace the human teacher. An example is a system for teaching students how to program, with the ability to
automatically detect common mistakes (Elsom-Cook, 1993).

e The main purpose of the user model is to select educational activities and strategies, as well as to
deliver individual feedback that is most relevant to the user’s level of knowledge (Kobsa, 2001;
McTear, 1993).

e The user data that is recorded for this purpose is the student’s state, knowledge and level of
achievement. This information is especially observed through the actions and results of the student,



such as the answers the student gives. After observing this information, it is used to infer higher level
properties, such as the student’s learning style and other preferences.

e  Using this information, the learning content and behavior of the system towards the student is
adjusted, for example by presenting easier exercises or specific tips.

Traditionally, just like decision support systems, ITSs are knowledge based systems, using formalized domain
knowledge and rules to drive the user adaptation. So-called stereotypes are widely used in ITSs (Kay, 2000)
and represent a collection of default attributes that often co-occur in people or in a certain group of people.
The different stereotypes that have been developed differ in granularity of detail and complexity. The user
model can use these stereotypes to make a large number of plausible inferences on the basis of a substantially
smaller number of user observations. This means that in ITS, categorizing the user in a stereotype and
maintaining the consistency of the user data, are also important roles of the user model.

Adaptive Educational Games

Adaptive Educational Games (AEGs) are complex educational games that combine ideas from several research
areas, to enhance the student’s learning experience (Peeters, et al., 2012a). AEGs are especially based on
serious games: computer games with an educational purpose, where things are taught to students by using a
playful approach ( Korteling, et al., 2011; Johnson, et al., 2005). An example of an AEG is a training application
for fire fighters, letting the fire fighters train their skills and knowledge in a safe, virtual environment.

o The purpose of the user model in an AEG is to optimize the learning process and outcome.

e The user data is considered with the progress and knowledge of the student, but also with the
student’s mental and cognitive characteristics. To construct this high level student information, the
student’s behavior and performance in the application is tightly monitored. In some cases additional
physical data is gathered, like the student’s heartbeat and skin conductance.

e The gained information can be used to adapt the content, presentation, and system behavior to the
student’s need, for example, by adjusting the content, tone, or amount of presented feedback.

Just like in adaptive computer games, AEGs have a lot of processing power available for personalization,
making AEGs a complex and interesting domain for user modeling. In Chapter 6, we will further elaborate on
AEGs.

2.3 Methods for user modeling

In addition to the research that was done to develop user models suitable for the application domains
discussed above, researchers have also proposed more general design methods and frameworks to guide the
developer in the process of user modeling. These general methods are useful in research projects, where the
knowledge can be reused to tailor the user model to the system’s needs. Also in commercial applications,
these general methods have proven to be useful (Brun, et al., 2010), because they make it easier and more
feasible to implement personalization into a system.

In early work, the process of user modeling was mostly based on the intuition and experience of the
developer or researcher. As the user modeling research field evolved, there has been put much effort in
creating a general way for designing and constructing a user model, by basing decisions on more empirical
grounds and by defining methods applicable to the whole field (Kobsa, 2001; Durrani, 1997). Frameworks,
methodologies and architectures have been developed, defining strict steps, restrictions and choices on how
to design and construct a user model.

In the early days of user modeling the focus was put on developing one method applicable to the user
modeling field as a whole. However, as mentioned earlier, user modeling is a very cross-disciplinary research
topic. Therefore, throughout the decades, the user modeling research field has been influenced by the
important research topics and trends of their time. For instance, when ITS became a major topic in the early
nineties, user modeling methods were also mostly focused on the application of stereotypes, knowledge



bases, and logic to define a user model. With the rise of the Internet, the focus of the user modeling field
shifted to web oriented applications and all the specific problems that arise herewith. Due to this connection,
also the general user modeling methods that were developed, were focused on the popular research domains
of their time (Kay, et al., 2012). The general ideas behind user modeling did not really change, but the specific
filling-in of the user model, such as which technology to apply, did change.

Because of this ongoing development of user modeling as a whole, most researchers eventually agreed
that one method to solve all problems is not possible (McTear, 1993; Kobsa, 2001). Instead, a wide variety of
generic user modeling methods has been developed (Fischer, 2001); each of which supports only a few of the
very different manifestations of personalization. In the rest of this section, the general user modeling
architecture and the most interesting general and domain specific methods will be shortly discussed.

2.3.1 General architecture

The general architecture of a user model especially captures the software development requirements
identified in Section 2.1. Figure 2.1 shows this general architecture. The user model is defined as an isolated
component of the system, performing tasks when indicated by the other system components (McTear, 1993).
Within the whole system, the user model is often seen as a black box, meaning that only the input and the
output should correspond to the requirements of the other components. The dialogue manager or graphical
user interface is responsible for the interactions with the user, and fuels the user model with data about this
user. The user modeling component itself consists of a management component, a maintenance component,
and a user profile. The management component is responsible for the construction of the user model, utilizing
the user information and supplying the other components of the system with relevant information. The
maintenance component is responsible for processing and updating the user information in the model. The
user profile is a database that contains the actual user data. Instead of a single user profile, the user modeling
component can also contain a database of user profiles. In this general architecture, many details should be
filled in by the developer, such as how to acquire and how to represent the necessary user information.

User modeling component

Diglogue ” 3 User model —> Other
Manager management system
components
i $ l A
User
User profile Maintenance

Figure 2.1: The general user model architecture, adapted from (McTear, 1993)

For specific domains such as ITS (Yang, 2010; Nwana, 1990), hypermedia systems (Deepa, et al., 2012), web-
based systems (Razmerita, et al., 2003), and ubiquitous systems (Specht, et al., 2006), more precise user model
architectures have been developed, all originating from this abstract model.

2.3.2 General methods

Throughout the literature multiple methodologies for user modeling have been constructed. An early, but
interesting user modeling methodology was constructed by (McTear, 1993). McTear identifies several
problems that need to be solved for creating a user model:

e Select the user characteristics you want to use in your model
e Determine the way in which these characteristics can be represented and measured or observed
e Determine the way in which this user information can be maintained



e Determine the way in which the personalization circle works, considering the needed functionalities
and desired inputs and outputs

e Integrate the user model with the rest of the system components

e Determine how to validate the user model

In his general summary of user modeling, McTear also identifies several important choices one has to make.
The user model is either:

e individual (made for an individual user) or canonical (made for a class of users)

e static (not possible to alter) or dynamic (altered during the course of interaction)

e short term (discarded at the end of a session) or long term (maintained for future usage)
o explicit (user data is gained directly) or implicit (user data is gained indirectly)

These terms can be used to classify the user model and thus simplified the user modeling process. However,
when looking at all the different properties of user models we saw in Section 2.2, this classification hardly
captures all the different possible aspects. Additionally, the user modeling steps McTear identifies are broad,
yet not specific enough to appropriately guide the developer.

Another interesting and more abstract general methodology is composed by (Nurmi, et al., 2007). In this
methodology, the whole process from constructing, to evaluating the user model is captured.

1) Choose the domain and perform an analysis
. Define the requirements: analyze the technical requirements, the tasks that need to be performed,
and how a user would perform these
Il Preliminary Evaluation: verify that the system performs the tasks that it is supposed to do
2) Create the user model:
. Identify the users
. Collect data about the users, which can be done:
e Manually, by observing and building a cognitive model of the users
e Automated, by using machine learning techniques to learn the model
3) Apply the model and perform adaptation
4) Evaluate the user model
. Expert evaluation, by performing a usability and performance analysis
. Manual evaluation, by letting the users give feedback

This methodology might be all-comprehending, but is also far too general for direct application. Again,
compared to the overview of user modeling given in Section 2.2, many general user modeling steps and
problems are left undefined. It is useful as a coordinating plan, but not for dealing with the specific subtleties
of individual user models.

2.3.3 Domain specific methods

In addition to the general methods for creating user models, there has been research in each individual
research domain for creating a more concrete method. For instance in ITS (Elsom-Cook, 1993) and web-based
systems (Razmerita, 2011). Each method and framework attempts to catch the data flow, choices and
problems an application in the domain should take into account.

An interesting user modeling survey has been performed by (Brun, et al., 2010), looking closely at web
based systems and especially to recommender systems. In their pursuit to classify and compare different user
models in this domain, the authors created a user modeling topic map. Figure 2.2 shows an overview of the
topic map. A distinction is made between four different components of user modeling:

1. Input, representing the characteristics of the data used to build the user model

10



2. Accessibility, representing the way the model can be interpreted and what it represents
3. Type, representing the user model features that are dependent of the whole system
4. Approach, the general characteristics that should be chosen when building a model

Although the emphasis lies on recommender systems, there are many terms that are applicable to the user
modeling area as a whole. Unfortunately, no specific instructions or approaches are introduced to use the
topic map in the process of user modeling itself, which in the article is discussed as future work.
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Figure 2.2: A topic map for user modeling in recommender systems, based on (Brun, et al., 2010)

Another, very specific user modeling framework is created by (Sannes, 2011). Focus is put on user models for
performing task support. An overview of the framework can be found in Figure 2.3, and consists of the
following components:

1. System:the whole application, which interacts with both the user model and the user;
Models: pieces of logic that convert data into a higher level of abstraction, such as task models and
cognitive models;

3. Current User Context: registers the raw data about the current situation of the user;

4. Current System Context: registers the raw data about the current situation of the system;

5. Current User State: the current information available about the user, such as the emotions the user is
feeling or the user’s stress level;

6. History: a log of all occurred user states;

7. User Fact Base: all knowledge about the user that holds for a longer period of time, such as the user’s
preferences, skills, and knowledge;

8. Query Engine: the gateway of all the user knowledge stored in the framework, for both the system as the
user model itself;

9. User State Determiner: responsible for determining the current state of the user at the current point in
time. To infer this state, models (2), the previous user information (6, 7), and the current user information
(5) is requested through the query engine;
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10. Learning Engine: responsible for learning facts about the user, over a longer period of time
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Figure 2.3: A user modeling framework for task support systems, based on (Sannes, 2011)

This very elaborate architecture for user modeling captures many interesting concepts and relations between
these concepts. However, when looking at the user modeling domain in general, many components are not
necessary or can be depicted in a less complex manner. Additionally, hardly any information is provided on
how to design a user model with this framework, making the framework not directly applicable.

2.4 Conclusion

In this chapter, a review has been given of the user modeling field. The general technical requirements have
been defined, an overview of the current important user modeling application domains has been given and
multiple methods for user modeling have been discussed.

User modeling is not a straightforward process. Each application domain has its specific requirements and
demands on the user model, especially differing in the general task it should perform, the kind of data that is
used, and the way how the adaptation takes place. When looking at the technical requirements of a user
model, ideally it should be as modular as possible, enabling decomposition, modifiability and reusability.
Depending on the actual user modeling domain, it is not always possible to obtain all the desired technical
features in the resulting model. Multiple methodologies, frameworks and architectures have been developed
to help the developer with the process of user modeling. There are a few general user modeling methods for
capturing user modeling as a whole, and a multitude of user modeling methods focused on a specific
application domain or problem. However, the high level methods are often too unspecific to capture many of
the important user modeling aspects, while the domain specific methods are often too detailed and narrow,
which makes it hard to apply them for more general user modeling problems.

Concluding, according to this review there is no general method to bridge the gap between the domain
specific methods and the (too) general methods. Therefore, in the next chapter, the findings presented in this
chapter will be used to construct a more abstract overview of user modeling, resulting in a general user
modeling methodology.
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Chapter 3

General User Modeling Methodology

When adding personalization to a system with the use of a user model, many general and application domain
specific problems must be solved. As was concluded in Chapter 2, a multitude of methods have been proposed
to help developers with the process of user modeling, but the major flaw of these methods is that they are
either far too broad, and therefore too unspecific, or far too (domain) specific, and therefore hard to apply to
more general problems. Additionally, existing methods are often dependent on the major research topics of
their time, which makes it hard to use them for present-day problems, let alone future problems.

To bridge the gap between unspecific and specific user modeling methods, this chapter proposes a general
user modeling methodology. This methodology consists of three phases: the conceptual, functional and
technical design phase. The conceptual design is concerned with the general purpose and behavior of the user
model, whereas the technical design is concerned with the actual implementation. In general, the more
analytical, broad, and unspecific user modeling methods are focused on the conceptual design, whereas the
domain specific methods are focused on the technical design phase. The functional design phase that is
introduced in between is concerned with explicating the intermediate steps between the high-level conceptual
design and the low-level technical design. The resulting method can be used to couple the user modeling
problems that need to be solved, to the possible technical solutions. To ensure that this methodology is also
useable for future research domains, the aim is not to solve every possible generic and domain-specific
problem that can arise, but to formalize the general questions and an extendible list of possible answers that
should lead to a correct and optimal user model.

To construct the different phases of the methodology, the information discussed in Chapter 2 will be used.
The conceptual design will be constructed according to the existing general user modeling literature, as
discussed in Section 2.3. However, in order to construct the functional and technical design, first the
underlying user modeling properties making up these design phases must be further refined and discussed.
Therefore, in Section 3.1, the user modeling application domain exposition as presented in Section 2.2 will be
used to abstract the general functional components, functional properties and technical properties applicable
to user modeling, resulting in the possible requirements and options for implementing a user model. In Section
3.2, the complete general user modeling methodology will be presented, in addition to guidelines for using the
methodology.

3.1 General user modeling properties

Before the methodology can be constructed, first the user modeling domain must be depicted in a more
abstract and general way. When developing a user model, the operations the user model has to perform and
their associated properties are mostly determined by the application domain itself. However, when taking a
closer look at the overview of the user modeling application domains as set out in Section 2.2, one can
conclude that there are also a multitude of more abstract and independent overlapping operations and
properties. As discussed in Section 2.3.1, one of the strict distinctions that can be made is between the data
used in the user model to actually apply the personalization (i.e. the user profile), and the operations that are
necessary to perform the personalization of the system. This distinction will be used throughout this chapter
to structure the discussion.

In this section three general user model elements are identified and discussed. Subsection 3.1.1 describes
the general personalization cycle that defines the functional components that make up the user model.
Subsection 3.1.2 describes the abstract functional properties that can be related to the functional
components. These properties are concerned with the desired behavior of the user model and further refine
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the problems that have to be addressed and solved. Subsection3.1. 3 describes the technical properties,
concerned with the actual options that are available for implementing the desired behavior in the user model.
The formalization of these functional components and properties is especially influenced by the topic map
constructed by (Brun, et al., 2010), previously described in Section 2.3.3. To keep track of the different
functional and technical properties and their possible values, an overview can be found in Appendix A.

3.11 Personalization Cycle

When looking at the operations that are necessary in the automated process of personalization, an adaptation
cycle can be identified (Sannes, 2011; Elsom-Cook, 1993). The three steps of this cycle are: 1) observe the user
2) predict the user 3) adapt the system. A similar cycle can be distinguished in the broader domain of adaptive
systems (Feigh, et al., 2012). The main difference is that in adaptive systems, observations and adaptations
that do not affect the user are also taken into account. A visual overview of the personalization cycle can be
found in Figure 3.1.

1. Observe the user

3. Adapt the system 2. Predict the user

Figure 3.1: User model personalization cycle

This cycle will be used in the next section to discuss the necessary general functional components and their
associated properties related to user modeling. The different steps in the cycle are:

1. Observing the user: observations of the user are the core of the personalization provided by the user
model. This step is concerned with obtaining data about the user for constructing the user profile and for
keeping it up to date. Observations may also be required that do not directly include the user, but address
the context of the user at that time.

2. Predicting the user: once the user has been observed, the data can be used to construct assumptions
about the user. These assumptions can be very broad; they might involve the identification of products in
a web shop the user might like, but they can also say something about the current process of the user, or
about the expected responses the user will exhibit when an adaptation is made. Due to the assumptive
nature of these pieces of information, we call this step the prediction of the user. The prediction step can
be divided into two interrelated steps: processing user data and reasoning with user data.

i Processing user data: it is not self-evident that the (raw) data that results from observing the
user can be used immediately. In some cases, the data might first need to be processed before it
can be used by the reasoning component. This processing step consists of two main sub steps:
amending the incoming user data and maintaining the existing user data. Amending the incoming
user data refers to the formalization and normalization of the incoming user data. Maintaining
the existing user data refers to making sure that the user profile stays consistent and up to date
(Fischer, 2001; Kobsa, 2001).

ii. Reasoning with user data: after the data of the user has been processed, it is ready to be used
for the creation of assumptions about the user. Whereas the processing step is more concerned
with straightforward actions and procedures, the reasoning step is concerned with constructing
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completely new information. Different kinds of reasoning techniques can be used to construct
this new information.

An example of the operations that can take place in the prediction step can be found in an
application that monitors the user’s heart rate. The raw data obtained from the heartbeat sensor first
needs to be corrected to delete possible noise (amend by normalize). Next, the average is calculated,
and the old value in the user profile is replaced by the new value (maintain). Finally, this value is
extrapolated by the reasoning component to infer that the stress level of the user exceeds the upper
limit (reason). Hence, it is decided that an adaptation is required.

3. Adapting the system: finally, the system is adapted to the assumed needs of the user. This step entails the
presentation of the adaptation to the user and communicating this adaptation to the rest of the system. In
most systems, there is only one way to adapt the system. For example in recommender systems, where
only the content of the recommended objects can be changed. In more complex systems such as adaptive
educational games, the adaptation can take place in different ways, for example by changing the overall
difficulty or changing the provided feedback. This means that in the prediction step, also what to adapt
should be determined.

The specific interpretation of each step in the personalization cycle depends on the application domain and
the employed technology. Additionally, the different steps in the personalization cycle can overlap with, and
ensue from, each other. An example of this cycle can be found in a computer game that adapts its difficulty
level to the shooting accuracy of the user:

1. The user’s behavior and results are observed, like the amount of shots fired and enemies hit
According to the user data, the shooting accuracy of the user is calculated and used to infer the
proper difficulty level of the game

3. The difficulty level of the enemies is changed according to the newly inferred difficulty level

An example of this cycle in a less complicated system is a recommender system that recommends books to a
user in a web shop:

1. The behavior of the user is observed, like the books the user views and/or buys
The observations are used to infer which other books the user might like
3. The application is adapted, by showing the inferred books to the user

3.1.2 Functional user modeling properties

As can be inferred from the personalization cycle, a user model consists of several functional components,
where each component is responsible for supporting a step in the cycle, i.e. observe the user, predict the
user’s behavior, and adapt the system to the user’s (future) needs. In this section these functional components
and their associated concepts and properties are discussed. Additionally, the general functional properties
related to the user model as a whole and the user profile are discussed.

Observing the user

The first step involves the reception of new information, i.e. observations about the user. When looking at the
functional component (or functionality) that is responsible for observing the user, there are three properties
that can be distinguished: the type of observation, the level of intrusiveness of the observation, and the
reliability of the resulting data.

Type of observation. Most observations done in a user model are directly related to the user. Often, there
is additional information needed to further interpret the observations related to the user. For instance, the
state of the environment. In addition to user-based observations, there exist system-based, environment-
based, task-based, and spatiotemporal observations (Feigh, et al., 2012).
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Intrusiveness. The intrusiveness of the observation is concerned with the amount of intrusion the
observation inflicts upon the user. For instance, in educational applications the intrusiveness should often
be very low, whereas in applications such as recommender systems it is the other way around.

Reliability. The reliability of the resulting data is concerned with the importance of the truthfulness of the
observed data.

Predict the user

The prediction step of the personalization cycle induces the need for a functional component that contains
one or more processing and reasoning functionalities that are able to predict the desired information from the
user. To process and predict this information, a conceptual model from the human factors literature is
normally used, for instance, to interpret the user behavior. Additionally, the predicted data can be versatile,
which means that the functional component for predicting the user is often the most complex and important
part of the user model.

The necessity of additional processing functionalities for amending and maintaining the data depends on
the reasoning functionality. There are many ways in which the reasoning functionality can be filled in.
Independent of the method that is used, there are three important functional properties that can be
abstracted for this step: granularity, accuracy, and trigger type.

Granularity. Granularity refers to the level of detail of the user model. The data in the user model could be
optimized for a single user or it could be defined for a (sub) group of people, such as students with a
certain knowledge level.

Accuracy. Another property that can be distinguished is the amount of data required before the output
produced by the reasoning functionality becomes accurate.

Trigger type. The most important type of trigger is based on the user data itself, which can be obtained
either by observing the user, or by inspecting the data already available in the user model. Besides the user
data, the different types of observations done in the observation step, such as changes in the environment,
can also trigger the reasoning functionality to adapt the system.

Adapt the system to the user’s need

The functional component that is responsible for adapting the system to the user’s needs is concerned with
the way how to use and present the newly obtained assumptions about the user in the system. There are two
properties associated with this functionality: the form and the intrusiveness of the adaptation.

Form of adaptation. The resulting adaptation can be done in four general ways (Razmerita, 2009; Feigh, et
al., 2012). Multiple types of adaptations can take place in the same system:

1. Adjust the application content: dynamically tailor the presented information to the user, such as in
recommender systems;

2. Adjust the application structure: change the information structure to the user. For example through
highlighting, hiding, or sorting certain pieces of information. Especially adaptive hypermedia systems
use this type of adaptation;

3. Adjust the data presentation: change the way in which information is presented to the user. For
instance, through adjusting the layouts, skins, and fonts of an interface. The information modality can
also be changed, which is concerned with changing the information medium, while still expressing the
same content. This type of adaptation is often used in task support systems;

4. Adjust the application configuration: change the behavior of the system to the needs of the user.
Especially in complex systems like Adaptive Computer Games, these adaptations can be used to adapt
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the non-visible things of the systems, such as the general difficulty. Taking over tasks of the user also
belongs to this kind of adaptation.

Intrusiveness. The intrusiveness of the adaptation is concerned with the amount of intrusion the
adaptation of the system inflicts upon the user.

Overall user model functional properties
When considering the user model as a whole, there are two general properties that can be distinguished that
are independent of the different functional components: the operability and the incentive of the user model.

Operability. The user model can be used online, during the interactions the user performs while using the
system, or offline, where the gathered user information is used afterwards to adjust the system. A
combination of online and offline is also an option.

Incentive. The initiative of the personalization cycle can be passive, where the user model only performs
adaptations on designated moments or when other components of the system ask for it. It can also be
done in an active way, which means that the user model adapts to the user according to its own
instigation. Again, a distinction can be made between two types: reactive and proactive behavior. Reactive
behavior means that the user model initiates adaptation when certain observations are made. Proactive
behavior means that the user model actively searches for the need of adaptation whenever it feels
necessary.

User profile functional properties

Both the user data and the functional components define the user model, therefore the general properties
associated with the two components are tightly intertwined. Most of the general properties that define the
user data can be inferred from the different functional components, such as the data’s reliability. When
looking at the general properties about the data in the user profile, four additional properties can be
abstracted: the user data meaning, privacy, user data readability, and user profile persistence.

Expressiveness. Each data entry in the user profile represents a certain user characteristic, depending on
the purpose of the user model. The data can be behavior related, like the actions performed in the
interface, task related, like the competence level concerning a certain skill, or it can be related to giving the
user a personalized experience, like the user’s previously viewed products. The term expressiveness (Webb,
et al., 2001) expresses the requirement of a user model to display and save all these different types and
kinds of user data.

Privacy. When considering whether or not to save data about a user, privacy always plays an important
role. For instance, in web-based applications extra emphasis is placed on ensuring that the information is
kept private, whereas in educational systems, the user data should be public, or partly public in order for
people such as the tutor to see it.

User data readability. In some applications, it is important that the data is readable by a human, possibly
after some data processing. When the data is readable, it means that the human can read and understand
the data; he can know what the characteristics of the user are. When the data is not readable, a human
cannot interpret the model and cannot deduce the characteristics of the user. For example, in educational
applications, the data about the student’s progression with the learning material should be readable for
the human tutor, as this enables the tutor to anticipate the students’ competences beyond the context of
the application. In other applications, such as recommender systems, the readability of the user data is less
important, because the data is not directly used by a human being.
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User profile persistence. The total lifespan of the user model as a whole. User models on the Internet
often last as long as the user is visiting the website, whereas it is necessary in other domains such as
educational application to save the user profile as long as the user uses the application.

3.1.3 Technical user modeling properties

Whereas the functional properties define the functional components and their possible desired properties, the
technical properties are concerned with the actual options that are available for implementing the user model.
As was the case for the functional properties, the technical possibilities of implementing a user model can also
be presented in a more abstract way. This section provides a concise classification of how the different
functional components can be technically realized.

Observing the user

As inferred from the general personalization cycle, there is a need for a functional component that can
observe the user and takes into account the intrusiveness, reliability, and type of observation. When
implementing this functional component, the literature on user modeling distinguishes several major technical
solutions. Each technical solution can be categorized according to the origin of the data - the data is either
obtained directly or indirectly from the user, and according to the data format - the obtained data is either raw
or (partially) interpreted. The three major technical solutions for obtaining user information are:

1. Through user interactions with the system. For instance, by monitoring the amount of correct
answers in an educational system. In this method, data is obtained indirectly from the user. The
resulting data is raw, thus normally needs additional interpretation. The observed interactions do
provide an objective assessment of the user’s actions.

2. Through direct input from the user. For example, by the product ratings the user gives in a
recommender system. This method provides a direct way of obtaining user information and results in
information that is already (partially) interpreted.

3. Through the use of (external) sensors. For example by monitoring the user’s heartbeat. These
methods especially provide an assessment of the user’s physical state. This way of obtaining user data
is commonly known as psychophysiological measurements (Grootjen, et al., 2006). Again, the data is
obtained in a very indirect way and the resulting data is raw, thus often needs additional
interpretation.

Predicting the user

The functional component for predicting the user is responsible for inferring a wide range of desired
information. It consists of functionalities that are able to process the user data and to reason about this user
data. Moreover, it takes into account the granularity and accuracy of the prediction model, and the type of
trigger to use in the prediction model. When implementing this functional component, the most important
and complex task is to implement the functionalities capable of reasoning with the user data. Within the user
modeling domain, three main approaches can be distinguished:

1. The rule-based approach. In this approach, the reasoning functionality consists of a knowledge base
of predefined facts and inference rules. The inference rules are used to deduce new facts and are
triggered by the observed and interpreted user data (Kobsa, 2001). Common techniques using a rule-
based approach for reasoning are logic-based systems, stereotypes and decision trees (Fischer, 2001;
Solinger, et al., 2005). The rules and initial knowledge are explicitly predefined by the developers of
the user model or by domain experts. Due to the declarative and static nature of using predefined
rules to predict the user, rule-based systems are often not very dynamic and thus restricted in
complex and uncertain environments. This approach is commonly used in knowledge-based systems
such as intelligent tutoring systems and decision support systems.

2. The computational approach. With this approach, according to the user data obtained from the
individual user or from a community of (similar) users, correlations, patterns, and connections can be
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discovered and a model for prediction can be trained. For instance, through analyzing the behavior of
costumers in a web shop, the correlation between products can be discovered. Within this approach,
techniques are used from the machine learning and data mining (statistical methods) domain, such as
(un)supervised learning, graphical models and Bayesian networks (Webb, et al., 2001; Solinger, et al.,
2005). The resulting prediction functionalities are especially useful for handling uncertain or
incomplete user information. This approach is widely used in recommender systems and adaptive
hypermedia systems.

3. The (cognitive) model approach. This approach uses (cognitive) models to understand and predict the
user’s behavior, such as the user’s goals. These models are based on different theories and methods
from psychology and cognitive science, such as the Beliefs-Desires-Intentions (BDI) paradigm and the
SOAR architecture (Heuvelink, 2009). This approach is used in adaptive computer games and adaptive
educational games.

The different approaches can also be used to complement and strengthen each other.

Adapt the system to the user’s need

The last functional component is responsible for adapting the system while taking into account the form and
intrusiveness of the adaptation. When multiple ways of adaptation are possible, the best way of adaptation is
determined by the prediction functionality. The implementation of the components that can be adapted is not
a part of the design process of the user model itself: choices regarding the implementation of these
components depend on the structure of the system as a whole. As such, this functional component of the user
model (adapting the system) is only responsible for informing the other components to adapt in the way that
was inferred during the prediction step.

Overall user model technical properties

The technical properties of the overall user model mainly depend on the technical properties of the system as
a whole. The properties that can be distinguished are: the user model location and the available computational
power.

Location. The architecture of the complete system determines the location of the user model components.
The common approach is to centralize the user model, which permits multiple uses of the user model by
different components in the system. Another possibility is to use a distributed approach, in which the
components are spread throughout the application. In this case, the functionalities can be placed at the
client — or at the server-side. When looking at network based systems such as web applications and
adaptive ubiquitous systems, the user model is often distributed.

Computational power. The overall system also determines the amount of available computational power
for the user model.

User profile technical properties

The technical properties that can be associated with the data that is used in the user model (the user profile)
are mostly determined by the implementation of the functional components responsible for observing and
predicting the user. The additional properties that are relevant for the user model as a whole are: the data
type and the data storage location.

Data type. The data itself is described in very concrete data types and data structures, such as integers,
Booleans, lists, or strings. Each data entry can also be categorized according to its persistence, which can
range between static, such as the language of the user, and temporal, like the user’s average heartbeat.

Storage location. Additionally, just like the location of the user model functionalities in the complete
system, also the storage location of the user data can be distinguished. Again, either a central spot is used
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to keep the database, or multiple spots are used to keep the different parts of the user database (Karam, et
al., 2012). When considering a distributed approach, a distinction can be made between storing user
information at the client or at the server side of an application.

3.2 General User Modeling Methodology

In this section, the general user modeling methodology is proposed. This methodology is meant to bridge the
gap between broad conceptual and domain-specific user modeling methods. It is especially focused on the
different questions that need to be answered, in order to map the general ideas behind personalization
(Section 2.3), to the necessary functional components and their desired properties (Section 3.1.2), and to the
technical possibilities for implementing a user model (Section 3.1.3). Combined, they should guide the
development of a correct and effective user model. To keep track of the definitions defined in the previous
section and reused in this section, a summary of the properties associated with each functional component
can be found in Appendix A.

Before the methodology can be applied, certain information about the system needs to be available. When
developing a user model, the most important things to look into are the application domain and, if applicable,
the existing system. Therefore, a domain and task analysis is essential before employing the user modeling
methodology (Kobsa, 2001). The design process of the user model itself is split up into three main phases: the
conceptual, the functional and the technical design phase. These different main steps of the methodology are
visualized in Figure 3.2. Each phase builds upon the choices made in the previous phase, and adds more details
and constraints to the resulting user model. To illustrate each phase, an example about an educational
application for teaching mathematics is used at the end of each section. After describing and explaining the
methodology, several guidelines are given to employ the methodology.

1. Conceptual Design Phase 2. Functional Design Phase 3. Technical Design Phase

1. Why to personalize the system?
2. When to adapt the system?
3. What to adapt in the system?

Define the content and properties of the:
1. main user model fundional components
2. user model in general

3. user profile

Implement the content and properties of the:
1. main user model fundional components
2. user model in general

3. user profile
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Figure 3.2: visualization of the general user modeling methodology

3.2.1 Conceptual Design

Any user model requires a conceptual design that captures the purpose and requirements of the desired user
model, independent of the implementation concerns. In this phase the general questions are asked that need

to be answered when adding personalization to an application. The three main questions are:

1. Why will there be adaptations? This question is concerned with the reason of adding personalization
to the application. What is the overall goal of the application, and what is the utility and reason of

adding personalization to the application?

2.  When will the system be adapted? In order to determine when to adapt, the developer should look at
the conditions for adaptation, meaning the abstract observations that are necessary to trigger this
adaptation. For instance, certain behavior displayed by the user, or a predefined time interval

3.  What will be adapted? This step is concerned with the concrete application specific components that
should be changed, such as the content or the configuration of the application
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These different concepts are related to problems in the Human-Computer Interaction domain: you want to
adapt the system to the user, but the question remains how “to say the ‘right’ thing at the ‘right’ time in the
‘right’ way“ (Fischer, 2001). Depending on the desired system, a theory or method from the human factors
literature is often used to make sure that the adaptation that should take place makes sense, and thus is
effective. Most of the information necessary for these steps should already have been formalized through the
prior task and domain analysis. Often, it is sensible to define these concepts consecutively. Determining why to
adapt in the application is the main incentive to the answer of the other two questions. When you know when
you want to adapt, you will have to find out what to adapt to achieve the personalization goal.

Example: An educational application in mathematics
When looking at the example about an educational system in mathematics, the steps of the methodology can
be filled in as follows:

1. Why will there be adaptation? The overall goal of the system is to efficiently teach a student mathematics.
We want to personalize the application to make the learning more challenging and dynamic.

2. When will the system be adapted? The application should adapt when it detects that the student’s
competence level improved or that the student is having difficulties with the current level. The general
trigger for this adaptation is the user’s performance, expressed in the amount of mistakes.

3.  What will be adapted? The application should adapt itself to the competence level of the student, thus
change the difficulty level of the exercises that are presented to the student.

3.2.2 Functional Design

In the functional design, the conceptual definitions of why, when and what to adapt are used to fill in the
details and desired properties of the three main functional components, the overall behavior of the user
model, and the user profile. In this way, the ideas and the purpose behind the user model are made more
concrete.

Main user model functional components

The three main functional components are responsible for: observing the user, predicting the user, and
adapting the system. There is a direct mapping between these functional components and the answers why,
when and what to adapt the system. However, a developer should take into account that filling in the details
of these components is a flexible process, in which the different questions and components influence each
other. The mapping can be done as follows:

1. Predicting the user. The question why to adapt the system results in the necessity and content of the
functional component responsible for predicting the user. Personalization should result in the
improvement of the system, and to adapt the system in the right way, the user should be correctly
predicted. The desired properties that can be used to further refine this component are the
granularity of the user model, the accuracy and the type of trigger that should be used.

2. Observing the user. The question when to adapt the system determines the content of the functional
component responsible for observing the user. Depending on the identified general triggers, the type
of observation can be determined. Additionally, it is important to determine to which extent the
observations should be intrusive and how important the reliability of the resulting data is.

3. Adapting the system. The question what to adapt in the system determines the content of the
functional component responsible for adapting the system. Within this functionality, the intrusiveness
and the type of adaptation should be determined.

For each functional component, it might be necessary to define the sub-operations that lead to the goal of the
component.
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User model in general

Apart from the content and properties of the general functional components, the properties of the overall user
model also need further refinement. The ideas behind when to adapt result in the need to determine the
incentive and operability of the user model as a whole. With the definition of the incentive, operability, and
the necessary functional components, a high-level user model deliberation cycle can be defined that serves as
a blue print for the user model.

User profile

Finally, the user profile can be further defined by looking at the general purpose of the system and the user
model. Herein, the readability of the data in the user profile, the persistence of the user profile, and the level
of privacy of the user profile should be further refined.

Example: An educational application in mathematics
When looking again at the general example, the following content and properties can be filled in:

1. The resulting functional components and their properties:

1.1. Predicting the user: considering granularity, the application is applicable to all students using the
application and will not be optimized for the single user. The prediction should be as accurate as
possible right away. The trigger used is solely user-based.

1.2. Observing the user: in order for the student not to lose focus, the observation of data should be non-
intrusive. The data obtained must also be as reliable as possible, due to the big influence of the
adaptation to the system. The observation that is done, is user-based.

1.3. Adapting the system: the configuration of the system will be adapted, resulting in the selection of
different exercises. This adaptation should also be as non-intrusive as possible.

No additional sub-operations are necessary for any of the functional components.
2. User model in general: the user should answer a set of exercises, after which the user model determines
whether the difficulty should be adjusted. Thus, the user model adapts in a passive way, and the

operability is solely offline. The relatively easy high-level deliberation cycle is visualized in Figure 3.3.

Observe o Predict Adapt

: , A . Lo Adapt '

i ! Trainee 1y Predict student X Ii . .
Offline . Behavior Co competence level R dificulty level :
! ! | Lo of application :

Figure 3.3: High-level user model deliberation cycle of an educational application in mathematics

3. User profile: the user profile should only be available to the student’s teacher. For this reason, overall
scores and difficulty levels should be readable. The user profile should be saved as long as the student is
registered with the system.

3.2.3 Technical Design

The technical design is concerned with the actual implementation of the user model according to the defined
concepts, functionalities and desired properties. The conceptual and functional design might have looked
straightforward, but when working towards an implementation in the technical design, more delicate choices
and problems arise. It is often not possible to exactly match the desired properties from the previous phases
with the actual technical possibilities. This means that the technical design also influences the conceptual and
functional design, forcing the developer to backtrack and adjust the previous decisions. Often, it is only
possible to implement the user model by making payoffs between the desired properties and the actual
possibilities.
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Main user modeling functional components

The developer has to choose how to implement each separate functionality that was identified during the
functional design. Depending on the different properties of the techniques that are chosen, these
functionalities may overlap and intertwine. Again, a distinction can be made between the different main
functional components, and their technical properties:

1. Predicting the user. To implement the prediction functionality, three main approaches can be used:
the rule-based, cognitive model, or computational approach. Each approach handles specific
problems in a different way, like how uncertain data is handled or how the model is constructed.

2. Observing the user. To implement the functionalities for observing the user, three main methods for
observation are possible: user interactions, direct input, or sensors. When choosing a method, the
data origin and the resulting data format of the method should be taken into account. Depending on
the user characteristic that will be measured, it might be necessary to operationalize this
characteristic. Operationalization involves defining a characteristic in such a way that it becomes
usable in the system (Gazzaniga, et al., 2006).

3. Adapting the system. The functionality for adapting the system is especially concerned with
communicating the desired adaptation to the adaptable components outside the user model. When
multiple types of adaptation are necessary for the personalization goal, the predicting functionality is
also responsible for choosing between these different types.

With the introduction of the method(s) and approach(es) to observe and predict the user, also additional
operations for processing the user data might be necessary. After the definition of the conceptual, functional,
and technical properties for each necessary (sub-) operation, their general algorithm can be defined. Each
algorithm describes the steps that should be taken to reach the desired output, given a certain input.

User model in general

When considering the implementation of the user model as a whole, additional technical properties must be
taken into account, influenced by the architecture and properties of the surrounding application. These
technical properties are the location of the user model and the available computational power.

User profile
Finally, the technical properties of the data used in the user model can be determined. The details about the
data mainly depend on the implementation choices of the separate functionalities. However, often the main
data types and data structures of the user model can be further refined. Lastly, the storage location of the user
profile must be determined.

With the complete definition of the functional components, the user model in general, and the user profile,
the actual implementation can now take place.

Example: An educational application in mathematics
The user model of our example can be implemented in the following way:

1. The resulting technical properties of the different functional components:

1.1. Predicting the user: a rule-based approach is used to predict the user. The simple rules are
constructed by the developer himself.

1.2. Observing the user: the user’s progress, consisting of the mistakes made, is observed through the
user’s interactions in the system. This entails implicit and thus non-intrusive data gathering. The raw
data is relatively simple; therefore extra processing is not needed.

1.3. Adapting the system: when an adaptation is necessary, the system is notified that the presented
exercises must have a lower or higher difficulty level.

No additional operations or data processing is necessary. The general algorithm to predict the level of
difficulty can be defined as follows:
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Input: the user’s progress, consisting of the mistakes made.

Output: the increase or decrease of the difficulty level

Algorithm: when the user made less than 5 mistakes, the presented exercises become harder. When more
than 10 mistakes are made, the exercises become easier.

2. General user model: the user model is implemented with a centralized architecture. The location of the
user model is at the same point as the rest of the application. The user model does not require much
computational power, thus resources will not be a problem.

3. User profile: the user profile is also at the same location as the rest of the system. The user data is
expressed in the integer data type.

The information formalized in the different steps can be combined to implement the user model. Due to the
informative nature of the example, the complete implementation is not constructed.

3.2.4 Methodology Guidelines

Because of the different relations that exist between the design phases of the user modeling methodology, it
might still be hard to build a coherent user model. For this reason, in this section several guidelines and tips
are presented for using the methodology. Most of the information necessary for the conceptual and functional
design phase has already been formalized through the task and domain analysis that was done before the user
modeling began, making these two phases fairly intuitive. The technical design is a more complex process, in
which the selected technologies are influenced by the previous choices, and might also redefine them.
Therefore, this section places emphasis on the relationship between the different concepts and properties
chosen in the first two phases and the actual implementation of these properties in the implementation
phase. Again, the guidelines are presented separately for each functional component of the user model, for
the model as a whole, and for the user profile.

Observing the user

When choosing the technique for implementing the observation functionality, the developer must take into
account the desired reliability and intrusiveness of the data gaining method. Intrusiveness and reliability are
often contradictory to each other. The most reliable way of gaining data is to obtain it directly from the user
him/herself, but this also means that an intrusive method must be used, such as asking direct questions to the
user. When the data gathering has to be done in a non-intrusive way, the obtained data often needs additional
interpretation, in which case the reliability of the observation depends on the reliability of the used
interpretation model. Thus, for both functional properties, the data origin property of the chosen observation
technique is essential.

The data origin often influences the resulting data format. A direct way of obtaining user data normally
results in (partially) interpreted data that is directly usable for predicting the user. This means that the
operations in the prediction functionality can be easier, computationally less expensive, and faster. The raw
data that results from data that is gathered indirectly generally demands more effort and resources.

Predicting the user

Implementing the prediction functionality is one of the most challenging parts of the user modeling process,
because each separate reasoning technique handles specific problems, like problem solving or learning, in a
different way. When choosing the main approach for predicting the user, the developer must take into
account the desired granularity and accuracy of the reasoning component.

In general, when the granularity of the user model increases, also the complexity of the reasoning
component increases. The way of construction influences the accuracy of the reasoning component. When it is
important that the reasoning component becomes accurate instantly, it is often a good idea to use a reasoning
component that must be predefined by the developer or by experts, like a rule-based approach, or a validated
(cognitive) model. When the user model has more time to learn the preferences or behavior of a user, a
computational approach is often fruitful. The effort the developer wants to put into the construction of the
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reasoning component also must be taken into account when choosing the reasoning approach. For instance,
when a validated model from the human factors literature is used to interpret the user’s behavior, it normally
costs less effort than when the method is defined and validated by the developer himself.

Adapting the system

The components that will be adapted are either already part of the system, or have to be created according to
the specifications of the user model. Because these components are not a part of the user model itself, not
many guidelines can be given for the implementation of this functionality in the user model. The most
important task of the developer of the user model is to make sure that the different (resulting) functionalities
communicate in the right way with each other and with the rest of the system. Therefore the desired inputs
and outputs must be attuned to each other.

Overall user model
When implementing the user model as a whole, especially the technical properties of the complete application
play an important role: the system’s architecture and the available computational power.

The general system architecture influences the storage location of the user model. This location is normally
centralized. The available computational power influences the possible complexity of the functional
components for observing and predicting the user, such as the amount of data that can be obtained and
processed. The computational power can also influence and restrict the incentive and operability of the user
model. Regarding the choice for the incentive of the system, both passive and active user models have their
benefits and disadvantages. When information is obtained passively, unnecessary information might be sent to
the user model, while certain specific information might still be missing. When the information is gathered
actively, due to this additional task, the load on the user model and the communication load within the rest of
the system might both become very high. Also regarding operability, both online and offline operating user
models have their advantages and disadvantages. When a user model is used online, much computational
power is often necessary to keep it up to date. When considering a user model that is only used offline, the
user model is not always available and up to date when the user is using the application, but because there are
no computational constraints, more sophisticated and time-consuming algorithms are possible.

Additionally, as discussed in the technical requirements of user modeling (Section 2.1), one of the main
guidelines for constructing the user model as a whole, is that a developer should always remember to make
the user model as minimal as possible; only capturing the strictly needed data and functionalities, making the
system easier to maintain and expand.

User profile
When defining the technical properties of the data in the user profile, the desired readability should be taken
into account. For this reason the possible data types and structures could be restricted. Especially the privacy
of user data is a very delicate feature and a much discussed subject. A very profound overview of the risks and
solutions for handling user information, can be found in (Toch, et al., 2012) and (Mioch, et al., 2013).

When considering the user profile, the developer should always make sure to use and save as less data as is
possible, while still keeping it up to date. In this way the user model operates in an efficient way, and the
different components of the user model are not overloaded with useless information.

3.3 Conclusion
In this chapter, a general user modeling methodology has been presented to bridge the gap between generic
conceptual methods to user modeling and domain-specific user model implementations. To construct this
methodology, a generalized and more abstract view of user modeling has been constructed. Both the general
functional components of a user model, and their functional and technical properties have been presented.
After the user model is constructed according to the methodology, it is important that the user model is
validated, to ensure that it displays the desired behavior. Validating the behavior of the resulting user model is
a research field on its own (Fischer, 2001; Toch, et al., 2012), and has become more and more important ever
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since the user modeling domain emerged. For further reading about these subjects, we kindly refer to the
broad range of existing literature.

In Chapter 7, to validate the use and usefulness of the proposed general user modeling methodology, it is
used to construct a user model for an adaptive educational game in First Aid. First, in the next chapters, the
research domain of intelligent agents will be introduced and combined with the domain of user modeling,
resulting in an agent-based user model framework. This framework will also be used to implement the user
model in Chapter 7.
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Chapter 4

Intelligent Agents and the BDI paradigm

This chapter introduces the intelligent agent paradigm. Different concepts and approaches will be explained
and discussed, where the emphasis is put on Beliefs-Desires-Intentions (BDI) based agents. In the next chapter,
these concepts and terms will be combined with the concepts and aspects related to user modeling as
discussed in Chapter 3. Together they will form a framework for user modeling with BDI-based intelligent
agents.

4.1 Intelligent Agents

An agent is an entity that exists in a world, and that can observe, reason and perform actions in this world
(Russell, et al., 2003). A typical example of an agent, would be a human being. However, also a thermostat that
automatically perceives the temperature of the room and adjusts the heating satisfies this definition. The
general agent deliberation cycle is visualized in Figure 4.1. The agent paradigm is especially useful for solving
problems and creating programs in complex systems with parallel processes, such as distributed or multi-
threaded systems (Jo, 2011a). Because an agent can act independently in its pursuit of its design objectives,
the agent has the ability to exhibit robust but flexible problem solving behavior. When combining multiple
agents, even more complex problems can be solved. It is also possible to handle parallel processes by using
other paradigms, such as object-oriented or imperative programming, but due to the nature of these methods,
it often takes more effort to gain the same result.

Agent

Sensor action
input output

Environment

Figure 4.1: The general intelligent agent deliberation cycle, adapted from (Wooldridge, 2009)

There are many domains in which the agent paradigm has been applied, such as artificial intelligence,
computer science, economics and social science. Its applicability ranges from the modeling of autonomous
systems such as cognitive robots, to the simulation of certain social phenomena such as crowd behavior. For
each domain, the range of attributes associated with agency is of varying importance. This has resulted in
multiple definitions for the term agent. In this chapter, we will keep to the following definition of an intelligent
agent by (Wooldridge, 2009): an intelligent agent is a computer system that is situated in some environment,
and that is capable of autonomous action in this environment in order to meet its design objectives. Four
important agent properties are associated with this definition (Jo, 2011b):

e Autonomy: the ability to operate without the direct intervention of humans or other agents and the
ability to have a certain level of control over one’s own actions and internal state

e  Reactivity: the ability to perceive the environment and respond in a timely fashion to perceived
changes in the environment
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e  Pro-activeness: the ability to exhibit goal directed behavior by taking the initiative
e Social ability: the ability to interact with other agents

A multi-agent system is a group of agents within a shared environment. Within this environment, the agents
can perform tasks individually, but also cooperatively.

4.2 Intelligent agent architectures

The intelligent agent paradigm can be implemented in a large variety of ways. To make the development of an
intelligent agent easier, several architectures have been proposed. The different architectures are especially
concerned with how the agent should decide which action it should perform to satisfy its goals. According to
(Russell, et al., 2003), the complexity of this decision-making process is influenced by the environment in which
the agent is based. They present a terminology for categorizing the different environments, by making a
distinction between the following properties:

e Fully observable vs. partially observable: the possibility to obtain complete, accurate, up-to-date
information about the environment’s state

e Deterministic vs. stochastic: the certainty about the resulting environment state after performing an
action

e Episodic vs. sequential: the influence of an agent’s actions on the current state, or future states

e  Static vs. dynamic: an environment can only be changed by the agent, or is changed by multiple
processes

e Discrete vs. continuous: whether or not the environment has a fixed, finite number of possible
actions and percepts

e Single agent vs. multi-agent: the amount of agents in the environment

As one might expect, the most difficult environments are the ones that are only partially observable,
stochastic, dynamic, continuous, and contain multiple agents. According to these properties, a developer can
choose from several architectures for constructing the intelligent agent. These architectures can be classified
in three categories (Russell, et al., 2003), each category increasing in complexity:

1. Simple reflex agents, or purely reactive agents, are agents that can only select actions on the basis of
the current percept, ignoring the rest of the percept history. The agent’s behavior is completely
determined by the so-called condition-action rules: taking the according action when the right
conditions are perceived.

2. Model based reflex agents are agents that keep track of the world around them, saving percepts to
use for reasoning in a later stadium. This requires a model about the world that captures the rules of
the world and the way the agent’s actions are expected to influence this world. In this way, partially
observable environments are easier to handle.

3. Goal-based agents are agents that also keep track of their goals, next to keeping track of the state of
the environment. Goals are meant to describe situations that are desirable. Often, it is not possible to
achieve goals with only direct actions, therefore planning and searching mechanisms are important
parts of the agent. A utility function can be used to determine the usefulness of certain actions, thus
providing preferences between different possible actions. The goal-based approach provides agents
with the ability to handle complex environments in a flexible way.

On top of these different agent architectures, the ability to learn can be implemented, enabling the different
architectures to handle uncertain information and to adapt to changing environments.

4.3 Intelligent agents with beliefs, desires and intentions
Due to their ability to handle complex environments, goal-based agents are the most interesting and
expressive class of intelligent agents. Common architectures in this class are the Beliefs-Desires-Intentions
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(BDI), Act-R and Soar architecture (Heuvelink, 2009). Each of these architectures approach behavior from a
cognitive perspective. In this section we will look at the most intuitive architecture: the BDI model. The BDI
paradigm provides a model for formalizing the way in which humans (think they) reason, forming goals and
using their knowledge and beliefs to construct a plan to achieve these goals. This type of reasoning is more
commonly known as folk psychology (Norling, 2003).

The BDI paradigm is based on the philosophical tradition of understanding practical reasoning — the process
of deciding, moment by moment, which action to perform in the advancements of our goals (Bratman, 1987).
Bratman formalized the relations between the mental states associated with the beliefs, desires and intentions
of an agent. Intentions play a crucial role in the process of choosing what goal we want to achieve and how we
want to achieve them: according to the desires and beliefs someone has, certain intentions are selected, which
will focus the actions that are performed in order to achieve the goal and thus constrains the possibilities in
the future.

4.3.1 Deliberation cycle

When using the BDI paradigm as an architecture for intelligent agents, an agent’s decision making possibilities
depend on the manipulation of data structures representing the beliefs, desires, and intentions of the agent. A
typical BDI execution cycle contains the following steps (van den Bosch, et al., 2009; Jaques, et al., 2007):

1. according to the sensor inputs from the environment, often called events, the agent’s internal beliefs,
desires and intentions are updated;

2. select the applicable intentions based on the current desires and beliefs, add them to the intention
stack;

3. select an intention;

4. perform the intention if it is an atomic action, or select a new plan if it is a sub-goal.

The agent deliberation cycle extended with the BDI-architecture, is visualized in Figure 4.2. The separate terms
can be further refined in the following way:

e Beliefs: The agent’s beliefs represent the perceived and inferred knowledge of the environment and
the agent itself. Together, they form the informational state of the agent. Because the beliefs of the
agent contain assumptions, it is possible that the beliefs of the agent are actually not true in the
environment.

o Desires: The agent’s desires can be seen as the goals the agent has in the environment; they form the
motivation for the agent to perform certain actions. When an agent has a certain desire, it does not
automatically mean that the agent will attempt to achieve it. During the deliberation cycle of the
agent, first the feasibility of the different desires is tested, by looking at the existing beliefs and
possible intentions to achieve the desire. When a desire is achievable, it will be chosen to be executed
and it becomes active. An important property of the active desires, is that they must be consistent, so
not contradicting each other.

e Intentions: The intentions represent the currently chosen course of action. When a certain desire is
selected, the agent devotes its commitment to the intention that is assumed to lead to achieving this
desire. More concretely, intentions can be seen as plans consisting of a number of actions, like a
recipe for achieving the main desire. These steps can be executable actions in the environment, or
sub-goals that have to be achieved first. Plans are initially only partially conceived, with details being
filled in as they progress. An important property of intentions is that they are persistent. An agent will
not give up on its intentions and will continue trying to achieve them, until either 1) the agent
believes it has successfully achieved them, 2) the agent believes it cannot achieve them, or 3) the
purpose of the intention is no longer present.
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Figure 4.2: The BDI-based intelligent agent deliberation cycle

4.3.2 Higher level properties

The BDI approach for developing an intelligent agent results in several higher level properties and advantages.
By using the goal oriented approach, actions are executed while keeping track of why the action is being
executed. Whenever something goes wrong, the agent has the ability to backtrack its decisions and thus
automatically recover from failures. This results in dynamic problem solving behavior, without explicitly solving
each possible problem (Georgeff, et al., 1999).

Additionally, through the BDI paradigm, an intelligent agent has the ability to reason about its goals in a
high level fashion. The underlying actions necessary for actually achieving the goals are captured in the
different plans, independent of the reasoning process. This means that there is a strict separation between the
data that is used in the model (captured in the belief base), the incentive of the model (captured in the
different desires), and the actual execution of the different plans in the intentions. This results in a very
modular system.

Finally, when looking at developing a BDI-based agent, the biggest advantage of using the BDI paradigm is
its root in folk psychology: capturing human knowledge and reasoning for specific tasks (Norling, 2003). When
people explain their actions, they tend to explain them in terms of intentions and plans, which in turn are
explained in terms of beliefs and goals. Additionally, when people talk about the way in which they try to
achieve their goals, they often do this in a hierarchical matter, thus resulting in partial plans that are relatively
easy to formalize in a plan library for a BDI agent. It still requires a lot of effort and careful questioning when
acquiring the information from people, but the fact that both the model builder and the subject being
modeled are referring to the same concepts, does simplify matters.

4.4 Conclusion
In this chapter, the intelligent agent paradigm has been introduced. Due to their ability to act independently in
the pursuit of their design objective, intelligent agents possess interesting abilities, such as the possibility of
flexible behavior, robustness and pro-activeness. Multiple architecture of intelligent agents have been
discussed. One of the most interesting architecture is the BDI paradigm, which employs a strongly goal-based
approach.

In the next chapter, the concepts and terms that were introduced in this chapter, will be related to the user
modeling field as set out in Chapter 2 and 3. Together they will form a framework for user modeling with BDI-
based intelligent agents.
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Chapter 5

An Agent-based User Modeling Framework

In Chapters 2 and 3, the user modeling field has been extensively discussed. When creating a user model,
many concepts and properties must be taken into account. Depending on the application domain, the user
model can become an intricate component. When constructing a user model, the knowledge and procedures
are often defined explicitly, resulting in a complex system in which many functionalities and processes interact
with each other. A user model has the task to adapt the system that surrounds it, but the user model itself is
often not very adaptive. After the user model has been constructed, it remains fairly static and reactive:
adaptation takes place according to the rules and decisions made during the implementation phase.

Section 4.2 described a taxonomy to categorize different types of environments in which intelligent agents
can operate (Russell, et al., 2003). The same taxonomy can be used to categorize the user modeling problem
when adding personalization to a system. The complexity of the desired user model depends on variables
comparable to the ones identified by Russell & Norvig. When looking at user modeling in general, there are at
least two common features across all user modeling problems: 1) a certain amount of unpredictability and 2)
limited control over the behavior of the user. In addition, user models regularly face the challenge of dealing
with 3) incomplete data about the user, and 4) an unlimited amount of various percepts about the user and
the environment. So in terms of Russell & Norvig’s taxonomy, a user model must be able to deal with a
moderate to heavily complex environment. As the complexity of the user model’s task increases, the need for
a flexible, robust, intelligent user model arises. The user model must be able to deal with larger data sets, or
must be able to deal with compound tasks and procedures. In such cases, the user model often becomes
cluttered and needlessly extensive, no matter the methodology that is used to develop it. To solve these
problems, the use of an intelligent agent for user modeling is proposed.

As discussed in Chapter 4, intelligent agents have the ability to act independently in the pursuit of their
design objective. This results in a high level of flexibility and robustness which is beneficial in complex
environments. Intelligent agents that are based on the Beliefs-Desires-Intentions (BDI) paradigm further refine
and expand these properties, by introducing a well-structured, goal oriented, and insightful approach to the
internal mechanisms of the agent.

In this chapter, the properties and possibilities of BDI-based intelligent agents will be used to construct a
framework that helps developers to create a flexible user model for complex personalization problems. In
Section 5.1, the concepts and properties associated with user modeling and intelligent agents will be
compared to each other. In Section 5.2, these properties are combined, to construct the framework.

5.1 User modeling with intelligent agents

An agent-based user model is in charge of all the functionalities and data needed to personalize the system.
Below, the concepts and desired properties related to user modeling are coupled to the BDI-based intelligent
agent paradigm.

5.1.1 Personalization cycle resemblance

When comparing the intelligent agent reasoning cycle with the personalization cycle, there is much
resemblance. The cycle identified for personalizing a system consists of three steps, i.e. observe the user,
predict the user’s behavior, and adapt the system to the user’s (future) needs. The deliberation cycle of an
agent is to observe the environment, reason about the known information, and then perform an action in the
environment. This resemblance shows a direct mapping of the general functional components of a user model
to the components of an intelligent agent.
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5.1.2 Technical software development requirements

In Section 2.1, the general technical requirements of a user model were discussed. Ideally a user model should
be as modular as possible, enabling decomposition, modifiability, and reusability. These properties also require
a certain level of abstraction. The technical properties of a BDI-based intelligent agent fit these technical
requirements well.

Especially when considering software decomposition, BDI-based intelligent agents possess strong features.
Within the BDI architecture, the dynamic information about the user can be represented in the agent’s beliefs,
the incentive for performing the user model’s goals and sub-goals can be represented in the agent’s desires,
and the procedures for actually achieving these goals can be represented in the agent’s intentions (action
plans). In this way, the data and the actual procedures are strictly separated from each other, resulting in a
modular and generic user modeling framework.

Due to the strong decomposition of the different components within a BDI-based intelligent agent, also the
reusability and modifiability of the components are high. Because of the dynamic coupling of the user model
goals (desires), user dependent information (beliefs), and procedural plans for executing operations
(intentions), not every specific instruction or operation needs to be explicitly written out. This reduces the
programming effort and introduces a strong mechanism for dynamically catching and handling problems and
errors. Furthermore, normally when adding additional program constructs -such as features, exceptions, or
restrictions, to the user model, the procedures to handle these constructs need to be explicitly defined in the
right place. Due to the iterative and dynamic deliberation cycle of a BDI-based agent, through adding
additional plans and (accompanying) goals it is relatively easy to modify the model.

Additionally, because all the user-related information is strictly separated from the other system
components and put into one database - the agent’s beliefs, it is easy to make sure the whole system can
access the same set of data. Only one knowledge base needs to be updated and maintained, which means that
it is easier to keep the user information consistent and non-redundant.

Another major advantage of the intelligent agent approach to user modeling is the high level of abstraction
of the development method and the resulting model. The BDI paradigm uses high-level concepts for the
internal mechanisms of the model, but on a lower level still every single specific technique can be used. For
instance, the most appropriate plan can be chosen according to the current beliefs and desires of the model,
but within this plan, everything can still be filled in according to the developer’s desires. Whether the
developer uses simple rules or a heavy computational method for predicting the user, is still up to the
developer.

Another possible advantage of using the BDI paradigm for creating the user model is the use of folk
psychology. Employing folk psychology leads to a high level and intuitive way of designing the user model. It is
especially attractive to model a human user, because it intuitively resembles the way how people make
decisions and form plans. This also means that the resulting user model becomes more insightful and intuitive
to read and interpret for both the programmer and the end user, without putting much extra effort in it.

5.1.3 Intelligent agents in user modeling literature
Intelligent agents have been used before in several user modeling research projects. In these projects,
emphasis has especially been put on enhancing the user model with the necessary autonomous and proactive
behavior (Schiaffino, et al., 2008; Heuvelink, et al., 2008; Razmerita, 2009; Jo, 2011c; Kobsa, 2007). The
possibilities of a distributed agent design for user modeling have also been further investigated (Lorenz, et al.,
2005; Specht, et al., 2006). In addition to intelligent agents in general, the BDI paradigm for constructing a user
model has also been used. Especially translating human reasoning processes into system operations (Norling,
2003; Jaques, et al., 2007), and creating believable behavior have been investigated (Ci, et al., 2009; Harbers,
2011).

In these projects, intelligent agents are only used to develop the user model of the specific project without
drawing extra conclusions, or generalizing to a reusable method. Unfortunately, none of the mentioned
projects discussed a more thorough investigation of the possibilities of combining the user modeling and the
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intelligent agent field. In contradiction to these projects, in this chapter we will look at the applicability of (BDI-
based) intelligent agents for user modeling on a higher level, thereby utilizing the general structures and
properties of intelligent agents to solve problems that arise when modeling the user.

5.2 The BDI-based intelligent agent user model framework

This section presents the framework for agent-based user modeling. A framework captures the standard
structure of an application, and can be used by developers to implement their specific system. Part of the user
model properties and functional components can already be placed in this framework, while the more specific
details defining the application can be filled in by the developer.

The general user model properties, described in Chapter 3, are used to discuss the features and
possibilities of the framework. When a certain property is not mentioned, it means that the property should be
filled in by the general user modeling methodology, and thus is not important in the framework itself. An
overview of the general components and their functional and technical properties can be found in Appendix A.
Within the framework, a distinction is made between the user model and the rest of the application
components. A visual representation of the framework can be found in Figure 5.1.

5.2.1 Framework components

Within the framework, next to the user model, the other components of the system are considered to be black
box components: only their input and output are taken into account, and there is no knowledge of their
internal workings. Two specific types of system components are important: components that are able to
obtain user data and components that can be adjusted by the user model. These components correspond to
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Figure 5.1: A BDI-based intelligent agent user model framework

the steps from the personalization cycle responsible for observing the user and adapting the system. A system
component can also belong to both types. The exact content and properties of these components should be
defined during the employment of the general user modeling methodology. Only their input and output are
important for the internal structure of the user model, and thus for the user model agent part of the
framework. From now on, the other system components are called the external components.
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5.2.2 User model agent

Within the framework, the user model is depicted by a BDI-based intelligent agent. As mentioned in Section
5.1, the personalization cycle seen in user models strongly conforms to the deliberation cycle seen in agents.
Normally, an agent receives sensor input from the environment, which serves as a trigger to undertake a
certain action (output) in the environment. For an agent-based user model this cycle needs to be slightly
refined:

1. Through the external components for observing the user, the user model agent obtains the necessary
user data.

2. Within the agent itself, the input is processed and the most appropriate adaptation (output) is
determined.

3. The agent communicates the necessary adaptation back to the system, where the selected external
component is adjusted.

Depending on the incentive of the user model, this cycle can somewhat differ. When the incentive of the user
model is passive, an external component instructs the user model to infer certain information, or to perform a
certain action. When the incentive is active, the agent itself infers when action should take place. This can be
done in either a reactive or a pro-active way. With the user data obtained from the external components, the
agent can determine when to execute certain actions, for instance to intervene in the system, or to obtain
additional user information. The operability of the user model also depends on the user model incentive.
When passive, the external components determine the online- and offline loop of the user model. When
active, the user model might infer the start of the online and offline phase by itself.

The user model communicates with the rest of the system through messages. A message from an external
component can contain user-related data or a request to the user model. The agent-based user model itself
can directly address the external component that should be adjusted, or can send data back to the external
component that requested it.

To enable the properties defined above, the BDI-paradigm is used for the agent’s internal mechanisms. In
the following subsection, the agent’s beliefs, desires, and intentions are further refined.

Beliefs

The data used in the user model is saved in the agent’s beliefs. The beliefs are updated by the messages sent
from the external components, and by the internal actions executed through the agent’s intentions. The
majority of this data is related to the user profile, but also other data needs to be saved. Therefore, the
alternative term fact base might be more appropriate. Preferably, within the beliefs, there is a distinction
between data related strictly to the user profile, like the user’s progress, temporary user-related data, like the
intermediate values used to actually calculate the user’s progress, and (possibly temporary) non-user-related
data, like data related to the system’s configurations or predefined inference rules. Within the beliefs of an
agent, this distinction could be accomplished by creating separate databases for each type of data. Within the
agent’s beliefs, also the data of multiple users could be saved.

Desires

Desires, or more often called the goals of the system, are responsible for the execution of the operations in
the user model. Within the whole deliberation cycle of the agent, they play a big role in the incentive of the
user model. Together with the current beliefs of the agent, the desires can actively determine when to execute
certain action plans from the intention plan base. For instance, to take over a task when it is detected that the
user is having difficulties, or to decide to obtain additional information about the user, when it is detected that
the agent cannot make a decision. If the incentive is passive (procedural), the desires are mostly determined
by the external components and thus often are more straightforward. Desires are updated by the messages
sent from the external components and by the internal actions executed through the agent’s intentions.
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Intentions

The agent’s intentions consist of a collection of action plans that can be used to satisfy the desires of the
agent. Within the deliberation cycle of the agent-based user model, these action plans are responsible for the
operations that are necessary to personalize the system. Globally, these operations can be categorized
according to the steps defined at the beginning of this section, i.e. process the incoming user data, predict the
user, and communicate the adaptation to the external components.

According to the present desires and beliefs of the agent, the most applicable action plan is selected to be
executed. For each possible desire, multiple plans can be defined. For each plan, a set of requirements can be
specified to define its applicability under various circumstances. Through the definition of slightly different
action plans, problems, like invalid input, can be solved in a dynamic fashion. Each action plan has the
capability to request and change the values of the agent’s desires and beliefs. The exact content and
properties of the action plans can be filled in with the use of the user modeling methodology presented in
Chapter 3.

5.3 Conclusion

In this chapter, a framework was proposed for user modeling with the use of BDI-based intelligent agents. The
framework is meant to help developers with constructing user models for complex personalization problems,

such as problems that involve incomplete data about the user, and dynamic and unpredictable user behavior.

For systems that demand less of the user model, such as recommender system or simple educational systems,
the framework is less useful.

The proposed framework is complementary to the general user modeling methodology defined in Chapter
3. Whereas the methodology covers the general questions that need to be answered for constructing a user
model, the framework is more focused on ensuring that the technical and overlying, non-application-specific,
properties of user modeling are satisfied. Together, they can be used to add personalization to a system.

The similarities between the user modeling and intelligent agent domains have been discussed, after which
the advantages and possibilities have been identified. The framework was constructed by coupling the
requirements and properties of user modeling with the advantages of using a BDI-based intelligent agent
architecture.

In Chapter 7, the framework is tested by using it, together with the general user modeling methodology, to
implement a user model for an adaptive educational game in First Aid.
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Chapter 6

Adaptive Educational Games

In Chapter 2, the user modeling application domain of Adaptive Educational Games (AEG) was introduced. In
this chapter, the domain is further investigated so it can be used in the next chapter as the application domain
for the user modeling methodology. This chapter can be seen as the domain analysis that should be performed
before the user modeling methodology can be applied.

AEGs are complex educational games that combine several research areas, including Serious Games,
Intelligent Tutoring Systems (ITS), psychology, and didactics, to enhance the student’s learning experience
(Peeters, et al., 2012a). The emphasis in AEG is put on the development of educational applications using a
well-founded psychological background, employing methods and techniques to enhance the effectiveness of
the application. AEG are based on the concept of scenario-based training (Peeters, et al., 2011; Peeters, et al.,
2014b), a practical training form in which trainees acquire complex skills by performing a job in a scenario with
a short and realistic storyline. A complex skill is a skill that needs practice to master, such as situation
awareness or decision making. These skills cannot be learned from simply reading a book and often rely on
cognitive as well as physical abilities. Scenario-based training is widely used to train policemen or firemen how
to act in dangerous situations, such as a disaster or a bomb alert. However, the major downside of scenario-
based training is that its organization often requires a lot of effort, people, and resources (Peeters, CA). The
use of an AEG is meant to solve this problem by presenting scenario-based training in a digital form.

AEGs enable a trainee to practice complex skills anywhere and anytime he/she wants. An AEG is an
application that uses a virtual world that resembles the professional working environment. This virtual world is
often combined with artificial intelligence techniques to create a targeted learning experience, for instance, by
adapting the storyline based on didactic considerations (Peeters, CA). AEG can be considered to be the next
step in the personalization of educational applications, building on the domains of Serious Games and ITS.
Serious games are computer games with an educational purpose. They offer trainees the means to develop
their skills and knowledge in a playful, but also meaningful and practical training setting. Fun, knowledge
transfer, and reality are carefully balanced out to provide a meaningful, immersive, and motivating learning
experience (Peeters, et al., 2012b; Korteling, et al., 2011; Johnson, et al., 2005). The ITS-like part of the AEG is
concerned with employing adaptive strategies, grounded in didactic principles derived from training theories
and instructional design. Thus, ideally an AEG combines the immersion and appeal offered by games and the
didactic structure offered by ITSs.

Many important problems associated with the adaptation of the system depend on the behavior of the
user, which means that the process of user modeling in an AEG is a delicate and complex task. Besides,
compared to other user modeling domains such as internet applications or ubiquitous systems, AEG have
much computational power available for adaptation. The features of AEG mentioned above make AEG an
interesting domain for user modeling.

This chapter is structured as follows: in Section 6.1, the specific requirements for an effective AEG, as
defined in the literature, are set out. In Section 6.2, the purpose the user model could fulfill in an AEG is
discussed and in Section 6.3, the implementation of an AEG in a Multi-Agent System, without the user model,
is expounded on.

6.1 Requirements of an Adaptive Educational Game

A (preliminary) list of minimum requirements an AEG must fulfill has been identified by (Peeters, 2014a), with
each requirement strengthened by theories from human factors research. These requirements (R01-R17) are
expressed in the list below.
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RO1.
RO2.
RO3.
ROA4.
ROS.

RO6.
RO7.

RO8.

RO9.
R10.

R11.
R12.
R13.

R14.

R15.

R16.

R17.

The simulated environment should 1) accurately display only the relevant elements of the real-life
environment, and 2) provide more abstract representations of the less important elements.
Scenarios must generally contain complete storylines in the form of whole tasks

The amount of new information presented in the scenario should be reduced to the absolute essential
Scaffolding techniques should be employed to ease the learner into independent performance
Learners should receive help on how to effectively employ scaffolds such as hints, prompts, and
immediate feedback

Scenarios must be responsive to the learner's choices

Over the course of training the learner must encounter multiple variants of scenarios that address
similar learning goals and tasks

Scenarios must address learning goals that challenge the learner yet lie within reach given the
learner's current competences

Learning goals must be transparent to the learner and tied to observable performance standards
Scenarios must be selected dynamically based on the learning goals they address and the prior
competences of the learner

The events within a scenario should be independent with regard to the learner's outcomes

The learner must not be distracted and/or interrupted during the task performance

When the scenario has finished, the learner's performance must be evaluated by reviewing situation
assessments and decisions made during the scenario, and the resulting consequences

After reflection, the learner must receive directed and overarching feedback by looking at both the
outcomes of the reflection phase and the performance outcomes compared to the performance
standards associated with the learning goals

Scenarios must be designed so that learners can experience the results of particular procedures
themselves, thereby discovering the usefulness of standardized procedures and understanding how
they were originally constructed.

The learner must receive additional part-task training for routine tasks and/or tasks that cannot be
learned within the virtual environment

The instructor must be able to understand the system's processes and control them at a certain level

According to the identified requirements, a functional architecture was created. The schematic overview of the
architecture can be found in Figure 6.1. The different components of the functional architecture are:

The scaffolding component controls the support offered to the learner during playtime. The
scaffolding component should at least meet requirements R04, R05, R08, R11, and R12

The scenario creator constructs a scenario based on the information contained in the domain
representation, the constraints provided by the instructor, and the trainee data provided by the
learner model. An extensive study to the scenario creator has done by (Ferdinandus, et al., 2013).
Requirements R01, R02, RO3, RO7, RO9, and R15 are important for this component

The authoring tool offers instructors the possibility to interact with the AEG in order to manipulate
the scenarios offered to the learner. The authoring tool should at least meet requirement R17

The learner model provides the scenario creator with a learning goal based on the learner’s progress,
which in turn constructs a suitable scenario. The requirements that are important for the learner
model, are RO7, R08, and R10

The reflection component supports the reflection and feedback after the scenario has finished. The
reflection component should at least meet R13 and R14

The virtual environment is inhabited by non-player characters and the learner's avatar. It is within the
virtual environment that the learner can interact with the other characters. RO1 and R06 are
important requirements for the virtual environment
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Figure 6.1: the functional architecture of AEG, source: (Peeters, 2014a)

An online and offline part can be distinguished in this functional architecture. The online part, or inner loop, of
the AEG consists of the Scaffolding component, Reflection Component, and Virtual Environment. Together
they provide the playtime behavior of the AEG. The offline part, or outer loop, of the AEG consists of the
Authoring Tool, Learner Model, and Scenario Creator. Together they provide the initialization of the online
part and the processing of the results.

6.2 Personalization of an Adaptive Educational Game

To optimize the learning process and learning outcome for the trainee, personalization plays a big role in the
AEG. To be more concrete, the experience that the game world provides is personalized in the sense that it
offers just the right amount of challenge and the right topic for the trainee to be motivated, and to be able to
comprehend the presented problem or situation (Peeters, 2014a). Just like in the overall functional
architecture, also in the personalization process there can be made a distinction between an online and an
offline part.

6.2.1 Personalization offline

As discussed in the functional architecture, the learner model provides the features for the personalization of
the AEG in the offline part. Its main purpose is to provide the scenario creator with a learning goal based on
the trainee’s progress, so the scenario creator can construct a suitable next scenario. The main requirements
associated with this task are R08, and R10.

According to these requirements, the learning focus should be challenging, so that the trainee is stimulated
to extend his competences. A challenging focus also prevents the trainee from getting bored. As the trainee
progresses, the difficulty and complexity of the selected learning focus should also increase. However, it is also
important that the learning focus always lies within close reach for the trainee to grasp. This idea is based on
the Zone of Proximal Development (Vygotsky, 1978; van Merriénboer, et al., 2002), a theory from education
psychology that describes the distance between what the trainee is currently able to do by himself, what he
can currently accomplish with the help of someone (or something) else, and what he will be able to do
independently in the near future. In this way competences are trained in a gradual, constructive way and thus
improve the trainee’s learning process.

To select a learning focus that confirms to these requirements, the user model needs to have an accurate
and up-to-date representation of the trainee. This representation should capture the level of the previously
trained competences [R10]. Additionally, because the instructor plays an important role in the AEG [R17], it is
important that the instructor can have some insight in the progress the trainee is making. To a certain extent,
it is also desirable that the instructor understands the processes that take place in in the user model.

Finally, when the selection of the learning focus takes place, multiple variants of scenarios that address
similar learning goals and tasks should be selected, in which the user model can also play a role [R07].
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6.2.2 Personalization online

The main purpose of personalization during the online part of the AEG is to help the trainee to perform the
scenario. The scenario should be adapted to the trainee and suitable feedback should be provided. The main
requirements associated with these tasks are R04, R08, R13, and R14.

While the trainee is playing a scenario, the scenario should be adapted through the employment of
scaffolding techniques. Scaffolding techniques regulate the amount of support the trainee receives during
playtime. For instance, this support can be the amount of feedback the trainee receives, the amount of time
the trainee has to perform a certain action or the tasks the trainee should perform simultaneously. The
scaffolding component is mainly responsible for this task, but the user model should provide this component
with the necessary user information for the most suitable adaptation. At the start of the scenario, the initial
amount of support should depend on the trainee’s current progress and preferences. At playtime, however,
the level of support should be adjusted depending on the trainee’s in-game behavior. Through the
employment of scaffolding techniques, the trainee is eased to gradually perform the tasks on his own.
Additionally, by not presenting too much information at the same time, cognitive overload is prevented. When
employing scaffolding techniques, it is important that the trainee is not distracted and/or interrupted during
the task performance [R12], in order to keep the trainee concentrated and in a state of flow (Gazzaniga, et al.,
2006).

The second important task of the user model in the online part is to provide suitable feedback. In order for
this feedback to be of any help to the trainee, it should be concrete/specific and focused on the trainee’s
observable behavior. The reflection component is mainly responsible for this task. After the scenario is
finished, the trainee’s performance is evaluated by reviewing the trainee’s decisions and actions during the
scenario. According to the performance standards associated with the learning focus, the trainee is given
directed and overarching feedback about his performance, to gain a deeper understanding of the learning
material. To enable this feedback and reflection step, the trainee’s (relevant) behavior should be closely
monitored and registered.

6.3 A multi-agent system for Adaptive Educational Games
In collaboration with Ruben de Jong and Marieke Peeters, a Multi Agent Director System (MADS) was created,
capturing the essence and main features of an AEG (Peeters, 2014a). To implement the MADS, the agent
programming language 2APL (Dastani, 2013) and the OperA Conceptual framework and methodology for
multi-agent organizations (Dignum, et al., 2011) was used. In Chapter 7, 2APL will be further deliberated on.
To satisfy all the requirements that were set out for AEGs, the AEG needs to be able to perform complex
behavior, involving multiple layers of reasoning mechanisms. The AEG relies on a large amount of knowledge
about the trainee and the instructor to be able to perform all the tasks it is meant to accomplish, like selecting
or generating suitable scenarios, monitoring the trainee, keeping track of the consistency of the story-line and
conflict resolution. When using a centralized approach, the main challenge is the scalability of the whole
application: keeping track of all the objects in the game world, the learning goals, the different NPCs and their
possible behaviors, and the consequences thereof. To overcome these problems, the AEG’s knowledge and
abilities are distributed over a multi-agent system. In this multi-agent system every component and/or actor is
represented by an Intelligent Agent.

6.3.1 Components
The MADS consists of three components: the virtual environment, the graphical user interface, and the multi-
agent system.

Virtual environment and graphical user interface

The environment is the meta-representation of the game world in which the scenario takes place. It is used by
the trainee and the different agents to interact with each other. For instance, the trainee and a role-playing
agent should be in the same location in the environment to be able to perform an action onto each other. The
actions performed by the trainee and/or the agents also influence the environment. For instance, when the
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trainee picks up a chair, the properties of the environment change. In the graphical user interface the trainee
receives information about the events that happen in the environment and the possible actions the trainee
can perform. The trainee can perform actions by clicking the appropriate buttons. In addition to the available
actions, information can be obtained from the user through pop-up windows that pose direct questions to the
trainee. Figure 6.2 gives an impression of the user interface and a possible question in a pop-up window.

| »

sylvia has fallen over the chair

sylvia has broken hisfher arm!

trainee has picked up chair

drop object chair trainee is trying to calm sylvia

sylvia iz now calm
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trainee is trying to stabilize sylvia

sylvia no longer has broken_limb
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monitor asks: ™ Please assign a number to you current motivation™

pickup object pla...
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Figure 6.2: the user interface of the MADS

Multi-agent System
The multi agent system consists of several agents representing the different components of the AEG. The
different agents are:

e The director agent can be seen as the representation of the instructor in his absence. The director is
the central agent in the MADS, controlling the main flow of the application, and taking care of all the
high level communication between the different agents. The director also has the ability to start an
auction between the role playing agents, for admeasuring roles and taking on actions before and
during the scenario

e The planner agent is responsible for planning or selecting a suitable scenario plan, based on the
learning focus and support level (expressed through the initial level of scaffolding). The planner agent
in the MADS contains multiple predefined scenario plans for testing

e The monitor agent keeps track of the actions that are performed by the trainee in the scenario
environment and intervenes when necessary. The monitor agent also has the ability to ask the trainee
direct questions through the user interface

e The trainee agent is the avatar of the trainee in the system. The trainee agent keeps track of the
current state of the trainee, such as the trainee’s location or the objects in the trainee’s inventory.
The agent is used to determine the possible actions and interactions the other character agents and
the human trainee can perform with each other and in the environment

e Role playing agents control the non-player characters in the environment. They can either be a victim
or a bystander who can help the trainee out. Role playing agents are able to sense and act in the
environment, based on their goals. Through interaction with the trainee, they create a series of
events that triggers the trainee to perform actions belonging to the training task
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6.3.2 Application running cycle

The application cycle of the MADS can be seen in Figure 6.3, and consists of the following steps:

6.

5.1: PerformIntervention
1: RegisterAgents f

3: AuctionAspects 5: PlayScenario

2: SelectScenarioPlan

4: InitScenario *

Figure 6.3 The MADS deliberation cycle, made in DIA

When the application is launched, all the agents start by registering with the director

According to the predefined learning focus and level of scaffolding, the planner selects the most suitable

scenario plan and sends it back to the director. This scenario plan contains the action plan and the

different aspects that must be assigned to the character agents before the scenario can start, such as the

character locations, roles and tasks

The director starts one or more auctions to assign the necessary aspects from the scenario plan to the

registered character agents

At the same time, the director sends the action plan of the selected scenario plan to the monitor, who

initializes the next scenario

When all the auctions have come to an end, everything is in place and the scenario is ready to start. The

director notifies the monitor that the scenario can begin. The trainee plays the scenario, where the action

plan determines which action should be performed. The trainee is monitored by the monitor agent

5.1. Whenever the trainee waits too long, an intervention is chosen, according to the action plan and the
level of scaffolding. The director starts an auction to let the most believable character agent perform
the intervention (either giving a hint or performing the action).

When all the actions of the action plan are performed, the scenario is finishes and the application ends

6.4 Conclusion

Adaptive Education Games are an interesting application domain for applying personalization, due to their

complexity and associated challenges. In this chapter, the concept, requirements, and functional architecture

of AEG have been broadly discussed, as well as a simplified implementation of an AEG in a multi-agent system.

According to the discussed requirements, the possibilities and necessities of a user model in an AEG have

been identified. In the next chapter a user model for an AEG will be constructed, with the use of the general

user modeling methodology and the BDI-based user modeling framework.
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Chapter 7

Implementing a user model in an Adaptive

Educational Game in First Aid

In Chapter 3, a general methodology was proposed to help a developer add personalization to a system. In
Chapter 5, an agent-based framework was proposed to help a developer implement a user model in a complex
system. In this chapter, the use and usefulness of these two methods will be validated and evaluated by
applying them to an adaptive educational game (AEG) in First Aid. Due to the complexity of the personalization
problem, and the importance of correct adaptation, an AEG in First Aid is suitable for using the agent-based
user model framework.

Adaptive educational games have been extensively discussed in the previous chapter. The different
requirements and properties of an AEG that were identified in this chapter can be seen as the domain and task
analysis that should take place before the methodology can be used. The multi-agent system for adaptive
educational games that was discussed in Section 6.3 will be used and expanded to implement the user model.
The construction of the user model focuses on the features enabling the initialization of a scenario, and the
features enabling online adaptation. Because of the nature of these features, there is a distinction between
the necessary operations taking place online, while the trainee is interacting with the scenario, and the
necessary operations taking place offline.

The AEG prototype focuses on the training domain of First Aid. First Aid is concerned with the basic
knowledge about how to help people who are suddenly sick or injured. For example, First Aid is used at
accidents to help an injured person until professional medical treatment can be provided. It generally consists
of a series of simple techniques that an individual can be trained to perform. Scenario-based training is often
used to train people to perform First Aid, which makes it an interesting application domain for an AEG. A
thorough investigation of the field of First Aid for implementing an AEG has been done by (Peeters, 2014a).

In the different sections of this chapter, the user modeling methodology will be followed. Section 7.1
describes the conceptual design phase, Section 7.2 describes the functional design phase, and Section 7.3
describes the technical design phase, in which also the agent-based user model framework is used. Section 7.4
describes the implementation of the technical design with the use of the 2APL agent programming language.
To ensure that the resulting prototype displays the desired behavior, in Section 7.5 the user model is verified
by means of use cases analysis.

7.1 Conceptual design phase

In this section the conceptual design phase of the general user modeling methodology will be applied to an
AEG for First Aid. The conceptual design phase is concerned with the fundamental and abstract ideas behind
adding personalization to the application. In this way, the general purpose and requirements of the user model
are defined.

7.1.1 Why will there be adaptation?

As was concluded in Section 6.2, personalization of an AEG can be used to optimize the learning process and
learning outcome for the trainee. Through personalizing the experience that the game world provides, the
application can offer just the right amount of challenge for the trainee to be motivated, and to be able to
comprehend the presented problem or situation. Online, the main purpose of the user model is to help the
trainee to perform the scenario. This will be done by inferring the right amount of support, defined in the
appropriate level of scaffolding. Offline, the main purpose of the user model is to personalize the next
scenario. According to the requirements of an AEG, scenarios should gradually increase in difficulty and
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complexity (Zone of Proximal Development); therefore, the user model should select an appropriate learning
focus and initial level of scaffolding.

7.1.2 When will the system be adapted?

Online, the adaptation of the level of scaffolding should be determined by the behavior of the trainee.
Basically, when the trainee performs badly while playing the scenario, the level of scaffolding should increase.
When the trainee performs the right actions, the level of scaffolding should decrease. Offline, the trainee’s
progress can be used as a trigger to adapt the learning focus. To track this progress, some kind of competence
representation should be available. To infer the right amount of challenge, the trainee’s motivation needs to
be taken into account as well. When the trainee shows good results and a high motivation, the difficulty of the
learning focus can gradually increase. Otherwise, a more deliberate adaptation should take place, possibly
resulting in a less complex focus. Because the trainee needs to encounter multiple scenarios that address a
similar learning focus, a learning focus should be trained multiple consecutive times. The initial level of
scaffolding can be adjusted according to the progress the trainee has shown regarding the selected learning
focus.

7.1.3 What will be adapted?

To achieve the personalization goal, the behavior of the system, applied through changing the system
configuration, and the content that is presented should be adapted by the user model. Online, only the level of
scaffolding should be adjusted. The scaffolding component that receives this adjusted level of scaffolding is
responsible for applying the rest of the adaptation concerned with changing the current content, structure,
and presentation of the application. Offline, the content of the application is adjusted indirectly. The user
model should determine which learning focus and initial level of scaffolding should be selected, after which
the scenario creator and scaffolding component use this information to create the next scenario.

7.2 Functional design phase

In this section, the functional design phase will be applied to the AEG in First Aid. The definitions of why, when
and what to adapt are used to fill in the details and desired properties of the three main functional
components, the overall behavior of the user model, and the user profile.

7.2.1 Main user model functional components
The main user model functional components are responsible for observing the user, predicting the user, and
adapting the system.

Predicting the user
Online, in order to select the appropriate amount of support to the user, the level of scaffolding should be
predicted.

1. Granularity. The prediction should be optimized for the trainee. As the trainee interacts with the
system, the variables of the functional component should be adjusted to the trainee’s preferences,
such as the adaptation speed or the available time to perform an action.

2. Accuracy. The adaptation should become accurate as soon as possible.

3. Type of trigger. User-based; the adaptation is triggered directly by the actions the trainee performs in
the environment and their correspondence to the predefined action plan.

Offline, in order to personalize the initialization of a scenario, the most appropriate learning focus and initial
level of scaffolding should be predicted. To infer this data, additional sub-operations are necessary.
Operations should be available that can determine the trainee’s current motivation, determine the
performance score of the previous scenario, and update the relevant competences according to this score.
Considering the general properties:
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Granularity. The prediction mechanism should be optimized for a single trainee. This means that
accurate data about the trainee ‘s progress and motivation should be kept.

Accuracy. The adaptation should become accurate as soon as possible.

Type of trigger. User based; the learning focus itself should be adjusted according to the behavior and
motivation of the trainee during the scenario. The initial level of scaffolding should be determined
according to the progress associated with the selected learning focus.

Observing the user

Online:
1.

Offline:
1.

Type of observation. User-based; according to the functional component responsible for predicting
the trainee, the trainee’s actions in the environment should be observed.

Intrusiveness. The observation should be non-intrusive, because maintaining the concentration of the
trainee is important

Reliability. Changing the level of scaffolding only inflicts small changes in the course of the scenario;
therefore it is not necessary for the observations to be completely reliable. Additionally, the
observations should success each other relatively fast, so if the level of scaffolding does not appear to
be correct, it can be adjusted quickly.

Type of observation. User-based; the adaptation is fueled by the trainee’s behavior during the
scenario. Also the trainee’s motivation should be observed to infer the learning focus.

Intrusiveness. Since the trainee’s behavior is already monitored online, this information can be re-
used. Because the observation of the trainee’s motivation can take place after the scenario is finished,
it can be done in an intrusive way.

Reliability. The measurement of the trainee’s behavior and motivation should be reliable, since both
are important characteristics.

Adapting the system

Online:
1.

Offline:
1.

7.2.2

Form of adaptation. The system configuration is changed by adjusting the level of scaffolding. The
scaffolding component should be informed about this newly inferred level.

Intrusiveness. Maintaining the trainee’s concentration during the scenario is important, therefore the
adaptation of the scenario should be non-intrusive. Strictly speaking, the user model is not
responsible for the adaptation done by the scaffolding component, but a low level of intrusion does
infer that the level of scaffolding should not be changed too often.

Form of adaptation. The content of the application is adjusted. The scenario creator and scaffolding
component should be informed about the inferred learning focus and initial level of scaffolding.
Intrusiveness. According to the requirements of the AEG, the trainee should be aware of his progress
and the changes and coherence between the consecutive scenarios, so the level of intrusion of this
adaptation should be high.

User model in general

In addition to the general functional components, the properties of the overall user model can be further

refined. Considering the operability of the user model, it operates both online and offline.

Additionally, the incentive needs to be defined. Online, the incentive of the user model is active. In a

reactive way, the model should react to the observed behavior of the trainee. Offline, the incentive of the user

model is both passive as active. When the scenario is finished, it is always necessary to process the trainee’s

results, update the corresponding competences, and infer the next learning focus. Therefore, this can happen
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in a passive and procedural way. Keeping track of the motivation of the trainee should happen in an active
way. Due to the importance of the trainee’s motivation, the user model should pro-actively monitor it.
Especially when the motivation is low the user model should independently take appropriate action.

With the definition of the operability, incentive, and the necessary functional components, a high-level
user model deliberation cycle can be defined. Figure 7.1 presents this cycle.
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Figure 7.1: Deliberation cycle of the user model in an AEG according to the functional design

7.2.3 User profile
Lastly, the data used in the user model should be expanded on.

1. User data readability. One of the requirements of the AEG is that the trainer or supervisor has a
certain amount of insight into the user data and general process that is going on in the user model.
Therefore, it is preferable that the data in the user profile is easy to interpret.

2. Privacy. Data should be available for both the tutor and the student, in order to gain insight into the
trainee’s progress. Due to the sensitivity of the data, it is important that the information remains
secret for other people.

3. User profile persistence. The data about the trainee should be saved as long as the trainee is
registered with the program.

7.3 Technical design phase

In this section, the technical design phase of the user model will be discussed. The steps of the methodology
are used to further refine the individual functional components, the user model as a whole, and the user
profile. The techniques and exact algorithms are worked out according to the properties and desired behavior
defined in the conceptual and functional design phase. Because the user model extends the Multi Agent
Director System (MADS) as defined in Section 6.3, also the integration of the user model in the MADS will be
taken into account.

7.3.1 Main user model functional components

Before the three main functional components can be implemented, several technical choices about the main
methods and approaches have to be made. Due to interdependencies between the data, the user model as a
whole and the different functional components, the information provided in this section was not constructed
consecutively.

46



Predicting the user
Online, the level of scaffolding needs to be predicted. Due to the reactive nature of the desired adaptation a
rule-based approach is used. In this way, input can be directly coupled to output. The rules are formalized
according to the theory behind scaffolding, as mentioned in the domain analysis (Section 6.2). Although in the
functional design phase the desired granularity of this prediction was defined as optimized for the trainee, due
to the limited amount of computational power, as will be discussed in Section 7.4, the adaptation mechanism
itself will not be personalized to the trainee.

Offline, the next learning focus and initial level of scaffolding need to be predicted. A (cognitive) model is
used to infer these pieces of data. In the functional design, five consecutive sub functionalities were defined
that are necessary to select the learning focus and initial level of scaffolding:

Determine the performance score of the previous scenario

Determine the trainee’s level of motivation

Update the relevant competences according to the performance score
Predict the next learning focus

vk wNhe

Predict the initial level of scaffolding

The internal mechanisms of, and the relations between these operations are formalized according to the ideas
behind the Zone of Proximal Development (also mentioned in Section 6.2).

Observing the user

Online, the user interactions with the system are used as the main method of observation. This indirect way
of obtaining user information results in a non-intrusive and reasonably reliable way of observing the user, as
was desired according to the functional design. This method also results in somewhat raw user data, but
because there are only three possible types of user actions in the MADS, no additional processing is necessary.
The types that can be distinguished are:

1. The user performs the right action according to the scenario plan
2. The user performs the wrong action according to the scenario plan
3. The user waits too long before performing the right action and a time-out occurs

Offline, the user interactions with the system that were obtained online can also be used. To reliably measure
the motivation of a trainee, a questionnaire is often used (Gazzaniga, et al., 2006). However, for reasons of
simplicity and to keep the level of intrusiveness low, the trainee is asked to rate his current motivation by
filling out one question. The motivation is measured on a Likert scale ranging between 1 and 9, which is a
common way of operationalization. Thus, this information is obtained through direct input from the user. This
direct way of obtaining information results in reliable data, but is also relatively intrusive. However, as defined
before, the questioning takes place after the scenario ended, so this is not considered to be a problem.

Adapting the system
Online, whenever the level of scaffolding is adjusted, the newly inferred value should be sent to the scaffolding
component to be processed and to take the appropriate actions. In the MADS, the level of scaffolding can have
the following values: 0 (no support), 1 (some support), 2 (considerable support), 3 (full support).

Offline, the inferred learning focus and initial level of scaffolding is sent to the scenario creator and
scaffolding component, which will use the information as the parameters to construct the next scenario.

General algorithms

Together with the desired properties identified in the conceptual and functional phase, the technical choices
for the three functional components lead to the general algorithms that should take place in each (sub-)
operation of the user model. In Appendix B, these algorithms are worked out. Due to the experimental nature
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of the implementation, three parameters are left open in the algorithms, each related to the interpretation of
the values obtained from the user:

1. Classification of a score; when is a performance score, or the progress score associated with a
competence considered to be good, reasonable, or bad.

2. Level of motivation; when can the motivation be considered to be high or low.

3. The minimum and maximum amount of times a learning focus should be trained consecutively.

In a later stage, additional experiments should be performed to fine-tune the values of these variables.

7.3.2 User model in general
Considering the user model as a whole, its location and the computational power are taken into account.

The architecture of the existing MADS is distributed: each component is represented by a different agent
that acts autonomously. The whole MADS operates on one system, which means that the available
computational power is distributed among the different agents. For the operations that have to be performed
offline, the user model can basically use as much computational power as necessary. However, online, the
computational power is restricted, because the power needs to be distributed over all the agents that are
active. Additionally, online, the MADS as a whole needs to act as fast as possible, in order to give adequate
responses to the trainee while the trainee is playing the scenario. This further restricts the operations the user
model can perform online.

In the MADS design, the monitor agent keeps track of the actions that are performed in the scenario
environment. Additionally, the MADS requires that all the communication in the system goes through the
central agent of the application: the director agent. Therefore, to efficiently use the computational power
available online, and to avoid an excessive amount of messages between the monitor agent, director agent,
and user model, the user model operations that are necessary online will take place in the monitor agent. To
avoid any unnecessary messages containing information obtained online, the operation responsible for
calculating the performance score, which is conceptually a part of the offline user model, will also take place in
the monitor agent. The rest of the considerably more expensive user model operations that are necessary
offline will be represented in a user model agent.

Splitting the user model into two parts is contradictory to the software decomposition requirement of
developing a user model, which stated that there should be a strict separation between the user model, and
the components belonging to the rest of the system. Due to the restrictions imposed by the existing MADS, the
splitting of the user model is a reasonable solution.

7.3.3 User profile
Considering the associated user data in the model, the main data types and data structures, and the location
of the user profile are taken into account.

Influenced by the existing implementation of the MADS, the main data type that is used in the user model
are predicates. Each predicate captures the category of the variable, and one or more values. Due to this
declarative nature, the user data is readable and interpretable for a human. To present the data to external
users such as the trainer, the predicates can easily be translated into a more intuitive format such as a
graphical display.

The main data structure that is used in the user model represents the competences associated with First
Aid. These competences are structured in a tree. The tree that is used comprehends a subset of the skills
needed to perform First Aid, encompassing social skills required in First Aid. The tree was formalized by
(Peeters, 2014a). It can be found in Figure 7.2. Each node in the tree represents a competence and contains a
score presenting the trainee’s progress. Each node can have zero or more children, where a child represents a
sub-competence that should be mastered before the main competence can be trained. For instance, in order
to perform the competence ‘communicating’, the sub-competences ‘question’ and ‘report’ should have been
acquired.

48



The main invariant of this tree is that when each child of a node has a score that can be classified as good,
the main competence has a score that can at least be classified as reasonable. This means that the main
competence can now be trained. This invariant is used to simplify the operations that can take place on the

tree.
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Figure 7.2: data structure representing competences in First Aid, based on (Peeters, 2014a)

Finally, the storage location of the data is in a central place. Because the complete system is closed - only the
trainee and trainer can access its contents, privacy is not regarded to be a major concern.

7.4 Implementation using the framework

In this section, the BDI-based intelligent agent framework is used to implement the user model with the use of
the agent programming language "2APL’. With the general technical properties and choices fixed, the user
model can be implemented. The implementation is guided by the agent-based user model framework. As
explained in the previous section, the user model is split up into two components. The monitor agent is
extended to house the operations necessary to add online personalization, and a user model agent is
introduced to execute the necessary offline operations.

Since the main structure of the user model is determined by the framework, first the technique chosen to
implement the framework, or more specifically the BDI paradigm, will be discussed. Next, the progress is
described that leads from the framework to the implementation. Finally, to illustrate the integration of the
user model with the MADS, the new deliberation cycle is presented.

Implementation technique

To implement the user model with the help of the framework, the BDI agent programming language 2APL is
used (Dastani, 2008; Dastani, 2009). 2APL stands for A Practical Agent Programming Language. The language
provides an effective and efficient cognitive agent architecture that supports the implementation of both
reactive and pro-active agents. 2APL contains important programming principles and techniques, such as
recursion, compositionality, abstraction, and exception handling. Additional software tools and environments
are available for developers (Dastani, 2013). The belief base of a 2APL agent uses JIProlog, a simplified version
of Prolog, to handle data and inference rules (Chirico, 2013). The environment in which the agent operates
must be written in Java.
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Figure 7.3: 2APL architecture, adapted from (Dastani, 2009)

The 2APL language contains several components that together enable the BDI-mechanism. The different
components of the 2APL architecture can be found in Figure 7.3. The Belief Base contains the current beliefs of
the agent, the Goal Base contains the current desires of the agent, and the Plan Base contains the current
intentions of the agent - or to be more concrete: the exact actions that are going to be executed. Besides these
dynamic components, a 2APL agent contains several static rule bases, consisting of plans that can be selected
and added to the Plan Base to be executed. Each rule base has its purpose in the realization of the BDI-
paradigm:

e  PG-rules (Planning Goal Rules). To achieve the desires (goals) of the agent, a planning goal rule can
be selected. Through PG-rules, the agent is not so much responding to its surroundings but instead is
acting because of an internal drive to act.

e  PC-rules (Procedure Call Rules). A procedure call rule can be used for three things:

0 handle an incoming message from another agent
0 handle an event generated by the external environment
O execute an abstract action: a procedure in which multiple basic actions (see below) are
encapsulated
From the above, it can be established that PC-rules are responsive in nature, are used to handle all
the incoming communication, and are used to refine previously adopted (abstract) plans.

e  PR-rules (Plan Repair Rules). If the execution of one of the agent’s plans fails, a plan repair rule can
be used to replace the failed plan.

o BeliefUpdates. A BeliefUpdate rule enables a direct update of the Belief Base. It consists of a function
name, a pre-condition and a post condition. When a BeliefUpdate rule is invoked, if the pre-condition
can be deduced from the Belief Base, the post-conditions are executed.

Within each plan, there are several basic actions that can be performed:

e Communication action: send a message to another agent

e External action: execute an action in the environment

e  Abstract action: call upon an abstract action in the PR-rules

e Belief update action: call upon a BeliefUpdate rule

e  Goal dynamics action: update the goal base

e Test action: test if an expression is derivable from the Belief/Goal Base
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The different components of a 2APL agent work together according to the deliberation cycle visualized in
Figure 7.4. Whenever a rule is applied, its plan is added to the Plan Base.

Process all desires
(apply PG-rules)

Execute the first action of
each plan in the Plan Base

¥

Process Intemal Events
(apply PR-rules)

¥

Process Messages
(through PC-rules)

¥

Process External Events
(through PC-rules)

Sleep untill external events
or messages arrive

A

Rules Applied
Plans Executed
Bvents or Messages
Processed?

Figure 7.4: The 2APL deliberation cycle, adapted from (Dastani, 2008)

7.4.1 From framework to implementation

With the definition of the language that will be used to implement the framework, the implementation of the
user model can continue. In this section, first the general translation of the framework components to the
desired components of the user model is discussed, while taking into account the features and restrictions of
2APL. Second, the personalization cycle of both the online and offline user model is discussed, illustrating the
resulting implementation. For further reference and more details, the complete implementation of the user
model in 2APL can be found in Appendix C. The three components of the BDI-agent are refined in the following
way:

Beliefs. The user characteristics that were defined in the methodology, such as the competence tree, are
stored and maintained in the agent’s Belief Base. In 2APL, it is not possible to define multiple Belief Bases
to distinct the different kinds of (user) data. Therefore, in order to distinguish the different types of data
specific predicates are used.

Desires. Depending on the incentive of each necessary operation of the user model, the desires in the Goal
Base define when an operation should be executed. In this implementation, desires are especially used to
instigate pro-active behavior, producing a drive for the agent to engage in behavior independent of
incoming events (see also intentions below).

Intentions. Within the agent-based user model framework, the necessary operations of the user model are
defined in the intentions of the agent. The possible intentions of a 2APL agent are represented in the plans
contained in the rule bases of the agent. In these plans, each basic action is possible to execute. This means
that the necessary operations from a user model can be expressed in all types of plans. Therefore, which
rule base to choose to express the user model operation in, depends on the incentive of the user model:
e When proactive, goal-oriented behavior is desired, a PG-rule is used; PG-rules are directly triggered by
the agent’s desires.
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When reactive or procedural behavior is necessary, a PC-rule is used. PC-rules are mostly used to
handle external communication. In this way, incoming requests and user data can be directly
processed, without using unnecessary and devious programming constructs.

According to the main translation of the framework and the desired user model, the resulting deliberation
cycles are now presented, adapted from Section 5.2.2.

Online: extending the monitor agent

The part of the user model that is integrated into the monitor agent is responsible for predicting and adjusting

the level of scaffolding. The system components that can be adjusted and that can be used to obtain user

information are already integrated into the monitor agent. The exact implementation of the online user model

can be found in Section C.1 of Appendix C. The personalization cycle looks as follows:

The monitor agent observes the trainee’s action while the trainee runs the scenario.

In a procedural way (through a PC-rule), the incoming actions of the trainee are classified as correct or
incorrect, according to the predefined action plan. Time-outs are detected and classified in a pro-
active way (through a PG-rule); a desire is constantly active to keep track of the amount of time the
trainee uses. The classification is used to predict the correct level of scaffolding, according to the
algorithm defined in Appendix B. Whenever an action is performed or a time-out takes place, it is
recorded in a logbook for future use.

The level of scaffolding is adjusted in the monitor agent. In the MADS, the choices available for the
scaffolding component are integrated in the action plan of the scenario. Since the monitor agent
keeps track of this plan, the agent can directly take the appropriate action.

Offline: a user model agent

The user model agent is responsible for predicting the learning focus and the initial level of scaffolding for the

next scenario. The exact implementation of the user model agent can be found in Section C.2 of Appendix C.

The personalization cycle looks as follows:

7.4.2

Online, the monitor agent collects data about the trainee’s behavior. This data is saved in a logbook.
After the scenario is finished, the monitor agent calculates the performance score and asks the
trainee to rate his motivation. All this information is sent to the director agent, which sends it to the
user model agent.

In a procedural way (through several PC-rules), the user model agent updates the competence tree,
selects the next learning focus, and infers the initial level of scaffolding. In a pro-active way (through
an explicit desire and accompanying PG-rules), the user model agent keeps track of the trainee’s
motivation. In accordance with the resulting level of motivation, a different learning focus can be
chosen. Again, the individual user model operations are defined according to the algorithm in
Appendix B.

The user model communicates the inferred data to the director agent, which sends it to the planner
agent. In turn, the planner agent uses the data to construct the next scenario.

Resulting deliberation cycle

With the implementation of the user model, the deliberation cycle of the MADS, as defined in Section 6.3.2,
was also adjusted. The new deliberation cycle is visualized in Figure 7.5 and consists of the following steps:

1. When the application is launched, all the agents start by registering with the director

At the same time, the director asks the user model to infer the data necessary to initialize the next

scenario. The user model infers the next learning focus

3. According to the selected learning focus, the initial level of scaffolding is inferred by the user model. Both

the learning focus and the level of scaffolding are sent back to the director
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4-6 Step 4 — 6 correspond to step 2 - 4 from the original cycle. The next learning focus and initial level of
scaffolding is used to construct the scenario plan. The next scenario is initialized and started as soon as all
the components are in place

7. The trainee plays the scenario, where the action plan determines which action should be performed. The
trainee is monitored by the monitor agent, who also fulfills part of the role of the user model.

7.1. Whenever the trainee misses an action or waits too long, the scenario is adapted; the level of
scaffolding is changed and the director is notified to execute a certain intervention, depending on
the level of scaffolding and action plan

7.2. The director starts an auction to let the most believable character agent perform the intervention
(either giving a hint or performing the action)

8. When all the actions of the action plan are performed, the scenario ends. The scenario score is calculated
and additional information about the motivation of the trainee is asked. All this information is sent to the
director

9. The director sends the obtained user data to the user model, which updates the information about the
trainee. The MADS is reinitialized to host the next scenario

10. If all competences have been trained well enough, the application ends, otherwise a new learning focus is
selected, and the cycle returns to step 2

- 1: RegisterAgents 7.1: AdjustScaffolding [~ 7.2: PerformiIntervention
5: AuctionAspects T
4: SelectScenarioPlan 7: PlayScenario o
* 6: InitScenario +
3: SelectSaaffolding &: EndScenario
| 2: SelectlearningFocus 9: UpdateUserModel
3

Figure 7.5: The revised MADS deliberation cycle

7.5 Verification

In the previous sections, a user model for an AEG has been designed, with the use of the general user
modeling methodology and the agent-based user model framework. In this section, the behavior of the
implementation is tested by means of use cases to verify that the resulting user model displays the desired
behavior as set out in the domain and task analysis.

A use case is a list of steps that define the interactions between an actor and the system to achieve a
certain goal. In this case the actor is the trainee and the system is the Multi-Agent Director System (MADS)
extended with the user model. The different use cases in which the user model is involved are worked out in
detail and executed while working with the system. The resulting behavior of the system is observed and
compared to the desired behavior, to verify that the user model works in the desired way.

Since this verification only focuses on the operations the user model should perform, the assumption is
made that the rest of the system behaves according to the system specification. For example, it is assumed
that the planner agent constructs correct scenario plans, and that an adaptation of the level of scaffolding
results in the intended effects.

7.5.1 Use case design
Just as in the rest of this chapter, the use cases are divided into an online and offline part. Especially for the
offline part, it is a complex task to construct a thorough walkthrough of all the possible use cases leading to
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the different behavior of the user model. However, as seen before, the whole offline process can be divided
into multiple (sub-) operations:

Determine the performance score
Determine the trainee’s level of motivation
Update the competence tree structure
Predict the next learning focus

vk wnh e

Predict the initial level of scaffolding

Therefore, to simplify the verification, each operation is examined separately. Operations 1 and 2 are focused
on the interactions of the trainee and the system, whereas operations 3, 4 and 5 are focused on the processed
data given as output by the previous operations. Because the term use case is no longer applicable to the
walkthrough of the possible combinations of inputs for these operations, the term parameter set is used
instead.

The exact details and the execution of each use case and parameter set is worked out in Appendix D. The
appendix also describes the exact procedure and input that was used for executing each use case or parameter
set, so they can be reenacted when necessary.

7.5.2 Examined use cases and parameter sets

For each (sub-) operation of the implemented user model, one or more use cases or parameter sets are
constructed. Each use case or parameter set is influenced by the user data that is gathered during the online
part of the deliberation cycle, consisting of the user’s actions and motivation. The obtained user data is directly
used and processed in use case 1, 2, and 3. The resulting outputs of these operations are used as input for use
case 3, 4, and 5. For each operation, the use cases or parameter sets that are investigated are set out in the
section below.

Adjust the level of scaffolding
The level of scaffolding changes when an action is performed in the correct or incorrect way, or when a time-
out takes place. Therefore, the following three use cases are examined:

1. the trainee performs the right action
2. the trainee performs the wrong action
3. atime-out occurs

Determine the performance score

The use cases examined for this operation describe the manner in which particular types of concrete trainee
behavior should result in a particular performance score. The overall performance score is calculated by taking
the average of the scores obtained for each individual action. To simplify the verification of this operation, in
the first three use cases an action plan is used containing only one action, covering all the base cases. The
fourth use case examines the calculation of the performance score when the action plan contains more than
one action. The examined main use cases are:

the trainee performs the action in the right way
the trainee performs the action after a time-out
a non-player character performs the action

Sl S

the action plan contains multiple actions

For each main use case, also the number of mistakes and whether or not a time-out took place is taken
explicitly into account. The resulting performance score is used as input for operation 4 and 5.
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Determine the trainee’s level of motivation

At the end of the scenario, the current motivation of the trainee is requested. Together with the average of
the previously registered motivation score, this concrete evaluation of the trainee’s motivation is used to infer
the more abstract level of motivation. Two use cases are considered:

1. the trainee indicates that his motivation is low
2. the trainee indicates that his motivation is high

The resulting level of motivation is used as input in operation 5.

Update the competence tree structure

The competence tree is updated based on the performance score obtained in operation 2. The main
parameter sets investigated in this verification are categorized according to the possible classes of
performance scores:

1. the performance score is bad
2. the performance score is reasonable
3. the performance score is good

Additionally, a distinction is made between node competences — competences that have underlying
competences, and leaf competences - competences that do not have underlying competences.

Select an appropriate learning focus
The learning focus can either remain the same or it can be a new learning focus. The main parameter sets
considered in this verification are:

1. the previous learning focus has been trained less than 3 times
2. the previous learning focus has been trained between 3 and 5 times
3. the previous learning focus has been trained 5 or more times

Each main parameter set also explicitly takes into account the trainee’s level of motivation and the average
performance score obtained for the current learning focus thus far.

Select an appropriate initial level of scaffolding
The performance classification associated with the selected learning focus (good, reasonable, or bad) is used
to determine an appropriate initial level of scaffolding.

7.5.3 Results

For each use case and parameter set, the expected and resulting behavior of the system is written out in
Appendix D. The expected functional behavior and the observed functional behavior exactly coincide in almost
all the use cases and parameter sets. Only in the parameter sets related to updating the competence tree,
some minor rounding errors were detected. These are probably caused by the JI Prolog engine that is used in
2APL. Nonetheless, it can be concluded that the implemented system performs exactly as specified in the
domain and task analysis, and in the conceptual user model design

7.6 Conclusion

In this chapter, the general user modeling methodology and the agent-based user model framework have
been used to implement a user model for an Adaptive Educational Game (AEG) in First Aid. Throughout the
sections, the user model was gradually developed, starting at a very abstract level, and resulting in the very
concrete implementation. To verify that the resulting system displayed the desired behavior, multiple use
cases and parameter sets were constructed and executed. The system acted in the exact same way as was
described in the initial system specification, i.e. the conceptual, functional, and technical designs. The worked
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out and implemented processes of the user model are expected to result in a progressive competence
development loop.

Extended by the implemented user model, the Multi-Agent Director System (MADS) can be seen as a
prototype for an AEG in First Aid. In order to establish that the AEG indeed results in effective learning, further
research is required. User-based experiments should be conducted to validate the usefulness of the complete
system. In the same manner, experiments should be performed to fine-tune the parameters that were defined
in the user model (see Section 7.3.1 — General Algorithms), such as the classification of performance scores.

For the user model itself, future research can be conducted to the AEG requirements that were not
investigated in the implementation. No focus was placed on the role of the user model in providing tailored
feedback (requirements R13, R14) and the influence and control of the trainer on the user model (requirement
R17). The user model can also be further improved by extending the defined algorithms. For instance, by
taking into account additional user characteristics. To investigate whether more intricate algorithms would
improve the behavior of the AEG, more experimentation would be required. Due to the modular structure of
the existing user model, the model can be easily expanded to contain the additional requirements and
features.

The application of the methodology and framework while developing a user model for an AEG in First Aid also
resulted in several findings, observations, and experiences regarding the applicability and usefulness of the
methodology and the framework. These results will be discussed in the next and final chapter; the discussion
and conclusion.
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Chapter 8

Discussion and Conclusion

This final chapter presents the discussion and conclusion of the master thesis. The discussion describes the
results and findings of the proposed general user modeling methodology and agent-based user model
framework, by looking at the worked out implementation of an adaptive educational game in First Aid.
Additional directions for future research are proposed. The conclusion completes the thesis by summarizing
the research that was done and the results that were obtained.

8.1 Discussion

In this thesis, adding personalization to a system by using a user model has been investigated. In order to aid
developers with the complex process of user modeling, a general user modeling methodology has been
constructed. The purpose of this methodology was to propose a dynamic method that captures the essence of
user modeling and bridges the current gap between domain-specific and (too) general user modeling methods.
Supplementary to this methodology, a BDI-agent-based user model framework has been proposed, to
investigate the usefulness and effectiveness of basing a user model on the intelligent agent paradigm.

To construct both methods, first a thorough review of the user modeling field was performed, which was
presented in Chapter 2. Based on this review, the technical requirements, main application domains, and
existing methods of user modeling were taken into account, and used to construct a more abstract overview in
Chapter 3. Although a possible point of discussion, we assume that enough application domains were
investigated to identify the most important underlying properties, such as the main functional components,
properties and possible solutions of user modeling. Based on the abstract overview of user modeling, both the
methodology and framework were constructed in Chapters 3 and 5. Finally, the methodology and framework
were validated and tested by applying them to the problem of adding personalization to an adaptive
educational game (AEG) in First Aid. The application of both methods resulted in several findings, observations,
and experiences regarding their applicability and usefulness.

8.1.1 General user modeling methodology

During the implementation of the user model for an AEG in First Aid, it became clear that several steps and
properties were missing in the methodology, while other properties turned out to be useless. In general, for
each design phase, it was necessary to add additional (sub-) steps to make the process between the different
phases clearer. In this way, the separation between the conceptual ideas and the technical details became
stricter. For instance, in the functional design the need for a high-level deliberation cycle was introduced, and
in the technical design, a step was added to define general algorithms before moving on to the actual
implementation. In addition, several (technical) properties were excluded, such as the format and origin of the
user data, which turned out to be too low-level for the methodology.

The methodology was adjusted to integrate the missing steps and properties. Care was taken to ensure
that the changes made to the methodology did not make the methodology too much focused on the problems
associated with AEG. We presume that the methodology is still applicable to other domains, but to be sure of
this, the methodology should also be applied and tested on other user modeling domains (see Future work).

In addition to the necessary adjustments, several other observations were made during the employment of
the methodology. The separation between the conceptual, functional, and technical design phase resulted in a
clear distinction between the ideas behind the personalization, and the technical implementation of the user
model. By defining the properties that do not specifically belong to either the conceptual or technical design
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in the functional design, the transition between both phases proceeded smoothly, in contrast to the existing
user modeling methods discussed in Section 2.3.

However, the strict separation also created several problems during the implementation of the user model.
Sometimes it was hard to keep an overview of the complete system, causing the usability and clarity of the
methodology to dwindle. For example, during the refinement of the general algorithms that were necessary to
solve the personalization problems, it sometimes was hard to keep track of the conceptual background and
desired properties on which the algorithm should be based. This problem could mean that the methodology
still fails to clearly capture the interrelations between the different design phases, and thus the conceptual
ideas and technical solutions. Therefore additional refinement of the methodology is necessary.

The methodology is designed in such a way, that it should be useful for both current and future
personalization problems. To be more concrete, it should be applicable to the application domains discussed in
the user modelling review presented in Chapter 2, but also to domains that were not part of the literature
review. For this purpose, the methodology is meant as an approach to solve the problem of personalization.
Rather than giving all the concrete options and solutions for personalization, an extendible combination of
high-level properties, possible options and guidelines was defined. As such, the methodology can be extended
; an investigation of other application domains could lead to the addition of properties and values to the
methodology.

Consequently, to keep the methodology organized, for certain problems — such as the delicate matter of
privacy, only references were added to additional literature. The drawback of this approach is that the
methodology is not directly applicable for a novice. The underlying properties and choices need additional
study before they can be applied.

8.1.2 Agent-based user model framework

During the implementation of the user model for an AEG in First Aid, the effectiveness of the agent-based user
model framework was tested as well. The framework is designed to be applied to complex personalization
problems. Due to the complexity of AEG, the framework proved to be very suitable for implementing the user
model for an AEG in First Aid.

Resulting from the implementation, additional, more specific findings can be discussed. The BDI paradigm
demonstrated to be effective for the construction of a user model. Because the BDI paradigm imposes the
clear distinction between the beliefs (data), desires (initiative), and intentions (operations) of the agent, a
strict separation between the data and the functionalities used in the user model was possible. This modular,
decomposed design also resulted in a very expandable user model. Additionally, due to the restrictions the BDI
paradigm imposed upon the user model, poorly organized constructions and mistakes could be avoided.

Considering the initiative of a user model, the BDI paradigm is especially effective for pro-active (goal-
oriented) behavior. However, when simpler, reactive or procedural behavior is sufficient, the BDI paradigm
might be too complex, and therefore superfluous. When a combination of pro-active and procedural or
reactive behavior is necessary, BDI is a good solution. Folk psychology, the theory behind the BDI paradigm, is
often also too complex for building a user model, except when the user model processes are based on a
(cognitive) model of human behavior. Altogether, because pro-active behavior is not always necessary in a
user model, to make the intelligent agent paradigm applicable for a wider range of personalization problems,
other, less complex structures could be investigated in addition to BDI.

Although of less importance, another point of discussion for the framework is related to the agent
programming language that was used: 2APL. Due to the interpretation of the BDI-paradigm by 2APL,
expressing certain features of the framework was hard and just not very graceful. For instance, it is hard to
efficiently add external components to the system to do specific (for example heavy computational)
operations. Other BDI-based agent programming languages could have been used, such as GOAL, JACK, or
SPARK (Morley, et al., 2004), but the main problem is that none of these languages is optimized to use for user
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modeling. Therefore, one of the points of future work (see below) will be concerned with adjusting 2APL, or
introducing a new, better suited BDI-based agent programming language.

8.1.3 General remarks

Considering both the methodology and the framework, we have seen that they are especially applicable to
more complex personalization problems. Due to their complexity, it is not always necessary to apply them to a
user modeling problem. As discussed in the user modeling review, it often happens that the user modeling
problems is relatively easy and straightforward, which means that using these methods could be needlessly
complex, and therefore even counterproductive. An example of the unnecessary complexity of the resulting
methodology is the running example used in Chapter 3. The personalization that is chosen turns out not to be
very complex, but the complete working-out of the methodology does become comprehensive.

Nonetheless, the methodology and framework do present a way of creating a user model in a systematic
and traceable way, which is often important for scientific research. Considering more common solution-
oriented development projects, the proposed methods are especially useful for complex projects where it is
hard to get a grip on the problem.

8.1.4 Future work

For both the general user modeling methodology and the agent-based user model framework, several
directions for further research can be suggested. As discussed above, the design and implementation of the
user model for an AEG in First Aid influenced the properties and features of the methodology. Therefore, the
most prominent point of future work is to further validate and possibly expand the methodology and
framework by applying them to additional personalization problems and domains, and to compare the
methodology to the use of alternative methodologies through user-based studies.

Future work on the general methodology can mostly be related to expanding the methodology. The proposed
methodology already captures the — in our view, most important high-level steps, properties, and choices that
should be taken into account when creating a user model, but each step, property and option has the potential
to be expanded. For instance, additional guidelines can be defined or the many differences between the
possible reasoning approaches could be worked out. In addition, the agent-based user model framework is
only one way to implement the user model. The methodology can be expanded by taking into account other
frameworks and architectures, such as the domain-specific methods discussed in Section 2.3. When expanding
the methodology, the usability and clarity of the methodology should always be taken into account.

Another direction for future work on the methodology is the development of a support tool for applying
the methodology. As observed during the implementation of the user model for an AEG in First Aid, due to the
many steps in the methodology and the interrelations between the different possible properties, applying the
methodology can become complex. A tool could be developed that captures the steps, possible choices and
resulting restrictions. This tool would also be useful for maintaining a clear overview when expanding the
general methodology.

Considering future work on the agent-based user model framework, instead of the BDI-paradigm, there are
also other, less complex, agent architectures available for developing a user model. For instance (model based)
reflex agents. For complex problems, besides BDI, also other cognitive agent architectures are worth
investigating, such as the Act-R and Soar architecture (Heuvelink, 2009). All these approaches have the same
advantages that intelligent agents present for a user model (autonomy, pro-activeness, and a distributed
design), but different, possibly useful, internal mechanisms.

Additionally, as discussed earlier, the problems that arose during the implementation of the user model
were especially related to the 2APL implementation language. Future work can be focused on expanding the
2APL language to more closely match the necessary requirements of the user model framework. A new, more
suitable BDI-based agent programming language could also be developed. According to the proposed
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framework, several key problems of user modeling can be directly addressed in this new or adjusted language.
Requirements and possible features of this language would be:

e The availability of multiple Belief Bases to make a clear distinction between the three types of data
(user profile, temporary user-related data and non-user related data). This feature also involves the
possibility of saving the data of multiple users in the same agent.

e Subdivided rule bases that represent the possible intentions of the agent, based on the three
functional components of an agent-based user model (process the incoming data, predict the user,
communicate the adaptation).

e Enhancement of the applicability of the Goal Base (desires) of the agent, in order to make goals more
useful in reactive and procedural user model processes.

e A more modular approach, where it is possible to execute certain actions in external components. For
instance, the possibility to let computational operations be handled by an external component that is
more suitable for computation.

8.2 Conclusion
In this thesis, the process of adding personalization to an application with the use of a user model has been
investigated. The main question was:

How can the process of adding personalization to an application with the use of a user model be supported?”

To answer this question two subsequent questions were asked:

1. How can the gap be bridged between high-level and low-level user modeling methods?

2. How can the intelligent agent paradigm be used to develop a user model, how effective is a user
model based on a BDI-agent, and in what type of applications would a BDI-based user model be
useful?

To answer the first question, a dynamic general user modeling methodology was proposed, capturing the
essence of user modeling. In this methodology, a strict separation was made between a conceptual, functional,
and technical design phase. The ideas from the general (high-level) user modeling methods were captured in
the conceptual design phase. The ideas from the domain-specific (low-level) user modeling methods were
captured in the technical design phase. The functional design phase was introduced to bridge the gap between
the conceptual and technical phase, by handling the user modelling properties that do not specifically belong
to either the conceptual or technical design.

The methodology was applied to the design of a user model for an AEG in First Aid. Through gradually
building the desired user model, the problems and possibilities of personalization were steadily narrowed
down. Although further research is needed, the methodology did prove to be a thorough method of designing
a user model. The methodology enabled to make a clear distinction between the ideas behind the
personalization and the technical implementation of the user model, proving the value of this approach to user
modeling.

To answer the second question, an agent-based user model framework, using the BDI architecture, was
proposed. The framework combines the user modeling domain with the intelligent agent paradigm. Just like
the general user modeling methodology, the framework was validated by applying it to the process of
implementing a user model for an AEG in First Aid. Because of the resemblance between the personalization
cycle that takes place in a user model, and the deliberation cycle of an agent, the framework proved to be a
useful way of capturing the processes and features of a user model. The abstract features, functional
components and properties of a user model, as defined in the general user modeling methodology, were all
expressible in the framework.
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The BDI architecture that was used for the internal mechanisms of the agent-based user model framework,
proved to be useful to depict the coherence, and make a distinction between the functional components, the
data, and the general deliberation cycle of the user model. Furthermore, the BDI architecture enforced
additional restrictions upon the system, which meant that common mistakes and poorly organized
constructions could be avoided.

Due to the possibility of autonomous, flexible, and robust behavior of an agent, the BDI-agent-based user
model framework is especially useful for complex personalization problems, where difficulties such as
incomplete data and unpredictability of the user play a role.

At the start of this project, the main difficulty was to get a grip on the user modeling domain, due to its broad
applicability and complexity. Through the investigation of the user modeling domain and the construction of
the methodology and framework, the domain of user modeling has been set out more clearly. This resulted in
insights and knowledge about the problem of personalization and its complexity. However, it does not mean
that the problem is solved: there are still many points of interest for future work. Hopefully, this thesis will
serve as a (first) step for researchers, designers, and developers to get a better grip on their user modeling
problem.
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Appendix A

General user modeling properties overview

This appendix presents a structured overview of the properties associated with user modeling across the
different application domains. The functional and technical properties of the following components are

provided:

1. User model functional components

1.1. Observing the user
1.2. Predicting the user
1.3. Adapting the system
2. General user model
3. User profile

A1 User model functional components

A.1.1 Observing the user

Conceptual properties

Type of observation

The type of observation done by the user model

user-based observation
system-based observation
environment-based observation
task-based observation
spatiotemporal observation

Intrusiveness of observation

The level of intrusion the observation inflicts upon the user, ranging
between intrusive and non-intrusive

Reliability of observation

The truthfulness of the observed data, ranging between unreliable
and reliable

Technical properties

Method of observation

The method for observing the user information

user interaction in the system
direct input from the user
(external) sensors

A.1.2 Predicting the user

Functional properties

Prediction model granularity

The level of detail of the model

optimized for one individual
optimized for a group of people

Prediction model accuracy

The amount of data necessary to give a good prediction

Type of trigger

The type of trigger that is used in the prediction model:

user-based trigger
system-based trigger
environment-based trigger
task-based trigger
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e spatiotemporal trigger
[ ]

Technical properties

Prediction approach

The method in which prediction takes place
e rule-based approach
e computational approach
e (cognitive) model approach

A.1.3 Adapting the system

Functional Properties

Form of adaptation

The way the system is adapted
e data structure
e data content
e data presentation
e system configuration

Intrusiveness of the adaptation

The amount of intrusion the adaptation inflicts upon the user
e intrusive
e intermediate level of intrusion
e non-intrusive

A.2  Overall user model

Functional properties

User model incentive

The amount of initiative the user model undertakes
e passive (or procedural)
e  active (pro-active or reactive)

User model operability

The moment in which the user model is active
e online
o offline
e online and offline

Technical properties

Storage location of user model

Physical location of the user model
e centralized in one location
e distributed throughout the application:
0 client-side of application
0 server-side of application

Computational power

Amount of computational power available for the user model

A.3 User profile

Functional properties

Expressiveness
(Description of user information)

The meaning and purpose of the saved data

Privacy

The accessibility of the user data

e private

e public

e distinction between different entries or different
users/systems

Readability

Interpretability of the saved data for the programmer or end-user
e readable
e notreadable
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User profile persistence

The period the user profile is saved

e temporary (for one session, as long as the user uses the

system, ...)
e forever / undetermined

Technical properties (applicable to each separate data entry)

Data type of user data entry

Concrete data type of user information

e string
e int
e Boolean

Storage location of data entry

Physical location of data
e centralized in one location
e distributed throughout the application:
0 client-side of application
0 server-side of application
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Appendix B

User model operation algorithms

In this section, for each identified (sub-) operation of the user model for an AEG in First Aid, a high-level
algorithm is worked out. Each algorithm defines the input and the steps that lead to the desired output. The
operations that are worked out, are:

Adjust the level of scaffolding (online)
Determine the performance score
Determine the trainee’s level of motivation
Update the competence tree structure
Select the next learning focus

Select the initial level of scaffolding

otk WP

The exact implementation of these algorithms can be found in the user model program code, as worked out in
Appendix C. Operation 4 and 5 are influenced by the competence data structure. More details about this
chosen data structure can be found in Section 7.3.3.

B.1  Adjust the level of scaffolding (online)

Input: the trainee behavior in the environment

Output: the adjusted level of scaffolding (LoS)

Algorithm: how the LoS is adapted depends on the type of action the trainee performs, according to the
predefined action plan of the scenario:

1. The user performs the right action: the LoS decreases by 1
2. The user performs the wrong action: the LoS increases by 1
3. Atime-out occurs: the LoS increases by 1

B.2 Determine the performance score

Input: the list of the necessary actions from the action plan, and for each action: the amount of mistakes
made, the time-outs that took place, and the LoS during each time-out

Output: the performance score of the scenario, concretized in a value between 0 and 100.

Algorithm: Whenever the trainee did not make any mistakes and no time-out(s) occurred, the performance
score should be maximal (100). When the number of mistakes increases, or when one or more time-outs
occur, the performance score decreases. The LoS during the time-out, and thus the chosen intervention,
determines the maximum score that is possible for completing a certain action. The exact relation between the
number of time-outs/mistakes and the performance score should be determined based on experimentation or
with the use of a machine learning algorithm, such as reinforcement learning.

B.3 Determine the trainee’s level of motivation

Input: current and previously registered motivation score

Output: the trainee’s level of motivation, categorized as either high, or low

Algorithm: to keep things simple, the average of the old and new motivation is taken and classified according
to the classification provided in Section 7.3.1 — General Algorithms.
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B.4 Update the competence tree structure

Input: trained learning focus, performance score, competence tree

Output: updated competence tree

Algorithm: the performance score represents the trainee’s progress related to the previous trained learning
focus, therefore the competence(s) associated with the learning focus in the tree will be updated. The score
can be categorized into three classes, each with their distinct consequences for the update that should take
place:

e The score is good: proportional to the performance score, the overall score of the tree increases.
Especially the overlying competences are affected, making it more plausible that they are selected.

e The score is reasonable: proportional to the performance score, the overall score of the tree
increases. The learning focus is likely to be trained again.

e The score is bad: proportional to the performance score, the overall score of the tree decreases.
Especially the underlying competences are affected, and might be needed to be retrained.

B.5 Select the next learning focus

Input: trainee’s level of motivation, number of times the current learning focus has been trained, average of
the performance scores gained for the current learning focus

Output: next learning focus

Algorithm: the learning focus stays the same, if:

e The current learning focus is trained less than the minimal designated times it should be
consecutively trained

e The current learning focus is trained more than the minimal, but less than the maximal designed
times, the trainee’s motivation concerning the learning focus is still high, and the average
performance score is still too low (bad)

Otherwise, a new learning focus is selected by inspecting the competence tree. For each node, starting at the
root, the user model looks at the progress score of the competence. Thanks to the invariant defined for the
competence tree, you can state that when the progress score can be categorized as good, the competence and
underlying competences can be considered to be under control. When the score is reasonable, you can state
that the underlying competences are trained well enough, but the competence itself is not. When the score is
bad, you can state that the underlying competences are not yet trained well enough, and these should be
inspected. The tree is run through until a node is detected - with no untrained children, that can be trained.

B.6  Select the initial level of scaffolding

Input: next learning focus, its associated progress score

Output: the initial LoS for the next scenario

Algorithm: to determine the initial LoS, a linear function is used. When someone has a high progress score for
the selected learning focus, the LoS is low. Otherwise, this level increases up to total support.
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Appendix C

User model source code

In this appendix, the code of the user model is presented. The code responsible for online personalization is

integrated into the monitor agent. The code responsible for the offline personalization is presented in the user

model agent.

Throughout the code, comments are placed to illustrate the program cycle and the algorithms that were

defined for each necessary user model (sub-) operation (as constructed in Section 7.3.1). The main code for

each (sub-) operation can be found on the following page:

ok W

Adjust the level of scaffolding (page 75)

Determine the performance score (page 76)
Determine the trainee’s level of motivation (page 79)
Update the competence tree structure (page 81)
Select the next learning focus (page 83)

Select the initial level of scaffolding (page 81)

In Section 7.3.1 — General Algorithms, several variable parameters where mentioned that need to be fine-

tuned in the application. In this specific implementation, the following values were chosen:

1.

A performance score and the progress score associated with a competence can be classified in the
following way:

1. [If the score is 80 or higher, it is classified as good

2. Ifthe score is between 50 and 80, it is classified as reasonable

3. If the score is below 50, it is classified as bad
The level of motivation:

1. |If the average motivation is 5 or higher, it is classified as high

2. If the average motivation is below 5, it is classified as low
The minimum amount of consecutive training sessions without changing the selected learning focus is
3, the maximum amount of consecutive training sessions without changing the selected learning focus
is5
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C.1 Monitor Agent
/*
User model implementation - on-line part, concerned with:
Applying scaffolding, based on the trainee's behavior
Calculating scenario score
Contains the "observing, processing and adapting" steps of the personalization cycle

*/
BeliefUpdates:

/* Belief update for saving the Actionplan and initial Scaffolding */

{ not actionplan(ACTIONPLAN) and not scaffolding(_) }
ActionPlan(ACTIONPLAN, SCAFFOLDING)

{ actionplan(ACTIONPLAN), scaffolding(SCAFFOLDING) }

/* Starting the monitor */

{ not start(monitor) and not scenario(done) }
StartMonitor()

{ start(monitor) }

/* Ending the monitor */

{ start(monitor) }
StopMonitor()

{ not start(monitor) }

/* Reinitialising belief base */

{ scenario(done) and scaffolding(Scaffolding) and necessaryActions(Actions) and
totalScore(Score) and scenarioScore(ScenarioScore) }
ResetScenario()

{ not scenario(done), mistakes(0), not scaffolding(Scaffolding), not
necessaryActions(Actions), not totalScore(Score), not
scenarioScore(ScenarioScore) }

{log(Al1, 51, M1, T1) }
DeleteLog(log(Al, S1, M1, T1))
{ not log(Al1, S1, M1, T1) }

/* Adding a time constraint */

{ not time_constraint(ACTION) }
TimeConstraint(ACTION)

{ time_constraint(ACTION) }

/* Maintaining and building up the total scenario score */
{ totalScore(Old) }

UpdateTotalScore(New)
{ not totalScore(0Old), totalScore(Old + New) }

{7}
UpdateTotalScore(New)
{ totalScore(New) }

{7}
RegisterScore(ScenarioScore)
{ scenarioScore(ScenarioScore) }
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{7}
AddNecessaryAction(Actions)
{ necessaryActions(Actions) }

/* Timeouts result in particular responses from the monitor in case the trainee is not performing
the right action within a certain time frame, the exact response of the monitor depends on the
current level of scaffolding. In case the level of scaffolding is 3 when the trainee time's out, the
action is performed by another (non-player) character. Whenever an action in the actionplan is
successfully executed by the trainee or auctioned off to another character, the monitor goes to the
next action. After an action is performed, a log entry is made, format: log(action(ACTION),
scaffolding(SCAFFOLDING), mistakes(N), (no)timeout) */

/* These 2 timeouts are for the last action in the actionplan, the first rule is applicable when the
level of scaffolding is at its highest (3); in this case the scenario should stop, because the last
action has been performed by the NPC. The second rule is applicable when the level of scaffolding
is anything but 3. In this case, the action has not yet been performed by the trainee, nor by one of
the NPCs. Therefore, the scenario is not done yet and the level of scaffolding is increased by one
because of the learner’s failure to perform the action in time. */
{ actionplan([action(ACTION, OPTIONS, TIMEOUT)]) and time_constraint(ACTION) and
mistakes(N) and scaffolding(3) }
TimeOut(ACTION)
{ not time_constraint(ACTION), not actionplan([action(ACTION, OPTIONS, TIMEOUT)]),
log(action(ACTION), scaffolding(3), mistakes(N), timeout), not mistakes(N),
scenario(done) }

{ actionplan([action(ACTION, OPTIONS, TIMEOUT)]) and time_constraint(ACTION) and
mistakes(N) and scaffolding(SCAFFOLDING) }
TimeOut(ACTION)
{ not time_constraint(ACTION), log(action(ACTION), scaffolding(SCAFFOLDING), mistakes(N),
timeout), not mistakes(N), mistakes(0), not scaffolding(SCAFFOLDING),
scaffolding(SCAFFOLDING+1) }

/* These 2 timeouts are for any action but the last action in the actionplan. Again there is a
distinction between the two cases regarding the level of scaffolding. Only in this case, the first rule
replaces the current action plan with the action plan that is left after removing the current action.
The second rule is the same as the second rule above: it increases the level of scaffolding by 1.*/
{ actionplan([action(ACTION, OPTIONS, TIMEOUT)|REST]) and time_constraint(ACTION) and
mistakes(N) and scaffolding(3) }
TimeOut(ACTION)
{ not time_constraint(ACTION), not actionplan([action(ACTION, OPTIONS, TIMEOUT)|REST]),
actionplan(REST), log(action(ACTION), scaffolding(3), mistakes(N), timeout),
not mistakes(N), mistakes(0) }

{ actionplan([action(ACTION, OPTIONS, TIMEOUT)|REST]) and time_constraint(ACTION) and
mistakes(N) and scaffolding(SCAFFOLDING) }
TimeOut(ACTION)
{ not time_constraint(ACTION), log(action(ACTION), scaffolding(SCAFFOLDING), mistakes(N),
timeout), not mistakes(N), mistakes(0), not scaffolding(SCAFFOLDING),
scaffolding(SCAFFOLDING+1) }

/* TestAction tests whether the trainee's taken action is correct. If it is incorrect it will increase the
level of scaffolding. Whenever an action in the actionplan is successfully executed by the trainee or
auctioned off to another character, the monitor goes to the next action.*/

/* Testaction for correctly executing the last action in the actionplan. Because this is the last
action in the plan, the scenario comes to an end after processing this action.*/
{ actionplan([action(ACTION, OPTIONS, TIMEOUT)]) and mistakes(N) and
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time_constraint(ACTION) and scaffolding(SCAFFOLDING) }
TestAction(ACTION)
{ not time_constraint(ACTION), not actionplan([action(ACTION, OPTIONS, TIMEOUT)]),
log(action(ACTION), scaffolding(SCAFFOLDING), mistakes(N), notimeout), not
mistakes(N), scenario(done) }

/* These 2 actions are for correctly executing any action but the last in the actionplan. The first
rule is applicable when the level of scaffolding is 0. This case is handled separately because the
level of scaffolding is already at its minimum and is not decreased any further. The second rule is
for all other cases; in these cases the level of scaffolding is decreased by one because of the
correct performance of the action. */
{ actionplan([action(ACTION, OPTIONS, TIMEOUT)|REST]) and mistakes(N) and
time_constraint(ACTION) and scaffolding(0) }
TestAction(ACTION)
{ not time_constraint(ACTION), not actionplan([action(ACTION, OPTIONS, TIMEOUT)|REST]),
actionplan(REST), log(action(ACTION), scaffolding(0), mistakes(N),
notimeout), not mistakes(N), mistakes(0) }

{ actionplan([action(ACTION, OPTIONS, TIMEOUT)|REST]) and mistakes(N) and
time_constraint(ACTION) and scaffolding(SCAFFOLDING) }
TestAction(ACTION)
{ not time_constraint(ACTION), not actionplan([action(ACTION, OPTIONS, TIMEOUT)|REST]),
actionplan(REST), log(action(ACTION), scaffolding(SCAFFOLDING),
mistakes(N), notimeout), not mistakes(N), mistakes(0), not
scaffolding(SCAFFOLDING), scaffolding(SCAFFOLDING-1) }

/* These 2 test actions are for incorrectly executing any action in the actionplan. The first action is

the case where the level of scaffolding is at its maximum value. In this case the level of scaffolding

is not increased. In the second rule all other cases are handled; in these cases the level of

scaffolding is increased by one because of the incorrect performance of the action. */

{ not actionplan([action(ACTION, OPTIONS, TIMEOUT)|_]) and mistakes(N) and scaffolding(3) }
TestAction(ACTION)

{ not mistakes(N), mistakes(N+1) }

{ not actionplan([action(ACTION, OPTIONS, TIMEOUT)|_]) and mistakes(N) and
scaffolding(SCAFFOLDING) }
TestAction(ACTION)
{ not mistakes(N), mistakes(N+1), not scaffolding(SCAFFOLDING),scaffolding(SCAFFOLDING+1) }

Beliefs:

/* Initially 0 mistakes are made. */
mistakes(0).

Goals:

/* Monitor's goals */
keep( time_constraint )

PG-rules:

/* When the trainee is expected to perform an action, a time constraint is expected. As such, each
action has a Time variable (in seconds). This is then passed on to the environment. A timer thread
is then made in the environment which will throw the event in the specified amount of time. */

keep( time_constraint ) <- not scenario(done) and start(monitor) and
actionplan([action(ACTION, _, TIME)|_]) and not time_constraint(ACTION) |
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{[ TimeConstraint(ACTION);
@env( timerEvent( ACTION, TIME ), _)
13

PC-rules:

/* When the director informs the monitor of the actionplan, save the actionplan and scaffolding in
the beliefbase. */
message( director, inform, _, _, actionplan(ACTIONPLAN, SCAFFOLDING) ) <- true |
{
retrieveNecessaryActions(ACTIONPLAN, [1);
ActionPlan(ACTIONPLAN, SCAFFOLDING)

b

/* Subtract the necessary actions */
retrieveNecessaryActions([action(Action, Options, Time) | REST], SkillList) <- true |
{
if B REST =[] ) then {
AddNecessaryAction([Action | SkillList])
} else {
retrieveNecessaryActions(REST, [Action | SkillList] )
b
}

/* When the director informs the monitor to start, it starts.*/

message( director, inform, _, _, start(monitor) ) <- not start(monitor) and not
scenario(done) |

{[
StartMonitor()

1>

/* When the scenario plan is finished, ask the trainee some necessary questions and inform the
director about the scenario results */
message( director, inform, _, _, scenario(evaluate) ) <- scenario(done) |
{I
// Ask the trainee for its current motivation
B(VARLIST = [ ["1", "1"], ["3", "3"], ["5", "5"], ["7", "7"], ["9", "9"1 D);
@env( speechAct( monitor, ': Please assign a number to you current motivation (1 =
not motivated, 9 = very motivated)', VARLIST), X);
B(X = [actionresult(Z)] and Y = [Z]);

// Calculate scenario score
calculateScore();
B(scenarioScore(Score));

// Inform the director of the results
send( director, inform, performance(score( Score ), motivation( Z ) ))

1>

/* Resetting the different scenario dependent beliefs when the scenario is finished */
message( director, inform, _, _, reset(beliefs) ) <- scenario(done) |

{I

ResetScenario()

1>

/* Adjust the level of scaffolding
The level of scaffolding gets adjusted according to the correctness of the trainee’s
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actions, and when a time-out occurs. BeliefUpdates are called upon to change the
level of scaffolding in the Belief Base */

/* If the trainee performs an action (thrown by the environment), it is tested by the monitor. */
event( trainee_action(ACTION), env ) <- not scenario(done) and start(monitor) |
{I

TestAction(ACTION);

checkDevelopement()

1>

/* If the timer event is thrown, the current level of scaffolding is used to determine what action to
take, based on the actionplan. For level of scaffolding 0, no action is taken. For level of scaffolding
1, goal 1 is sent to the director for auctioning, for level of scaffolding 2, goal 2 is sent, etc. */
event( timer(ACTION), env ) <- not scenario(done) and actionplan([action(ACTION, [GOAL1,
GOAL2, GOAL3], _)|_D and time_constraint(ACTION) and scaffolding(SCAFFOLDING) |

{I
if B(SCAFFOLDING = 0) then
{
skip
¥
else if B(SCAFFOLDING = 1) then
{
send( director, inform, auction( GOAL1 ) )
¥
else if B(SCAFFOLDING = 2) then
{
send( director, inform, auction( GOAL2 ) )
¥
else if B(SCAFFOLDING = 3) then
{
send( director, inform, auction( GOAL3 ) )
b
TimeOut(ACTION);
checkDevelopement()
13

/* Check if the scenario has ended due to a time out or a correct action */
checkDevelopement() <- scenario(done) |

{
StopMonitor();
send( director, inform, end( scenario ) )
b
checkDevelopement() <- true |
{
skip
b

/* Determine the performance score

Recursive function to calculate the score at the end of the scenario, by examining the
scenario log. Log details:

log(action(ACTION), scaffolding(SCAFFOLDING), mistakes(N), (no)timeout)

An action is logged when a time-out takes place or the action is performed by the trainee or a
character. In the belief base, the log is build up sequentially: logs are ordered according to time.
Mistake details: When a time-out takes place, the amount of mistakes do not directly influence the
maximum score; each mistake causes the LoS to drop, causing MaxScore to drop, resulting in the
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preferred behaviour. When a time-out has occurred before the trainee correctly finishes the Action,
possible mistakes have a relatively bigger influence on the Score */

calculateScore() <- necessaryActions( ActionList ) |

{

calculateActionScore(ActionList, 100)

¥

/* Calculate scenario score: no more actions are left, lets wrap things up! */
calculateActionScore( [], MaxScore ) <- necessaryActions( ActionList ) |

{
// Calculate the average score of the whole scenario
B(
totalScore(X) and
length(ActionList, Length) and
is( ScenarioScore, (X / Length))
)i
RegisterScore(ScenarioScore)
b

/* Calculate scenario score: the action got a time-out */
calculateActionScore( [Action | REST], MaxScore ) <- log(action(Action),
scaffolding(Scaffolding), mistakes(N), timeout) |
{
if B(Scaffolding = 3) then {
// instantly give a 0 performance score
UpdateTotalScore(0);
// delete log entry
DeleteLog(log(action(Action),scaffolding(Scaffolding),mistakes(N),timeout));
// continue with the next log entry
calculateActionScore( REST, 100 )

else {
// decrease the maximal possible score
B(is(NewMaxScore, ( 100 - (25 * (Scaffolding + 1)) )));
DeleteLog(log(action(Action),scaffolding(Scaffolding),mistakes(N),timeout));
// continue with the next log entry, since Action not finished
calculateActionScore( [Action | REST], NewMaxScore )

3

/* Calculate scenario score: the action was done correctly by the trainee */
calculateActionScore( [Action | REST], MaxScore ) <- log(action(Action),
scaffolding(Scaffolding), mistakes(N), notimeout) |
{
// subtract the penalty (amount of mistakes) made from the maximal possible score (25
per mistake)
B( is(ActionScore, max(0, (MaxScore - (N * 25)))) );
// add the action score to the total score
UpdateTotalScore(ActionScore);
// delete log entry
DeletelLog(log(action(Action), scaffolding(Scaffolding), mistakes(N), notimeout));
// continue with the next action
calculateActionScore( REST, 100 )
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C.2  User Model Agent

/*

User model implementation - off-line part. especially concerned with initialization and evaluation of
the scenario

Functionalities for updating the competences, considering competence progress
Functionalities for selecting a new learning focus

Functionality for determining the initial level of scaffolding

Functionalities for keeping track of the trainee's motivation

Contains the "processing" and "reasoning" steps of the personalization cycle

*/
BeliefUpdates:

/* Register and maintain the learning focus and level of scaffolding */

{ learningFocus(0Old, TimesTrained) and learningFocusAverage(Old, Score) }
UpdateLearningFocus(New)

{ not learningFocus(Old, TimesTrained), learningFocus(New, 0), not learningFocusAverage(Old,

Score) }

{7’
UpdatelearningFocus(New)
{ learningFocus(New, 0) }

{ currentLoS(0OId) }
UpdateLoS(New)
{ not currentLoS(0Id), currentLoS(New) }

{3
UpdateLoS(New)

{ currentLoS(New) }

{ competence( Name, Scorel, Parent, SkillList ) }
UpdateCompetence(Name, Scorel, Score2)
{ not competence( Name, Scorel, Parent, SkillList ), competence( Name, Score2, Parent, SkillList

)}

/* Update counter to keep an eye on the amount of times a competence was trained */{
learningFocus(Name, Number) }

IncreaseCounter(Name)
{ not learningFocus(Name, Number), learningFocus(Name, Number + 1) }

/* Keep track of the average score of the current learning focus */

{ learningFocusAverage(Name, OldScore) }
UpdatelLearningFocusAverage(Name, Score)

{ not learningFocusAverage(Name, OldScore),
learningFocusAverage(Name, (Score + OldScore) / 2) }

{7’
UpdatelLearningFocusAverage(NewName, Score)
{ learningFocusAverage(NewName, Score) }

/* Keeping track of the trainee's motivation*/
{ motivation(Old) }
UpdateMotivation(New)
{ not motivation(OId), motivation((New + OId) / 2) }
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{7
UpdateMotivation(New)
{ motivation(New) }

{ motivationLevel(Old) }
ChangeMotivation(Motivation)
{ not motivationLevel(Old), motivationLevel(Motivation) }

{7}
ChangeMotivation(Motivation)
{ motivationLevel(Motivation) }

Beliefs:

/* Competence tree data structure: competence(Name, Score, Parent, [ Children* ]),
where Children is of the same format as competence(...)
The initial values in this tree are chosen to work with the specified use cases (see Appendix D). In
case the trainee is new, all values are set to 0 and are dynamically updated based on the
performance scores of the trainee.*/
competence(sociale_vaardigheden, 8.75, root, [verantwoordelijkheid_nemen,
communiceren, plannen_en_organiseren, samenwerken, assertiviteit]).
competence( verantwoordelijkheid_nemen, 0, sociale_vaardigheden, [
gerust_stellen, betrokkenheid, delegeren] ).
competence( gerust_stellen, 0, verantwoordelijkheid_nemen, [] ).
competence( betrokkenheid, 0, verantwoordelijkheid_nemen, [] ).
competence( delegeren, 0, verantwoordelijkheid_nemen, [] ).
competence( communiceren, 70, sociale_vaardigheden, [ uitvragen, rapporteren ] ).
competence( uitvragen, 90, communiceren, [] ).
competence( rapporteren, 80, communiceren, [ abc_rapportage ] ).
competence( abc_rapportage, 80, rapporteren, [] ).
competence( plannen_en_organiseren, 0, sociale_vaardigheden, [] ).
competence( samenwerken, 0, sociale_vaardigheden, [] ).
competence( assertiviteit, 0, sociale_vaardigheden, [] ).

Goals:
observe(motivation)
PG-rules:

/* Determine the trainee’s level of motivation
Keep track of the trainee's motivation, if too low, take appropriate actions */
observe(motivation) <- motivation(M) and M < 5 and not motivationLevel(low) |

{

ChangeMotivation(low)

¥

observe(motivation) <- motivation(M) and M >= 5 and not motivationLevel(high) |

{
ChangeMotivation(high)

b

PC-rules:

/* Initial message from the director to initiate scenario */
message( director, request, _, _, request(userModelData) ) <- true |
{
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determinelLearningFocus();
B( learningFocus(Focus, Number) );

B( competence( Focus, CurrentScore, Parent, SkillList ) );
determineLoS(competence(Focus, CurrentScore));
B( currentLoS(LoS) );

// Send the learning focus and level of scaffolding back to the director
send( director, inform, userData( learningFocus(Focus), scaffolding(LoS) ) )

b

/* Scenario results from scenario are sent from the director, determine parameters to pick new
scenario */
message( director, inform, _, _, update(competence(Name, Score), motivation(Motivation) ) ) <-
true |
{

// Update the current motivation

UpdateMotivation(Motivation);

// Increase Times-Learned-Competence counter
IncreaseCounter(Name);

// Update the average score of the current learning focus
UpdatelLearningFocusAverage(Name, Score);

initiateNewScenario(Name)

b

/* Determine learning focus and level of scaffolding
If the previous learning focus is not yet trained enough (time trained < 5 and
average score < 80) and the trainee is still motivated, keep the same focus */
initiateNewScenario(Focus) <- learningFocus(Focus, Counter) and
learningFocusAverage(Focus, Score) and ((Counter < 5 and Score < 80 and
motivationLevel(high)) or (Counter < 3) ) |

{
// Keep the same focus, determine a new LoS
determineLoS(competence(Focus, Score));
B( currentLoS(LoS) );
send( director, inform, userData( learningFocus(Focus), scaffolding(LoS) ) )
b

/* Determine learning focus and level of scaffolding
If the previous learning focus is trained well enough, or for at most 5 times,
determine a new learning focus and accompanying level of scaffolding */
initiateNewScenario(OldFocus) <- learningFocus(OldFocus, Counter) and
learningFocusAverage(OldFocus, Score) and ((Counter >= 3 and
(motivationLevel(low) or Score >= 80)) or (Counter > 4)) |

// Update the competence tree with the new score
updateTree(competence(OldFocus, Score));

determinelLearningFocus();
B( learningFocus(Focus, Number) );
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b

B( competence( Focus, CurrentScore, Parent, SkillList ) );
determineLoS(competence(Focus, CurrentScore));
B( currentLoS(LoS) );

// Send the learning focus and level of scaffolding back to the director
send( director, inform, userData( learningFocus(Focus), scaffolding(LoS) ) )

/* Select the initial level of scaffolding

Procedural approach to determine the level of scaffolding when a learning focus
has been chosen */

determineLoS(competence(Name, CurrentScore)) <- true |

{

b

if B(CurrentScore < 25 ) then {

UpdatelLoS(3)

b

else if B(CurrentScore < 50 ) then {
UpdatelLoS(2)

b

else if B(CurrentScore < 75 ) then {
UpdatelLoS(1)

b

else if B(CurrentScore =< 100 ) then {
UpdatelLoS(0)

b

/* Updating the competence tree structure

Update the recently trained learning focus, and every competence above, and
when necessary below. Formalized, the following update takes place:

Parent = OldParent - ((min(100, OldChild/4 * 5)) / 2) / #Children +

((min (100, NewChild /4 * 5)) / 2) / #Children

When a score is below 50, the underlying children get a penalty:

ChildNew = ChildOld - (50 - Parent)
Invariant: When each child of a competence node ranges between 80-100, the
competence node itself will be 50%  */

/* The competence that should be updated is a LEAF */
updateTree( competence(Name, Progress) ) <- competence(Name, OldScore, Parent, []) |

{

b

// Overwrite previous score
UpdateCompetence(Name, OldScore, Progress);

// Update competence score of parent
updateParent(Parent, OldScore, Progress)

/* The competence that is updated is a NODE

Score >= 50: Competence was trained well enough; general tree score increases
Score < 50: Competence score is embarrassing, general tree score decreases */

updateTree( competence(Name, Progress) ) <- competence(Name, Current, Parent, SubSkills) |

{

if B( Progress >= 50 ) then {
// Overwrite previous score
UpdateCompetence(Name, Current, Progress);
// Recalculate the parent scores
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updateParent(Parent, Current, Progress)

¥

else if B( Progress < 50 ) then {
// Reset own competence score to 50
UpdateCompetence(Name, Current, 50);
// Update parents according to the new score
updateParent(Parent, Current, 50);
// Determine penalty due to the low score
B( is( Penalty, 50 - Progress ) );
// Recalculate the scores of the children. The new competence score is
determined automatically
updateChildren(SubsSkills, Penalty)

b

/* Reduce the score of each child with the penalty that was given */
updateChildren( [X|REST], Penalty ) <- competence(X, Current, Parent, SubSkills) |
{

// Reduce the current score, with the penalty

B( is( ReducedScore, Current - Penalty ) );

// Recalculate the scores in the tree according to the new value

updateTree( competence(X, ReducedScore) );

// Recursively continue updating the rest of the list of children, as long as the list

is not empty

if B( not (REST = []) ) then {

updateChildren(REST, Penalty)

¥

b

/* Update the parent of the current node or leaf */
updateParent( ParentName, ChildOldScore, ChildProgress ) <- competence(ParentName,
ParentOldScore, GrandParent, SubSkills) |

{
// Calculate the new competence score of the parent
B(
// Adjust the incoming child score, necessary for the mapping of scores
ranging between 80-100 to score 100
is(AdjustedChildOldScore, (min(100, (5 * (ChildOldScore / 4))))) and
is(AdjustedChildProgress, (min(100, (5 * (ChildProgress / 4))))) and
// Calculating the new parent score by replacing the old childscore with the
new childscore
length(SubSkills, Length) and
is(Minus, ( 0.5 * (AdjustedChildOldScore / Length) )) and
is(Plus, ( 0.5 * (AdjustedChildProgress / Length) )) and
is(UpdatedParentScore, (ParentOldScore + Plus) - Minus)
)i
// Update existing competence with the new score
UpdateCompetence(ParentName, ParentOldScore, UpdatedParentScore);
// Update the parent competence
updateParent( GrandParent, ParentOldScore, UpdatedParentScore)
b

/* The parent node is the tree root */
updateParent( root, ChildOIdScore, ChildProgress ) <- true |
{
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skip
b

/* Select the next learning focus
Invariant: When each child of a competence node ranges between 80-100, the
competence node itself will be 50%. This means that when a main skill is < 50,
there exists a sub-skill that must be trained. This infers that it is not possible to
look at an empty list of sub skills and thus reduces possible cases */

/* Start with the root skill of the tree

Score >= 50: pick root skill as learning focus

Score < 50: inspect the sub skills of the root skill, randomly choose one */
determinelLearningFocus() <- competence(Skill, Score, root, SkillList) |

{
if B(Score >= 50) then
{
UpdatelLearningFocus(Skill)
b
else if B( Score < 50 ) then
{
determineRandomLearningFocus(SkillList)
b
b

/* Look at the underlying competences of the main competence, each a LEAF

Score < 80: skill must be trained again until score > 80, so skill will be learning focusScore
>= 80: skill is trained well, inspect the skill's siblings, randomly choose one */
determinelLearningFocus( [ Skill | Rest ] ) <- competence( Skill, Score, Parent, []) |

{
if B( Score < 80 ) then

{
UpdatelearningFocus(Skill)
b
else if B( Score >= 80 ) then
{
determineRandomLearningFocus(Rest)
b

b

/* Look at the underlying competences of the main competence, each a NODE
Score < 50: inspect the sub skills, randomly choose one
50 >= Score < 80: sub skills are trained well, main skill will be learning focus
Score >= 80: main skill and subs skills are trained well, inspect the skill's siblings,
randomly choose one */

determinelLearningFocus( [ Skill | Rest ] ) <- competence(Skill, Score, Parent, SkillList) |

{
if B( Score < 50 ) then

{ determineRandomLearningFocus(SkillList)
lee if B( Score < 80 and Score >= 50 ) then

{ UpdatelearningFocus(Skill)

glse if B( Score >= 80 ) then

{
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determinelLearningFocus(Rest)

¥

/* Select a random competence to test next */
determineRandomLearningFocus( SkillList ) <- true |

{
B(
length(SkillList, Length) and
is( Index, int(random(Length)) ) and
nth0(Index, SkillList, Element) and
delete(SkillList, Element, Abridged_SkillList)
)i
determineLearningFocus( [ Element | Abridged_SkillList ] )
b

/* Something went wrong in determining the next learning focus - should be impossible */
determinelLearningFocus( [] ) <- true |

{

UpdatelLearningFocus(something_went_wrong)

b
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Appendix D

Adaptive educational game Use Cases

In this appendix, the use cases that were constructed to verify the different sub-operations of the user model
are worked out. The sub-operations of the user model that were verified are:

Online:

1. Adjust the level of scaffolding

Offline:
2. Determine the performance score
3. Determine the trainee’s level of motivation
4. Update the competence tree structure
5. Select the next learning focus
6. Select the initial level of scaffolding

Each use case gives a detailed description of the possible interactions that can take place between the trainee
and the system. When the operation does not get direct input from the user, instead of a description of the
possible use cases, the possible sets of parameters are given and tested. These parameters are made concrete
and often belong to a certain class of input (parenthesized). Relatively easy subtasks or operations, such as
taking the average of a new and an old score, are assumed to be correct and therefore excluded. Each use case
or parameter set has the following format:

1. Input provided to the function
2. Expected functional behavior
3. Observed functional behavior

The expected functional behavior is determined according to the algorithms defined in Appendix B, that were
later worked out in the implementation (see Appendix C). When the expected and the observed behavior
coincide, it means that the user model performs the desired behavior. To reduce the different possible use
cases, in some cases multiple slightly different inputs are given. The corresponding expected and observed
behavior are systematically written down in the same use case.

To ensure that the different use cases and parameter sets can be reenacted, the general input and the way
how the result was observed are specified for each sub-operation. The general input specifies how the input
for the use case is constructed, such as the actions done in the systems or the initial content of the belief base.
The initial belief base can consist of multiple specific predicates, which can contain variables that change for
each use case. These variables are given in italics and start with a capital letter.
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D.1  Adjust the Level of Scaffolding

The level of scaffolding (LoS) determines what kind of intervention will take place after a time-out occurs.
During a scenario, the LoS is adjusted when the trainee performs an action (either correct or incorrect), or
when a time-out takes place.

General Input
The following scenario plan is used:
Learning focus: calm victim
Possible actions in the scenario: 'calm victim', 'stabilize limb', 'do nothing'
Action plan:
calm: Interventions:
LoS 0: do not perform an action
LoS 1: hint: Wow, he/she needs to calm down!
LoS 2: hint: Maybe you should try to calm him/her down first
LoS 3: take over action: calm the victim

The desired LoS is gained by waiting for a time-out during the scenario run. It can range between 0 and 3.

Observation of the result
After the input is processed, the value of the predicate scaffolding(Level) in the belief base is inspected.

Use case 1: the trainee performs the right action
Input: the trainee performs the desired action ‘calm’ in the environment.

The current LoS is 0
The current LoS is 1
The current LoS is 2
The current LoS is 3

PwnN PR

Expected functional behavior: the LoS is decreased by 1, with a minimum value of 0

The LoS stays 0

The LoS is decreased to 0
The LoS is decreased to 1
The LoS is decreased to 2

PwnNR

Observed functional behavior:

The belief base is not changed

The belief base is updated by removing scaffolding(1) and adding scaffolding(0)
The belief base is updated by removing scaffolding(2) and adding scaffolding(1)
The belief base is updated by removing scaffolding(3) and adding scaffolding(2)

PwnNR

Use case 2: the trainee performs the wrong action
Input: the trainee performs the wrong action (either "do nothing’ or “stabilize limb’) in the environment.

The current LoS is 0
The current LoSis 1
The current LoS is 2
The current LoS is 3

PwnNR

Expected functional behavior: the LoS goes up by 1, with a maximum value of 3

86



The current LoS is increased to 1
The current LoS is increased to 2
The current LoS is increased to 3
The current LoS stays 3

PwnNR

Observed functional behavior:

The belief base is updated by removing scaffolding(0) and adding scaffolding(1)
The belief base is updated by removing scaffolding(1) and adding scaffolding(2)
The belief base is updated by removing scaffolding(2) and adding scaffolding(3)
The belief base is not changed

el

Use case 3: a time-out occurs

Input: the trainee fails to perform the action “calm” in the environment before a Time-Out takes place.

The current LoS is 0
The current LoS is 1
The current LoS is 2
The current LoS is 3

PwnhR

Expected functional behavior: the LoS is increased by 1 with a maximum value of 3, an intervention is
executed. the content of the intervention depends on the previous value of the LoS.

1. The current LoS is increased to 1, nothing happens

2. The current LoS is increased to 2, one of the characters gives the hint “Wow, he/she needs to calm
down!”

3. The current LoS is increased to 3, one of the characters gives a hint “Maybe you should try to calm
him/her down first”

4. The current LoS stays at 3, one of the characters takes over the action

Observed functional behavior:

1. The belief base is updated by removing scaffolding(0) and adding scaffolding(1), no message is sent
2. The belief base is updated by removing scaffolding(1) and adding scaffolding(2) , a message is sent to
the director to start an auction among the characters to perform the hint “Wow, he/she needs to

calm down!”

3. The belief base is updated by removing scaffolding(2) and adding scaffolding(3) , a message is sent to
the director to start an auction among the characters to perform the hint “Maybe you should try to
calm him/her down first”

4. The belief base is not changed, a message is sent to the director to start an auction among the
characters to perform the action “calm the victim”

D.2 Determine the performance score

The performance score of the previous scenario expresses the progress of the trainee. The score of each
individual action is influenced by the correctness of the action, the amount of mistakes made and whether or
not a time-out took place. The first three use cases examine the calculation of the performance score when
the action plan contains just one action. The fourth use case examines the performance score when the action
plan consists of more than one action.

General input
For use cases 1, 2 and 3, the same action plan as given in Section D.1 is used. For use case 4, the action plan is
extended with an additional action:

Stabilize leg: Interventions:
LoS 0: do not perform an action
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LoS 1: hint: That leg still looks really bad!
LoS 2: hint: 'Perhaps you should try to stabilize the leg’
LoS 3: stabilize the victim’s leg

The prerequisite inputs for each use case are gained by performing certain actions in the system. The defined
LoS is gained by waiting for a time-out during the scenario run. The defined number of mistakes is obtained by
executing the action ‘do nothing’ zero or more times. The performance score itself can range between 0 and
100.

Observation of the result

After the scenario is finished and the performance score is calculated by the Monitor agent, the predicate
scenarioScore(Score) in the belief base contains the final performance score. Because use cases 1, 2 and 3 only
contain one action, the total score is the same as the score for this individual action.

Use case 1: the trainee petforms the action in the right way
Input: the trainee performs the right action (calm) in the environment, without any time-outs

Number of mistakes:
Number of mistakes:
Number of mistakes:
Number of mistakes: 3

Number of mistakes: 4 or more

vk wNE
N R O

Expected functional behavior: the resulting score is 100, decreased according to the number of mistakes that
were made

The resulting score is 100
The resulting score is 75
The resulting score is 50
The resulting score is 25
The resulting score is 0

v wN e

Observed functional behavior: the total amount of points for the scenario should be increased with the points
gained for performing the action

the belief base is altered by adding the belief scenarioScore (100)
the belief base is altered by adding the belief scenarioScore (75)
the belief base is altered by adding the belief scenarioScore (50)
the belief base is altered by adding the belief scenarioScore (25)
the belief base is altered by adding the belief scenarioScore (0)

e wN e

Use case 2: the trainee performs the action after a time-out
Input: the trainee performs the action (calm) after a time-out,

1. LoS during the time-outis 0

1.1. amount of mistakes is O

1.2. amount of mistakes is 1

1.3. amount of mistakes is 2

1.4. amount of mistakes is 3 or more
2. LoS during the time-out is 1

2.1. amount of mistakes is 0

2.2. amount of mistakes is 1

2.3. amount of mistakes is 2 or more
3. LoS during the time-out is 2
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3.1. amount of mistakes is 0
3.2. amount of mistakes is 1 or more

Expected functional behavior: when the LoS during the time-out and / or when the amount of mistakes after
finally performing the right action increases, the score for the individual action decreases

1. LoS during the time-out is 0
1.1. the resulting score is 75
1.2. the resulting score is 50
1.3. the resulting score is 25
1.4. the resulting scoreis 0

2. LoS during the time-out is 1
2.1. theresulting score is 50
2.2. the resulting score is 25
2.3. theresulting scoreis 0

3. LoS during the time-out is 2
3.1. the resulting score is 25
3.2. theresulting scoreis 0

Observed functional behavior:

1. LoSduring the time-outis O
1.1. the belief base is altered, by adding the belief scenarioScore (75)
1.2. the belief base is altered, by adding the belief scenarioScore (50)
1.3. the belief base is altered, by adding the belief scenarioScore (25)
1.4. the belief base is altered, by adding the belief scenarioScore (0)
2. LoS during the time-out is 1
2.1. the belief base is altered, by adding the belief scenarioScore (50)
2.2. the belief base is altered, by adding the belief scenarioScore (25)
2.3. the belief base is altered, by adding the belief scenarioScore (0)
3. LoS during the time-out is 2
3.1. the belief base is altered, by adding the belief scenarioScore (25)
3.2. the belief base is altered, by adding the belief scenarioScore (0)

Use case 3: a non-player character performs the action
Input: the trainee waits too long before performing an action and the current LoS is 3

Expected functional behavior: the MADS takes over the action and ensures that one of the non-player
characters performs the action. The resulting score for this action is 0

Observed functional behavior: the belief base is altered, by adding the belief scenarioScore (0)

Use case 4: the action plan contains multiple actions
Input: For this use case we consider several action plan executions:

1. theinitial LoS is 1, a time-out takes place, the right action is performed (calm), a mistake is made (do
nothing), and the right action is performed (stabilize)

2. theinitial LoS is 2. First, a wrong action is performed (do nothing), then the right actions are
performed (calm, stabilize)

3. theinitial LoS is 3, a time-out takes place for the first action (calm), the right action is performed
(stabilize)

Expected Functional Behavior:

1. the resulting score of the whole scenario is 62.5 ( (50 + 75) / 2)
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2. theresulting score of the whole scenario is 87.5 ( (75 + 100) / 2)
3. the resulting score of the whole scenario is 50 ( (0 + 100) / 2)

Observed Functional Behavior:

1. the belief base is altered, by adding the belief scenarioScore (62.5)
the belief base is altered, by adding the belief scenarioScore (87.5)
3. the belief base is altered, by adding the belief scenarioScore (50)

D.3 Determine the trainee’s level of motivation

The level of motivation influences the selection of the next learning focus. At the end of the scenario, the
current motivation of the trainee is requested. This motivation is processed by taking the average of the
current motivation and the previously processed motivation score.

General input
To get the desired previous value and level of motivation, additional predicates were added to the belief base
of the user model agent:

motivation(Value)
motivationLevel(Value)

The predicate motivation(Value) depicts the previously processed motivation. Both the observed as the
processed motivation score can range between 1 and 9. The resulting level of motivation can be low (selected
when motivation <5) or high ( selected when motivation >=5).

Observation of the result
The predicate motivationLevel(low / high) depicts whether the level of motivation is high or low. This predicate
should change according to the observations made.

Use case 1: the trainee indicates that his motivation is low

Input: the observed motivation is 3

1. the previously processed motivation is 3, the level of motivation is low
2. the previously processed motivation is 5, the level of motivation is high

Expected functional behavior:

1. the processed motivation stays 3, the level of motivation stays low
2. the processed motivation becomes 4, the level of motivation becomes low

Observed functional behavior:

1. the belief base is not changed
2. the predicate motivation(5) is deleted and the predicate motivation(4) is added, the predicate
motivationLevel(high) is deleted and motivationLevel(low) is added

Use case 2: the trainee indicates that his motivation is high
Input: the processed motivation score is 7 (equal or higher than 5)

1. the previously processed motivation is 3, the level of motivation is low
2. the previously processed motivation is 5, the level of motivation is high

Expected functional behavior:

1. the processed motivation becomes 5, the level of motivation becomes high
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2. the processed motivation becomes 6, the level of motivation stays high
Observed functional behavior: the belief base is changed

1. the predicate motivation(3) is deleted and the predicate motivation(5) is added, the predicate
motivationLevel(low) is deleted and motivationLevel(high) is added

2. the predicate motivation(5) is deleted and the predicate motivation(6) is added, the predicate
motivationLevel(high) is not changed

D.4 Update the competence tree structure

Before determining the next learning focus, the current competence tree is updated with the performance
score of the previous scenario. In the different parameter sets of this section, a distinction is made between
the performance score being bad (< 50), being reasonable (>= 50 and < 80) or being good (>= 80).

General input

The competence that was trained can be a leaf competence (a competence that does not have underlying
competences) or a node competence (a competence that does have one or more underlying competences).
The competence tree that we will use for these use cases has the following structure (competences that are in
the same cluster and have the same level of indentation, are siblings of each other):

sociale_vaardigheden, score = 17.5
verantwoordelijkheid_nemen, score =0
gerust_stellen, score =0
betrokkenheid, score =0
delegeren, score =0
communiceren, score =70
uitvragen, score = 90
rapporteren, score = 80
abc_rapportage, score = 80
plannen_en_organiseren, score = 70
samenwerken, score = 0
assertiviteit, score = 0

The scores in this tree have been calculated by hand according to the algorithm worked out in Appendix C. To
recap, the update formula for the score of a parent is:

Parent = OldParent — ((min(100, OldChild/4 * 5)) / 2) / #Children + ((min (100, NewChild /4 * 5)) / 2) / #Children
When a score is below 50, the underlying children get a penalty: ChildNew = ChildOld — (50 — Parent)

Additionally, the method updateTree(competence(competence, score)) is added to the initial plan base of the
user model. This means that when the MADS is started, the tree will be updated at once.

Observation of the result
By updating the trained competence in the tree, the underlying and overlying competences might be changed
as well. The updated competences in the tree are returned as output.

Set 1: the performance score is bad
Input: the performance score is 40, and

1. the leaf competence ‘delegeren’ was trained
2. the node competence ‘communiceren’ was trained
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Expected functional behavior:

1. the competence itself and the overlying competence are updated:
a. delegeren, score =40
b. verantwoordelijkheid_nemen, score = 8.3333

( =0—((min(100, 0/4 * 5)) / 2) / 3 + ((min (100, 40/4 *5))/2)/3
=0-0+8.3333)
c. sociale_vaardigheden, score = 18.5417
( =17.5—((min(100, 0/4 * 5)) / 2) / 5 + ((min (100, 8.3333 /4 *5))/2) /5

=17.5-0+1.0417)
2. the general tree score decreases, and
a. the underlying competences are updated:
i. uitvragen, score = 80
(=90-(50-40))
ii. rapporteren, score =70
(=80-(50-40))
b. the overlying competences are updated
i. communiceren, score = 46.875
( =50-((min(100,90/4 * 5)) /2) / 2 + ((min (100, 80/4 *5)) / 2) / 2
- ((min(100, 80/4 * 5)) / 2) / 2 + ((min (100, 70/4 * 5)) / 2) / 2
=50-25+25-25+21.875)
ii. sociale_vaardigheden, score = 14,6094
( =17.5-((min(100, 70/4*5))/2)/5 + ((min (100, 46.875/4 *5)) /2)/5
=17.5-8.75+5.8593)

Observed functional behavior:

1. the following nodes and leafs of the competence tree in the belief base are updated:
a. delegeren, score =40
b. verantwoordelijkheid_nemen, score = 8.3332
c. sociale_vaardigheden, score = 18.5417
2. the following nodes and leafs of the competence tree in the belief base are updated:
a. uitvragen, score = 80
b. rapporteren, score =70
c. communiceren, score = 46.875
d. sociale_vaardigheden, score = 14.6094

There only seems to be a slight rounding difference between the manually calculated score and the scores
given by the user model.

Set 2: the performance score is reasonable
Input: the performance score is 60, and

1. the leaf competence ‘delegeren’ was trained
2. the node competence ‘communiceren’ was trained

Expected functional behavior:

1. the competence itself and the overlying competence are updated:
a. delegeren, score =60
b. verantwoordelijkheid_nemen, score =12.5
( =0—((min(100, 0/4 * 5)) / 2) / 3 + ((min (100, 60/4 *5))/ 2) /3
=0-0+125)
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c. sociale_vaardigheden, score = 19.0625
( =17.5-((min(100,0/4 *5)) / 2) / 5 + ((min (100, 12,5/4 *5))/ 2) / 5
=17.5-0+1,5625)
2. the general tree score decreases, the overlying competences are updated
a. communiceren, score =60
b. sociale_vaardigheden, score = 16.25
( =17.5 - ((min(100, 70/4 * 5)) / 2) / 5 + ((min (100, 60/4 *5)) / 2) / 5
=17.5-8.75+7.5)

Observed functional behavior:

1. the competence itself and the overlying competence are updated:
a. delegeren, score = 60
b. verantwoordelijkheid_nemen, score =12.5
c. sociale_vaardigheden, score = 19.0625
2. the following nodes and leafs of the competence tree in the belief base are updated:
a. communiceren, score =60
b. sociale_vaardigheden, score = 16.25

Set 3: the performance score is good
Input: the performance score is 90, and

1. the leaf competence ‘delegeren’ was trained
2. the node competence ‘communiceren’ was trained

Expected functional behavior:

1. the competence itself and the overlying competence are updated:
a. delegeren, score =90
b. verantwoordelijkheid_nemen, score = 16.6667
( =0—((min(100, 0/4 * 5)) / 2) / 3 + ((min (100, 90/4 *5)) / 2) /3
=0-0+16.6667)
c. sociale_vaardigheden, score = 19.5833
( =17.5—((min(100, 0/4 * 5)) / 2)/5 + ((min (100, 16.6667/4 *5))/2) /5
=17.5-0+2.0833)
2. the general tree score increases, the overlying competences are updated
a. communiceren, score =90
b. sociale_vaardigheden, score = 18.75
( =17.5 - ((min(100, 70/4 * 5)) / 2) / 5 + ((min (100, 90/4 *5)) / 2) / 5
=17.5-8.75+10)

Observed functional behavior:

1. the competence itself and the overlying competence are updated:
a. delegeren, score =90
b. verantwoordelijkheid_nemen, score = 16.6668
c. sociale_vaardigheden, score = 19.5832
2. the following nodes and leafs of the competence tree in the belief base are updated:
a. communiceren, score =90
b. sociale_vaardigheden, score = 18.75

Again, there only seems to be a slight rounding difference between the manually calculated score and the
scores given by the user model.
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D.5 Select an appropriate learning focus

A learning focus is selected to initiate the next scenario. This learning focus can be the same as the current
focus or it can be a new learning focus. To determine if the same or a new learning focus should be selected,
we take into account the following parameters: 1) the number of times the current learning focus has been
consecutively trained, 2) the updated level of motivation, and 3) the average of the performance scores
regarding the current learning focus.

General input

The number of times the current learning focus has been consecutively trained ranges between 1 and 5. The
competence ‘communiceren’ is used as current learning focus. To test the different combinations of
parameters, for each case the belief base of the user model agent is adjusted by adding the following
predicates:

e learningFocus(communiceren, Times_trained)
e learningFocusAverage(communiceren, Score)
e motivationLevel(Level)

Additionally, the method initiateNewScenario is added to the initial plan base of the user model. This means
that when the MADS is started, the next learning focus is determined at once. The same competence tree as in
Section D.4 will be used:

sociale_vaardigheden, score = 17.5
verantwoordelijkheid_nemen, score =0
gerust_stellen, score =0
betrokkenheid, score =0
delegeren, score =0
communiceren, score =70
uitvragen, score = 90
rapporteren, score = 80
abc_rapportage, score = 80
plannen_en_organiseren, score = 70
samenwerken, score = 0
assertiviteit, score= 0

Observation of the result

The next learning focus and the times the learning focus was trained is defined in the belief base of the trainee
agent by the predicate learningFocus(Competence_name, Times_trained). After determining the next learning
focus, either the value of Competence_name or Times_trained is changed. When a new learning focus from the
competence tree is chosen, it should either be a LEAF with a score lower than 80 or a NODE with a score
between 50 and 80.

Set 1: learning focus has been trained for less than 3 times
Input: the learning focus ‘communiceren’ has been trained consecutively 2 times

Expected functional behavior: the learning focus stays the same
Observed functional behavior: the belief base is not changed

Set 2: learning focus has been trained between 3 and 5 times
Input: the learning focus ‘communiceren’ has been trained consecutively 4 times, and

1. The current motivation is high
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1.1. The average score is 70 (below 80)

1.2. The average score is 90 (equal to or higher than 80)
2. The current motivation is low

2.1. The average score is 70 (below 80)

2.2. The average score is 90 (equal to or higher than 80)

Expected functional behavior:

1. The current motivation is high
1.1. the learning focus remains the same
1.2. anew learning focus is selected, conforming with the additional requirements
2. The current motivation is low
2.1. anew learning focus is selected, conforming with the additional requirements
2.2. anew learning focus is selected, conforming with the additional requirements

Observed functional behavior:

1. The current motivation is high
1.1. the belief base is not changed
1.2. the previous predicate learningFocus(communiceren, 4) is deleted and the belief
learningFocus(betrokkenheid, 0) is added to the belief base. Since the score of betrokkenheid is 0, it
conforms with the additional requirements.
2. The current motivation is low
2.1. the previous predicate learningFocus(communiceren, 4) is deleted and the belief
learningFocus(samenwerken, 0) is added to the belief base. Since the score of samenwerken is 0, it
conforms with the additional requirements.
2.2. the previous predicate learningFocus(communiceren, 4) is deleted and the belief
learningFocus(plannen_en_organiseren, 0) is added to the belief base. Since the score of
plannen_en_organiseren is 0, it conforms with the additional requirements.

Set 3: The learning focus has been trained 5 or more times
Input: the learning focus ‘communiceren’ has been trained consecutively 5 times

Expected functional behavior: a new learning focus is selected, conforming with the additional requirements

Observed functional behavior: the previous predicate learningFocus(communiceren, 5) is deleted and the
belief learningFocus(samenwerken, 0) is added to the belief base. Since the score of samenwerken is 0, it
conforms with the additional requirements.

D.6 Select an appropriate initial level of scaffolding

An initial level of scaffolding (LoS) is selected to initiate the next scenario. To determine this initial LoS, the
associated score of the learning focus as selected in Section D.5 is used. The overall behavior that needs to be
observed, is that if the score is low, the LoS should be high and when the score is high, the LoS should be low.

General input
The method call determineLoS(competence(communiceren, Score)) is added to the initial plan base of the user
model. This means that upon start, the MAD calculates the LoS.

Observation of the result
The current LoS is registered in the belief base through the predicate currentLoS(Level). This belief should
change after a new initial LoS is determined

Set 1: select the initial level of scaffolding
Input: the next learning focus is ‘communiceren’, with
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PwnNR

the score is 20 (between 0 and 24)
the score is 49 (between 25 and 49)
the score is 50 (between 50 and 74)
the score is 80 (between 75 and 100)

Expected functional behavior:

PwnNR

LoSissetto3
LoSis setto 2
LoSissetto 1l
LoSissetto 0

Observed functional behavior:

PwnhR

the beliefbase is changed by adding the belief currentLoS(3
the beliefbase is changed by adding the belief currentLoS(2
the beliefbase is changed by adding the belief currentLoS(1
(

)
)
)
the beliefbase is changed by adding the belief currentLoS(0)
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