
Opponent Modeling in Texas Hold’em

Nadia Boudewijn, student number 3700607,

Bachelor thesis Artificial Intelligence 7.5 ECTS,

Utrecht University, January 2014, supervisor: dr. G. A. W. Vreeswijk

ABSTRACT

Many of the current approaches to opponent modeling research in

the domain of poker focus on building an explicit model that captures

the opponent’s behavior. Unfortunately, all of these approaches face the

same problems for which no solution has yet been found. In this paper,

the properties of explicit opponent models and the difficulties that they

introduce will be discussed and compared to the properties of implicit

opponent models. Recently, Bard et al. proposed an implicit approach

that seems promising: the agent that is described in their paper is shown

to have won the 2011 Annual Computer Poker Competition and recently

they entered an agent based on this implicit modeling framework in the

2013 Annual Computer Poker Competition that won (shared) second

place. Maybe the time has come to favor implicit models over explicit

models for opponent modeling. To be able to make a fair judgment on

this we will also discuss the possible problems that are introduced by

the implicit modeling framework.

”Imagine working in an adversarial environment, trying to determine your
next course of action. You know what your goal is, but there are others
operating here too. Others who are not on your side. Others who may

know things that you do not. As you decide on actions to take, the others
are simultaneously plotting their next actions, hoping to make the best of

their situation which may involve hindering your progress. The
environment itself is full of uncertainty: you don’t know whether luck will

be in your favor or not but you must decide what to do next. ”

- Brett Jason Borghetti

Contents

1 Introduction 2
1.1 Relevance to AI . 2
1.2 Purpose and structure of this thesis 3

2 Background 4
2.1 Heads-up limit Texas Hold’em Poker 4
2.2 Game Theory Concepts . 6
2.3 Robust Counter Strategies . 7
2.4 The Multi-Armed Bandit Problem 8

3 Explicit Opponent Modeling 8
3.1 Building an Explicit Model 9
3.2 Difficulties . 10
3.3 Related Work . 11
3.4 Summary . 11

4 Implicit Opponent Modeling 12
4.1 Difficulties . 12
4.2 Related Work . 13

5 Online Implicit Poker Agent 13
5.1 Offline Portfolio Generation 13

5.1.1 RNR . 14
5.1.2 DBR . 16
5.1.3 CFR . 17
5.1.4 Selecting for the portfolio 17

5.2 Online Adaptation . 18
5.2.1 Exp4 . 19
5.2.2 UCB . 24
5.2.3 Variance Reduction Techniques 25

6 Conclusion 25
6.1 Answering the research question 26
6.2 Implications towards the field of AI 27
6.3 Contribution . 28
6.4 Future Research . 28

1 INTRODUCTION

1 Introduction

The opening quote, by Brett Jason Borghetti, illustrates vividly that suc-
ceeding in an adversarial environment takes (at least some form of) intel-
ligence [6]. In an adversarial environment the utility of an agent increases
when the utility of the other agents (the adversaries or opponents) is re-
duced. An agent’s utility can be seen as his well-being. If you are in an
adversarial environment, there are no previously written rules you can rely
on in every situation. Furthermore, if you gain something, another agent
is losing it. Needless to say that goes both ways. As the other agents are
gaining you will be set back in your winnings. This creates interesting op-
portunities to take advantage of specific opponents and forces us to consider
our own exploitability.

To be able to take advantage of specific opponents, agents can create
and maintain an opponent model. This is known as opponent modeling.
The difficulty with opponent modeling is that in many real-world situations
the search for an optimal action is computationally prohibitive. The enor-
mous amount of possible action sequences and interactions between agents
combined with the presence of chance simply leads to too many possibili-
ties. Opponent models can be used to reduce the size of the search space
by altering the like hood of certain action sequences. The field of research
that examines these topics is known as machine learning. Machine learning
is a subdomain of Artificial Intelligence which considers itself with getting
computers to act without being explicitly programmed. Recently a lot of
work has been done in the area of multi agent systems and specifically on
opponent modeling in the domain of poker. This thesis willl focus on op-
ponent modeling and how it is implemented in computer programs, called
’poker agents’ or ’poker bots’.

1.1 Relevance to AI

Games are a natural choice for AI research. Games can usually be defined
by a set of simple rules and yet present challenging situations that require
prediction, simulation, reasoning and decision making to solve. Performance
is easily measured as each game has it’s own performance measure by def-
inition. A major issue in game programming is opponent modeling. The
creation of an accurate model to predict the opponent’s actions turns out
to be quite difficult.

Opponent modeling can be a challenge in perfect information games
(where the full state of the game is known to all players at all times), like
checker or chess, due to the huge size of the search space. With the help
of game tree search algorithms, world-class computer players have been de-
veloped that defeated human world champions. But computer programs for
poker have not been as succesfull. The random shuffeling of the card deck

2

1 INTRODUCTION

makes poker a non-determinisitic game. It is also a game of imperfect in-
formation as a player does not know which private cards are handed to the
opponent. This means that a player has to make decisions without knowing
the precise state gamestate. Therefore, with each decision the payer makes,
he has to consider the alternative possibilities. The more information is
hidden, the more alternative situations the player will have to consider. At
some point in the game, the player has to consider so many alternative pos-
sibilities that the computations become intractable. This makes brute force
search to determine a coarse of action a highly impractical option, leading
to poker being a perfect testbed for AI.

We must use this perfect testbed for AI provided by poker to our advan-
tage and learn as much as we possible can from it. The fact that none of the
current poker programs are able to defeat a human world class player should
not discourage us. On the contrary, it should motivate us to develop new (or
enrich current) algorithms, learning methods, and search techniques. It is
very imporant for AI research that we keep improving the level of perfomance
of pokerbots as the ultimate goal for much of AI reserach is to develop useful
systems that can adaptively make intelligent decisions in a world like ours:
a huge complex, hostile environment that is very unpredictable. The devel-
opment of agents that are able to act in complex, unpredictable and hostile
environments will bring us one step closer to the goal of creating intelligent
agents and has numerous applications ranging from economic endeavors to
military operations.

1.2 Purpose and structure of this thesis

The goal of this thesis is to give insight in the properties of the current two
main approaches to opponent modeling in the domain of poker, and the
issues that arise in this area. I will try to reach this goal by answering the
following question:

What are the main differences between explicit and implicit modeling, and
how do these differences affect the usability of a model for opponent

modeling in poker?

I will approach this topic as follows: section II provides the necessary
background information. In section III the properties and problems of ex-
plicit modeling are discussed. Section IV does the same for the implicit
modeling approach. Section V will discuss the implicit modeling frame-
work proposed by Bard et al.: the first subsection will stepwise explain the
steps that are taken offline, whereas the second subsection handles the on-
line steps and pays specific attention to the bandit-style algorithm Exp4.
Finally, section VI will conclude this thesis.

3

2 BACKGROUND

2 Background

This section begins with a short overview of the rules and goal of heads-up
limit Texas Hold’em poker. Next I present some concepts from game theory
including the framework of extensive form games which can be used as a
model of multiagent interaction in the domain of Texas Hold’em. I then
discuss methods for computing behavior policies, called strategies, in this
framework. Finally I will address the multi-armed bandit problem.

2.1 Heads-up limit Texas Hold’em Poker

There are many variants of poker. The variant we will be focusing on, Texas
Holdem, is one of the most popular variants and represents the main event
of the World Series of Poker (which in 2012 had over $220 million dollar in
total prize money [20]). Texas Holdem Poker is a very popular game with
many interesting properties and just a few simple rules. The goal is to win
as much money as possible from the opponent by the end of the session. The
game is played with a standard 52-cards card deck. The heads-up variant
means there are only two players. ’Limit’ refers to the fact that there are
pre-specified bet and raise amounts and the number of bets each player can
make in a single round is bounded. At the beginning of a betting round the
players alternate between being small blind and big blind. Before any cards
are dealt the small blind contributes one chip (chip represents a fixed betting
amount) to the pot and the big blind contributes 2 chips. Each player then
receives two private cards. The small blind can then choose from 3 options:

• Fold: quitting the game, the pot goes to the opponent

• Call: follow through with the game and thus matching the highest
bet currently placed on the table

• Raise: the player calls and raises his bet with the allowed number of
chips

If the player decided to call or raise, the other player gets to choose
between fold/ call / raise. Next is the Flop. Three cards, visible to both
players, are dealt face-up. The big blind then starts a new betting round.
After this round one card, the turn, visible to both players is dealt face-up
after which a new betting round takes place as on the flop. Finally the last
card, the river, is dealt face up for both players to see. The last betting
round takes place as on the flop and turn. If none of the players at this
stage in the game have chosen to fold it is time for the showdown. Both
players try to make the best possible 5-card combination (the rules for these
combinations can be found on [18]). The player with the highest hand earns
the chips from the pot (in case of equal hands the players split the pot).

4

2 BACKGROUND

Table 1: Source: Poker as a Testbed for AI Research, table 1 [5].

A strong poker player requires several skills:

• Hand Evaluation: the probability that a hand is the best, given the
opponent and the context of the game. It is crucial to be able to make
an accurate assesment of the current and potential strength of a hand.

• Unpredictability: actions must not give away any information about
the strength of the hand the player is holding. The agent must hide
information about his hand by playing deceptively and mixing strate-
gies.

• Opponent Modeling: this is necessary to exploit the opponent’s
weaknesses and to defend our play from possible attacks.

Poker is not only popular amongst humans: The AAAI Annual Com-
puter Poker Competition (ACPC) takes place since 2006 and tries to benefit
the field of Artificial Intelligence by providing a test bed for poker research.
In this paper we consider a poker variant called two-player limit Texas Hol-
dem, which is the smallest variant played in the ACPC (extra rules or re-
strictions that are enforced during the ACPC can be found on the official
website) [1]. Besides the ACPC providing a perfect venue for testing and
demonstrating poker-playing software systems there are several aspects that
make this immensely popular game an interesting field of research. The game
has an enormous strategy space (1018 game states for limit Texas Holdem
and 1071 for no-limit Texas Holdem) and exhibits several characteristics of
AI problems that are listed in Table I. In theory it is possible, when playing
against perfect opponents, to find an optimal strategy based on the underly-
ing mathematical structure of the game. Unfortunately this is not possible
in reality because determining the optimal strategy appears to be computa-
tionally infeasible. Even if we were to find this optimal strategy for perfect
opponents it does not have to maximize our utility against most typical op-
ponents. This makes opponent modeling a topic that cannot be overlooked
when writing a poker program.

5

2 BACKGROUND

Results for computer poker agents are usually expressed in millibet, a
one thousandth of a small bet. In [13] Johanson et al. provide a nice example
that might give some intuition for this unit of measurement: a player that
always folds will lose 150 millibet per hand while a typical player that is
10 mb per hand stronger than it’s opponent would require over one million
hands to be 95 percent certain to have won overall.

2.2 Game Theory Concepts

Poker is a game, where the agents are known as players. Players take actions
that result in utilities, i.e. their scores. Each player may develop a strategy
which consists of a collection of actions for each possible decision, with
respect to different conditions, to be made in the game. A strategy may also
consist of a collection of distributions over actions (this is called a mixed
strategy), e.g. in the game Rock, Paper, Scissors the chance of playing each
action being 1/3. The game can be represented in it’s extensive form. This
is an intuitive model for representing actions between multiple agents and
their environment, that also makes it possible to represent chance events. It
can be viewed as a tree, in which each non-terminal node represents a state
where one of the players (or chance) has to act. The available actions at
each node are represented by the direct edges. Each terminal node (the leafs
of the tree) assigns a utility to each player. Each action may be observed
by one or both players. Since players are not observing all information
they cannot determine the precise game state. Instead, they observe an
information set that contains all nodes that differ only in that they all
exists under a different hidden condition which is unknown to the player.
This makes an information set a set of games indistinguishable to the acting
player. For example, when the cards are being dealt at the beginning of a
round each player will get 2 cards that are not visible to the opponent. There
are 52 · 51 possibilities for receiving the two first cards which when divided
by 2 (because it does not matter which card was received first) gives 1326
possibilities for the two first cards. In the same fashion, 50 · 49 divided by 2
gives 1225 options for the two cards the other player holds. This means that
there are 1326 · 1225 = 1,624,350 branches form the initial chance node
that represents the dealing of the cards. There are 1225 different states
which are not distinguishable to the player since he has no way to know the
cards in the hand of the opponent. These states are grouped together in an
information set. The same decision policy has to be applied to all states in
this information set, since it is not possible to know exactly which of those
states we are in. Information sets can be used when abstracting the game
by merging information sets that result from similar chance outcomes.

Now we can define a players strategy to be a function mapping the
player’s information sets I to a probability distribution over the available
actions A(I). A strategy profile is a tuple containing one strategy for each

6

2 BACKGROUND

player in the game. Given a strategy profile σ, we define the best response
for an agent to be the strategy that maximizes the expected payoff, assum-
ing all other agents play according to σ. A strategy profile σ is a Nash
Equilibrium if no agent has anything to gain by changing is strategy. That
is, by deviating from the equilibrium strategy, assuming the other agents
are playing according to σ, the agent cannot enhance its winnings in any
way. Simply said, with a Nash Equilibrium every agent’s strategy is a best
response to all the other agent’s strategies. Nash showed that all zero-sum
imperfect information games have an equilibrium in which ever player can
ensure the optimal outcome with an appropriate randomized mixed strategy
[15]. An ε-equilibrium is a strategy profile in which each agent receives a
payoff within ε of his best response. A strategy profile’s exploitability rep-
resents the expected loss. We define it to be the average of the best response
values of its strategies against a worst-case opponent. A Nash Equilibrium
strategy profile for poker (which is a two-player zero-sum game) has an
exploitability of 0.

2.3 Robust Counter Strategies

When facing an arbitrary opponent, creating a hundred percent accurate
model of it’s behavior is usually not possible within reasonable time limits.
Therefore, when modeling an opponent the agent makes assumptions about
the opponent. When these assumptions differ from reality the agent’s strat-
egy can become a victim to exploitation. A minimax strategy minimizes
the possible maximum loss (it can also be thought of as maximizing the
minimum gain, in which case its called a maximin strategy). The minimax
theorem from von Neumann says that in any finite, two player , zero-sum
game, in any Nash equilibrium each player receives a payoff that is equal
to both his maximin value and his minimax value. Any maximin/ minimax
strategy profile is a Nash equilibrium. Minimax strategies are intended to
be as un-exploitable as possible. The worst-case scenario is guaranteed to
provide some maximum loss and any non-optimal choices on the part of the
opponent only increase the payoff to the minimax player. Therefore, min-
imax strategies can be viewed as a safe strategy. A signicant advantage of
the minimax strategy over other algorithms is that it is independent of the
policy played by the opponent. This means that a minimax solution can be
calculated ahead of time for any game, and this strategy can be put into
effect regardless of the actions of the opponent. Unlike learning algorithms,
such as opponent modelers, there is no initial period of low effectiveness
while the model is being built. Like the opponent modelling strategies, it
is the assumptions made by minimax agents that are their main weakness.
Minimax strategies assume that the opponents are optimal, and that the
goals of the opponents are opposite to the goals of the agent. In cases where
these assumptions are not true, minimax players can end up settling for

7

3 EXPLICIT OPPONENT MODELING

much lower payoffs than what could be achieved by exploiting non optimal
opponents.

Counter strategies are able to maximize utility by taking advantage
of the opponent’s flaws. But Johanson et al. have shown that when the op-
ponent’s behavior deviates from the approximation, or when the opponent
deliberately changes his behavior, counter strategies are not very robust and
can become victim to exploitation [12]. McCracken and Bowling propose the
use of ε-safe responses to create robust counter strategies [8]. These strate-
gies can guarantee to be exploitable for no more than ε in the worst case,
and win much more than a Nash equilibrium (minimax) strategy by exploit-
ing non perfect opponents. Two algorithms for the creation of these robust
responses will be discussed in this paper: The Restricted Nash Response
(RNR) algorithm and the Data Biased Response (DBR) algorithm.

2.4 The Multi-Armed Bandit Problem

The well-known multi-armed bandit problem provides a simple model for the
trade-off between exploration and exploitation. In the multi-armed bandit
problem, a gambler tries to maximize his winnings from playing a row of slot
machines in a sequence of trials (slot machines are also known as one-armed
bandits). When played, each machine provides a random reward from a
distribution specific to that machine. The gambler constantly has to make a
decision between keep playing on the slot machine that has the highest pay-
off at the moment (exploiting a single arm) or trying out new slot machines
that might give a higher pay off (exploring other arms). In the adversarial
multi-armed bandit problem the payoffs of each arm are not generated by a
well behaved stochastic process. Instead, they are influenced by an adversary
(which in the game of heads-up poker would be the opponent).

3 Explicit Opponent Modeling

An opponent model can be either implicit or explicit. Most of the existing
approaches to agent modeling in poker fall in the explicit category. With ex-
plicit modeling, an agent tries to infer the opponent’s strategy by observing
his actions in different situations. This is achieved by building a model for
the opponent. From this model the agent tries to predict te opponent’s ac-
tions and tries to choose a best response given the current conditions in the
environment. Thus, the oppent’s actions are analyzed seperately from the
state of the world. This might be done by building a static opponent model:
once the opponent model is created the agent keeps using it during the en-
tire game. It is easy to see that this is not very realistic. Especially not for
the game of poker where the opponent might change strategy, or may have
been playing deceptively, hoping that our agent infers the wrong strategy.
When the agent plays a counter strategy to the strategy that he believes

8

3 EXPLICIT OPPONENT MODELING

the opponent is playing he will make himself vulnerable for exploitation.
Therefore, almost all recent approaches favor a dynamic (learning) model
which is able to adjust when an opponent changes his strategy during the
game.

In the first subsection I will discuss several different methods that may be
used for learning and using such a dynamic explicit model. Although there is
a lot of work done in the area of explicit poker agents, in subsection 2 we see
that all approaches encounter two problems. The most applied technique to
overcome these two problems is applying a state-space abstraction algorithm
to the game which constructs a smaller game that preserves as many of
the strategic properties as possible. The solution for the smaller game is
mapped to a strategy profile in the original game. This technique introduces
some problems of its own; abstraction pathologies may rise or we might see
our solution overfitting the abstract game [19]. This so calles state-space
abstraction technique will be discussed near the end of this section. We
will finish this section by looking at some of the most promising explicit
opponent modeling frameworks.

3.1 Building an Explicit Model

An opponent strategy can be modeled with anything that maps game states
to moves (or move distributions). Some frequently used tools are:

• Desicion trees: learning based on a predictive model using decision
trees.

• Artificial Neural Networks: learning based on biological neural
networks, like our brain.

• Bayesian Networks: learning based on Bayes’ rule.

• Clustering: in large sets of unlabeled examples, examples get grouped
together in a cluster if they are more similar.

An example of a poker program that combines several methods is Poki[9].
This meta predictor approach performed better than all single methods.
Poki combines decision trees, neural networks and expert formulas. It plays
at the level of an average human player and uses opponent modeling to
predict whether opponent wil raise, fold, or call/check on each round of
betting. Poki uses a meta-predictor: it runs the neural network, decision
tree and other methods (such as expert formulas) on the available data.
Each predictor votes on which action it thinks the opponent will take and
votes are weighted on each predictor’s accuracy so far.

9

3 EXPLICIT OPPONENT MODELING

3.2 Difficulties

In order to be able to create an opponent model, an agent has to observe
his opponent. These observations can then be used to model the opponent’s
behavior. But in such a complex domain as poker, the building of an accu-
rate model requires a prohibitive number of observations. This is the first
problem that all explicit modeling frameworks encounter. Second, even if
the agent is able to build a model, computing a response strategy that is
robust to modeling error may be impractical to compute online. Online cal-
culations have to obey tight time constraints which make it quite impossible
to perform extremely heavy calculations in time.

The most used solution for these problems is applying a state-space
abstraction technique. State-space abstraction is a many-to-one mapping
between the game’s information sets and the information sets in a smaller,
artificially constructed game. A large amount of possible poker situations
have to be translated to a relatively small amount of abstraction classes. The
agent observes the abstract game information set, and uses the strategy for
that information set for all of the real information sets mapped to it (simply
put: the agent applies his knowledge of similar situations to the current
situation). If the opponent changes his style, previous observations lose their
value. Therefore we must acquire knowledge very quickly, and incorporate
a bias towards more recent observations. The goal is to construct a game
small enough that an optimal strategy can be found and can be used in the
original game where it is hoped to closely approximate a Nash equilibirium
strategy.

The size of the abstraction is very important. If the abstracted game
remains quite large it is more likely to be an accurate representation of
the full scale game, but at the same time calculations for this game may
still be to large to be performed online. If the game is abstracted to a
very small version, important information might get lost but performing
online calculations will not be a problem. Another important factor that
determines the succes of this technique are the domain features used to
decide which information sets can be mapped together.

The abstracted game can be created in many different ways. A com-
mon metric used in early work is a player’s expected hand strength. Ex-
pected hand strenght is the expectation of hand strenght over all possible
rollouts of the remaining public cards (in the final round when all public
cards are revealed, a players hand strength is the probability that their
hand is stronger than a uniform randomly sampled oponent hand). The
expected hand strenght squared computes the expectation of the sqaured
hand strength values, and assigns a relatively higher value to hands with
the potential to improve. These expectation based metrics can than be used
to create abstract chance events in a number of different ways. An example
of this can be found in section 5.1.1, where an abstraction is used in the

10

3 EXPLICIT OPPONENT MODELING

Restricted Nash Response algorithm to find ε-safe best responses.

3.3 Related Work

In [11], Ganzfried and Sandholm build an explicit poker agent that observes
the opponent’s action frequencies. The agent then uses these observations
to build a model based on the deviations from a pre-computed equilibrium
strategy. Next the agent computes and plays the best responses to this
model. This gives the advantage of being able to identify weak opponents
by observing their actions, and exploiting them with best responses to their
weaknesses. When faced with a strong opponent, the agent plays the equi-
librium strategy. However, the approach has not been tested against strong
opponents and may be highly exploitable because the best response is cal-
culated against a current model, and the model must use a relatively coarse
abstraction of the game for the agent to act quickly enough.

Rubin and Watson apply adaptation to a pre-computed, static case-
based strategy in order to allow the strategy to rapidly respond to changes
in an opponents playing style [17]. A case-based strategy looks at similar
situations in the past to select successful actions. To classify the current
opponent type online they build a low-dimensional explicit model. This
approach overcomes the problem of needing many observations to build a
representative model by using pre-computed strategies. But there is still no
guarantee that the explicit model build online that is consulted for adap-
tations is a hundred percent accurate. Modeling error can lead to choosing
a bad adaptation. Unfortunately, there are no results for this approach
against actual ACPC agents.

3.4 Summary

It seems that none of the recent efforts to use explicit modeling in this com-
plex domain are able to overcome the challenges that come from building
a model and computing a robust response online, and are not able to pro-
vide agents that are capable of defeating strong opponents in a full-scale
game. The state-space abstraction technique that many researches apply to
overcome challlenges also introduces some delicate problems. It is therefore
exciting to explore an implicit modeling agent built by Bard et al. of which
they promise that it overcomes these challenges. It is shown in their paper
that their agent would have won the heads-up limit opponent exploitation
event in the 2011 ACPC, which proves that their agent is capable of de-
feating strong opponents in a full-scale game. In the next section we will
first look at implicit opponent modeling in general, followed by a section
that discusses the implicit opponent modeling framework by Bard et al. in
detail.

11

4 IMPLICIT OPPONENT MODELING

4 Implicit Opponent Modeling

With implicit modeling the agent tries to maximize it’s utility with respect
to it’s own observations and actions. The agent tries to find a good counter
strategy without having to identify the opponent’s strategy. Thus, unlike ex-
plicit modeling, the opponent’s actions are not analyzed seperately from the
state of the world. Remember that with explicit modeling, online data from
the opponent playing the game is used to estimate a model and determine
a response. With implicit modeling, the agent first computes a portfolio of
responses offline and then uses the data from playing against the opponent
online to estimate the utility of the responses. By not having to construct
an opponent model online the two main problems seen in explicit modeling
are completely avoided.

In their paper, Bard et al. illustrate several other benefits of this ap-
proach. Because prior work can be performed offline Bard et al. claim that
they are able to use computationally demanding techniques which enable
the creation of robust responses for the portfolio. To create the portfolio
they make use of existing algorithms that can guarantee a maximum loss.
By limiting the actual behavior of the agent during play to be from this
portfolio of responses they maintain a safety guarantee for the maximum
loss. Furthermore, the dimensionality of model parameterization for implicit
modeling is reduced to the size of the portfolio regardless of the complexity
of the domain or certain behavior. This is quite the improvement on explicit
modeling where this called for a prohibitive number of observations.

4.1 Difficulties

We have seen that the implicit modeling framework does not have to deal
with the two main problems introduced by the explicit modeling approach.
Unfortunately, implicit modeling introduces a challenge of its own: how
to decide when to switch between the two phases of the modeling process.
Simply put, implicit modeling consist of two phases:

• exploration of various counter strategies

• exploitation of the highest scoring strategy

When an agent exploits a single strategy to soon, there is a very high risk
that he is exploiting a non-optimal strategy. On the other hand, when the
agent stays in the exploration phase for too long, there might not be enough
time to recover from the losses that are build up in this phase.

As mentioned before, this thesis will focus on the implicit modeling
framework propesed by Bard et al. In the next section we will see which
methods they have chosen to deal with the difficulties that we have dis-
cussed. To emphasize that there are other approaches to implicit modeling

12

5 ONLINE IMPLICIT POKER AGENT

we will first mention some related work before discussing the implementation
by Bard et al. in detail.

4.2 Related Work

In [16], Rubin and Watson investigate an implicit agent modeling approach
quite similar to the approach from Bard et al. that we are considering.
They use the UCB1 algorithm to select from a portfolio of expert imitators.
Johanson et al. also applied the UCB1 algorithm in a similar fashion to select
from a portfolio of RNR strategies [12]. Unfortunately, these approaches
do not take into account the fact that UCB1s regret bounds are for the
stochastic bandit problem (see section 5.2.2). Because poker is an instance
of the adversarial bandit problem, this might be inappropriate.

5 Online Implicit Poker Agent

To avoid the two main challenges introduced by explicit models, Bard et al.
propose using an implicit model instead of an explicit model for the creation
of an agent for heads-up limit Texas Hold’em [4]. This implicit approach
seems promising: the agent that is described in their paper is shown to
have won the 2011 Annual Computer Poker Competition and recently they
entered an agent based on this implicit modeling framework in the 2013
Annual Computer Poker Competition that won (shared) second place. Their
method consists of two steps (see Figure 1, page 16):

1. generation of a portfolio of strategies offline

2. choosing the best suitable response from the portfolio online

We will now discuss this implicit framework in detail, starting with the
offline creation of the portfolio.

5.1 Offline Portfolio Generation

The portfolio with response strategies is build offline. Offline computation
has a major advantage on online computation: its not bounded by tight
time constraints. This extra time allows the building of more sophisticated
responses. But what kind of responses do we want in our portfolio? Ideally,
we want a portfolio with strategies that maximize utility for all opponents
that we will be facing. But we do not want these strategies to become
exploitable by any of the opponents. It seems that only when we have
access to a perfect model of the opponent, we can exploit them safely by
a best response. Otherwise, it is best to play a Nash equilibrium strategy.
This is a little bit disappointing since its far from likely that when facing
a new opponent during a game we willl have access to a perfect model of

13

5 ONLINE IMPLICIT POKER AGENT

his behavior. Of course we can build a model, but it will not be a hundred
percent accurate (due to the fact that it is formed from a limited number
of observations of the opponents actions, or the opponent is known to be
changing strategy). We could compromise: accepting a lower worst-case
utility in return for a higher utility if the model is approximately correct.

Such a compromising strategy can be created very easy. You could let
a biased coin decide the probability p with which we will play the best
response, and the Nash equilibrium will then be played with probability (1 -
p). Bard et al. have decided to create their compromising strategies between
Nash strategies and counter strategies with ε-safe responses. ε-safe responses
are the utility maximizing strategies from the set of strategies exploitable
for no more than ε, where ε represents the maximum loss we are willing
to accept. To produce these ε-safe responses two existing algorithms are
considered: the Restricted Nash Response algorithm and the Data Biased
Response algorithm. These algorithms will be discussed in the upcoming
two subsections. Figure 1 on the next page illustrates the complete implicit
modeling process. The reader might notice that the offline creation process
for the portfolio involves two more steps that need some explanation: the
application of the CFR algorithm and submodular optimization. These steps
are discussed in subsection 3 and 4 from this section.

5.1.1 RNR

The RNR algorithm [12] is applicable if you want to find ε-safe best response
strategies for a known adversary strategy. The algorithm creates a modified
game where it finds the Nash equilibrium. This modified game is created
using a hand strength squared abstraction. Hand strength is the expected
probability of winning given only the cards a player has seen, hand strength
squared is a metric that gives a bonus to card sequences whose eventual
hand strength has higher variance (higher variance receives a bonus because
it eventually makes the player more certain about the ultimate changes of
winning even prior to showdown). The abstraction groups card sequences
(combinations of a players private and public cards) into bucket sequences.
Each bucket maps the sequences to a number between 0 and 1. First, all
private card pairs are partitioned into five equally sized bucket based upon
the hand squared metric. Next, all public card pairs that got placed in
the same bucket in round one are partitioned into five equally sized buckets
based on the metric now applied to round two. This is repeated after each
round, continuing to partition card sequences that agreed on the previous
rounds’ buckets into five equally sized buckets based on the metric applied
in that round [12]. The resulting abstract game has approximately 6.45 ·
109 game states (which is a nice improvement with respect to the 1018 game
states for Limit Texas Holdem).

In this modified game the opponent is forced to play according to a fixed

14

5 ONLINE IMPLICIT POKER AGENT

Figure 1: Implicit Modeling Process. This figure is based on figure 2 in [4].

15

5 ONLINE IMPLICIT POKER AGENT

strategy with some probability p. The value of p controls the proportion of
time the opponent must use the fixed strategy. This value is chosen when
creating the strategy. If p is 0, the opponent never plays the fixed strategy,
meaning the agent plays a Nash equilibrium, and if p is 1 the agent plays a
best response to the opponent model of the opponent’s fixed strategy. When
p is any value between 0 and 1 a counter strategy is played with different
trade-offs between exploiting and preventing exploitability. These trade-offs
are important to consider when facing a particular opponent. Setting p
closer to 1 creates the opportunity to gain more utility from an agressive
response to that opponent but one must consider the exploitability of the
response itself. Given a value of p, the modified game can then be solved
(that is, a Nash equilibrium strategy can be approximated) using any game
solving algorithm, such as CFR (see section 5.1.3) [21]. The counter strate-
gies are ε-safe best responses. The best response between these ε-safe best
responses can be found by varying p, making the RNR strategies the best
possible counter-strategies, assuming the model is correct.

Keep in mind that the assumption of a correct model is quite dangerous:
for the model to be correct the opponent’s strategy has to be known up
front and as pointed out before, there are not many real life situations
where full opponent strategies are available. If the opponent model is not
correct it may lead our RNR strategies to not being the best possible counter
strategies. This answers the question why RNR is not depicted in Figure 1
on the previous page as the algorithm used to create robust responses. The
DBR algorithm, explained in the next subsection, is favored instead of RNR
because it does not need a known adversary strategy to produce ε-safe best
responses.

5.1.2 DBR

The DBR algorithm [13], an extension of the RNR algorithm, is applicable
when we only have a set of observations of the opponent playing the game
and have to construct a model of his behavior. It constructs an opponent
model by counting the frequency of each action at each information set over
the set of observations. Instead of a single probability p that is set at the root
of the game tree as with RNR, the DBR strategy chooses a probability p(I)
at each information set I, with p scaling with the number of observations at I.
p is varied at each decision: if there are many observations of the opponent’s
actions available, a higher value of p makes the agent play more exploitive
strategies. In cases where there are no observations available p is set to
zero, the agent plays a Nash equilibrium and the opponent is free to choose
any action. To summarize: if not enough data is provided, the algorithm
defaults towards a Nash equilibrium and when observations are present, it
moves towards exploitive strategies that also limit their worst-case loss.

A nice feature of the DBR algorithm is that while it computes a robust

16

5 ONLINE IMPLICIT POKER AGENT

response to data, it also computes a robust strategy that mimics the data.
At each information set, the mimic will, with some probability based on the
amount of data available, choose its play so as to prevent exploitation by
the DBR strategy. This mimic strategy behaves increasingly like the agent
which produced the data as more observations are available. We will use
these mimics in the process of determining the portfolio’s exploitive power.

5.1.3 CFR

CFR [21] is an algorithm for approximating Nash-equilibrium strategies in
two-player zero-sum perfect recall extensive form games.1 CFR requires
too much computation for real scale poker and is therefore usually applied
to an abstract game. This abstraction is generated by partitioning card
sequences based on the hand strength squared metric (section 5.1.1). The
CFR algorithm minimizes counterfactual regret in order to minimize the
total regret. It is an iterative self-play algorithm. Each player begins with
an arbitrary strategy. On each iteration, the players examine every decision,
and for each possible action compare the observed value of their current
policy to the value they could have achieved by making that action instead.
This is the regret for playing an action, and the accumulated regret is used
to determine the strategy used on the next iteration. The average strategies
used by the players converge to a Nash equilibrium.

5.1.4 Selecting for the portfolio

We have seen that based on observations of agents playing poker we are able
to create robust responses offline. We want to bundle these responses in a
portfolio and determine online which of the strategies from our portfolio will
maximize our utility. In theory, it is possible to generate a robust response
from every past interaction. In reality, it may not be wise to include all these
responses in our portfolio. The portfolio would become very large which
would slow down our online calculations. After every hand the agent has to
estimate the utilities of every strategy in the portfolio. Too many strategies
will add too much computational burden. We must also realize that both in
theory and in practice, bandit-style algorithms show regret growing with the
number of available bandit arms. As we try to estimate the utility of each
response from our portfolio by using a bandit-style algorithm, having many
responses will require too much exploration before exploitation can reliably
occur (the bandit algorithm that is used is called Exp4 and is explained
in section 5.2.1). Furthermore, each additional response may not be adding

1Although CFR is only proven to converge to a Nash Equilibrium in two-player zero-
sum perfect recall games, in practice it appears robust when these constraints are violated
as it has been succesfully applied to multi-player games, non-zero-sum games, and imper-
fect recall games [14].

17

5 ONLINE IMPLICIT POKER AGENT

much to the overall exploitive power of the portfolio if other similar responses
are already included.

We want to find a subset of the robust responses which maximizes
the resulting portfolio’s exploitive power. The mimics, generated by the
DBR strategy, can provide interaction to determine our portfolio’s exploitive
power. Bard et al. now define the objective as the total expected utility
achieved against all of the generated mimic strategies, when the portfolio’s
utility-maximizing response for each mimic can be optimally chosen. Using
greedy approximation, responses are repeatedly added to the portfolio one
at a time, with each one maximizing the marginal increase in our proxy
objective function. We stop adding responses once the marginal increase
becomes too small or when computational resources run out.

Bard et al. have demonstrated their implicit modeling agent using two
different portfolios. A portfolio with all responses (Big-Portfolio) and a
smaller portfolio with four responses that were generated using this greedy
approximation to submodular optimization (Small-Portfolio). The Small-
Portfolio agent outperformed their Big-Portfolio agent three times:

• When playing against the four mimics generated by DBR for the four
responses of the Small-Portfolio.

• When playing against the entire field of 2010 ACPC competition mim-
ics.

• Against all agents from the 2011 ACPC.

These empirical results support Bard et al.’s intuition for the benefits of us-
ing a submodular optimization to prune back the portfolio to a manageable
size.

5.2 Online Adaptation

When playing online, we want to know the expected utilities of the responses
in our portfolio so we can select the response that generates the highest util-
ity. The expected utility of each response in our portfolio is estimated using
a multi-armed bandit algorithm. As the number of observations that are
needed for a confident utility estimation might grow dramatically due to the
element of chance that is present in the game of Texas Hold’em, the agent
also makes use of variance reduction techniques. Variance reduction tech-
niques can help eliminate some of the noise induced by chance and reduce
the number of observations needed to generate a reliable utility estimation.
This section starts with a thorough explanation of the Exp4 algorithm [3]
that Bard et al. have chosen to use to determine the utility of each response
from the portfolio online. Some of the previously mentioned related work
used the UCB algorithm for this task so I will discuss some points that

18

5 ONLINE IMPLICIT POKER AGENT

support the decision for Exp4. Two small adjustments to the Exp4 algo-
rithm are made that allow the usage of Bard et al.’s off-policy importance
sampling and imaginary observations as variance reduction technique [7]. A
short description of this variance reduction technique concludes this section.

5.2.1 Exp4

Exp4 stands for Exponential-weight algorithm for Exploitation and Explo-
ration using Expert advice. It provides a solution for the adversary multi-
armed bandit problem where the player has a set of strategies for choosing
the best action. Expert advice refers to the fact that Exp4 combines the
choices of N strategies (experts) which all select a different action from K
actions at each iteration. This is where Bard et al. make their first adjust-
ment to the Exp4 algorithm. Since they play a mixture of extensive form
strategies instead of a distribution over single actions, the strategies’ action
sequence probabilities need to be averaged. With another small adjustment
that will be discussed further on this algorithm is directly applicable to the
problem of selecting the strategy with the highest utility from our portfolio.
To create a better understanding of this process the original Exp4 algorithm
will now be explained in detail. Let us start with a formal definition of the
adversarial bandit game, given by Figure 2 on the next page.

Exp4 is an extension of Exp3, which stands for Exponential-weight al-
gorithm for Exploitation and Exploration. Exp3 uses a subroutine called
the Hedge algorithm. The Hedge algorithm from Auer et al. is a variant of
the Hedge algorithm for full information games introduced by Freund and
Schapire [10]. This variant from Auer et al., described in Figure 3, works
with gains [0,M] instead of losses [-1,0]. This adjustment makes Hedge ap-
plicable to partial information games and thus usable as a building block
for the Exp4 algorithm.

19

5 ONLINE IMPLICIT POKER AGENT

Notation and terminology
The adversarial bandit game is formalized as a game between a
player choosing actions and an adversary choosing the rewards
associated with each action.

The game is parameterized by the number K of possible ac-
tions with integer i : 1 ≤ i ≤ K.

All rewards belong to a unit inverval [0, 1].

The game is played in a sequence of trials t = 1, 2, ..., T.
On each trial t:

1. The adversary selects a vector x(t) ∈ [0, 1]K of current rewards.
The ith component xi(t) is interpreted as the reward associated
with action i at trial t.

2. Without knowledge of the adversary’s choice, the player
chooses an action by picking a number it ∈ {1, 2, ..., K} and
scores the
corresponding reward xit(t).

3. Since we consider a game with partial information (poker) the
player observes only the reward xit(t) for the chosen action it
(in a full information game the player would observe the entire
vector x(t) of current rewards).

Let GA
.
=

∑T
t′=1 xit(t) be the total reward of player A choosing

actions i1, i2, ..., iT .

We formally define an adversary as a function mapping the
past history of play i1, ..., it−1 to the current reward vector x(t).

The measure of performance is regret, which is the difference
between the total reward of algorithm GA and the total reward of
the best action (Exp4 measures against the total reward of the best
expert instead of the best action).

Formally, we define the expected total reward of algorihm A
by:

E[GA]
.
= Ei1,...,iT

[∑T
t=1 xj(t)

]
,

the expected total reward of the best action by:

EGmax
.
= max1≤j≤KEi1,...,iT

[∑T
t=1 xj(t)

]
,

and the expected regret of algorithm A by RA
.
= EGmax −E [GA].

Figure 2: Formal definition of the adversarial bandit problem as defined by
Auer et al. [3]. 20

5 ONLINE IMPLICIT POKER AGENT

Algorithm Hedge
Parameter: A real number η > 0.
Initialization: Set Gi(0) := 0 for i = 1, ... ,K.

Repeat for t = 1,2, ... until game ends

1. Choose action it according to the distribution p(t), where

pi(t) = exp(ηGi(t − 1))∑K

j=1
exp(ηGj(t − 1))

.

Note: At time t, action i is chosen with a probability
proportional to exp(ηGi(t - 1)), where η > 0 is a parameter
and Gi(t) =

∑t
t′=1 xi(t

′) is the total reward scored by action i
upto trial t.

2. Receive the reward vector x(t) and score gain xit(t).

3. Set Gi(t) := Gi(t - 1) + xi(t) for i = 1, ... , K.

Figure 3: Hedge algorithm, source: [3], Figure 1 (slightly adjusted)

To see how Hedge works one simply follows the steps described in Figure
3. In step 1, Hedge chooses an action using the current weight vector, after
normalizing. With the exponential function the Hedge algorithm makes sure
that actions yielding high rewards quickly gain a high probability of being
chosen. The η parameter controls how much emphasis is put on playing the
action with the highest cumulative reward. A small η will cause the player
to choose among all of the actions with near-uniform probability, a large η
makes the player choose among the most succesfull actions with high prob-
ability. At trial t, Exp3 (Figure 4) receives a probability vector from Hedge
which represents a distribution over the available strategies. According to
the distribution vector, which is a mixture of the probability vector from
Hedge and the uniform distribution, an action is selected. Mixing in the
uniform distribution is done to make sure that the algorithm tries out all k
actions to get good estimates of the rewards for each. Otherwise, the algo-
rithm might miss a good action because the initial rewards and observations
for this action are low and large rewards that occur later are not observed
because the action is never selected. Parameter γ set to 1 corresponds to
all actions being chosen uniformly on every round, γ = 0 corresponds to the
most exploitive case where experts that were previously well-rewarded are
highly favoured. After Exp3 receives the reward associated with the chosen
action, it generates a simulated reward vector for Hedge. Hedge requires full
information so all components must be filled in, even for the actions that
were not selected. For the chosen action the simulated reward is calculated

21

5 ONLINE IMPLICIT POKER AGENT

Algorithm Exp3
Parameters: Reals η > 0 and γ ∈ (0,1].
Initialization:Initialize Hedge(η).

Repeat for t = 1,2, ... until game ends

1. Get the probability vector p(t) from Hedge which represents
a distribution over the available strategies.

2. Select action it to be j with a probability according to the
distribution vector p̂j(t), which is a mixture of the vector p(t)
from Hedge and the uniform distribution:
p̂j(t) = (1 - γ)pj(t) + γ

K .

3. Receive the reward for the chosen action: xit(t) ∈ [0, 1].

4. Generate a simulated reward vector x̂(t) and feed it back to

Hedge, where x̂j(t) = xit(t)
p̂it(t)

if j = it and x̂j(t) = 0 otherwise.

Figure 4: Exp3 algorithm, source: [3], Figure 2 (slightly adjusted)

by dividing it by the probability with which it was chosen. This compensates
the rewards of actions that are unlikely to be chosen. The other actions all
receive a simulated reward of 0 to make sure the expected simulated gain
for an action is equal to the actual gain.

The goal of Exp3 is to get the total reward as close to the reward of
the best single action. The goal of Exp4 is to get the total reward as close
to the reward of the best expert. Exp4 achieves this by running Exp3 over
the N experts using estimates of the experts’ losses. The performance of
any player is measured in terms of regret (see Figure 22). Exp4 mixes the
expert advice with the probability distribution over experts maintained by
Exp3 (Figure 5, step2). In step 3 the second adjustment by Bard et al.
is made: instead of the uniform exploration over action sequences (in the
Exp3 case: actions) maintained by Exp4, the weight of each expert is forced
to be at least some minimum value, bounding each experts weight in the
mixture away from zero. This allows the guarantee that the acting strategy
has non-zero probability on every action sequence played by any response
in the portfolio. The necessity of this will be explained in section 5.2.3.

2The definition of regret compares the total reward of the algorithm to the sum of
rewards that were associated with taking some action j on all interations. However, had
action j acutally been taken, the rewards chosen by the adversary would have been different
than those actually generated since the variable x(t) depends on the past history of play.
This is quite difficult to interpret and will not be discussed any further in this paper. The
interested reader is referred to the official paper by Auer et al. [3].

22

5 ONLINE IMPLICIT POKER AGENT

Algorithm Exp4
Parameters: Reals η > 0 and γ ∈ [0,1].
Initialization:Initialize Hedge (with K replaced by N).

Repeat for t = 1,2, ... until game ends

1. Get the distribution (over N strategies) q(t) ∈ [0, 1]N from
Hedge.

2. Compute the vector p(t) as a weighted average (with respect
to q(t)) of the strategy vectors ξj(t): get advice vectors ξj(t)
∈ [0, 1]K , and let p(t) :=

∑N
j=1qj(t) ξj(t).

3. Select action it and assign it to be j with a probability according
to the distribution vector p̂j(t), which is a mixture of the vector
p(t) from Hedge and the uniform distribution:
p̂j(t) = (1 - γ)pj(t) + γ

K .

4. Receive reward xit(t) ∈ [0, 1].

5. Compute the simulated reward vector x̂(t) as

x̂j(t) = xit(t)
p̂it(t)

if j = it and x̂j(t) = 0 otherwise.

6. Feed the vector ŷ(t) ∈ [0,Kγ]N to Hedge where ŷj(t)
.
= ξj(t) ·

x̂(t).

Figure 5: Exp4 algorithm, source:[3], Figure 4 (slightly adjusted)

Exp4 steps described in a high-level fashion:

• Step 1 and 2: Generate a probability distribution over a collection
of expert strategies using a normalized exponential function of the
expected total rewards for each expert(see Figure 3, step 1).

• Step 3: Select an action according to the weighted mixture of the
experts.

• Step 4: Receive reward.

• Step 5 and 6: Compute expected reward for each expert which is
added to the vector of expected total rewards.

We have seen that the balance between exploration and exploitation
in Exp4 is controlled by the two parameters γ and η. The η parameter
controls the amount of exploration among potential counter-strategies. The
γ parameter controls the amount of exploiting the highest-rated strategies
during the exploration phase.

23

5 ONLINE IMPLICIT POKER AGENT

Although it is beyond this paper to provide a proof its worth noticing
that Exp4 comes with finite-time regret bounds on the expected per-time-
step regret, guaranteeing the expected utility of the selected actions performs
nearly as well as the best expert in hindsight (In [3] the reader finds exact
bounds and their validation).

5.2.2 UCB

The UCB family of algorithms has been proposed by Auer et al [2]. The
simplest algorithm, UCB1, can be summed up by the principle of optimism
in the face of uncertainty. This principle simply states that even if we do
not know the exact payoff of each action we can just make an optimistic
guess, and pick the action with the highest guessed payoff. We want to be
(almost) certain that the true expected payoff of an action is less than the
prescribed upper bound. When choosing the arm that has the largest Upper
Confidence Bound (= the highest expected utility) the agent is able to
exploit that action while obtaining minimal regret. If the pick of the largest
UCB is not correct the optimistic guess of the expected utility will quickly
decrease and cause the agent to switch to a different arm. This creates a
balance between exploitation and exploration. UCB1 maintains the number
of times that each arm has been played in addition to the empirical means.
Initially, each arm is played once. Afterwards, at random the algorithm
greedily picks an arm.

We have seen that in some previous work upper confidence bounds are
used in implicit modeling to select from a the portfolio of strategies. There
are several problems with this approach. To start with, it might not be
appropriate as UCB’s regret bounds are for the stochastic bandit problem.
Poker is an adversarial game where the opponent might manipulate the
value of bandit arms. Furthermore, since UCB selects and acts according to
a single strategy from the portfolio rather than a mixture, it cannot ensure
that the support of the strategy being played is a superset of the supports
for the portfolios individual responses. Therefore we cannot estimate the
utilities of the off-policy strategies in the portfolio without potentially intro-
ducing bias. Bard et al. have shown that their small portfolio agent which
uses Exp4 for strategy selection improves on an implicit modeling UCB-
based agents when playing against the 4 small-portfolio mimics and when
playing against all 2010 ACPC mimics, which is consistent with the no-
tion of the apparent shortcomings in applying UCB to an adversarial bandit
problem.

24

6 CONCLUSION

5.2.3 Variance Reduction Techniques

Since poker is a game that is heavily influenced by chance, the number of
observations needed to generate a reliable utility estimation might become
very large. Variance reduction techniques can help eliminate some of the
noise induced by chance and reduce the needed number of observations.
Bard et al. present a technique in [7] that is based on importance sampling
and can be used to simultaneously evaluate many strategies while playing a
single strategy in the context of an extensive game (importance sampling is
a general technique from statistics that can be used to estimate the prop-
erties of a particular distribution, based only on samples generated from a
different distribution). The estimator variance is reduced by imagining al-
ternate observations taken by other agents. Observations are created for all
possible private cards and early folding opportunities. Early folds are prov-
ably unbiased, and although the all-cards technique can create bias under
partial information (due to card replacement effects and not knowing which
cards the other agent holds) Bard et al. point out that prior results suggest
this bias is small while providing substantial variance reduction ([7], table
3).

Being able to simultaneously evaluate many strategies while playing a
single strategy is called off-policy estimating. It enables us to use each
observation of the opponent’s actions and outcomes to update estimates for
the entire portfolio. Bard et al. have chosen to apply this technique of
’imaginary observations’ and importance sampling to return low variance
estimates of each response’s utility. To be able to use this technique for
off-policy estimating they have to make sure that the support of the acting
strategy is a superset of the strategies whose utility is being estimated. This
means that for any sequence of actions that can be realized by the off-policy
strategy, the acting strategy must take this sequence of actions with some
probability >0. Otherwise, there will exist some sequence of actions that
the acting strategy will never take but the off-policy strategy will, leading
to bias. This could be prevented by acting according to a strategy that
mixes between all of the strategies in the portfolio (if any individual strategy
would play an action, then the mixture will necessarily play it with non-zero
probability).

6 Conclusion

This section provides an overview of the answers to the research question
that were given in this thesis. Next, these results and their impliciations for
the broader perspective of AI are reviewed. To conclude, the contribution of
this thesis is discussed and some suggestions for future research are made.

25

6 CONCLUSION

6.1 Answering the research question

The goal of this thesis was to give insight in the two main approaches to
opponent modeling in the domain of Texas Hold’em Poker, and the issues
that arise in this area. We have discussed the differences between the two
approaches and the way these differences affect the usability of an opponent
model. These differences can be captured in one main point of difference: the
usage of a specific model for the opponent’s strategy. We have seen that with
explicit modeling, an agent tries to discover weaknesses from the opponent
by identifying the opponent’s strategy. The agent then uses the model from
the opponent’s strategy to create an effective counter strategy. With implicit
modeling, no such model is created. An implicit agent tries to find the
most effective counter strategy for an opponent by using different counter
strategies against the opponent. These counter strategies try to maximize
the agent’s utility by exploiting the opponent’s weaknesess, but the exact
nature of these weaknesses is of no concern to an implicit agent (as opposed
to an explicit agent that builds an entire model to discover the nature of his
opponent’s weaknesses). This difference has a major influence on the usage
of the opponent models. The online building of a model that represents the
opponent’s strategy introduced two major difficulties for explicit modeling:

• In such a complex domain as poker, the building of an accurate model
requires a prohibitive number of observations.

• Computing a response strategy that is robust to modeling error may
be impractical to compute online.

In section 3 we discussed the most-used solution for these two problems:
applying a state-space abstraction technique. It became clear that this so-
lution, although making explicit models usable in complex domains, is no
perfect-fix and introduces some difficulties as well. Although having an ex-
plicit model that allows us to predict the opponent’s actions and reactions
is the ultimate goal, the question remains if it is possible to capture the full
behavior of a dynamic opponent based on a few observations (in comparison
to all decision points in the game). None of the efforts of applying explicit
modeling to opponent modeling in poker have been able to overcome these
difficulties for a full scale envrionment. Models always deviate from the
more complex reality with all kinds of possible negative influences on the
players utility.

Implicit modeling does not concern itself with the creation of a model
for the opponent’s strategy. This makes implicit modeling frameworks bet-
ter suitable for complex online environments, where agents have to make
decisions within tight time constraints.

26

6 CONCLUSION

The most important problems that arise within this approach are:

• Which (and how many) counter-strategies to consider for usage against
the opponent.

• How to balance between searching for the most effective counter strat-
egy and exploiting a single counter strategy to gain utility.

In the implicit framework, a lot of the heavy calculations can be performed
offline. This is probably the property that has the main effect on the us-
ability, it makes implicit modeling better suitable for large complex domains
such as online poker than explicit modeling.

6.2 Implications towards the field of AI

As indicated in the introduction: poker presents a very interesting research
field for Artificial Intelligence. This thesis tried to inform the reader about
the two major approaches to opponent modeling in the domain of Texas
Hold’em Poker. In the previous subsection I have reached the conclusion that
implicit modeling seems the best approach to opponent modeling in large
complex domains. To support this statement, an overview was presented of
the implicit modeling approach as proposed by Bard et al. This approach
avoids building an explicit model online, with positive results. They trained
two agents on data from 2010 ACPC agents. These two agents are validated
using the 2011 ACPC benchmark server. Note that both agents are unknown
to the 2011 agents that they will encounter as they are trained against the
2010 agents. Both implicit agents would have won the competition. The Big-
Portfolio agent did not win by a statistically significant margin. However,
Small-Portfolio won the event by greater than the 95 percent confidence
margin. The fact that the Small-Portfolio outperformed the Big-Portfolio
agent seems to indicate that pruning the portfolio of redundant responses
results in higher utilities.

Building on these positive results, Bard et al. have entered an agent,
named Hyperborean tbr, in the 2013 ACPC. Hyperborean tbr is based on
the implicit modeling framework that is discussed in this paper and per-
formed very well: it placed second in the Total Bankroll event (together
with a French agent named Feste). First place went to Marv, submitted by
Marv Andersen. This agent consists of a neural net that is trained to imi-
tate previous ACPC winners. These results certainly indicate that there is a
lot to gain from the implicit modeling framework. For the field of Artificial
Intelligence, this might mean a grand shift from the most used approach
(explicit modeling) to the implicit approach. By leaving the explicit ap-
proach behind, we no longer have to deal with the problems that came with
this framework. This might be a big chance on improvement. The improve-
ment of pokerbots will help bring AI research closer to it’s goal: creating

27

6 CONCLUSION

intelligent agents. If the positive results shown by Bard et al. for implicit
modeling provide any indication for future research contributions, there is a
lot of progress to be expected for AI.

6.3 Contribution

This thesis was written in such a way as to be helpful for anyone that has
an interest in opponent modeling, but has no idea where to begin with the
existing literature. It should provide them with a solid basic knowledge
about the two main approaches to opponent modeling. Also, I hope that
this thesis has been able to raise appreciation for the advantages that were
shown to come from favoring implicit modeling over explicit modeling in
complex domains such as poker.

6.4 Future Research

Although it might very well be possible that most attention in this research
area will be payed to implicit modeling in the upcoming period, I do not
think explicit modeling has to be dropped just yet. But, in order to compete
with implicit modeling agents, future research on explicit poker agents will
need to focus on solving the problem of building and maintain a high dimen-
sional model in real time without requiring many observations or significant
prior knowledge.

Future research on implicit poker agents might concern itself with op-
timal methods for pruning the portfolio. As the Small-Portfolio agent out-
performed the Big-Portfolio agent it might be fruitful to think of new ways
of building a Small*-Portfolio agent that performs even better.

28

REFERENCES

References

[1] The Annual Computer Poker Competition webpage, Retrieved January
20, 2014, from http://www.computerpokercompetition.org

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite time analysis of the
multi-armed bandit problem. In Proc. of Machine Learning, pp. 235 -
256, 2002.

[3] P. Auer, N. Cesa-Bianchi, Y. Freund and R.E. Schapire. Gambling in a
rigged casino: The adversarial multi-armed bandit problem. In Proc. of
the 36th Annual Symposium on Foundations of Computer Science, pp.
322-331, 1995.

[4] N.Bard, M. Johanson, N. Burch and M. Bowling. Online implicit agent
modelling. In Proc. of the 12th International Conf. on Autonomous
Agents and Multiagent Systems (AAMAS), pp. 255-262, 2013.

[5] D. Billings, D. Papp, J. Schaeffer, and D. Szafron. Poker as a testbed for
AI research. In Proc. of Canadian Conference on AI, pp. 228-238, 1998.

[6] B. J. Borghetti. Opponent modeling in interesting ad-
versarial environments. Dissertation, ProQuestt, Au-
gust 2008, Retrieved on January 28, 2014, from
http://conservancy.umn.edu/bitstream/11299/46071/1/Borghetti Brett
%20August%202008.pdf

[7] M. Bowling, M. Johanson, N. Burch, and D. Szafron. Strategy evalua-
tion in extensive games with importance sampling. In Proc. of the 25th
Annual Int. Conf. on Machine Learning (ICML), pp. 72-79, 2008.

[8] P. McCracken and M. Bowling. Safe strategies for agent modelling in
games. In AAAI Fall Symposium on Artificial Multi-agent Learning, pp.
103 - 111, October 2004.

[9] A. Davidson. Opponent modeling in poker: learning and act-
ing in a hostile and uncertain environment. Master Thesis, Uni-
versity of Alberta, 2002, Retrieved on January 28, 2014, from
http://poker.cs.ualberta.ca/publications/davidson.msc.pdf

[10] Y. Freund and R.E. Schapire. A decision-theoretic generalization of
online learning and application to boosting. IN Journal of Computer
and System Sciences, pp. 119-139, 1997.

[11] S. Ganzfried and T. Sandholm. Game theory-based opponent modeling
in large imperfect-information games. In Proc. Of the 10th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 533-540,
2011.

29

REFERENCES

[12] M. Johanson, M. Zinkevich, and M. Bowling. Computing robust counter
strategies. In Advances in Neural Information Processing Systems 20
(NIPS), Proc. of the 21st Annual Conf. on Neural Information Processing
Systems, pp. 721-728, MIT Press, Cambridge 2007.

[13] M. Johanson and M. Bowling. Data biased robust counter strategies.
In Proc. of the 12th Int. Conf. on Artificial Intelligence and Statistics,
pp. 264-271, 2009.

[14] M. Johanson, N. Burch, R. Valenzano, and M. Bowling. Evaluating
state-space abstractions in extensive-form games. In Proc. of the 12th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS),
pp. 271-278, 2013.

[15] J. F. Nash. Non-Cooperative games. In The Annals of Mathematics,
Second Series, Volume 54, Issue 2, pp. 286-295, September 1951.

[16] J. Rubin and I. Watson. On combining decisions from multiple expert
imitators for performance. In Proc. of the 22nd Int. Joint Conf. on Ar-
tificial Intelligence (IJCAI), pp. 344-349, 2011.

[17] J. Rubin and I. Watson. Opponent type adaptation for case-based
strategies in adversarial games. In Proc. of the 20th Int. Conf. on Case-
Based Reasoning, pp. 357-368, 2012.

[18] Texas Hold’em hands. The Poker Practice webpage. Retrieved January
20, 2014, from http://www.thepokerpractice.com/hands/

[19] K. Waugh, D. Schnizlein, M. Bowling, and D. Szafron. Abstraction
pathologies in extensive games. In Proc. of the 8th Int. Joint Conf. on
Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 781-788,
2009.

[20] 2012 World Series of Poker webpage. Retrieved January 20, 2014, from
http://www.wsop.com/2012/

[21] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione. Regret min-
imization in games with incomplete information. In Advances in Neural
Information Processing Systems 20 (NIPS), Proc. of the 21st Annual
Conf. on Neural Information Processing Systems, pp. 1729-1736, MIT
Press, Cambridge 2007.

30

