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Abstract

The delineation of geomorphological units through �eld mapping is particularly time

consuming in large catchments and involves a high degree of subjectivity. In the context

of large-scale catchment modelling, an alternative to the draw-backs of �eld mapping is

to resort to automated landscape classi�cation. Traditional variogram-based simulation

methods have been shown to be unappropriate when dealing with curvilinear features, as

it is the case with landscape patterns. In order to overcome this limitation, multiple-point

geostatistical methods have been developed in the last two decades, primarily in the �eld

of geological reservoir simulation. In the present research, a multiple-point geostatistical

technique based on the single normal simulation equation (snesim) was applied to the ge-

omorphological mapping of the Buëch catchment, Southern France.

The multiple-point geostatistical technique used in this study relies on deriving the con-

ditional relationship between the properties of a cell and its geomorphological unit from a

training image. This approach follows two main steps: the storage of multiple point geo-

statistics (MPG) in a dynamical data structure (search tree), and the simulation. In the

�rst stage, the training image is scanned; the number of occurrences of geomorphological

units, associated to properties (attributes) discretized into classes, is stored in the search

tree. In the second stage, all cells of the catchment are visited in a random order. For each

cell, the conditional probability is retrieved from the search tree, on the basis of which a

geomorphological unit is assigned to the cell.

The main research objective of this study was to assess the capability of the MPG auto-

mated classi�cation method to reconstruct the geomorphology of the area. To this end,

three di�erent training areas of identical size were used. Six topographical attributes and

two neighbourhood attributes were de�ned, along with six di�erent number of classes. An

optimization design aiming at identifying the best combination of topographical and neigh-

bourhood attributes, as well as the most performing number of classes, was then followed

for each of the training areas.

The algorithm reached a mapping accuracy of 47% of correctly classi�ed cells (Kappa co-

e�cient: 0.33). It was shown that the attributes "distance to higher elevations", "relative

elevation" and "slope" were leading to the highest increase of mapping accuracy. Adding

neighbourhood attributes to the best topographical combinations lead to contradictory

results between the training areas and the types of evaluation. For two of the training

areas, increasing the number of classes lead to an increase of the mapping accuracy. Large

di�erences were observed in the classi�cation of geomorphological units, with percentages

of correctly classi�ed cells ranging from 75% (debris slope) to 3% (active badlands). The

units were mostly misclassi�ed in relatively near units in terms of topography and geomor-

phology.

The geomorphology of the training area was shown to impact directly on the correct clas-

si�cation of geomorphological units. The more present a geomorphological unit was in the

training area, the better its classi�cation became, irrespective of its actual proportion in

the Buëch catchment. The results were also shown to be largely in�uenced by the correct

classi�cation of the unit "debris slope", which covers about 40% of the total area of the

Buëch catchment. Future research is required to derive new topographical attributes likely

to improve the classi�cation of units other than "debris slope". The possibility to include

neighbourhood information should be explored into further extent. The number of classes

and the class boundaries could be adapted too for better discrimination possibilities.
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1 Introduction

Modelling discharge and water balance in a large scale catchment is data demanding and in-
volves a high level of computational cost. One of the solutions is to use a relatively large
model unit (104- 106 m2) to reduce the model runtime. The model units should be distinctive
in terms of physiographical characteristics and can be taken to be approximately identical to
geomorphological units. The delineation of the geomorphological units can be done through
�eld mapping, however this task is particularly time consuming in large-scale catchments and
involves a high degree of subjectivity. An alternative to the drawbacks of �eld mapping in the
context of large-scale catchment modelling is to develop an automated landscape classi�cation.

Several automated methods can be found in the literature and will be brie�y presented
hereafter. A �rst approach consists of de�ning the membership of the cell on the sole basis of
the properties of the cells itself, following either classi�cation or cluster techniques. Classi�cation
techniques amount to de�ne conditional statements linking the properties of the cell (typically
derived from a digital elevation model) to a membership, i.e. a geomorphological unit. Although
these techniques are highly �exible (Burrough and McDonnell, 1998), the di�culty lies in the
identi�cation of discrimination rules allowing for both e�ective di�erentiation and as low data
loss as possible. The order in which the conditional statements are applied, as well as the
boundaries values, which all need to be de�ned by the user on the basis of data analysis and/or
expert knowledge, can have a large impact on the accuracy of the automatic mapping. Cluster
techniques, on the other hand, are almost entirely automated. A well-known example is the
k-means clustering method, where the values of the properties derived from the digital elevation
model (DEM) are clustered by minimizing the sum of square errors inside each cluster (Burrough
and McDonnell, 1998). The cells belonging to a same cluster have hence almost identical
properties and can be considered as belonging to the same geomorphological unit. In comparison
to classi�cation techniques, clustering methods require no conditional rules to be set. Class
boundaries cannot be de�ned a priori, but emerge from the data set. However, the user needs
to determine which properties, allowing for the best discrimination, are considered.

Another strategy consists of approaching automated geomorphological mapping from the
perspective of stochastic simulation. This approach is fundamentally di�erent, in that the au-
tomated map is considered as a realization drawn from a conditional cumulative probability
function. Traditionally, simulation methods have relied on two-points (variogram-based) statis-
tics, of which a typical example is sequential Gaussian simulation. However, two-point geo-
statistics are often unable to reproduce the mathematical complexity of curvilinear landform
patterns, which would require to take into account the correlations between a larger number of
spatial locations (Liu, 2006; Caers and Zhang, 2004; Strebelle, 2002). In order to overcome this
limitation, multiple-point geostatistical methods have been developed in the last two decades,
primarily in the �eld of geological reservoir simulation (Strebelle, 2002; Caers and Zhang, 2004).
The multiple-point geostatistical (MPG) approach makes use of a training image, which cor-
responds to an area which is already mapped. The training image is scanned; multiple-point
statistics are derived and stored in a frequency database. For each non-mapped cell, a realiza-
tion is then drawn from the frequency database on the basis of conditioning data (properties
derived from the DEM and neighbouring cells), and a geomorphological unit is assigned. The
use of the training image is a core di�erence between the MPG approach and the cluster and
classi�cation techniques. While cluster and classi�cation techniques determine the membership
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of the target cell on the basis of its own properties only, the MPG approach infers the condi-
tional relationships between the cell properties and its membership from a pre-existing dataset.
The units mapped with the MPG approach are hence pre-de�ned, since already existing in the
training area; with cluster and classi�cation techniques, on the other hand, the units need to be
speci�ed on the basis of data analysis. Additionally, the structure of the MPG technique allows
for a wider range of conditioning data: beside the properties of the target cell, neighbourhood
information can also be included to determine the membership of the cell.

This research is part of a larger project on nested hydrological modelling of large catchments,
which uses geomorphological units as input. A research on automated geomorphological classi�-
cation using k-means clustering and classi�cation techniques was conducted earlier on the same
study area (Schuur, 2009). This study aims at developing and applying a multiple-point geosta-
tistical approach for automated geomorphological classi�cation, with using DEM as only input.
The main research objective is to assess the capability of the MPG automated classi�cation
method to reconstruct the geomorphology of the area.

In order to reach this objective, three further research questions are de�ned:

• How does the number and the type of DEM-derivatives and neighbourhood attributes
impact the quality of the automatic mapping?

• How does the number of classes of topographical attributes impact the quality of the
automatic mapping?

• How does the choice of the training area impact on the quality of the automatic mapping?

In Chapter 2, the study area and its geomorphological units are presented. Chapter 3 describes
the methodology used in the di�erent stages of the research. The results obtained with the
multiple-point geostatistical approach are presented in Chapter 4 and discussed in Chapter 5,
in relationship with the research questions de�ned above. A general conclusion is provided in
Chapter 6.
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2 Study area

The study area is located in the southern French Prealps (Hautes-Alpes department) and ex-
tends approximately between Veynes and Serres. It is part of the Buëch catchment, which is
itself a con�uent of the Durance river and �ows in a north-west to south-east axis through the
study area. The elevation ranges between 700m along the tributaries to a maximum of 1700m
at the mountain crest; most of the area is however situated under 1300m above sea level.

The study area underwent two orogenies: the Alpine orogeny, which deformed Mesozoic
deposits along north-north-east to south-south-west foldings, and the formation of the Pyrenees,
which resulted in east to west foldings (Asch et al, 2010). Most important for the current
geomorphology of the area is the lithology, which is characterized by a succession of massive
limestones and dark marls and presents hence large di�erences in terms of resistance to erosion
(Asch et al, 2010). The climate of the Quartenary, with its alternation of glacial and periglacial
periods, is a second important factor in the formation of the current landscape.

Figure 1: Location of the study area, from Asch et al (2010).

2.1 Main geomorphological features

Two main types of geomorphological features are found in the study area: denudational forms,
resulting from erosional processes, and accumulation forms.

2.1.1 Denudational forms

The massive limestones from the upper Malm and the lower Cretaceous are very resistant to
erosion. They are forming steep ridges of bare rock, of 10 to 60m height, generally extending
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above debris slopes (Asch et al, 2010). Referred to as hogbacks, these cli�s are usually only
some meters wide and hence almost absent on two-dimensional geomorphological maps, albeit
they are frequently encountered in the study area. Next to massive limestones, the lithology of
the area consists of several layers of black marls, which show very low resistance to erosional
processes. Water incises marls in narrow gullies, connected in a hierarchical way and separated
by higher ridges; these complexes are known as badlands. Badlands are considered as active when
erosional processes are still ongoing. In this case bare marls are almost impermeable to water,
which leads to overland �ow (Schuur, 2009). Vegetation can start developing on badlands when
the slope of the ridges separating gullies decreases, hence allowing for soil formation. Inactive
badlands are typically covered by more than 10% by vegetation, which enables water in�ltration
(Asch et al, 2010).

A further denudational form characteristic of the region is the glacis. Glacis are concave hill
slopes resulting from soli�uction and overland �ow, mostly formed during glacial periods in the
absence of vegetation. As such, glacis often end some meters above the bottom of the valley,
hence representing the old elevation of the valley. They are covered by a layer of sediment
allowing for subsurface �ow and ranging from some decimeters to some meters (Asch et al,
2010). Glacis are in principle connected at their highest part to hogbacks; if this connection is
not present anymore, they are often referred to as glacis remnants.

2.1.2 Accumulation forms

Debris slopes (also known as scree slopes) are steep slopes covered by loose material eroded
from the hogbacks. Debris slopes are hence found at a relatively high position in the landscape,
under hill crests. The size of the deposited material can highly vary and the slope can be covered
by vegetation, depending on the frequency of rock falls (Asch et al, 2010). Mass movements
(landslides) are the least present geomorphological unit in the region and con�ned to a limited
area in the eastern part of the catchment ; they are recognizable by the scarp under which
they develop, as well as their lobate shape. Whereas gravity is the main geomorphological
factor in the formation of debris slopes and mass movements, alluvial fans and colluvium are
resulting from water-related depositional processes. Alluvial fans are characterized as fan-
shaped features, generally convex perpendicularly to the steepest gradient. The conic surface
of this unit originates from the transport of material from a source point by water in the
downstream direction (Asch et al, 2010). In the study area, alluvial fans are divided into
two categories on basis of the type of deposited material. Fine alluvial fans consist of marl
deposits; their slope angle is generally not exceeding 10 degrees and the in�ltration capacity
is relatively low (Schuur, 2009). Coarse alluvial fans, which originate from calcareous scree
eroded from hogbacks and transported over debris slopes, reach both higher slope angles and
in�ltration capacities. Colluvium are located at the foot of slopes and result from the deposition
of mostly calcareous material eroded from upstream accumulation units. Their form is less easily
recognizable than that of alluvial fans. They are often covered by a thick layer of soil enabling
for a relatively high in�ltration capacity (Schuur, 2009).

Two further accumulation forms relative to �uvial processes can be identi�ed. Sediments
deposited along the river at its current level are referred to as river plains. River plains are
�ooded regularly on a yearly basis, which implies that sedimentation processes are relatively
active (Asch et al, 2010). River terraces, on the other hand, are old river plains situated at
the ancient, higher level of the river. Their form is distinctive, since consisting of a highly �at
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surface with steep sides.

2.2 General position of geomorphological units

The geomorphology of the Buëch catchment is typical in that several sequences of units can be
identi�ed on a repetitive basis. On a top to bottom axis, hogbacks occupy the highest position
in the landscape, on hill crests; under them, debris slopes extend on steep slopes, which cover
a large percentage of the study area. Glacis are generally found among debris slope, or just
underneath. Both inactive and active badlands, as well as colluvium, extend below debris slopes
too. On a bottom-top axis, river plains are found at the lowest elevations inside subcatchments.
They are generally surrounded at a slightly higher elevation by river terraces, but also by coarse
and �ne alluvial �nes, which are connected to debris slopes at their upper extremity. These
relatively clear sequences of units suggest that the relative position of cells towards both hill
crests and rivers, as well as the neighbouring units, might be of importance in order to classify
the geomorphology in an automated way.
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3 Methodology

3.1 Multiple point geostatistics

The multiple point geostatistical method used in this research was developed by Strebelle (2002)
as an extension of the algorithm of Guardiano and Srivastava (1993), and is commonly referred
to as single normal equation simulation (snesim). Albeit snesim was �rst intended for the
modelling of geological reservoirs, the non-speci�c character of its method renders it applicable
to any type of landscape heterogeneity.

The snesim approach consists of using one or several training images, from which all multiple-
point statistics necessary to the simulation of areas to be mapped are read. The training
image can be of synthetic nature or correspond to a part of the landscape which properties are
known. The snesim simulation algorithm follows two main steps: the storage of multiple point
geostatistics in a dynamical data structure (search tree), and the simulation. In the �rst stage,
the training image is scanned; the number of occurrences of the states of interest, associated to
properties discretized into classes, is stored in the search tree (Strebelle, 2002). In the second
stage, the cells that are not belonging to the training image are visited in a random order. For
each cell, the conditional probability is retrieved from the search tree, on the basis of which
a state is assigned to the cell. This method will be described into further details in the next
section, in relationship with its actual implementation in this research.

3.1.1 Application of single normal equation simulation (snesim) to geomorpholog-
ical classi�cation

The main assumption underlying the use of the snesim algorithm for geomorphological classi�ca-
tion is that the occurrence of geomorphological units is conditioned by topographical attributes;
the nature of this conditional relationship is inferred from the training image. The training im-
age corresponds to a part of the Buëch catchment, which geomorphology is known on the basis
of a �eld map. For the purpose of the research, it is considered that the only data available
about the rest of the Buëch catchment is a digital elevation map (DEM).

Six topographical attributes are de�ned and derived directly from the DEM (section 4.3).
Their continuous values are discretized into a given number of classes. The number and type of
topographical attributes, as well as the number of classes, is set prior to the application of the
snesim algorithm and varies from one experimentation to another according to the optimization
design (section 4.7). Beside topographical attributes, attributes relative to the neighbourhood
of the cell are also used in the present research in the last step of the optimization design
(section 3.4). Those neighbourhood attributes have categorical values (geomorphological units)
and hence do not require to be discretized into classes.

The �rst stage of the snesim algorithm can be referred to as the "training" phase; only the
training area is considered. For each cell of the training area, the algorithm scans the class
of values of topographical attributes the cell belongs to (derived from the DEM), the class of
neighbourhood attributes (if used), as well as the geomorphological unit of the cell (derived
from the �eld map). The classes of attributes assigned to each cell are referred to as patterns.
For each pattern (e.g. slope [2]; planform curvature [5]; distance to river [1]), the number of
occurrences of geomorphological units are counted. It is expected that a given pattern may be
more easily associated to one type of geomorphological unit than to another, which allows for
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Figure 2: Hypothetical search tree resulting from the use of three attributes (slope, relative
elevation and planar curvature) and two classes.

a characterization of geomorphological units by means of topographical attributes. By dividing
for each pattern the number of cells belonging to a given geomorphological units by the number
of cells showing the same pattern, the conditional probability can be obtained and described by
the following equation:

Prob {G | A} = N(G)

N(A)
(1)

Where G is a given geomorphological unit, A a given pattern and N the number of cells.
Pursuing on the former example, the hypothetical pattern "slope[2], planform curvature [5],
distance to rivers [1]" could correspond in 60% of the cases to alluvial fans, and in 40% of the
cases to colluvium. These conditional probabilities are stored in a search tree (Figure 2).

The next stage of the snesim algorithm consists of the automatic mapping. All cells of
the Buëch catchment are visited in a random order and the the pattern of each cell is derived
from the DEM (topographical attributes) or from neighbouring cells that are already mapped
(neighbourhood attributes). At the beginning of the mapping, the number of mapped cells is too
low to enable the calculation of neighbourhood attributes. Since neighbourhood attributes are
generally added after topographical attributes, they are disregarded when they do not possess
mapped neighbours; in these cases, only topographical attributes are used, until the next cell
to be visited is surrounded by enough mapped neighbours for neighbourhood attributes to be
used. The fact that neighbourhood attributes cannot always be computed is of importance for
the order in which they are considered. If a neighbourhood attribute that can rarely be used
is placed before another, both will be disregarded if the �rst one cannot be computed. If the
attribute that is more easily computed is placed in front of the other, neighbourhood attributes
will altogether be used more frequently. Note that the order of topographical attributes is not
relevant, since all topographical attributes can be directly derived from the DEM.

On the basis of the search tree, a realization of the conditional probability associated to the
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pattern is drawn and geomorphological units get assigned to the cells. The fact that realiza-
tions are drawn from conditional probabilities implies that the type of geomorphological units
assigned to given cells might vary from one model run to another. It should be noted that the
entire catchment is mapped automatically, including the training area.

3.2 Data

The main inputs for the automatic classi�cation of geomorphological units in the Buëch catch-
ment are a digital elevation map and a geomorphological �eld map. The digital elevation map
has a resolution of 37.5m. The geomorphological �eld map is available from an earlier study
about automatic hydromorphological classi�cation based on cluster analysis and rule based
methods, carried on at Utrecht University in 2008 (Schuur, 2009). A �eld trip of four weeks
was conducted by two students and resulted in a �eld map of 1:10'000 scale; data from earlier
�eld works were used to preclassify the area prior to �eld mapping. The legend of the �eld
map contains 12 geomorphological units: hogback, river terrace, river plain, coarse alluvial fan,
�ne alluvial fan, colluvium, active badlands, inactive badlands, glacis, glacis remnant, mass
movement and debris slope.

The criteria used for the drawing of the geomorphological map are particularly important for two
reasons. First, the snesim algorithm derives all conditional relationships between topographical
attributes and geomorphological units from the �eld map; the results are hence fundamentally
dependent on the �eld map. Second, the geomorphological map is used as only reference to
assess the accuracy of the automatic mapping. This implies that in order to be accurate, the
automatic map should resemble as much as possible to the geomorphological map, irrespective
of whether the geomorphological map depicts the reality or not. A geomorphological map being
necessarily subjective, it can be expected that di�erences will be obtained with any geomor-
phologist mapping the area. The topographical and neighbourhood attributes de�ned for the
application of the snesim algorithm should thus reconstruct the "geomorphological eye" of the
geomorphologists.

The check list used for the geomorphological mapping during the 2008 �eld work is retrieved
in table 1 and furnishes an example of the criteria used by the geomorphologists. Long distance
observations were carried from about 150 observation points; at one third of those, short distance
observations were completed. Given that the DEM is the only input for the automatic mapping,
it can be noted that the short distance observations of table 1 cannot be derived; the same holds
for the vegetation and the colour of the units.
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Long distance observations Short distance observations

Slope Kind of material
Aspect Grain size
Shape of the unit Sorting
Size of the unit Color of the material
Colour Thickness of the unit
Vegetated Presence of soil layer
Position in the landscape Thickness of soil layer
Position in the landscape
compared to rivers and non
permanent streams

Type of vegetation

Table 1: Checklist for �eld classi�cation used during the geomorphological mapping, from
Schuur (2009).

3.3 Topographical attributes

The attributes were chosen in order to correspond to the criteria used by geomorphologists
in the �eld, and to meet the restriction to be derivable from a DEM. Three topographical
attributes were retained from the checklist used during the geomorphological mapping of the
Buëch catchment (Table 1): slope, position in the landscape (relative elevation), and position
in the landscape compared to rivers and non permanent streams (distance to rivers). Three
additional topographical criteria were assumed to be relevant during �eld mapping: planar
curvature, pro�le curvature, and distance to highest elevations. All topographical attributes are
presented hereafter. Furthermore, it was considered that the type of geomorphological units
found at the proximity of the cell to be mapped plays an important role in the classi�cation and
should thus be included in the algorithm. The two neighbourhood attributes "unit of window
majority" and "attribute of downstream neighbour" have been de�ned accordingly (section 3.4).

3.3.1 Slope

The slope attribute is computed by applying the PCRaster function slope on the DEM map.
The function slope takes the elevation of the eight nearest cell neighbours into account (3x3
window) and uses a third-order �nite di�erence method (PCRaster Team, 2011).

3.3.2 Planform curvature

Planform curvature corresponds to the second derivative of elevation per horizontal distance,
perpendicularly to the steepest gradient. This attribute is calculated by applying the PCRaster
function plancurv, which uses the eight nearest neighbours of the cell in a 3x3 window.

3.3.3 Pro�le curvature

Pro�le curvature is the second derivative of elevation in direction of the steepest gradient,
and is calculated with the PCRaster function profcurv. Similarly to the function plancurv,
profcurv is computed on the basis of the eight nearest cell neighbours. Positive planform or
pro�le curvatures indicate a convex slope, while negative values indicate a concave slope.
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3.3.4 Distance to river

The distance from each cell to the nearest river is computed following four steps. First, a
local drain direction (LDD) map of the catchment is created by determining the �ow direction
of each cell on the basis of the steepest gradient from the cell to one of its eight contiguous
neighbours, by making use of the PCRaster function lddcreate applied to the digital elevation
model (DEM). Second, the material �owing out of each cell (which corresponds to the sum of
the material of both the cell and its upstream cells) is computed by using the function accuflux,
applied to the LDD map. Third, a Boolean map is created by assigning a "true" value to cells
with an accu�ux value larger than 1000, in order to identify rivers in the catchment. This
threshold was set in order for the Boolean map to resemble the actual hydrological map of the
catchment, which was available from earlier �eld works in the area (Schuur, 2009). Finally, the
distance from each cell to the "true" value towards which the path over the local drain direction
map is the shortest is computed with the function ldddist (Figure 3).

Figure 3: Map of the distance to rivers in the study area. Rivers are assigned a 0 value.

3.3.5 Relative elevation

The relative elevation of each cell corresponds to its normalized elevation (a value between 0
and 1) in regard to the lowest and highest elevation of the Buëch catchment (Figure 4), and is
calculated as:

er =
e− emin

emax − emin

(2)

with er, the relative elevation of the cell, e, the elevation of the cell, emax, the maximum
elevation in the catchment, and emin, the minimum elevation in the catchment.
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Figure 4: Map of the relative elevation in the study area

3.3.6 Distance to highest elevations

The distance to higher elevations is de�ned as the distance to the nearest cell with a relative
elevation higher than 0.45 (Figure 5). This threshold corresponds approximately to the lowest
limit of the unit "debris slope" in the catchment and was set accordingly. This provides a means
to calculate the distance from a cell to debris slopes, which were shown in section 2.3 to extend
above a relatively �xed sequence of units. A Boolean map is �rst created by assigning "true"
values to each cell located above this threshold. The distance from each cell to "true" cells is
then computed by using the spread PCRaster function, which calculates the shortest distance
available for each cell.

Figure 5: Map of the distance to highest elevations in the study area. Cells with a relative
elevation higher than 0.45 are assigned a 0 value.

11



3.4 Neighbourhood attributes

3.4.1 Unit of downstream neighbour

The "unit of downstream neighbour" attribute returns the geomorphological unit of the down-
stream neighbour of each cell, as identi�ed by the local drain direction map. This attribute is
computed with the PCRaster function downstream. If the cell is a pit and does not have any
downstream neighbour according to the LDD map, its own value is returned.

3.4.2 Unit of window majority

The "unit of window majority" attribute corresponds to the most occurring geomorphological
unit found in a 3x3 window around the cell, and is computed with the PCRaster function
windowmajority. If no unit is more represented than another in the window, the size of the
window is iteratively enlarged by twice its initial length, until a dominating unit is found. This
implies that the size of the window might di�er between the training and the mapping phase.
If some cells of the window have not been mapped yet (and are hence assigned a missing value),
only the classi�ed cells will be taken into account for the computation of the most occuring cell
value.

3.5 Classes

Six di�erent numbers of classes were chosen: 2, 3, 5, 7, 10 and 12 classes. The class boundaries
are set such that each class includes an equal number of cells, in order to have equal probabilities
to associate cells to each class. This is attained by dividing for each topographical attribute the
total number of cells mapped by this attribute by the number of classes, and retaining as class
boundaries the values of the cells which ranking order corresponds to:

R =
Ntot

Ctot

B (3)

with R, the ranking of the cell, Ntot, the total number of cells, Ctot, the total number of cells,
and B, the class boundary number.

3.6 Training areas

Three training areas were de�ned and will be referred to under the following names: the North-
ern subcatchment, the Savournon subcatchment, and the dotted training area. Both the North-
ern subcatchment and Savournon subcatchment (Figure 6) were delimited by selecting manually
their outlet and applying the PCRaster function subcatchment, which identi�es on the basis
of the local drain direction map all cells belonging to the subcatchment. In order to de�ne the
dotted training area (Figure 7), nine cells were randomly selected over the entire catchment by
making use of the PCRaster random generator function uniform. Circular patches were then
created with the function spread (see paragraph 3.2.6), for which the radius was �xed at 980
cells, so that each patch has the same size.

All training areas have almost identical sizes, with the largest training area (Savournon sub-
catchment) being 1.3% larger than the smallest, dotted training area. Each of them represents
approximately 8.3% of the total Buëch catchment.
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Figure 6: Location and geomorphology of the Northern subcatchment (1) and of the Savournon
subcatchment (2)

Figure 7: Location and geomorphology of the dotted training area
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3.7 Optimization design

An optimization design was conducted in a systematic way for the three training areas (Figure
8) due to the important time limitations associated with model runs1. Three main stages can
be distinguished: automated classi�cation with single topographical attributes, automated clas-
si�cation with combined topographical attributes, and automated classi�cation with combined
topographical and neighbourhood attributes.

In the �rst stage, the geomorphology of the catchment is mapped automatically by solely
one topographical attribute at a time. This is repeated for each number of classes, so as to
obtain 36 automated geomorphological maps of the catchment. These maps are then evaluated
on the basis of one point-to-point criterion (Kappa statistics) and one lumped criterion (sum of
square errors of unit proportions), which allows to rank the topographical attributes in terms
of the accuracy of their resulting automated map.

In the second stage, the ranking of topographical attributes is then used to determine �ve
combinations. The �rst combination consists of the two best performing topographical at-
tributes; the second combination consists of the three best performing ones; and so forth. The
�fth combination hence contains all topographical attributes. The geomorphology of the catch-
ment in then mapped with each of the �ve combinations of topographical attributes. The
mapping is repeated for each number of classes; it should be noted that the number of classes
is kept identical for each attribute inside of the combination. As a result, 30 geomorphological
maps are obtained and evaluated with the same methods used in the �rst stage.

In the third stage, the combinations are ranked and the best performing combination (with
its associated number of classes) is selected. The neighbourhood attributes are then added to
obtain four combinations: two combinations with only one neighbourhood attribute added at a
time, and two combinations with both neighbourhood attributes, but in a di�erent order. The
geomorphology of the catchment is mapped with the combinations of topographic and neigh-
bourhood attributes. This step is executed with three number of classes: the best performing
number, one number of classes lower, and one number of classes higher (the available number
of classes being 2, 3, 5, 7, 10 and 12)2. Twelve maps are hence obtained and evaluated on the
basis of Kappa statistics and sume of square errors of unit proportions, similarly to the �rst
and second stage.

Finally, the automated geomorphological maps of topographical combinations with or with-
out neighbourhood attributes are evaluated on the basis of one additional lumped criterion
(patch size) and two hydrological criteria (saturated hydraulic conductivity and runo�) which
are detailed in section 3.8.

1The running time of the automated classi�cation program containing the "unit of window majority" at-

tribute exceeds by about 35 times the one of non-neighbourhood combinations.
2If for instance the best number of classes is 5, the two other numbers of classes to be selected would be 3

and 7
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First stage Second stage Third stage

Distance to higher elevations (H)

Relative elevation (R) HR

Slope (S) HRS HRS + Unit of downstream neighbour

Distance to River (D) HRSD HRS + Unit of window majority

Planar curvature (Pl) HRSDPl HRS + Unit of downstream neighbour + Unit of window majority

Pro�le curvature (Pr) HRSDPlPr HRS + Unit of window majority + Unit of downstream neighbour

Table 2: Example of optimization design for the Northern subcatchment. The ranking of the
topographical attributes of the �rst stage is used to determine the �ve combinations of the
second stage. The �rst combination consists of the two best performing attributes, the second
of the three best performing attributes, and so forth. The best performing combination of
the second stage (HRS) is then selected for the third stage, during which two neighbourhood
attributes are added.
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Figure 8: Optimization design followed in the present research
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3.8 Evaluation criteria

One point-to-point criterion and two lumped criteria are chosen to assess the accuracy of the
automated maps. Since the purpose of the automated classi�cation technique is the application
for large-scale hydrological modelling, the maps are additionnaly evaluated on the basis of two
hydrological criteria. Finally, the percentage of correctly classi�ed cells ss also calculated to
obtain further insights into the mapping accuracy of individual units.

3.8.1 Point-to-point evaluation

The automated geomorphological maps are evaluated on a point-to-point basis by means of
Kappa statistics. The Kappa coe�cient is a measure of cell-by-cell agreement between two
categorical maps, which is corrected for the expected probability of random agreement (Hagen,
2002). The geomorphological category of each cell on the automated map and on the �eld
map are compared, and the fraction of correctly classi�ed cells P(a) is calculated. To calculate
the expected probability of random agreement P(e), the probability of a cell of the automated
map to be categorized as belonging to a certain geomorphological unit is multiplied by the
probability of a cell of the �eld map to be categorized as belonging to the same unit; this
operation is repeated for each category and summed. The Kappa coe�cient κ can then be
computed according to the following equation:

κ =
P (a)− P (e)
1− P (e)

(4)

The Kappa coe�cient ranges from -1 to 1 (Viera and Garrett, 2005). A value of 1 represents
perfect agreement, 0 corresponds to an agreement that would only be obtained by chance, and
negative values represent disagreement.

Kappa statistics are computed with the Map Comparison Kit, a software tool for map
comparison of the Netherlands Environmental Assessment Agency (MNP) and developed by
RIKS BV.

3.8.2 Lumped evaluation

Sum of square errors of unit proportions The sum of square errors of unit proportions
is de�ned by the following equation:

SSE =
n∑

i=1

(P̂ − Pi)
2 (5)

where P̂ is the proportion of unit i in the automated map, P is the proportion of unit i in
the geomorphological map, and n is the number of units.

Patch size The patch size criterion is computed with the Map Comparison Kit (see 3.7.1),
which makes use of a "moving windows based structure" method. Patches - contiguous cells of
identical category - and their size are �rst derived from the automated map and the �eld map.
The patch sizes are then assigned to each cell on both the automated map and the �eld map.
In the next step, moving averages are computed by calculating the weighted average of the
neighbourhood of each cell (Hagen-Zanker, 2006). The di�erence between the moving average
maps yields the global patch size di�erence.

17



3.8.3 Hydrological evaluation

Saturated hydraulic conductivity Saturated hydraulic conductivity values (Appendix A)
are assigned to each geomorphological unit on the basis of their soil properties and the cor-
responding estimates of Rawls and Brakensiek (1983). The sum of square errors of hydraulic
conductivity can then be computed by comparing the values of saturated hydraulic conductivity
on a cell-to-cell basis on both the automated map and the �eld map.

Runo� estimates The runo� evaluation makes use of the saturated hydraulic conductivity
maps to construct a static hydrological model, representing one rainstorm event with Hortonian
runo�. Runo� is only considered to occur when the sum of the rainfall intensity and the in�ow
from the upstream neighbours of the cell are exceeding the saturated hydraulic conductivity.
Three rainfall intensities are considered: 7mm, 10mm and 15mm. Runo� is computed with the
PCRaster function accuthresholdflux, which return the amounts of material transported out
of the cell.

Four locations were chosen in the catchment (Figure 9). Location 1, 2 and 3 drain from
subcatchments. Location 4 corresponds to the outlet of the Buëch catchment; however, due
to interruptions in the local drain direction map, it does not drain from the entire catchment.
The subcatchment of location 2 is included in its drainage area, unlike the subcatchments of
location 1 and 3.

For each automated map, runo� is computed at each of the four locations with three di�erent
intensities. The same operation is conducted once with the �eld map. The absolute di�erence
between runo� generated by the automated map and runo� generated by the �eld map is then
used as evaluation criteria.

Figure 9: Location of the four outlets used for the runo� estimation and of their drainage areas.
The drainage area of outlet 4 (orange) includes the drainage area of outlet 2 (blue).

3.8.4 Percentage of correctly classi�ed cells

The percentage of correctly classi�ed cells C was computed in PCRaster by comparing the
automated map and the geomorphological map with a Boolean operation. For each unit i on
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the geomorphological map, the following equation was applied:

C =
Nitrue

Ni

100 (6)

where Nitrue is the number of cells of unit i on the automated map which locations correspond
to cells of unit i on the geomorphological �eld map, and Niis the total number of cells of unit i
on the geomorphological �eld map.
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4 Results

The best resulting maps are presented hereafter, along with some general remarks about the
di�erences in terms of the geomorphology of the training areas. The detailed results are then
presented in the order of the optimization design. When the evaluations of the Northern sub-
catchment and of the Savournon subcatchment are similar, these are treated together.

4.1 Best resulting maps

Figure 10: Geomorphological �eld map of the study area
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Figure 11: Automated map obtained when using the attribute "relative elevation" at 12 classes,
with the Northern subcatchment as training area. On a point-to-point basis, this map lead to
the most accurate results among individual topographical attributes. Note that the number
of mapped units is inferior to the actual number of units of the geomorphological �eld map
(Figure 10). Since the multiple-point geostatistical approach derives all conditional relationships
from the training area, only the units present in the training area (in this case the Northern
subcatchment) are used for the classi�cation.
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Figure 12: Automated map obtained when using the combination of attributes HRS (distance
to highest elevations, relative elevation, slope) at 12 classes, with the Northern subcatchment as
training area. Among combinations of topographical attributes, this map was the most accurate
in terms of point-to-point accuracy.
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Figure 13: Automated map obtained when using the combination of topographical and neigh-
bourhood attributes HRSW (distance to highest elevations, relative elevation, slope, unit of
window majority) at 12 classes, with the Northern subcatchment as training area. Of all auto-
mated maps, this map achieved the highest point-to-point accuracy.
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Figure 14: Boolean map representing correctly and uncorrectly mapped cells for the most
accurate map obtained in this research (HRSW at 12 classes with the Northern subcatchment
as training area; see �gure 15).

4.2 Training areas

The training areas are di�erent regarding geomorphology. River plains and colluvium are largely
over-represented in the Northern subcatchment in comparison to the proportions found in the
entire Buëch catchment (Figure 15). In the Savournon subcatchment, on the other hand, alluvial
fans and inactive badlands are over-represented while the subcatchment is entirely deprived of
river terraces, and shows a very limited number of river plains. The dotted training area is
less di�erent from the Buëch catchment on average, except for inactive badlands, which are
over-represented too. Finally, all training areas share one characteristic: they do all include
signi�cantly less (between 17 and 19 percentage points) debris slope cells than is to be found in
the entire catchment.
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Figure 15: Proportions of geomorphological units in the Buëch catchment and in the training
areas.

4.3 Individual topographical attributes

4.3.1 Northern Subcatchment and Savournon Subcatchment

The evaluation of individual topographical attributes yields similar results for the Northern
subcatchment and the Savournon subcatchment. In both cases the type of evaluation (point-
to-point based or lumped) has no e�ect on the ranking of the attributes.3

In terms of Kappa statistics, two groups of attributes showing similar performances can be
distinguished (Figure 16). The �rst group, which performs signi�cantly better, consists of the
attributes "distance to higher elevations", "relative elevation" and "slope". The second group
consists of "distance to river", "planar curvature" and "pro�le curvature". For all attributes and
the two subcatchments, the Kappa accuracy appears to increase as the number of classes rises.
When evaluating the attributes with the sum of square errors (SSE) of unit proportions, however,
the distinction between the two groups is less clear, and the performance stays relatively stable
over the di�erent number of classes.

3The attribute "distance to the rivers", which ranks in both cases higher with the Kappa evaluation than it

does with the SSE of unit proportions, is the only exception.
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Figure 16: Evaluation of the automatic classi�cation with individual topographical attributes,
in terms of Kappa accuracy and sum of square errors of unit proportions. The results obtained
with the Savournon subcatchment are comparable to those of the Northern subcatchment.

4.3.2 Dotted training area

When using the dotted training area, the attributes "relative elevation" and "distance to rivers"
rank lower in terms of Kappa statistics than with the Northern and Savournon subcatchments
(Figure 16). In all other cases, the general pattern resulting from the evaluations is in many
points identical to the one obtained with the two subcatchments. First, the type of evaluation
appears not to impact the ranking of the attributes, with the exception of the attribute "slope".
Second, the same two groups of attributes can be observed; this pattern is even clearer with
the SSE of unit proportions than it is with the two subcatchments. Third, the second group
of attributes responds to an increase of the number of classes in a way similar to what can be
observed with the two subcatchments.

The main di�erence between the results obtained with the dotted training area and those
obtained with the two subcatchments lies however in the large variability of the evaluation of the
attributes "distance to higher elevations" and "relative elevation" when modifying the number
of classes. Both attributes show a peak of accuracy at 3 classes; above it, the performance of
"relative elevation" is decreasing, while the performance of "distance to higher elevations" is
increasing again above 5 classes.

Of all training areas, the highest Kappa values are reached with the Northern subcatchment,
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which shows the largest standard deviation among attributes. The dotted training area, with
which the standard deviation is the lowest, is leading to the best results in terms of unit pro-
portions.

4.4 Combined topographical attributes: point-to-point and lumped

evaluation

To simplify the reading of the next sections, the following abbreviations are used in the text.

H Distance to higher elevations Pl Planar curvature
R Relative elevation Pr Pro�le curvature
S Slope A Unit of downstream neighbour
D Distance to Rivers W Unit of window majority

4.4.1 Selection of the combinations of topographical attributes

The �ve combinations of topographical attributes were selected on the basis of the Kappa
accuracy and the sum of square errors of unit proportions of the automated map obtained with
individual topographical attributes (section 4.2). In the cases where the two types of evaluation
lead to di�erent rankings of attributes (a situation observed with the attribute "distance to
rivers"), the ranking of the Kappa accuracy was retained.

4.4.2 Northern Subcatchment and Savournon Subcatchment

Kappa statistics With both the Northern subcatchment and the Savournon subcatchment,
the HRS combination is performing best and its accuracy follows a logarithmic curve, increasing
as the number of classes rises (Figure 17). The di�erence in accuracy between the HRS combina-
tion and the other combinations is however smaller in the case of the Savournon subcatchment.

With the Northern subcatchment, the combinations of attributes other than HRS and HR
show a peak of accuracy at 3 classes; their performance is then steadily decreasing as the number
of classes increases. This pattern is not found when using the Savournon subcatchment, where
all combinations follow a trend similar to the HRS combination.
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Figure 17: Evaluation of the automatic classi�cation with combined topographical attributes,
with the Northern subcatchment and the Savournon subcatchment.

Unit proportions The evaluation of all combinations in terms of unit proportions reveals
two groups of combinations, present when using any of the two subcatchments as training area.
The �rst group is made of HR and HRS and shows a clearly higher accuracy. The second group
is made of all other combinations, i.e. HRSD, HRSDPl and HRSDPlPr. It is worth noticing
that the �rst and best performing group consists of combinations of the very same attributes
that were already outclassing others when used individually.

Albeit both subcatchment share these characteristics, the responses of the combinations to an
increase of the number of classes are very di�erent. In the case of the Northern subcatchment
and identically to the Kappa evaluation, the second group of combinations reaches a peak
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of accuracy at 3 classes, after which its accuracy decreases linearly as the number of classes
rises. The accuracy of the �rst group is improving with the number of classes, until reaching a
maximum at 7 classes. In the case of the Savournon subcatchment, however, the values of SSE
of unit proportions stay relatively stable, and unlike observed by means of Kappa statistics, the
HR combination performs better than HRS.

Patch size The global patch size of the geomorphological �eld map is 10288 cells. This implies
that a patch size di�erence of 8000 cells represents a di�erence of 78% towards the actual patch
size found on the �eld map. The lowest di�erence obtained with the Northern subcatchment
corresponds to a di�erence of approximately 2%. The global patch size di�erence follows a
pattern rather similar to the SSE of unit proportions for both subcatchments, with the same
two distinct groups of combinations. The minima and maxima observed with the evaluation of
unit proportions are also found in terms of patch size. The only di�erence lies in the behaviour
of HR and HRS at 3 classes with the Northern subcatchment. The accuracy peak at 3 classes,
which was observed on the second group of combinations with both the Kappa evaluation and
the SSE of unit proportions, is now found for HR too; at the opposite, HRS reaches its highest
error at 3 classes.

4.4.3 Dotted training area

Kappa statistics Combining attributes with the dotted training area leads to results sig-
ni�cantly di�erent from those observed with the two subcatchments, albeit the evaluation was
shown to be relatively similar in terms of individual attributes (section 4.1.2). The performance
of all combinations follows a positive trend and peaks at 3 classes (Figure 18). However, whereas
the combinations of two and three attributes are performing best with the two subcatchments,
the ranking of combinations with the dotted training area follows the number of attributes in
decreasing order: the more attributes, the better the combination performs. The combination
containing all attributes (HSRPlPrD) is therefore the most accurate, while the combination
with solely two attributes (HS) is the least performing one.

Unit proportions The SSE of unit proportions of the combinations follows the same structure
as the attribute "distance to higher elevations" taken individually: two minima (i.e. accuracy
peaks) are reached at 3 and 7 classes, while the error is the highest at 5 classes. Above 7 classes,
the error increases again. The ranking of the combinations is generally alike that of the Kappa
evaluation, apart from the HS combination, which ranks steadily �rst above 3 classes.

Patch size General trends are di�cult to identify in terms of patch size with the dotted
training area. However, some characteristics common to the two above mentioned evaluations
can be observed. First, HSRPlPrD shows a large peak of performance at 3 classes, which is
found on a lesser extent with HS and HSRPl too. The low performance at 5 classes, which was
also found with the SSE of unit proportions, can be identi�ed on all combinations but one.
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Figure 18: Evaluation of the automatic classi�cation with combined topographical attributes,
with the dotted training area.

4.4.4 Summary

With the Northern subcatchment and the Savournon subcatchment, the Kappa accuracy of the
topographical combinations is increasing as the number of classes rises. The highest Kappa
values are obtained with HRS. With the dotted training area, the combination containing all
attributes (HSRPlPrD) is performing best and an accuracy peak is observed at 3 classes. In
terms of unit proportions, two groups of combinations with similar accuracy can be observed
with the Northern and the Savournon subcatchment; the �rst group, which consists of HR
and HRS, is made of the attributes which were already performing best individually. With
the dotted training area, the evaluation of unit proportions follows the same structure as the
attribute H taken individually. With all training areas, the evaluation of patch size di�erence
shares similarities with the evaluation of unit proportions.

The highest Kappa accuracy is obtained with the Northern subcatchment, similarly to the
evaluation of individual attributes. The SSE of unit proportions is 2 to 3 times lower with the
dotted training area than with the two subcatchments.
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4.5 Combined topographical attributes: hydrological evaluation

4.5.1 Saturated Hydraulic Conductivity

For all training areas, the evaluation of combinations in terms of SSE of saturated hydraulic
conductivity and SSE of unit proportions give identical rankings, peaks and responses to an
increase of the number of classes. The only noticeable di�erence is found with the dotted
training area, where the combinations yield less accurate results with 2 classes than with 5
classes in terms of SSE of saturated hydraulic conductivity; this situation was inverted with the
evaluation of the SSE of unit proportions.

4.5.2 Runo�

Northern Subcatchment From the three training areas, the Northern subcatchment leads
to the most heterogeneous runo� evaluation: the ranking of combinations is varying signi�cantly
depending on the outlet and the rainfall intensity (Appendix B). Although general conclusions
are di�cult to draw, three general patterns can be identi�ed.

• In the �rst pattern, (outlet Nr. 1, 7mm and 10mm), the HRS combination performs
clearly worse than the other combinations and reaches its highest error at 7 classes.

• In the second pattern (outlet Nr. 2, all rainfall intensities), the accuracy of all combinations
increases with the number of classes. The HRSD combination yields the best results, while
the worst results are obtained with the HRS combination.

• In the third pattern (outlet Nr. 1, 15mm, and outlet Nr. 4, 10mm and 15mm), the accu-
racy of HR and HRS is signi�cantly higher than with other combinations, and improves as
the number of classes increases. A maximum is reached at 7 classes. In an opposite way,
the accuracy of all other combinations is decreasing as the number of classes increases.

The third pattern resembles in a striking way the results obtained when evaluating the com-
binations in terms of the SSE of unit proportions. It could hence be inferred that when the
drainage area and/or the rainfall intensities are large, the proportions of units is decisive for
the hydrological response. On smaller drainage areas such as those belonging to the outlets Nr.
1, 2 and 3 with rainfall intensities below 15mm, the in�uence of unit proportions is di�cult to
identify: combinations which are yielding particularly accurate results in terms of SSE of unit
proportions show the highest square error of runo�.

Savournon Subcatchment The patterns of square error of runo� are more constant with
the Savournon subcatchment than with the Northern subcatchment (Appendix B). Although
some di�erences are observed between outlets, the response stays approximately the same for
each given outlet when modifying the rainfall intensity. Two general observations can be made.
First, the error is decreasing when the number of classes increases. Second, HR and HRS often
show the highest errors of all combinations until reaching 10 or 12 classes, exception made of
outlet Nr. 3, where they steadily rank last.

Just as with the Northern subcatchment, the results of outlet Nr. 4 with 15mm resemble
strongly the results obtained with the evaluation of the SSE of unit proportions (Figure 19).
The same conclusion appears thus to hold for the Savournon subcatchment.
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Dotted training area The dotted training area shows the most constant results of the three
training areas in terms of runo� evaluation (Appendix B). The ranking of combinations is
generally following that of the Kappa evaluation, SSE of unit proportions and SSE of saturated
hydraulic conductivity. The HSRPlPrD combination tends hence to be the best performing
combination up to 7 classes. Three exceptions are found at outlet Nr. 1 (15mm) and outlet Nr.
3 (10mm and 15mm), where the square error of HSRPlPrD is increasing from 3 classes on and
clearly exceeding that of the other combinations.

Whereas the runo� evaluation at outlet Nr. 4 with 15mm showed results very similar to those
observed with the SSE of unit proportions for both subcatchments, it is remarkably di�erent
with the dotted training area. A large error peak can be identi�ed at 3 classes, which is for all
other types of evaluation the class number leading to the best results. Additionally, the largest
error of all combinations is obtained with HSRPlPrD for that class number only. In other words,
the results of the square error of runo� and the results of the SSE of unit proportions are exactly
symmetrical at 3 classes.

Figure 19: Square error of runo� estimation, as obtained with combinations of topographical
attributes at outlet 4, with a rainfall intensity of 15mm.

4.5.3 Summary

With all training areas, the evaluation in terms of saturated hydraulic conductivity is similar
to the evaluation of unit proportions. The evaluation of runo� estimation, on the other hand,
gives highly variable results, both regarding the ranking of combination and the magnitude of
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the square error. No conclusions could be drawn from the runo� estimations obtained with the
Northern subcatchment. With the Savournon subcatchment, the ranking of the combinations
stays identical per outlet, irrespective of the rainfall intensity. The results are more constant
with the dotted training area, where the ranking of the combinations is in most cases similar to
all other types of evaluations.

It can be observed with the two subcatchments that for outlet 4, which drains from the
largest area, the results resemble the evaluation of unit proportions when the highest rainfall
intensity (12mm) is used. With the dotted training area, however, the results are then opposite
to all other types of evaluations at 3 classes. This anomaly could not be explained.

4.6 Impact of neighbourhood attributes

4.6.1 Point-to-point and lumped evaluation

Adding neighbourhood attributes does not improve nor worsen univocally the performance of
the best topographical combinations. With the Northern subcatchment and the Savournon
subcatchment, neighbourhood attributes generally improve point-to-point accuracy (Kappa co-
e�cient). However, this accuracy is worsened by neighbourhood attributes when using the
dotted training area, except at 3 classes. In terms of SSE of unit proportions, neighbourhood
attributes worsen the results with both the Northern subcatchment and the Savournon sub-
catchment, while they improve the results with the dotted training area. Finally, the accuracy
in terms of patch size is improved by neighbourhood attributes with the dotted training area;
general trends are di�cult to identify with the Northern subcatchment and the Savournon
subcatchment.

The ranking of combinations with neighbourhood attributes is strongly dependent on the
type of evaluation, the training area and, to a lesser extent, on the number of classes. The
performance of the neighbourhood attributes is presented in further detail in the following
paragraphs.

Kappa statistics With all training areas and irrespective of the number of classes, adding
the neighbourhood attribute "attribute of window majority" (W) with or without "attribute
of downstream neighbour" (A) leads to the best results in terms of Kappa statistics among
neighbourhood combinations (Figure 20). In this type of evaluation and for all training areas,
W and WA show almost identical results, and A does not appear to contribute to a further
improvement of Kappa accuracy. This fact is supported by the observation that adding solely
A to the best topographical combination with the Northern and Savournon subcatchments does
not lead to any clearly noticeable change; adding AW, however, does increase the accuracy,
albeit to a lesser extent than W and WA. It could hence be concluded that the attribute of
window majority W is mainly responsible for increasing Kappa accuracy. Its role is lessened
when it is added after the attribute of downstream neighbour.

With the dotted training area at 2 and 3 classes, where the neighbourhood attributes are
worsening the results, these conclusions are valid too in that W is the attribute decreasing the
accuracy the less; adding A to it does not contribute signi�cantly to improve the accuracy ob-
tained when adding W only.
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SSE of unit proportions With the Northern and the Savournon subcatchments, the results
of the evaluation by means of the SSE of unit proportions are opposite to the Kappa evalua-
tion. Where neighbourhood attributes contribute to improve the point-to-point accuracy, they
increase the error in terms of unit proportions. W and WA, which lead to the biggest improve-
ment for Kappa statistics, give the worst results of SSE of unit proportions. An exception to
this symmetrical structure is found with A and AW: while AW is always more performing than
A for Kappa statistics, it stays more performing in terms of SSE of unit proportions too.

The proportional increase of error of unit proportions, relative to the best performing topo-
graphical combination, is larger than the proportional increase of point-to-point accuracy with
the Northern Subcatchment, and smaller with the Savournon subcatchment. Adding W to HRS
at 12 classes with the Northern subcatchment decreases the accuracy of the proportions of units
by around 14% and increases the Kappa accuracy by 4%. With the Savournon Subcatchment,
the decrease of accuracy of unit proportions is of 4%, while the increase of Kappa accuracy
reaches almost 9%.

When using the dotted training area, the ranking of neighbourhood attributes in terms of
SSE of unit proportions is identical to the Kappa evaluation. Notwithstanding, neighbourhood
attributes are always improving the accuracy of unit proportions, irrespective of their positive
of negative impact on Kappa accuracy. The rankings are identical in that attributes which are
increasing the Kappa accuracy the most (or decreasing it the less) are also decreasing the error
in unit proportions the most.

For class 2 and class 5, the proportional decrease of error of unit proportions when adding
W is always larger than the proportional decrease of Kappa accuracy. For class 3, which is
the only class number for which neighbourhood attributes improve Kappa accuracy, both types
of evaluation lead to a proportional increase of accuracy, of 6% for the Kappa coe�cient and
about 5% in terms of unit proportions.

Patch size For the dotted training area, neighbourhood combinations rank similarly when
evaluated with either patch size of SSE of unit proportions. At 3 classes however, AW, W and
WA follow opposite trends to the SSE of unit proportions by decreasing the patch size accuracy.

When using the Northern and Savournon subcatchments, the ranking of neighbourhood
combinations is modi�ed with each class number. The type of attributes leading to an increase
or a decrease of the patch size di�erence di�ers with each number of classes, rendering general
conclusions particularly di�cult to draw. It was shown in section 4.2 that the evaluation of patch
size di�erence without neighbourhood attributes tended to follow exactly the same pattern as the
SSE of unit proportions, for all training areas; it appears that when neighbourhood attributes
are added, this relationship can only be observed with the dotted training area at 2 and 5
classes.

4.6.2 Hydrological evaluation

SSE of hydraulic conductivity Adding the neighbourhood attributes AW, W and WA
increases the accuracy in terms of hydraulic conductivity in all training areas and with all class
numbers. The attribute A worsens the results with the Northern subcatchment at 7 classes,
and with the Savournon subcatchment at 7 and 12 classes; it increases the accuracy in all other
cases.
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With every training area, the ranking of neighbourhood attributes stays generally identical
when modifying the number of classes. The ranking is identical in the Northern and Savournon
subcatchment: W leads to the largest increase of accuracy, followed by WA, AW and A. Similarly
to the Kappa evaluation, the attribute W appears hence to have the largest positive impact on
the accuracy. In this evaluation however, adding A after W leads to worse results than those
obtained when adding W alone. This fact was not observed in terms of Kappa statistics and
does not hold for the dotted training area, where WA is performing better than W for two of
the three class numbers.

Runo� evaluation Three general observations can be made about the in�uence of neigh-
bourhood attributes on runo� estimation.

First, for all training areas and outlets, the proportion of neighbourhood combinations im-
proving runo� estimation tends to decrease as the rainfall intensity increases. This can best
be observed with the Northern subcatchment, where at a rainfall intensity of 7mm, all neigh-
bourhood combinations improve runo� estimation, irrespective of the number of classes. With
a rainfall intensity of 12mm, however, at least one neighbourhood combination per number of
classes is increasing the square error of runo�; at outlet 4, all neighbourhood combinations
worsen the results.

Second, for each given number of classes, the ranking of neighbourhood attributes stays
in most cases identical when the rainfall intensity increases. Exceptions are found with the
Northern subcatchment, which results are more heterogeneous than those obtained with the
two other training areas.

Third, with the Savournon subcatchment and the dotted training area, the impact of neigh-
bourhood combinations can be observed pair-wise. A and AW show similar in�uence on runo�
estimation, just as W and WA. With both training areas, A and AW lead generally to the
highest increase of accuracy in the majority of the evaluations.
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Figure 20: Impact of neighbourhood attributes on Kappa accuracy and sum of square error of
unit proportions, with the Northern subatchment and the dotted training area.

4.6.3 Summary

With the Northern and the Savournon subcatchments, adding neighbourhood attributes to the
best topographical combination increases Kappa accuracy, but also increases the sum of square
errors of unit proportions. Inversely, neighbourhood attributes decrease Kappa accuracy with
the dotted training area at 2 and 5 classes, and increase the accuracy in terms of unit propor-
tions. The attribute "unit of window majority" has the largest impact on Kappa statistics. Its
contribution to improving the accuracy is lessened when it is added after "unit of downstream
neighbour".

The impact of neighbourhood attributes on patch size di�erence is di�cult to analyze, as
it varies with each number of classes and with each training area. The sum of square error of
hydraulic conductivity, on the other hand, is decreased by the neighbourhood attributes AW,
W and WA with all training areas and all class numbers. In terms of runo� estimation, less
neighbourhood attributes are increasing runo� estimation as the rainfall intensity increases. The
ranking of the attributes stays however relatively stable inside of each class number, irrespective
of the rainfall intensity. The attributes A and AW, which have the lowest impact on Kappa
statistics and SSE of hydraulic conductivity, show the highest improvement with both the
Savournon subcatchment and the dotted training area.
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4.7 Classi�cation of individual units

4.7.1 Correctly classi�ed cells

In�uence of the combinations of attributes Irrespective of the training area, most units
are best classi�ed by the combination consisting of all topographical attributes, HRSPlPrD.
The more topographical attributes, the higher the percentage of correctly classi�ed cells. Con-
sequently, HR (or HS with the dotted training area), the combination with the lowest number of
attributes, is the combination yielding the lowest percentage of correctly classi�ed cells. With
the dotted training area, this observation holds for all units.

When the Northern subcatchment and the Savournon subcatchment are used as training
areas, the unit "debris slope" is however best classi�ed by the two combinations HR and HRS
(Figure 21). The di�erence towards the combination HRSPlPrD, which is performing best oth-
erwise, is particularly important. Debris slope are better classi�ed by HRS than by HRSPlPrD
by 29.7 percentage points with the Northern subcatchment, and 13.3 percentage points with the
Savournon subcatchment. As a mean of comparison, the highest di�erence reached by HRSPl-
PrD over HRS with the Northern subcatchment, which concerns coarse alluvial fans, is of 7.7
percentage points.

Next to classifying "debris slope" cells more accurately, HR and HRS do also classify "glacis"
cells better than other combinations with the Northern subcatchment; the di�erence in classi-
�cation of HRS towards HSRPlPrD (7 percentage points) is however smaller than for the unit
"debris slope".

Figure 21: Percentage of correctly classi�ed cells of the two most present units in the Buëch
catchment, "debris slope" and "inactive badlands", with the Northern subcatchment and the
dotted training area.
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In�uence of the number of classes In all training areas, the percentage of correctly classi-
�ed cells tends to increase as the number of classes rises, irrespective of the combination. Two
exceptions can be found with the unit "debris slope". With the Northern subcatchment and
the Savournon subcatchment, the accuracy of the mapping of the "debris slope"cells is only
increasing for HR and HRS. These observations can be put in relationship with the positive
response of Kappa accuracy over an increase of the number of classes for both training areas.
With the dotted training area, the percentage of correctly classi�ed "debris slope" cells reaches
a maximum at 3 classes and a minimum at 5 classes. These peaks can also be found in terms
of SSE of unit proportions and Kappa statistics, albeit to a lesser extent.

In�uence of the training area Large variations are found between the training areas in
terms of best classi�ed units. The unit "debris slope", which achieves the highest proportion of
correctly classi�ed cells with any of three training area, is the only constant.

The percentage of correctly classi�ed cells per unit is on average larger with the Northern
subcatchment than with the two other training areas. , For the best resulting maps, the average
percentage of correctly classi�ed cells reaches 31% with the Northern subcatchment, 26% with
the Savournon subcatchment and 24% with the dotted training area.

In�uence of neighbourhood attributes The in�uence of neighbourhood attributes on the
percentage of correctly classi�ed cells reached by the best topographical combination is rela-
tively low. For none of the units does adding neighbourhood combinations lead to modifying
the ranking of the topographical combination, the values with neighbourhood attributes being
very close to those without neighbourhood attributes. The highest di�erence reached is an im-
provement of around 7 percentage points of the classi�cation of river plain cells with the dotted
training area.

Whether neighbourhood attributes improve or worsen the classi�cation depends on the train-
ing area, the units and the number of classes. It can however be observed that all of them tend
to improve the classi�cation of the units "coarse alluvial fans", "inactive badlands" and "debris
slope".

4.7.2 Misclassi�ed cells

The confusion matrix, which is constructed to calculate the Kappa coe�cient, can be used
to analyze into what other units cells have been misclassi�ed. It can be observed that units
get misclassi�ed into other units which location or geomorphological properties are relatively
similar. The worst classi�ed unit, "glacis", is often classi�ed as "debris slope" or "inactive
badlands". This is also the case with the unit "colluvium", which is reaching low percentages of
correctly classi�ed cells with the Savournon catchment. Large confusions in terms of topography
or/and geomorphology, such as river plains being classi�ed as debris slopes, are rare and of the
order of a maximum of 15%.

The type of units into which cells get misclassi�ed is highly in�uenced by the proportions
of units in the training area. When using the Northern subcatchment as training area, where
"colluvium" is the most present unit, all units get misclassi�ed into colluvium by 6% to 31%
(Figure ??), while this percentage does not exceed 8% with the Savournon subcatchment, where
it is only the 4th most present unit. Inversely, with the Savournon subcatchment, all units get
misclassi�ed into "badlands inactive" (the most present unit) by up to 56%, against 20% with
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Figure 22: Classi�cation of individual units with the most accurate automated map on a point-
to-point basis (HRSW at 12 classes, Northern subcatchment as training area)
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the Northern subcatchment, where it is the 6th most present unit.
Further remarks can be made about active/inactive badlands, and coarse/�ne alluvial fans.

Active badlands are misclassi�ed as inactive badlands, but not the inverse: inactive badlands
become rather misclassi�ed as colluvium and debris slope. Similarly, �ne alluvial fans are
misclassi�ed as coarse alluvial fans, while coarse alluvial fans become river plains and inactive
badlands. These observations could be explained by the large di�erences between these similar
units in terms of unit proportions, as inactive badlands and coarse alluvial fans are signi�cantly
more present in the training areas and in the Buëch catchment.
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5 Discussion

A multiple-point geostatistical technique was used for an automated geomorphological classi�-
cation of the Buëch catchment. An optimization design aiming at identifying the best combina-
tion of topographical and neighbourhood attributes, as well as the most performing number of
classes, was followed for three di�erent training areas of identical size. It was shown that for the
two training areas which corresponded to subcatchments, the best combination of topographi-
cal attributes contained the attributes "distance to higher elevations", "relative elevation" and
"slope", at 10 and 12 classes. For the dotted training area, the di�erences between the com-
binations are signi�cantly lower than for the two subcatchment. The highest accuracy reached
with the dotted training area was obtained with the combination made of all topographical
attributes, at 3 classes. Adding neighbouring attributes to the best topographical combinations
leads to contradictory results between the training areas and the types of evaluation. Overall,
on a point-to-point basis, the most accurate automated map was obtained with the Northern
subcatchment as training area, when using the attributes "distance to higher elevations", "rel-
ative elevation", "slope" and "unit of window majority" at 12 classes. A Kappa value of 0.33
was reached hereby; the average percentage of correctly classi�ed cells per unit was of 31%.
It was shown that the unit "debris slope" was particularly well mapped by the algorithm, at
about 75% of accuracy. Poorly reproduced units, such as "glacis", were typically misclassi�ed
into relatively close units in terms of topographical or geomorphological properties.

5.1 In�uence of the number and types of attributes

One of the research questions formulated for this study amounted to assess the impact of the
number and types of attributes on the accuracy of the automated map. Irrespective of the
training area under consideration, it was observed that three attributes were performing consid-
erably better than others when taken individually. Those were "distance to higher elevations",
"relative elevation" and "slope". When joined, these attributes lead to the best combination
of topographical attributes for the two subcatchments; adding further attributes decreased the
accuracy.

These results can be revisited in light of the ability of attributes to correctly classify indi-
vidual units. It was shown that a large di�erence exists between combinations of attributes
regarding the classi�cation of the unit "debris slope"; when the Northern subcatchment was
used as training area, the combination HRS classi�ed "debris slope" up to 30 percentage points
better than the combination HRSDPlPr. Given that "debris slope" is the most present geomor-
phological unit in the Buëch catchment, this di�erence plays a considerable role in the overall
accuracy of the combinations.

In an opposite way to debris slopes, most geomorphological units are in fact better classi�ed
with the highest number of attributes, i.e. the combination HRSDPlPr. It can be inferred
that if the proportion of "debris slope" cells over the catchment was signi�cantly lower, the
combination HRSDPlPr would outclass HRS in terms of overall accuracy. It appears thus that
the di�erence in terms of correct classi�cation of "debris slope" cells could provide on its own
an explanation to the superiority of HRS regarding point-to-point accuracy (Kappa statistics)
and unit proportions in the Northern and in the Savournon subcatchments4. More striking even

4With the dotted training area, the unit "debris slope" is best classi�ed by the combination HSRPlPrD,

similarly to other units; consequently, HSRPlPrD leads to the best overall accuracy.
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is the similarity between the classi�cation of "debris slope" cells by the combinations and the
evaluation of the SSE of unit proportions: the ranking of the combinations and their response
to an increase of the number of classes are identical in both evaluations. The classi�cation of
"debris slope" cells appears hence to have an even larger in�uence on the proportions of units
than on point-to-point accuracy.

Two conclusions can be drawn from these observations. First, the unit "debris slope" seems
to have been represented in a very performing way by the three attributes "distance to higher
elevations", "relative elevation" and "slope". Since this unit, found on particularly steep slopes,
occupies the highest position in the landscape (which was used in order to de�ne the attribute
"distance to higher elevations" too), those three attributes o�er powerful discrimination possi-
bilities. Second, the overall accuracy of the automated map might clearly di�er from the results
obtained in this research if the catchment to be mapped contains a lower proportion of "debris
slope". As all other units reach much lower proportions of correctly classi�ed cells, the overall
accuracy can be expected to decrease when the proportion of "debris slope" decreases too.

5.1.1 Neighbourhood attributes

The geomorphological map of the region consists of relatively large patches of units. By integrat-
ing neighbourhood information in the algorithm, it was expected that the resulting automated
map would be rendered smoother, hence more similar to the �eld map. It was shown that when
the Northern and the Savournon subcatchments were used as training areas, neighbourhood
attributes did indeed improve the point-to-point accuracy of the automated map in comparison
to the best combination of topographical attributes; notwithstanding, the error in terms of unit
proportions increased. With the dotted training area, the results were the opposite.

The opposite response of point-to-point and lumped evaluations to the addition of neigh-
bourhood attributes can seem surprising, since the two types of evaluation lead to similar results
in all other stages of the optimization design. The results show that the units which classi�ca-
tion improved in all cases with neighbourhood attributes were the three most present units, i.e.
debris slope, inactive badlands and coarse alluvial fans. It is possible that the opposite e�ect of
neighbouring attributes on highly represented and rare units impacts on the evaluation of the
mapping accuracy, since these units do not weight equally in the SSE of unit proportions. For
example, "glacis" cells being about ten times less frequent than "debris slope" cells, the impact
of one "glacis" cell on the proportions of units will be proportionnally larger than the impact
of a "debris slope" cell.

5.2 In�uence of the number of classes

A second research question concerned the in�uence of the number of classes on the mapping
accuracy. The higher the number of classes, the higher the number of possible patterns; and
hence the lower the amount of cells associated to each pattern during the training phase. As
a consequence, it could be expected that an optimum of accuracy be found at a relatively low
number of classes, allowing for a larger representativeness of each pattern. In an introductory
article to the snesim algorithm, Strebelle (2004) typically advised to reduce the number of
classes to 4 or beneath when using one attribute.

The results of this research show however that in terms of point-to-point accuracy, the
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performance of the best combinations of attributes increases as the number of classes rises. The
most accurate map is obtained with 12 classes and 4 attributes, which represents 124 = 20736
patterns, while the Northern training area is 16657 cells large. Even in the case where only one
cell would be associated to each pattern, there are thus about 4000 patterns more than available
cells.

An analysis of the search tree from which the best automated map was drawn (HRSW
at 12 classes, with the Northern subcatchment as training area), reveals that only 882 of the
20736 possible patterns are used. In the large majority of the cases, only one type of unit is
associated to each pattern. The number of cells belonging to a given pattern can be particularly
high: approximately one third of all "river plain" cells, hence over 1000 cells, are for example
associated to the pattern "distance to higher elevations [12], relative elevation [3], slope [1], unit
of window majority [river plain]". The speci�city of patterns towards given geomorphological
units suggest that a high number of classes allows for an increased discrimination. As a second
mean of illustration, with 12 classes only "debris slope" cells are associated to patterns including
the highest class of "slope", one of the third highest classes of "relative elevation" and one of the
four lower classes of "distance to higher elevations". When the number of classes is decreased,
other units share the same characteristics.

An �rst important consequence of the high number of classes, and more precisely of the
speci�city of patterns which characterizes it, regards one of the properties of the multiple-point
geostatistical approach: its stochasticity. The automated map resulting from the MPG approach
is a realization of a conditional cumulative probability function, inferred at each cell from the
search tree. However, if each pattern is only attributed to one geomorphological unit, as it is
the case with 12 classes, there is for each pattern a 100% probability to correspond to that unit.
In other words, the approach is almost deterministic and drawing multiple realizations from the
search tree would result in near to identical maps. This would not be the case with a lower
number of classes, where multiple geomorphological units share the same patterns.

A second consequence regards the accuracy of the automated map. If only one unit is
associated with each pattern, then it implies that the errors of the automated mapping origi-
nate from heterogeneity in the patterns-units relationships between the training area and the
mapping area. In other words, the criteria (attributes and classes) used to discriminate a ge-
omorphological unit in the training area do not lead to the same unit being drawn in the rest
of the catchment, because of topographical variability. It might hence be desirable to identify
attributes that are less sensitive to spatial heterogeneity throughout the entire catchment.

It should be added that the number of classes was shown not to impact all combinations in
an identical way. With the Northern and the Savournon subcatchment, increasing the number
of classes did only improve the accuracy of the two best performing combinations (HR and
HRS), while it decreased the accuracy of all others above 3 classes. These opposite responses
could �nd a possible explanation in the di�erent structure of the search tree in these situa-
tions. Adding attributes increases the number of possible patterns, just as does an increase of
the number of classes. As presented above, using the highest number of classes with a small
number of attributes still leads to a relatively high number of counts per pattern, given that
only a small fraction of all possible patterns are used. Comparatively, raising the number of
attributes appears to have a di�erent e�ect: the number of patterns used in the search tree is
extremely large, and most patterns only correspond to a few cells. This situation, combined
with a high number of classes, leads to a form of over-speci�city where each cell of the training
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area is stored individually; if slightly di�erent topographical situations are encountered in the
catchment, errors are easily made.

5.3 In�uence of the training area

Similarly to the in�uence of the types of attributes, the e�ect of the training area on the
mapping accuracy can best be discussed by analysing the classi�cation of individual units. In
fact, the ability of combinations of topographical attributes to classify geomorphological units
correctly seems to be dependent on the proportions of units in the training area used. With
all training areas, the three best classi�ed units correspond to the three most frequent units in
the corresponding training area, irrespective of their actual proportion in the Buëch catchment.
This correlation between the correct classi�cation of an unit and its proportion in the training
area can be extended to nearly all units in the Northern subcatchment. Some exceptions are
found with the Savournon subcatchment and the dotted training area.
The percentage of units in the training areas appears to impact not only on the type of units that
are best classi�ed, but also on the percentage of correct classi�cation of these units. The average
percentage of correctly classi�ed cells was shown to be higher with the Northern subcatchment
than with the Savournon subcatchment and the dotted training area. A possible explanation
could be found in the more even distribution of the proportions of units with the Northern
subcatchment. Six of the eight units present in the Northern subcatchment cover each 10%
of the area or more; in the two other training areas, more than half of the units do not 10%
each. Since the proportion of an unit in the training area appears to impact directly on its
classi�cation, training areas with overall well represented units could be expected to attain a
higher percentage of correctly classi�ed cells than those showing a limited number of highly
present units and many low represented units. The ideal training area would hence be an area
where the main units of the catchment would be present in relatively large proportions; in terms
of overall accuracy, the presence of more rare units would not necessarily improve the results,
albeit the training area would seem more representative of the regional geomorphology.

Two reasons could explain the better classi�cation of well represented units. First, a larger
number of cells per unit means a higher number of counts per unit in the search tree; as a
consequence, the unit will have a higher probability to be drawn from the search tree. This fact
is of importance when the number of patterns is low, i.e. when many units are associated to the
same pattern. In the case where the number of patterns is very high and where only one unit
is generally associated to each pattern, the number of counts per pattern is insigni�cant, given
that the probability to draw that unit is in any case 100%. Rather, the number of cells will have
an impact when it signi�es that one unit get associated to various patterns: the second reason
would hence relate to the higher representativeness achieved with highly present units. An unit
with a large number of cells will necessarily cover a larger range of topographical situations:
in the case of debris slopes, the area might cover more or less steep slopes, at various relative
elevations, which will furnish the algorithm with a general representation of the locations where
debris slopes might be expected. However, when only a very limited number of cells belong to
an unit in the training area, the description of the unit by topographical attributes is extremely
speci�c, while the unit might be encountered in the entire catchment in a much wider range of
topographical situations.
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5.4 Overall performance of the multiple-point geostatistical approach

On the basis of the research questions answered in the previous subsections, the general ob-
jective of this study was to assess the capability of the multiple-point geostatistical method to
reconstruct the geomorphology of the area. It can be observed that this capability is highly
dependent on the type of geomorphological units: the percentage of correctly classi�ed cells
ranges from 2% for "active badlands" to over 75% for "debris slope", hence from very low to
very high agreement. Given that the most present units of the catchment are well mapped on
average, the general pattern of the geomorphology can be considered to be well captured by the
algorithm. On a more detailed basis, the patches of units are however barely recognizable and
the map remains relatively noisy.

The study area was already mapped with a rule-based classi�cation technique and a k-means
clustering technique in an earlier research (Schuur, 2009), which allows to put the present re-
sults into perspective. It can be noted that the di�erence between units in terms of percentage
of correctly classi�ed cells is considerably larger with the MPG approach than with the two
previous classi�cation techniques, for which the majority of units reached between 20% and
30% of correct classi�cation. With the rule-based and clustering techniques, all units are al-
ways represented; this is not the case with the MPG approach, where only the units present in
the training area are mapped over the catchment. Notwithstanding, the average percentage of
correctly classi�ed cells was about 4 percentage points higher with the MPG approach, which
classi�ed "debris slope" signi�cantly better. The Kappa coe�cient of accuracy was not used
in the evaluation of the other techniques. However, the overall accuracy of the di�erent ap-
proaches can be informally compared through the total percentage of correctly classi�ed cells.
The confusion matrix reveals 47% of correct cells with the MPG approach, while the highest
accuracy reached by the rule-based and clustering techniques was 32%. Although these results
do not provide a direct means of comparison between the three automated classi�cation tech-
niques, they suggest that the MPG approach could be promising in the search for more accurate
automated geomorphological mapping.

Two aspects should be taken into consideration when analysing the overall accuracy of the
resulting automated maps. First, the geomorphological �eld map which was used as a basis for
this study contains a large number of units, which do not always di�erentiate themselves from
each other univoquely. The di�erence between active and inactive badlands, which relies on the
percentage of vegetation cover, is for example rather subjective: the evolution from active to
inactive badlands follows a continuum, which renders clear boundaries di�cult to draw. From
a hydrological point of view, the di�erence between badlands covered at 10% and 15% by vege-
tation might also be relatively insigni�cant. It can hence be wondered whether a such detailed
distinction is appropriate for the ultimate purpose of the development of this technique, i.e. the
application in large-scale hydrological modelling. In this regard, the misclassi�cation of cells
provides a meaningful insight of the performance of the MPG approach. The fact that units
gets generally misclassi�ed into relatively close units in terms of geomorphology and topography
can be considered as very positive. With the Savournon subcatchment, active badlands reach
barely 3% of correctly classi�ed cells; however, they are misclassi�ed at 51% as inactive bad-
lands. This suggests that merging similar units together would lead to a di�erent assessment of
the accuracy of the MPG approach, which would be likely to perform considerably better.

Second, the evaluation is entirely based on the comparison between the automated map and
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the �eld map. The geomorphological �eld map is necessarily subjective, so that di�erences can
be expected if other persons were to map the same area again. Additionally, some parts of the
catchment are less easily reachable than others, which impacts the quality of the �eld mapping.
An example can be found in the middle-west part of the catchment, of which a large area was
solely mapped as debris slope, while the automated mapping assigned a larger diversity of units
to it. This steep and forested area was both di�cult to access and to map from long distance
observation points. It is hence conceivable that the automated map was in some cases more
close to reality than the �eld map. In conclusion, the evaluation of the performance of the MPG
approach stays a relative evaluation, carried in comparison to another subjective, man-made
map, and should not be considered as an absolute assessment of the automated classi�cation to
depict reality correctly.

5.5 Suggestions for future research

The application of the multiple-point geostatistical approach to automatic geomorphological
mapping reveals several aspects in which technical and conceptual improvements are desirable.
These will be treated hereafter in the order of the original research questions.

A �rst domain concerns topographical and neighbourhood attributes. It was shown that the
topographical attributes used in this research, and in particular "distance to highest elevations",
"relative elevation" and "slope", lead to a very accurate classi�cation of "debris slope" cells.
With all training areas, the correct classi�cation of "debris slope" cells was approximately 20
percentage points higher than the classi�cation of any other units. This large di�erence should
be taken into account in order to de�ne other attributes allowing for a better discrimination of
the remaining units. Half of the attributes of this research were related to the relative position
of the cell towards other elements, such as rivers and crests. Additional attributes taking a more
detailed account of the DEM properties of the cell and of its neighbours could be de�ned. On
a technical aspect, the attribute "relative elevation", which is calculated in this research on the
basis of the minimum and maximum elevations of the entire catchment, would probably gain
to be rede�ned on a subcatchment basis, as proposed by Schuur (2009).

The possibility to integrate neighbourhood information in the algorithm is a strength of the
MPG technique over more traditional approaches, such as the k-means clustering and rule-based
classi�cation techniques. In this regard, exploring on additional neighbourhood attributes is of
particular importance in order to assess more precisely the advantages and the drawbacks of
this method in comparison to other automated mapping techniques. Since a large part of the
regional geomorphology is highly in�uenced by downhill processes, further neighbourhood at-
tributes could take the properties of the upstream area of the cell into larger account.

A second domain relates to the classes into which the values of the attributes are discretized.
Three aspects deserve additional attention. First, since the highest point-to-point accuracy was
obtained with the highest number of classes used in this research, additional runs should be
realized in order to investigate whether the accuracy can still be improved by an increase of
the number of classes. It is expected that above a certain threshold, the mapping accuracy will
decrease again as the number of classes rises, as a consequence of the over-speci�city of the
search tree. Second, the class boundaries, which were de�ned so that each class contains an
identical number of cells, could be de�ned instead on the basis of the values generally associ-
ated to given geomorphological units, in order to isolate units in particular classes. Third, the
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number of classes was kept constant in this research for each attribute inside combinations. It
could however be set separately for each attribute, since discrimination possibilities are proba-
bly related in a di�erent way to the number of classes depending on the topographical property
under consideration.

A third domain concerns the training areas. The in�uence of both the geomorphology of the
training areas and their location (subcatchments versus multiple spread areas) was assessed in
this research. The issue of the impact of the size of the training area on mapping accuracy stays
however unanswered. Since the size of the training area has a direct impact on the number
of cells associated to patterns of the search tree, it can be expected that the response of the
mapping accuracy to an increase of the number of classes and attributes will lead to di�erent
results when the size of the training area is modi�ed.

Finally, In terms of hydrological evaluation, a next logical step would be to insert the auto-
mated map in the hydrological model for which it is meant to serve as input. Albeit using a
full hydrological model implies that the exact e�ects of the automated map might be complex
to di�erentiate from errors of other model parameters, it will provide a general idea of the
suitability of the automated classi�cation technique used in this research for the application in
large scale catchment modelling.
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6 Conclusion

Multiple-point geostatistical approaches to automated classi�cation rely on deriving the condi-
tional relationship between the properties of a cell and its membership from a training image. A
multiple-point geostatistical technique based on the single normal simulation equation (snesim)
was applied to the geomorphological mapping of the Buëch catchment, Southern France. The
algorithm correctly reconstructed the general pattern of the geomorphology through an accu-
rate mapping of the most present units; however, it lacked to distinguish unit patches. Large
di�erences were observed in the classi�cation of geomorphological units, with percentages of
correctly classi�ed cells ranging from 75% (debris slope) to 3% (active badlands). The units
were mostly misclassi�ed in relatively near units in terms of topography and geomorphology.

The results obtained in the present research were shown to be largely in�uenced by the
correct classi�cation of the unit "debris slope", which covers about 40% of the total area of the
Buëch catchment. The high accuracy of its classi�cation lead the combination which allowed
for its best discrimination, "distance to highest elevations", "relative elevation" and "slope", to
reach the highest overall accuracy over the Buëch catchment among topographical combinations,
although most units were better classi�ed by the combination containing all topographical
attributes. The positive response of overall mapping accuracy to an increase of the number of
classes appeared to be related to the high speci�city of patterns it implied. A high number of
classes allowed to reach a clearer discrimination between units, while still linking a representative
number of cells to each pattern; this structure was improving the classi�cation of the unit "debris
slope". In contrast, increasing the number of attributes a�ected negatively the classi�cation of
"debris slope" cells by rendering the algorithm probably too sensitive to the topographical
situation encountered in the training area.

The geomorphology of the training area was shown to impact directly on the correct clas-
si�cation of geomorphological units. The more present a geomorphological unit in the training
area, the better its classi�cation, irrespective of its actual proportion in the Buëch catchment.
This relationship suggests that training areas with overall well represented units lead to a higher
overall mapping accuracy than training areas with large di�erences in terms of unit proportions.
This property could be explained by the higher number of cells associated to patterns in the
dynamical data structure (search tree) when the area covered by an unit is enlarged.

In contrary to other classi�cation techniques, the multiple-point geostatistical approach en-
ables to incorporate neighbourhood information in the mapping algorithm. Neighbourhood at-
tributes appeared to improve the accuracy of the automated map on a point-to-point basis, but
to decrease it in terms of proportions of units. A possible explanation to this di�erence could be
found in the opposite e�ect of neighbourhood attributes on well represented units and rare units.

Future research is required in order to derive new topographical attributes likely to improve
the classi�cation of units other than "debris slope". The possibility to include neighbourhood
information should be explored into further extent, especially when considering the domination
of downhill processes in the study area. The number of classes and the class boundaries could be
adapted too in order to di�erentiate between units and to take the discrimination possibilities
of topographical attributes into a more detailed account. Finally, the hydrological evaluation of
the automated classi�cation technique would gain to be carried on the hydrological model for
which the automated map is meant to serve as input.
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7 Appendices

7.1 Appendix A: Values of saturated hydraulic conductivity

Unit Soil type Ksat (m/h)

Hogback outcorps 0
River plain sandy clay loam 0.0043
Alluvial fan (coarse) loam 0.0132
Alluvial fan (�ne) clay loam 0.0023
Colluvium clay loam 0.0023
Active badlands clay 0.0006
Inactive badlands weathered rock 0.00001
Glacis silt loam 0.0068
Glacis remnant silt loam 0.0068
Mass movement loamy sand 0.0611
Debris slope sandy loam 0.0259

Table 3: Values of saturated hydraulic conductivity for given soil types, from Rawls and Brak-
ensiek (1983). The correspondence between soil type and geomorphological units was obtained
from Vannametee (personal conversation).
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7.2 Appendix B: Runo� evaluation

Given the large di�erences of magnitude of the square error of runo� between outlets, the unit
of the axis of the following graphs is set individually per outlet.

Figure 23: Square error of runo� estimation at outlet 1 and 2, obtained when using the Northern
subcatchment as training area
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Figure 24: Square error of runo� estimation at outlet 3 and 4, obtained when using the Northern
subcatchment as training area
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Figure 25: Square error of runo� estimation at outlet 1 and 2, obtained when using the
Savournon subcatchment as training area
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Figure 26: Square error of runo� estimation at outlet 3 and 4, obtained when using the
Savournon subcatchment as training area
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Figure 27: Square error of runo� estimation at outlet 1 and 2, obtained when using the dotted
training area
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Figure 28: Square error of runo� estimation at outlet 3 and 4, obtained when using the dotted
training area
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