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Abstract

Recently, much progress has been made on the synthesis of colloidal particles
with anisotropic interactions, also called patchy colloids. These particles can
self-assemble in interesting structures, but it is difficult to predict the structures
that form for a given particle shape and interaction. This challenges us to
develop tools to predict the structures of patchy colloids, such as crystals. In
this thesis we describe a method to generate likely crystal structures for patchy
colloids and the methods we use to examine these crystal structures. We present
results of applying this method on two types of patchy colloids. We show that
changing the size and shape of the attractive patches results in crystal structures
with different density and particle orientation.
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Chapter 1

Introduction

1.1 Colloids

The modern scientific history of colloids starts with the discovery of Brownian
motion: the random drifting of colloidal particles. This behaviour was first
observed by Robert Brown in 1827 while studying pollen particles under a
microscope [1]. Solvent molecules collide with the suspended particles. Because
of the small size of the colloids these random collisions do not average out, but
exercise a small net force in random directions, causing the diffusive motion.

It was Thomas Graham who in 1861 first used the term ‘colloid’ [2]. He
derived the word from the Greek κoλλα meaning glue, due to the glue-like
properties of some colloidal systems. The first physical understanding of this
behaviour in terms of statistical fluctuations was presented in 1905 by Albert
Einstein [3] and parallel by William Sutherland [4]. These theoretical studies
were later verified by the experiments of Jean Baptiste Perrin [5] studying the
sedimentation equilibrium of monodisperse systems.

Colloidal particles have sizes between a few nanometers and several mi-
crometers, which means they are larger than atoms and molecules, but they are
still microscopic objects. They are typically found dispersed in a continuous
molecular medium. The colloidal suspensions and medium can be in different
phases. A solid medium with a liquid dispersion is called a gel. Other examples
include liquid-liquid (emulsions such as milk), liquid-solid (sols such as blood
and paint) and gas-liquid (aerosol such as mist).

Their size puts colloids in an interesting niche. On one side, they are big
enough to be easily studied with conventional bright-field light microscopy
(like Robert Brown) or the more advanced confocal laser microscopy. On the
other side, they are still so small that their thermodynamic properties are similar
to that of atoms and molecules. Moreover, the larger size of colloids allows also
for manipulation by external fields such as gravity and electric fields.

Early studies of colloids focussed on of systems consisting of hard spheres,
and systems with isotropic interactions such as screened-Coulomb interactions
or depletion interactions. Crystallisation of systems of spheres was demon-
strated theoretically in 1957 [6, 7]. Experimental results with colloidal spheres of
polymethylmethacrylate where realised in 1986 [8]. The phase behaviour of sys-
tems with electrostatic interactions can be controlled by tuning the interaction
strength [9, 10].
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The recent years have shown many advances in the synthesis of colloids
with a variety of shapes, which promise to be de building blocks for novel
materials [11]. We have seen the controlled synthesis of both convex particles
such as colloidal rods [12], cubes [13], superballs [14] and tetrahedra [15] as well
as octapods [16] and caps [17].

These developments have spurred theoretical and simulation studies of the
phase behaviour for systems of anisotropic hard particles. These systems are
only driven by entropy, and particle shape has shown to be a important role in
determining equilibrium structures.

For example, cubes are found to form simple cubatic crystals, but with a
high vacancy concentrations [18]. Cubes with rounded corners can give pref-
erence to rhomic crystals and rotator phases [19]. Octapods show hierarchical
self-assembly by forming interlocked chains that self-assemble into a three-
dimensional superstructure [16].

1.2 Patchy colloids

In recent years methods have been developed to chemically and physically
pattern surfaces of colloidal particles in a controlled way. Usually this patterning
is in the form of distinct patches, leading to the name patchy colloids. The addition
of patches typically results in interactions that are very isotropic and directional
in nature and offers unique possibilities for self-organisation and assembly [20].

Theoretical models of anisotropic interactions were first developed in the
1980’s to describe associating fluids [21]. These models use spherical particles
with attractive sites. An analytical theory for the thermodynamic properties of
these systems was developed by Wertheim [22]. Two important conditions in
Wertheim theory are the single bonding condition and the absence of bonding
loops.

Later other models for directional interactions where developed with col-
loidal systems in mind. The sticky spot model [23] also focusses on single bonds.
The Kern-Frenkel model [24] is a general model for patches with varying size
on the surface of a sphere. Patch-antipatch models [25] are used to represent
specific protein interactions.

There are many different ways to get patchy interactions. In the earliest work
patchy colloids were created by clustering of particles of different materials
[26, 27]. Directional bonding can be introduced by selection of the materials
and the size ratio of the particles. It is also possible to create site-specific bonds
between particles by functionalizing patches with lock and key groups, by for
example strands of DNA [28, 29].

Another method that has been used successfully is the coating of polymer
spheres with metallic patches. Here techniques such as glancing angle depo-
sition [30] are used to create patches with fine control on the size and relative
position.

As a specific case, spheres with a single patch that covers an entire hemi-
sphere are known as Janus spheres, after the two-faced Roman god [31]. Simu-
lations have shown interesting phase behaviour with cluster phases of micelles
[32, 33]. Spheres with two patches on opposite sides are called (confusingly)
triblock Janus spheres or simply triblock spheres. For a specific patch size,
assembly triblock spheres into a kagome lattice was observed [34]. These results
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were reproduced in simulations on quasi-two-dimensional systems [35]. Further
work also looked at the effect of patch size and number in three dimensions
[36].

1.3 Predicting crystal structures of patchy colloids

So far, existing simulation work on the crystal structures of patchy colloids has
focussed on preselected structures. This selection can be based on assumptions
on correspondence between patch geometry and crystal lattice. A general
method to generate likely equilibrium structures is not yet available.

In this thesis we present such a method show results of applying it to two
different patchy particle systems. This method is based on the work of Filion
et al. [37] for hard-particle systems. We have adapted this for systems with
anisotropic interactions and looked at ways to analyze our simulation data.

The method generates crystal unit cells by running variable box shape
simulations on systems with only a small number of particles. These are Monte
Carlo simulations in the isobaric-isothermal ensemble where the system volume
is varied by changing both the length and relative orientation of the box vectors.

From these unit cells we construct candidate crystal structures. We then
again perform Monte Carlo simulations on these candidates and monitor the
systems for changes in the internal energy and the orientational order to see if
these crystal structure melt or crystallize in another configuration. This all is
done in the regime of low temperature and pressure, because this is where the
patchy interactions will play an important role.

We have applied this method to systems of triblock spheres and a similar,
type of patchy particle, but non-spherical in shape. This particle consists of a
hard-core sphere with two spherical patchy protrusions. The patches exhibit an
attractive interaction which we model with a square-well potential. One can
think of this particle as the simplest anisotropic extension of the triblock sphere.
We believe that this simple model is a good way to study the interplay of shape
and interaction anisotropy.





Chapter 2

Model

There are a number of different patchy particle models. In this thesis we used
the so-called Kern-Frenkel model [24], that we briefly describe below. This is
a general model for a directional square-well potential of spheres. Other well
known models are the sticky spot model [23], and the patch-antipatch model
[25].

First we describe the original Kern-Frenkel model. Then we present a possi-
ble extension to the Kern-Frenkel model to adapt it to spheres with spherical
protruding patches.

2.1 Kern-Frenkel

The Kern-Frenkel model was made to represent strongly directional interactions.
In this model particles are impenetrable spheres. Part of the surface of these
spheres functions as attractive patches. When two patches of different spheres
are close enough and aligned they interact. This results in a negative energy
contribution. We call the patches “aligned” when the vector joining the center
of mass of the spheres intersects both patches. The pair potential between two
patches is defined as the product of the square-well potential with the angle as

uij(rij ; Ωi,Ωj) = uhsswij (rij) · fij(rij ; Ωi,Ωh). (2.1)

The square-well potential depends on the radial distance as

uhsswij (rij) =


∞ for ‖rij‖ < σ

−ε for σ ≤ ‖rij‖ < rc

0 for ‖rij‖ ≥ rc.
(2.2)

Here σ is the sphere diameter and rc is the square-well range.
The shape of the patches is modelled by the intersection of the particle

surface by a cone constructed from an angle around a vector êa from the center
of the sphere, where êa denotes the unit vector for patch a. The angle is the
half-open angle δ. This patch definition is illustrated in figure 2.1.

5



6 CHAPTER 2. MODEL

 ê ê

i jrij

Figure 2.1: Schematic of the Kern-Frenkel model. The two spheres are at center-of-mass
distance ‖~rij‖ = |~ri − ~rj | apart. The cone of attraction around the orientation vectors êa
and êb is determined by the angle δ and depicted by the dotted lines.

fij(rij ; Ωi,Ωh) =


1 if êα · r̂ij ≥ cos δ for some patch α on i

and êβ · r̂ij ≥ cos δ for some patch β on j
or ‖rij‖ < σ,

0 otherwise

(2.3)

This model allows for any number of patches in any configuration. Particles
with a single patch are called ‘Janus spheres’.

In our simulations we focus on spheres with two patches of the same size on
opposite sides. These specific particles are known in the literature as ‘triblock
spheres’ or the somewhat misleading ‘triblock Janus spheres’.

2.2 Spherical protrusions

The Kern-Frenkel model was originally designed for spherical particles with
patches on their surface. Because we are also interested in shape-anisotropic
particles we must adapt it for this case. Here we want our model to capture the
effects of shape while not sacrificing the simplicity.

The particles we studied are spherical and have two spherical protrusions.
We can think of one such particle as a set of overlapping spheres. The center
sphere is then a hard sphere, the attractive protrusions are Janus spheres with
the non-overlapping part being the patch. The orientation vector of the patch
points away from the center sphere. The half-open angle is defined by the
intersection with the center sphere.

The pair potential is the same as in the regular Kern-Frenkel model. A
schematic overview of these particles with patchy protrusions can be seen in
figure 2.2.

The half open angle of the patches is no longer a parameter that can be
chosen freely, but depends on the geometry of the spheres: the ratio of the
core sphere and patchy sphere diameters (σc and σp) and the center-to-center
distance (L) as

δ = π − arccos

(
σ2
p + 4L2 − σ2

c

4σpL

)
. (2.4)
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Figure 2.2: Schematic of the Kern-Frenkel model adapted for patchy colloids. The
orientation vectors are now relative to the center of the spherical protrusion, at distance
L of the hard-sphere core.

Using this method one can construct many different particles by varying the
size, shape, number and position of the patchy spheres. We chose particles with
two patchy spheres on opposite sides. We fixed the center-to-center distance to
L = σc/2 (e.g. on the surface of the core sphere).

2.3 Volume of overlapping spheres

To calculate the density of our system we need to know the volume of a single
particle. Our particles consist of overlapping spheres. We determine the volume
of a single particle by taking the sum of the separate spheres and subtract the
overlap:

V = Vc + 2Vp − Voverlap. (2.5)

The volume of the spheres is easily calculated. The volume of the overlap
region is slightly more complicated. Consider two spheres with radius ra and
rb at (0, 0, 0) and (ra, 0, 0). The surfaces of the two spheres intersect at

x =
r2a + r2b

2rb
(2.6)

y2 + z2 = r2a. (2.7)

The overlapping volume of the two consists of two spherical caps [38] with
a base at x and height

ha = ra −
r2b + r2a

2rb
(2.8)

hb = rb − ra +
r2b + r2a

2rb
. (2.9)

The volume of a spherical cap is given by

1

3
πh2 (3r − h) . (2.10)

Solving this for the two caps gives
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Va + Vb = πr3b

(
8ra − 3rb

12rb

)
. (2.11)

Combining this with equation (2.5), the volume of a single particle is

V =
4

3
π(r3c + 2r3p)− 2πr3p

(
8rc − 3rp

12rp

)
. (2.12)
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Methods

3.1 Generating candidate structures

In order to determine the phase behavior for a system of patchy particles, we
should first predict the candidate crystal structures. We are primarily interested
in the regime where the anisotropic interaction is dominant, not the entropy or
packing. We thus focus on a regime of low temperature and low pressure.

The problem we are facing is that there is a large number of possible colloidal
crystal structures. Because of this, enumeration is not a viable option and using
manually constructed crystals suffers from selection bias. Therefore we use a
simulation method called “variable shape unit cell Monte Carlo” [37], sometimes
also named “floppy box MC”.

This method consists of a number of steps. A schematic overview of method
is given in figure 3.1. We start by performing isobaric-isothermal (NPT) simula-
tions for systems with a small number of particles. Typically only two to twelve.
This system is basically the unit cell of our candidate structure. For every num-
ber of particles we run five simulations with different starting configurations.
From these we select the final configuration with the lowest energy.

From each of these candidate structures we generate a colloidal crystal by
multiplying the small system that resembles a possible unit cell a number of
times in all directions until we obtain a system with a number of particles
between 200 and 500.

For this large system we run a new NPT simulation. Here we look at the
stability of the candidate by monitoring the density, energy and orientation
distribution of the particles. When the crystal is not stable there will be a phase
transition to a fluid or a different crystal.

This method was originally designed for systems with a high entropic con-
tribution to the free energy such as hard-particle systems. Therefore normally
a simulated annealing step is performed in the small floppy box: the pressure
is gradually increased to compress the system. In our case this is not desirable
because we do not expect our crystal structures to be stable in the high pressure
limit.

9
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Figure 3.1: Schematic overview of the method showing the different steps we use to
generate probably candidate crystal structures.
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3.2 Statistical physics

Statistical physics allows us to study the macroscopic properties of systems with
a large number of degrees of freedom such as many-particle systems. These
systems have a number of different contributing states with different energies.
Gibbs derived that for a system in equilibrium the probability of being in state i
is given by

Pi =
e−Ei/kT∑
j e
−Ej/kT

, (3.1)

where Ei is the energy of state i and k is Boltzmann’s constant. This probability
distribution is known as the Boltzmann distribution. The summation in the
fraction is called the partition function and denoted by Z.

Using this distribution we can define a expectation value for a macroscopic
quantity A of our system

〈A〉 =
1

Z

∑
i

Aie
−Ei/kT . (3.2)

We can estimate this expectation value by generating a number of indepen-
dent system states from this distribution and take the average of their values.
This is what we are going to use in our Monte Carlo method.

3.3 Monte Carlo method

The Monte Carlo (MC) method is a computational tool to estimate the macro-
scopic quantities of a system. This is accomplished by random sampling of the
phase space. Since its invention in 1946, the method has been used successfully
in many different research fields, ranging from biology to finance. The following
explanation focusses on the use of the MC method in statistical physics.

The methods we are using to determine the thermodynamic properties in
equilibrium of our systems is the Monte Carlo method. This method entails
that we construct a new configuration from an existing old configuration by
making a small change. This can either be the displacement or rotation of a
single particle or the deformation of the simulation box. We accept this new
configuration with a probability that depends on the Boltzmann or statistical
weights of the old and new configurations. If the new configuration is not
accepted, the old one is restored. By repeating this process many times we
can measure the thermodynamic equilibrium properties of the system, such as
volume, number of bonds, and the internal (interaction) energy.

In this process there are two important properties our method should have:
ergodicity and detailed balance. Ergodicity means that from every possible starting
configuration we can reach every other possible configuration (after many
steps). Because of this it is important to consider every potential configuration
with a chance larger than zero. Detailed balance means that in equilibrium the
probability of going from configuration A to B is equal to the probability of the
reverse.

The system consists of a three-dimensional volume with a number of parti-
cles (triblock spheres or spheres with patchy protrusions). The initial simulation
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box is cubic, but we allow shape changes to a more general parallelepiped shape.
We apply periodic boundary conditions on the box: on every face we put an
image copy of the system. When a particle moves out of the box during the
simulation its position is updated to the periodic image that it entered. The
simulations were performed in the NPT ensemble, which means a constant
number of particles N, constant pressure P, and constant temperature T.

3.3.1 Particle moves

We distinguish two different moves where we modify the properties of one
randomly selected particle: displacement and rotation moves. A number of
algorithms exist that modify the positions (and orientations) of multiple particles
in a single step. We did not use these so called “cluster algorithms” in our
simulations.

In a displacement move we shift the center of mass of a particle by a random
value in the range [−∆x,∆x]. The value of ∆x is adjusted in the first part of the
simulation such that about 30% of the moves is accepted. In a rotation move a
particle is rotated around its center of mass.

For rotation moves we use the strategy from [39]. Every particle has a
orientation unit vector û. To vary this vector we first construct a random unit
vector v̂ and multiply this by a scale factor γ. We get a new (non-unit) vector ~t
by adding û+ γv̂. Our new unit vector is then normalized t̂ = ~t/‖~t‖.

3.3.2 Box moves

In the NPT ensemble we use two box moves to modify the volume and shape of
the system: resizing and rotating. The simulation box is parameterized by three
box or lattice vectors ~Lx, ~Ly, ~Lz . These vectors span a parallelepiped, whose
volume is given by ~Lx · (~Ly× ~Lz). The two box moves modify one of these three
vectors.

The resizing move changes the length of one of the vectors by multiplying it
by (X + 1), with X a random number in the range [−∆V,∆V ]. (The +1 term is
needed to satisfy detailed balance). This move changes only the length of the
vector, not the orientation.

The box rotation move slightly rotates one of the lattice vectors. This is
done in a way similar to the rotation move for single particles. The important
difference is that in the last step the lattice vector is not normalized to unity,
but to the initial length before the move. Thus this move changes only the
orientation of the vector, and not its length. We note that the volume of the
simulation box changes in both box moves. Figure 3.2 shows a possible move of
both types.

None of the lattice vectors are fixed to any of the Euclidean axes or planes.
This means that the simulation box rotates freely. This can make identification
of different systems difficult. To prevent collapse of the box we reject unphysical
distorted lattice vectors. We do this by rejecting angles between the lattice
vectors smaller than 30 degrees and larger than 150 degrees.
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Figure 3.2: Example of the two different box moves. At the top we see a resize move that
decreases the length of lattice vector ~Lz , shrinking the box volume and making the box
less cubic. Below that the box rotation move rotates the lattice vector ~Lz , thus deforming
the box.

3.3.3 Acceptance rules

The probability to go from one configuration to another is called the accep-
tance probability and is determined by the acceptance rules. We have used the
Metropolis choice, which results in the following rules:

Pparticle = min(1, exp (−β(U ′ − U))) (3.3)

Pbox = min(1, exp
(
−β(U ′ − U) + P (V ′ − V )−Nβ−1ln (V ′/V )

)
). (3.4)

Here U ′ and V ′ denote the energy and volume of the new configuration.

3.4 Distribution function

To identify and classify the resulting structures one can use distribution func-
tions. We have used the orientational distribution function, which provides
us information about the average relative orientation of the particles and their
patches.

Because our focus here is on anisotropic particles, we study the patch ori-
entation distribution. This distribution shows the density as a function of the
relative angle of patches on the particles.

We calculate this distribution by taking the inner product of the orientation
unit vectors of every patch with every patch on all other particles. The resulting
value is the cosine of the angle between the unit vectors, which we bin in a
histogram. The histogram is normalized to unit area.

The domain of the resulting histogram is [−1, 1]. Because our particles have
two patches on opposite sides, the histogram is plane symmetric around the
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value 0. For a system in a fluid phase there is almost zero orientation preference,
and thus the patch orientation distribution is a flat line. Crystal structures will
show Gaussian peaks around −1 and 1 (particles with the same alignment) and
possibly other angles.

3.5 Implementation

A few things are different from a normal hard-sphere MC simulation. We note
here some of the details of the implementation that might not be obvious. A
major part of the simulation time is spent on calculating the potential energy
and particle overlaps. Because of this it is wise to focus on doing this as efficient
as possible. We also mention some details about the complications of combining
cell lists with a variable box shape and periodic images in small systems. We
have provided some code examples in appendix A.

3.5.1 Energy calculation

As explained, our particles exhibit both hard-particle and directed square-well
interactions. We calculate both in a single go, but stop as soon as we encounter
a particle overlap somewhere in the system.

The only shape we have to check for overlap is the sphere, but there are three
per particles. For a pair this means nine checks. We try to minimize the number
of checks by first checking the circumscribed spheres of the particles. We include
the square-well range in the radius of this sphere. So when the circumscribed
spheres do not overlap we are sure there is no interaction whatsoever between
this pair. When they do overlap, we first check all nine pairs of spheres for
overlap. If this is not the case, we check if the patchy spheres are within the
square-well range and oriented.

3.5.2 Cell lists

When we move a single particle we have to check the interaction with every
other particle for overlap and contribution to the energy. This means that a
single particle will take simulation time ∼ N , and a single MC step where every
particle is moved on average once take simulation time ∼ N2. This is not a
problem in our small simulations of two to nine particles, but for big systems
we want to avoid this. We can do that using the fact that system has only short
range interactions.

There are two well known tools to speed up the energy calculation: Verlet
list [40] and cell lists. We have used cell lists for our simulations. The simulation
box is divided into cells. The size of the cells should be just large enough such
that a particle in a cell only interacts with particles in surrounding cells. No
matter how large we make our system, we only have to check a total of 27 cells.



Chapter 4

Results

In this chapter we present the results of applying the method we described to
two types of particles. These are triblock spheres and spheres with attractive
protruding spheres. We will express the simulation parameters in dimensionless
units, also called reduced units. These are the dimensionless pressure P ∗,
square-well depth ε∗ and square-well range r∗c . These are defined as

P ∗ =
Pσ3

c

ε
(4.1)

ε∗ =
ε

kT
(4.2)

r∗c =
rc − σp
σc

. (4.3)

where σc and σp are the diameters of the center sphere and patchy sphere
respectively. For the triblock spheres σp = σc = σ.

When comparing the internal energy of systems we use two different terms.
The first is U/(Nε∗), the internal energy per particle divided by the square-well
depth. We also use the average number of bonds per patch. Because all the particles
we consider have two patches, the relation between the two terms is simply

〈no. bonds / patch〉 = −1 · U/(Nε∗). (4.4)

4.1 Triblock spheres

Here we describe the results of applying our method to triblock spheres. We
focussed on two different patch sizes: a half open angle δ of 0.6 rad and 0.9 rad.
These correspond to a patch surface coverage χ = 2 · sin2( δ2 ) of approximately
0.17 and 0.38.

For both of those we ran a number of unit cell NPT simulations: we varied
the number of particles from 2 till 9, where we performed five simulations with
different starting conditions each. The system parameters were P ∗ = 1, ε∗ = 3,
r∗c = 0.2. For every run we recorded the lowest energy state the system reached,
because we hypothesize that at low temperatures the crystals with high bonding
energy are most likely candidates for equilibrium structures.

15
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4.1.1 Triblock spheres where δ = 0.6

For every unit cell simulation we recorded the lowest energy per particle during
the simulation. The results for this are shown in table 4.1. There is not a lot of
difference between the results: the values for 2, 3 and 4 particles are higher than
for the unit cells with 5 or more particles. The lowest observed energy we see is
U/(Nε∗) = −3.0: in all the systems with this energy all particles are aligned in
the same direction.

We selected five different systems based from these unit cell simulations and
constructed candidate crystal structures. On these we performed another NPT
simulation. When we look at the internal energy of the system as a function
of Monte Carlo time (fig. 4.1), we see the energy of the system changed during
the simulation. This might mean the system was not in equilibrium and is a
good indicator of a phase transition, meaning that the crystal structures melt.
We checked this by looking at the orientational order in the system. We did
this in two ways: we calculated the orientation distribution function and made
a projection of the patch orientation on the unit sphere. Figure 4.2 shows the
orientational distribution function for a number, and the unit sphere projection
of one of them. From both we see a lack of orientational order.

Because all systems melted we repeated the simulations with a lower tem-
perature by making the bond energy stronger (from ε∗ = 3 to ε∗ = 7). In the unit
cell simulations the results were not that different, as can be seen in table 4.2. In
some cases we see higher energies. This is most likely due to the stronger bond
energy causing the system to get stuck in a local minimum. The lowest energy
observed is still U/(Nε∗) = −3.0.

For the candidate crystal simulations we see that the systems with all aligned
particles did not melt. This is confirmed by the graph of the orientational
distribution function in 4.3. Here we see peaks around cos(θij) = ±1. Again,
the unit sphere projection of one shows that all patches point in the same
direction.

A snapshot of one of the candidate crystal structures is shown in figure 4.4.
We see this is an HCP stacking with the patches aligned perpendicular to the
stacking layers. This result is in agreement with [36], where they observed
this for patch surface coverage between 0.0572 and 0.118, but with a longer
interaction length than we have used in our simulations.

4.1.2 Triblock spheres where δ = 0.9

We performed the same simulations as before, this time with triblock spheres
with larger patches. The patch half open angle is δ = 0.9. When we look at the
results for lowest energies for the unit sphere simulations in table 4.3. We see
that almost all simulations reached a lowest energy of U/(Nε∗) = −4.0. In all
configurations the patches are aligned in the same direction.

We constructed a candidate crystal structure from this configuration and
ran an NPT simulation. The energy as a function of simulation time remained
constant, as can be seen in figure 4.5. This suggests that the crystal does not melt.
This was confirmed by the orientation distribution function and projection on
the unit sphere (fig. 4.6). Both show that all particles are aligned in the same
direction. The configuration is different from the lowest energy crystal we found
for δ = 0.6. In this case, the layers are square, with a particle in the next layer
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Table 4.1: Obtained minimum values U/(Nε∗) for triblock spheres with δ = 0.6 rad.
For every system with N = 2, 3. . . . , 9 we performed five different simulations with the
same parameters but a different random seed. These are labelled a, b, c, d, e. We used the
parameters P ∗ = 1, ε∗ = 3 and r∗c = 0.2.

2 3 4 5 6 7 8 9
a -2.5 -2.3 -2.7 -3.0 -3.0 -2.9 -2.9 -3.0
b -2.3 -2.5 -2.3 -3.0 -3.0 -2.9 -2.8 -3.0
c -2.5 -2.3 -2.7 -3.0 -3.0 -2.9 -2.9 -2.9
d -2.5 -2.3 -2.7 -3.0 -2.9 -2.9 -3.0 -2.8
e -2.3 -2.3 -2.7 -3.0 -3.0 -2.9 -2.9 -3.0

Table 4.2: Obtained minimum values U/(Nε∗) for triblock spheres with δ = 0.6 rad,
this time with a stronger interaction energy. For every system with N = 2, 3. . . . , 9 we
performed five different simulations with the same parameters but a different random
seed. These are labelled a, b, c, d, e. We used the parameters P ∗ = 1, ε∗ = 7 and r∗c = 0.2.

2 3 4 5 6 7 8 9
a -2.0 -2.3 -3.0 -3.0 -3.0 -2.6 -3.0 -2.7
b -2.0 -2.0 -3.0 -3.0 -3.0 -3.0 -3.0 -2.7
c -2.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -2.7
d -2.0 -3.0 -3.0 -3.0 -3.0 -2.3 -3.0 -2.7
e -2.0 -2.3 -3.0 -3.0 -2.5 -3.0 -3.0 -3.0
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Figure 4.1: Evolution of the average number of bonds per patch for triblock spheres
with half open angle δ = 0.6. Every line corresponds to an NPT simulation of 192 to
512 particles. The starting configuration is constructed from the unit cell of one of the
earlier runs. The lines are labelled by the number of particles in the unit cell and the
corresponding run in the floppy box, denoted by a lower case letter. The parameters for
all systems are P ∗ = 1, ε∗ = 3 and r∗c = 0.2. We can see that a number of systems melted
over the first 20× 104 MC cycles.
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Figure 4.2: Orientation distribution function for triblock spheres with half open angle
δ = 0.6. For a number of unit cells we have constructed candidate crystals of at least 192
particles. The simulation parameters were P ∗ = 1, ε∗ = 3, r∗c = 0.2. We calculated the
orientational order after 1× 106 MC cycles. This graph shows that all the systems have
melted and show no orientational order. The inset shows the projection of the orientation
of the patches on a unit sphere for one of the candidates. Both show no preferential
orientation.

Figure 4.3: Orientation distribution function for triblock spheres with half open angle
δ = 0.6. We have constructed candidate crystals of at least 192 particles. The simulation
parameters were P ∗ = 1, ε∗ = 7, r∗c = 0.2. We calculated the orientational order after
1× 106 MC cycles. The inset shows the projection of the orientation of the patches on a
unit sphere. Both show that the patches align in the same direction.
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Figure 4.4: Snapshot of a crystal structure for triblock spheres with δ = 0.6 with the
lowest energy. This crystal is from the simulations with ε∗ = 7, constructed from the
unit cell labelled 3d. The structure is an HCP stacking with all particles aligned such that
the patches bond between the stacking layers, forming three bonds per patch.
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being in the center of four others. A snapshot of the configuration is shown in
figure 4.7. This appears to be an FCC crystal.

Table 4.3: Obtained minimum values U/(Nε∗) for triblock spheres with δ = 0.9 rad.
For every system with N = 2, 3. . . . , 9 we performed five different simulations with the
same parameters but a different random seed. These are labelled a, b, c, d, e. We used the
parameters P ∗ = 1, ε∗ = 3 and r∗c = 0.2.

2 3 4 5 6 7 8 9
a -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0
b -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -3.7
c -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -3.6
d -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -3.6
e -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0
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Figure 4.5: Evolution of the average number of bonds per patch for triblock spheres
with half open angle δ = 0.9. Every line corresponds to an NPT simulation of 192 to
512 particles. The starting configuration is constructed from the unit cell of one of the
earlier runs. The lines are labelled by the number of particles in the unit cell and the
corresponding run, denoted by a lower case letter. The parameters for all systems are
P ∗ = 1, ε∗ = 3 and r∗c = 0.2. We can see that a number of systems melt over the first
20× 104 MC cycles.



4.1. TRIBLOCK SPHERES 21

Figure 4.6: Orientation distribution function for triblock sphere with half open angle
δ = 0.9. For a number of unit cells we have constructed candidate crystals of at least 192
particles. On these crystal structures we performed a NTP simulation. The simulation
parameters were P ∗ = 1, ε∗ = 3, r∗c = 0.2. We calculated the orientational order after
1× 106 MC cycles. This graph shows that all structures still have strong orientational
order, they show peaks around (only) cos(θij) = ±1. This means that all triblock spheres
are aligned in the same direction. The inset shows the projection of the patch orientation
on the unit sphere. Here we can also clearly see that all patches are aligned.

Figure 4.7: Snapshot of the crystal structure for triblock spheres with δ = 0.9 with the
lowest energy. The structure is an FCC crystal with the patches all aligned such that they
can form four bonds each.
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4.2 Spherical protrusions

Here we describe the results of applying our method to particles with spherical
patchy protrusions. We looked at three different protrusion sizes. Expressed as
the ratio of the diameter of the patchy sphere (σp) and diameter of the central
hard sphere (σc), these are q = σp/σc = 0.2, 0.3 and 0.5. A side view is depicted
in figure 4.8. The center of the patchy spheres is always placed on the surface of
the central sphere.

Figure 4.8: Spheres with spherical protrusions with size ratio q = σp/σc = 0.2, 0.3 and
0.5. The blue sphere has diameter σc and has a hard-core interaction. The orange spheres
are places with their center on the surface of the blue sphere and have diameter σp. The
orange spheres have an attractive square-well interaction.

For each particle we ran a number of small unit cell simulations: we varied
the number of particles from 2 till 9, where we performed six simulations with
different starting conditions each. The system parameters for all simulations
were P ∗ = 1, ε∗ = 3, r∗c = 0.2.

From these unit cell simulations we selected the candidates with the lowest
energy per particle. As explained earlier, we are interested in structures at low
temperature and pressure, where the patchy interactions are expected to be
important. From these we constructed candidate crystals with a number of
particles between 192 and 512, depending on the number of particles in the unit
cell. For the NPT simulations we performed on these candidates we used the
system parameters P ∗ = 1, ε∗ = 5, r∗c = 0.2.

4.2.1 Spherical protrusions where q = 0.2

The particles with q = 0.2 have the smallest protrusions and can form the lowest
number of bonds of the three parameter values that we investigated here. In
table 4.4 we show the results of the unit cell simulations. For every simulation
we show the minimum value of U/(Nε∗), e.g. the highest average number of
bonds per patch. We see that most runs result in only two bonds with a lowest
value of only −2.0. Three simulations for unit cells with eight particles have a
lower energy of U/(Nε∗) = −3. These three are the same structure.

For the candidate crystal simulations we selected six with two bonds and
one of the unit cells with three bonds. The first candidate structures are all
two-dimensional, sheet-like crystals that melted rapidly. The candidate crystal
with three bonds did not melt. For this candidate we calculated the orientational
distribution. As can be seen in figure 4.10, both the orientational distribution and
the unit sphere projection clearly showed orientational order. In the distribution
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function we see the peaks around cos(θij) = ±1 we have seen before and peaks
around cos(θij) ≈ ±0.35.

The projection on the unit sphere shows eight distinct spots, which corre-
sponds with four different orientations in the system. A snapshot (fig. 4.11)
from the candidate crystal shows that the particles are in a close-packed FCC
structure with the patches clustered in groups of four.

Table 4.4: Obtained minimum values U/(Nε∗) for particles with q = 0.2. For every
system with N = 2, 3. . . . , 9 particles we performed six different simulations with the
same parameters but a different random seed. These are labelled a, b, c, d, e. We used the
parameters P ∗ = 1, ε∗ = 3 and r∗c = 0.2.

2 3 4 5 6 7 8 9
a -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0
b -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -3.0 -2.0
c -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -3.0 -2.0
d -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0
e -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0
f -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -3.0 -2.0

4.2.2 Spherical protrusions where q = 0.3

We performed the same simulations as before, this time with larger spherical
protrusions. When we look at the results for lowest energies for the unit sphere
simulations (table 4.5), we see values varied from U/(Nε∗) = −3.0 to −4.5. In
all cases the particles preferred to align in a perpendicular direction relative
to its neighbours. The unit cells with the lowest energy we observe both with
3 and with 9 particles in the unit cell. Here the unit cell with 9 particles is a
multiple of the 3 particle cell.

We performed the candidate crystal NPT simulations on a number systems
for different unit cells. If we look at the energy as a function of MC cycles
(fig. 4.12), we observed that a number did not melt, not only the candidate with
the lowest energy. Therefore we lower the pressure after 106 MC cycles. This
caused the melting of six more candidate structures. We see that the structures
that melt slowly crystallized to structures similar to the candidate with the
lowest energy.

We examined the orientational order of the candidate crystal structure,
presented in figure 4.13. The orientational distribution function shows the
perpendicular orientations by the extra peak around cos (θij) = 0. In the unit
sphere projection we see that the patches align in three different directions,
indeed all perpendicular to each other. We show a snapshot of crystal structure
in figure 4.14.

4.2.3 Spherical protrusions where q = 0.5

Finally we looked at the crystal structure formation of particles with spherical
protrusions half the diameter of the center sphere. For the unit cell simulations
we see a higher number of bonds than for smaller patches. The lowest energies
in table 4.6 show a minimum of U/(Nε∗) = −6.
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Figure 4.9: Evolution of the average number of bonds per patch for our particles with
q = 0.2. Every line corresponds to an NPT simulation of 192 to 512 particles. The starting
configuration is constructed from the unit cell of one of the earlier runs. The lines are
labelled by the number of particles in the unit cell and the corresponding run, denoted
by a lower case letter. The parameters for all systems are P ∗ = 1, ε∗ = 5 and r∗c = 0.2.
We can see that a number of systems melt over the first 20× 104 MC cycles. All systems
but one are in the fluid state and show no orientational order. The system of run f with a
unit cell of eight particles (8f ) has a significantly lower energy with an average number
of bonds of 3 and does not melt.

Table 4.5: Obtained minimum values U/(Nε∗) for particles with q = 0.3. For every
system with N = 2, 3. . . . , 9 particles we performed six different simulations with the
same parameters but a different random seed. These are labelled a, b, c, d, e, f . We used
the parameters P ∗ = 1, ε∗ = 3 and r∗c = 0.2.

2 3 4 5 6 7 8 9
a -3.0 -2.7 -3.5 -4.0 -3.3 -3.4 -3.0 -4.2
b -3.0 -2.7 -4.0 -4.0 -3.2 -3.7 -3.5 -4.3
c -3.0 -4.5 -3.5 -4.0 -3.5 -4.1 -3.1 -3.2
d -3.0 -3.3 -4.2 -4.0 -3.5 -3.1 -3.5 -4.5
e -3.0 -2.7 -3.8 -4.0 -3.5 -3.4 -3.9 -3.4
f -3.5 -2.7 -3.5 -4.0 -3.3 -4.1 -3.0 -4.3
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Figure 4.10: Orientation distribution function for patchy particles with q = 0.2. For a
number of unit cells we have constructed candidate crystals of at least 192 particles. On
these crystal structures we performed an NTP simulation. The simulation parameters
were P ∗ = 1, ε∗ = 5, r∗c = 0.2. We calculated the orientational order after 100× 104 MC
cycles. We can see from the graph that all but one system have no orientational order.
Only one of the unit cells with eight particles (8f ) has a profile with peaks at zero angle
(cos(θij) = ±1) and an angle of 70 degrees.

Figure 4.11: Snapshot from the candidate 8f with q = 0.2 that did not melt in the NPT
simulations. The spacial structure is an FCC crystal with every patch forming three
bonds.
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Figure 4.12: Evolution of the average number of bonds per patch for our particles
with q = 0.3. The different candidate systems contain between 192 and 512 particles,
depending on the unit cell. The start with very different values for the average number
of bonds, and a number of systems with a relative low number does not melt initially.
We therefore decreased the pressure to P ∗ = 0 after 100 · 104 MC cycles. This results in
melting of a number of systems. The trial system with the lowest energy is run c of the
unit cell with three particles (3c), which also has the most orientation distribution.

Figure 4.13: Orientation distribution function for patchy particles with q = 0.3. For a
number of unit cells we have constructed candidate crystals of at least 192 particles. On
these crystal structures we performed an NPT simulation. The simulation parameters
were P ∗ = 1, ε∗ = 5, r∗c = 0.2. We calculated the orientational order after 180× 104 MC
cycles. Many of the candidate crystal structures of this size ratio show orientation profile
with peaks at ±1 and 0. This means that the particles are aligned with each other in a
perpendicular direction.
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Figure 4.14: Snapshot of the crystal structure with the lowest energy for q = 0.3. The
particles have formed an BCT crystal with patches in groups of six. This candidate crystal
was constructed from the unit cell labelled 3c and has an average number of bonds per
patch of 4.1.

Because of the small differences in energy we select a candidate for every
number of particles in the unit cell. As can be seen in figure 4.15, most of these
candidate structures melt. We select the remaining structure with the lowest
energy for further analysis.

We examined the orientational order of the candidate structure as shown in
figure 4.17. The orientational distribution function (fig. 4.16) shows extra peaks
around cos(θij) ≈ 0.5. This looks similar to the distribution for q = 0.2, but the
peaks are shifted. The projection on the unit sphere reveals that all the particles
are oriented in a plane, which is very different from what we have seen for
q = 0.2 and 0.3. This shows that examining the unit sphere project is useful, as
we cannot extract this information from the orientational distribution function.
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Table 4.6: Obtained minimum values U/(Nε∗) for particles with q = 0.5. For every
system with N = 2, 3. . . . , 9 particles we performed six different simulations with the
same parameters but a different random seed. These are labelled a, b, c, d, e, f . We used
the parameters P ∗ = 1, ε∗ = 3 and r∗c = 0.2.

2 3 4 5 6 7 8 9
a -5.0 -5.7 -6.0 -5.6 -5.8 -5.7 -5.0 -5.1
b -5.0 -5.3 -6.0 -5.6 -5.5 -5.7 -5.3 -5.3
c -5.0 -5.7 -5.5 -5.6 -5.5 -6.0 -5.0 -5.2
d -5.0 -5.7 -6.0 -5.6 -5.5 -5.6 -5.3 -5.2
e -5.0 -5.3 -6.0 -5.6 -5.8 -5.0 -5.0 -5.3
f -5.0 -5.3 -6.0 -5.6 -5.8 -6.0 -5.3 -5.2
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Figure 4.15: Evolution of the average number of bonds per patch for our particles with
q = 0.5. Every line corresponds to an NPT simulation of 192 to 512 particles. The starting
configuration is constructed from the unit cell of one of the earlier runs. The lines are
labelled by the number of particles in the unit cell and the corresponding run, denoted
by a lower case letter. The parameters for all systems are P ∗ = 1, ε∗ = 5 and r∗c = 0.2.
We can see that a number of systems melt over the first 20× 104 MC cycles. The crystal
structure with the lowest energy is run c with a unit cell of three particles (3c).
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Figure 4.16: Orientation distribution function for patchy particles with q = 0.5. We
have constructed candidate crystals of at least 192 particles. On this crystal structure
we performed an NTP simulation. The simulation parameters where P ∗ = 1, ε∗ = 5,
r∗c = 0.2. We calculated the orientational order after 80×104 MC cycles. The inset shows
the projection of the patch orientation on the unit spheres. We see that all are aligned in
a plane with only three different orientations.

Figure 4.17: Snapshot of the crystal structure with lowest energy for q = 0.5. This was
constructed from the unit cell labelled 3c and has an average of 5.3 bonds per patch. It is
interesting to see that all the particles are oriented in the plane.





Chapter 5

Conclusions

Here we present our conclusions and discuss the validity of the results of our
work on the prediction of crystal structures of patchy particles. We will also
give some recommendations for future work on this subject.

We performed variable box shape Monte Carlo simulations to find candidate
unit cells for crystal structures of patchy particles. To this end, we performed
simulations in the NPT ensemble for a small number of particles. Then, we
multiplied the found unit cells to obtain a crystal and investigated if it remained
or melted in this large simulation box.

We highlighted the candidates with the highest number of bonds per patch,
since we hypothesize that at the low pressures and temperatures that we inves-
tigated they are the most likely stable candidates.

We have shown that the floppy box method can be used to generate crystal
structure candidates for particles with anisotropic interactions. The fact that we
did not observe melting for the unit cells with the lowest energies shows the
viability of the method for these systems.

By applying our method we have predicted crystal structures for two types
of patchy particles. For triblock spheres we find structures that consist of all
aligned particles. The size of the patches is an important factor. It determines the
number of bonds a patch can form. For patches with half open angle δ = 0.6 rad,
they form three bonds per patch, which results in an HCP stacking. The triblock
spheres with a larger half open angle of δ = 0.9 rad can form four bonds per
patch. This results in an FCC crystal structure. These results are similar to the
results presented in [36].

The spheres with attractive spherical protrusions form candidate crystal
structures with varying patch orientation when we change the patch/core size
ratio q = σp/σc. The particles with q = 0.2 arrange in a close-packed FCC
structure with three bonds per patch. Increasing the size of the protrusion to
q = 0.3 gives candidate structures with particles aligned in a perpendicular
fashion. The structure with the lowest energy that we find most often is a low
density BCT crystal with every patch forming four bonds. When the patch size
is increased to q = 0.5, the structure with the lowest internal energy is a crystal
where all particles are aligned in a plane with well-defined angles between
neighbouring particles.

For future work and more conclusive predictions, it is required to extend
the results to more temperatures and pressures. To predict the thermodynamic

31
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stability of the crystal structures and draw up a phase diagram free energy
calculations will have to be performed. The crystal structures we have presented
here will be a good starting point for this.

Further refinements to our method are certainly possible. Improvements can
be made to prevent that the unit cell simulations get stuck in a local minimum
state. One improvement could be the addition of a lattice reduction step, such
as the algorithm in [41], to minimize the deformation of the unit cell.

Particles with two protrusions on opposite sides are a relative simple model
for simulations, but synthesis of these particles might be difficult. Therefore
applying our method to patch arrangements that are easier to construct would
be worthwhile. An example of this are spheres with protrusions in a tetragonal
pattern, which could form diamond-like crystals [42].



Appendix A

Code examples

A.1 Vector functions

These are a number of helper functions we wrote to handle vectors in C, which
does not have any build-in support for vectors.

# include <math . h>

/∗ v e c _ i n p r o d : r e t u r n s t h e i n p r o d u c t o f two v e c t o r s ∗ /
s t a t i c i n l i n e double vec_inprod ( double a [ 3 ] , double b [ 3 ] )
{

double t = 0 . 0 ;

for ( i n t d = 0 ; d < 3 ; d++) {
t += a [ d ] ∗ b [ d ] ;

}
return t ;

}

/∗ vec_norm : n o r m a l i z e s i n p u t v e c t o r t o u n i t l e n g t h ∗ /
s t a t i c i n l i n e void vec_norm ( double v [ ] )
{

double t = s q r t ( vec_inprod ( v , v ) ) ;

for ( i n t d = 0 ; d < 3 ; d++) {
v [ d ] /= t ;

}
}

/∗ v e c _ s e t : s h o r t h a n d t o s e t a l l t h r e e e l e m e n t s o f a v e c t o r ∗ /
s t a t i c i n l i n e void vec_se t ( double v [ ] , double x , double y , double z )
{ v [ 0 ] = x ; v [ 1 ] = y ; v [ 2 ] = z ; }

/∗ v e c _ c r o s s : s t o r e c r o s s p r o d u c t o f v e c t o r a and b in c ∗ /
s t a t i c i n l i n e void vec_cross ( double c [ ] , double a [ ] , double b [ ] )
{

c [ 0 ] = a [ 1 ] ∗ b [ 2 ] − a [ 2 ] ∗ b [ 1 ] ;
c [ 1 ] = a [ 2 ] ∗ b [ 0 ] − a [ 0 ] ∗ b [ 2 ] ;
c [ 2 ] = a [ 0 ] ∗ b [ 1 ] − a [ 1 ] ∗ b [ 0 ] ;

33
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}

/∗ v e c _ r o t a t e : r o t a t e v e c t o r v by t rad around v e c t o r w ∗ /
s t a t i c i n l i n e void v e c _ r o t a t e ( double v [ ] , double w[ ] , double t )
{

double cos_t , s in _ t , wdv,
double v2 [ 3 ] ;

c o s _ t = cos ( t ) ;
s i n _ t = s i n ( t ) ;
wdv = vec_inprod (w, v ) ;

v2 [ 0 ] = v [ 0 ]∗ c o s _ t +(w[ 1 ]∗v[2]−w[ 2 ]∗v [ 1 ] ) ∗ s i n _ t +w[ 0 ]∗wdv∗(1− c o s _ t ) ;
v2 [ 1 ] = v [ 1 ]∗ c o s _ t +(w[ 2 ]∗v[0]−w[ 0 ]∗v [ 2 ] ) ∗ s i n _ t +w[ 1 ]∗wdv∗(1− c o s _ t ) ;
v2 [ 2 ] = v [ 2 ]∗ c o s _ t +(w[ 0 ]∗v[1]−w[ 1 ]∗v [ 0 ] ) ∗ s i n _ t +w[ 2 ]∗wdv∗(1− c o s _ t ) ;

for ( i n t d = 0 ; d < 3 ; d++) {
v [ d ] = v2 [ d ] ;

}
}
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A.2 Particle-particle interaction

This is the code that calculates the interaction between two different particles
with spherical protrusions. It converts the particle coordinates from the box
system to Cartesian coordinates. We check every pair of spheres first for possible
overlap and then for alignment of their patch.

/∗ p a i r _ e n e r g y : c a l c u l a t e i n t e r a c t i o n e ne rg y be tween p a r t i c l e s
p and q and adds t h i s v a l u e t o ∗ en
r e t u r n s 1 i f p a r t i c l e s o v e r l a p , 0 o t h e r w i s e ∗ /

i n t pair_energy ( i n t p , i n t q , double ∗en )
{

double pc [ 3 ] [ 3 ] , qc [ 3 ] [ 3 ] , dc [ 3 ] ;
double pb [ 3 ] [ 3 ] , qb [ 3 ] [ 3 ] , db [ 3 ] ;
double d i s t ;

i f ( p == q )
return 0 ;

/∗ f o r p a r t i c l e p ∗ /
/∗ c e n t e r pos in c a r t e s i a n ∗ /
c a r t e s i a n ( pc [ 0 ] , par t [ p ] . x ) ;
/∗ p a t c h pos in c a r t e s i a n ∗ /
for ( i n t d = 0 ; d < 3 ; d++) {

pc [ 1 ] [ d ] = pc [ 0 ] [ d ] + o f f s e t ∗part [ p ] . p [ 1 ] . u [ d ] ;
pc [ 2 ] [ d ] = pc [ 0 ] [ d ] + o f f s e t ∗part [ p ] . p [ 2 ] . u [ d ] ;

}
/∗ a l l pos in box ∗ /
vec_cp ( pb [ 0 ] , par t [ p ] . x ) ;
boxsys ( pb [ 1 ] , pc [ 1 ] ) ;
boxsys ( pb [ 2 ] , pc [ 2 ] ) ;
/∗ put in box ! ∗ /
p e r i o d i c ( pb [ 1 ] ) ;
p e r i o d i c ( pb [ 2 ] ) ;

/∗ f o r p a r t i c l e q ∗ /
/∗ c e n t e r pos in c a r t e s i a n ∗ /
c a r t e s i a n ( qc [ 0 ] , par t [ q ] . x ) ;
/∗ p a t c h pos in c a r t e s i a n ∗ /
for ( i n t d = 0 ; d < 3 ; d++) {

qc [ 1 ] [ d ] = qc [ 0 ] [ d ] + o f f s e t ∗part [ q ] . p [ 1 ] . u [ d ] ;
qc [ 2 ] [ d ] = qc [ 0 ] [ d ] + o f f s e t ∗part [ q ] . p [ 2 ] . u [ d ] ;

}
/∗ a l l pos in box ∗ /
vec_cp ( qb [ 0 ] , par t [ q ] . x ) ;
boxsys ( qb [ 1 ] , qc [ 1 ] ) ;
boxsys ( qb [ 2 ] , qc [ 2 ] ) ;
/∗ put in box ∗ /
p e r i o d i c ( qb [ 1 ] ) ;
p e r i o d i c ( qb [ 2 ] ) ;

for ( i n t i = 0 ; i < 3 ; i ++) {
for ( i n t j = 0 ; j < 3 ; j ++) {
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/∗ d i s t a n c e in box ∗ /
for ( i n t d = 0 ; d < 3 ; d++) {

db [ d ] = qb [ j ] [ d ] − pb [ i ] [ d ] ;
}
image ( db ) ; /∗ a p p l y n e a r e s t image c o n v e n t i o n ∗ /
c a r t e s i a n ( dc , db ) ;
d i s t = s q r t ( dc [ 0 ]∗ dc [ 0 ] + dc [ 1 ]∗ dc [ 1 ] + dc [ 2 ]∗ dc [ 2 ] ) ;
i f ( i == 0 && j == 0 && d i s t > ( 2 . 0 ∗ ( o f f s e t +radius+rc ) ) )

continue ;
i f ( d i s t <= ( part [ p ] . p [ i ] . r + part [ q ] . p [ j ] . r ) )

return 1 ;
i f ( d i s t > ( part [ p ] . p [ i ] . r + part [ q ] . p [ j ] . r + 1 . 0∗ rc ) ) {

continue ;
}
vec_norm ( dc ) ;

i f ( vec_inprod ( part [ p ] . p [ i ] . u , dc ) <= part [ p ] . p [ i ] . d )
continue ; /∗ p a t c h on p not a l i g n e d ∗ /

i f ( vec_inprod ( part [ q ] . p [ j ] . u , dc )∗−1.0 <= part [ q ] . p [ j ] . d )
continue ; /∗ p a t c h on q not a l i g n e d ∗ /

∗en += en_u ;
}

}
return 0 ;

}
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A.3 Cell lists

This code shows how we have implemented the cell lists.

# define NCELL ( 3 2 ) /∗ maximum number o f c e l l s in e v e r y d i r e c t i o n ∗ /

s t r u c t c e l l s {
i n t head [NCELL] [NCELL] [NCELL ] ; /∗ h e a d s o f c e l l l i s t s ∗ /
const i n t neighbor [ 2 7 ] [ 3 ] ; /∗ n e i g h b o u r o f f s e t s by p r o x i m i t y ∗ /
i n t num [ 3 ] ; /∗ number o f c e l l s p e r d imens i on ∗ /
double s i z e [ 3 ] ; /∗ s i z e o f one c e l l ∗ /

} ;

/∗ c e l l l i s t s − i n i t i a l i z e wi th f i x e d o f f s e t s o f n e i g h b o u r c e l l s ∗ /
s t r u c t c e l l s c e l l = {

{ { { 0 } } } ,
{ { 0 , 0 , 0 } , /∗ c e l l s e l f ∗ /

{ 0 , 0 , 1 } , { 0 , 1 , 0 } , { 1 , 0 , 0 } , { 0 , 0 ,−1} , { 0 ,−1 ,0} ,
{−1 , 0 , 0 } , /∗ c l o s e s t s i x ∗ /
{ 0 , 1 , 1 } , { 0 ,−1 , 1 } , { 0 , 1 ,−1} , { 0 ,−1 ,−1} , { 1 , 0 , 1 } ,
{−1 , 0 , 1 } , { 1 , 0 ,−1} , {−1 , 0 ,−1} , { 1 , 1 , 0 } , {−1 , 1 , 0 } ,
{ 1 ,−1 , 0 } , {−1 ,−1 ,0} , /∗ nex t t w e l v e ∗ /
{ 1 , 1 , 1 } , { 1 ,−1 , 1 } , {−1 , 1 , 1 } , {−1 ,−1 , 1 } , { 1 , 1 ,−1} ,
{ 1 ,−1 ,−1} , {−1 , 1 ,−1} , {−1 ,−1 ,−1} /∗ f i n a l e i g h t ∗ /

} ,
{ 0 } , { 0 . 0 }

} ;

/∗ c e l l _ p a r t : c a l c u l a t e c e l l where p a r t i c l e p b e l o n g s ∗ /
s t a t i c i n l i n e void c e l l _ p a r t ( i n t p , i n t pc [ ] )
{

for ( i n t d = 0 ; d < 3 ; d++) {
pc [ d ] = part [ p ] . x [ d ] / c e l l . s i z e [ d ] ;

}
}

/∗ c e l l _ f i r s t : r e t u r n s f i r s t p a r t i c l e in c e l l l i s t o r −1 i f empty ∗ /
s t a t i c i n l i n e i n t c e l l _ f i r s t ( i n t r [ ] ) { return c e l l . head [ r [ 0 ] ] [ r [ 1 ] ] [ r [ 2 ] ] ; }

/∗ c e l l _ n e x t : r e t u r n s nex t p a r t i c l e in c e l l l i s t o r −1 i f l a s t ∗ /
s t a t i c i n l i n e i n t c e l l _ n e x t ( i n t i ) { return part [ i ] . next ; }

/∗ c e l l _ a d d : adds a p a r t i c l e t o t h e r i g h t c e l l l i s t ∗ /
void ce l l_add ( i n t p )
{

i n t x , y , z ;

c e l l _ p a r t ( p , part [ p ] . c e l l ) ;
x = part [ p ] . c e l l [ 0 ] ;
y = part [ p ] . c e l l [ 1 ] ;
z = part [ p ] . c e l l [ 2 ] ;
par t [ p ] . next = c e l l . head [ x ] [ y ] [ z ] ;
c e l l . head [ x ] [ y ] [ z ] = p ;

}
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/∗ c e l l _ i n i t : c r e a t e c e l l l i s t s ∗ /
void c e l l _ i n i t ( void )
{

/∗ c a l c u l a t e number o f c e l l s and c e l l s i z e ∗ /
for ( i n t d = 0 ; d < 3 ; d++) {

c e l l .num[ d ] = box [ d ] / ( 1 . 0∗ ( 2∗ radius +1.+ rc ) ) ;
c e l l . s i z e [ d ] = box [ d ] / c e l l .num[ d ] ;

}
/∗ c l e a r c e l l s ∗ /
for ( i n t x = 0 ; x < c e l l .num [ 0 ] ; x++) {

for ( i n t y = 0 ; y < c e l l .num [ 1 ] ; y++) {
for ( i n t z = 0 ; z < c e l l .num [ 2 ] ; z++) {

c e l l . head [ x ] [ y ] [ z ] = −1;
}

}
}

}

/∗ c e l l _ n e i g h b o u r : s w i t c h t o i t h n e i g h b o u r o f c e l l ∗ /
void ce l l_ne ighbour ( i n t pc [ 3 ] , i n t i , i n t neighbour [ 3 ] )
{

for ( i n t d = 0 ; d < 3 ; d++) {
neighbour [ d ] = pc [ d ] + c e l l . neighbor [ i ] [ d ] ;
i f ( neighbour [ d ] < 0) {

neighbour [ d ] += c e l l .num[ d ] ;
} e lse i f ( neighbour [ d ] >= c e l l .num[ d ] ) {

neighbour [ d ] −= c e l l .num[ d ] ;
}

}
}

/∗ c e l l _ u p d a t e _ a l l : r e c r e a t e s c e l l l i s t s when nee ded ∗ /
void c e l l _ u p d a t e _ a l l ( void )
{

i n t update ;

for ( i n t d = 0 ; d < 3 ; d++) {
c e l l . s i z e [ d ] = box [ d ] / c e l l .num[ d ] ;

}
update = 0 ;
for ( i n t d = 0 ; d < 3 ; d++) {

i f ( c e l l .num[ d ] != ( i n t ) ( box [ d ] / ( 1 . 0∗ ( 2∗ radius +1.+ rc ) ) ) ) {
update = 1 ; /∗ up da t e i s ne eded ∗ /

}
}
i f ( update ) {

c e l l _ i n i t ( ) ;
/∗ add p a r t i c l e s t o c e l l s ∗ /
for ( i n t i = 0 ; i < NPART; i ++) {

ce l l_add ( i ) ;
}

}
}
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/∗ c e l l _ u p d a t e : u p d a t e s t h e c e l l o f a s i n g l e p a r t i c l e ∗ /
void ce l l_update ( i n t p )
{

i n t x , y , z , q , s [ 3 ] ;

/∗ up da t e c e l l ∗ /
x = part [ p ] . c e l l [ 0 ] ;
y = part [ p ] . c e l l [ 1 ] ;
z = part [ p ] . c e l l [ 2 ] ;
c e l l _ p a r t ( p , s ) ;
i f ( s [ 0 ] == x && s [ 1 ] == y && s [ 2 ] == z )

return ; /∗ p s t i l l in same c e l l ∗ /
/∗ remove p from o l d c e l l ∗ /
i f ( c e l l . head [ x ] [ y ] [ z ] == p ) {

c e l l . head [ x ] [ y ] [ z ] = part [ p ] . next ;
} e lse {

for ( q = c e l l _ f i r s t ( par t [ p ] . c e l l ) ;
q != −1 && c e l l _ n e x t ( q ) != p ;
q = c e l l _ n e x t ( q ) )

; /∗ empty l o o p ∗ /
part [ q ] . next = part [ p ] . next ;

}
/∗ add p t o new c e l l ∗ /
ce l l_add ( p ) ;

}
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A.4 Orientation distribution function

The main part of the calculation of the orientation distribution function. We
make use of the fact that our input contains pairs of anti-aligned unit vectors.

# include <math . h>

# define NBIN 200
# define BIN ( x ) ( ( i n t ) ( ( x + 1 . 0 )∗0 . 5∗NBIN ) )

/∗ o r i e n t d i s t r i b : c a l c u l a t e o r i e n t a t i o n d i s t r i b u t i o n f u n c t i o n
from u n i t v e c t o r s in v and s t o r e in b in
r e t u r n s t h e t o t a l number o f v a l u e s b inned ∗ /

i n t o r i e n t d i s t r i b ( i n t bin [ ] , double vec [ ] [ 3 ] , i n t m)
{

i n t k = 0 ;

/∗ ’ f i r s t p a t c h e s ’ − n o t e s t a r t v a l u e o f j ∗ /
for ( i n t i = 0 ; i < m; i += 2) {

for ( i n t j = i + 2 ; j < m; j ++) {
x = vec_inprod ( v [ i ] , v [ j ] ) ;
++bin [ BIN ( x ) ] ;
++k ;

}
}
/∗ ’ s e c o n d p a t c h e s ’ − n o t e s t a r t v a l u e o f j ∗ /
for ( i n t i = 1 ; i < m; i += 2) {

for ( i n t j = i + 1 ; j < m; j ++) {
x = vec_inprod ( v [ i ] , v [ j ] ) ;
++bin [ BIN ( x ) ] ;
++k ;

}
}
return k ;

}
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