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Abstract

The Atom Plasmonics group plans to study the interactions between Ru-
bidium atoms in the near-field of nanostructures. For these experiments an
optical tweezer is needed to move the trapped atoms above a gold surface.
To transfer the atoms to the surface, this tweezer must actually be a stand-
ing wave. Thus, a second tweezer should be overlapping with the first. This
stereo tweezer or scanner will consist of two pairs of scanning mirrors that
move the trapping beam in the plane above the surface. In this thesis the
design and the performances of this stereo scanner in one dimension was
tested.

To implement the scanner, standard galvo scanning mirrors were used as is
typically done in confocal scanning microscopy. However, two problems arise
with the use of these galvos. First, the electronic feedback that controls the
angle of the mirror, introduces noise in the angle and thus in the position of
the trap. As a result, a bump arises in the spectrum of the noise. By tuning
the constants of the controller of the galvos, this bump was decreased.
Second, the two beams should remain overlapped even when the mirrors are
scanning. This was achieved by measuring the difference in angle between
the galvos and correcting the angle of one of them using a feedback loop.
This method was tested by coupling light that has pasted over both galvos
back into a single-mode fiber. If the feedback system works the light should
remain coupled in the fiber even when the mirrors are scanning. Remaining
fluctuations in the fiber coupling were found to be dominated by movements
of the beam orthogonal to the scanning axis.
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Introduction

The field of plasmonics has a long history, even if the name was invented
relatively recently[l]. In 1902 Wood observed unexplained features in
optical reflection measurements on metallic gratings[2]. More than fifty
years later Pines theoretically described the characteristic energy losses
experienced by fast electrons traveling through metals[3]. Those losses were
ascribed to collective oscillations of free electrons in the metal and got the
name 'plasmons’. Coupled oscillations of bound electrons and light inside a
transparent medium are called a ’polariton’[4].

In 1957 Ritchie investigated the electron energy losses in thin films
and showed plasmon modes were able to exist close to a metal surface.
This theoretical description is the first on ’surface plasmons’[5, 6]. The
theory was later verified with electron energy-loss experiments and more
research[7, 8, 9].

The nanoplasmonics field is gaining attention for the development of the
excitation and manipulation of surface plasmons created by subwavelength
sized structures in metal films. The ambition of this field is to manage
properties of light to make new optical element for sensing applications and
for example communication.

In the field of wltra cold atoms, magnetic fields and laser light are used to
control and manipulate atoms in traps. Big successes were achieved with
the ability to control with very high accuracy the internal and external
state of atoms in the gas phase [10]. This control makes ultracold atoms a
beautiful field to study problems in condensed matter, quantum information
processing and cavity quantum electrodynamics.

In our experiment these two interesting fields will be combined. By
trapping atoms in the near-field of a plasmonic nanostructure, we will be
able to control and study the coupling between atoms and light close to the
structure.



A hot topic in nanoplasmoncis is the study of manipulation of light

by sub-wavelength sized holes in metal films. When light is focussed on a
small hole, the light is diffracted into a spherical wave. It was shown that a
periodic grating in the surface of the film modify the transmission pattern
of this hole[11]. The divergence of this pattern was shown to be less than
5°. This beaming of light is ascribed to surface plasmons, excited at the
hole, efficiently radiate as light due to the concentric rings.
A nanohole array was found to exhibit an extraordinarily high optical
transmission with suitable chosen wavelength of the light and spacing of
the array[12]. The presence of atoms in the array gives an extra periodic
modulation of the index of refraction. This will be used to control the
interaction between light and plasmonic modes and will thereby influence
the transmission of the array[13]. Since the transmission of the light
is tightly diverging, in the experiment it could be used to create micro
traps[14] for atoms.

With that in mind, our experiment requires three things: ultra cold

atoms, a nanoplasmonic sample and a means to reproducibly position the
atoms on the samples. A vapour of Rb-87 atoms is created in a oven. A 2D-
magneto-optical trap (MOT) collects the atoms from this vapor and cools
and confines them in two dimensions [15, 16, 17, 18]. This cigar shaped
cloud of atom is pushed into a 3D-MOT chamber. In a 3D-MOT atoms are
confined in the middle of a vacuum chamber in three dimensions.
The nanostructure can not be placed in the middle of the vacuum chamber,
as this would block the lasers required for laser cooling, so the atoms must
be moved towards the sample. Therefore, the cold atoms are loaded from
the MOT to an optical dipole trap[19]. When the atoms are trapped in the
dipole trap, the focus will be moved towards the sample with the atoms in
it. When the atoms are positioned above the sample, they must be lowered.
Therefore a 1D-optical lattice[21] is required to move them in the vertical
direction. This optical conveyor[22] will be created by a standing wave[23]
consisting of two counter propagating laser beams.

This brings us to the unique and most challenging part so far. Since we
want to move the atoms in two dimensions above the sample, the conveyor
should not only move vertically towards the plane of the sample, but also in
the plane of the sample. This means the standing wave needs to be produced
by two counter propagating laser beams that can move sideways but remain
perfectly overlapped and parallel to each other at all times.

In this thesis the design and the realization of this so-called scanner will
be discussed and tested. In Chapter 2 the setup of the experiment will be
described. The design and devices for the cold atoms will be shown first.
Then the setup of the scanner will follow.

Chapter 3 provides a theoretical background. The optical lattice and the
errors from an achromatic lens will be discussed. The theory behind control



systems will be presented as well.

Three tests on the scanner are introduced in Chapter 4. High frequency os-
cillations, the so-called servobump are decreased in the first test experiment.
Secondly the overlap error is minimized by introducing a PI-controller to the
system.

In Chapter 5 the conclusions of the test experiments are given.



Setup

This chapter introduces the setup of the experiment. First the cooling and
trapping devices will be described, then we will continue with the scanner.
In figure 2.1 a schematic representation is given of the setup.

Figure 2.1: The setup of the experiment with the cloud of atoms in
a) the 2D-MOT and b) the 3D-MOT. 1,2 and 3 refer to respectively
the optical tweezer, conveyor and the scanner. Qutside the chamber
four of the siz beams of the 3D-MOT are shown, a push beam and
two possible tweezer beams.

As discussed in the introduction we start with a 2D-MOT (with a
pressure of 1077 mbar) to cool and trap atoms in a cigar shaped cloud.
The cigar shaped cloud is easy to push into the vacuum chamber where the
atoms will be confined in three dimensions in a 3D-MOT. The maximum
number of atoms in the 3D-MOT is around 10'° [25]. The nanostructure is
not placed in the center of the vacuum chamber, because it would intersect



with the MOT-beams. After loading the atoms from the MOT, they are
loaded into the optical tweezer[19]. This tweezer is a strongly focussed 20
Watt laser beam with a wavelength of 1070 nm. The beamwaist is 47 ym
in the vertical direction to 81 pm [27] in the horizontal direction, where
the directions are defined as in figure 2.1. The used forces come from the
electric dipole interaction with far-detuned light. The trap depth in our
setup is around 2mK. By moving the focus of the tweezer, the cloud is
be moved towards the sample. A special rotating arm moves the laser
such that the atoms will move in a straight line close to the sample. The
mechanism of this arm is not trivial, because it should move in a straight
line instead of an arc. The optical tweezer is working and the details are
discussed elsewhere [26].

To get the atoms to a height of a few 100 nm above the sample,
an optical conveyor is installed. The apparatus consists of two counter
propagating overlapping laser beams; the first is incident from above and
the second from the bottom. Those two beams will result in a periodic
standing wave potential, in which the cloud will be trapped in a pancake
shaped clouds. When we choose a red detuning, atoms will be trapped at
the antinodes of the standing wave, which are half a wavelength apart. In
section 3.1 this so-called optical lattice will be explained.

By shifting the frequency of one of the beams of the standing wave, the
anti-nodes of this standing wave will move and therefore move the cloud of
atoms in vertical direction. In figure 2.2 a simplified model is shown of the
conveyor. The optical lattice consists of a waist of approximately 75 pm
and a lattice spacing of around 400 nm. The conveyor is investigated[27]
and will soon be installed and tested.

Figure 2.2: The optical conveyor close to the sample. An optical
lattice of a few pancakes formed by two overlapping beam.



Once the atoms are trapped above the sample, the laser beam from
below can be switched off, as the reflection of the upper laser beam on
the sample will create a standing wave in the overlapping area. This
standing wave will form a trap for the atoms. By varying the angle of the
incoming beam, one can even change the distance between the atoms and
the surface. This allows investigation of the coupling between atoms and
nanostructures. Imaging will take place with a beam from above using
absorbtion at 780 nm or possibly fluorescence at 420 nm to achieve a
higher spatial resolution. The beam from below can be used for different
purposes when taking measurements. For example the beam can be used
to create micro traps where the atoms could be trapped. Surface plasmons
could also be manipulated by shooting light on another structure than the
imaged structure. The image could give us information on the effect of the
holes on surface plasmons. When the atoms are trapped that close to the
surface of a nanostructure, there are a lot of interesting experiments possible
to measure the influence of the atoms on the surface plasmons and visa versa.

2.1 Scanner

The scanner is used for two things: to transfer the atoms from the original
conveyor to the standing wave produced by the sample and to subsequently
move the atom around above the sample. For the second part only the
beam from above will be used. The scanner uses the same optics as the
conveyor; the same laser beams that will translate the atoms vertically, will
move them in the horizontal plane above the surface in two dimensions.
The setup of the scanner and conveyor consists of two horizontal and one
vertical part that are mounted in the coloured frame given in figure 2.3a.
The horizontal parts are the arms at the upper and lower level, while the
vertical part is positioned between both levels. The horizontal parts contain
two achromatic lenses and two galvos. Galvos are rotating mirrors that
will be discussed in section 4.1 in more detail. The top level has the same
components as the lower level figure of figure 2.4, but is extended with
some imaging and devices for measuring.

The vertical part contains of the sample and two lenses and is represented
in figure 2.3b. The beams from the upper and lower level will meet the
sample in this vertical part.



Figure 2.3: Frame and arm of the scanner

T Galvo 2
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(b) The vertical part of scanner
with the atom cloud and the sam-
ple at the focus of the lens. The
dashed lines show the beam path
when the galvos makes a non-zero
angle. The rotation of this pair of
galvos introduces a movement in
only one dimension.

(a) This frame of the scanner is a
tool to wvisualize the construction
of the scanner. In the red part the
lower arm will be place, even as
the upper arm in the green part
and the vertical part on the blue
azxis.

The four galvos are split into to pairs, the first pair of galvos will move
the focus in the x-direction, while the other pair will move in the y-direction.
We define the galvos 1 to move the beam in the x-direction and the galvos
2 in the y-direction.

On the horizontal levels one of both galvos will be installed, to get the
desired movements at the sample.



outcoupler

4 Galvo2

Figure 2.4: The horizontal levels of the setup contain an
outcoupler, two galvos and four achromatic lenses. Galvo
2 is pointed into or away from the plane of the paper. Rota-
tions of galvo 1 and galvo 2 are responsible for movements
in two dimensions. On the top level also measuring and
imaging devices will be installed.

To clarify the procedure of moving the cloud, only one pair of galvo is
considered. Between the two galvos two achromatic lenses are positioned.
The distance between one galvo and one achromat is the focal distance of the
lens. After a beam hitting the first galvo and the first lens, it will propagate
parallel to the optical axis. After twice the focal distance, the beam will hit
the second galvo and travel on the optical axis. This is independent of the
angle of the galvo. However when moving the first galvo to a certain angle,
the beam will move a certain distance perpendicular to the optical axis
after the first achromatic lens. At the focus of the beam, at focal distance
from the lens, the atoms will be trapped and moved in one direction. The
beams trapping the atoms should at this point overlap accurately. In the
test experiments of chapter 4 only consider half of the scanner is considered,
which can be extended with two galvo pairs and therefore to two dimensions.

2.1.1 Scanner Design

The technical design of the scanner in the experiment looks more compli-
cated than the sketch. In the end three levels in the experimental setup are
required, shown in figure 2.6 and 2.7.

Figure 2.5 shows the heights of those different levels.

10
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Figure 2.5: The experimental setup of the vacuumchamber with the
different heights for the scanner and conveyor [27].

In figure 2.5 the vacuum chamber is represented with the different levels.
Just below the middle of the height of the chamber an arm is shown for the
sample. From above three beams and from above one beam is shown coming
from the two levels. One each level consists of one galvo 1 and one galvo 2,
together with the appropriated achromatic lenses.
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Figure 2.6: The experimental setup of the bottom level[27].

The top layer consists of the other two galvos and achromats, the
controlling and imaging system. The galvos are placed exactly in the same

way as on the bottom layer.
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Figure 2.7: The top level of scanner and conveyor, with control
and measure devices[27].

Vertical movement Because of spatial constraints, galvo 2 is positioned
differently than the first one. The rotation axis of the galvo lies in the plane
of the beam. The rotation of the galvo results in a vertical movement of the
beam in the image plane which is perpendicular to the propagation direction
of the beam. This vertical movement however has also a component in the
x-direction. In figure 2.8 the situation is shown in our coordinate system.
The z-coordinate is defined along the beam, the x-coordinate is in the
horizontal plane, while the y-coordinate represents the vertical plane. The
movements in the image plane are given in x- and y-coordinates.
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do

Figure 2.8: A rotation of the second galvo will not only introduce a
vertical movement, but also a movement in the horizontal direction.
By decomposing the vectors of the normal, one finds out that the
- and z-movements are also dependent on the rotation angle d¢.

Since the rotation axis lies in the x-z plane, a d¢ rotation moves the
normal out of this plane. The normal vector component in the x-z plane
will become smaller. This automatically means the component increases
in other planes. Therefore we will decompose the normal vector in three
components in the given three dimensions of figure 2.8.

ng = ng cosf cosdg, (2.1a)
ny = ng sinde, (2.1b)
n, = ngsin 0 cos do, (2.1¢)

where ng is the original length of the normal vector and 0 is the angle
between the normalvector and the incoming beam in the x-z plane. When
d¢ is zero, there will only be a y-component in the x-y (image)plane.
The 6 is fixed in this plane, so will introduce a factor v/2 in both x and
z-components. If the components of the normal vector are dependent on
the rotation angle, the outcoming angle of the beam is as well. Since we are
reflecting the beam, the x-coordinate will be transformed into a negative
x-coordinate.
When constructing the path of the beam when rotating d¢[—7, 5], we will
find an elliptic shaped path. The x-direction is tightened with a factor v/2
with respect to the y-movement. This complicates positioning atoms on the
sample, but also couples the feedback loops for the vertical and horizontal
position. We have not tested the feedback loop in this configuration yet.

14



Theoretical Background

In this chapter we first give a theoretical background on optical lattice. We
will then present the calculations of the imperfections caused in a real setup
by the use of non-perfect lenses. Finally we will give an introduction to
control systems, as this will also be used throughout the thesis.

3.1 1D optical lattice

To understand the conveyor we will provide the basic theory of the optical
lattices [21].

In the experiment we work with laser light from a diode laser, which is
delivered to the experiment through a single mode optical fiber. This
means that both the electric field and the intensity of the light beam can
be extremely well approximated by a gaussian distribution.

We define r as the distance from the optical axis, z as the axial distance
from the focus of the beam and k as the wave number.
We can then write the electric field of a gaussian beam as

—r2 ikr? |
E(r,z) = EO@e[mﬂszmﬂqz)], (3.1)
Wy
where wy is the waist in the focus, w(z) waist elsewhere along the beam
and R(z) is the radius of curvature at a position along the beam. ((z) is
the longitudinal phase delay or Gouy phase. The Gouy phase shift acquires
an extra m-phase shift for a gaussian beam that is going through the focus.

The intensity of light can be written as I(r, z) = 3ceo|E[>. The power P

of the beam is given by Py = %Imrwg, where I is the peak intensity in the
focus.
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The intensity in the beam is then given by

wo 2 52

I =Ih| — w(z)? 3.2

o) =1 (125 ) e, (32

If we rewrite all those equations in terms of the total power P of the
beam we find

2P —op2
N (3.3)

I(r,z) =

TWw 2

where we used the fact that for a gaussian beam w(z) = wo,/14 (%) An

optical 1D-lattice is a standing wave formed of such gaussian beams with
a frequency far from the atomic resonance. The beams should ideally have
identical waists and focal points and should of course be counter propagat-
ing.

The reason the standing wave acts as a potential is that the electric field of
light induces a dipole moment p = aF, which in turn experiences a potential
U = —pFE to the same electric field. As the dipole moment is induced by E,
we should actually include a factor of %

2
Udipole(ﬁ) = —%a(w) | E ‘2: _;r:gi (T)7
where A is the effective detuning and I" the linewidth of the relevant transi-
tion. Both these quantities are dependent on the atomic level structure; in
the case of 8 Rb-atoms, there are two relevant transitions. Those transitions
are from the ground state 55 /5 to the excited 5P /5 level (794.98 nm) or to

the excited 5Py level (780.24 nm).
For two counter propagating beams the intensity of the standing wave

is obtained from

(3.4)

. . 2 7‘2

I(r,2) = |/ 1€ + \/ITQeﬂkz\Q%e_zﬁ
i w2 ) (3.5)

- v/ 0,202
(L1 + 1o+ 2v/ 11 cost‘z)wge ,
where I7 and I5 are the intensities of the two beams. When the intensities
of the beams are equal Iy = Iy = I, we find
w% _or_
I(r,z) = 2Iy(1 + cos 2kz)ﬁe w?
z

'lU2 _Qﬁ
= 4Iy(1 — sinkz?)—3e w2 (3.6)

z

2 2
Wy —or_
=4I cos sz—ge w?,
w
z
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From Equation (3.4) we obtain the potential of the optical lattice

2 212

T 2
U(r,z) = —Elllocosk:z( g)e w?
Jwd (3.7)
= Upcoskz (w—g)e w? |

where the total trap depth Uy = 41yZ¢ 2w3 A' For r<< wpy, we can make

a Taylor expansion which leads to U(r, z) = —Up(1 — 2r?/wd) coskz*. In
future experiments a trap depth of around 100 pK will likely to be used.
The values in power and detuning still need to be chosen. The power we can
use is limited to what the sample can stand. The detuning then has to be
chosen low enough such that the required depth can be obtained. A lower
detuning however automatically means a lower lifetime, which of course is
not desirable. The natural linewidth of Rb-87 is (27)6.06 MHz, while the
power will be in the order of 25 mW and the detuning a few nanometers.

When an atom has a small displacement with respect to the center of the

local potential minimum we can approximate U = imr2w? + lszcu?
p pp b) r 2

2r2U, 1 4U,
r 5 0 = = —mri? = w, = —02. (3.8)
w; 2 mwg
and
U 1 20U,
20 fm22w2 = w, =k 220 (3.9)
Zp 2 m

We find trap frequencies w,=831 Hz and w,=177 kHz for our setup.

3.2 Errors from Thick Lenses

As described in the introduction of the thesis the optical lattice described
above will be scanned sideways i.e. perpendicular to the z-axis. This
means the beam will not always pass through the center of the lenses.
To minimize errors caused by this fact, we use achromatic lenses. In the
following, we will discuss the errors that we can expect from the thick lenses.

An achromatic lens corrects for effects called spherical aberration and
dispersion. Spherical aberration causes a not so well defined focal length
when hitting the lens at different heights. Dispersion is the phenomenon of
the phase velocity of a wave depending on its frequency. This means the
refractive index changes with the wavelength of the light shooting through
the material.

Dispersion can lead to chromatic aberration, which results in blurred

17



images. Chromatic aberration is the effect of a lens having different focal
distances for different wavelengths. The outcoming angle of the beam will
therefore be different for the different wavelengths.

Achromatic lenses are designed to correct for this effect and contain two
parts of different sorts of glass. The glass sorts and thicknesses are chosen,
such that the chromatic aberration effect disappears. We end up with
achromats that have the property of focussing light of different wavelength
in the same point. This is important because the lattice beams need to
be focussed at the same position as our probe beams which have different
wavelengths.

To investigate the errors we will consider a small part of the setup of
the experiment as illustrated in figure 3.3. The setup contains galvo 1 and
galvo 2 at a certain position, making respectively angle wijand ws. Secondly
it consists of two achromatic -also called thick- lenses. Thirdly there are
two important points: point F and point P. Point F is the focus of the
beam where the atoms will be moved in the direction perpendicular to the
optical axis. Point P is an interesting point since in the end the error will
be measured at this point. We will come back to this point soon.

W4 W2
Galvo 1 Galvo 2

Figure 8.1: The setup and beam path for which the deviations at
point F and P will be calculated. The thick lenses introduce an
error perpendicular to the optical axis along the path of the beam.

The first two achromats from figure 3.3 are identical. Due to the first
achromatic lens the light will not propagate perfectly parallel to the optical
axis. The small deviation angle from this fact results in deviations along the
ideal path at both point F and P. The deviation at points F and P depends
on the angle w; which will be between 0 and 4° in our experiment. The sec-

18



ond galvo is positioned at an angle wo, where in the ideal case holds wy = wy.

This deviation angle after the first achromat has two important con-

sequences; a different lattice spacing and a different overlap region of the
counter propagating beam. Since the light propagation distance to point F
will be larger with this angle, the lattice spacing of the standing wave will be
different as well. This modified lattice spacing is given by a = A/(2cos#6),
where 6 is the deviation angle.
The second same achromat will introduce the same deviation angle for
counter propagating beams, so a smaller overlapping region will be intro-
duced. An example of this overlap region at point F is shown in figure
3.2.

two beamsat pointF
for w=n/5
[mm

T 0050

> distance [mr
0.10 tmm

Figure 3.2: The overlap region of two overlapping beams for
zr=>5.6 mm and wy=m/5.

However, an optical lattice will only be created when the intensity of
the beam is high enough and the beams will overlap. The optical lattice
will therefore be restricted by the overlap region, which will be discussed in
subsection 3.2.2.

Now we will come back to the error at point P. The errors at point P
contain the errors from two different causes. The first errors are obtained by
the thick lenses in the setup, which are discussed above. The second cause
of errors at point P is the difference in angle between the first and second
galvo. This unsynchroniety in position will cause an angle with respect to
the optical axis at the second galvo and result in an error at point P.

One important difference between those errors is that the unsynchroniety
of the mirrors is undesired, while the thick lens error we do not want to
cancel. The error of the thick lens we do not want to cancel, because if we
do cancel it, the position of the second galvo should be changed and will
therefore change the path of a beam counter propagating. Changing the
back coming path automatically introduces a change in the overlap region
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and thus optical lattice, which we do not want. The unsynchroniety of the
galvos we want to cancel to obtain overlapping beams. This will in practice
be done in chapter 4.

This brings us back to a small problem at point P, where we will measure
both errors. In the end the measurement of the error at point P will be used
to cancel the error of the unsynchronized galvos. Now we still capture both
errors, so a tool is needed to distinguish both errors. This tool is found to
be the third (blue lens) lens in figure 3.3. The third lens captures only the
error from the unsynchronized galvos.

(VA f1 f:1

Figure 3.3: The beam path for which the deviations at point P will
be calculated. The galvos are unsynchronized since wy # wa. The
beam at F does not propagate parallel to the optical axis due to the
thick lenses. Both deviations will result in the error at point P.

By eliminating this error the situation will be approached by the setup
with only thin lenses. The use of thin lenses results in the outcoming beam
from the mirror propagating parallel to the optical axis. To summarize, this
third lens captures only the desired error and will therefore be really useful.
In section 3.3.2 the proof will be given of the third lens indeed doing what
it is supposed to do.

3.2.1 Method

The calculations were made with the following procedure. Each intersection
of the ray hitting a surface of figure 3.3 and 3.4, gives us a point in our
coordinate system. The x-coordinate gives the travel distance of the ray
and the y-coordinate is the distance to the optical axis. Due to the different
materials through which the ray propagates, the ray will refract. Those
points are the intersections for which the coordinates (x,y) were calculated
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by solving two equations. The first equation contains the y-coordinate,
which is a function of the height and the outcoming angle of the previous
coordinate. The second equation for the y-coordinate is a function of the
curvature of the (lens) surface. By solving those two equations for x and y,
the behaviour of the ray can be reconstructed.

Figure 8.4: The achromatic lens with the intersections of the linear
functions with the curvature functions of the surfaces of the lens.

To give an example, the first intersection is given by the linear function
y1 = r1 tanw. The formula for the curvature of the surface of the lens looks
as follows: y; = \/R2 — (R — x9 — x1)2. R is the radius of curvature of the
lens. Those two functions intersect at point 1 with intersection coordinate
(z1,91). All equations for the coordinates are given in Appendix C ”Thick
Lens”.

The same procedure is used to find the front focal distance of the
achromats. The values and equations are in the Appendix A ”find front
focus”.

3.2.2 Results

At first the errors at different points in the setup will be discussed. We will
continue with the results from the overlap region.

In figures 3.5 and 3.6 the errors from the thick lenses are given as a
function of the angle of the galvo. The errors are the outcoming angles in
radians with respect to (parallels of) the optical axis.
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Figure 3.5: The deviation angle after the first lens with respect to (a parallel
of ) the optical axis as a function of wi.

The first figure 3.5 gives the deviation angle after the first galvo and is
therefore a measure of the error at point F. The deviation angle at the mirror
is given in figure 3.6 and is a measure of the error that can be detected at
point P.

g2[mrad]
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0.1

Figure 3.6: The deviation angle at second galvo with respect to the
optical azxis as a function of w1 .

The overlap region of two beams with an angle respect to (a parallel of)
the optical axis caused by the thick lenses is given in figure 3.7.
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Figure 3.7: The overlap region of two overlapping beams for
Zr=5.6 mm and wg=4°.

The Rayleigh range of the optical lattice will be negligible smaller than
the thin lens optical lattice and is 5.6102m. Since the effect can be ne-
glected, we can get the original desired optical lattice. As the outcoming
angle of figure 3.5 is so small, cosd = 1 can also be approximated really
well. The lattice spacing of the standing wave will be A/2 and is therefore
not different from the lattice spacing with a thin lens.

Earlier we mentioned the third lens is placed to distinguish the unsyn-
chronized error from the tick lens error.
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Figure 3.8: The error difference in percentage of the thick and with
lens at the quadrant diode as a function of the angular difference
between the first and second galvo. The angle of the first galvo was
set at wy=4°.

In figure 3.8 two curves are shown as a function of the angle difference
between the two galvos. At first the error was calculated at the QD for
the situation where the two lenses are thick lenses. Then the error was
calculated for two thin lenses. By taking the percentual difference between
both, we got the curves from figure 3.8. Now we consider the two different
curves. The red curve represents the error difference with the thick third
lens positioned in the setup. The blue curve represents the situation without
this third thick lens.

From this figure we can conclude that with the third lens indeed there is
a smaller difference between thick and thin lenses. This means the thick lens
approaches the thin lens situation more accurately than without third lens.
In the situation of thin lenses the beam propagates parallel to the incoming
beam of the first galvo. To summarize, by capturing the error at the QD
with the third lens we obtain only the error of the unsynchronized galvos.

3.2.3 Thin lens approximation

The calculations are compared with the approximation of the thin lens in
figure 3.10. Especially at small w; both calculations correspond accurately.
In figure 3.10 b) only the intersection with the x-axis is different due to the
deviation of the thick lens at a non-zero outcoming angle.
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Figure 3.9: The deviations at the focus of the approximation of thin lens (purple)
and thick lens calculation a)with varying outcoming angle and an offset on the first
galvo of 1 mm. b) with varying offset at w=4°.

To conclude this section, we can neglect the consequences of the small
outcoming angle 6 on both the lattice spacing and the overlap region. This
means we can get the original desired optical lattice with a lattice spacing
A/2. The third lens can be used to approximate the errors with thin lenses,
such that we will be able to capture only the error from unsynchronized
glavo and mirror at point P.
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3.3 Control System

To compensate for the above problems in alignment and possible noise and
drift in the position at our scanning mirrors, we will implement a method to
actively lock the position of one beam of the standing wave to the position
of the other beam. We will now describe the control theory relevant to this
work[28]. First linear feedback system will be introduced. In section 3.5.2
we will give an example of a controller. Next the so-called transfer function
will give a mathematical representation of the system. In section 3.5.4 the
system will be presented graphically with a block diagram. Section 3.5.5
will discuss the properties of system, such as the gain, zeros and poles.
We will close this section with a so-called Nyquist Plot to represent the
stability of the system.

A control system is a set of devices that manages the regulation of other
devices. Because a linear feedback systems will be used, both linearity and
feedback will be explained in the following paragraphs.

Linearity A system is called linear when it satisfies the properties of
superpositions and homogeneity. The principle of superposition tells us the
response to the sum of two inputs, is the sum of the outputs corresponding
to the individual inputs. A system is called homogeneous when a scaled
input gives a similar scaled output.

Furthermore it should be mentioned that the system must be time-
invariant, which means that after a timeshift on the input, the output will
have the same timeshift.

Dynamics of a system can be represented by a differential equation. By
using state variables, which give information about the past and predict the
future, one can construct the state dynamics in state-space. The state-space
is the set of values the process can take on and shows the behavior of the
system. The state variables are collected in the state vector z and the out-
put vector y.

For example a spring-mass-damper system can be represented by the dif-
ferential equation m# = F(t) — bi: — kx, where F(t) is the time-dependent
exerted force, b the damping factor, k the spring constant and x the position
of mass m. To determine the state-space representation, the second order
differential equation must be reduced to a set of two first order differential
equations. The position and velocity of the mass are chosen to be the state
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variables [x] = [i] We then find

w-f-[% AE B0 o

y=1[1 0] m (3.11)

T

For a first order linear state-space system the state-space equation can
be generalized to

dx

—=A B

g oo (3.12)
y = Czx + Du,

where A, B, C and D are matrices and u is the added control vector. This
general description of a linear system is really useful for the transfer function
which will be introduced in section 3.5.3.

Feedback and Feedforward Feedback and feedforward terms will both
be used in the setup of the test experiment. Therefore a general definition
will be provided on such systems.

A feedback system is a process in which information about the past
influences the same phenomenon in the present. Feedback systems react
on disturbances by coupling the output signal back to the system. The
purpose of these systems is to keep the output close to the reference, also
called the setpoint.

Feedback systems can be split into two categories: positive and negative
feedback systems. Negative feedback systems have an output that goes in
opposite direction to the manipulated value and has a stabilizing effect.
Positive feedback however makes an increase in the input lead to an increase
in the output. This mechanism is not stable and thereby not very common.

Feedforward systems correct in advance for a disturbance that is pre-
dictable. When this external disturbance is measured before influencing the
system, a control signal can be implemented to counteract this. This control
signal is called the feedforward control signal ug.

3.3.1 PID-controller

One of the most commonly applied negative feedback systems is a PID-
controller[30].

A PID-controller is a controller device that consists of three different
parts; a proportional (P), an integrator (I) and a differential (D) part.
The purpose of the device is to minimize the error between the output of
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the system and a reference signal. The reference signal or setpoint is the
desired output signal of the system. With a PID-controller the output of
the system will reach the reference signal in steady-state.

The output of the controller u(t) is completely dependent on the input
of the signal e(t). The PID-controller can be described as a linear function
as with three components.

The relation between the input and output of an ideal PID-controller with
error feedback will therefore be

(1) =k +/<:-/t()d +/<:de—k:(+1/t()d + 1% (313)
u(t) = kpe 7,067'7' a—y = ke Tz‘oeTT ag)- (3

This equation contains the three different parts of the feedback mecha-
nism, corresponding to the so-called proportional, integrator and differential
parts. They all have their own gain constants respectively k,, k; and kgq.
The integral and differential gain constants k; and k; are often replaced by
time constant T; = k,/k; and Ty = kq/k,.

The proportional part produces an output value proportional to the
current error value. The constants of the system are analogue to constants
in other fields in physics as fluids dynamics or mechanics. When considering
for example a mechanical system, the proportional constant can be called
the spring constant k in the equations of motion F' = m& = kx, where F' is
the external force given to the system and z the position. A system with
only a proportional part will therefore always oscillate around the setpoint,
the higher the gain, the faster the oscillation frequency. In practice, as there
will always be an undesired phase lag in the system at high frequency, a
purely proportional system will oscillate when the gain is too high. Besides
the technical problem, a purely proportional controller is not practical as
the system will always oscillate with an amplitude proportional to the initial
error. One should therefore at least add some damping. The derivative
part produces an output value that is proportional to the time-derivative of
the error. It therefore predicts the behaviour of the system. The derivative
damps the possible overshoot and makes the system more stable. By
drawing an parallel with mechanical system, the derivative constant is
called damping factor b, which is proportional to the speed. When adding
this derivative factor to our proportional system, we find the equation of
motion F = kx — bi.

When such a system reaches its steady-state under the condition that
the set point changes as a function of time there will always remain an error.
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Figure 3.10: The output of a system with a PID-controller given an input
of unit step function. The arrow gives the direction of change of the output
when increasing the respectively proportional, integrator and derivative part
of the controller.

By adding an integrator part this steady-state error can be eliminated.
This integrative term accelerates movements of the process towards the
reference by looking at the position in the past. A high integrative term
will produce overshoot, because it corrects for errors from the past even
when the error is also corrected for.

Since the process is disturbed and introduces phaselags, this PID-
controller will be implemented to make the system reliable. In the following
section the concepts of the representation of the systems and their properties
are introduced to get more understanding of the controller and the relevant
system.

3.3.2 Transfer function

A transfer function provides a representation of all kinds of linear feedback
systems and describes its input/output relation. Mathematically the trans-
fer function is the ratio of the Laplace transformations of the output and
input under the assumption that all initial values are zero.

Laplace transform The Laplace transform £ is a transform of a function
f(t) from the time-domain to a function the frequency-domain. L(f(t)) is
the linear operator of function f(t) to a function F'(s) depending on complex
argument s. It is thus a generalization of the Fourier transform.

The Laplace transform is defined as

o0

F(s) = £UO)s) = [ e rieyat (3.14)
0

where s = ¢ + iw with ¢ and w being real numbers.

Another even faster way to get the transfer function is G(s) = C(sI —

A)"'B + D where A B,C and D are the matrices from Equation (3.12). We

will give an example by finding the transfer function of a PID-controller.
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The input and output of the controller is given by Equation (3.13). The
Laplace transform of the output becomes

> I d
F(s) = L(u(t))(s) = / e " (kp(e(t) + / e(t)dr + Td—e). (3.15)
0 Ti Jo dt
Solving this equation will give us F(s) = [k, + % + kgs]e(s) and therefore
results in

k;
C(s) =kp+ " + kgs, (3.16)

where C(s) is the transfer function of the PID-controller.

Thanks to the simple building of this transfer function, the transfer function
of a PI-controller can easily be found. Since this controller does not include
a derivative part, the transfer function changes to

k.
C(s)=kp+—, (3.17)
s

The building of a system’s transfer function from its components is
straightforward[28]. This is demonstrated by using a so-called block dia-

gram.

Block Diagram

The common way of representing the transfer functions of a system is a
block diagram as figure 4.10. The diagram consists of three different parts;
a process P, a controller C and a feedback —1. The process is pre-existing
and consists of all parts of the system that are not influenced by the system.
Different signals are shown with the following definitions: e is the error
signal, r the reference, u the control signal and y the output signal. Possible
disturbances to the process are represented in the figure as d.

r e u y
>~

-1

Figure 3.11: The Block diagram of a general system with feedback
and external disturbance d. It contains the unaffected process P and
controller C. Besides it consists of reset r, error signal e, control
signal w and output y.

This block diagram is an easy tool to find the total transfer function and

represent the total system|[28]. The feedback system with the controller and
process of figure 4.10 has transfer function
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P(c)C(s)

G(s) = TTPGICE (3.18)

3.3.3 Properties System

In this section we want to find a controller that compensates undesired
properties of the process. From the transfer function one can derive
important properties of the system. Three important features are the gain
and the locations of poles and zeros of the system. These properties give
the necessary insight in the stability of the system.

The gain of the system represents the relationship between the magni-
tude of the output and input. The zero frequency gain is given the magni-
tude of the transfer function at s=0. This gain represents the ratio of the
steady-state value of the output with respect to the input. Shortly this zero
frequency gain is

Yo
G0) === —, 3.19
(0) = 2= 2 (3.19)
where input stepfunction v is characterized by u = e with s=0. There
holds a,yo = b,ug with input « and output y and a,, and b,, are polynomials.

A transfer function can also be represented as
b
G(s) = ﬂ (3.20)

Several values of s give the transfer function (3.20) interesting outcomes.
Those points are the zeros and poles of the system[31].

The frequencies giving zero output at a non-zero input are called the
zeros of the system. For input u(t) = €% and a(s) # 0, the output will be
y = G(s)e®’, which means the pure exponential output is zero if b(s) = 0.
Shortly, the zeros can be found by taking the roots of b(s) of Equation (3.20).

The poles of the transfer function represent the frequencies where the
system has infinite gain. A system with infinite gain is impossible and
will result in instability. We recognize this point as being the resonant
frequencies of the system and must therefore be avoided. The infinite
gain is produced when denominator a(s) of Equation (3.20) is zero. When
defining point p as a pole, one finds that y(t) = e’ is a solution of the
differential equation with u=0.

A common representation of the properties of the transfer function is the
Bode plot.
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Bode Plot

The Bode plot is a graph of the transfer function of a system as a function
of the frequency. Usually the bode plot is split into a Bode magnitude
and the Bode phase plot. They express respectively the magnitude of the
frequency response gain and the frequency response phase shift.

The frequency response of a linear function can easily be found from the
transfer function with s = ‘w. The input will correspond to the complex
exponential

u(t) = €™t = coswt + isin wt. (3.21)
The output will result in

y(t) = Gliw)e™t = MeHwt+9)

) . (3.22)
= M cos (wt + ¢) + iM sin (wt + ¢),
where M and ¢ are the gain and the phase of G,
M =| G(iw) | (3.23a)
_ m(G(iw))
¢ = arctan Re(G(iw))” (3.23b)

The characteristics of the system are determined by the poles and zeros
and therefore characterize the plot as well. The corresponding frequencies
of those points are called frequency corners. A simple example will clarify
the Bode Plot in figure 3.12.

30/(30+s)

Phase (deg.)

Freq (Hz)

Figure 3.12: The Bode plot for function G(s)=a/(a+s) with a=30.
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This bode plot is describing the first order transfer function G(s) =
a/(a + s) where a = 30s~!. For this function the pole is positioned at s=-
30, which corresponds to a frequency of f = 4.8 Hz. This pole is recognizable
in the plot as a frequency corner.

The gain of this system is 1 until it reaches the frequency corner. At higher
frequencies the gain goes to zero. This is essentially a low pass filter of first
order.

Stability

One of the most important properties of a system is its stability. A linear
system is called asymptotically stable only if all components in the homo-
geneous response decay to zero as time increases. The system is unstable
when parts of the response diverge, which results in an oscillating output
with a constant or increasing amplitude. The output oscillates with con-
stant amplitude when it reaches the critical point. At this point the system
has a phase of 180°, which would result in a positive feedback. The system
is considered to be unstable when at the critical frequency the gain M > 1.
The Nyquist plot makes it easy to tell if a system is stable or not.

Nyquist Plot

A Nyquist plot represents the real part of the transfer functions on the
x-axis and the imaginary part on the y-axis as a function of w. The transfer
function of a open loop system with s = iw gives the Nyquist curve in
the diagram. The stability of the open loop system, which is the system
without feedback will be investigated. If the open loop system is stable, the
closed system will be stable as well.

Fach frequency w gives one point on the Nyquist plot and has a certain
phase and gain. The phase ¢ is represented by the angle with respect to
the zero frequency point. The gain M is the shortest distance between the
point and the origin. An example of a Nyquist plot can be found in figure
3.13.
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Figure 3.13: The Nyquist plot with the Nyquist curve of transfer
function G(s) = 30/(30 + s) for s=[-00,00].

Nyquist stability criterion The absolute stability of a system is formu-
lated by the following Nyquist stability criterion.

Any clockwise encirclements of the —1 point by the open loop frequency re-
sponse would indicate that the feedback control system would be destabilizing
if the loop were closed. One could summarize this, if the critical point is
lower than —1, the first order linear system is unstable. The critical point
corresponds to the point at critical frequency f. with critical gain k.. As the
phase of the system is shifted to 7, this point intersects with the negative x-
axis in the Nyquist plot. The —1 point is the pole of the closed loop system;
at this frequency the gain will go to infinity and must therefore be avoided.
An example of an unstable system is given in figure 3.14 with corresponding
Bode Plot 3.15.
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Figure 3.14: The Nyquist plot with the Nyquist curve of transfer
function G(s) = 30/(s+1)3 for s=[-00,00]. According to Nyquist’s
criterion this system is unstable, because it encircles the —1 point.
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Figure 3.15: The Bode plot of transfer function G(s) = 30/(s+1)3
for s=[-00,00].

Relative Stability Measures of the stability of the system are the gain
margin and the phase margin.

The gain margin is the inverse of the critical gain k., also called the ultimate
gain ky,(k, = k;% ). On the Nyquist plot it is the amount of frequency
response needed to move the critical point to the —1 point. This quantity
gives the range of gain in which one can vary the gain of the system to still
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keep a stable system. This quantity is given in dB.

Im

Figure 3.16: The Nyquist plot with the Nyquist curve of transfer
function G(s) = 5/(s + 1)3 for s=[0,00]. The —1 point is not
encircled, so the system is stable. The green line gives the gain
margin, while the phase margin is given by the red line.

The phase margin is the angle that the frequency response would have to
change to move the critical point to the —1 point. This quantity gives us the
range of phase in which we can play with the constants to hold the system
stable.
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Scanner

The purpose of the test experiment of the scanner is building a working
1D-scanner with one pair of galvos. This chapter discusses the properties
and problems around the two galvos.

The first problem will be discussed in section 4.2 and the second problem in
section 4.3. A final test experiment in section 4.4 will test our 1D-scanner.
First the galvo will be introduced with some general information.

4.1 The Galvo

Four Galvo Mirror Systems will eventually move the atoms in 2 dimensions.
FEach system consists of a mirror mounted on the axis of a motor and the
electronics to control the motor. The bandwidth of the system is kept
below 1kHz to avoid electromechanical resonant. The atoms will be moved
approximately in 0.1 s over a range of 1 cm which demands the galvo to
move with a frequency of approximately 10 Hz.

In figure 4.1a) the relation is shown between the angle of the galvo and the
resulting movement. This displacement is calculated at the focal distance
from the first achromat; exactly in between both achromatic lenses. Since
the lenses are achromats an error is introduced at this focal distance and
is given in figure 4.1b). This error comes from the deviation in outcoming
angle of the thick lens.
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Figure 4.1: a) The height of the beam with respect to the optical
axis at the focus of the first lens as a function of the angle of the
galvo. b)The error of the beam at the focus of the first achromat
as a function of the angle of the first galvo. The error is a result
of a small outcoming angle from the achromat with respect to the
parallel of the optical axis.

The electronics of this galvo consist of a mirror assembly and a driver

card. The mirror assembly is composed of the motor and a protected silver-
coated mirror.
The driver card controls the motor of the mirror and has a diagnostic ter-
minal output that can return certain quantities from the motor. The test
experiment uses the position, the positional error and the motor coil termi-
nal of the galvo. Those terminals are connected to a National Instrument
Card (USB-6211) that can read those different quantities and other outputs
from devices such as a quadrant diode (QD).

The NI-card is connected to a laptop, on which a python script runs
with a few varying parameters. Those parameters are the driving function,
frequency, amplitude, number of oscillations, samples per oscillation and the
offset.

4.1.1 The Servo Driver Board

The Servo Driver Board Schematic Diagram in figure 4.2 shows the feedback
mechanism of the galvo.

This servo is a class 0 servo, where the 0 indicates the number of
integrators. The lack of integrators makes this system a PD-controller,
but an extra differentiator part was added, which will be explained in the
following section.
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Figure 4.2: The Servo Driver Board Diagram with the PD-
controller in the red box. The blue box consists of the parts to
get the second derivative part for compensating the lag.

The diagram of figure 4.2 shows the control components.

Set point The position sensing circuit calculates the position of the
galvo. To calculate the speed, the differentiator takes the derivative of the
position. This speed dams the overshoot of the output signal and could
therefore be called the D-part of the controller.

The difference amplifier calculates the error from the set point and position.
This is the proportional part of the PD-controller. The summing amplifier
takes care of the correcting signal of the PD-controller reaching the setpoint.

Lag The mirror of the galvo is positioned by a motor that is managed
by a coil current. This current induces a torque and thus an acceleration.
The drive electronics however are controlled by the coil voltage. Due to
the inductive nature of the motor a lag between the voltage and current
will occur. The inductive reactance of the motor is caused by the changing
magnetic field which in turn is caused by changing current. This lagging
causes an overshoot of the position of the galvo.

In other words, when the controller reaches the setpoint, it takes time before
the current will react, which causes an overshoot in position. This overshoot
needs to be damped by an extra derivative term.

Fortunately the driver board consists of another part that will take care of
this lag. The current sensor in the diagram measures the acceleration of the
motor. The integrator integrates the acceleration to the speed which is fed
into the controller to damp the overshoot.

The lagging of the current and voltages causes a decrease in power as well,
which is compensated by the power amplifier.
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Resonance At last, this system stores and transfers energy which results
in resonance at a certain frequency. To avoid this resonant frequency
the notch filter is installed. The Notch filter is a band-stop filter with
a narrow stop band. The remaining part that needs some explanation
is a jumper, which is a short length conductor that closes an electrical circuit.

4.2 Servobump

To summarize, the lagging of the current with respect to the voltage
discussed in the previous section, causes a position overshoot. Oscillations
are damped at small values of this lagging. As we saw before, if the lag
is more than 180°, the systems’ output starts to oscillate with increasing
amplitude.

When a beam is reflected by a stationary galvo on the QD, the position

of the beam is measured. The position of the beam on the QD should thus
not move, any motion is caused by noise in the angle of the galvo. When
converting this noise into a fourier noise spectrum, a so-called servobump
becomes visible around 1.5 kHz.
The high noise amplitudes of the position of the galvo will result in a high
frequency oscillating optical trap as well. As this is around twice the trap
frequency of the atoms in the scanner this can cause rapid heating. This
servobump was observed in previous tests[24] and is our first concern of
working with galvos.

By tuning the internal parameters of the controller of the galvos we will
minimize this servobump.
From previous sections we conclude that if we want the overshoot to disap-
pear, there are two things we can adjust. First the proportional part can be
decreased to make the galvo slower. By making the galvo slower, it will be
easier for the motor to follow the movement so the lag will be smaller. The
decrease in speed will results in a larger reaction time for the system, which
will decrease the overshoot. Secondly the derivative part can be increased to
make the dampening factor higher. The tuning procedure will be explained
in the following section.

4.2.1 Setup and Method

To tune the galvos and minimize the servobump we used the setup of figure
4.3.

The setup consists of several parts; a QD, an achromatic lens and a
galvo, that are aligned as in Appendix B ’aligning setup’. The quadrant
diode is connected to the NI-card as described before. To get rid of the
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Figure 4.3: The top view of the setup of tuning galvo.

servo bump, the internal PD-controller of the galvo is adjusted with different
potentiometers on the board. One of the difficult things of the knobs is that
they are really closely related, which makes it impossible to adjust only one
of the parameters.

4.2.2 Results

After making the system slower and reducing the overshoot, the outputs of
the three terminals changed significantly. In figure 4.4,4.5, 4.6 and 4.7 the
different quantities of the galvos are presented before and after tuning.
The motor coil current is decreased after tuning, since the acceleration of the
mirror is smaller when producing a slower movement. In the position mea-
surement we observe an increasing settling time and no overshoot, thanks
to the lower proportional constant and the higher damping factor. Since the
system becomes slower, the position error has a higher settling time.

0.5
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0.022 0.024 0.026 0.028 0.030 0.032

0.022 0.024 0.026 0.028 0.030
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Figure 4.4: The motor coil cur- Figure 4.5: The motor coil cur-
rent before tuning rent after tuning
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Figure 4.6: Position before and Figure 4.7: Position error before

after (thick line) tuning and after(thick line) tuning

In figure 4.8 the fourier spectrum of the position is shown before and
after tuning the galvo.
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Figure 4.8: The noise spectrum of Galvo 2 before and after tuning

First the ratio between the top of the bumps and the band becomes
smaller and the spectrum looks a lot smoother. Secondly the low frequency
oscillations became smaller after tuning except from the zero point. On the
wings the values are a bit higher, but overall we can see the noise level has
been decreased. This means we reached the goal of decreasing the servo
bump by a factor of around 5.

To conclude, by tuning the galvos the noise fluctuates less around 1.5

kHz, so the servo bump became flatter. At the wings, the oscillations look
a bit higher than before tuning.
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4.3 Pl-controller

The next step to construct a well working scanner is installing a PI-controller
in our system.

4.3.1 Setup and System

Let us introduce the system we will use to actually move the beam at the
focus in one dimension. The test setup contains two galvos and three achro-
mats, as in section 3.4. The setup of figure 4.9 differs from figure 3.3 by
the starting point and the mirror which are replaced by galvos. The QD
replaces point P and measures the error signal.

outcoupler

Galvo

Pl-controller

Figure 4.9: The top view of the setup eliminating the error at the
@D. It consists of the outcoupler with an outcoming beam, three
(two red and one blue) achromats, the two galvos, the Quadrant
Diode and the Pl-controller. The controller is connected electron-
ically to both galvos and the @QD.

In the experiment the two beams must overlap to create a standing
wave and trap the atoms. The beams must remain perfectly overlapped
also when the galvos are scanning. The deviation at the position of the QD
is a measure of this overlap. Since we do not want to change the overlap
region between the two lenses, only the error from the unsynchronized
galvos should be minimized at the QD. Remind, the third lens takes care
of taking only the desired error and the PI-controller minimizes this error.
The Pl-controller will position the second galvo at the same angle as the
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first galvo, where w1 = wo. Ideally the beam propagating after hitting the
second galvo will propagate parallel to the beam coming from the outcoupler
and will cause no error at the QD. However we use achromats and have
alignment errors, which result in errors at the QD. The Pl-controller will
take care of the error from unsynchronized galvos at the QD. The derivative
part of the PID-controller is not necessary since the controller is adequate
for a first order system|[28].

The Pl-controller consists of two inputs and one output. One input is
the error signal from the QD which will be minimized. The second input is
the feed forward term, which is the driving signal of the first galvo. The
output of the controller is the driving signal of the second galvo. The
driving signals will move the galvos to the desired angles respectively w;
and wa.

By changing the angle of the first galvo, the beam will move a certain
distance at the focus of the achromats. A reminder, this is the distance the
atoms will move and is discussed in section 4.1. Finally the PI-controller
must be stable which requires insights in the gain constants of the controller.

Block diagram We will fit our setup into the general block diagram
of figure 4.10. The pre-existing process P(s) contains the QD and the
second galvo and are uneffected by changes in this system. The C(s) is
the controller in the system, which is in our case the Pl-controller. The
reference signal r is always set to zero, since the errorsignal should approach
zero. The system symmetry therefore results in e = —y, with y being the
output signal.

The driving signal of the first galvo is a known external disturbance for
which should be corrected. Since this disturbance is know, it can be added
to the system as a feedforward term wuyy. The feedforward term is always
added to the control signal u to correct before the disturbance is added to
the process..

Since we want to obtain the general block diagram, the disturbance term

is made as a function of the feed forward term. Actually the driving signal
of the first galvo is a real big (known) disturbance, so this is justified.
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Figure 4.10: The Block diagram of a general system with feedback,
feedforward term ugy and external disturbance d. It contains the
unaffected process P and controller C. Besides it consists of reset
r, error signal e, control signal u and output y.
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d(uff)
-1

Figure 4.11: The block diagram of the system with a process, a
controller and a disturbance which is caused by the first galvo. By
using feed forward, the process already takes care of this disturbance
before it occurs. The feedback loop gives the output back to the input
to eliminate the error.

The transfer function of this linear feedback system can thus be formed
by the general transfer function of the block diagram G(s) = %.
In the following section we will discuss the transfer function of the process
in more detail. The transfer function of controller (3.17) will give the total

system transfer function

P(s)(ky + ki/s)
) = TPy + /o)

From the Nyquist criterion the condition for a stable system is known
G(iwe)o > —1. When considering the system at critical frequency, it is
open looped and only has the proportional part of the controller. An
open loop function does not contain feedback, which results in a transfer
function given by G(iw:), = P(iw.)C(iw.) = Mpe? Mc, where Mp and
Mo are respectively the gains of the process and the controller. 6 is
the phase of the process and will be discussed in more detail in the

(4.1)
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following section. At the critical frequency the phase difference between
both components is w. At critical frequency only the proportional part
of the controller is used, which is independent of the frequency. This re-
sults in the open loop transfer function at critical frequency G(iw.) = —kckp.

Concluding, if we want the system to be stable, one should satisfy
ky < .

4.3.2 Determining Constants

Before fabricating the PI-controller, the resistance range of the potentiome-
ters on the board of the controller should be estimated.

Figure 4.12 shows the schematic technical display of the PI-controller,
which consists of two resistors Ry and Ry and a capacitor Cy. Both resistors
are related to both the proportional part and the integrator part, while the
capacitor contributes to only the integrative part.

o
=3
>3
i e

[

u

o, O

Figure 4.12: The schematic display of a Pl-controller containing
an optical amplifier, two resistors and a capacitor. The input is
given by e and the controller output by u.

To find the relation between the gain constants and the resistors we will
look at the transfer functions of the system. The transfer function of the
controller as a function of the gain constants is given in Equation (3.17).
The transfer function of the controller in figure 4.12 can also be given by
the ratio of impedance _Z—?, where z1 = HRTlRl and zo = Ry + C%S Those
equations give the transfer function of Cs = % + SCQIRI which should be
equal to the transfer function (3.17). This results in the relations of the gain

constants and the resistors,

ky = Ra/ Ry, (4.22)
I (4.2b)
=GR '
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To summarize, the equations will give us the ranges of the resistors in
the controller. Therefore we first need values for the gain constants.

Ziegler-Nichols’ tuning rules The Ziegler-Nichols’ tuning rules give
those estimation values for the gain constants of PI(D)-controllers. It
already includes the restrictions of the system to become stable. Thereby
it matches the system response at zero and critical frequencies and
the rest is fixed in between. With a simple experiment on the system to-
gether with the tuning rule, one can derive the parameters for the controller.

The tuning rules are based on assumptions that the process is a first
order linear system. The process should be stable, non-oscillatory and ap-
proximated by a first-order lag characteristic. The first order lag character-
istic means that the unit step response resembles an s-shaped curve without
overshoot; the step response has a slope and approaches asymptotically the
reference value.

Earlier the transfer function of the process was simplified to Me? with a
gain and a phase, now the actual standard form will be presented. The
transfer function of a first order process has the form

—sTh
P(s) = £7
1+ ST2
where K is defined as the zero frequency gain, 71 and T as timeconstants.
T, contains the phase lag of the system till 7/2, while the remaining lag is
represented by the exponent with 77. They are defined by the fact that at
critical frequency the phase is 7. T} = (7 — @) /we, Th = w%\/KQk?J —1and
¢ = arctanw:I5. Both constants can be obtained from the measurements
of the process.

(4.3)

To be able to analyse the complete system two measurements were
done to find the critical frequency and the zero frequency gain. We found a
critical frequency of f. = 1600H z. At this frequency the critical constant is
56 s~1. Zero frequency gain K = 100 is approximated by the gain at low
frequency.

The Ziegler-Nichols’ tuning rules in the frequency response method ap-
plies a unit step input to the process and records the response. We used the
more empirically improved tuning rules|28]

0.07
k, = 0.22k, — —— 4.4

and 0.62
k; = 0.16k.f. + 'Kfc. (4.5)
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With the improved tuning equations the proportional constant has been
calculated to be around k,=0.0043 s~ and the integration constant around
k;=6.5 s~!. This results in a value range for resistor R; from 0-200 k) and
Ry from 0-5 k2. Those potentiometers were installed in the system to get
a working PI-controller.

Implementing the potentiometers gives us the technical design of the
PI-controller, which is shown in Appendix D ’Design Pl-controller’.
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4.3.3 Optimization

To optimize the PI-controller we will use the ’compensating’ setup of figure
4.9.
The testing and tuning is done with a driving signal of

x(t) = g + gsin 2rft—m/2), (4.6)

where A is the maximum distance the beam moves at the focus, f the
frequency and x the position at the focus perpendicular to the optical axis
as a function of time.

On the board represented in figure D.1 different pods were installed to
optimize the Pl-controller. The parameters of the pods are called, the tau,
the HFgain and the gain. The tau tunes the first resistor (R1 of figure
D.1), while the H Fgain adjusts the second resistor (R2 of figure D.1). The
gain potentiometer manipulates the constant amplification of the incoming
signal, which should be adjusted such that the reference and output signals
are of the same magnitude. There is also a switch to turn off the integrator
part of the Pl-controller. The next step is to adjust the parameters to get
a minimal oscillation at the QD.

4.3.4 Results

After optimizing, the PI-controller the error signal with and without PI-
controller was measured. Without the PI-controller the second galvo is
controlled purely by the feed forward and thus receives the same driving
signal as the first galvo. Figure 4.13 represents the output of the PI-loop
and the driving signal of the first galvo. As we expect the signals look very
similar.
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signal at F (mm)

— drivingsignal

— outputsignal

~bo 0.5 10 15 2.0 25 3.0

Figure 4.13: Both the driving signal of the first galvo and the output
signal of the PI-controller (which will be the drivingsignal of the
second galvo) driven with a translation distance A of 7.5 mm at
the focus of the first lens.

In figure 4.14 and 4.15 the error signal is shown with and without the
PI-controller for different amplitudes. By connecting the PI-controller the
error signal on the QD was decreased substantially.

For a 1.1 mm translation of the beam at the focus the error amplitude was
lowered from 20 pm to a RMS-value of the noise signal of 0.93 pm; the
oscillation becomes invisible.

For a 7.5 mm translation the error amplitude was flattened at 45 pym. This
is because the QD saturates for those large errors. After switching on the
PI-controller, the RMS-value becomes 0.91 pum, when subtracting the oscil-
lation.

50



Without PI [pm]

90 . ; ‘ .

80

70

60 Jull I
50 , ‘

40

30 ‘ _ | | ’
20 1 ‘

With PT [pm|

10} 3
foo 0.05 0.10 0.15 0.20 0.25 030"
t [s]

Figure 4.15: The Error signal with (black) and without (green) the
PI-controller with a translation distance of 7.5mm at the focus.
The blue line gives the fit of the signal with PI-controller and has
an amplitude of 0.67 um. The RMS-value is 0.92 pm.
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4.14: The error signal with and without the PI-controller
translation distance of 1.1 mm. With PI the RMS-value

becomes 0.93 pm.

Thanks to the switch, we are able to compare the results with and with-
out the integrator. One of these plots is represented in figure 4.16 from

o1



which we can conclude that a the proportional part decreased the error with
a factor of two, while the remaining error was minimized by the integrator.
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Figure 4.16: The error signal without PI-controller and without
the integrator of the controller with a translation distance of 1.1
mm.

After these measurements, the proportional and integration constants
are calculated and measured to compare with the designing values.
To get the proportional constant, the integration part of the PI-controller
was switched off. The ratio of the driving signal and the output signal
of the controller without the integrator, gave the right proportional gain
constant. The integration gain constant was harder to get, because one
can’t switch off the proportional part of the controller. By measuring the
voltages at TP5 and R24 of figure D.1 and using Ohm’s law, the values of
the resistors were calculated.

The calculated values of the gain constants are k,=0.0012 s~!(vs. design
0.0043 s71) and k;=7.9 s~!(vs. design 6.5 s71).
The values of the gain constants are in the same order as the design values
and within the range of the resistor, which means the PI-controller has been
designed well. The parameters of the transfer function of the process are
T1=2.2 107*s and Th=1.5 107%s and K = 100 s~! in Equation (4.3). The
transfer function of the process becomes

1006—2.210748
T 1-1510 %
The critical gain k. is 56 s~! and the gain margin k, from relation

P(s) (4.7)
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ky = k% becomes 0.018 s~!. To recall this gain margin gives the amount of
gain that could be adjusted to the system until it gets unstable.
k, is lower than k,, thus we can confirm we have a stable system.

Finally we checked the noise spectra with and without the controller.
From figure 4.17 we conclude the controller has no influence on the noise
spectrum, which is logical given the small bandwidth of the controller.
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Figure 4.17: The noise position spectrum with and without the PI-
controller connected to the setup.

4.4 Scanner test

This 1D-scanner has been tested by coupling light that is reflected over both
galvos back into a single mode fiber. A working feedback system should
remain coupled in the fiber even when the mirrors are scanning.

4.4.1 Setup

The setup of this final test experiment looks similar to the setup of the PI-
controller discussed in section 4.2. A beam pick-off and incoupler have been
added. The QD has been replaced by an incoupler and after the outcoupler
a powermeter is installed to measure the power of the light coupled into the
second fiber. The amount of light coupled into the fiber is dependent on the
position and angle of the incoming light beam. The setup is shown in figure
4.18. The powermeter is connected to the NI-card and the laptop to analyse
the obtained results. Two mirrors are added to walk the beam into the fiber.
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Figure 4.18: The powermeter setup for the last check of the scan-
ner: if it possible to couple the light into the fiber while the galvos
are scanning. Same distances are chosen as in the setup of sec-
tion 4.2, the incoupler is placed at a distance of 284 mm from the
second galvo.

The Pl-controller uses the error signal of the QD after a beam pick-off.
Also a neutral density-filter is placed to obtain the correct intensity of light
at the QD.

Adding the controller in the setup results in the second galvo getting the
same angle as the first galvo; w; = ws. This setup results in a minimum error
at the QD without changing the overlap region when introducing a counter
propagating beam. Remember, when w; # wy a counter propagating beam
would have another path than the first beam. This would influence the
overlap region of both beams at the focus of lenses, which we do not want.
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4.4.2 Method

The first galvo is moved with the shifted sine function of g + %sin 27 ft.
To recall, A is the total deviation at the focus between both lenses. The
powermeter gives the amount of light that is coupled into the second fiber.
First we assume all light coming out from the fiber will be measured by the
power meter. Secondly we assume the light intensity at the powermeter is
linear dependent on the error at the incoupler.

The setup was optimized by changing the position and lenses and tuning
the Pl-controller.

The Pl-controller was tuned by minimizing the error signal the QD and
maximizing the parameter. By changing the tau and H F-gain knobs of
the PI-controller, the proportional and integrative constants were changed.

4.4.3 Results

After optimizing we measured the error signal at the QD and the power
at the powermeter. The measurements will be discussed in the following
sections, after which the experiments will be concluded in chapter 5.

Since we optimized the Pl-controller in the newest situation, the gain con-
stants of the controller changed as well to £,=0.0021 and k;=22.6. Those
values will result in the final system represented in the last paragraph.

Error signal

We measured error signals of figure 4.19, with and without the P(I)-
controller with a translation distance of 7.5 mm at the focus.
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Figure 4.19: The errorsignal at the QD with and without P(I)-
controller. The translation distance A at the focus is 7.5 mm with

a frequency of 10 Hz. With Pl-controller the RMS-value becomes
3.68 pm.

The error signal with the PI-controller is in the same order of magnitude
as the error signal without any oscillations of the galvos, which can be seen
in figure 4.20. The RMS-value of the noise is 3.7 pm with respect to the 1.6
pm of the noise with a flat signal. Concluding, the PI-controller accurately
decreases the error at the QD down to the noise level.
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Figure 4.20: The errorsignal at the QD with PI with a driving
function of zero or a sine function with translation distance of 7.5
mm at the focus with a frequency of 10 Hz. The RMS-value of the
flat and sine signal are respectively 1.55 um and 3.68 pm.

In figure 4.21 the error signal in the y-direction is shown for the three
conditions.
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Figure 4.21: The errorsignal at the QD in y-direction for the three
conditions with and without P(I)-controller. The RMS-value of the
error with PI-controller is 29.2 um.
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In this figure there is barely a difference between the error with and
without the controller. This shows that the PI-controller has, as expected
no influence on the y-oscillations.

Since the y-oscillations have the same frequency as the galvo, the origin of
this y-oscillation seems to be the galvo. Most probably the rotating axis of
the galvos are not standing perfectly perpendicular to the plane which the
beam is reflected on then. A slight angle of the galvo will therefore result
in a visible offset in the y-direction at large distances.

Since the errors at the QD in x- and y- direction can be calculated from
the calculation of section 3.4, the error at the incoupler can be estimated
as well and is represented in table 4.1.

Angle galvos [°] | translation | Direction | Error RMS Error RMS
distance [mm] at QD [pm] | at incoupler [pm]

2.8 7.5

X 3.68 15.36

y 29.3 47.40
1.4 3.75

X 3.45 6.77

y 24.43 39.52
0.4 1.1

X 2.86 4.66

y 13.67 22.12

Table 4.1: The errors at the incoupler according to the thick lens calculations by
using the detected errors at the QD. Actually only the case of 0.4 degrees is reliable,
since at the QD this errorsignal was the only signal not to be saturated.

The RMS values of the errors at the QD are translated back to the
outcoming angle 6 of the second galvo. The x- and y-directed errors differ
at one point; the galvo does not rotate in the same plane as the y-directed
errors. Therefore we assume the beam hits the second galvo at the center for
errors in the y-direction. The point where the beam hits the second galvo in
the x-direction is calculated by taking the corresponding angles of the two
galvos (first column of table 4.1). Since we use the PI-controller those angles
are identical for the two galvos. The total error in the x-direction consists of
the error from the outcoming angle 6 and the distance from where the beam
hits the galvo to the center of the galvo.Since both the outcoming angle as
this distance have big values in the case of an angel of 2.8 degrees of the
galvos, the total error at the incoupler will be a lot higher than the errors
at smaller angles.

Actually only the case of 0.4 degrees is reliable since it is the only case where
the error signal was not saturated. This will result in even higher values for
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larger angles and probably more similar ratios between x- and y- errors to
the case of 0.4 degrees. From the table we can conclude the y-directed errors
dominate the total error at the incoupler with a factor around 5.

Powermeter signal

The signal from the powermeter is shown as a function of time in figure
4.23, 4.22 and 4.24.

As a result of the (calculated) errors in x- and y- direction at the incoupler,
the power fluctuates as a function of time.
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Figure 4.22: The power as a function of time with a translation
distance of 7.50 mm and a frequency of 10 Hz for three different
conditions.

From the figures a mean, an amplitude and a phase lag (when comparing
it with the condition without controller) are found. Those parameters will
be discussed after some explanation.

Since the drive function starts at zero, the mean value of the power is
around A/2. The amplitude of the output oscillation is dependent on the
total errors at the incoupler. From the previous section we know those
errors are dominated by errors in the y-direction.

At t=0 s of figure 4.22 the amount of incoupled light is maximum, as the
alignment was done with zero input signal to both galvos.

The last parameter is the phase lag, which depends on the reaction time
of the Pl-controller. The parameters are given in table 4.2 and will be
discussed in the following parts.

99



Mean(V) Amplitude(V) Phase(rad)

Drive function || with P | with PI || with P | with PI || with P | with PI
A7515 0.20 0.23 0.17 0.20 0.10 0.0063
A7.5 110 0.19 0.21 0.16 0.17 0.18 0.47

A3.75 120 0.22 0.27 0.10 0.10 0.28 0.72

Table 4.2: Values from data of the powermeter at different conditions, where A is
the amplitudes and f the frequency.
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Figure 4.23: The power as a function of time with translation dis-
tance at the focus A of 3.75 mm and a frequency of 20 Hz for three
different conditions.

In the three graphs of figures 4.22, 4.23 and 4.24, the error in the y-
directions is represented, since this error dominates the signal. When look-
ing at the values of the maxima of, those values without Pl-controller are
unstable. Since the maximum values are stable with the PI-controller, the
system with this device is ameliorated.

The mean increases at the condition with Pl-controller. As expected
the PI-controller decreases the outcoming angle (with respect to the optical
axis) of the second galvo by eliminating the error from the unsynchronized
galvos, which results in a smaller error at the incoupler and thus a higher
mean value.

The lower amplitude case of figure 4.23 has a higher value of the mean as
well, because of the smaller amplitude from the galvos.
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Figure 4.24: The power signal measured at the power meter. The
translation distance is kept the same as in figure 4.22: 7.5 mm

at the focus and the frequency is 5 Hz for three conditions. The
parameter reaches almost 1.

The amplitude at a translation of 7.5 mm and a frequency of 5 Hz of fig-
ure 4.24 almost doubles with the PI-controller. Since the angle of the galvo
is twice as big, we indeed expect the error amplitude to be two times bigger.
When nevertheless looking at the same amplitude at higher frequency (f=
10Hz), the output seems to have a harder time in following the drivingsignal.

During the optimization of the PI-controller we wanted the ratio of the
first two maxima to increase to reach a maximum beam incoupling. At low
frequency (figure 4.24) when the Pl-controller is added, the output follows
the input closely thus the ratio goes to 1. Adding the controller increases

the ratio in all cases. The higher the frequency, the more the system damps
the output.

At last the phase lag between the outputs with respect to the case
without controller is discussed. As we expect, adding the P(I)-controller
increases the lagging. An increase in lagging is found at increased frequency.
At high frequency the lag in the controller becomes higher, so automatically
lags the output of the system.

The fourier transform of the noise in this system is shown in figure

4.26. At 1.5 kHz the position error increases, since the controller amplifies
noise. At lower frequency the noiselevel is lower than without the controller.
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Figure 4.25: The fourier spec- Figure 4.26: The fourier spec-
trum of the noise before and after trum of the noise with and with-
tuning the servobump. out the PI-controller.

System representation

This last section contains the representation of the final system.

Figure 4.28 and 4.27 show the open loop bode plots of the system respec-
tively without and with integrator. In the curves of all four plots we observe
a nod. This nod corresponds as expected to the frequency corner at the crit-
ical point at f=1600Hz. The curve drop results in a highly phased output
with zero gain, which can be interpreted as a low-pass filter system. The
difference between both plots is resulted by the integrator of the controller.

This integrator introduces an extra factor of 7%232“ in the magnitude
plot and arctanw/k; —90° in the phase. For small frequencies this integrator
results in a phase of a constant 90° and an extra gain magnitude term which
results in the linear curve in logscale. Thanks to the decay term in the pro-
cess transfer function, the phase goes to minus infinity and the magnitude
to zero at high frequency.
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_s Bode Plot of system
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Figure 4.27: Bode Plot of the open loop system without integrator.
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Figure 4.28: Bode Plot of the open loop system with integrator.

Figure 4.29 shows the Nyquist plots of our open loop system consisting
only the proportional part of the controller. The curve is traversing clock-
wise. The crossing of the curve with the negative real axis represents the
critical point and corresponds to the value of the Bode Plot of this open
loop function at the critical frequency.
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Nyquist Plot
90°

Figure 4.29: Nyquist Plot of the open loop system only with the
proportional part of the controller with frequencies [—oco, 00]. Since
the Nyquist curve does mot encircle the —1 point, this system is
stable. In red the positive frequencies are given, while the negative
frequencies are shown in blue.

Figure 4.30 represents the Nyquist plot of the system with the integrator.
Since the integrator introduces a pole at s=0, the Nyquist plot blows up at
small frequencies. The lowest frequency value is chosen to be 250 Hz to get
the right scale to show the encirclements of the curve. The dotted green line
connects the negative and positive frequencies with a circle with a radius of
infinity. Since the Nyquist curve does not encircle the —1point, this system
is stable.

Nyquist Plot
yq o

Figure 4.30: Nyquist Plot of the open loop system with the in-
tegrator for positive frequencies [250, 10°Hz] in red and negative
frequencies [-10°, -250Hz] in blue. This system is stable is well.
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Conclusion

In this thesis the setup of a 1D-scanner has been tested. The two problems
that arose during testing were solved to meet the requirements of the
device. First of all the servobump needed to decrease to minimize heating
of the optical trap. Secondly the two counter propagating beams had to
overlap along the whole path.

The servobump of the galvos has been tuned by its separate internal
controllers. The bump decreased significantly in the noise spectrum. It
would be interesting to investigate how much the trap would heat when
using galvos instead of mirrors. One could compare those results with the
same experiment with not-tuned galvos to quantify the improvement in
heating as a result of the tuning.

Secondly the overlap of the beams along the path was investigated.
Consequently the achromatic lenses and the errors due to these lenses have
been studied.

The achromatic lens introduces a deviation angle when a light ray goes
trough this lens. However the overlap region of both counter propagating
light beams is not influenced significantly by this introduced angle. This
means it is still possible to construct the desired conveyor with those
achromats.

The errors introduced by the achromatic lenses and misalignments are
minimized by introducing a controller. By canceling the error of the beam
at one defined point (at the QD), the overlap is maximized along the path
of the beam. A Pl-controller connected to the setup of the 1D-scanner was
successfully designed and installed. The controller is able to reduce the
error signal at the QD to noise level.

Finally the beam was coupled back into a fiber after which the intensity of
the beam was measured with a powermeter. Even when oscillating both
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galvos with the required angles of the experiment the powersignal was
non-zero. This means it is possible to overlap beams when adding another
counter propagating beam and moving both galvos.

The errors at a point after the two galvos and thus at the powermeter are
found to be dominated by y-directed errors. Fortunately the scanner will be
extended to two dimensions by adding two galvos. The errors in y-direction
will theoretically be compensated by the other pair of galvos connected to
a second Pl-controller. This remains to be seen in further studies of the
scanner.

In the future this 1D-scanner will be expanded to the designed 2D-

scanner. It would be interesting to review the deviation in the y-direction
of that system to examine the compensation of the deviation. However,
unfortunately it seems not possible to measure the errors of the scanning
movement at the focus.
Besides, the system can probably still be optimized by tuning the internal
controllers of the galvos when connected to this system. When this 2D-
scanner is indeed able to scan in two directions, we will implement it into
the experiment. Then, the atoms will be moved above the nanostructure for
the investigation on the interaction between light and matter.
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Front Focus

A.1 Focal Lengths

The achromatic lenses got three different focal lengths. A front focal, back
focal and system focal distance. Those focal lengths have the following
definitions. The back focal length is the length from the back surface of the
lens till the focus, see figure A.1. The front focal length is the distance from
the front surface to the point where the rays are focused.

Figure A.1: An achromatic lens with its back and front focal length.

From the Thorlabs website one can get the back focal length, while the
front focus has to be calculated. This was done by solving a few equations
on ray optics one can find the back focal length of the lens. One assumption
made is that if an parallel ray is hitting the back of the lens, it will focus in
the back focal point.
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Finding Front Focus We start with the used Equations (A.1) and (A.2)
to find the front focal length.

a = arcsin R%
B = arcsin %’2—22 (A.1)
v = arcsin £
0i1 = arcsin'Ri
0,1 = arcsin S”;—l“
O =p+0—0in (A.2)
0,2 = arcsinsinf;; Z—f
bis =7+pB—0r2
0,3 = arcsinsinf;sns

By solving the equations mentioned below one gets the coordinates at
which the ray of light hits the surfaces of the different parts in the achromatic
lens, see figure A.2. All those equations are depended of the incoming height
of the light ray.

a)

Figure A.2: Achromatic lens with a) coordinates and b) angles.
1. = 91'1, 2. = 97,1, 3. = 01‘2, 4. = 0r2; 5. = 02'3, 6. = erg, a =«
b=p ; C=7

o = Ry — R} — 2 (A.3)

Yo =y — (v — x1) tan 0,1 — 0y (A.4a)
= \/R% — (Ry — z2 + te1)? (A.4b)
ys = y2 — (v3 — z2) tanbyo — (A.5a)
= \/R% — (Ry + 23 — t.)? (A.5b)
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ys = y3 — (x4 — x3) tanb,g — v (A.6a)
—0 (A.6b)

FF = (t — x3 + x4) (A.7)

By solving the equations for the coordinates, one finally find the values
for the front focus. Depending on the incoming beam height, the front focus
is still a bit different, although the value converges to a certain value. A
value of 150.49 mm was found for the front focus of the AC-508-150B lens.
For the AC254-200B the front focus was 175.78 mm.
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Aligning setup

For the final setup to work as proper as possible, different setups and pro-
cedures were used.

outcoupler

l y
X z
iis

waveplate

PBS QD

Mirror
Galvo ‘ I

Figure B.1: Setup aligning the first lens in 8 directions: in © and
y-direction and such that galvo is at focus of the lens.

Install and align first lens:

check by eye if the beam hits approximately the center of the lens,

keep height in mind and remove the lens again

put the QD such that the beam hits the center

put the lens in between, adjust y and x direction till signal on QD is
same as before
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Put the lens such that its focus hits the center of the galvo

e Put a mirror after lens such that it reflection goes back through both
irises see figure B.1b).

e Put the QD after cube and center it without oscillating the galvo

e Oscillate the Galve and adjust the position of the lens until oscillation
is minimal

In this case we used the following distances:
e Cube and galvo; 21.2 cm

e Cube and QD; 42.2cm

e Lens and mirror; 14.5cm

There should be kept in mind that the cube makes the light beam less
stable, because of the polarization change that is produced by the cube.
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Thick lens

The method of finding the front focus of appendix A is equivalent to how
the path was calculated with three lenses. The values of the setup are given
in table C.1.

Table C.1: The values of the properties of the achromats.

first achromats | [mm] || third achromat | [mm]
R1 112.21 R1b 106.4
R2 95.94 R2b 96.6
R3 325.1 R3b 2000
tel 8.2 tc2b 4
tc2 ) tcb 8
BF 145.148 BF2 194.8
FF 150.49 FF2 175.88
nl 1.78559 nlb 1.71233
n2 1.64325 n2b 1.64325
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Design Pl-controller

The board of the PI-controller, with the used values for the capacitors and
resistors.
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Figure D.1: Scheme of the PI-controller
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