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Abstract

This thesis report describes the evaluation of the retargeting method “Retargetting Motion to New
Characters” as introduced by Gleicher. Our description of the method shows more details than the
original paper does. This report also grants more background information about differentiation a
constraint function, using either divided differentiation or automatic differentiation. Furthermore
the for the interpolation method, a B-spline, is explained more extensively. Explaining the range
of influence of B-spline control points and calculating a point on the B-spline locally without
evaluating the whole spline. Finally experiment have been executed on our own implementation
of this method. The experiments evaluate the method on its performance with different kinds of
constraints, different motions and different scalings. The resulting motions of those experiments
are inspected visually on quality.
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1 Introduction

Virtual characters have a large role in games, simulations, movies and commercials. Usually they
perform motions in a virtual world. There are several ways animate those characters, but the
most realistic results are still achieved through motion capture. There are several techniques for
motion capture. The end result of motion capture usually is a motion defined in a root position
and joint angles that change over time. Motion capture works well if the human actor has the
same measurements as his virtual equivalent, but when the sizes of body parts start to change
it fails. This can be seen on the left side of figure 1.1. By defining a motion in joint angles the
positions of the body parts are implicitly defined by the character performing the motion. When
this character changes the information about the body part positions get lost. The importance
of joint angles and body part positions shows clearly when body parts start intersecting with the
environment or each other. But for characters with a different size it is impossible to keep every
body part on the same position. Deciding which positions are important and which are not is
not trivial. Some body-part positions might have importance in global space and some body-part
positions in character space, relative to another body part.

1.1 Motion retargeting definition

Retargeting is transferring a motion from one character to another as if one character is doing
the same as the other character. Transferring the motion on to the same character in a different
environment, like foot plants on a walking motion or placing the hand on the right place when
picking up an object, could also be seen as retargeting, but this thesis won’t focus on that. For a
character to do the same as another character it is important to know the characteristics of the
motion. It is hard to recognize those characteristics. For example if Pixar’s Luxo walks it jumps,
but if it would have wheels it would roll. The characteristic in this motion would be something like
default movement. The need to recognize motion characteristics is reduced when the character is

Figure 1.1: The middle character is the character with the same measurements as the actor the
motion is recorded on, the left character has larger limbs and the motion is transferred by using
the same joint angles. The right one uses a more advanced approach. (source:[4])



more similar, because then the problem is more about recognizing similarities between characters
and transferring those. The motion characteristics are then implicitly transferred.

Transferring motions to characters with different morphologies can be useful in many cases. For
example with retargeting motions, the motions can be applied to more characters and thus save
expensive motion capture time in a studio. Retargeting could also be useful for characters that
do not exist in the real world. Moreover the characters can also transform to another character
during a motion, like humans transforming to a Hulk or werewolf. Another example application
would be in games where dynamic character creation becomes more popular. Since characters are
not known beforehand it is impossible to record all motions.

Retargeting can be applied in many different ways. The easiest application is to retarget a
recorded motion to another character than the motion capture actor. Of course it is not possible
to find a motion capture actor for any arbitrary character. Another application would be real time
retargeting where an end user is able to create a character and existing recorded motions have
to be applied. In cases of morphing characters retargeting can also be applied. With new input
devices like the kinect retargeting gets yet another application namely converting movements from
the player to the character in game. And in the future retargeting could possibly even be used to
control robots.

1.2 Approach outline

This report describes the evaluation of an existing retargeting method, we redescribe this method
with more details for better understand. Moreover we add a method for weighting constraint
values. Evaluation is important to get a better understanding of the topic. The experiments
done on the original method show little configuration parameters. We are going to evaluate how
constraints should be defined and what effect constraints have on finding the solution. Before
we go into detail we first discuss research done related to retargeting in Chapter 2. The method
we use is limited to characters with skeletons with the same hierarchy but other bone lengths.
We solve retargeting using spacetime constraints. The details about how the retargeting problem
is translated to spacetime constraints are found in Chapter 3. This results in a constrained
optimization problem. How the constrained optimization problem is solved is discussed in Chapter
4. Most optimization methods use a gradient to get to their solution. The gradient to our problem
is a Jacobian matrix. The specifics of the Jacobian are discussed in Chapter 5. The final solution is
an adjustment of the original motion. Instead of creating a totally new motion only the adjustment
is created. To get a smooth adjustment a B-spline is used. This is discussed in Chapter 6. Chapter
7 discusses the evaluation of the method to find the strengths and weaknesses. It shows why and
how the experiments are done and what the results are. Finally in Chapter 8 we draw the
conclusion and makes suggestions for future work.



2 Related work

This chapter discusses research related to solving the retargeting problem. There are different
approaches to the retargeting problem. Some research focusses on retargeting in relation to the
environment, others focus on specific body parts or specific constraints. Some focus on the “mes-
sage” that is expressed by a motion. The multiple interpretations and the vagueness of “message”
show the complexity of retargeting. Would humans with the same measurements do exactly the
same if they are asked to mimic each other? Mimicking the same situation is different from per-
forming the same action, performing the same action would be performing a motion that serves
the same goal, while mimicking has more to do with trying to perform the same motion. A human
can not even perform exactly the same motion, in term of joint angles, the same way twice be-
cause of external factors and muscle limits. Several kinds of constraints can be violated during a
motion, there are physical constraints like collision, balance and force limits. There are also action
constraints like: walking, picking up, waving. Style constraints are harder to define, as those are
about this vague “message”. Retargeting is usually split in a motion creation and motion playback.
The motion creation sets the parameters for the motions, for example constraints. During motion
playback those constraints are solved. The first section 2.1 explains some basic terminology used
throughout the whole report. The second section 2.2 handles creating a motion. The next section
2.3 discussed what has been done on motion playback. The fourth section 2.4 discusses how other
work on retargeting is validated. Next a conclusion is made in section 2.5, followed by a section
2.6 about the contribution made by this thesis.

2.1 Terminology

Before discussing other work in the field of retargeting, some general principals are explained.
We are going to explain the following terms: execution time, spacetime constraints and inverse
kinematics.

2.1.1 Execution time

In this section we discuss three terms that we use related to execution time. Execution time is the
time it takes an algorithm to run. How this time is expressed exactly depends on the algorithm.
Three basic indications are used: offline time, real time and online time. Offline time is the time
before playing the motion, everything needed for the algorithm is available from the start. Real
time is during the playing of the animation, but the motion and the environment are known
beforehand, allowing the algorithm to look ahead in time. The last kind of time is online time,
this is also during playtime of the animation but only data about the current time and past can
be used by the algorithm. For example when there is a live feed of motion data from a capture
device or input from the user.



2.1.2 Spacetime constraints

Spacetime constraints are introduced by Witkin and Kass [9]. Motions usually have to meet certain
constraints, for example reach a point, avoid collision, be in balance. To create a realistic motion
physical constraints on the acceleration have to be met. Trying solve those constraints while
creating a realistic motion can be very complex. Solving those constraints on a frame by frame
basis would make it hard to control limits on acceleration. Therefore spacetime constraints are
introduced. Instead of only solving in space, which would result in snapping behaviour or complex
constraint definitions, the constraints are also solved in time, so a motion can be adjusted in the
time before the constraint becomes active, resulting in a smooth path matching the constraint.

2.1.3 Inverse kinematics

Inverse kinematics (IK) is a technique that can be applied on a chain of joints. The goal of IK
is to find the parameters of the joints to get a certain configuration of a chain. Usually this
configuration is giving by a position to be reached by the end of the chain. Although in animation
usually only angular parameters can be set on the joints, translating joints can also exist. Inverse
kinematics is the opposite to forward kinematics where the joint parameters are given and the
configuration of the chain is calculated. Forward kinematics is trivial, but IK is not. Usually
there are multiple solutions to an IK problem, for example with a IK chain from shoulder to the
hand, there are various positions to place the elbow while the hand and shoulder remain in the
same position. Various iterative techniques exist to solve IK, techniques that are often used are
Cyclic Coordinate Descent (CCD) and a couple of Jacobian based methods, inverse-Jacobian and
transpose Jacobian. A Jacobian is the matrix of partial derivatives. The Jacobian is discussed in
Chapter 5. CCD threats the IK problem as a set of one degree-of-freedom (DOF) problems. CCD
iterates over the DOF and minimizes the distance to the target for each DOF. It keeps iterating
until a threshold distance to the goal is met. These are problems that can be solved analytically.
For a rotational joint the goal is projected onto the plane of rotation then the angle between
the current location and the target location can be calculated. The joint then rotates for this
calculated angle. For a translational DOF the goal is projected onto the line of translation, the
distance is then calculated and the joint translated for that distance. For Jacobian based methods
the Jacobian of the forward kinematics function is calculated. The Jacobian now contains the
amount of change needed for each DOF to get closer to the goal. This can then be used to move
towards the goal.

2.2 Creating a motion

Naively transferring a motion to another character with different measurements, by just transfer-
ring the joint angles leads to a violation of constraints that are obvious to humans. The body of
the character intersects with either itself or its environment, the motion does not longer serve the
goal it is supposed to. Solving this traditionally means either adjusting joint angles or setting up
IK-chains. Fortunately tools exist to assist an animator with retargeting. Most tools assist with
editing an existing motion, but there are also tools that allow the animator to create a motion.

A very influential paper in retargeting is written by Gleicher [2]. Here the idea of spacetime
constraints is applied to retargeting. The method is used to retarget motions in offline time. An
animator sets constraints to the motion and validates if the result is as expected. If the result
is not sufficient the constraints are adjusted to give a better result. This is done by evaluation
all constraints as a single function with a the motion as a vector input and the constraint results
as a vector output. The gradient for this function is used to find the motion that meets the
constraints. Although the constraints are not bound to a specific scaling, they are validated for
specific scalings.

A method for retargeting close interaction between a limited number of objects is introduced
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Figure 2.1: A set of the same characters with different measurements (source:[4])
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Figure 2.2: Character representation with half planes instead of the normal character representa-
tion with bones and joint angles. (source:[6])

by Ho et al.[4]. In motions where characters are close to other characters or the environment, like
wrestling, dancing or getting in a car, the spatial relationships are important characteristics of the
motion. Those characteristics are usually implicitly defined for one character. If the measurements
of a character change those characteristics disappear. With a joint angle representation, the motion
is made suitable for different morphologies by adding kinematic constraints. Those kinematic
constraints take a lot of the animator’s time to define. An automatic method for this would be
very useful. Ho et al. introduce a new representation for spatial relations named the interaction
mesh. This mesh connects important points in the motion together. Those important points
are defined as joints of the characters and vertices of the environment. By tracking those spatial
relations they can be preserved when automatically adjusting the motion to a character with
different measurements.

With this method the spatial relationships are preserved automatically, so they do not need
any animator interaction. Nevertheless additional constraints can be defined to adjust the motion.
Moreover the user defined constraints there are also collision constraints that are generated by
the system. The collision constraints also require for an iterative algorithm to be able to correctly
adapt to occurring collisions.

Hecker et al. [3] introduce a generic motion definition. Their algorithm is designed for the
game Spore, in this game the characters are created by the players. These characters can have
varying morphologies. Skeletal key framing is a common method to animate characters in games,
but for the different morphologies the skeleton is not known beforehand. An animator cannot
create animations for any possible skeleton. Therefore the animations are defined in a generalized
way and specialized at the time of playback.

Another method is proposed by Kulpa [6]. This method focusses on humanoid characters with
different sizes, that have to be retargeted in real time in an interactive environment based on a
small motion database. Other techniques generally use a large motion database or use a lot of
computational power to calculate the desired result. Even if the computational issue of spacetime
solutions could be overcome it is still hard to make spacetime solutions work in an interactive
environment. The key to this technique is a new kind of pose representation as can be seen in
fig. 2.2. In this representation the body is split into different parts that are stored in different
ways. The body is a hierarchy of three different components: normalized segments, limbs with
variable length and the spine. The normalized segments are segments that exist of one body part.
Nothing special happens to these kind of segments since these are basically just a bone. The limbs



Figure 2.3: The motion of two dancers retargeted to resizing dancers. (source:[2])

are stored as normalized coordinates on an oriented half plane. Limbs are assumed to have three
points, a begin, an end and a joint in the middle. The begin and end are on the edge of the
half plane. The distance between the begin and the end point is given with a scalar indicating a
percentage of the full leg length. The elbow position can be calculated with basic 2d geometry.
The spine is represented by a spline. The spine of another character is fitted onto this spline. With
this representation all sizes are relative thus the motion is implicitly retargeted. There is another
part to retargeting, namely the resolving of constraints. This is done in the motion playback phase
that is discussed in the next section.

2.3 Motion playback

In the motion playback phase the motion definition as defined by the animator is processed by
an algorithm to create the actual motion. Depending on the method this motion playback can
be executed in online time, real time or offline line. Gleicher [2] defines constraints as functions
with a target value. Moreover an additional function is used as a target function. This target
function gives the difference from the original motion, implying the motion has to look as similar as
possible to the original scaled motion while meeting the constraints. The technique is focussed on
retargeting motions to skeletons with the same hierarchy as the original motion, but with different
bone lengths.

The interaction mesh introduced by Ho et al.[4] is created by applying tetrahedralization on the
point cloud that is created from the joint positions and environment vertices. The interaction mesh
and all the constraints are combined into one energy cost function that is minimized. For easy
solving the interaction mesh is created with the joint positions instead of using the combination
of joint angles to get to the position. This results in body parts that can change size and a roll
rotation that is lost. This is resolved by adding constraints for the size of the bones and adding an
additional point on the surface of body parts that can have a roll rotation. This is faster because
it leads to a much sparser Jacobian matrix which is easier to solve. During the solving the bone
length constraints are slowly increased from the original bone size to the target bone size.

An example of playback with the method created by Hecker et al.[3] is shown in fig 2.4. The
playback is done with a special robust inverse kinematics solver which uses preconditioning to
create natural poses. Bodies are introduced and used to define the characters instead of a skeletal
representation. The main difference with the skeletal representation is that bodies are connected
with a non-cyclic directed graph instead of a tree. This implies that a joint can have multiple
parents. In the game, a player is not actually able to create loops but this limit was only for
creating an easy interface. Bodies have certain capabilities like grasper, mouth, root, spine. The
animations are still created by animators and for the animators the work flow remains the same.
For walking animations a separate gait system is used. This system creates walking motions for
characters with all the possible varying morphologies.

Kulpa et al.[6] annotated the motion with constraints, which indicate footsteps and other point
or region constraints. These constraints are localized to specific body parts so that only the body
parts that are influenced by this constraint are used for the calculation. Those constraints are
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Figure 2.4: Two characters using the real-time motion retargeting, left in resting pose and right
reaching for a point (source:[3])

solved with a modified Cyclic Coordinate Descent solver.

2.4 Validation

Generally it is hard to validate retargeting techniques. Many varying parameters exist of which
some are unknown, for example not all possible goals for a motion are known and it is hard to
generalize this. Another reason why retargeting is hard to validate is the limited case definition.
Sometimes failure is part of the method, some characters just cannot perform tasks that other
characters can. It is hard to define graceful failure. In this section we discuss some validation
methods that are used.

In the paper by Ho et al.[4] different motions with close interactions are used for the exper-
iments. Ho et al. evaluate the method on collision, non-colliding close interactions, interactive
control and intra-body performance. Another part of the experiments is the evaluation of the
computational costs. The method is claimed to be linear dependent on either the number of
frames or the number of vertices in the interaction mesh. This is due to the local influence of the
vertices. In the examples with two characters or a character in a simple environment, it takes 1
minute to solve 100 frames of animation on a Core i7 2.67 GHz CPU.

The method proposed by Hecker [3] is tested with no exact values. The qualitative tests are
done evaluating the comments of players. It has not been stated in the paper whether the players
are asked for their comments, what questions are asked and how many of the questioned players
have responded. The comments of the players are said to be positive, but without any context
about how the players are asked for their comments it is hard to put any value onto this statement.
A plausible scenario could be the comments on the game forum are evaluated and only players
who like the game post on there. Another form of testing is done by a team of animation testers.
They validate the motions on various characters created by the players, but the criteria to which
the motions are tested are not shown.

Kulpa et al. [6] set constraints to the feet, wrists and elbows. With those constraints three
motions are created, a rest motion, a kick and a ward-off motion. Those motions are visually
inspected. Extraordinary properties of the motions are discussed by the authors.

Most methods rely on perceptual evaluation of the resulting motion created by the implemen-
tation of the method. Most measurements like pose difference and distance to constraints are used
by retargeting methods and are therefore hard to use for evaluation. We create an implementa-
tion of retargeting using spacetime constraint and perceptually evaluate the method. Although
perceptual evaluations are hard to compare they do best match the goal of the method.

11



2.5 Conclusion

In the method introduced by Gleicher [2] the constraint function can be any kind of function which
makes it very generic. Most constraints apply to space differences like the distance between a point
and a body part, the distance between two body parts, the distance between the same point in
time, but it could also be a realism function that could express realism in a value. The problem is
approached as a constrained optimization problem. Constrained optimization problems are a well
studied subject in informatics/mathematics. An advantage of this method is the generic way of
defining constraints, because anything for which a target function can be made can be used as a
constraint. A large disadvantage is the task of manually defining constraints. Although it is easier
than finding people with the right measurements for mocap or key framing the whole motion, it
is still a hassle to find the right constraints, at the right time. The downside of approaching the
problem as being a constrained optimization problem is there is no solver that can gracefully fail
when constraints are conflicting. Moreover it is hard to make such a solver if it is not defined
in the constraints or optimization function what a graceful failure is. If there would be any case
gracefully handling conflicting constraints it would have to be taken into account when defining
the constraints.

For the method of Spatial Relationship Preserving Character Motion Adaptation, the inter-
action mesh together with some additional constraints achieves good results for all shown cases.
The method could possibly also be used for online retargeting when more computational power
is available. Nevertheless it is not proven that retargeting can always be expressed in matter of
spatial relations to nearby points. Also the way points are chosen is not arbitrary. Currently
characters’ vertices are joints, but it could be the surface is important. The collision detection
solves some problems that start occurring from choosing the joints as interaction mesh vertices.
The method could potentially be used in interactive environments, since it is possible to perform
the algorithm on a frame by frame base. Unfortunately the results of a frame by frame solution
are not shown by the authors.

The morphology independent representation [6] is highly focussed on retargeting from hu-
manoids to humanoids. Although it is possible to adjust the method to convert the morphology-
independent representation to a totally different morphology it is not very likely that this will
give good results. For retargeting different sizes of humanoids good results are achieved in the
time needed. Spacetime methods do not even come close to the timing results achieved with this
method. Nevertheless the results sometimes do look unrealistic. Retargeting methods also always
need some kind of time component to start adjusting to the goal. This time component is now
implicitly given by the motion that is meant for a specific purpose.

The method proposed by Hecker et al. [3] is successful at the task it was designed to perform.
This method gets some advantages over other methods by changing the case of retargeting. First
of all there is no ground truth motion to compare to. The characters are fictional and nobody
knows how those fictional characters move. Also the animators are limited in creating motions,
the animator is just searching for the right parameters that are sufficient for all characters. This
could mean that character-specific motions and details are lost. Moreover the player of the game
is shown the animation while designing the character and in that way steered towards designing
good animatable characters. The retargeting also mainly happens in character space, which makes
it hard to get inter-character animation. The method is also very discrete with the types for bodies
and a separate gait system. This could lead to some motions or characters being impossible to
create. Nevertheless all results are achieved in real time and the suspension of disbelieve is not
broken with the animations on the characters. Also regeneration of the specialized motion from a
generalized one is interesting. Saving only parameters that are necessary for the animation leads
to a better understanding of motions.

12



2.6 Contribution

All of the current methods lack the detection of purpose of the motion. Most retargeting methods
are actually just some kind of advanced inverse kinematics. They can reach or avoid points and
areas. Such an advanced inverse kinematics technique is needed but there is also a need for some
high level controller that instructs the lower level controller in terms of walk to the table until the
object can be grabbed normally. Depending on the definition of the problem this is broader than
retargeting alone. If the problem is only related to the character and not the environment this is
broader than retargeting. If the environment and mood of the character are included in retargeting,
pretty much the whole field of animation is subject to retargeting. Would any character from the
real world ever perform a motion exactly the same way twice? For this report we evaluate the
method by Gleicher [2] because of its generic way of defining constraints and resolving them. It is
important to know the limitations of a generic method to know when more specialized methods or
better generic methods are needed. It is also good to validate the generality of a generic method.

13



3 Retargeting using spacetime con-
straints

This chapter starts with the explanation of a motion definition in section 3.1, the next section
3.2 describes the method of retargeting using spacetime constraints as introduced by Gleicher [2].
Section 3.3 will explain the content of the parameter vector. The following section 3.4 explains the
constraint function and how individual constraints can be merged into one function. The target
function indicates the most desired pose is explained in section 3.5. In the final section 3.6 of this
chapter the relation between different problem representations is shown. The retargeting problem
then is translated to a mathematical problem. This problem can be seen as merely a function,
but this function can be plotted and the problem can be viewed in its original context of being a
motion. The retargeting problem as defined by Gleicher [2] is limited to transferring a motion on
a character’s skeleton to another character’s skeleton with the same hierarchy but with different
bone sizes. Limiting retargeting to characters with the same hierarchy has two reasons. First,
it simplifies getting a good starting position to adjust the motion, which avoids solving a lot of
constraints. Second, it makes it easy to measure the difference between the original motion and
the retargeted motion. This difference metric is important for reducing the number of constraints
on the motion.

3.1 Motion definition

Before going into detail about retargeting motions, we first define a motion. A motion is a change
of morphology over time. Depending on the kind of motion different specific definitions are used.
This explanation is limited to skeletal animation, but there are more kinds of animation like
particle animation or lattice animation. Skeletal animation defines a skeleton to which a mesh
of a character is bound. The morphology of the character is therefore expressed in posed of the
skeleton. The skeleton is a hierarchy of joints connected by bones. All joints have a rotation and
an offset from their parent joint. For the root joint this offset defines the character’s position in
space. The skeleton is defined as S = (Jy, ..., Jp) with Jo = (p,r) and J; = (x, p,r) for any other ¢
where S is the skeleton, J is a joint, ¢ is the index of a joint, x is the reference to the parent joint,
p is the offset position and r is the rotation. A motion on a skeleton is defined as a function that
gives the root position and the joint rotations at a moment in time.

My = (po,t570,t5 > Tmst) (3.1)

where M; is the pose of the character at moment in time ¢, py; is the position of the root joint
and r; ;+ is the rotation of joint J; at time ¢.

14



3.2 Problem definition

All motions that we use for retargeting are skeletal animations, but the definition of the original
motion is not important for the retargeting. When the bones on the original skeleton are sized
to the target sizes, the angles on the joints remain the same. This method would be sufficient if
the scaling is uniform and when there is no interaction with the world or the world is also scaled
uniform to the character. Unfortunately scaling in such a matter is hardly useful. Therefore we
look at the case where the world is not scaled accordingly and the skeleton is not scaled uniformly.
In those cases the motion does not satisfy all constraints. For example the feet no longer touch
the floor or penetrate the floor when standing. When the character grabs something it misses the
object.

The solution for this problem is trying to resatisfy the constraints on the motion. If the user
would be able to define any constraint and the algorithm would be able to satisfy any constraint
the problem would be solved. But some constraints are very hard to define in a satisfiable way.
For example style is hard to cover in a constraint therefore another demand is made from the
system, namely satisfy the constraints but change as little as possible to the original motion.

Retargeting in space has several input parameters and result values. The input parameters
consist of the original motion, constraints on that motion and the target scaling. The result is a
new motion for the target skeleton. To solve the problem we need to make a proper definition.
To explain the definition we are first going to forget the temporal aspect. We only consider space
solving, so we want to match constraints on a pose. In the next section we add the temporal
aspect and adjust the problem definition accordingly.

3.2.1 Space solving

The problem is defined as minimizing g(x) constrained by f(z) ¢ c¢. The result of the function
g(x) is larger when the pose looks less like the original motion. The definition of the constraint
is f(z) © ¢ where ¢ is one comparison operator of the set {=,<,>}. f(x) represents a property
of a pose and c defines the value of the property it is constrained to. For space solving x is
a parameter vector describing the pose of a character. The final solution uses another kind of
parameter vector as can be read in section 3.3. For space solving all constraints apply since they
are not restricted to certain periods in time. Solving this problem means finding changes for  such
that f(z) o cis true. It depends on the solver how these changes are found. It is best understood
with a simple gradient-based solver like gradient descent. Solving this problem with gradient
descent means finding the effect every value of x has on getting close to solve f(z) ¢ c. Getting
closer to solve f(x) ¢ ¢ means getting a smaller difference between f(z) and c if the constraint
is violated. This matrix of changes is the Jacobian matrix is discussed in Chapter 5. Steepest
descent will result in a vector x,e, for which the multiplication with the Jacobian results in the
negative constraint vector. By applying this x,e, to your current x you will find x that is closer
to your goal & < T 4 Tpeqw. If all functions were linear the solution would now have been found
but this process has to be repeated because the gradient changes. When solving the pose with a
parameter vector describing the joint angles, this means changing the joint angles to better solve
the constraints.

3.2.2 Moving from space solving to spacetime solving

When including time it is not a matter of solving constraints multiple times for different times-
tamps. Gleicher [2] uses a B-spline to interpolate over time. The article does not state why the
choice for a B-spline has been made other than saying they want a smooth motion. We are going
to explain what impact the use of a B-spline has. More about the B-spline can be found in Chapter
6. The control points of a B-spline have effect over a timespan.
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3.3 Parameter vector

The parameter vector describes the change that has to be made to the original motion M = M,,.;+
Mchange- The parameter vector x describes Mcpange, this is similar to the normal motion definition
as described earlier in section 3.1. The explicit definition of = is * = (20,0, ..., Tn,0, Tn,1, s Tm,n)
describing all control points z;, on B-spline x;. A pose at time ¢ is described as M;. A single
value from the vector describing the pose is M, ;. Those values are defined as My ; = bspline(x;)+,
where 7 is the index of the value. z; = (2o, ..., Tm,;) Where m is the number of B-spline control
points.

3.4 Constraint function

In this section this function f and the value it is compared to (¢) are considered. A constraint is
defined as a limit of the possibilities of the motion. That is a vague definition since it raises the
question what are possibilities or even better what is one possibility and how do possibility limits
group together to a constraint. Those vague definitions relate back to the mathematical definition
f(z)oc. One dimension can be seen as one possibility that is limited. And all limited possibilities
are grouped by this function. So the constraint is a collection of all possibility limits. The function
f calculates some property of the motion and compares this to a constant c¢. Several function
definitions exist to create the same constraint. For the function to be the correct constraint
function it only has to go through one point. The comparison operator only defines whether the
result has to be on the smaller or bigger half space or on the point itself. Purely mathematically
it does not matter if the function is discrete, continuous or has a limited order of continuity.
Mathematically your function could be isViolatingConstraints(x) = 0 where the result is either 0
or 1. But computationally it might matter; no known solver will be happy with the latter function.

3.4.1 Different operators

The ¢ in f(z) o ¢ is actually a vector of operators. Each element is compared individually to
keep the dimensions of the vector independent from the other dimensions. Some solvers like the
conjugate gradient solvers always solve only f(xz) = c¢. To also solve for comparison operators
{<, >} an active set[1] is used. When using an active set, the constraints that are already fulfilled
are not applied. This means when the > or < constraints represent a space, the solution using
only this constraint will be on the edge of the space. Unless the solver either finds intermediate
solutions that pass the edge of the constraint or if other constraints require the solution to be
somewhere else than on the edge of the solution space.

3.5 Target function

The target function g(x) is the function that is minimized to make the motion look as similar as
possible to the original motion. The definition for this function is taken from Gleicher[2]. This
definition is:

9(q) = %qu (3.2)

where M is a diagonal matrix containing the weights and ¢ is the parameter vector. This is a
short notation for a common way of calculating a weighted difference

9(a) = % > wig? (3.3)

This definition implies the target function can never be fully optimized unless the constraints are
met by just transferring the pose from one skeleton to another. For every other situation the
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Figure 3.1: Example of a tower crane (source: Wikipedia, 2013)

parameter has to change and any parameter value other than zero will result in a value higher
than zero.

3.6 Different problem representations

In this section we discuss different views of the problem. With our problem definition we have
abstracted the retargeting problem to solving a mathematical problem. Since this problem def-
inition is an equation it can be plotted in a graph to get another representation. All three of
those definitions show different issues. To handle and judge the importance of those issues it is
important to know how to relate those issues between the different representations. The param-
eter vector is a set of independent parameters and the constraint vector is a set of dependent
parameters. This helps with picturing the shape that is created for a function plot. The space
created by independent parameters is completely filled while for dependent parameters only the
existing points get values and no new points are created. Purely mathematically this is not true.
For example for f(x) = /z there could be two solutions. Namely v4 = 2V v/4 = —2, but this
does not matter in our case because we assume a function to always have one result. If cases
with multiple answers should be evaluated all possible options should be evaluated separately as
if every case only has one result.

3.6.1 One parameter to one constraint

In the previous sections we have discussed the relationship between the retargeting problem and
the mathematical view on this problem. The graph view for the a normal motion is impossible to
imagine because of its very high dimensionality, but very simple cases can be visualized and help
with understanding the bigger case. First we start with a very simple example. We are going to
only do space solving and we have a character, which in our example is a tower crane (See fig 3.1
for an example). For the sake of the example the crane has only one degree of freedom namely
the rotation (crane,ot). The hook of the crane cannot move along the arm. For simplicity we take
the length of the arm to be 1 unit. The case we want to solve is how to rotate the crane so an
object can be placed on the road. A top-down view of the situation is illustrated in Figure 3.2.

In this case our parameter vector is * = (crane,o) and our constraint function is f(x) =
sin(craneyrot) and our constraint value is ¢ = roadg;stance. This situation has two solutions as can
be seen in figure 3.3.
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Figure 3.5: Crane with a hook that can move along the arm

Figure 3.6: Some example solutions of the crane with a moving hook

3.6.2 Two parameters to one constraint

To get an idea of how a multiple dimensional input vector relates to a constraint we are going to
make 3d plots. In the first example we are going to give the crane an extra dimension. The hook
is now allowed to move along the arm. A schematic representation of this is shown in Fig 3.5.
Contrary to the first example with one degree of freedom there is no longer a finite number of
solutions. Some solutions are shown in figure 3.6. The corresponding 3d graph is shown in figure
3.7. In this graph the intersection between the red surface, represented as a grid (the constraint
value) and the blue surface (the constraint function result) represents all solutions.

3.6.3 One parameter to two constraints

To show how multiple constraints relate to one parameter we are going to try the point (solutionl)
of the first example. This point can be found by defining one constraint as the y-distance and the
other as the x-distance. So f(x)1 = cos(x), f(z)2 = sin(x) and ¢ = (point,, point,). The situation
is illustrated in figure 3.8. A single value of ¢ is a plane parallel to the dimension of the constraint
function as we have seen in the previous section with one constraint and multiple inputs. With
multiple constraints the shape is the intersection of all those planes.

3.6.4 Combining this to any dimensionality

Unfortunately the problems that usually occur are high dimension parameter vectors relating to
high dimension constraint vectors. These cannot be intuitively plotted. But projections can be
made. With those projections it is possible to get more intuition about how the function graph
looks. With more intuition about the function graph it is easier to solve problems that occur
during retargeting.

3.6.5 Local minima

This section handles local minima in the different views. In the graph view we see local minima
as the lowest point in a “valley”. The mathematical definition of a local minimum is f(z*) < f(x)
when |2* — | < €, meaning there is no point z in the close surroundings of x* which results in a
lower result of f(x). In the skeletal view a local minimum is a case where a constraint first has to
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Figure 3.7: The graph of the crane picking something up from the road with a moving hook, the
red grid is the surface representing the constraint value, the blue surface is the constraint function

result and the green dots are the points from the example shown in Figure 3.6
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Figure 3.8: Situation sketch of the crane and a target
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Figure 3.9: A plot of the crane reaching a point, the blue curve describes all constraint values for

all possible inputs, the red line is the intersection of both constraint values.
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result in a higher value (f(z*); < f(x); where ¢ is the index to any value in the resulting vector)
to eventually solve all constraints, for example when a joint first has to move away from a position
to eventually reach it.

3.6.6 Unreachable constraints

Unreachable constraints are constraints for which there is no # where f(z) = ¢. There are two
kind of unreachability, either the input is never able to create a shape matching a constraint or
there is not input for which all constraints can be met. In the graph view this means that there
is no area where all constraints’ shapes intersect with the function shape. In the skeletal view it
means no motion can be made where all constraints are met.
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4 Solving spacetime constraints

This chapter discusses how to compute the solution to the optimization problem stated in the
previous chapter. Different methods exist to solve an optimization problem, but in practice none
of those actually reach the optimal goal. Another issue with the current approach as discussed in
the previous chapter is that the whole motion has to be solved at once. In this chapter we discuss
a possibility to solve a motion in fixed steps in section 4.1. Furthermore we discuss other practical
issues like setting weights for constraints in section 4.2 and thresholds for solving the optimization
problem in section 4.3.

4.1 Solving in parts

In the optimization problem as stated in Section 3.2 the whole motion has to be solved at once.
The space time optimization is performed over the whole motion, while it is not very likely that
a change at the start of the motion will influence a constraint at the end of a motion. Doing
spacetime optimization over the whole motion with a standard non-linear optimization library
could already have major performance influences in simple cases. In a motion where some joint
has to be on the original joint position during the whole motion, constraints are added for every
fixed interval in the motion. Causing the constraint vector to grow over time. The parameter
vector will also grow overtime since it contains all control points of the B-spline and those are also
added in a fixed interval. The constraint vector defines the size of the resulting vector. Solving an
optimization problem usually becomes easier with gradient information, but the gradient to this
problem would have the width of the parameter-vector size and the height of the constraint vector
size. Since both vectors grow linearly with the motion length in the simple example the gradient
grows quadratically. The gradient is this big only because it is not derivable from the equation
that the first control point does not effect the last constraint. With knowledge of the problem it
is possible to reduce this quadratic complexity. For this we can use properties of the B-spline. A
B-spline control point has influence over a limited time span and a time span is influenced by a
limited number of B-spline control points. More about the influence of B-spline control points can
be found in Chapter 6.

4.2 Weights

Different parts of the algorithm as described in Section 3.2 need weights. In this section the
weights are split between weights needed for the optimization function and weights needed for the
constraint function.

4.2.1 Optimization function

The first part is the optimization function. For this function, the influence of a degree of freedom
on the pose is weighted. Changes in the root rotation have a large influence on the pose while
a change in rotation of a finger bone is hardly noticeable. For this, the weight set proposed by
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[8] is a good suggestion when used for joint angles. This is a weight set for blending motions
although the requirements for blending are not exactly the same as for our optimization function.
The requirement for blending is the transition between two motions. This requirement is good
while we require the motion to look as similar as possible to the original motion. Difference
measurements used in blending could also be useful for the optimization. A survey on motion
blending is done by Basten et al. [7].

4.2.2 Constraint function

Another part that needs weighting is the result of the constraint function. Although in theory a
constraint is always met no matter what the weighting is. In practice a constraint is always met
within some threshold as will be discussed in the next section. For thresholds it is desirable if all
constraints suffer equally from a change in the threshold. This kind of weighting can be fixed by
a single weight set by the animator, but it is also possible to split this up into more weights. The
first kind of weight is the weight to balance between units. Is the correction of 1 meter from a
point constraint as important as 1 degree on the limit of a joint? For a degree of a joint the weight
of a joint itself is also important. A weight set discussed for the optimization function can be
used. Besides the weights for units there is also a correctional weight for a functional constraint.
One dimension in the constraint function does not necessarily have to be one functional weight.
By using multiple dimensions for one function constraint, it implicitly gets weighted higher. By
adding all dimensions to a group and dividing all members of the group by the group count the
weight is corrected. Although this is related to the weights of units, it is not the same. For
example distance could be expressed in Manhattan distance or Euclidean distance that are both
expressed in meters. Another kind of weight is the artist priority weight. For example the focus
of the camera can improve the importance of a certain constraint or the colour of the feet attract
attention raising the importance of constraints on the feet. The final kind of weight should be
used for solving in parts, to correct for the influence of the control point at different points in
time.

4.3 Thresholds

It is hard to find the exact solution for a constrained optimization problem on a computer. Thresh-
olds can be applied to different parameters and measured in different ways. Thresholds in the al-
gorithm can be applied to data, like input parameters or result values, but also be applied on meta
data, like system time duration and number of iterations. Thresholds on meta data are usually
focussed on getting guaranteed results while thresholds on the data are focussed on the quality of
the results. In our implementation we use a threshold on the constraint values. Each value from
the constraint vector is individually compared. The value is within the threshold if the difference
between each constraint-vector value is smaller than a given threshold value. This threshold value
is the same for all constraint values because the importance of constraints is equalized by the use
of weights and because this equality is important for some solvers.
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5 Constraint function differenti-
ation

This chapter concentrates on the function differentiation. Function differentiation is important
for solving equations numerically. The differential represents the slope of the function. This slope
can be used for making better estimations of the next point closer to the goal. This chapter
starts with the definition of a derivative in section 5.1. The next section 5.2 will be on calculating
the Jacobian (the derivative of a vector-valued function). The different methods are discussed in
sections 5.3, 5.4 and 5.5 that discuss divided differentiation, symbolic differentiation and automatic
differentiation respectively.

5.1 Definition

This section shows the definition of a derivative and more specifically the definition of a Jacobian.
The derivative for any function f(x) is defined as f’(z), this can also be notated as %' Although
we keep using the first definition f/(z) throughout this chapter, the latter definition is more useful
for explaining the derivative. & means the change in, so the derivative is the change in function
result f divided by the change in input z. For a function with a single parameter and a single result
this will result in a single value for the derivative, but for a vector valued function fi (21, ...25)
with vector result the derivative is the Jacobian .J, a matrix of partial derivatives.

1 Tn
e (5.1)
Z1 Tn

One value in the matrix is the change of one input vector value on one result value. This is
needed for every value in the input vector to every value in the output vector.

5.2 Calculating the Jacobian

This section discusses how to get the Jacobian of a function. There are multiple ways of differ-
entiating a function. One of the ways is for a programmer to analytically differentiate a method
to get the differential values of a function. This method is accurate, but it is tedious work and
hard to maintain. Automated methods are symbolic differentiation, divided differentiation and
automatic differentiation. Those methods do not require manual labour and are therefore more
attractive. From those methods, divided differentiation can be seen as a black box method, only
the input and output of a function have to be known to differentiate it. While the other two
methods, symbolic differentiation and automatic differentiation, require knowledge about all parts
of the function. There has been some discussion about whether or not automatic and symbolic
differentiation are actually identical. In the paragraph about automatic differentiation we will
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discuss what we believe sets automatic and symbolic differentiation apart. Others say automatic
differentiation is the same as symbolic differentiation.

5.2.1 Differentiation rules

Differentiation rules are the set of rules that are used to get a derivative of a function. For each
component of a formula there is a rule on how to translate that component to the derivative. The
chain-rule defines how those rules can be applied recursively. This section will show a collection
of the basic rules that can be used for differentiation.

Constant rule (af(z)) = af'(z)
Sum rule (f(z)+g(x)) = f'(z) + ¢'(2)

Product rule (f(z)g(z))" = f'(z)g(x) + f(x)g'(x)
Chain rule (f(g(2))" = f'(9(z))g'(x)

Power rule (2") =na""tn#0

Reciprocal rule (f(lx))’ = ]{(gg
Quotient rule (zgg)’ =1 (1)9(2)(;5@2 (2)f ()

5.3 Divided differentiation

Divided differentiation is also called numerical differentiation. This technique is based on looking
to a point before the point and a point passed the point and dividing the difference of the result
by the different in. This is illustrated in Fig 5.1. So

fle+h) = flz—=h)
2h

f'(x) =

where h is a small step. If no rounding errors occur the accuracy of the differentiated function
increases when h decreases. Unfortunately with smaller h rounding errors start getting larger.
This could intuitively be explained by the influence of the rounding getting bigger with smaller
values. With a single valued function divided differentiation takes two function evaluations. For
vector valued functions this is different.

(5.2)

A naive approach to translating from single valued to vector valued is

f@in+TIinh)im— f(@1n— 1 nh)1

The result of this is actually a differential of a scalar by which z is multiplied. The proper
differential is considerably more complex to define. First of all f/'(z1.,)1..m can not be true,
because the result is two dimensional as discussed before, so the right definition is: f/'(z1.n)1..m1..n-
Instead of adding and subtracting h from all values of x at once, h is only added to and subtracted
from one value x; per function evaluation. To describe this, we define h; to be a vector of size
n with all zeroes except for position ¢ where the value is h. The final definition for the divided

difference is
f@im+hi)rm— f(@10—hi)im
2h

f/(xl..n)l..m,i - (54)
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f(xg+h)-f(x;-h)

Figure 5.1: Ilustration of divided differentiation (source:
http://kineticmaths.com/index.php?title=Numerical Differentiation, 2013)
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Figure 5.2: Difference between symbolic and automatic differentiation(source: Wikipedia, 2013)

Now the number of function evaluations is increased. Since the divided difference is done for every
i and 1 <7 < n there is a total of 2n function evaluations.

5.4 Symbolic differentiation

This paragraph shortly describes symbolic differentiation as a preparation for the comparison with
automatic differentiation. Symbolic differentiation is sometimes used to describe the application of
differentiation rules in general, while in other cases it refers to only this application by a computer.
With symbolic differentiation the goal is to find the formula that gets the derivative instead of
a function that provides the result of the derivative. Figure 5.2 makes an illustration of the
relationship between symbolic and automatic differentiation. For the explanation of the difference
it is important to make a difference between the mathematical definition and the programmatical
definition. The mathematical definition is the definition how humans do math like all equations
in this report. The programmatical definition is the definition in computer instructions. The
difference between automatic differentiation and symbolic differentiation is although it is done
on a computer the symbolic differentiation is done on the mathematical definition of a function,
while the automatic differentiation is done on the programmatical definition. To illustrate symbolic
differentiation we consider the following two statements:

f(z) =527 (5.5)

g(y) = ysin(y) (5.6)
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If we want the derivative of g(f(z)) over & we have to first merge the two statements into one
equation.
g(x) = ba?sin(5z?) (5.7)

This equation is already bigger than the first two separately. The application of all the differenti-
ation rules as described in section 5.2.1 results in:

g (z) = 10xsin(52?) + 52 cos(52%)10x (5.8)

This statement has already grown compared to the two individual statement from the start.
When there is another function that is using g all of the statement are reused multiple times
again. Resulting in an exponential growth. Of course these statements can be simplified again,
but this is not always very trivial.

5.5 Automatic differentiation

Automatic differentiation (autodiff) is differentiation based on the chain rule as described in section
5.2.1, but as said before it is different from symbolic differentiation. Autodiff benefits from the
property of computers that they execute a sequence of instructions. This is exploited because
every part of a differential equation results in a value. For the chain rule those values are used
instead of the whole statement. This can be done by source code transformation or operator
overloading. Source code transformation analyses the code as text and writes new functions.
Operator overloading is rewriting the algebraic operators to use the differentiation rules, and
rewriting primary functions, like sin and cos, to use their derived variant. Usually this is done by
using another type for differentiation and changing the operators for that type. The following is
an example to show how autodiff works. For equation 5.5 and 5.6 in code this is:

double f(double x)

double a = x * x;
return 5xa;

}

double g(double y)

double b = sin(y);
return yxb;

}

through code transformation this will become

autodiffval f d(autodiffval x)
{

autodiffval a;

a.val = x.val % x.val;

a.val_d = x.val x x.val_d + x.val _d * x.val;
autodiffval c;

c =95 % a;

c.val._ d =5 % a.val _d;

return c;

}

autodiffval g d(autodiffval y)

{

autodiffval b;
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b.val = sin(y.val);

b.val d = cos(y.val) *x y.val d;

autodiffval d;

d.val = y.val x b.val;

d.val_d = b.val x y.val_d + b.val_d % y.val;
return d;

}

The advantage is that every statement always results in two other statements: the normal compu-
tation and the derivative computation. This means the computational complexity of the derivative
is the identical to that of the normal function. Another advantage is that this kind of transforma-
tion can be run over and over, generating higher order derivatives. The general rule of rewriting
is best shown by showing a code-class for the operator overloading variation of autodiff:

class autodiffval

double val;
double val_ d;
public:
autodiffval (double val, double val _d) : val(val), val_d(val _d)

{
}s

autodiffval operator +(autodiffval other)

{
}

autodiffval operator —(autodiffval other)

{
}

autodiffval operator x(autodiffval other)

{
}

autodiffval operator /(autodiffval other)

{

return autodiffval(val + other.val, val d + other.val d);
return autodiffval(val — other.val, val d — other.val d);
return autodiffval(val * other.val, val _d % other.val + val % other.val d);

double newval = val / other.val;

double newval d_upper = val_d % other.val — val % other.val_d;
double newval d_lower = other.val *x other.val;

double newval_d = newval_d_upper / newval_d_lower;

return autodiffval (newval, newval d);

}
};
autodiffval sin(autodiffval param)

{
}

return autodiffval(sin (param.val), cos(param.val) x param.val_d );

autodiffval any_function(autodiffval param)

{

return autodiffval (any_function (param.val), any_function_d(param));
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Figure 5.3: A computational graph of forward accumulation(source: Wikipedia, 2013)

}

The last example of any__function shows that it is even possible to use your own optimized deriva-
tives for some function using autodiff. Until now we have discussed forward accumulation. Forward
accumulation answers the question: “What effect does this independent (input) variables have on
my dependent (output) variables?” There is also backward accumulation, for backward accumu-
lation the question is: “What independent (input) variable have effect on this dependent (output)
variable” Although the questions are different, the answer to them is the same for functions that
only have one input and one output variable.

Backward accumulation

Backward accumulation is better approached with a computation graph. This directed graph
shows what operations are done on the input variables to get the values of the output variables.
See figure 5.3 for a computation graph with annotations for forward accumulation. The graph
is traversed from the input variable towards the output variable. Each node in this graph is
an operation and the incoming edges represent input values and the outgoing edges the output
values. The start and end nodes can be seen as special assignment and read operations. The
idea for backwards accumulation is to traverse backwards through the graph as shown in figure
5.4. Until now we have only discussed functions with one input variable and one output variable
(R* — RY) but for functions with higher dimensions (R™ — R™) multiple sweeps have to be done.
Since forward and backward accumulation start from either one input or one output node in the
computation graph they only find the derivative for that parameter. To find the derivatives for all
parameters multiple sweeps have to be done for either all input variables (forward accumulation)
or for all output variables (backward accumulation). This relates to calculating rows or columns
for the Jacobian. Each sweep calculates a row or column depending on the kind of accumulation.
The cost of one sweep compared to a particular algorithm is not dependent on the number of
parameters, but the number of sweeps is. Therefore forward accumulation should be used if
n < m and backward accumulation if m < n. The advantages of autodiff are it is accurate up
to machine precision. It can be faster than divided differentiation, depending on the number of
input and output variables. It is still possible to plug another differentiation algorithm in for a
part of the code base. The disadvantage is the code has to be templated (at least for operator
overloading). Making code ready for templating is not always easy when using external libraries.
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Figure 5.4: A computation graph of backward accumulation(source: Wikipedia, 2013)

5.6 Conclusion

This chapter has shown different methods of differentiation. Divided differentiation has lower
accuracy than the two white box methods. Autodiff takes less computation time than the other
methods and seems superior. Nevertheless divided differentiation could in practice be useful
because of its black box properties. It could take a lot of programming time when the code has be
transparent for an autodiff library. Creating a mathematical definition for the whole code base so it
could be differentiated symbolically could also be very labour intensive. Most coding is not started
from scratch and uses libraries, those do not provide all information needed for symbolic and
automatic differentiation. Autodiff nevertheless provides options to use a user-specified definition
of a differentiated function.
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6 Interpolating over time

This chapter discusses all aspects involved with interpolating over time. The chapter starts with
the definition of the B-spline in section 6.1. The next two sections define two aspects needed to
locally calculate a point on a B-spline. The first is the reference index to a control point in section
6.2 and the next section 6.3 shows the range of control points that have influence on a point on
the B-spline. Those two sections are followed by a section 6.4 about the degrees of freedom of a
B-spline and the range of influence of those. This chapter is closed by a motivation of the choice
to use a B-spline for interpolation in section 6.5.

6.1 The definition of a B-spline

A B-spline, just like any other spline, is a 1-dimensional continuous shape. The values of this
shape change over dimension t. The B-spline is described as a set of control points. Those control
points have a positional value and a t-value. The B-spline also has a dimension n to indicate
the number of control points involved for a point on the spline. When processed by the B-spline
function they describe all points on the B-spline. The function definition is described as follows:

m—n—2

St)= > Pbin(t) (6.1)

=0

Where S is the function for the spline, t is a value in the t-dimension. ¢ iterates over the control-
point indices m. The B-spline dimension is described as n and P; is the positional value. The
weight of a positional point is given by the weight function 6. The weight function is defined in
the following two equations. The first equation defines the weight for the 0-dimension.

1 iffj§t<tj+1

bjo(t) = { 0 otherwise (6.2)
For all other dimensions the following is true:
t—1t; t; —1
bjn(t) = ——bjn1 (1) + b (8) (6.3)
tj+n — t] tj+n+1 - tj+1

As can be seen from the equation the weight function is recursive for the B-spline dimension. In
both equations ¢ is the value for which the point on the spline is calculated. t, is the ¢ value for
the control point on index x. j is the index of the control point vector and n is the dimension for
which the weight is calculated.

6.2 Finding a knot vector index for a B-spline point

Usually in computer science the B-spline is evaluated by finding all points on the B-spline, while
in this case we want to find the point on the B-spline for some ¢t. Because of performance reasons
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Figure 6.1: A B-spline with (P,t); = (P;,t;)

we do not want to evaluate all points on the spline to find the value at some ¢. In order to find
the range of ¢ for some ¢. So we need all ¢ for which the weight b; ,,(¢) # 0. For b; o(t) it is clear
i is not zero for t; < t < t;41 as can be seen in equation 6.2. The knot vector can be binary
searched for that i. We define this ¢ which is defined by the knot vector i, and define all other
relative to i,. For b; ,,(t) to return something other than zero at least b; ,,—1(t) or bj+1,,—1(¢) has to
return something other than zero. Now we define the relationship between the functions of b with
an n other than zero. by ,_; will call both by ,—1(¢) and by11 ,—1(f) = will only change through
by+1,n—1(t) and this can only happen n times since the limit on n is zero. So the maximum z in
be,0(t) to be called is b4y, 0(t) since only b;, o(t) will return something other than 0. i, —n will be
the lowest 7 to return something other than zero. The lowest i in by o(t) is b; 0(t) when by ,—1(t)
calls itself recursively, any other combination will return ¢ between i, — n and i,.

6.3 Range of indices needed for B-spline point

So now we know the knots for which ¢ has a value. But we do not know which knots have to be
evaluated to know the value of b; ,,(t),i, —n < i <i,. For b; o(t) only i and ¢ + 1 are evaluated.
For b; »(t) the evaluations of ¢ are tj,tj4n,tj1n+1,t;41 of those j is the lowest and j +n + 1 is
the highest. We do not have to worry about recursion any more because that is already done in
defining the range of i. So the range of i to be evaluated is i, —n <7 < i, +n+ 1.

Since both P and ¢ are accessed through 4 it is implied that a tuple (P, t); could be made.
This can be done but there are some oddities. The first one is there are more values for ¢ than
there are values of P that are used. This could easily be solved by just using 0 for P, or the last
used value. The second oddity is that the resulting B-spline looks counter intuitive. Because the
effective range of i selects control points with ¢; smaller than ¢ it looks like the effect is delayed.
It will look more intuitive if (P,t); = (P4 (n/2),ti) because then half of the effective control points
are positioned before the effective point and half are positioned behind it. This works best when
n is uneven. Because the middle control point also gets the biggest weight it looks as if the control
point is pulling the spline towards it. When using non-uniform B-splines the spacing looks more
intuitive. See figures 6.1 and 6.2 for an example.
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Figure 6.2: A B-spline with (P,t); = (P4 (n/2),t:)

6.4 Degree of freedom and influence

This section is about the degrees of freedom of the B-spline and how this influences the number
of individual constraints can be set on a time span.

The degrees of freedom of a B-spline do not increase with the dimensionality. Although multiple
control points have effect on a time span, they also have effect on multiple moving time spans.
This means when increasing the degrees of freedom on one time span it decreases on a timespan
close to it. Nevertheless it seems impossible to create multiple minima/maxima within a single
time span.

6.5 Choice for the B-spline

The B-spline is one of many ways to interpolate over time. We implemented this method because
it was used by Gleicher [2], but it was not a thorough explanation. It stated that the choice for
B-spline was made to control the frequency of the spline. But this can also be done with other
kind of splines, an interpolation through points could be useful for giving more meaning to the
values in the input vector. Next to that the weight function of the B-spline is very computationally
expensive because of its recursive nature. In implementation described in the original paper, this is
solved by using a uniform B-spline, for this kind of B-spline the weight function can be simplified.
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7 Experiments

In this chapter some experiments are set up to evaluate the produced motions. Retargeting can
be done with a high variety of parameters. It is not trivial all of those parameter give equally
qualitative results. This chapter starts with the experimentation plan in section 7.1. Here all
the details of the experiment are covered. In the next section 7.2 the environment in which the
experiments are run is discussed. Finally this chapter is closed in section 7.3 with the results that
are obtained during the execution of the experiments.

7.1 Experimentation plan

This section shows the research questions that the experiment is going to answer. Moreover the
hypotheses are shown and the variables of the experiment will be clarified.

7.1.1 Research questions and hypothesis

Using the method of retargeting using spacetime constraints, a framework is created to retargeted
motions. This framework offers many possibilities. With the experiments we would like to find
out what the performance of this framework is with different parameters. This section shows three
different groups of research questions that are handled in the subsections. For each subsection the
research questions are formulated and the are followed by the hypothesis for that question. The
first section handles questions related to the constraint definition. The second section handles the
performance for different kinds of motions and the last section handles different scalings.

Constraint definition

The first main question is: How should constraints be defined? This question is challenging to
answer by experiments. That is why more specific questions are asked. What is the quality of the
motion with a specific kind of constraint? We are going to ask this question for three kinds of
constraints, a constraint where all the important joints have to be on the same position, what joints
are important depends on the motion. So in the reaching motion which is discussed later we are
going to set both the ankles and the wrists to be on the same position. For a walking motion only
the feet are important. Another type of constraint is where the joint is constraint to the original
position at an important moment. We are going to test this on the reaching motion and in this
motion an important moment is the point where the joint at the farthest point during the reach.
The final type of constraint is where the distance to the important moment is interpolated. It is
expected that the smoothing supplied by the B-spline is not enough to cover the distance between
the joint position in the scaled motion and the joint position in the original motion. Therefore
we try to control the distance covered by the joint per time by setting distance constraints before
the important moment. This distance is interpolated to zero over the approaching time. For
different constraints it is hard to predict the quality based on the type of constraint. For the
bone_ original _position constraint the path of the bone will be smooth, but it will most likely not
be the path that another character would take. There is a risk for snapping behaviour when using
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the key__moment constraint. Although the B-spline guarantees a smooth path, the velocity could
still be too high for it to be realistic. The interpolated distance constraint can control this speed,
but the risk of this method is that the bone will always remain on the edge of region, which could
lead to unnatural motion.

Motion performance

The next main question is: How does it perform with different motions? To answer this question
we analyse two types of motions. One without global translation and one with global translation.
In motions with global translation the speed of the character can be perceived as slow. While
this problem does not occur for a motion without global translation. While maybe in a motion
with global translation small changes could be less obvious. In the case of the different motions,
the walking motion will be better solvable than the reaching motion. This is because the walking
motion is only constrained at the feet while the reaching motion is constrained at the feet as well
as the hands. When only the feet are constrained, it is most likely only the hips, legs and feet are
adjusted and the upper body remains the same.

Scaling limits

It is also not clear what the limits of the framework are. To what extent can a character be scaled
and retargeted properly? Can anything be said about uniform scaling in relation to non-uniform
scaling? This is going to be tested with the constraint to keep the joints at the same position
during the whole motion. Keeping the joints on the same position could result in very different
poses with great scaling. With smaller difference from the original motion the joints in the limbs
can correct for the difference in position, but with larger scalings the torso has to be adjusted to
correct for the difference between the original and the scaled joint position. This could lead to a
different perception of the motion. The expectation is that as well the solvability as the naturalism
of the motion will reduce as the difference in scaling increases. This can be explained by looking
at the optimization function. A larger difference in scaling will result in larger differences in joint
angles. Those joint angles result in larger changes in the parameter vector. The optimization
function measures the quality of the motion by measuring the amount of change in the parameter
vector. So the quality decreases when the difference in scaling increases. If larger changes have to
be made to the joint angles in the parameter vector the gradient to the parameter vector is a bad
prediction of the amount of change needed to reach the destination. Resulting in more iterations
before reaching the destination.

7.1.2 Variables

In this section the variables of this experiment are discussed. First the controlled variables are
discussed, which will remain constant during the experiment. The next section is a discussion of
the input variables and finally the output variables.

Controlled variables

This section describes the controlled variables. The control parameter configuration, the threshold
used for the solving and the sets for the input parameters are described here.

Control parameters configuration The control parameter configuration is the definition of
the variables in the control parameter vector. This configuration has a big influence on the result
of retargeting. Having too many parameters leads to a problem that is harder to solve. Too few
parameters will lead to a bad quality or insolvablity. On the other hand the definition of the
control parameter can also control the naturalism of the motion. A parameter that cannot have
a value that exceed joint limits will prevent a motion from ever being in an impossible pose. The
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parameter configuration that is used for the experiments defines the skeleton in Euler joint angles.
All joints have three rotational degrees of freedom. The root is defined in three positional degrees
of freedom. The joints that are used in the control parameter vector are: v15, vll, vt1, r_shoulder,
r_elbow, I__shoulder, 1 _elbow, r_hip, r_knee, 1 _hip and 1_knee.

Thresholds By using a threshold, the experiment is guaranteed to finish. The running time is
limited to 24 hours and the constraint values all have to be between -1.5 and 1.5 cm. For distance
constraints this means Euclidean distance and for position constraints this means distance per
axis.

Motion set The motions we are going to use are a walking motion and a reaching motion.

Constraint set The constraints that we are going to use are: bone always on original position
(bone_ original position), bone on original position at key moment (key moment), bone distance
smaller when closer to key moment (key moment_ interpolation). The first kind of set is simple,
for a set of bones (depending on the motion) the bones have to be on the same position as they are
with the original scaling. The second kind of constraint set keeps a bone at its original position
at a key moment, key moments are footsteps and grasp moments. The last kind of constraint set
linearly interpolates the distance over time towards the key moment. So additional constraints
are added to the key__moment constraint making sure the bone is within a certain distance from
the target bone. The distance for the key moment__interpolation is 50 ¢cm in 2 seconds.

Character scaling set We are going to use two kinds of scaling. The first is uniform scaling,
which only influences the environment. The other is incremental scaling, where an additional
scaling factor is applied on every level of the skeletal hierarchy. The incremental scaling is used
to check for varying inter-body relationships. For the uniform scaling we are going to use the
following scalings (0.5, 0.8, 1.1, 1.4, 1.8). For the non-uniform scaling the following scalings are
used (0.7, 0.9, 1.1, 1.3).

Input variables

This section lists the input variables.

Constraints One of the constraints from the constraint set is used.

Motion One motion from the motion set is used.

Character scaling One form of scaling, either uniform or non-uniform is used.

Output variables

This section describes the output variables.

Video The tests ran for this experiment will result in a motion. To analyse this motion, the
motion is rendered on a character and a video is made from this virtual character performing the
motion.
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7.2 Experiment setup

This section discusses how the experiments are executed. The experiments will be executed using
our own implementation. This implementation is made in RAGE (Realtime Animation and Game
Engine). This engine is C++ based and uses Ogre3d for rendering. Python is used for high level
code. Most of the spacetime solver is written in C++. All data structures and functions are
defined in C++4. Python is only used as a datafile for the definition of constraints and scalings
and to play the animation once it has been solved. After the definition of the constraints the
only communication between python and C++ is to start the solving. NLopt [5] is used for the
constrained non-linear optimization. This is running on an Intel core i7-3610QM 2.3 GHz CPU
with 8 GB ram and a NVIDIA GeForce GT 650M on Windows 7. In table 7.1 the configurations
are shown for the executed experiments.

A set of configurational parameters is used to configure the solver, in this paragraph those
are discussed. Choices for those parameters are made because earlier test runs showed they
performed best. NLopt is configured to use the LD__ AUGLAG (Local Gradient-Based Augmented
Lagrangian) algorithm. The bounds for the values are set from -360 to 360, this is to limit the
rotations. In practice this also works for the translation of the root but this is in meters and none
of the tested case take such a large area. The rotation limits could be tweaked more and be using
the same values as the constraint functions for joint limits would. One NLopt iteration is limited
to one hour which gave good results during test runs. Other stopping criteria are if the constraints
have gone below a value of 0.015, since this gave good results while still able to solve during test
runs. Since all constraints are position constraint and those are expressed in meters is means 1.5
cm. Furthermore the xtol rel and ftol rel are set to and arbitrary value of le-4. If either the
optimization function(ftol_rel) or the parameter vector(xtol rel) do not improve more than the
set value the algorithm is allowed to stop, the exact meaning of this depends on the algorithm.
The algorithm is allowed 24 NLopt iterations to allow it for a long time to solve while still begin
able to run all experiments within a reasonable timespan. The interval between B-spline control
points is 0.125 seconds as suggested in the paper by Gleicher. The interval between constraints is
0.13, so only one constraint of the same type exists per control point and rounding errors of there
being more constraints per control point are prevented.

The clips recorded of the experiments are analysed. A general inspection of the motion is made,
with the focus on the plausibility of the motion, rated by the author. The motion is rated as if the
retargeted character has been asked to do the same as the original character did. Moreover the
balance, penetration, body part path, acceleration and reaching the goal are inspected visually.
The visual inspection is done because some properties are hard to express in discrete values and
because of time constraints on the project, time invested in checking those point could also be
invested in preventing them from occurring. Balance inspection is done visually, this is expressed
in four different values: yes, plausible, unlikely and no. Yes means that there is not a doubt about
whether it is in balance, plausible means it could be in balance, unlikely means it is not sure
that it is not in balance but it does not seem like a natural balance pose and no is an obvious
imbalance. Furthermore the moments of flight, when the character is not touching the ground, and
the penetration with the ground and self penetration by the character are considered for rating
the quality of the motion. The quality rating is depended on the depth of penetration or the
height of the flight. The body part path test checks for implausible paths of body parts. For the
acceleration test the author rates if the motion has implausible accelerations. The motion is also
tested visually if the goal is reached, this means the hand reaches the right position in animation
reach_ low. For every tested motion it is mentioned whether it is solved within the 24 hours limit
and if it did not solve what the remaining distance was. This distance should be zero for the
motion to be solved. This distance is the sum of absolute differences from the threshold of the
constraints.
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’ id \ scaling \ uniform scaling \ motion \ constraints
01 1] 0.5 true reach_low | bone_ original position
02 | 0.8 true reach_low | bone_ original position
03 | 1.1 true reach_low | bone_ original position
04 | 1.4 true reach_low | bone_original position
05 | 1.8 true reach_low | bone_original position
06 | 0.7 false reach_low | bone_ original_position
07 1 0.9 false reach_low | bone_ original position
08 | 1.1 false reach_low | bone_ original_position
09 | 1.3 false reach_low | bone_original position
10 | 14 true partl bone_ original _position
11| 14 true reach_low | key moment
12 | 1.4 true reach_low | key__moment_ interpolation

Table 7.1: Table showing the experiment configurations

’ id | difference \ hours \ balance \ flight \ mesh penetration path acceleration \ goal ‘
01 | 0.452511 | 24 plausible | yes no detour | head no
0210 plausible | yes no natural | natural yes
0310 1 yes no ground natural | natural yes
04 | 0.0121173 | 24 unlikely | no hand->body/leg, ground | hips hips yes
050 21 unlikely | no hand->body/leg, ground | hips hips yes
06 | 14.5786 24 plausible | yes no natural | natural no
07 | 0.876182 | 24 no no no natural | natural no
0810 1 no no hand->leg, ground natural | natural yes
090 1 unlikely | no ground, hands->legs elbow elbow yes
10| 0 1 yes no no natural | natural yes
1110 1 plausible | no no hand touch yes
12 | 6.63005 24 plausible | yes ground natural | natural no

Table 7.2: Table with annotations while inspecting the experiment results, explanation of the

values is done in the introduction of this chapter

7.3 Results

This section discusses the results of the experiments. First an overall analysis of the experiments
is made. The section after that handles all individual motions and points out specifics per motion.
Finally the research questions are answered with the results from previous sections.

7.3.1 Overall analysis

In Table 7.2 remarks are shown that are made during the inspection of the video clips.

motions either are in flight or have ground penetration. Very small penetration or flight, as even
can be seen in the original motion is not annotated as such. Mesh penetration start occurring with
up-scalings. The ground penetration even occurs when the retargeting is solved, this indicates that
the configuration is not right. The configuration allows for 1.5 cm of difference from the original
position while it is more than 1.5 cm. An example of ground penetration can be seen in Fig. 7.1.
The body-part path is natural in most cases, except for the large scalings and the key__moment
constraint. If a chain of joint angles that has to be adjusted passes a single limb the body path gets
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Figure 7.1: Two shots from experiment 03, (left) without ground penetration (right) with ground
penetration

Figure 7.2: Unnatural hip position in experiment 04
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Figure 7.3: The poses created in experiment 01 do no longer look like poses in the original motion
(right)

Figure 7.4: Good looking pose in experiment 02, (left) retargeted character (right) retargeted
character with original, wrist and ankle positions are the same

unnatural. This is the case with the unnatural hips that are uniformly scaled with scalings: 1.4
and 1.8, as can be seen in Fig. 7.2. The fully stretched arm is not able to reach the goal position if
the shoulder remains in the same position. With smaller scalings this has the effect of the character
not being able to reach the goal but the body parts no not start to take odd paths. With the
key__moment constraint there is a clear deviation from the path when the constraint gets active.
The unnatural paths generally also have unnatural accelerations. The visual reaching of the goal
is correlated with the solving, only for experiment 04 the goal seems reached while retargeting
is not solved, but the remaining distance of 0.0121173 explains the visual misinterpretation. In
almost all cases retargeting solves in one iteration or it won’t solve at all. The only exception
here is experiment 5 with 21 iterations. It is exceptional experiment 4 did not solve at all but
experiment 5 did while it has a larger scaling. It is hard to explain this difference, it could have
to do with another process taking resources while experiment 4 was running. Another point is
the balance between the optimization function and the constraint function in NLopt is not well
understood, maybe with a larger initial difference on the optimization function the optimization
function is evaluated less. For the other experiments it seems like the solving time increases with
the initial difference, but no statement can be made about this exact relation since it is either
solved in an hour or not solved at all.
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Figure 7.5: Good looking pose in experiment 03, (left) retargeted character (right) retargeted
character with original, wrist and ankle positions are the same

Figure 7.6: Although the arms in experiment 07 are wide the pose is not as bad as the similar
pose in experiment 01 (see Fig. 7.3)
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Figure 7.7: Imbalance in experiment 09

Figure 7.8: Strange elbow position and mesh penetration
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Figure 7.9: Good looking result of a walking motion
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Figure 7.10: The difference between the position of the original wrist and the scaled wrist, before
the constraint becomes active, this distance is covered in 0.25 seconds
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7.3.2 Per motion analysis

The properties that are handled now do not totally reflect the quality of the resulting motions.
Therefore the motions are now handled on quality. Motion 01 does not differs very much from the
original motion, it seems like a very expressive version of the motion (see Fig 7.3), furthermore
the upper torso contains rotation which does not exist in the original motion. This is due to the
cost of the rotation of the torso being less than adjusting the arms further. Motion 02 and 03
are very similar to the original motion as can be seen in Fig 7.4 and Fig 7.5, but in both motions
the feet move when the upper body is moving. The oscillations created by the moving feet seems
worse for motion 02. The similarity of the motion can be explained by the initial difference being
smaller. The oscillation in the feet is the result of the translation of cost of translation the root
being lower than adjusting joint angles. In motion 04 and 05 the hips move differently from the
original motion. The hips move to the back and the front and to the left side as earlier was shown
in Fig 7.2. Although there are changes between back and front it always tends to the right side of
the character. The right hand is also the picking hand. This effect is worse with motion 05 where
the scaling is larger. This effect is caused by the body having to correct for the distance between
the shoulders and the feet. Although the scaling on motion 06 causes the character to look very
differently from the original character, the motion itself remains more the same than with the
small uniform scaling, but the difference from the solution is greater. This could have to do with
the optimization function having a larger tribute to the final result than the constraints, since
the constraints are not solved. Motion 07 looks like a plausible motion although it has the same
problem as motion 01 where the arms are not really in a resting position but very wide, as can be
seen in Fig 7.6. But in opposite to the motion 01 it has no strange oscillations. Although it does
not reach the goal position the attempt to reach it looks good. It could be that strange oscillations
start occurring in a later stage of the solving. That is why motion 01 is close to the goal and
why motion 06 also has a better looking result. In motion 08 the oscillation when reaching looks
small, but it is obviously off balance which makes it a very unbelievable motion. The non-uniform
scaling changes the influence of a difference in rotation, causing it be off balance earlier. The
character in motion 09 has very unbelievable proportions in this stage the constraints of keeping
the hands and feet on the same position do not work any more. The constraints are too close to
the body cause all kinds of mesh penetration. The character also leans backward while performing
the motion just like motion 09 which makes it unlikely that it is balanced as show in Fig 7.7, but
because of the large scale of the character the balance is no longer the main disturbing feature.
The elbow also takes odd positions and there is a lot of mesh penetration occurring (see Fig 7.8).
The walking motion 10 looks the best of all motions, this is because it has constraints only on the
feet, a resulting pose is shown in Fig 7.9. It is noticeable that the steps taken by the character
are too small but no strange artefacts occur. In motion 11 a discontinuity is noticeable when the
constraint becomes active, but the rest of the motion is better than the others. The difference
between the hand positions in the original character and scaled character is shown in Fig 7.10. No
oscillation of the feet is noticeable. Motion 12 did not completely solve. Here the feet move while
reaching.

7.3.3 Answering the research questions

With those results it is possible to answer the research questions. These questions are answered
in the same way they are formulated. First we discuss the constraint definition, followed by the
motion performance and finally the scaling limits.

Constraint definition

When comparing the different constraints (bone_ original position, key__moment, key moment__interpolated)
it seems the key moment constraint works better, although the moment of touch is clearly visi-
ble the overall pose of the body is better. The key moment_ interpolated constraint was expect
to perform better, because it was less constraint than bone_original position and had to make
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smaller steps per time step than key moment, but nevertheless it was unable to solve while
the other two were. This could indicate an error in the definition of this constraint, for as well
the bone_ original position constraints as the key moment constraints the constraint distance is
always zero while with the key__moment__interpolated the distance is larger depending on time.

Motion performance

If we compare the walking motion with 1.4 uniform scaling to the reaching motion we can definitely
say that the walking motion is easier to solve. As expected this has to do with only the foot
constraint being applied, instead of as well the feet as the wrists. Only solving foot constraints
is much easier than solving as well the hand constraints as the foot constraints. For the walking
motion this is actually just a footstep solver and the scaling only influences the difference for the
footsteps, while for the reaching motion the whole body has to be adjusted.

Scaling limits

Scaling seems to influence the solvability of the motion. Although scaling to a larger character
seems to be easier to solve than solving to a smaller character. In the case of incremental scaling
this effect shows best. This can be explained by the reachable space by the limbs. It is easier to
solve a constraint with joint angles that only effect that constraint. If joint angles that influence
multiple constraint have to be adjusted the balance has to be found between the constraints.
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8 Conclusion

This chapter draws a conclusion from the results in section 8.1. It also discusses what is possible
as future work in section 8.2.

8.1 Conclusion

In this research we have seen a method for retargeting and all aspects needed to implement it.
The experiments show that using trivial constraints is not enough to do retargeting, being able
to solve constraints does not solve the retargeting problem, defining the right constraints also
requires attention. This report shows more detail on some components of retargeting using space
time optimization. Using a set of predefined constraint type is easy to use for an animator, but
because of the nature non-linear constraint optimization it is hard for an animator to fix errors if
a motion is no longer able to solve. Although the focus has not really been on performance we
have not been able to achieve results anywhere close to interactivity. This could be improved by
a solver that can solve in fixed time steps, this is also needed for practical use since the memory
usage grows quadratically with the length of the motion. In the experiments we have seen that for
the smaller scalings 1.1 and 0.8 good results are obtained. These kind of scalings are reasonable in
a usual character editor in games where the height of the character can be adjusted. Nevertheless
if the wrists and feet were corrected with IK-chains on the arms and legs similar results would be
achieved. Adjusting the motion with a single equation causes it to be globally optimized, but this
also causes errors to be global as can be seen with the moving feet in the reaching phase.

We have chosen to work on this method because of its generality, and because everything can
be solved if a constrained definition can be made. This generality also makes it more complex.
There are many possible implementations and they do not all give the same result. The method is
also low level, making it hard to implement functionalities like, take an additional step. Because
the algorithm is low level maybe this generality is not needed, maybe at a low level a solver for a
discrete set of options suffices.

8.2 Future work

This research has risen many new questions. In this section we will provide suggestions on im-
proving the method as suggested by Gleicher [2] and suggestions are made on how retargeting can
be used in real time or even online.

What is the best kind of interpolation to use? Currently the B-spline is used but as shown in
section 6.5 this is not the most trivial choice. The B-spline is computationally heavy and causes
the control vector to have values that have less meaning. Using a method of interpolation that
passes through the control points would have understandable control point values. This could be
important for understandability of the algorithm and providing feedback to the user.

Solving now happens for the entire motion at once, it would be better to solve for a fixed
timespan, what is the best way to do this? To make this method real-time or maybe even online.

47



It is needed that solving can be done for fixed time spans. For this the impact of constraint should
be researched. A start with this is already made in section 6.4, where we showed the influence of
a control point on a B-spline is limited.

Solving for a fixed time span is just one of the steps that are needed for online retargeting.
It is also hard to predict the upcoming constraints. With hindsight the method by Ho et al.[4]
seems promising for this. Creating an interaction mesh for all object close to the character would
provide for a generic constraint, it would still be unknown what the desire distance between those
object is.

What constraints have to be defined? We have used simple point constraint on the end effec-
tors, but better constraint definitions can probably be made. Another question is when do the
constraints have to be applied? It would be useful to have an automated method to define the
constraints. Although manually defining constraints is easier than key framing its still a labour
intensive job. Moreover constraints cannot always be defined beforehand.

Research could also focus on defining different levels of retargeting. There are low level con-
trollers to do the inverse kinematics part, but there should also be higher level controllers to decide
if the character should take another step or take an additional action. Spacetime constraints as dis-
cussed in this thesis are best suitable for doing the low level part. They can solve many positional
constraints and limits on joint angles etc., but defining constraints in such a way an additional
step is taken to solve the constraint is very hard.

How do weights have to be set? In section 4.2 the different kinds of weights have been discussed
but this does only offer a structure but no values. It is not trivial to define the weight balance
between different angles. It is even harder to define a balance between distance and angles, because
it depends on the constraint and other angles of other joints, so research should be done on what
is the best way to incorporate the constraints in the weights for the parameter vector.

What is the best type of control vector to use? Currently the control vector consists of a
limited set of joints which are configured with joint angles as stated in 3.3 but this is just one of
many types. Other types of angle definitions can be used or other control vectors entirely. As
seen in the related work some use a control vector based on particles with distance constraints.
This splits the control vector in more individual components but requires more constraints solving.
Maybe other control mechanisms exist that provide more independent controls.
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