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Abstract

For algebraically closed fields, one cannot define characteristic zero by means of a
single sentence in the language of rings. However, for global fields (i.e., finite sepa-
rable extensions of Q or Fp[t]) characteristic zero is definable. In other words, there
is a sentence in the language of rings which is true in a global field precisely when
that global field has characteristic zero. In fact there are many subsets of the set
of global fields which have a first-order definition and they correspond to the arith-
metically definable subsets of the natural numbers. It turns out that characteristic
zero is also definable for infinite finitely generated fields. The characterization of
all subsets of infinite finitely generated fields is still an open problem.
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Introduction

Mathematics is the art of finding proofs for statements about a given class of objects.
For example, one may take the class of objects to be the set of all platonic polyhedra
(this set consists of a tetrahedron, a cube, a octahedron, a dodecahedron and an
icosahedron). It is easy to see that the statement “the number of faces equals six”
is true for a cube, but false for any other polyhedron in this class. Euler discovered
that the statement “the number of faces minus the number of edges plus the number
of vertices equals two” is true for any of these polyhedra. We see how statements
(or properties) interact with the objects from the class. We will investigate this
interaction for some other, more involved, classes of objects.

In this thesis we will consider three classes of objects, namely

- countable algebraically closed fields;

- global fields;

- infinite finitely generated fields.

The objects in each of these classes are fields. A field is a set F , in which we can
add (+) and multiply (×) any two elements, with two special elements 0 and 1 such
that some elementary properties about +, ×, 0 and 1 hold. See Definition 1.1.1
and Definition 1.1.3 for the precise definition of these properties. An example of a
field is the set of rational numbers with the usual addition and multiplication and
the two special elements 0 and 1. For the precise definition of the above classes we
refer to Definition 1.11.11, Definition 2.1.1 and Definition 4.2.1.

Statements about a field are expressed in a mathematical language, namely the
language of rings. The language of rings is the set of sequence of symbols from the
following (infinite) list

0, 1,+,×,=,⊥,∧,∨,→,¬,∀,∃, ), (, x, y, z, . . . .

An example of a statement in this language is

∀x(¬(x = 0)→ ∃y(x× y = 1))

which means (when interpreted in a field F )

“for all x in F we have that if not x = 0 then there exists a y in F such that
x× y = 1”

Clearly not all sequences of this symbols give a statement in the language of rings.
Using the grammar of the language of rings, it can be seen whether a sequence of
symbols is a well formed statement. This is defined explicitly in section 3.1.

Goals. Our goal is to investigate, for each of these classes of fields, the connection
between the objects and its properties by means of the following three questions.

1) Is it decidable whether an arbitrary statement is true for a given object?

In this question we ask if there is a procedure which enables us to calculate whether
a given statement is true for an arbitrary object of the class. This procedure should
be independent from the statement.

2) Which subclasses can be distinguished by a single statement?

1
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As seen in the example of the platonic polyhedra, the cube can be distinguished
from any other polyhedron by the statement that the polyhedron has six faces. We
now ask for which subclasses there exists a statement which is true for object if and
only if that object is in that subclass.

If every single object can be distinguished by a single statement, then we get a
positive answer to the following question.

3) Are two objects in a class with the same properties equal?

In this question we ask ourselves whether an object is completely determined by its
properties. It could be the case that two objects are nearly the same, but that one
cannot express their difference in the language. We see that we need a very precise
definition of our language. This language will be the language of rings.

Structure. The first thing to do is to define what is meant by these three different
classes of objects: countable algebraically closed fields, global fields and infinite
finitely generated fields. This is done in chapter 1 and 2. In chapter 1 we introduce
the basic commutative algebra which is needed in order to define these classes. Then
in chapter 2 we study the properties of a global field.

After defining the objects we focus in chapter 3 on the statements about these
objects. We first define what is meant by a statement, and also when it is true for
a given object. We will prove some theorems (Theorem 3.9.8 and Corollary 3.10.8)
towards the answer of the first question.

In chapter 4, 5 and 6 we will discuss the above questions for the countable
algebraically closed fields, global fields and infinite finitely generated fields. There
chapters are all independent from each other.

Own work. The major results of this thesis are already known for about thirty
years or more. My work consists mainly of bundling those results into a single text.
As each text has its own way to present the material, the bundling required to
reformulate the results and fill in the details that are left unmentioned.

In this thesis introduced some new notation (like OK, K) and used the phrase
‘non-integral t in a global field’ instead of ‘non-constant t in a function field’ (c.f.,
section 4 of [14]). In this new notation, I extended proofs, which applied to number
fields, to apply for all global fields (e.g., Lemma 2.3.5). I also generalized the notion
of a (rank 1) valuation (compare Definition 2.5.5 with page 2 of [3]) and showed that
every valuation on a global field is discrete. This more general approach enabled
me to prove that the valuation rings of a global field admit a first-order definition
(c.f., Corollary 2.5.16 and Lemma 5.3.1). This fact was assumed to be well-known
by Rumely (c.f., page 204 of [14]).

Inspired by the questions of Poonen [11], I asked myself whether I could char-
acterize the definable subsets of isomorphism classes of global fields. It turned out
to be possible and I proved this in 5.8.

Prerequisites. The reader should have some basic knowledge about mathematics,
say at bachelor level. More explicitly this means that you should be be familiar with
the following:

- Elementary set theory : countable sets, equivalence relations/classes, total or-
ders);

- Complex numbers;

- Elementary theory of metric spaces; convergent sequences, limits, Cauchy
sequences.

- Linear algebra: vector spaces, linear maps, bases, matrices, determinants;

- Elementary group theory : normal subgroups;

- Elementary number theory : Bézout identity, quadratic reciprocity law, Leg-
endre symbol.



Chapter 1

Commutative Algebra

A ring is a set in which you can add, subtract and multiply and a field is a ring
in which you can divide. The goal of this chapter is to give an introduction into
the theory of rings which will be used in the next chapters. To be more precise,
consider the diagram

K L

R S

(1.1)

where all maps are inclusions of rings, L/K is a field extension of finite degree, R
is a Dedekind domain, S is the integral closure of R in L. In this setting we will
study the arithmetic of the ring S.

The structure of this chapter is as follows. In section 1.1 we recall the definition
of rings and fields, which are the objects in diagram (1.1). Then in section 1.2
and 1.3 we investigate some basis properties about the arithmetic in such rings:
in section 1.2 we show the connection between divisors of zero in a ring and the
existence of a field extending the ring. As we are considering diagram (1.1), we
restrict our attention to integral domains, which are rings for which there exists a
field extending it. Next, in section 1.3 we are considering factorizations of non-zero
elements. We will conclude that an element in a general integral domain does not
always admits factorization, because some elements in some integral domains are
infinitely divisible or factorization is not unique. However, not all is lost if we pass
to ideals, which generalizes the concept of an element. This is part of section 1.4.
There we recall the definition of an ideal and show how we can do arithmetic with
them, i.e. we define a product and define divisibility of ideals. Then in section 1.5
we give a condition such that no ideals are infinite divisible. Although ideals are
already helpful, it turns out that ideals are not general enough. We generalize an
ideal using modules, which are discussed in section 1.6. This will be used in section
1.10 to define a fractional ideal. We then focus on the constructions used in the
rings R and S in diagram (1.1). We first study, in section 1.7, the properties of
the integral closure and then give a quick introduction to local domains in section
1.8. These constructions allow us to describe the two kinds of rings which are most
important for us: valuation domains and Dedekind domains which will be discussed
in section 1.9 and 10 respectively. For now it seems that these two rings have little
to do with each other. Finally we investigate the extension L/K of fields. First we
examine the properties of a field extension, which is done in section 1.11.

1.1. Rings and homomorphisms

In this section we will define the most basic notions used in diagram (1.1), i.e., the
notion of rings, subrings and fields and homomorphisms between them.

Rings and fields. Let us start with the definition of a ring.

Definition 1.1.1 (Rings). A ring is an ordered tuple (R,+, ·, 0, 1) consisting of a
set R, two binary functions +, · and two (not necessarily distinct) elements 0, 1 ∈ R
such that

3



4 1.1. Rings and homomorphisms

1) (R,+, 0) is an abelian group, i.e.,

a) for all x, y, z ∈ R we have x+ (y + z) = (x+ y) + z;

b) for all x ∈ R we have x+ 0 = x;

c) for all x ∈ R there is a y ∈ R such that x+ y = 0;

d) for all x, y ∈ R we have x+ y = y + x;

2) · is associative, i.e., for all x, y, z ∈ R we have x · (y · z) = (x · y) · z;

3) · distributes over +, i.e., for all x, y, z ∈ R we have x · (y + z) = x · y + x · z;

4) R is unital , i.e., for all x ∈ R we have x · 1 = x;

5) R is commutative, i.e., for all x, y ∈ R we have x · y = y · x. 4

For notational convenience we will denote S = (R,+, ·, 0, 1) by R (e.g., we say
that Z is a ring). This allows us to write “let R be a ring and x ∈ R”. Without this
convention this would mean that x is a set or a mapping or a constant. Furthermore
the dot · is usually omitted (e.g. we write xy instead of x · y).

Example 1.1.2 (Trivial ring). Let R be a ring consisting of one element x. Then
we have 0 = 1, since 0, 1 ∈ {x}. Let R be a ring with 0 = 1. Then we have
x = 1 · x = 0 · x = 0 for all x ∈ R and hence R = {0}. In this case we call R trivial
and otherwise R is called non-trivial. ♦

Definition 1.1.3 (Fields). A field is a ring R such that

7) R is non-trivial, i.e., 1 6= 0;

8) for all 0 6= x ∈ R there is a y ∈ R such that xy = 1. 4

The second property in the definition of a field may be stated as: every non-zero
element x of R is invertible. Indeed the y in the definition acts as the inverse 1/x
in R.

We now list some examples of rings and show some important constructions of
rings out of a given one.

Example 1.1.4. The set of integers Z with usual addition and multiplication and
interpretation of 0 and 1 is a ring, while the set of natural numbers with zero N is
not.

The set of rational numbers Q, real numbers R and complex numbers C with
usual addition and multiplication and interpretation of 0 and 1 are fields under the
standard addition and multiplication. ♦

Example 1.1.5 (Number ring). Let m be an integer. The subset

Z[
√
d] = {a+ b

√
d ∈ C | a, b ∈ Z}

of the complex numbers C with induced addition and multiplication form a ring.
This ring is an example of a number ring . ♦

Example 1.1.6. Let m be a positive integer. If x, y ∈ Z are integers, then x is
congruent to y modulo m (notation: x ≡ y (mod m)) if and only if m | x − y.
This defines an equivalence relation on Z and the set Zm = {0, . . . ,m − 1} is a
full set of representatives. Addition and multiplication in Z induces addition and
multiplication modulo m in Zm: for all x, y ∈ Zm there are unique s, p ∈ Zm such
that x+ y ≡ s and xy ≡ p modulo m. Therefore Zm is a ring. If m is prime, then
Zm is a field: for every non-zero x ∈ Zm the greatest common divisor of x and m
is 1. Bézouts identity gives a, b ∈ Z such that ax+ bm = 1, which reduces modulo
m to ax ≡ 1 modulo m. If p is prime then we write Fp := Zp. ♦
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Example 1.1.7 (Factor ring). We mimic the previous example in a general ring R.
Let R+ = (R,+, 0) denote the additive group. An ideal of a ring R is a subgroup
a < R+ such that ra ⊆ a for all r ∈ R. An ideal a of R is called proper if a 6= R.
In section 1.4 we further investigate ideals. Let a be a proper ideal of a ring R. If
x, y ∈ R, then x is congruent to y modulo a (notation: x ≡ y (mod a)) if and only if
x− y ∈ a. This defines an equivalence relation on R and the equivalence classes are
denoted by x+a, x ∈ R. The factor ring of R by a is the set R/a = {x+a | x ∈ R}
of all equivalence classes together with the addition and multiplication defined by
(x+ a) + (y+ a) = (x+ y) + a and (x+ a) · (y+ a) = x · y+ a. It is easy to see that
R/a is a ring. ♦

Example 1.1.8 (Product ring). Let R and S be rings. Then the set

R× S = {(r, s) | r ∈ R, s ∈ S}

together with componentwise addition and multiplication (i.e.,

(r, s) + (r′, s′) = (r + r′, s+ s′) and (r, s) · (r′, s′) = (r · r′, s · s′))

is a ring. This ring is called the product ring of R and S. ♦

Example 1.1.9 (Polynomial ring). Let R be a ring and X be a symbol. Then a
polynomial f in X with coefficients in R is the sum

f =
∑
i≥0 aiX

i

where ai ∈ R and ai 6= 0 for finitely many i ≥ 0. The elements ai are called the
coefficients of f . The element a0 is called the constant coeffient. If all coefficients
are zero, then f is called zero (notation: f = 0). In this case the degree of f is
−∞ (notation: deg(f) = −∞). If f is a non-zero polynomial, then the element ad,
with d = max({i | ai 6= 0}) the degree of f (notation: deg(f) = d), is called the
leading coefficient of f and if ad = 1 then f is called monic. Let f =

∑
i≥0 aiX

i

and g =
∑
i≥0 biX

i be polynomials. Then

f + g =
∑
i≥0(ai + bi)X

i f · g =
∑
k≥0

(∑
i+j=k aibj

)
Xk,

define the sum and product of f and g. The polynomial ring in a symbol X over a
ring R is the set

R[X] = {
∑
i≥0 aiX

i | ai ∈ R, ai 6= 0 for finitely many i}

of all polynomials in X (with coefficients in R) with respect to this sum and product.
Notice that this sum and product are well-defined, i.e., only finitely many coefficients
are non-zero. Furthermore we will choose the symbol X implicitly (e.g. we will not
write “Let R be a ring and X a symbol and consider R[X]” but rather “Let R be
a ring and consider R[X]”) ♦

Example 1.1.10 (Group ring). The group ring R[G] of a group G over a ring R
is the set

R[G] = {
∑
g∈G agg | ag ∈ R, ag 6= 0 for finitely many g}

with addition and multiplication of r, s ∈ R[G] defined by

r + s =
∑
g∈G(ag + bg)g r · s =

∑
g∈G

∑
xy=g(axby)g ♦

Homomorphisms. We now introduce the concept of a homomorphism, which is
a structure preserving map between rings.

Definition 1.1.11 (Homomorphisms). Let R and S be rings. A map f : R→ S is
a (ring) homomorphism and only if if for all x, y ∈ R we have

1) f(1) = 1;
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2) f(x+ y) = f(x) + f(y);

3) f(xy) = f(x)f(y).

When R equals S, then a homomorphism is also called an endomorphism. 4

Example 1.1.12. The following maps are homomorphisms:

1) Let A be a ring. The identity map idA : A→ A is an endomorphism.

2) Let f : A → B and g : B → C be homomorphisms of rings. Then the
composition g ◦ f : A→ C given by x 7→ g(f(x)) is a homomorphism.

3) Let R and S be rings and s ∈ S. The evaluation homomorphism/map es :
R[X]→ S given by P (X) 7→ P (s) is a homomorphism.

The reader may check that the axioms of a homomorphism are satisfied. ♦

Using this example we may define the following:

Definition 1.1.13 (Isomorphisms). A homomorphism f : R → S is a (ring) iso-
morphism if and only if there exists a homomorphism g : S → R such that g◦f = idR
and f ◦ g = idS . In this case R and S are called isomorphic (notation: R ∼= S). A
(ring) automorphism is a isomorphism f : R→ R. 4

Now, at the end of this paragraph, we will focus on an important connection
between rings and homomorphisms.

Definition 1.1.14 (Kernel and image). Let f : X → Y be a map of sets. Then
the image of f is set f(X) = {f(x) | x ∈ X}. The kernel of f is the set ker f =
{x ∈ X | f(x) = 0}. 4

It is easily seen that the image of a homomorphism is a ring and that the kernel
of a homomorphism is an ideal (c.f., Example 1.1.7). The following theorem shows
a connection between the kernel and the image.

Theorem 1.1.15 (First isomorphism theorem). Let f : R→ S be a homomorphism
of rings. Then

R/ ker(f) ∼= f(R).

Proof. Consider that mappings

f̄ : R/ ker(f) −→ f(R), x+ ker(f) 7→ f(x)

and
ḡ : f(R) −→ R/ ker(f), f(x) 7→ x+ ker(f).

Note that for all x, x′ ∈ R the following statements are equivalent:

x+ ker(f) = x′ + ker(f) ⇔ x− x′ ∈ ker(f) ⇔ f(x− x′) = 0 ⇔ f(x) = f(x′).

This shows that both f̄ and ḡ are well-defined maps. It is trivial to check that both
f̄ and ḡ are homomorphisms and that for all x ∈ R we have ḡ(f̄(x + ker(f))) =
x + ker(f) and f̄(ḡ(f(x))) = f(x). We conclude that f̄ and ḡ are isomorphisms,
which proves the theorem.

Subrings. Although rings and homomorphisms are interesting enough to study
them one by one, it is fruitful to consider the extension of rings. Notice that the
focus lies on interplay between the two rings rather then the arithmetic of a single
ring.

Definition 1.1.16 (Ring extensions). Let (R,+, ·, 0R, 1R) and (S,⊕,�, 0S , 1S) be
rings. Then R is an extension of S (notation: R/S) or S is a subring of R if and
only if

1) S ⊆ R;

2) for all x, y ∈ S we have x⊕ y = x+ y and x� y = x · y;
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3) 0S = 0R;

4) 1S = 1R.

If both R and S are fields, then R/S is called an extension of fields. 4

We list some examples, non-examples and constructions of extensions of rings.

Example 1.1.17. The rationals Q and Z[
√
m] are extensions of the integers Z. ♦

Example 1.1.18. Not every subset S of a ring R which is a ring with respect to
the induced operations is a subring, since possibly 1S 6= 1R. If R is a non-trivial
ring and S is trivial, then we find 1S = 0S = 1S 6= 0R. Hence, the trivial ring is
never a subring of a field. A less obvious example is R = Z/6Z and S = {0, 2, 4},
with 0S = 0 (mod 6) and 1S = 4 (mod 6). ♦

Example 1.1.19 (Prime subring). Let R be a ring and Ω the set of all subrings of
R. Then

S :=
⋂
R′∈Ω

R′ = {x ∈ R | x ∈ R′ for all R′ ∈ Ω}

is a subring of R. It is the smallest one in the sense that it is a subring of every
subring R′ ∈ Ω of R. This subring is called the prime subring of R. Moreover if
R is a field and Ω is the set of all subfields of R, then S is a field called the prime
subfield of R. ♦

Example 1.1.20 (Field of fractions). Let R be a subring of a field F and let Ω(R)
be the set of all subfields K of F which contain R (the assumption of the existence
of such a field F is non-trivial and in section 2 we will determine which rings are
subrings of a field). Then

QF (R) :=
⋂

K∈Ω(R)

K = {x ∈ F | x ∈ K for all K ∈ Ω(R)}

is a subfield of F . This field is called the (relative) field of fractions of R. To be
more explicit, the field of fractions of R in F is given by

Q := {x ∈ F | x ∈ R or 1/x ∈ R}.

From the fact x ∈ Q if and only if 1/x ∈ Q, it is easily verified that Q is a subfield
of F containing R. Hence QF (R) ⊆ Q. On the other hand suppose that x ∈ Q. If
x ∈ R then x ∈ QF (R). If x /∈ R, then 1/x ∈ R ⊆ QF (R). But since QF (R) is a
field we conclude x = 1/(1/x) ∈ QF (R). Therefore QF (R) = Q.

The field of fractions of R in F is independent of F in the following sense: if F
and F ′ are fields containing R, then QF (R) ∼= QF ′(R). Indeed the map defined by
x 7→ x if x ∈ R and x 7→ 1/(1/x) for x /∈ R is an isomorphism.

The proof of Theorem 1.2.5 shows that there is a canonical choice for the field
F containing R. Then QF (R), for this F , is called the field of fractions of R and is
denoted by Q(R). ♦

The following example shows that it is possible to do some arithmetic with
subrings. This will be applied to ideals in section 1.4.

Example 1.1.21 (Subring arithmetic). Let S and T be subrings of a ring R. Then

S + T := {s+ t | s ∈ S and t ∈ T},

ST := {
∑k
i=1 siti | k ≥ 1 and si ∈ S, ti ∈ T},

S ∩ T := {r ∈ R | r ∈ S and r ∈ T},
are subrings of R called the sum, the product (or compositum) and the intersection
of S and T respectively. ♦

Example 1.1.22. Let f : R → S be a homomorphism of rings. Then the kernel
ker(f) is a subring of R and the image f(R) is a subring of S. Moreover the kernel
ker(f) is an ideal of R (c.f., Example 1.1.7). Hence we are able to define the factor
ring R/ ker(f). ♦
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1.2. Integral domains

The structure of a ring allows us to determine the product of any two elements.
The following definition inverts this process.

Definition 1.2.1 (Factorizations). Let R be a ring and x ∈ R. A factorization
of x in R is a sequence x1, . . . , xn of elements in R for some integer n ≥ 1 such
that x = x1 · · ·xn. In this case we say that xi is a factor of x or that xi divides x
(notation: xi | x) for all 1 ≤ i ≤ n. 4

In this section we investigate the factorizations of 0. We clearly find a whole list
of factorizations which have a factor 0, which we will call the trivial factorizations
of 0. There is no reason to assume that all factorizations of 0 are trivial.

Example 1.2.2. In the ring Z/4Z we have the equality 2 × 2 ≡ 0 modulo 4 (c.f.,
Example 1.1.6). ♦

Now suppose we have a non-trivial factorization of 0. The factors in such a
factorization are special and deserve a name:

Definition 1.2.3 (Zero divisors). An element x 6= 0 in a ring R is a zero divisor if
and only if there exists a 0 6= y ∈ R such that xy = 0. 4

We will show that the absence of zero divisors is related to fields. Let us first
introduce some terminology:

Definition 1.2.4 (Integral domain). A ring R is called an integral domain if and
only if

1) R is non-trivial;

2) R has no zero divisors. 4

It turns out that integral domains are exactly the rings used in the assumption
in Example 1.1.20. Hence the relation between integral domains (or the absence of
zero divisors) and fields is given by the following:

Theorem 1.2.5. Let R be a ring. Then there exists a field F such that F/R is a
ring extension if and only if R is an integral domain.

Proof. Suppose there exists an extension F/R, with F a field. We will show that
there are no zero divisors in F hence neither in R. By definition 0 is not a zero
divisor. Let a be non-zero zero divisor. Then by definition of a field, there are
0 6= b, c ∈ R such that ba = 0 and ac = 1. Hence 0 = 0 · c = bac = b · 1 = b, which
contradicts b 6= 0. This proves the claim. Furthermore note that R is non-trivial
since 1 6= 0 in F and hence in R by definition of a subring. Therefore R is an
integral domain.

Suppose R is an integral domain. For all (r, s), (r′, s′) ∈ R×(R−{0}) we define:
(r, s) ∼ (r′, s′) if and only if rs′ = r′s. This defines an equivalence relation on
R× (R− {0}) and the equivalence class of (r, s) is denoted by r

s . Consider the set

Q := { rs | r, s ∈ R and s 6= 0}

with addition and multiplication defined by

r
s + r′

s′ = rs′+r′s
ss′ , and r

s ·
r′

s′ = rr′

ss′ .

Note that the product is well defined, because R does not have zero divisors. It is
easily seen that Q is a field. Now let F be a set which contains R and f : F → Q be
a bijection such that f(r) = r

1 for all r ∈ R. Then define addition and multiplication
on F as follows:

x⊕ y = f−1(f(x) + f(y)), and x� y = f−1(f(x) · f(y)).

Then clearly F field and f is a homomorphism. Moreover F/R is a ring extension
as ⊕ and � coincide with the given addition and multiplication in R.
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Corollary 1.2.6. Every field is an integral domain.

Proof. Apply Theorem 1.2.5 for the trivial field extension.

The converse is not true in general. However we do have the following:

Proposition 1.2.7. Every finite integral domain is a field.

Proof. LetR be a finite integral domain. Then it suffices to show that every non-zero
r in R is invertible, since R is already non-trivial. Consider the ring homomorphism
φr : R → R given by x 7→ rx. The kernel of φr is trivial, since R is an integral
domain and r is non-zero. Therefore φr is injective. Now, since R is a finite
ring, we can conclude that φr is also surjective. Hence we find some s ∈ R with
rs = φr(s) = 1. This implies that R is a field.

1.3. Unique factorization domains

Now we are going to examine the the existence and uniqueness of a factorization of
a non-zero element x of an integral domain R. Recall that we restrict our attention
to integral domains as we are studying diagram (1.1) on page 3, where the rings are
subrings of a field extenstion.

Units. The existence of a factorization of x is trivial, as x is a factorization of x.
We call this the trivial factorization. Uniqueness however does not hold. Clearly,
as our rings are commutative (c.f., property 5 of Definition 1.1.1), the order of the
factors is irrelevant. Moreover we have that 1 and (−1)·(−1·1) are two factorizations
of 1 of different length. More general if u divides 1 (i.e., uv = 1 for some v), then
both x and u(vx) are factorizations of x. Hence divisors of 1 are special.

Definition 1.3.1 (Units). An element x of an integral domain R is called a unit if
and only if x divides 1. The set R× of all units is called the unit group of R. 4

It is easily seen that unit group is indeed a group with the induced multiplication
of R.

Example 1.3.2. The unit group of the integers Z is given by Z× = {−1, 1} and
the unit group of rationals Q is given by Q× = Q− {0}. Generally, the unit group
of a field F is given by F× = F − {0}. ♦

In the case of finite fields, the unit group has a simple structure:

Theorem 1.3.3. The multiplicative group of a finite field is a cyclic group.

Proof. Let F be a finite field of order q. Then F× has order q − 1. Let m be the
maximal order of the elements of F×. Then all elements of F× are roots of Xm−1,
hence m ≥ q− 1. Lagrange theorem implies that m | (q− 1), so we have m = q− 1.
Therefore F× is cyclic.

Despite the non-uniqueness of a factorization in a strict sense we may consider
factorizations up to units, i.e., we want to consider the factorizations x and u(vx)
to be equal. The following definition enables us to make this precise.

Definition 1.3.4 (Associates). Let x and y be non-zero elements of an integral
domain R. Then x and y are called associates in R if and only if x/y is a unit in
R. 4

Notice that the notion of associates is an equivalence relation on R.

Definition 1.3.5. Let p = x1, . . . , xn and q = y1, . . . , ym be two factorizations of
some element x in an integral domain R. Then we call p and q identical (up to
ordening and units) if and only if for each non-unit xi there exists an yj such that
xi and yj are associates in R. 4

Now the factorizations x and u(vx) are indeed identical.



10 1.3. Unique factorization domains

Irreducibles. Given a non-zero non-unit element x of an integral domain R.
Consider the following process of finding factorizations of x in R.

Let y be a factor of x. If y is a unit, then y(x/y) a trivial factorization since
it is identical to x. If however y is not a unit, then y(x/y) and x are non-identical
factorizations of x. We may repeat this process for each factor of this new factor-
ization to obtain more and more factorizations of x which longer than the previous
one.

This process stops precisely when every factor in the longest factorization of x
has no non-trivial factorization. Then such factors are the most primitive factors
of x and deserve a name.

Definition 1.3.6 (Irreducible elements). An element x of an integral domain R is
called irreducible if and only if x is a non-zero non-unit element and y | x implies
that y = x or y is a unit for all y in R. 4

Let us now discuss some examples.

Example 1.3.7. The irreducible elements of Z are of the form ±p, with p a prime
number. ♦

Example 1.3.8. The elements 3, 7 and 4 ±
√
−5 are irreducible in Z[

√
−5]. We

will show this by using the group homomorphism

N : Z[
√
−5]× → Z× a+ b

√
−5 7→ a2 + 5b2

This map is called the norm map, since it coincides with the norm z 7→ zz̄ on C.
Furthermore N(z) = 1 implies zz̄ = 1. Therefore z is a unit in Z[

√
−5].

Suppose that 3 = αβ for some non-unit α, β ∈ Z[
√
−5]. Then N(α) N(β) =

N(3) = 32 implies that N(α),N(β) ∈ {1, 3, 9}. Furthermore N(α) 6= 1 6= N(β), since
α and β are non-units. Therefore N(α) = N(β) = 3. But there are no elements of
norm 3, since a2 + 5b2 = 3 has no integer solution: if b = 0, then 3 is a square and
if b 6= 0 then a2 + 5b2 ≥ 5. This shows that 3 is irreducible in Z[

√
−5].

In similar fashion it is shown that 7 and 4±
√
−5 are irreducible. ♦

Unique factorization. There is no guarantee that the above process of find-
ing new factorizations will stop at some point, because some elements are infinite
divisible:

Definition 1.3.9. Let x be a non-zero non-unit element of an integral domain R.
Then x is called infinite divisible if and only if there exists a sequence (xn)n∈N, such
that x0 = x and xn+1 is a non-trivial factor of xn for all n in N. 4

Example 1.3.10. Let R = Z[x0, x1, x2, . . .] be the ring of polynomial expressions
in the xi with coefficients in Z and and let a = (x1 − x2

0)R + (x2 − x2
1)R + . . . be

the ideal generated by the expressions xi+1 − x2
i , for all i ≥ 0. Consider the factor

ring R/a (see Example 1.1.7). Then x0 is infinite divisible in R/a, because x0 is
a non-zero non-unit element and x0 = x2i

i for all i ≥ 0, where xi is a non-zero
non-unit element of R/a. ♦

There is also no guarantee that the above process of finding new factorizations
leads to a unique factorization.

Example 1.3.11. We will show that in Z[
√
−5] we have

3 · 7 = 21 = (4 +
√
−5)(4−

√
−5),

with 3, 7 and 4±
√
−5 pairwise non-associate irreducible elements.

By Example 1.3.8 we see that these elements are indeed irreducible. Furthermore
the norms of 3, 7 and 4+

√
−5 are respectively 9, 49 and 21. Therefore these elements

are pairwise non-associate. Then norm of 4−
√
−5 is 21, hence it could only be an

associate of 4 +
√
−5. However

4 +
√
−5

4−
√
−5

=
(4 +

√
−5)2

21
=

11

21
+

8

21

√
−5

is not in Z[
√
−5]×. Therefore 4 +

√
−5 and 4−

√
−5 are non-associate. ♦
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If the process process of finding new factorizations stops at some point and
leads to a unique factorization, then every element is generated by units and the
irreducible elements. Therefore the units and the irreducible elements form the
building blocks for all elements of the ring in the following type of rings:

Definition 1.3.12 (Unique factorization). An integral domain R is called a unique
factorization domain if and only if for all non-zero x in R

1) there exists a factorization of x into irreducibles;

2) any two factorizations of x into irreducibles are identical. 4

Notice that unique factorization alone is not a sufficient condition to exclude
zero divisors.

Example 1.3.13. In Z/4Z, 1 and 3 are units and 2 is not a unit. Furthermore
1× 2 and 2× 3 are all factorizations of 2. Thus Z/4Z has unique factorization and
is not an integral domain. ♦

Primes. There is one last property of an element we want to mention.

Definition 1.3.14 (Prime elements). An element x in an integral domain R is
called prime if and only if x is a non-zero non-unit element of R and x | ab implies
x | a or x | b for all a and b in R. 4

In a unique factorization domain, property of being irreducible and the property
of being prime coincides. In fact, this equivalence almost determines a unique
factorization domain.

Theorem 1.3.15. Let R be an integral domain. Then R is a unique factorization
domain if and only if for all non-zero non-unit x in R

1) x is not infinite divisible;

2) x prime if and only if x is irreducible.

Proof. Suppose that R is a unique factorization domain. Let x be an arbitrary
non-zero non-unit element of R. Since x admits a factorization into irreducibles, x
is not infinite divisible. Suppose that x is prime and x = ab. Then x | a or x | b.
Hence we find that either 1 = (a/x)b or 1 = a(b/x) or equivalently a or b is a unit.
This shows that x is irreducible. Suppose that x is irreducible and x | ab. Then
there is some c with cx = ab. Hence by the uniqueness of the factorization x is
associate to a or b. Therefore x | a or x | b, which means that x is prime.

Suppose R is an integral domain such that x is not infinite divisible and x prime
if and only if x is irreducible for all non-zero non-unit x in R. Then every x in R
admits a factorization into irreducibles as the process described at the beginning of
the paragraph terminates after finitely many steps. Hence it suffices to show that
this factorization is unique. Let a1 · · · an and b1 · · · bm be two factorizations of x
into irreducibles. Then for every irreducible ai we have that ai | b1 · · · bm. This
implies that ai | bj , since ai is prime by the assumption on R. Now ai and bj are
associates, because they are irreducible. We conclude that the factorization of x is
unique.

1.4. Ideals

In Example 1.1.7 we introduced the notion of an ideal. In this section we will view
them as generalizations of elements of a ring. Then our goal is to translate every
property about elements into a property about ideals. We will tackle properties like
irreducibility and primeness. In section 1.5 we will translate the property of infinite
divisibility to ideals.

However, in some integral domains we are able to prove unique factorization
of ideals. These integral domains are called Dedekind domains. Those will be
discussed in section 1.10, where we will show that ideals generalize elements of an
integral domain and that ideals admit some arithmetic.
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Principal ideal domains. Let us first recall the definition of an ideal, as it is
such an important object.

Definition 1.4.1 (Ideals). A subring a of an integral domain R is an ideal if and
only if Ra = a. 4

In this definition, Ra is the product of the subrings R and a of R, which is
defined in Example 1.1.21.

Let us now examine why ideals are generalizations of elements. First we show
how to construct ideals.

Definition 1.4.2 (Finitely generated ideals). Let R be an integral domain and
x1, . . . , xn ∈ R, with n ≥ 1 an integer. Then the ideal generated by x1, . . . , xn is the
set

(x1, . . . , xn) := {rnxn + · · ·+ rnxn | ri ∈ R}.
For n = 1, this ideal is called a principal ideal . 4

Clearly every element x in an integral domain R gives rise to a principal ideal
(x) and by definition every principal ideal comes from some generator x in R. In
general it is not true that every ideal is principal. However, in some rings, every
ideal is principal:

Example 1.4.3. Let a be an ideal in Z. Then a = (a) for some a ∈ Z. Indeed,
let a > 0 be the smallest positive element of a and let x ∈ a be arbitrary. Then
division with remainder yields x = qa + r for some q ∈ Z and 0 ≤ r < a. Notice
that r = x − qa ∈ a, hence by the minimality of a we conclude that r = 0. Thus
x ∈ (a) and a ⊆ (a). Since trivially (a) ⊆ a, we conclude that a = (a). ♦

In this example we conclude that elements in Z are just as general as ideals in
Z. This is a property of the ring Z which may be formulated as follows:

Definition 1.4.4 (Principal ideal domain). A ring R is called a principal ideal
domain if and only if R is an integral domain and every ideal in R is principal. 4

We may wonder whether every integral domain is a principal ideal domain. This
is not always the case.

Example 1.4.5. Consider the ideal (2, X) ⊆ Z[X]. Suppose (2, X) = (f) with
f ∈ Z[X]. Since 2 ∈ (2, X) we find g ∈ Z[X] with 2 = fg. Hence 0 = deg(2) =
deg(fg) = deg(f) + deg(g), which implies that deg(f) = deg(g) = 0, because
deg(f),deg(g) ≥ 0. Thus f, g are divisors of 2 in Z. Note that 1 /∈ (2, X) and hence
f 6= 1, as every h ∈ (2, X) satisfies h(0) ≡ 0 modulo 2. Furthermore f 6= 2, since
otherwise X /∈ (2) = (2, X). This gives a contradiction which shows that (2, X) is
not principal. ♦

Example 1.4.6. Theorem 1.5.6 together with Example 1.3.11 show that Z[
√
−5]

is not a principal ideal domain. ♦

Ideal arithmetic. By definition, elements in a ring admit some arithmetic, that
is, we are able to add and multiply and talk about divisibility. Using Example
1.1.21, we are able to define arithmetic for ideals:

Definition 1.4.7 (Ideal arithmetic). Let a and b be ideals of an integral domain
R. The sum a + b and product ab of a and b are defined as

a + b := {a+ b | a ∈ a, b ∈ b},
ab := {a1b1 + · · ·+ akbk | ai ∈ a, bi ∈ b}.

We say that b divides a (notation: b | a) if and only if b ⊇ a. We say that a and b
are coprime if and only if a + b = R. 4

Remark that this definition of divisibility makes some sense: if there exists an
ideal c with a = bc then b | a, because b is an ideal. It is however not at all clear
that the converse holds. In section 1.10 we will see that the converse is true for
Dedekind domains.

The following example shows that for principal ideals the above arithmetic co-
incides with the arithmetic of elements.
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Example 1.4.8. Let x and y be elements of an integral domain R. Then we have
(x)(y) = (xy). Therefore multiplication of ideals generalizes the multiplication of
elements.

The sum however does not generalize in this way. The ideal (x) + (y) = (x, y)
need not be principal (c.f., Example 1.4.5). In some other integral domains the sum
is principal for all x and y. Such integral domains are called Bèzout domains (e.g.,
a principal ideal domain). Take for example R = Z in which every ideal is principal.
In such rings we find (x) + (y) = (d), with d = ax+ by for some a, b ∈ R. Note that
if r divides both a and b, then r divides d. Hence d is a multiple of the greatest
common divisor of a and b. On the other hand (x), (y) ⊆ (d) which means that d is
a common divisor of x and y. Hence d is the greatest common divisor. This shows
that, in the case that (x) + (y) is principal, (x) + (y) = R is equivalent to stating
that x and y are coprime.

For the divisibility, suppose that (y) divides (x). Then (x) ⊆ (y), hence x = ry
for some r ∈ R. Then clearly we find (x) = (r)(y). Hence the notion of divisibility
for ideals generalizes the divisibility for elements. ♦

Chinese remainder theorem. We will now turn our attention to coprime ideals.
The following lemma gives an explicit description of the product of coprime ideals.

Lemma 1.4.9. Let a and b be coprime ideals of an integral domain R. Then
ab = a ∩ b.

Proof. Since a and b are both ideals, we have ab ⊆ a∩ b. Since a and b be coprime
we have a + b = R, i.e., there are a in a and b in b with 1 = a + b. Hence for all
c ∈ a ∩ b we find that c = 1 · c = ac + bc ∈ ab. We conclude that a ∩ b ⊆ ab and
hence ab = a ∩ b.

We will now apply Lemma 1.4.9 in order to derive the following theorem.

Theorem 1.4.10 (Chinese remainder theorem). Let n ≥ 1 an integer and let
a1, . . . , an be pairwise coprime proper ideals in an integral domain R, i.e., ai+aj = R
for i 6= j. Then

R/a1 · · · an ∼= R/a1 × · · · ×R/an.

Proof. Consider the map π : R→
∏n
j=1R/aj given by a 7→ (a+ ai)

n
i=1. The factor

groups R/ai are well-defined, since ai is a proper ideal. We will show that π is
surjective. Let (ai + ai)

n
i=1 be an element in the codomain. It suffices to construct

ci ∈ R with ci ≡ 1 modulo ai and ci ≡ 0 modulo aj , for j 6= i. Indeed, then
a :=

∑n
i=1 aici is mapped to (ai + ai)

n
i=1 under π, as a ≡

∑n
i=1 aici ≡ aj modulo aj

for all j. Given i, we find xj ∈ ai and yj ∈ aj with xj + yj = 1 for all j 6= i, because
ai+aj = R. Hence we find

∏
j 6=i(xj+yj) = 1. If we expand the product we see that

every term is, except ci =
∏
j 6=i yj , contained in ai. Hence ci ≡

∏
j 6=i(xj + yj) = 1

modulo ai and ci ≡ 0 modulo aj , for j 6= i. We conclude that π is surjective.
The kernel of π is the set of a ∈ R with a ≡ 0 modulo ai or equivalently a ∈ ai,

for all i. Hence ker(π) =
⋂n
i=1 ai. With induction on Lemma 1.4.9, we find that

ker(π) =
⋂n
i=1 ai = a1 · · · an. The theorem now follows from the first isomorphism

theorem.

Prime and maximal ideals. In section 1.3 we studied some basic types of el-
ements: units, irreducibles and primes. We have seen above that ideals generalize
elements, as elements correspond with principal ideals. A principal ideal (u) gen-
erated by a unit u in R contain 1 and hence (u) = R is not proper. Therefore
non-units correspond with proper principal ideals.

Definition 1.3.6 can be translated to the language of ideals as follows:

Definition 1.4.11 (Maximal ideals). An ideal a of a ring R is called maximal if
and only if a is non-zero proper ideal and b | a implies b = a or b = R for all ideals
b. 4

If we dissect this definition by using the definition of division and proper we see
that an ideal a of a ring R is maximal if and only if (0) 6= a 6= R and a ⊆ b ⊆ R
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implies b = a or b = R for all ideals b. This explains where the term maximal
comes from.

In other texts it is not assumed that a maximal ideal is non-zero. However this
condition is automatic when R is not a field: if R is not a field, then there exists a
non-zero non-unit element x in R. Hence (0) is not maximal, since (0) ( (x) ( R.

The following lemma shows that, in a principal ideal domain, maximal ideals
are the correct translations of irreducibles.

Lemma 1.4.12. Let R be a principal ideal domain. Then x is irreducible if and
only if (x) is maximal.

Proof. It is trivial that x is irreducible whenever (x) is maximal. Suppose that x
is irreducible. Let b be a proper ideal with b | (x). Since R is a principal ideal
domain, we find some b with (b) = b. Then b is a non-zero non-unit element of
R, because b is non-zero and proper. Furthermore we have (b) | (x), hence we
find some a with x = ab. But x is irreducible, hence a is a unit. This shows that
(x) = (ab) = (b) = b. We conclude that (x) is maximal.

The following theorem gives a nice tool to prove that a proper ideal is maximal.

Theorem 1.4.13. Let a be a non-zero proper ideal of a ring R. Then a is maximal
if and only if R/a is a field.

Proof. The assumption that a is proper coincides with R/a being non-trivial. The
projection π : R → R/a induces a map between the ideals that contain a and the
ideals of R/a. Hence a is maximal if and only if {0 +a} and R/a are the only ideals
of R/a. Thus if R/a is a field, then a is maximal. On the other hand, suppose that
a is maximal. If x+a is a zero divisor, then x+a is not a unit. Hence (x+a) 6= R/a
and x+ a ∈ (x+ a) = {0 + a}. Thus R/a has no zero divisors. Therefore R/a is a
field.

We now turn our attention to the generalizations of prime elements. Definition
1.3.14 generalizes as follows:

Definition 1.4.14 (Prime ideals). An ideal p of a ring R is called prime if and
only if p is a non-zero proper ideal and p | ab implies p | a or p | b. 4

The following lemma gives another characterization of prime ideals. Other texts
use this as a definition.

Lemma 1.4.15. Let a be a non-zero proper ideal of a ring R. Then p is prime if
and only if xy ∈ p implies x ∈ p or y ∈ p for all x, y ∈ R.

Proof. If p is prime, then for all x, y ∈ R we have that xy ∈ p or equivalently
p | (xy) = (x)(y) implies p | (x) or p | (y) or equivalently x ∈ p or y ∈ p.

On the other hand, suppose that xy ∈ p implies x ∈ p or y ∈ p for all x, y ∈ R.
Suppose that p | ab. If p - a and p - b, then there exists a in a and b in b with
a, b /∈ p. But since ab ∈ ab ⊂ p, we have a contradiction. This shows that either
p | a or p | b.

The following lemma shows that, in a principal ideal domain, prime ideals gen-
eralize prime elements.

Lemma 1.4.16. Let R be a principal ideal domain. Then x is prime if and only if
(x) is prime.

Proof. Using Lemma 1.4.15 we see that (x) is prime if and only if ab ∈ (x) implies
a ∈ (x) or b ∈ (x). Since y ∈ (x) if and only if x | y, the lemma follows.

Now we have the following:

Theorem 1.4.17. Let a be a non-zero proper ideal of a ring R. Then a is prime
if and only if R/a is an integral domain.

Proof. The assumption that a is proper coincides with R/a being non-trivial and
the assumption that a is prime coincides, using Lemma 1.4.15, with R/a not having
any zero divisors.
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If we now combine Theorem 1.4.17 and Theorem 1.4.13 with Theorem 1.2.6 we
find the following corollary.

Corollary 1.4.18. Every maximal ideal is a prime ideal.

The converse is not true in general. However if we apply Proposition 1.2.7 we
conclude the following:

Corollary 1.4.19. Every non-zero prime ideal in a finite ring is maximal.

1.5. Noetherian domains

Eventually we want to reformulate the definition of a unique factorization domain
into the language of ideals. As seen in section 1.3 we need to exclude ideals which
are infinite divisible and also show that factorization of ideals is unique. In this
section we will tackle the first property.

We first introduce a new notion. An (ascending) chain C of ideals in a ring R
is a sequence (an)n∈N of ideals of R with an ⊆ an+1 for all n in N. A chain is called
stable if and only if there exist some k in N such that an = ak for all n ≥ k. In this
case we say that C stabilizes at k.

Definition 1.5.1 (Noetherian domains). An integral domain R is Noetherian if
and only if every chain is stable. 4

There are multiple ways to define a Noetherian domain. The following proposi-
tion gives another characterization of Noetherian domain.

Proposition 1.5.2. An integral domain R is Noetherian if and only if every non-
zero ideal a in R is finitely generated.

Proof. Let R be an integral domain and a an ideal of R. Suppose that R is Noethe-
rian. Choose inductively an ∈ a − (a1, . . . , an−1) whenever a 6= (a1, . . . , an−1) or
take an = 0 otherwise. We will show that we have made only finitely many choices
(avoiding the axiom of choice). Consider the chain of ideals

(a1) ( (a1, a2) ( · · · ( (a1, . . . , an) ( · · · ⊆ a

Since R is Noetherian, we find some k such that (a1, . . . , ak) = (a1, . . . , ak+1). This
implies that ak+1 = 0 and that a = (a1, . . . , ak) is finitely generated.

On the other hand, suppose that every non-zero ideal in R is finitely generated.
Let (ai)i≥0 be a chain of ideals in R. Then the union b =

⋃
i≥0 ai is clearly an ideal

in R. By assumption it is finitely generated: b = (b1, . . . , bn). Find k ≥ 0 such that
bi ∈ ak for all i. Then the chain stabilizes at k.

A consequence of this definition is the following theorem:

Proposition 1.5.3. Let R be a Noetherian domain. Then for every proper ideal a
there exists a maximal ideal m such that m | a.

Proof. Define a0 := a and an := an−1 + xnR, with xn ∈ R is chosen such that
an−1 ( an ( R whenever possible and xn = 0 otherwise, for all n ≥ 1. Since R
is Noetherian, we find some k such that ak+1 = ak for all n ≥ k. Notice that we
have made k choices, hence we did not use the axiom of choice. Define m = ak and
let b be a proper ideal of R with m ⊆ b ( R. Then for all x ∈ b we have that
x ∈ ak + xR = ak = m, because ak+1 = ak. Thus b = m and m is a maximal ideal
which contains a.

This proposition has an analog in terms of elements.

Proposition 1.5.4. Let R be a Noetherian domain. Then for every non-unit ele-
ment a there exists an irreducible element x such that x | a.

Proof. Define x0 := a and for all n ≥ 1 choose xn to be a non-trivial factor of xn−1

whenever possible or define xn = xn−1 otherwise. Consider the chain an := (xn).
Since R is Noetherian, we find some k such that ak+1 = ak for all n ≥ k. Notice that
we have made k choices, hence we did not use the axiom of choice. By construction
and the fact that ak+1 = ak we conclude that xk is irreducible.
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It is clear that in a Noetherian domain, no elements are infinite divisible because
any sequence of non-trivial factors gives rise to a non-stable chain. Now Proposition
1.5.4 implies that in a Noetherian domain every element admits a factorization into
irreducibles, whenever one accepts the countable axiom of choice.

Theorem 1.5.5. Let R be a Noetherian domain. Then every non-zero non-unit
element x of R admits a factorization into irreducibles.

Proof. Let x be non-zero non-unit element of a Noetherian domain R. Define x0 :=
x and for every n ∈ N choose xn+1 such that πn := xn/xn+1 is irreducible whenever
xn is neither zero nor a unit and xn+1 = 1 otherwise. This is possible by Proposition
1.5.4, since there exist an irreducible y ∈ R with y | xn, whenever xn is neither zero
nor a unit. Then take xn+1 = xn/y. Note that this definition requires the countable
axiom of choice. Now consider the sequence (x0) ⊆ (x1) ⊆ · · · . Then since R is
Noetherian, we find that (xm) = (xm+1) for some m ∈ N. Hence xm/xm+1 is a
unit, which implies that xm+1 = 1. Therefore x = π0 · · ·πm, where πk is either
irreducible or a unit. This induces a factorization of x into irreducibles.

Theorem 1.5.6. A principal ideal domain is a unique factorization domain.

Proof. Let R be a principal ideal domain and let x in R. Using Proposition 1.5.2,
we see that R is Noetherian. From the above discussion we conclude that x is not
infinite divisible and admits a factorization into irreducibles. Hence it suffices to
show that this factorization is unique.

Let x1 · · ·xn and y1 · · · ym be two factorizations of x into irreducibles. and pick
some xi. Then xi | y1 · · · ym. By Lemma 1.4.12 we see that (xi) is a maximal ideal,
because R is a principal ideal domain. By Corollary 1.4.18 we conclude that (xi)
is a prime ideal. It is clear from the definition that xi is now a prime element.
This implies that xi | yj for some yj (using induction). Since xi and yj are both
irreducible, they must be associate.

To prove that some rings are Noetherian it may suffice to prove that some
subring is Noetherian. To be more precise we have:

Theorem 1.5.7 (Hilbert basis theorem). Let R be a Noetherian domain. Then
R[X] is a Noetherian domain.

Proof. From Proposition 1.5.2 we conclude that it suffices to show that every ideal
non-zero a is finitely generated. Let a be a non-zero ideal in R[X]. Let f1 be a
non-zero polynomial of minimal degree in a. Choose inductively fn to be a non-zero
polynomial of minimal degree in a− (f1, . . . , fn−1) whenever a 6= (f1, . . . , fn−1) and
take fn = 0 otherwise. We will show that we have made only finitely many choices
(avoiding the axiom of choice).

Let an be the leading coefficient and dn be the degree of fn. Then dn ≤ dm if
n < m, because fn has minimal degree. Consider the chain of ideals

(a1) ⊆ (a1, a2) ⊆ · · · ⊆ (a1, . . . , an) ⊆ · · ·

Since R is Noetherian we find some k with (a1, . . . , ak) = (a1, . . . , ak+1). Hence
there exist ri ∈ R such that ak+1 = r1a1 + · · ·+ rkak. Notice that the polynomial

g = fk+1 −
k∑
i=1

riX
dk+1−difi

has degree less then dk+1 and is not contained in (f1, . . . , fk). This contradicts the
minimality of the degree of fk+1. Hence there does not exist fk+1 ∈ a−(f1, . . . , fk),
which shows that a = (f1, . . . , fk).

For future use we will show one more tool to prove that an integral domain is
Noetherian.

Proposition 1.5.8. Let f : R → S be a surjective ring homomorphism of integral
domains. Then S is Noetherian whenever R is Noetherian.
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Proof. Let (an)n≥0 be a chain of ideals in S. Then f−1(an) is an ideal for all n, since
f is a homomorphism. Hence (f−1(an))n≥0 is a chain of ideals in R. But since R is
Noetherian we find some k such that f−1(an) = f−1(ak) for all n ≥ k. Now using
that f is surjective we find for all n that f(f−1(an)) = an. Therefore we conclude
an = f(f−1(an)) = f(f−1(ak)) = ak for all n ≥ k. Thus S is Noetherian.

1.6. Modules over a ring

In this section we recall the definition of a module and prove some elementary facts
about them. This will be used to define fractional ideals in section 1.10 and it is
used in section 2.1 to prove the finiteness of the class group.

A module is a generalization of a vector space, as the scalars of a module do not
need to be a field.

Definition 1.6.1 (Modules). A module over a ring R (or a R-module) is an abelian
group M together with a group homomorphism φ : R → End(M) denoted by
r 7→ φr. 4

To see why this is really the definition of a vector space whenever R is a field,
notice that addition of vectors is defined by the group structure on M and multi-
plication is defined by φ using the formula rm := φr(m) for all r in R and m in M .
Indeed, associativity ((m+n)+o = m+(n+o)), commutativity (m+n = n+m), the
identity element (m+ 0 = m) and the inverse elements of addition (m+ (−m) = 0)
are defined by the group structure on M . Distributivity of scalar multiplication
over vector addition (r(m + n) = rm + rn for all m) follows from the fact that
φr is an endomorphism. Distributivity of scalar multiplication over field addition
((r + s)m = rm+ sm), compatibility of scalar multiplication with field multiplica-
tion (r(sm) = (rs)m) and the identity element of scalar multiplication (1m = m)
follow from the fact that φ is an homomorphism.

We list some examples of modules over a ring.

Example 1.6.2. Let R be a ring. Then both R and {0} are modules over R. ♦

Example 1.6.3. Let M be an abelian group. Then M is a Z-module by defining
scalar multiplication by k · x = x+ · · ·+ x (k times). ♦

Example 1.6.4. Let R be a ring and m,n ≥ 1 integers. Then the set M(m×n,R)
of all m×n-matrices (i.e., m rows and n columns) with coefficients in R and ‘entry-
wise’ addition and scalar multiplication is an R-module. ♦

Just as we studied ring extensions and field extensions, we will now study ex-
tensions of models or dually submodules.

Definition 1.6.5 (Submodules). Let (M,+, ·, 0M ) and (N,⊕,�, 0N ) be modules
over a ring R. Then N is a submodule of M if

1) N ⊆M ;

2) for all r ∈ R and x, y ∈ N we have x⊕ y = x+ y and r � x = r · x;

3) 0N = 0M . 4

Note that the last item of this definition is redundant, since we have x⊕ 0N =
x = x+ 0M = x⊕ 0M for all x in N .

We list some examples of submodules.

Example 1.6.6. Let M be a module over a ring R. Then both M and {0} are
R-submodules of M . ♦

Example 1.6.7. Let R/S be an extension of rings. Then R and S are S-modules
and S is a S-submodule of R. ♦
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Example 1.6.8. Let M be a module over a ring R and let N1 and N2 be R-
submodules of M . Then

N1N2 = {n1
1n

2
1 + · · ·+ n1

kn
2
k | n

j
i ∈ Nj , k ≥ 1}

and
N1 ∩N2 = {m ∈M | m ∈ N1,m ∈ N2}

are R-submodules of M . Note that N1N2 is the smallest R-submodule of M which
contains both N1 and N2, while N1 ∩N2 is the largest R-submodule of M which is
contained in both N1 and N2. ♦

The last important object we want to mention is the module homomorphisms,
which generalizes the linear map.

Definition 1.6.9 (Module homomorphisms). Let M and N be modules over a ring
R. A group homomorphism f : M → N is a R-module homomorphism if and only
if for all r ∈ R, x ∈M

f(r · x) = r · f(x) 4

Rank of a module. For vector spaces we have the concepts of bases and dimen-
sions. We will translate this to the language of modules. We first seek an analogue
of a subset which spans the vector space.

Definition 1.6.10 (Generating subsets). Let M be a module over a ring R and
A ⊆M a subset. Then A is called a generating subset of M if and only if

M = RA := {r1a1 + · · ·+ rkak | ri ∈ R, ai ∈ A}.

A module is called finitely generated if and only if there exists some finite generating
subset. 4

Some generating subsets contain redundant elements in the sense that the subset
stays a generating subset even when they are left out. Such minimal generating
subsets are called bases:

Definition 1.6.11 (Module basis). A generating subset A of a module M over a
ring R is called a basis of M (plural: bases) if and only if r1a1 + · · · + rkak = 0
implies r1 = · · · = rk = 0, for all k ∈ N, ai ∈ A and ri ∈ R. A module M is called
free if and only if there exist a basis of M . 4

The following definition generalizes the concept of dimension.

Definition 1.6.12 (Module rank). Let M be a module and d a positive integer.
Then d is called the rank of M (notation: rank(M)) if and only if every basis of M
has cardinality d. 4

It is not clear from the definition whether the rank exists.

Theorem 1.6.13. Let M be a finitely generated free module over a Noetherian ring
R. Then M has a rank.

Proof. See Corollary 4.3 on page 136 of [6].

Torsion free modules. Finally prove a theorem which is needed in section 2.1.

Theorem 1.6.14. A finitely generated torsion free module over a principal ideal
domain is free.

Proof. Let X be a finite generating set of a torsion free module M over a principal
ideal domain R. Let B ⊆ X be a basis in X of maximal rank. Let N = RB be the
R-span of the basis B. ThenN is a free submodule ofM . Since B is of maximal rank
there exist for all x ∈ X some non-zero rx ∈ R such that rxx ∈ N . Let r =

∏
x∈X rx

and consider the left multiplication by r on M . Clearly this is an injective R-module
homomorphism with rM ⊆ N . Hence by the first isomorphism theorem it suffices
to show that rM is a free submodule of N . Write B = {b1, . . . , bn} and consider
for all 1 ≤ i ≤ n the projection πi : N → R given by

∑n
k=1 rkbk 7→ ri. This is

an R-module homomorphism and thus πi(rM) ⊆ R is an ideal of R. Since R is a
principal ideal domain we find si ∈ R such that πi(rM) = siR. Here si 6= 0, because
r = πi(rbi) ∈ πi(rM) and r 6= 0. But now we conclude that {s1b1, . . . , snbn} is a
basis of rM , hence M is free.
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1.7. Integrally closed domains

We will now discuss a new construction, which is fruitfully used in section 2.1. We
first introduce a property of extensions of integral domains.

Definition 1.7.1 (Integral extensions). Let S/R be an extension of integral do-
mains. An element s ∈ S is called integral over R if and only if there exists a
polynomial f ∈ R[X] with f monic and f(s) = 0. Furthermore S/R is called
integral if and only if every s ∈ S is integral over R. 4

This definition is very similar to the definition of the algebraic field extension
from section 1.11. The next definition generalizes the relative algebraic closure of
fields to integral domains.

Definition 1.7.2 (Integrally closed domains). Let S/R be an extension of integral
domains. Then R is called integrally closed in S if and only if every integral exten-
sion of R contained in S is trivial. We set S = Q(R), whenever S is unspecified. 4

The following theorem gives a whole class of examples of integrally closed do-
mains.

Theorem 1.7.3. Let R be a unique factorization domain. Then R is integrally
closed.

Proof. Let x ∈ Q(R) be integral over R. Then there exists ci such that xn =∑n−1
i=0 cix

i. Now write x = r/s, with r and s in R. Then we have that rn =∑n−1
i=0 cix

isn−i, which implies that s divides rn. Since R is a unique factorization
domain, we conclude that s is associate to r, which implies that x ∈ R. Therefore
R is integrally closed.

Let S/R be an extension of integral domains and consider the set

R̃ = {s ∈ S | s integral over R}.

Then the next theorem shows that R̃ is the smallest subring of S that contains R
and is integrally closed in S.

Theorem 1.7.4. Let S/R be an extension of integral domains. Then R̃ is an
integrally closed subring of S. Moreover if T is an integrally closed subring of S
that contains R, then R̃ ⊆ T .

Proof. For the first part see Proposition 5 at page 6 of [5]. For the second part,
suppose that S is an integrally closed subring which contains R. Then for any x ∈ R̃
we have that x is integral over R, hence over S ⊇ R. Since S is integrally closed we
conclude that x ∈ S. Thus R̃ ⊆ S.

1.8. Local domains

We now turn our attention to another type of integral domain.

Definition 1.8.1 (Local domains). A integral domain R is called local if and only
if R has an unique non-zero maximal ideal. 4

Note that the fact that the maximal ideal is non-zero implies that a local ring is
not a field. If we assume the axiom of choice, we have the following characterization
of local rings.

Proposition 1.8.2. A ring R is local if and only if the set of non-units is an ideal.

Proof. Suppose that R is a local ring and let m denote the unique non-zero maximal
ideal. Then clearly m consists of some non-units as m 6= R. Furthermore if x is a
non-unit then (x) 6= R is a proper ideal. Using the axiom of choice, one can construct
a maximal ideal containing (x), which must be equal to m, as m is unique. Hence
we find x ∈ m. This proves the proposition.
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There is a canonical way to assign a local ring to any given ring with a given
prime ideal.

Definition 1.8.3 (Localization). Let p be a prime ideal in an integral domain R.
The localization of R at p is the ring

Rp = {x/y ∈ Q(R) | x ∈ R, y ∈ R− p}. 4

Proposition 1.8.4. Let p be a prime ideal in an Noetherian integral domain R.
Then the localization of R at p is a local ring.

Proof. The set of non-units in Rp are precisely the elements x/y, with x ∈ p and
y ∈ R − p. This set is an ideal of Rp: if x1/y1 and x2/y2 are non-units, then
both x1/y1 − x2/y2 = (x1y2 − x2y1)/(y1y2) and x1/y1 − x2/y2 = (x1x2)/(y1y2) are
non-units. Proposition 1.8.2 now shows that Rp is a local ring.

1.9. Valuation domains

Next we shall study a specific type of local ring, which will be of great importance
for the following chapters. The terminology will be explained in section 2.5.

Definition 1.9.1 (Valuation domains). An integral domain R is called a valuation
domain if and only if x ∈ R or x−1 ∈ R for all x in the field of fractions Q(R)
of R. A valuation domain R is called discrete if and only if R is a principal ideal
domain. 4

Example 1.9.2. Let π be an irreducible element of a Noetherian integral domain
R. Then the localization R(π) is a valuation domain. Indeed, let x/y ∈ Q(R)
be arbitrary. Assume without loss of generelaty that x and y are coprime, i.e.,
(x, y) = R. If x/y /∈ R(π), then π divides y. Hence π does not divide x, since x and
y are coprime. Thus y/x ∈ R(π) which implies that R(π) is a valuation domain. ♦

Later on we will need the following properties of a valuation domains.

Proposition 1.9.3. Let R be a valuation domain. Then

1) R is a local domain;

2) R is integrally closed;

3) the ideals of R are totally ordered;

4) R is Noetherian if and only if R is discrete;

Proof. 1) We wish to apply Proposition 1.8.2. Let m denote the set of non-units in
R and let a, b ∈ m. Since R is a valuation domain we have a/b ∈ R or b/a ∈ R. If
a/b ∈ R, then a+ b = b(1 + a/b) ∈ m, since otherwise b /∈ m. Similarly if b/a ∈ R,
then a+ b ∈ m. Hence in both cases we find a+ b ∈ m. If r ∈ R, then ra ∈ m since
otherwise a /∈ m. Therefore m is an ideal and R is a local ring.

2) Let x ∈ K be integral over R. Then there exists a0, . . . , an−1 ∈ R, n ≥ 1,
such that

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0.

Since R is a valuation domain we have x ∈ R or 1/x ∈ R. In the latter case we find
from the above equation by multiplication by (1/x)n−1 that

x = −an−1 − · · · − a1(1/x)n−2 − a0(1/x)n−1 ∈ R.

Therefore R is integrally closed.
3) Let a, b ⊆ R be ideals. Then we have a ⊆ b or there exists an x ∈ a such

that x /∈ b. In the latter case let y ∈ b. If y = 0, then y ∈ b. If y 6= 0 then y/x ∈ a,
since otherwise x = y(x/y) ∈ b. Hence y = x(y/x) ∈ a. In both cases we find y ∈ a
hence b ⊆ a.

4) Trivially a principal ideal domain is Noetherian. Suppose that R is Noetherian
and let a ⊆ R be a non-zero ideal. Then there exists a1, . . . , an, n ≥ 1, such that
a = (a1, . . . , an). Since the ideals of R are totally ordered we may renumber the ai
the obtain (a1) ⊆ · · · ⊆ (an). Then a = (a1, . . . , an) = (an), hence R is a principal
ideal domain.
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It turns out that valuation domains are strongly related to integral closures.
The following proposition clarifies this connection.

Proposition 1.9.4. Let R be a Noetherian subring of a field K, let {Ri}i∈I be the
set of all valuation domains that contain R and R̃ the integral closure of R. Then
R̃ =

⋂
i∈I Ri. Moreover R is integrally closed if and only if R =

⋂
i∈I Ri.

Proof. From the second item of Theorem 1.9.3 it follows that
⋂
i∈I Ri is integrally

closed, as intersections of integrally closed rings are integrally closed. Using Propo-
sition 1.7.4 and the construction of {Ri}i∈I we conclude that R̃ ⊆

⋂
i∈I Ri.

On the other hand suppose x /∈ R̃. Then x /∈ R[x−1], since otherwise multi-
plication with a sufficient large power of x yields an integral relation for x over R.
Therefore x is not a unit in R. We claim that R[x−1] is Noetherian. Indeed, since
R is Noetherian we find that R[X] is Noetherian. The surjectivity of the evalu-
ation homomorphism then shows that R[x−1] is Noetherian. Therefore we apply
Proposition 1.5.4 to find in R[x−1] an irreducible factor π of x−1. Now let S denote
the localization of R[x−1] at (π). Then S is a valuation ring, since (π) is principal.
Furthermore x = 1/x−1 /∈ S, as x−1 ∈ (π). Finally R is clearly contained in S.
Thus S ∈ {Ri}i∈I and x /∈

⋂
i∈I Ri.

The last statement follows from Theorem 1.7.4.

1.10. Dedekind domains

In section 1.4 we introduced the notion of an ideal and defined divisibility of ideals.
We saw that this definition coincides with the usual definition, whenever the ring
is a principal ideal domain, but we did not prove that if b | a then there exists an
ideal c with a = bc for all non-zero ideals a and b. In this section we will study the
rings for which this is true.

Fractional ideals. Given two ideals a and b of a ring R. We may form their
product ab which is the ideal consisting of all finite sums of products of elements of
a and b. Clearly the ideal R acts as the identity element: aR = Ra = a. The set of
ideals of R do not form a group under this multiplication, since we lack inverses.

Let us take a look at R = Z an let a be a proper ideal which we try to invert.
Let b be an ideal such that ab = Z. There are integers x and y such that a = (x)
and b = (y), since Z is a principal ideal domain. We now have Z = ab = (xy).
Therefore xy and hence x is a unit. This is impossible, since a was chosen to be
proper. Therefore no proper ideal of Z is invertible.

However, if we may choose y = 1/x ∈ Q, then inverting is no problem. But
now (y) is no longer an ideal (i.e., Z-submodule) of Z, but a Z-submodule of Q.
Furthermore notice that not every Z-submodule of Q is obtained this way, since we
only find Z-submodules b of Q such that xb ⊆ Z for some x ∈ Z. This excludes for
example b = Q.

This idea gives rise to the concept of fractional ideals.

Definition 1.10.1 (Fractional ideals). Let R be a integral domain and K its field
of fractions. A fractional ideal a of R is a R-submodule of K such that xa ⊆ R for
some non-zero x ∈ R. 4

If we wish to emphasize that an ideal R is not a fractional ideal, we will say that
it is an integral ideal .

Dedekind domains. In general the set IR of non-zero fractional ideals of R is
still not a group.

Definition 1.10.2 (Dedekind domains). Let R be an integral domain and IR the
set of non-zero fractional ideals of R. Then R is a Dedekind domain if and only if
IR is a group. 4

Let a and b be non-zero integral ideals of a Dedekind domain R and suppose
that b | a. Then since b is invertible, we find a fractional ideal b−1 of R with
c := ab−1 ⊆ bb−1 = R. Hence c is an integral ideal with a = bc. This shows that in
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a Dedekind domain we have b | a if and only if there exists an ideal c with a = bc,
for all non-zero ideals a and b.

The following theorem gives an equivalent definition of a Dedekind ring. Notice
the similarity of this theorem with Theorem 1.3.15.

Theorem 1.10.3. Let R be an integral domain. Then R is a Dedekind domain
if and only if R is Noetherian, integrally closed and all non-zero prime ideals are
maximal.

Proof. See Proposition 14 at page 19 of [5].

The most important property of a Dedekind domain is that we have unique
factorization of ideals.

Theorem 1.10.4. Let R be a Dedekind domain. Then the set IR of non-zero
fractional ideals of R is a free abelian group generated by the non-zero prime ideals
of R. In other words, every non-zero fractional ideal a factors as a finite product

a =
∏
p|a

pordp(a).

Proof. Let R be a Dedekind domain and a a non-zero integral ideal. Using Propo-
sition 1.5.3 we find a maximal, hence prime, ideal p1 which divides a. Since IR is
a group, we find a factorization a = p1(ap−1

1 ). Note that ap−1
1 is an integral ideal,

since p1 contains a and p−1
1 = {r ∈ Q(R) | rp ⊆ R}. If we repeat this process,

we find a factorization of a into prime ideals, because R is Noetherian by Theorem
1.10.3.

1.11. Field extensions

As it is important to study extensions of rings and modules, it is also important to
study extensions of fields, which is a special kind of ring extension where both rings
are fields.

Degree of an extension. We start with the degree of an extension. Let L/K be
a field extension. Then L is a vector space over K, as elements of L may be added
and multiplied by scalars from K. This leads to the following definition.

Definition 1.11.1 (Degree). Let L/K be a field extension. The degree of L/K
(notation [L : K]) is the dimension of L as a K-vector space. The extension L/K
is finite if and only if the degree is finite. 4

Theorem 1.11.2 (Tower relation). Given a tower M/L/K of field extensions.
Then M/K is finite if and only if M/L and L/K are finite. Moreover, if M/K is
finite, then [M : K] = [M : L] · [L : K].

Proof. See Proposition 1.2 on page 224 of [6].

Algebraic extensions. We will now turn our attention to the arithmetic in a
field extension.

Definition 1.11.3 (Algebraic extension). Let L/K be a field extension and x ∈ L.
Then x is called algebraic over K if and only if there exists a non-zero polynomial
f ∈ K[X] with f(x) = 0. We call x transcendental over K if and only if x is not
algebraic over K. Moreover we call L/K algebraic if and only if every x ∈ L is
algebraic over K. 4

Example 1.11.4. Consider the field extension C/Q. Then
√

2 ∈ C is algebraic
over Q, since

√
2 is a zero of the non-zero polynomial X2 − 2. ♦

Example 1.11.5. Consider the field extension K(X)/K. Then X is transcendental
over K. Moreover, every non-constant polynomial f in K[X] is transcendental over
K. ♦
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If L/K is a field extension and x ∈ L is algebraic over K, then the ideal

Ix := {f ∈ K[X] | f(x) = 0}

is a non-zero proper ideal of K[X]. Since K is a field, K[X] is a principal ideal
domain. Hence we find some generator fx of Ix. Clearly fx has minimal degree in
Ix − {0}. This explains the following definition.

Definition 1.11.6 (Minimal polynomial). Let L/K be a field extension and x ∈ L
algebraic over K. The minimal polynomial of x is the generator of Ix. 4

Notice that Ix is in fact a prime ideal of K[X]: if (fg)(x) = 0, then either
f(x) = 0 or g(x) = 0. Lemma 1.4.16 implies that fx is a prime element of K[X], as
K[X] is a principal ideal domain. Hence Theorem 1.3.15 and Theorem 1.5.6 imply
that the minimal polynomial fx is irreducible.

Separable extensions. As a preparation for the next section we will now study
separable extensions. We first give a property of a polynomials.

Definition 1.11.7 (Separable polynomial). Let L/K be a finite extension of fields
and f ∈ K[X]. Then f is called separable over L if and only if (X − a) | f implies
(X − a)2 - f for all a ∈ L. 4

Loosely speaking, a polynomial f over K is separable over L precisely whenever
f has no multiple roots in L. Via the minimal polynomial, this property extends
to elements in an extension:

Definition 1.11.8 (Separable extensions). Let L/K be a finite extension of fields
and x ∈ L. Then x is called separable if and only if the minimal polynomial of x
is separable over L. Moreover L/K is called separable if and only if all x ∈ L are
separable over K. 4

We will give a nice criterion for determining whether an element is inseparable.
For this we need the formal derivative:

d : L[X] −→ L[X], f 7→ f ′

which satisfies the following conditions:

1) d is normalized: d(X) = 1,

2) d is linear: d(cf + g) = cd(f) + d(g) for all f, g ∈ L[X] and c ∈ L.,

3) d satisfies the product rule: d(fg) = d(f)g + fd(g) for all f, g ∈ L[X].

Theorem 1.11.9. Let L/K be a finite extension, let x in L and let f be the minimal
polynomial of x over K. Then x is inseparable over K if and only if K has positive
characteristic p and f ∈ K[Xp].

Proof. Suppose that f ∈ K[Xp]. Then there exists a g ∈ K[Y ] such that f(X) =
g(Xp) and g(xp) = 0. Now using the factor theorem we find that g = (Y −xp)h(Y ).
Hence, using Newton’s binomial in characteristic p, we have f = (X − x)ph(Xp).
Thus x is a multiple zero of f .

Suppose that f ∈ K[X] ⊆ L[X] has a multiple root a in L. Then we find a
g ∈ L[X] with f = g · (X − a)m and m ≥ 2. It is easily seen that

f ′ = (g · (X − a)m)′ = (g′(X − a) +mg) · (X − a)m−1.

Thus we see that (X − a) divides both f ′ and f , hence αf + βf ′ 6= 1 for all
α, β ∈ L[X]. Hence f and f ′ are not coprime in K[X], which implies that f divides
f ′, because f is irreducible in K[X]. From deg(f ′) < deg(f) is follows that f ′ = 0.
If anX

n is any non-zero term of f , then its derivative is nanX
n which is zero

precisely when p divides n. Therefore f ∈ K[Xp].

Theorem 1.11.9 shows that every finite extension in characteristic 0 is separable.

Example 1.11.10. Let p be a prime power and t be transcendental over Fp. Con-
sider the extension Fp(t1/p)/Fp(t). Then t1/p is inseparable over Fp(t). Indeed,
the minimal polynomial of t1/p over Fp(t) equals f = Xp − t. To see this, use the
Eisenstein criterion over Fp[t]. Now f factors over Fp(t1/p) as (X − t1/p)p. Thus
t1/p is a multiple root of Xp − t in Fp(t1/p). ♦
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Transcendence degree. Clearly not every field extension is algebraic. In this
paragraph we will find a way to measure how far from being algebraic a given
extension is. This is done via the transcendence degree.

Let L/K be a field extension and A ⊂ L. Then we will write K(A) is the
smallest intermediate field of L/K, which contains A. In other words

K(A) :=
⋂
M∈Ω

M,

where Ω is the set of all subfields M of L which contain both K and A. It is clear
that K(A) is a field.

Definition 1.11.11 (Generating subset). Let L/K be a field extension and A ⊆ L
a subset. Then A is called a generating subset if and only if L = K(A). If A is
finite, then L/K is called finitely generated. If A is a singleton, then L/K is called
primitive. If K is unspecified, then K is the prime subfield of L. 4

Example 1.11.12. A finite extension of fields is finitely generated. Indeed, let L/K
be a finite field extension and let x1, . . . , xn be a K-basis of L, with n = [L : K].
Then L = K(x1, . . . , xn). ♦

The generating subset in this example is not minimal, as 1, x2/x1, . . . , xn/x1 is
a K-basis of L which shows that {x2/x1, . . . , xn/x1} is a generating subset. Now
since x1 ∈ L = K(x2/x1, . . . , xn/x1), we see that {x2, . . . , xn} is also a generating
subset.

Definition 1.11.13 (Transcendence basis). Let L/K be a field extension and A ⊆
L a subset. Then A is called algebraically independent if and only if for every integer
n > 0 and every subset a1, . . . , an ∈ A the kernel of the evaluation homomorphism

e : K[X1, . . . , Xn] −→ L, f 7→ f(a1, . . . , an)

is trivial. Moreover A is called a transcendence basis of L/K if and only if L/K(A)
is algebraic and A is algebraically independent. 4

Just as with modules and vector spaces, the cardinality of a basis is a funda-
mental property of an extension.

Definition 1.11.14 (Transcendence degree). Let L/K be a field extension with
basis A. Then the transcendence degree trdeg(L/K) of L over K is the cardinality
of A. 4

Just like the definition of the dimension of a module or vector space, we need
to show that every basis of a field extension has the same cardinality. We refer for
this to Theorem 1.1 on page 356 in [6].

Example 1.11.15. Let K be a field and L be the field of fractions of the polynomial
ring K[X]. Then the transcendence degree of L/K equals 1. It can be shown
that if L/M/K is a tower of field extensions, then trdeg(L/K) = trdeg(L/M) +
trdeg(M/K). We will not prove this, as we do not need it. Then, using induction,
it is easy to show that the quotient field of K[X1, . . . , Xn] has transcendence degree
n over K, for any positive integer n. ♦

For future use, we will define the notion of Kronecker dimension. The reason
for this definition will become apparent in section 2.1.

Definition 1.11.16 (Kronecker dimension). Let K be a finitely generated field.
Then the Kronecker dimension of K is defined by

Krdim(K) =

{
trdeg(K/Fp) if char(K) = p > 0

trdeg(K/Q) + 1 if char(K) = 0
4

1.12. Galois theory

In this section we will define and study the group of structure preserving maps on
a given finite field extension. This group will be called the Galois group. When
this finite field extension is a splitting field we can relate the Galois group to the
intermediate fields of the extension.
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Splitting fields. Let f be a polynomial in Q[X]. Then f factors into linear
factors over the complex numbers. But C is not the only field extension of Q with
this property. In fact, any extension of Q, which contains all roots of f , suffices.

Definition 1.12.1 (Splitting fields). Let L/K be a finite extension, f ∈ K[X] a
polynomial over K. Then L is called the splitting field of f if and only if there
exists a1, . . . , an in L such that

1) f splits completely in L, i.e., f = (X − a1) · · · (X − an),

2) L is minimal, i.e., L = K(a1, . . . , an). 4

It turns out that the splitting field of f over K is unique up to an isomorphism
f which fixes the elements of K, i.e., f(x) = x for all x ∈ K. Such an isomorphism
is called a K-isomorphism.

Theorem 1.12.2. Let L and L′ be two splitting fields of a polynomial f over K.
Then there exists an K-isomorphism σ : L→ L′.

Proof. See Theorem 3.1 on page 236 of [6].

As an application to finite fields, we have the following:

Theorem 1.12.3. Let q be a power of a prime number. Then there is a unique
finite field Fq with q elements.

Proof. It suffices to see that Fq is the splitting field of Xq − X over Fp, as then
Theorem 1.12.2 shows that Fq is unique. To see this notice that F×q has order q−1.
Hence the multiplicative order of any x ∈ Fq divides q − 1. Hence every non-zero
x ∈ Fq satisfies Xq−1 = 1 and every element of Fq is a root of Xq −X.

Galois extensions. We will now define and study the group of structure preserv-
ing maps on a given finite extension of fields.

Let L/K be a finite field extension. A K-automorphism of L is a ring iso-
morphism σ : L → L, such that σ(x) = x for all x ∈ K. One can think of a
K-automorphism of L as an automorphism of the extension L/K.

Example 1.12.4 (Frobenius automorphism). Let L/K be an extension of finite
fields of characteristic p. Then the map Fr : L → L given by x 7→ x|K| is K-
automorphism of L. First of all notice that Fr(xy) = Fr(x) Fr(y) for all x, y ∈ L.
Furthermore we have that

(x+ y)p =

p∑
k=0

(
p

k

)
xkyp−k = xp + yp,

because
(
p
k

)
is divisible by p for k 6= 0, p. Therefore (x+ y)p

n

= (xp + yp)p
n−1

and
with induction on n we find that Fr(x + y) = Fr(x) + Fr(y) which implies that Fr
is an homomorphism. Notice that ker(Fr) = {0}, which means that Fr is injective.
Now since the domain and codomain of Fr are both of the same finite cardinality,
we conclude that Fr is an automorphism.

It remains to check that Fr is trivial on K. To see this, notice that |K×| = |K|−1
implies that x|K|−1 = 1 for all x ∈ K. Hence x|K| = x for all x ∈ K, which shows
that Fr is a K-automorphism of L. ♦

We will now study the set of all K-automorphisms of L, which is called the
Galois group.

Definition 1.12.5 (Galois group). Let L/K be a finite field extension. Then the
Galois group of L/K (notation: Gal(L/K)) is the group of K-automorphisms of L,
i.e.,

Gal(L/K) = {σ ∈ Aut(L) | σ(x) = x for all x ∈ K}. 4

It turns out the Galois group is a finite group. Moreover, the following theorem
show that the order is bounded by the degree of the extension.
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Theorem 1.12.6. Let L/K be a finite extension. Then |Gal(L/K)| ≤ [L : K].

Proof. See Theorem 8.3.1 on page 94 of [1].

This theorem leads to the following definition.

Definition 1.12.7 (Galois extension). A finite extension L/K of fields is called
Galois if and only if |Gal(L/K)| = [L : K]. 4

We will now give some equivalent conditions for a finite field extension being
Galois. Recall from Definition 1.12.1 that a polynomials is said to split completely
over L if all roots are in L.

Definition 1.12.8 (Normal extensions). Let L/K be a finite extension of fields.
Then L/K is called normal if and only if every irreducible polynomial f in K[X]
with a root in L splits completely over L. 4

Recall the definition of a seperable polynomial. We now have the following
theorem:

Theorem 1.12.9. Let L/K be a finite extension. Then the following are equivalent:

1) L/K is a Galois extension;

2) L/K is a normal and separable extension;

3) L is the splitting field over K of a separable polynomial f ∈ K[X].

Proof. See Theorem 8.3.5 on page 95 of [1].

Let L/K be a finite extension and H < Gal(L/K). Then the fixed field of H in
L is the set

LH = {x ∈ L | σ(x) = x for all σ ∈ H}.
Clearly, the fixed field LH is an intermediate field. The following theorem gives
a correspondence between intermediate fields L/K and subgroups of Gal(L/K),
which is called Galois correspondence.

Theorem 1.12.10 (Fundamental theorem of Galois theory). Let L/K be a Galois
extension. Then we have a one-to-one correspondence,

{subgroups of Gal(L/K)} ←→ {intermediate fields of L/K}
H 7→ LH

Gal(L/M) ← [ M

Normal subgroups of Gal(L/K) correspond to normal intermediate fields M of L/K.
Moreover if M is a normal intermediate field of L/K, then

Gal(M/K) ∼= Gal(L/K)/Gal(L/M).

Proof. See Theorem 1.1 on page 262 of [6].

Example 1.12.11 (Finite fields). Let Fpn/Fp be an extension of finite fields, for
some integer n ≥ 1 and prime p. We will show that Fpn/Fp is a cyclic exten-
sion. A finite extension L/K is called cyclic if and only if L/K is Galois and
Gal(L/K) is cyclic. Let k be the order of Fr in Gal(Fpn/Fp), where Fr is the
Frobenius automorphism. Then [Fpn : Fp] = n and Theorem 1.12.6 implies that

k ≤ |Gal(Fpn/Fp)| ≤ n. On the other hand suppose that Frk(x) = x for all x ∈ Fpn .

Then Xpk−X has at least pn solutions. Therefore we have that pk ≥ pn and k ≥ n.
We conclude that k = |Gal(Fpn/Fp)| = n. In other words, Fpn/Fp is a Galois ex-
tension with cyclic Galois group generated by the Frobenius automorphism.

We will now show that Fpn/Fpm is a cyclic extension. First of all we have
that d := n/m = [Fpn : Fpm ] is an integer. Using Galois correspondence we find
that Gal(Fpm/Fp) ∼= Gal(Fpn/Fp)/Gal(Fpn/Fpm), because Gal(Fpn/Fp) is cyclic
and hence Gal(Fpn/Fpm) is normal. This shows that Gal(Fpn/Fpm) = d, which
implies that Fpn/Fpm is Galois. Now notice that Gal(Fpn/Fpm) is generated by
Frm, since clearly Frm is an Fpm-automorphism of Fpn and md = n which implies
that Frm(x) = xp

m

has order d. Therefore Fpn/Fpm is a Galois extension with cyclic
Galois group generated by the m-th power of the Frobenius automorphism. ♦
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The main theorem gives lots of information about the intermediate fields. In
fact we can now show that all intermediate fields are primitive. Recall that a field
extension is called primitive whenever it is generated by a single element.

Corollary 1.12.12 (Primitive element theorem). Let L/K be a finite separable
field extension. Then L/K is primitive.

Proof. We follow the proof of Theorem 9.4.1 on page 106 of [1]. If K is a finite field
with characteristic p, then L ∼= K[X]/(f) for any irreducible separable f ∈ K[X]
with degree [L : K]. Therefore L/K is primitive, as it is generated by the image of
X. Suppose that |K| =∞ and write L = K(a1, . . . , ak) for some k ≥ 1 and ai ∈ L.
Let gi be the minimal polynomial of ai over K and let f be the product of the
distinct gi. Let N be the splitting field of f . Then Galois correspondence applies
to N/K, which shows that there are only finitely many intermediate fields, because
Gal(N/K) is finite. Therefore there are only finitely many intermediate fields of
L/K. Now we will show that L/K is primitive, with induction on k. For k = 1 this
is trivial. Suppose that K(a1, . . . , ak−1)/K is primitive. Then we find some b ∈ L
with K(a1, . . . , ak−1) = K(b). We show that K(ak, b) is primitive. Consider the
intermediate fields K(ak+bc), with c ∈ K. Since K is infinite and there are at most
finitely many intermediate fields, we find c and c′ such that K(ak+bc) = K(ak+bc′).
Clearly ak + bc ∈ K(ak, b). On the other hand both (ak + bc)− (ak + bc′) = (c− c′)b
and c′(ak + bc)− c′(ak + bc) = (c− c′)a are in K(ak + bc). Since c 6= c′ this implies
that ak, b ∈ K(ak + bc). Hence L = K(ak, b) = K(ak + bc) is primitive.



28 1.12. Galois theory



Chapter 2

Algebraic Number Theory

In this chapter we investigate the properties of global fields, i.e., a finitely generated
fields of Kronecker dimension one. The aim of this chapter is on the one hand the
introduction of terminology such as the ring of integers, the class group, the ray
class groups, places, ramification index and the residue class degree and on the one
hand to prove some important results such as the finiteness of the class group, the
finiteness of the ray class groups, the non-zero density of the prime ideals in a given
ray class, the Hasse norm theorem and the Artin reciprocity law.

The study of these global fields is done in two ways, which are almost identical.
The first approach is via the classical viewpoint: we study the ideals in the ring of
integers, the class group and the ray class groups of a global field. We show that
both of these groups are finite. In the second approach will be an idelic viewpoint:
we will study the embeddings of a global field into local fields, which are completions
of the global field with respect to an absolute value.

In the beginning of the chapter we will focus on the classical approach, as this is
more intuitive. Later on we switch to the idelic viewpoint as we need to implement
results from other texts such as Weil [17].

2.1. The ring of integers

We start of with the definition of the object which we will study in this chapter.
Recall that a field is called finitely generated precisely when it is finitely generated
over the prime subfield.

Definition 2.1.1 (Global field). A field K is called a global field if and only if K
is a finitely generated field of Kronecker dimension 1. 4

We now introduce some basic notation. Let K be a global field. Then t ∈ K is
called integral if and only if t is integral over the prime subring of K (that is, t is
integral over Z or Fp whenever char(K) = 0 or char(K) = p > 0 respectively).

If K is a global field and t ∈ K is non-integral, then we define the subring
OK ⊆ K by

OK :=

{
Z if char(K) = 0

Fp[t] if char(K) = p > 0
(2.1)

Furthermore we define the subfield K ⊆ K by K = Q(OK). Then K/K is a finite
extension of global fields.

Definition 2.1.2 (Ring of integers). The ring of integers OK of a global field K
is the integral closure of OK in K. 4

Ideal theory. We will now prove an important fact about the ring of integers,
namely that it has ideal theory. This means that the set of fractional ideals of OK
is a free abelian group generated by the (integral) prime ideals.

The following lemma shows that every non-zero integral ideal of OK extends
(i.e., contains) a non-zero integral ideal of OK. These extensions will be further
investigated in the next paragraph.

29
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For future use (c.f., Theorem 2.5.11), we will be a bit more general. If K is a
global field and R ⊆ K a subring of K, then R is called a global ring if and only if
OK ⊆ R.

Lemma 2.1.3. Let a be a non-zero integral ideal of a global ring R. Then a ∩ OK
is a non-zero integral ideal of OK.

Proof. Let a be an integral ideal of a global ring R. It is clear that a ∩ OK is an
integral ideal of OK. Now let x be a non-zero element of a. Then since K/K is
finite, x is algebraic over K. Since K = Q(OK) we find some f = c · fxK/K ∈ OK[X],

where c is sufficiently large and f is irreducible in OK[X]. More explicitly, we find
n ≥ 1 and ai ∈ OK for 0 ≤ i < n− 1 such that xn + an−1x

n−1 + · · ·+ a1x+ a0 = 0.
But now we find a0 = −xn−an−1x

n−1−· · ·−a1x ∈ a∩OK, because a is an ideal of
OK . Furthermore a0 = f(0) 6= 0, since x 6= 0 and f is irreducible in OK[X]. Thus
a ∩ OK is a non-zero ideal of OK.

We also need the following important property about the non-zero integral ideals
of a global ring R.

Lemma 2.1.4. Every non-zero integral ideal a of a global ring R is of finite index.

Proof. Let a be a non-zero integral ideal of a global ring R. We will follow the proof
of Theorem 2.11 at page 19 of [16]. Using Lemma 2.1.3 we see that a contains a
non-zero element a ∈ OK. Now it suffices to prove that R/aR is finite, since the
canonical map R/aR→ OK/a is surjective.

We will show that every finitely generated OK-submodule of R/aR contains at
most NK(a)[K:K] elements. Then |R/aR| ≤ NK(a)[K:K], since we can construct larger
OK-submodules when R/aR is larger.

Let N be a finitely generated OK-submodule of R/aR, generated by (xi+aR)ni=1.
Let M be the OK-submodule R generated by (yi)

n
i=1, for some yi ∈ xi + aR. Then

the natural OK-module homomorphism π : M → R/aR satisfies π(M) = N and
induces an OK-module isomorphism M/aM ∼= N . Hence is suffices to prove that
M/aM contains at most NK(a)[K:K] elements.

Since R is an integral domain, M has no elements of finite order. Therefore
M is a free OK-module. Any set with more then [K : K] elements is linearly
dependent over K. Thus the rank k of M does not exceed [K : K] and we find that
|M/aM | = |OK/aOK|k ≤ NK(a)[K:K]. This concludes the proof of the lemma.

We are now ready to prove that the ring of integers is a Dedekind domain.

Proposition 2.1.5. The ring of integers OK is a Dedekind domain.

Proof. We will show that Lemma 2.1.4 implies that OK is Noetherian, integrally
closed and every non-zero prime ideal of OK is maximal. Then Theorem 1.10.3
implies that OK is Dedekind.

Given a chain a0 ⊆ a1 ⊆ · · · of ideals. Using Lemma 2.1.4 this gives rise to a
decreasing sequence of natural numbers |OK/a0| ≥ |OK/a1| ≥ · · · . Since ≤ is a
well-order of N, this sequence has a least element at which it stabilizes. But ai = aj
if and only if |OK/ai| = |OK/aj |, for all i < j. Therefore the chain stabilizes and
OK is Noetherian.

Since OK is the integral closure of OK in K we conclude by Theorem 1.7.4 that
OK is integrally closed.

Furthermore let p be a prime ideal of OK . Then by Lemma 2.1.4 and Theorem
1.4.17 we find that OK/p is a finite integral domain. Consider the left multiplication
by a non-zero a ∈ OK/p. This map is injective, hence surjective by the finiteness of
OK/p. Thus 1 is in the image which implies that a is invertible. Therefore OK/p
is a field and p is maximal by Theorem 1.4.13.

The fact that the ring of integers OK of a global field is a Dedekind domain
implies that we have unique factorization of non-zero fractional ideals. We first
illustrate this with an example.



Chapter 2. Algebraic Number Theory 31

Example 2.1.6. The set IQ of non-zero fractional ideals of OQ := Z is given by

IQ = {qZ | q ∈ Q×} ∼= Q×/{±1}.

Hence every non-zero fractional ideal in IQ factors as qZ = (p1Z)n1 · · · (psZ)ns , for
some primes pi ∈ Z, integers ni ∈ Z and s ∈ N, with q = ±pn1

1 · · · pnss . ♦

We can do the same for the function field Fp(t). In fact, this can be done in an
arbitrary global field:

Theorem 2.1.7. The set IK of non-zero fractional ideals of OK is a free abelian
group generated by the non-zero prime ideals of OK , i.e., every non-zero fractional
ideal a factors uniquely as a finite product

a =
∏
p|a

pnp .

Proof. The result follows from Proposition 2.1.5 and Theorem 1.10.4.

Extensions of primes. Given an extension L/K of global fields. We will inves-
tigate how the primes of L are related to the primes of K.

Definition 2.1.8 (Extensions of primes). Let L/K be an extension of global fields,
P be a prime ideal of OL and p be a prime ideal of OK . Then P extends p or p lies
over/above p (notation: P/p) if and only if P ∩ OK = p. 4

We will now study the relation between the primes P of L which lie above a
given prime p of K.

Definition 2.1.9 (Ramification index). Let L/K be a finite extension of global
fields and P a non-zero prime of OL extending a prime p of OK . Then the ramifi-
cation index e(P/p) of P over p is the multiplicity of P in the factorization of pOL
in OL. 4

For notational convenience we will also write eP instead of e(P/p).

Definition 2.1.10 (Residue class field). Let p be a non-zero prime ideal in the ring
of integers OK of a global field K. Then the residue class field is the field

Kp = OK/p 4

In a finite extension L/K of global fields, we may consider the residue class field
Kp at a prime p and the residue class field LP at some extension P of p. This
extension is finite, as L/K is finite. Hence we can define the following:

Definition 2.1.11 (Residue class degree). Let L/K be a finite extension of global
fields and P a non-zero prime of OL extending a prime p of OK . Then the residue
class degree of P over p is the degree

f(P/p) = [LP : Kp]. 4

For notational convenience we will also write fP instead of f(P/p).
We are now ready to formulate the relation between the primes which lie above

a given prime.

Theorem 2.1.12 (Fundamental formula). Let L/K be an extension of global fields.
Then for all primes p in OK we have∑

P/p

ePfP = [L : K].

Proof. See Proposition 8.2 on page 46 of [10] and notice that the proof applies not
only to number field but function fields too.
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2.2. Ideal and field norm

In this section we will study the ideal norms. We distinguish two types of norms:
the relative and the absolute ideal norm. Both of these maps give rise to a field
norm, by considering principal ideals.

Relative norm. We will now study a map which connects, in a given extension
L/K of global fields, the fractional ideals of L with those of K. Recall that the set
IL of fractional ideals of L is generated by the prime ideals of OL (Theorem 2.1.7).
Hence the following map is well-defined.

Definition 2.2.1 (Relative ideal norm). Let L/K be a finite extension of global
fields and let IL and IK be the groups of non-zero fractional ideals of L and K.
The (relative) ideal norm from L to K is the group homomorphism

NL/K : IL −→ IK

determined by P 7→ pf(P/p), for every prime P in IL and p = P ∩ OK . 4

Using the fundamental formula, we find the following lemma.

Lemma 2.2.2. Let L/K be a finite extension of global fields and a a fractional
ideal of K. Then NL/K(aOL) = a[L:K].

Proof. Since the set IK of non-zero fractional ideals of K is generated by the prime
ideals of OK it suffices to check the identity for some prime p. Write pOL =∏n
i=1 P

ei
i , with ei = e(Pi/p). Write fi = f(Pi/p). Then we find by the fundamental

formula that

NL/K(pOL) = NL/K(
∏n
i=1 P

ei
i ) =

∏n
i=1 NL/K(Pi)

ei =
∏n
i=1 p

eifi = p[L:K],

which proves the lemma.

We now come to an important property of the ideal norm, which will be used
in Definition 2.2.4 and Theorem 2.12.8.

Theorem 2.2.3. Let L/K be a finite extension of global fields. Then NL/K(A) is
principal whenever A is principal.

Proof. See Proposition 22 on page 26 of [5].

Given an extension of global fields L/K. Then fractional ideals of OK are
generalizations of non-zero elements of K. Indeed, every element a in L a gives rise
to a fractional ideal aOL of L. Hence, in view of Proposition 2.2.3, we may define
the following:

Definition 2.2.4 (Relative field norm). Let L/K be a finite extension of global
fields. The (relative field) norm from L to K is the group homomorphism NL/K :
L× → K× which maps a to the generator of NL/K(aOL). It is customary to extend
this map with NK(0) = 0. 4

The next theorem provides some alternative descriptions of this norm map.

Theorem 2.2.5. Let L/K be a finite extension of global fields. Then for all a in
L we have

1) NL/K(a) = det(Ma), with Ma the K-linear automorphism of L given by x 7→
ax;

2) NL/K(a) =
∏
σ σ(a), where σ runs over all K-homomorphism from L into a

fixed algebraic closure K of K.

Proof. From Proposition 22 on page 26 of [5] we know that NL/K(a) = det(Ma)
holds, From page 40 and 41 of [16] we see that det(Ma) =

∏
σ σ(a).
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Absolute norm. We will now define an ideal norm, which depend on a single
global field instead of an extension of global fields. Before we give the definition,
recall that both OK and a are subgroups of K+, the additive group of K. Hence
we may speak about the index of a in OK as an additive subgroup.

Definition 2.2.6 (Absolute ideal norm). Let K be a global fields and let IK be
the group of non-zero fractional ideals of K. The (absolute) ideal norm on K is the
group homomorphism

NK : IK −→ Q>0

determined by p 7→ [OK : p], for every prime p in IK . 4

Notice that this definition is well-defined, because Theorem 2.1.7 shows that IK
is freely generated by the prime ideals of OK . Hence there exists a unique extension
NK of the assignment p 7→ [OK : p].

Example 2.2.7. Let q be a prime ideal in OK. Then since OK is a principal ideal
domain, we find some x ∈ OK with p = aOK. Hence we have that

NK(p) = [OK : aOK] =

{
a if char(K) = 0

pdeg(a) if char(K) = p > 0
,

where deg(a) is the degree of a ∈ OK = Fp[t] as a polynomial in t. ♦

We will show that NK is can also be characterized by the formula NK(a) =
[OK : a], where a is any integral ideal of OK . We first prove a preliminary result:

Lemma 2.2.8. Let K be a global field and p a non-zero prime of OK . Then for
all n ∈ N we have OK/p ∼= pn/pn+1 as OK-modules.

Proof. Pick a ∈ pn−pn+1, which is possible since pn 6= pn+1 by the unique factoriza-
tion. Define φ : OK → pn/pn+1 by x 7→ ax+ pn+1. Then clearly φ is a OK-module
homomorphism with p ⊆ ker(φ). Suppose that φ(x) = 0 + pn+1. Then ax ∈ pn+1

or pn+1 | (a)(x) and p | (x) since pn+1 does not divide (a). Thus p = ker(φ).
We now show that φ is surjective. Let b ∈ pn. By the Chinese remainder

theorem there exists x0 ∈ OK such that

x0 ≡ b (mod pn+1) and x0 ≡ 0 (mod (a)/pn).

We have pn | (b) since b ∈ pn and (a)/pn | (x0) by the second displayed condition.
So (a) = pn · (b)/pn | (x0), hence x0/a ∈ OK . Finally

ϕ(x0/a) = a(x0/a) + pn+1 = x0 + pn+1 = c+ pn+1.

Hence φ is surjective, and the lemma follows form the first isomorphism theorem
for OK-modules.

We will now give another, more explicit, characterization of the absolute ideal
norm:

Theorem 2.2.9. Let K be a global field and a a non-zero integral ideal of OK .
Then NK(a) = [OK : a].

Proof. Write a = pn1
1 · · · p

nk
k , with ni ≥ 1 an integer for all 1 ≤ i ≤ k. By the

Chinese remainder theorem we find that

OK/a ∼=
n∏
i=1

OK/pnii .

For each non-zero prime p of OK and each integer n ≥ 1, consider the tower
pn+1 ⊆ pn ⊆ OK of subgroups of K+. From elementary group theory we have
that [OK : pn+1] = [OK : pn] · [pn : pn+1]. From Lemma 2.2.8 we see that [OK :
p] = [pn : pn+1]. Hence, we have that [OK : pn+1] = [OK : pn] · [OK : p]. By
induction on n we find [OK : pn] = [OK : p]n, for all integers n ≥ 1. We conclude
that

[OK : a] =

n∏
i=1

[OK : pnii ] =

n∏
i=1

[OK : pi]
ni =

n∏
i=1

NK(pi)
ni

The right hand side equals NK(a) by definition, which proves the theorem.
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The next proposition shows that relative and absolute norm commute.

Proposition 2.2.10. Let L/K be an extension global fields. Then the diagram

IL IK

Q>0

NL/K

NL NK

commutes. In other words: for all prime ideals P of L we have

NL(P) = NK(NL/K(P)).

Proof. Write p = P ∩ OK . From Theorem 2.2.9 we conclude that

NK(NL/K(P)) = NK(pf(P/p)) = NK(p)f(P/p)

Using the definition of f(P/p) and NK(p) we find that

NK(NL/K(P)) = |OK/p|[OL/P:OK/p] = |OL/P| = NL(P),

which concludes the proof.

Just as the relative ideal norm of an extension L/K of global fields induces the
field norm from L× to K×, the absolute ideal norm from a global field K induces
a map from K×:

Definition 2.2.11 (Absolute field norm). Let L/K be a finite extension of global
fields. The (absolute field) norm from K is the group homomorphism NK : K× →
Q>0 determined by a 7→ NK(aOK) for all a ∈ OK . It is customary to extend this
map with NK(0) = 0. 4

Example 2.2.12. Let x ∈ OK. Then using Theorem 2.2.9 we have that

NK(x) = [OK : xOK] =

{
|x| if char(K) = 0

pdeg(x) if char(K) = p > 0
.

Here deg(x) is the degree of x ∈ OK = Fp[t] as a polynomial in t. For all a = x/y ∈ K
we now have that

NK(a) =
[OK : xOK]

[OK : yOK]
=

{
|a| if char(K) = 0

pdeg(a) if char(K) = p > 0
.

It is easy to see that the absolute field norm NK is an absolute value (c.f., Definition
2.4.1). ♦

2.3. Class group

Let K be a global field and let IK denote the set of non-zero fractional ideals of
OK . Consider the subgroup

PK = {kOK | k ∈ K×}

of principal fractional ideals in IK . This is a normal subgroup, since IK is abelian.
Hence we may consider their quotient.

Definition 2.3.1 (Ideal class group). Let K be a global field. Then the (ideal)
class group Cl(K) of K is the quotient IK/PK . Elements R of Cl(K) are called
ideal classes. The class number h is order of the class group. Two fractional ideals
a and b are linear equivalent if ab−1 is a principal principal fractional ideal. 4

We will show that the order of the class group is finite. We follow page 100
of [5].
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Lemma 2.3.2. Every ideal class contains an integral ideal.

Proof. Let R be an ideal class in Cl(K) and fix some fractional ideal a in R. By
definition of a fractional ideal there exists some x ∈ OK such that xa ⊆ OK . Notice
that b = (x)a is an integral ideal of OK , with a ∼ b. Therefore R contains an
integral ideal b.

The next lemma shows that OK is not very large.

Lemma 2.3.3. The ring of integers OK is a free OK-module of rank [K : K].

Proof. Clearly OK is an OK-module which is torsion free since OK is an integral
domain. Since OK is a unique factorization domain we conclude from Theorem 1.7.3
that OK is integrally closed. Now OK is finitely generated by Proposition 6 at page
6 of Lang [5]. Now Theorem 1.6.14 implies that OK is a free OK-module, since OK
is a principal ideal domain and K is a finite separable extension of the quotient field
K of OK.

It remains to show that OK has rank [K : K]. Since K/K is separable, the
primitive element theorem (Corollary 1.12.12) implies the existence of an x ∈ K of
degree n = [K : K]. By Proposition 1 at page 5 of Lang [5] we find a c ∈ K such that
cx ∈ OK . But now 1, cx, . . . , (cx)n−1 is an K-linearly independent subset of OK ,
since the degree of cx equals the degree of x. Hence OK has rank at least [K : K].
Clearly the rank of OK cannot exceed [K : K], which concludes the proof.

Lemma 2.3.4. There exist a C > 0 such that every non-zero integral ideal a of
OK contains an element a with NK(a) ≤ C ·NK(a).

Proof. We rewrite the proof on page 100 of [5] using our notations. Recall the
definition of K from section 2.1 and consider the finite extension K/K. We know
by Lemma 2.3.3 that the ring of integers is a finitely generated OK-module of rank
N ≥ 1. Let b1, . . . , bN be an OK-basis of OK and define for any d ∈ Q>0

Sd = {
∑N
i=1 ribi ∈ OK | ri ∈ OK,NK(ri) ≤ d}.

Then there are more then dN elements in Sd. Indeed, we have that |Sd| = gN , with

g = |{r ∈ OK | NK(r) ≤ d}|.

If K is a number field then g is the number of r ∈ Z with NK(r) = |r| ≤ d. Hence
g = 2d + 1 > d. If K is a function field then g is the number of r ∈ Fp[t] with

NK(r) = pdeg(r) ≤ d or equivalently deg(r) ≤ blogp(d)c. Hence g = pblogp(d)c+1 > d.

In both cases we find g > d, which implies that |Sd| > dN .

Choose d = NK(a)1/N . Then Sd contains more then NK(a) elements, while
OK/a contains precisely NK(a) elements by Theorem 2.2.9. Therefore the pro-
jection π : OK → OK/a is not injective on Sd. Hence we find two distinct el-
ements x and y in Sd such that π(x) = π(y). Define a = x − y. Then clearly

a ∈ kerπ = a. Suppose that x =
∑N
i=1 xibi and y =

∑N
i=1 yibi. Then a =

∑N
i=1 aibi,

with ai = xi − yi for all i. Hence, using the triangle inequality (Example 2.2.12),
we see that

NK(ai) ≤ NK(xi) + NK(−yi) ≤ 2 NK(a)1/N .

We now estimate the norm of a from K. By Proposition 2.2.10 and Theorem 2.2.5
we have

NK(a) = NK(NK/K(a)) = NK(
∏
σ

σ(a)) =
∏
σ

NK(σ(a)),

where σ runs through homK(K,K). Now using the triangle inequality (Example
2.2.12) and the fact that any σ fixes K we conclude that

NK(a) =
∏
σ

NK(σ(

N∑
i=1

aibi)) ≤
∏
σ

N∑
i=1

NK(ai) NK(σ(bi))
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Let M be the maximum of NK(σ(bi)) over all σ in homK(K,K) and all 1 ≤ i ≤ N .
Then we find that

NK(a) ≤
∏
σ

N∑
i=1

2 NK(a)1/NM ≤ C ·NK(a),

with C = (2M)NN , because |homK(K,K)| = N .

Lemma 2.3.5. There exist only finitely many integral ideals a of OK with NK(a) ≤
C, for some given C > 1.

Proof. Let a be a integral ideal of OK with NK(a) ≤ C. By Theorem 2.1.7 we
may factor a into positive powers of prime ideals a = pn1

1 · · · p
nk
k . Hence we find by

definition
NK(a) = NK(p1)n1 · · ·NK(pk)nk ≤ C

Notice that NK(pi) = [OK : pi] ≥ 2 for all indices i, which implies that all ni are
bounded from above. Since a is integral, we also have ni > 0. Now consider

NK(p) = NK(NK/K(p)) = NK((π)f ) =

{
|π|f if char(K) = 0

pf deg(π) if char(K) = p > 0
,

with (π) = p ∩ OK and f = f(p/(π)). We see that there are only finitely many π
with NK((π)f ) ≤ C. The fundamental formula shows that there are at most [K : K]
for every (π). Hence we find only finitely many pi with NK(pi) ≤ C, which proves
the claim.

We are now ready to prove our main result:

Theorem 2.3.6. The ideal class group Cl(K) of a global field is finite.

Proof. We will show that there exist a constant C such that for any non-zero integral
ideal a there exist a integral ideal b in the linear equivalence class of a such that
NK(a) ≤ C.

Use Lemma 2.3.4 to find some C > 0 such that every non-zero integral ideal a
of OK contains an element a with NK(a) ≤ C ·NK(a). Let R be an ideal class and
find using Lemma 2.3.2 an integral ideal a in R−1. Then choose a ∈ a such that
NK(a) ≤ C ·N(a). Let b = aOK/a ∈ R. Then

NK(b) = NK(aOK/a) = NK(a)/NK(a) ≤ C.

Moreover b is in integral ideal, because a divides aOK , as aOK ⊆ a. Since there
are only finitely many ideals of bounded norm by Lemma 2.3.5, the class group is
finite.

2.4. Absolute values and places

In this section we introduce the most fundamental notion in the idelic viewpoint:
the places of field. We furthermore prove some properties of places.

Definition 2.4.1 (Absolute values). An absolute value on a field K is a map
| · | : K → R which is

1) positive: |x| ≥ 0 for all x ∈ K;

2) non-degenerate: |x| = 0 if and only if x = 0 for all x ∈ K;

3) multiplicative: |xy| = |x||y| for all x, y ∈ K;

4) additive: |x+ y| ≤ |x|+ |y| for all x, y ∈ K. 4

Example 2.4.2 (Trivial absolute value). Let K be a global field and consider the
map | · | defined by |x| = 1 for all x 6= 0. Then | · | is an absolute value. This absolute
value is called the trivial absolute value. ♦
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Example 2.4.3 (Absolute field norm). From Example 2.2.12, the absolute field
norm NK : K→ Q≥0 ∪∞ is an absolute value of K. ♦

Example 2.4.4 (p-adic absolute value). Let K be a global field and p a prime
ideal of OK . Then consider the map ordp : K → Z ∪∞ given by ordp(0) =∞ and
ordp(x) = np, where np satisfies xOK =

∏
q q

nq . Then the map ordp is called the
order at p and satisfies

1) ordp(x) =∞ if and only if x = 0;

2) ordp(xy) = ordp(x) + ordp(y);

3) ordp(x+ y) ≥ min{ordp(x), ordp(y)},

for all x, y ∈ K. Then the map |x|p := NK(p)− ordp(x) is called the p-adic absolute
value on K. From the above properties it is easy to see that |x|p is an absolute
value. ♦

Let us state some elementary properties of absolute values.

Definition 2.4.5 (Archimedian absolute values). An absolute value | · | on a field
is Archimedian if and only if |n| is unbounded on the subring generated by 1. 4

This subring can not be identified with Z when the global field has a positive
characteristic. The following proposition gives a characterization of Archimedian
absolute values.

Proposition 2.4.6. Let | · | be an absolute value on a field K. Then | · | is non-
Archimedian if and only if |x+ y| ≤ max{|x|, |y|} for all x, y ∈ K.

Proof. We will follow the proof in [3]. If |x + y| ≤ max{|x|, |y|} for all x, y ∈ K,
then |n| ≤ 1 for all n in the subring generated by 1. Thus | · | is non-Archimedian.

Suppose that |·| is non-Archimedian. Then |n| ≤ 1 for all n in the subring gener-
ated by 1, because if n > 1 for some n in this subring, we find that limk→∞ |nk| =∞
which contradicts the fact that | · | is non-Archimedian.

Now let x, y ∈ K and suppose without loss of generality that |x| ≥ |y|. Then
|y/x| ≤ 1 and

|1 + y/x|n = |(1 + y/x)n| ≤
n∑
k=0

∣∣∣∣(nk
)∣∣∣∣ |y/x|k ≤ 1 + · · ·+ 1 = n+ 1.

Thus we find that

|1 + y/x| = lim
n→∞

n
√
|1 + y/x|n ≤ lim

n→∞
n
√
n+ 1 = 1 = max{1, |y/x|}.

We conclude that |x+ y| ≤ max{|x|, |y|}.

Notice that an absolute value | · | of a field K induces a topology on K: the
coarsest topology such that the sets {x | |x− a| < r}, for all a ∈ K and r > 0, are
open.

Definition 2.4.7 (Discrete absolute values). An absolute value | · | on a field is
discrete if and only if 1 is isolated in the induced topology. 4

Places. We will now introduce an equivalence relation on the set of all absolute
values of a field. The (non-trivial) equivalence classes are then called the places of
K.

Definition 2.4.8 (Equivalent absolute values). Let | · |1 and | · |2 be absolute values
of a field. Then | · |1 and | · |2 are equivalent if | · |1 and | · |2 induce the same
topology. 4

The following proposition gives another characterization of equivalent absolute
values.
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Proposition 2.4.9. Let | · |1 and | · |2 be absolute values on a field. Then | · |1 and
| · |2 are equivalent if and only if there exists a real c > 0 such that | · |1 = (| · |2)c.

Proof. See Proposition 1.8 on page 6 of [16].

This relation is clearly an equivalence relation, and hence we may consider the
equivalence classes.

Definition 2.4.10 (Place). A place p of a field is the equivalence class of a non-
trivial absolute value. A place p of a field is called infinite if and only if p contains
an Archimedian absolute value. 4

As usual we do not restrict our attention to individual objects, but rather in-
vestigate how they interact:

Definition 2.4.11 (Extension of places). Let L/K be an extension of fields, p a
place of K and P a place of L. Then P is an extension of p (notation: P/p) if and
only if for all | · | ∈ P the restriction of | · | to K is in p. 4

Later on we will need the following theorem, which is related to the Chinese
remainder theorem.

Theorem 2.4.12. (Approximation theorem) Let n ≥ 1 be an integer and let | · |i,
for 1 ≤ i ≤ n, be non-trivial pairwise non-equivalent absolute values on a global field
K. Let x1, . . . , xn ∈ K and ε > 0. Then there exists an element x ∈ K such that
|x− xi|i < ε for all 1 ≤ i ≤ n.

Proof. See page 35 of Lang [5] or page 48 of [3].

This theorem is also called the weak approximation theorem. But since we do
not use the strong version (c.f., page 67 of [3]) we suppress ‘weak’.

2.5. Valuations

In this section we will prove that the finite places of a given global field K and
primes ideals of OK are in one-to-one correspondence with each other. This will
follow from the fact that both the finite places of K and the prime ideals of OK are
in bijection with valuations.

The consequence of this correspondence is that every notion defined for prime
ideals has an immediate generalization to finite places. One can now, for example,
define the ramification index of a finite place.

Totally ordered groups. Before we give the definition of a valuation, we first
recall the definition of a totally ordered group and maps between them.

Definition 2.5.1 (Totally ordered groups). A totally ordered group is an ordered
tuple (Γ,≤,+, 0) consisting of a (non-empty) set Γ, a binary relation ≤, a binary
function + and an element 0 ∈ Γ such that

1) (Γ,+, 0) is an abelian group;

2) (Γ,≤) is total order;

3) for all x, y, z ∈ Γ we have x+ z ≤ y + z whenever x ≤ y. 4

Example 2.5.2. The real numbers R with addition and the usual order is a totally
ordered group. ♦

Example 2.5.3 (Hahn product). Let I be an totally ordered index set and {Γi |
i ∈ I} a family of totally ordered groups. Then the Hahn product or lexicographic
product is defined by

Hi∈IΓi := {α ∈
∏
i∈I Γi | supp(α) ⊆ I is well-ordered},

where supp(α) = {i ∈ I | αi 6= 0} is the support of α. Then Hi∈IΓi is closed under
addition, since supp(α) ∪ supp(β) is a well-order: if I ⊆ supp(α) ∪ supp(β), then
min(I) = min{min(I ∩ supp(α)),min(I ∩ supp(β))}. Now define an ordering on
Hi∈IΓi by α ≤ β if and only if αm ≤ βm, with m = min(supp(α)∪ supp(β)). Then
Hi∈IΓi is a totally ordered group. ♦
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We conclude this paragraph with the definition of the structure preserving maps
between totally ordered groups.

Definition 2.5.4 (Order homomorphisms). Let Γ and Γ′ be totally ordered groups.
An order homomorphism is a order preserving group homomorphism f : Γ → Γ′.
An order isomorphism is a order preserving group isomorphism f : Γ → Γ′. If
there exists a order isomorphism f : Γ → Γ′, then we say that Γ and Γ′ are order
isomorphic (notation: Γ ∼= Γ′). 4

Valuations. We will now study fields by means of their surjective group homo-
morphisms form the unit group to a totally ordered group extended with a value
∞ at zero.

Definition 2.5.5 (Valuations). A valuation on a field K is a surjective map v :
K → Γ ∪∞, with Γ a totally ordered group, such that for all x, y ∈ K

1) v(x) =∞ if and only if x = 0;

2) v(xy) = v(x) + v(y);

3) v(x+ y) ≥ min{v(x), v(y)},

with the convention that ∞ /∈ Γ, ∞ ≥ x and ∞ = x + ∞ = ∞ + x for all
x ∈ Γ ∪∞. 4

Example 2.5.6 (Order at p). Let K be a global field and p a prime ideal of OK .
Recall from Example 2.4.4 that the order at pis given by the map ordp : K → Z∪∞
with ordp(0) = ∞ and ordp(x) = np, where np satisfies xOK =

∏
q q

nq . The map
ordp is a valuation on K. ♦

The first lemma will be useful for determining the value of a sum.

Lemma 2.5.7. Let v be a valuation on a global field K and let x, y ∈ K. If
v(x) 6= v(y) then v(x+ y) = min{v(x), v(y)}.

Proof. See page 44 of Cassels and Fröhlich [3].

Let us now introduce some notation. Let v : K → Γ ∪∞ be a valuation. Then
Γ is called the value group of v. The set

Ov := {x ∈ K | v(x) ≥ 0}

is called the valuation ring of v. It is easily seen that Ov is a subring of K. Moreover
Ov is a valuation domain (c.f., Definition 1.9.1), because v(x) < 0 implies v(x−1) >
0. Proposition 1.9.3 shows that Ov is a local ring, hence Ov has a unique maximal
ideal. This ideal is given by

mv := {x ∈ K | v(x) > 0}

and is called the valuation ideal of v. If x, y ∈ K with xy = 1, then v(x) + v(y) =
v(1) = 0. Hence x ∈ O×v if and only if x ∈ Uv, where

Uv := {x ∈ K | v(x) = 0}

is called the unit group of v.

If p is a prime ideal of OK , then for notational convenience we will write Op,
mp and Up for Ov, mv and Uv, whenever v = ordp.

Notice that v and w = v + v both define the same valuation ring and valuation
ideal, for every v : K → Γ. This comes from the fact that v and w are equivalent,
in the following sense:
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Definition 2.5.8 (Equivalent valuations). Let vi : K → Γi, for i = 1, 2, be a
valuation on a global field K. Then v1 and v2 are equivalent if and only if there
exists an order isomorphism f : Γ1 → Γ2 with v2 = v1 ◦ f , i.e., the diagram

K

Γ1 Γ2

f

v1 v2

commutes. 4

Let us now formulate an important property of a valuation.

Definition 2.5.9 (Discrete valuation). A valuation v : K → Γ∪∞ is called discrete
if and only if Γ ∼= Z. 4

Recall from Definition 1.9.1, that the valuation ring Ov is called discrete if and
only if mv is principal. The following lemma shows that there is no confusion.

Lemma 2.5.10. Let v : K → Γ ∪∞ be a valuation. Then v is discrete if and only
if Ov is discrete.

Proof. Suppose that Ov is discrete and let π be a generator of mv. Then Proposition
1.9.3 shows that Ov is Noetherian local domain. Let π′ be an irreducible element of
Ov. Proposition 1.8.2 implies that every non-zero non-unit element is contained in
the maximal ideal mv. Hence π′ is a multiple of π, which shows that π is the unique
irreducible element of Ov. Now using Theorem 1.5.5 we see that every x ∈ Ov is
of the form uπn, for some u ∈ Uv and n ≥ 0. This implies that Γ is generated by
±v(π) and is isomorphic to Z. Thus v is discrete.

On the other hand, suppose that v is discrete. Let π be an element of mv such
that v(π) > 0 and ±v(π) generate Γ and let x ∈ mv be arbitrary. Choose n ≥ 0
such that v(x) = v(π)n. Consider x/πn in K. We have v(x/πn) = 0 which shows
that u = x/πn ∈ Uv. Thus every x ∈ mv is a multiple of π. We conclude that π is
a generator of mv.

Theorem 2.5.11. Every valuation on a global field is discrete.

Proof. Let K be a global field and v a valuation on K with values in Γ. Using
Lemma 2.5.10 it suffices to prove that Ov is discrete an using Proposition 1.9.3 it
suffices to prove that Ov is Noetherian.

Given a chain a0 ⊆ a1 ⊆ · · · of ideals in Ov. Using Lemma 2.1.4 this gives rise
to a decreasing sequence of natural numbers |OK/a0| ≥ |OK/a1| ≥ · · · . Since ≤
is a well-order of N, this sequence has a least element at which it stabilizes. But
|Ov/ai| = |Ov/aj | and ai ⊆ aj imply that ai = aj , for all i < j. Therefore the chain
stabilizes and Ov is Noetherian. Then concludes the proof of the theorem.

Theorem 2.5.11 implies that every valuation on a global field K is equivalent to
a valuation with value group Z.

Primes and finite places. The following proposition shows that the valuations
of a global field correspond to the finite places.

Proposition 2.5.12. Let K be a global field and 0 < c < 1 a real number. Then
there is a one-to-one correspondence

{ valuations v : K → Z ∪∞ } ←→ { finite places of K }
v 7→ [cv(·)]

logc(| · |) ← [ p

where c∞ = 0 and | · | is an absolute value in p with logc(|K×|) = Z.



Chapter 2. Algebraic Number Theory 41

Proof. We first show that both maps are well-defined. Let v : K → Z ∪ ∞ be a
valuation. Then cv(·) is a non-Archimedian absolute value on K and [cv(·)/v(π)] is
a finite place of K. For the other map, let p be a finite place of K. Let || · || is an
absolute value in p. Then Proposition 2.4.6 shows that logc(|| · ||) is a valuation on
K with value group logc(||K×||) ⊆ R. Now Theorem 2.5.11 shows that logc(|| · ||) is
discrete, which implies that logc(||K×||) = λZ. Then | · | = (|| · ||)1/λ is an absolute
value in p such that logc(| · |) = 1

λ logc(|| · ||) = Z. Thus the maps are well-defined.
Finally we show that the maps are each others inverse. Let p be a finite place of

K. Then p is mapped to v = logc(|·|), which is mapped back to q = [cv(·)] = [|·|] = p.
For the other map, let v : K → Z ∪ ∞ be a valuation. Then v is mapped to
p = [cv(·)]. Now let | · | be an absolute value in p with logc(|K×|) = Z. Then | · |
and cv(·) are equivalent absolute values. Thus | · |p = ct·v(·), for some real t > 0.
Hence w = logc(| · |p) = t · v(·). Hence v and w are equivalent valuations, because
f : x 7→ t · x is an order isomorphism from Z to logc(|K×|).

Other authors (e.g., Lang in [5]) define a valuation to be a non-Archimedian
absolute value. This proposition shows that our terminology is essentially the same.
However others (e.g., Cassels in Chapter II of [3]) use the term valuation for an
absolute value, non-Archimedian or not. To distinguish our notion of a valuation
with the definition of a valuation as an absolute value we may say that the valuation
is additive (see Definition 2.5.5).

The next proposition shows that valuations are essentially the same things as
prime ideals in the ring of integers.

Proposition 2.5.13. Let K be a global field and OK the ring of integers of K.
Then there is a one-to-one correspondence

{ valuations v : K → Z ∪∞ } ←→ { prime ideals of OK }
v 7→ mv ∩ OK

ordp ←[ p

Proof. We first show that the maps are well-defined. It is clear that p 7→ ordp is
well defined. Let v be a valuation of K. Write pv := mv ∩ OK and let x, y ∈ OK
with xy ∈ pv. Then v(x) + v(y) = v(xy) > 0, which implies that either v(x) > 0
or v(y) > 0. Hence we find that either x ∈ pv or y ∈ pv which shows that pv is a
prime ideal of OK .

It remains to show that the maps are each others inverse. Let v : K → Z ∪∞
be an absolute value. We will prove that v = ordpv . Since K is the field of fractions
of OK , it suffices to show that v and ordpv coincide on OK . Since v(OK) = N it
suffices to prove that v(x) = 1 if and only if ordpv (x) = 1 for all x ∈ OK . In other
words x ∈ mv −m2

v if and only if x ∈ pv − p2
v, for all x ∈ OK .

Clearly, as pv := mv ∩ OK we have x ∈ mv if and only if x ∈ pv. Moreover we
have for all x ∈ OK that x ∈ m2

v if and only if x ∈ p2
v. Indeed, suppose that x ∈ p2

v.
Then trivially x ∈ m2

v. On the other hand suppose that x ∈ m2
v. Since x ∈ K,

there exists some a, b ∈ OK with x = (a/b)2. Let π ∈ K with v(π) = 1. Then
x = (a′/b′)2 with a′ = πna, b′ = πnb and n = −v(b). Then v(a′) > v(b′) = 0. This
shows that a′/b′ ∈ Ov, which implies that x ∈ p2

v. We conclude that v = ordpv .
For the other direction, let p be a prime ideal of OK . Then p is mapped to

v = ordp and v is mapped to mv ∩ OK = {x ∈ OK | ordp(x) > 0} = p.
We conclude that the maps are each others inverse, which shows that there is a

one-to-one correspondence.

Let us gather the results from the Proposition 2.5.12 and Proposition 2.5.13 into
a single theorem:

Theorem 2.5.14. Let K be a global field and OK the ring of integers of K. Then
the maps

{ valuations } ←− { prime ideals } −→ { finite places }
ordp ←[ p 7→ | · |p

are bijections.
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We now know how valuations are related to prime ideals of OK and finite places
of K for any global field K. We will now investigate some properties about the
valuations themselves.

Valuation domains. The following result from Krull is fundamental. It gives a
characterization of the valuation domains (c.f., Definition 1.9.1).

Theorem 2.5.15 (Krull). Let R be a domain with field of fractions K. Then R is
a valuation domain if and only if R = Ov for some valuation v on K.

Proof. If R = Ov for some valuation v on K, then for all non-zero x ∈ K we have
that x /∈ R implies v(x) < 0 hence v(1/x) > 0 and 1/x ∈ R.

On the other hand suppose that R satisfies x ∈ R or 1/x ∈ R for all nonzero
x ∈ K. We now follow the construction on page 65 of [4]. Define Γ = K×/R× and
define an ordering on Γ by aR× ≤ bR× for a, b ∈ K× if and only if b/a ∈ R. Using
the fact that R is a valuation domain (see Definition 1.9.1), it is straightforward to
see that Γ is a totally ordered abelian group. The map v : K → Γ ∪ ∞ given by
v(a) = aR× and v(0) =∞ is a valuation on K. It is easy to see that R = Ov.

Corollary 2.5.16. Let R be a subring of a global field K. Then R is a valuation
domain if and only if R = Op for some prime ideal p of OK .

Proof. It is clear that Op is a valuation domain for all prime ideals p of OK . Con-
versely, let R be a valuation domain. Then Theorem 2.5.15 gives a valuation v on
K with R = Ov.

Using Proposition 2.5.13 find a prime p of OK such that v corresponds to p.
Hence we have v = ordp and R = Ov = Op.

2.6. Local fields

In this section we will introduce the notion of a local field, which is the completion
of a global field with respect to a non-trivial absolute value. It turns out that the
structure of local fields is easier then that of global field. For example, if L/K is
an extension of global fields, then a finite place p of K has [L : K] extensions to L.
while if L/K is an extension of local fields, a place p of K has a unique extension
to L.

Completion. Before we dive into the construction of the completion, we start
with the definition of valued fields.

Definition 2.6.1 (Valued fields). A valued field is a field K together with an
absolute value | · |k of K. 4

Example 2.6.2. The rational numbers Q and real numbers R, with the usual
absolute value, is a valued field. The complex numbers C, with the absolute value
|z| = zz, is a valued field. ♦

Now we introduce the structure preserving maps between valued fields.

Definition 2.6.3 (Valued field embedding). Let K and L be valued fields with
absolute values | · |k and | · |` respectively. A map f : K → L is called a continuous
homomorphism of valued fields if and only if

1) f is a homomorphism of fields;

2) f is continuous, i.e., there exists a c > 0 such that |f(x)|` = |x|ck for all x ∈ K.

Let f : K → L be an embedding. Then f is called an continuous isomorphism
of valued fields (notation f : K ∼= L) if and only if there exists an embedding
g : L → K with g ◦ f = idK and f ◦ g = idL. In this case f is called invertible.
Let f : K → L be an continuous isomorphism. Then f is called an continuous
automorphism of valued fields if and only if L = K. 4
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Before we give some examples, we recall the some definitions from the theory of
metric spaces. Let (xn)n≥0 be a sequence in a valued field K with absolute value
| · |. Then (xn)n≥0 is called convergent with limit x ∈ K (notation: limn→∞ xn = x)
if and only if for all real ε > 0 there exists an integer N ≥ 0 such that |x− xn| < ε
for all n ≥ N . Furthermore (xn)n≥0 is called Cauchy if and only if for all real ε > 0
there exists an integer N ≥ 0 such that |xm − xn| < ε for all m,n ≥ N . A subset
A ⊆ K is called dense if and only if for every x ∈ K there exists a sequence (an)n≥n
in A such that limn→∞ an = x.

Example 2.6.4 (Automorphisms of R). The identity id : R → R is the unique
continuous automorphism of R. Let K be a valued field with absolute value | · |k
and let f : R→ K be an continuous homomorphism of valued fields. We will show
that f is unique.

Since f is a ring homomorphism, we have that f(1) = 1. From f(−1) + 1 =
f(−1) + f(1) = f(0) = 0 it follows that f(−1) = −1. Hence f is completely
determined on Z. Moreover since f(a/b) · f(b) = f(a) for all a, b ∈ Z, we find that
f is completely determined on Q. Now let x ∈ R. Since Q is dense in R, we find a
sequence (qn)n≥0 which converges to x. Then we have that

lim
n→∞

|f(qn)− f(x)|k = lim
n→∞

|f(qn − x)|k = lim
n→∞

|qn − x| = 0,

since |f(·)|k is equivalent to | · | on R. Thus (f(qn))n≥0 converges to f(x). Hence,
since f is completely determined on Q, we find that f is completely determined on
R. Moreover this shows that the identity is the unique continuous automorphism
of R. ♦

Example 2.6.5 (Automorphisms of C). Let f : C→ C be an continuous automor-
phism of valued fields. If we apply Example 2.6.4 to the restriction f|R : R→ C of
f to R, we find that f(a) = a for all a ∈ R. Furthermore notice that f(i2 + 1) =
f(0) = 0 which implies that f(i)2 +1 = 0, as f is a homomorphism. In other words,
f(i) is a root of X2 + 1 = (X + i)(X − i). Therefore we have that f(i) = ±i. Hence
we conclude from Example 2.6.4 that for all a, b ∈ R

f(a+ bi) = f(a) + f(b)f(i) = a± bi.

This shows that the identity and conjugation are the only continuous automor-
phisms of C. ♦

Let us now investigate an important property of a valued field.

Definition 2.6.6 (Completeness). A valued field K is called complete if and only
if every Cauchy sequence is convergent. 4

It turns out that every valued field can be embedded in a complete valued field.

Theorem 2.6.7. Let K be a valued field with absolute value | · |. Then there exists
an embedding f : K → K̂ of valued fields such that

1) K̂ is complete and f(K) is dense in K̂;

2) for every embedding g from K into a complete valued field L there exists a
unique embedding h : K̂ → L such that h ◦ f = g, i.e., the diagram

K

Kp L

f g

h

commutes.

Proof. We follow the proof of Theorem 2.1 on page 12 of [16]. Let R be the ring of
all Cauchy sequences in K with componentwise addition and multiplication. Then
the ideal m = {(xn)n≥0 ∈ R | limn→∞ |xi|p = 0} is a maximal ideal in R. Consider
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the field K̂ := R/m and the ring homomorphism f : K → R/m which maps x ∈ K
to the constant sequence (x)n≥0. Define the absolute value || · || on R/m by

||(xn)n≥0 + m|| := lim
n→∞

|xn|.

It is easy to see that || · || is indeed a well-defined absolute value with ||f(x)|| = |x|
and that f is an embedding of valued fields.

Note that f(K) is dense in K̂, since every element (xn)n≥0 + m in K̂ is the
limit of the sequence (f(xn))n≥0 in K. Now, let (sn)n≥0 be a Cauchy sequence in

K̂. Then, since f(K) is dense in K̂, there exists a sequence (s′n)n≥0 in f(K) with
||sn − s′n|| < 1/n for all n ≥ 0. Write s′n = f(xn). Then (sn)n≥0 converges to

s = (xn)n≥0. Therefore K̂ is complete with respect to | · |.
Finally let g be an embedding from K into a complete valued field L. Then the

canonical map h : R→ L sending (xn)n≥0 to limn→∞ xn gives rise to an embedding

h : K̂ = R/m→ L. As f(K) is dense in K̂, this is the unique embedding. It is clear
that h(f(x)) = g(x) for all x ∈ K, which implies that the diagram commutes.

The K̂ together with the embedding f : K → K̂ is called a completion of K.
The second statement in the theorem is called the universal property of f : K → K̂.

The universal property implies that the completion K̂ is uniquely determined
up to a continuous isomorphism.

Lemma 2.6.8. Let K be a field, Ki a valued field with | · |i absolute value and base
field K and let fi : Ki → K̂i the completion for i = 1, 2. Then if | · |1 is equivalent
to | · |2, then K̂1

∼= K̂2.

Proof. Suppose that |·|i is equivalent to |·|2. Then idK : K1 → K2 is an isomorphism
of valued fields. Hence we have the following diagram

Ki Kj Ki

K̂i K̂j K̂i

idK idK

fi fj fi

Then the universal property of K̂i applied to fi ◦ idK gives a map hi : K̂i → K̂j , for

i 6= j. Hence we find an embedding hj ◦hi : K̂i → K̂i. Now if we apply the univeral

property of K̂i to fi ◦ idK ◦ idK we conclude that hj ◦hi is unique. Trivially we have

an embedding idK̂i : K̂i → K̂i, hence by the uniqueness we find that hj ◦hi = idK̂i .

This proves that hi is an isomorphism and that K̂1
∼= K̂2.

Let p be a place of a valued field K. Then for any | · | ∈ p we can construct
that completion. The above lemma shows that all completions are isomorphic. This
enables us to define the completion at p: Kp.

From the proof of Theorem 2.6.7 we see that the following stronger version of
the universal property is also true.

Proposition 2.6.9. Let K be a valued field and p a place of K. Then for every
continuous map g from K into a complete valued field L there exists a unique
continuous map h : Kp → L such that h ◦ f = g

Proof. Substitute ‘continuous map’ for ‘embedding’ in the last part of the proof of
Theorem 2.6.7.

This proposition enables us to lift an arbitrary continuous map from a valued
field K into a complete valued field to a map defined on the completion of K.

Example 2.6.10 (Local norm map). Let L/K be an extension of global fields and
p a prime of p. Then the relative field norm NL/K : L→ K defines a homomorphism
from L → Kp, which is continuous by part 1 of Theorem 2.2.5. Proposition 2.6.9
gives us a lift NLP/Kp

: LP → Kp of NL/K , where P is extension of p to L. Then
NLP/Kp

is called the local norm map. ♦
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A useful property of complete valued field is the following.

Theorem 2.6.11. Let LP/Kp be an extension of local fields. Then P is the unique
place that extends p.

Proof. Since LP/Kp be an extension, LP can be viewed as a vector space over Kp.
Then any absolute value on LP may be regarded as a norm on the Kp-vector space
LP. Proposition 2.2 at page 470 of [6] shows that all norms on LP are equivalent,
which implies that P consists of all non-trivial absolute values.

The following theorem is very useful for the classification of infinite places.

Theorem 2.6.12 (Ostrowski). Let K be a field and p an infinite place of K. Then
Kp
∼= R or Kp

∼= C as valued fields.

Proof. See Theorem 2.2 on page 13 of [16].

This leads to the following definition.

Definition 2.6.13. Let K be a field and p an infinite place of K. Then p is
called real if and only if Kp

∼= R. Furthermore p is called complex if and only if
Kp
∼= C. 4

We are now ready to classify the infinite places of any field.

Corollary 2.6.14. Let K be a field and | · | the standard absolute value on C. Then
the map {

ring homomorphisms
K → C up to conjugation

}
−→ { infinite places of K }

σ 7→ [|σ(·)|]

is a bijection.

Proof. It is clear that |σ(x)| is an absolute value on K. Using Ostrowski’s theorem
we conclude that the map is surjective. We show that the map is injective. Let σ1

and σ2 be homomorphisms such that |σ1(x)| and |σ2(x)| are equivalent and let p be
the place that contains both |σ1(x)| and |σ2(x)|. Then σi : K → C is a continuous
homomorphism of valued fields. Hence by the second part of Theorem 2.6.7 we find
unique continuous homomorphisms f , h1 and h2 such that the diagram

K

C Kp C

σ1
f

σ2

h1 h2

commutes. Now Theorem 2.6.12 shows that Kp
∼= R or Kp

∼= C as valued fields.
Suppose that p is real. Then Example 2.6.4 shows that h1 = h2, since there is

a unique continuous homomorphisms from R to C. Hence we have that σ1 = σ2, as
the diagram commutes.

Now suppose that p is complex. In that case σi : K → C is also a completion.
Hence Theorem 2.6.7 gives unique continuous homomorphisms h′i : C → Kp. Now
we find a unique continuous homomorphisms h′i ◦hi : Kp → Kp and hi ◦h′i : C→ C.
But we also have idKp

: Kp → Kp and idC : C → C. Hence from the unicity it
follows that h′i ◦ hi = idKp

and hi ◦ h′i = idC. Therefore h1 and h2 are continuous
isomorphisms of valued fields. Now we find that h2 ◦ h′1 ◦ σ1 = σ2. To conclude
the proof notice that h2 ◦ h′1 is an continuous automorphism of C. Hence Example
2.6.5 shows that h2 ◦ h′1 is either the identity or conjugation. Therefore σ1 and σ2

are identical up to conjugation.

LetK be a global field and p a finite place. Recall thatOK = {x ∈ K | ordp(x) ≥
0 for all p}. Using Proposition 2.6.9 we find a lift of ordp to Kp. This enables us to
define the ring of integers in Kp by OKp

= {x ∈ Kp | ordp(x) ≥ 0 for all p}.
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Recall that the residue class field of K at a prime ideal p is defined by Kp :=
OK/q, where q := {x ∈ OK | |x|p < 1} is the prime ideal of OK corresponding to
the place p. We can do the same construction in the completion, which leads to the
same residue class field: Kp = OKp

/q̂, where q̂ := {x ∈ OKp
| |x|p < 1}.

Let f be a polynomial over OKp
. Then f is called primitive if and only if

f ′ 6≡ 0 modulo p. The following theorem provides a strong connection between the
primitive polynomials over OKp

and the polynomials over Kp.

Theorem 2.6.15 (Hensel’s lemma). Let K be a global field, let p be a finite place,
let OKp

be the ring of integers of Kp and let Kp the residue class field of K at p.
If a primitive polynomial f ∈ OKp

[X] admits modulo p a factorization

f ≡ gh (mod p)

into relatively prime polynomials g, h ∈ Kp[X], then f admits a factorization

f = gh,

with g, h ∈ OKp
[X] such that deg g = deg g and

g ≡ g (mod p) h ≡ h (mod p).

Proof. See Theorem 4.6 at page 129 of Neukirch [10].

We want to mention one last theorem:

Theorem 2.6.16 (Fundamental formula). Let L/K be an extension of global fields
and p a finite place. Then

e(P/p)f(P/p) = [LP : Kp]

for all extensions P of p.

Proof. See Theorem 2.5.11 and Proposition 6.8 at page 150 of Neukirch [10].

2.7. Ray class groups

In this section we will generalize the class group by considering it as a member of a
family of ray class groups. This family is parameterized by a modulus. From now
on we will abbreviate ‘all but finitely many’ by ‘almost all’.

Definition 2.7.1 (Moduli). A modulus of K is a map m : {places of K} → N, such
that m(p) = 0 for almost all places p of K. A modulus is denoted as the formal
product

∏
p p

m(p). The restriction m0 of p to the finite places is called the finite
part of m. 4

The finite places are in one-to-one correspondence with the prime ideals of OK
and the Archimedian places are in one-to-one correspondence with embeddings σ :
K → C. Hence we may factor the modulus m as

m =
∏

p⊆OK

pm(p)
∏

σ:K→C
σm(σ)

Let p be a finite place of a global field K and let m ≥ 1 be an integer. Then define
the following subset of K×:

V mp := {x ∈ K× | ordp(x− 1) ≥ m}.

Note that V mp is in fact a subgroup of K×. Indeed, 1 ∈ V mp , because ordp(1− 1) =
∞ ≥ m. Furthermore for all x, y ∈ V mp we have that

ordp(xy − 1) = ordp((x− 1)(y − 1) + (x− 1) + (y − 1)) ≥ min{m2,m,m} = m.

Finally, for all x ∈ V mp we have

ordp(1/x− 1) = ordp(−(x− 1)/x) = ordp(x− 1)− ordp(x) ≥ m− 0,

because ordp(x − 1) ≥ m ≥ 1 implies p | (x − 1) and x − 1 ∈ p and x /∈ p
and ordp(x) = 0. Therefore V mp is a subgroup of K×. Hence we may define the
following:
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Definition 2.7.2 (Congruence). Let K be a global field, let x and y in K× be units
and let m be modulus of K. Then x is (multiplicatively) congruent to y modulo m
(notation: x ≡ y mod m) if and only if the following two conditions hold:

1) If p | m is a finite place, then x/y ∈ V m(p)
p ;

2) If p | m is a real place corresponding to the embedding σ : K → R, then
σ(x/y) > 0. 4

Note that ≡ coincides with the usual
With the help of moduli and congruences, we are able to reformulate the ap-

proximation theorem.

Theorem 2.7.3 (Chinese remainder theorem for places). Let m be a modulus on
a global field K and let xp ∈ K for all places p of K. Then there exists an element
x ∈ K such that for all p

x ≡ xp mod pm(p).

Proof. Use the approximation theorem and the fact that ordp(·) = logc(| · |p) with
c = NK(p)−1.

Let Km denote the set of k ∈ K× such that k ≡ 1 mod m. This is clearly a
subgroup of K×. Now we are ready to define the ray class groups. Let

I(m) = {a ∈ I | a and m0 coprime}

denote the subgroup of I of fractional ideals of OK relatively prime to the finite
part of m. Then the group I(m) is the free abelian group generated by the prime
ideals of OK which do not divide the finite part of m. Furthermore let

Pm = {kOK | k ∈ Km}

denote the subgroup of I(m) of principal fractional ideals with generator congruent
to 1 modulo the finite part of m and positive at the real places occurring in m. Note
that I(m) is abelian, hence the subgroup Pm is normal and we may consider the
following definition.

Definition 2.7.4 (Ray class groups). Let K be a global field and m a modulus.
Then the ray class group Clm(K) of K modulo m is the quotient I(m)/Pm. Elements
of Clm(K) are called ray classes. The order hm of Clm(K) is called the ray class
number. 4

The following theorem shows that the ray class group is finite.

Theorem 2.7.5. The ray class group Clm(K) is a finite group.

Proof. In [5, pp. 124-126] it is shown that hm is a (rational) multiple of the order
h of Cl(K) and hence finite.

2.8. Adèles and idèles

In the previous section, we fixed one place p of a global field K and investigated
the local field Kp. We will now study all local fields simultaneously by considering
the ring of adèles, which is a subspace of

∏
pKp. The reason we will not consider

the whole product space is because is not locally compact, but we will not go into
this. We start with a topological construction:

Definition 2.8.1 (Restricted topological product). Let S be a finite subset of an
index set I. Let Gi be a locally compact group for all i ∈ I and for all i /∈ S let Ki

be a compact subgroup of Gi. Then the group

{ (gi)i ∈
∏
iGi | gi ∈ Ki for almost all i /∈ S }

with topology generated from the open sets
∏
i Ui, where Ui ⊆ Gi is open for all

i ∈ I and Ui = Ki for all i /∈ S, is called the restricted topological product of the Gi
with respect to the Ki. 4
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Using this construction, we may define the ring of adèles.

Definition 2.8.2 (Adèle ring). The adèle ring AK of a global field K is the re-
stricted topological product (over all places p of K) of the Kp with respect to the
Op with p infinite. 4

Consider the map i : K →
∏

pKp given by x 7→ (fp(x))p, where fp : K → Kp

is the completion. The next lemma shows that this maps induces a map into the
adèle ring AK .

Lemma 2.8.3. Let K be a global field and x ∈ K. Then |fp(x)|p ≤ 1 for almost
all places p.

Proof. See Theorem 3 at page 47 of [17].

It is easy to see that i is in fact continuous. Using the map i we can identity K
with a subfield of AK , which is discrete by the following lemma.

Lemma 2.8.4. Let K be a global field. Then i(K) is discrete in AK .

Proof. See chapter 4 of [17].

Theorem 2.8.5. Let K be a function field and let a ∈ AK an adèle of K. Then
the subset

D(a) = {b ∈ AK | |bp|p ≤ |ap|p}

is a compact neighborhood of a in AK .

Proof. See chapter 4 of [17] (c.f., the proof of Lemma 4 at page 206 of [14]).

We will now show that invertible adèles generalize ideals in the ring of integers.

Definition 2.8.6 (Idèle group). The idèle group IK of a global field K is the
restricted topological product (over all places p of K) of the K×p with respect to
the O×p with p infinite. 4

As a set, we have that IK = A×K . However, the topologies are very different.

Proposition 2.8.7. Let K be a global field. There is a surjective group homomor-
phism j : IK → IK .

Proof. Using Proposition 2.6.9, we see that ordp : K → R has a unique lift g :
Kq → R to the completion at any place q. That means that if f : K → Kq is the
completion, then ordp(x) = g(f(x)) for all x ∈ K. Since there is no confusion, we
just write ordp instead of g.

Notice that ordp is discrete on Kp, since it is continuous and discrete on the
dense subset K ⊆ Kp. Moreover ordp maps Kp into the integers. Now consider the
map j : IK → IK given by

(ap)p 7→
∏

p⊆OK

pordp(ap),

where ordp is the unique extension of ordp on K to Kp. Then j is well-defined,
since ap ∈ O×p except for some finite places p. It is clear that j is a homomorphism
of groups.

2.9. Idèle class group

In the previous section we have seen how idèles generalize ideals (via the map j)
in the ring of integers. We will now generalize the ideal class group. We start by
identifying which idèles correspond to principal ideals.

Recall the definition of i : K →
∏

pKp. The idèles in the image i(K×) are now
called principal.

Definition 2.9.1 (Principal idèles). An idèle a of a global field K is called principal
if and only if there exists some x in K× such that a = i(x). 4
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This definition makes sense: if (ap)p is a principal idèle, then we find some a ∈ K
with (ap)p = i(a) and

j((ap)p) =
∏

p⊆OK

pordp(fp(a)) = aOK ,

since ordp(fp(a)) = ordp(a), where fp : K → Kp is the completion at p. Thus the
principal idèles corresponds with the principal ideals of OK .

Now that we have generalization of principal ideals, we may consider the gener-
alization of the ideal class group.

Definition 2.9.2 (Idèle class group). The idèle class group of K is the group
C(K) = IK/i(K×). 4

It turns out that the idèle class group is related to the ray class group. This
theorem will be uses to translate theorems from the idèlic viewpoint to the classical
viewpoint (c.f., proof of Theorem 2.10.5 or Proposition 2.12.9)

Theorem 2.9.3. Let K be a global field and m a modulus. Then the ray class
group Clm(K) of K modulo m is isomorphic to a factor group of the idèle class
group C(K).

Proof. See Proposition 4.6 at page 168 of [8] or see page 146 and 147 of Lang [5].

2.10. Density of primes

Let K be a global field with modulus m. The aim of this section is to show that
every ray class in Clm(K) contains infinitely many prime ideals. We will show this
with the help of L-series.

Analytic density. Let f(s) and g(s) be complex functions defined in a neigh-
borhood of s = 1. For notational convenience we write f(s) ∼ g(s) if and only
if there exists some complex function h(s), which is analytic at s = 1, such that
f(s)− g(s) = h(s). It is clear that this defines an equivalence relation.

Definition 2.10.1 (Analytic density). Let M be a set of primes of a global field
K. Then δ is the analytic density of M if and only if∑

p∈M

1

N(p)s
∼ δ log

1

1− s
. 4

It can be shown that the analytic density generalizes the natural density

lim
n→∞

|{primes p in M with NK(p) ≤ n}|
|{primes p of K with NK(p) ≤ n}|

,

but we will not prove this.
Clearly δ = 0 whenever M is finite, because log 1

1−s is not analytic at s = 1.
Thus M is infinite if δ 6= 0. Therefore it suffices to show that the density of the set
{p ∈ R} of prime ideals in a given ray class R ∈ Clm(K) is non-zero.

L-series. We will now study L-series, as they turn our to be useful for the calcu-
lation of the analytic density. The construction L-series requires the definition of
characters:

Definition 2.10.2 (Characters). Let G be a finite abelian group. A (Dirichlet)
character χ of G is a group homomorphism χ : G→ C×. The character group G∨

of G is the group hom(G,C×) of all group homomorphisms χ : G→ C×. 4

There is only one property of characters, which is of major interest for us:

Lemma 2.10.3. Let G be a finite abelian group and g ∈ G. Then

∑
χ∈G∨

χ(g) =

{
|G| if g = 1

0 otherwise
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Proof. See the proof of Lemma 4.7 on page 193 of Milne [8].

We are now ready to define the L-series.

Definition 2.10.4 (L-series). Let K be a global field with modulus m and let χ
be a character of the ray class group Clm(K). Then the L-series of χ modulo m is
the series

Lm(s, χ) =
∏
p-m

1

1− χ(p) N(p)−s
. 4

We first discuss some important properties about this function.

Theorem 2.10.5. Let K be a global field and m a modulus. Let χ be a character
of Clm(K). Then

logLm(s, χ) ∼

{
log 1

1−s if χ trivial

0 if χ non-trivial

Proof. Let m(χ) be the order of Lm(s, χ) at s = 1. Then there is some function
h(s), which is both analytic and non-zero at s = 1, such that

Lm(s, χ) = (1− s)m(χ)h(s).

Hence, taking the logarithm, we conclude that

logLm(s, χ) = −m(χ) log
1

1− s
+ log h(s).

Since log h(s) is analytic at s = 1, we have by definition that

logLm(s, χ) ∼ −m(χ) log
1

1− s
.

Therefore this theorem just claims that the order of Lm(s, χ) at s = 1 equals −1,
whenever χ is trivial and 0 otherwise. This result is proven in Weil [17] for idèle
class characters: see corollaries 1 and 2 at page 124, the remark at the bottom of
page 125 and Theorem 11 at page 288. Using Theorem 2.9.3, we may translate our
L-series into those used by Weil.

The following theorem shows that the density of primes in a given ray class is
non-zero. Moreover it shows that this density is in fact independent of the choice
of the ray class R.

Theorem 2.10.6. Let m be a modulus for a global field K and let R ∈ Clm(K) be
a ray class. Then the density δ of the primes in R is 1/hm. Moreover R contains
infinitely many prime ideals.

Proof. We follow the proof in Lang [5] on page 166. Take the logarithm on the
definition of Lm(s, χ) and use the Taylor series of − log(1− x) to find

logLm(s, χ) =
∑
p-m

− log(1− χ(p) N(p)−s) =
∑
p-m

∞∑
k=1

χ(p)k

kN(p)ks
.

Now since the series ∑
p-m

∞∑
k=2

χ(p)k

kN(p)ks

is bounded , hence analytic, in a neighborhood of 1, we conclude that

logLm(s, χ) ∼
∑
p-m

χ(p)

N(p)s
.

Next we split the series using ray classes and use that χ is constant on any ray class
to find

logLm(s, χ) ∼
∑

R∈Clm(K)

χ(R)
∑
p∈R

1

N(p)s
.
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Multiply by χ(R−1
0 ), for some fixed ray class R0, and sum over all characters χ.

Then ∑
χ

χ(R−1
0 ) logLm(s, χ) ∼

∑
R∈Clm(K)

∑
χ

χ(RR−1
0 )

∑
p∈R

1

N(p)s
.

Using Theorem 2.10.5 for the left hand side and Lemma 2.10.3 for the right hand
side we conclude that

log
1

1− s
∼ hm

∑
R∈Clm(K)

∑
p∈R

1

N(p)s
.

Thus, since m is finite, we find that∑
p

1

N(p)s
∼
∑
p-m

1

N(p)s
∼ 1

hm
log

1

1− s
.

This shows that the density of the primes in R is 1/hm.

2.11. Local norms

In this section we will prove two important theorems about norms in an extension
of global fields. The first is the Hasse norm theorem, which states that in any cyclic
extension of global fields any element in the base field is a norm precisely whenever
it is a local norm at every place. The second theorem describes the local norm
group of a cyclic Kummer extension at almost all finite places.

Norm groups. Let L/K be an extension of global fields and consider the relative
field norm

NL/K : L× → K×.

From Theorem 2.2.5 we see that NL/K is continuous with respect to | · |p, for any
place p of K. Proposition 2.6.9 then shows that this map has a unique extension
to a map

NLP/Kp
: L×P → K×p .

This map is called the local norm map (at p). Elements in the image of the local
norm maps are called local norms at p. In view of this new terminology, we may
refer to NL/K as the global norm map.

Recall that L/K is cyclic if and only if L/K is Galois with cyclic Galois group.
We first investigate the connection between local and global norms in a cyclic exten-
sion L/K of global fields. In other words, we seek a connection between elements
of the form NL/K(a) with a ∈ L and elements of the form NLP/Kp

(aP) for some P
above p and aP ∈ LP. This connection is made explicit by Hasse:

Theorem 2.11.1 (Hasse norm theorem). Let L/K be a cyclic extension of global
fields and x ∈ K. Then x ∈ NL/K(L) if and only if x ∈ NLP/Kp

(LP) for all places
p of K and P/p.

Proof. For this proof the reader should be familiar with cohomology, which is not
part of this thesis. We will provide the argument, bought from theorem on page
195 of Lang [5] and Corollary 4.5 at page 384 of [10], without going into details.

Consider the exact sequence of the idèle class group:

1 −→ L× −→ IL −→ C(L) −→ 1.

Then cohomology gives rise to a long exact sequence:

· · · −→ H−1(G, C(L)) −→ H0(G,L×) −→ H0(G, IL) −→ · · · .

By definition that H0(G,L×) = K×/NL/K(L×) and H0(G, IL) = IK/NL/K(IL).
Now if x ∈ K× is a global norm, we conclude that the idèle (x)p is a norm: x
is a local norm at every place p. Suppose x is a local norm at every place p, i.e.
(x)p is zero in H0(G, IL). By the remark on page 94 of Lang [5], we conclude that
H−1(G, C(L)) = 1. Hence the second map is an injection. Therefore x is zero in
H0(G,L×), which means that x is a global norm.
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Recall that Up is the set of local units at p. We will also need the following
theorem.

Theorem 2.11.2 (Local Norm Indices). Let LP/Kp be an abelian extension of
local fields. Then

1. [K×p : NLP/Kp
(L×P)] = [LP : Kp] the degree of the extension,

2. [Up : NLP/Kp
(UP)] = e(P/p), the ramification index

Proof. See page 142 and 143 of [3].

As an application of these two theorems we will study extensions of a global
field K of the form K(d1/`), where ` is prime and d ∈ K. Such an extension is
called a Kummer extension. Notice that this Kummer extension is cyclic whenever
K contains the `th roots of unity. Before we prove our main theorem, we need the
following lemma. Recall that Kp is the residue class field of K at p, which is defined
by OK/p, where OK is the ring of integers of K.

Lemma 2.11.3. Let K be a global field, p a finite place of K, ` a prime number such
that char(Kp) 6= ` and that K contains the `-th roots of unity and let L = K(d1/`)
with d ∈ K. Then u ∈ Up − (Up)` if and only if u ∈ K×p − (K×p )`. Moreover if p is

ramified, then NLP/Kp
(UP) = (Up)`.

Proof. For notational convenience we abbreviate NLP/Kp
to N. Consider the inclu-

sions
(Up)` ⊆ N(UP) ⊆ Up.

We will show that [Up : (Up)`] = ` and that [Up : N(UP)] = `. Then we find that
[N(UP) : (Up)`] = 1 or equivalently NLP/Kp

(UP) = (Up)`. Along the way we prove

that d ∈ Op − (Op)` if and only if d ∈ K×p − (K×p )`.

We first show that [Up : (Up)`] = `. Consider the polynomial f = X` − u,
with u ∈ Up. Then f is monic and separable with coefficients in Op, because
char(Kp) 6= ` and u ∈ Up ⊆ Op. Using Hensel’s lemma we conclude that f has a
solution in Op if and only if f has a solution in K×p . This shows that u ∈ Up− (Up)`

if and only if u = u + p ∈ K×p − (K×p )`, because any root of f in Op lies in Up.

Consider the natural map π = Op → K×p given by π(x) = x + p = x. If π(x) 6= 0,
then x /∈ p and hence ordp(x) = 0 and x ∈ Up. Therefore π restricts to a surjection
Up → K×p . Using that u ∈ Up − (Up)` if and only if u ∈ K×p − (K×p )` we conclude

using the first isomorphism theorem that the surjection Up → K×p reduces to an
isomorphism

Up/(Up)` ∼= K×p /(K
×
p )`.

From this we see that [Up : (Up)`] = [K×p : (K×p )`]. It remains to show that

[K×p : (K×p )`] = `. First notice that K×p is cyclic by Theorem 1.3.3. Therefore

[K×p : (K×p )`] ≤ `. Furthermore K contains the `-th roots of unity, i.e., the monic

polynomial X` − 1 splits completely in Op. Since char(Kp) 6= ` we see that X` − 1
is a separable polynomial over Kp, i.e., it has distinct roots. Therefore Kp contains
all `-th roots of unity, which shows that [K×p : (K×p )`] ≥ ` and [Up : (Up)`] = `.

We will now prove that [Up : N(UP)] = `, whenever p is ramified. From the
fundamental equation

e(P/p)f(P/p) = [LP : Kp] = `

and the fact that ` is prime we conclude that e(P/p) equals 1 or `. As p is ramified,
we find e(P/p) = `. We claim that LP = Kp(d1/`). Indeed, we have that L ⊆
Kp(d1/`) ⊆ LP and Kp(d1/`) is complete with respect to | · |P because it is a finite
dimensional vector space over Kp which is complete with respect to | · |p. The
claim follows from the fact that LP is the smallest complete extension of L. Using
LP = Kp(d1/`) we see that LP/Kp is a cyclic extension of local fields, because K
contains the `-th roots of unity. Hence we may apply Theorem 2.11.2 to conclude
that [Up : N(UP)] = `.

Hence we conclude that NLP/Kp
(UP) = (Up)`.
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The following theorem studies the local norm group of a cyclic Kummer exten-
sion at a finite place. The importance of this theorem becomes appearent in section
5.3, where it is used to define valuation rings by means of a first-order formula.

Theorem 2.11.4. Let K be a global field, p a finite place of K, ` a prime number
such that char(Kp) 6= ` and that K contains the 2`-th roots of unity and let L =
K(d1/`) with d ∈ K. Then for all P extending p we have

1) If ordp(d) 6≡ 0 modulo ` then [LP : Kp] = e(P/p) = ` and

NLP/Kp
(L×P) = 〈d, (K×p )`〉;

2) If ordp(d) ≡ 0 modulo ` and d /∈ (K×p )` then [LP : Kp] = f(P/p) = ` and

NLP/Kp
(L×P) = {x ∈ K×p | ordp(x) ≡ 0 (mod `)};

3) If d ∈ (K×p )` then LP/Kp is trivial, and

NLP/Kp
(L×P) = K×p .

Proof. First of all notice that LP = Kp(d1/`). Furthermore we use the fundamental
equation

e(P/p)f(P/p) = [LP : Kp] = `. (2.2)

As a final remark, we will abbriviate NLP/Kp
to N.

1) Suppose that ` - ordp(d). If d ∈ (K×p )`, then ` | ordp(d). Hence d1/` is not
in K×p and LP/Kp is non-trivial. As ` is prime, we conclude that [LP : Kp] = `.
Furthermore we have ` | e(P/p) because

` ordP(d1/`) = ordP(d) = e(P/p) ordp(d).

From equation (2.2) it follows that e(P/p) = `, i.e., L/K is totally ramified.
We will determine the local norm group. Let N denote the subgroup of K×p

generated by (K×p )` and d. First notice that (K×p )` = N(Kp) and d = N(d1/`) are
in N(L×P), because K contains the 2`-th roots of unity. Note that we use 2` instead

of ` because for ` = 2 we need that
√
−1 ∈ K. Thus N is a subgroup of N(L×P).

Conversely, let x ∈ N(L×P) be arbitrary. We have that ordp(N) = Z, because

ordp(d) and ` = ordp(π`) are coprime, for π ∈ K×p with ordp(π) = 1. Therefore

there exists some n ∈ N such that nx ∈ Up. Recall that N(P) = pf(P/p) and that
P is the unique prime above p. Then p | N(x) is equivalent to P | (x), which shows
that x ∈ UP if and only if N(x) ∈ Up. We conclude that N(L×P) ∩ Up = N(UP). If
we apply Lemma 2.11.3, we find that

nx ∈ N(L×P) ∩ Up = N(UP) = (Up)` ⊆ N,

which implies that x ∈ N . We conclude that N(L×P) = N .

2) Suppose that ordp(d) ≡ 0 modulo ` and d /∈ (K×p )`. We can assume, after
adjusting by an `-th power if necessary, that ordp(d) = 0. Lemma 2.11.3 shows
that the assumption d /∈ (K×p )` implies that d /∈ K×p − (K×p )`. Hence using LP =

Kp(d1/`) we see that LP/Kp is non-trivial. Furthermore using Hensel’s lemma we
conclude that X`−d is irreducible over OKp

if and only if X`−d is irreducible over

Kp. Hence we find that

f(P/p) = [LP : Kp] = [Kp(d1/`) : Kp] = `.

From equation (2.2) it follows that e(P/p) = 1.
We will now determine the norm group. Let N denote the set of all x in K×p such

that ordp(x) ≡ 0 modulo `. Let x ∈ N be arbitrary. Find π ∈ K×p with ordp(π) = 1
and let k be an integer such that ordp(x) = k`. Then π−k`x ∈ Up and by Theorem
2.11.2 we see that π−k`x ∈ N(UP), since e(P/p) = 1. Furthermore N(π−k) = π−k`

as π ∈ K, which shows that x ∈ N(L×P). Hence we have the following inclusions:

N ⊆ N(L×P) ⊆ K×p .
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Theorem 2.11.2 shows that [K×p : N(L×P)] = `. The homomorphism K×p → Z/`Z
given by x 7→ ordp(x) + `Z has kernel N , which shows that [K×p : N ] = `. From
this we conclude that N(L×P) = N .

3) As LP = Kp(d1/`), we clearly have that LP/Kp is trivial, whenever d ∈
(K×p )`. Furthermore the norm map is just the identity, which shows NLP/Kp

(L×P) =

K×p .

2.12. Artin’s reciprocity law

We will now introduce a very important generalization of the quadratic reciprocity
law, which was formulated by Artin as follows:

Theorem 2.12.1 (Quadratic reciprocity law). There exists a group homomorphism

(Z/4dZ)× −→ {±1}, with p+ 4dZ 7→
(
d

p

)
for all primes p not dividing 4d.

Proof. See page 47 of [7] for a derivation of this theorem from the classical quadratic
reciprocity law.

We start with the generalization of the Legendre symbol, which is the Artin
symbol. Then we will formulate the generalization of the quadratic reciprocity law,
without going into details.

Artin symbol. We will define the Artin symbol, which is the lift of the Frobenius
automorphism of the residue class field to the Galois group field extension. For
better understanding we will start from the classical viewpoint and then generalize
to the idelic viewpoint.

Let L/K be a finite abelian extension of global fields, i.e., a finite Galois exten-
sion with abelian Galois group G. Let p be a prime ideal of OK and P an extension
of p to L.

First notice that σ(OL) = OL. Indeed if x ∈ OL satisfies xn =
∑
i aix

i, with
ai ∈ OK , then σ(x)n =

∑
i aiσ(x)i, since σ(ai) = ai. We conclude that σ restricts

to automorphism of OL.

Furthermore notice that the Galois group G acts naturally on the prime ideals
P extending p. Indeed for all σ ∈ G we have that σ(P) ⊆ OL is a prime ideal
above σ(p) = p, because σ is an automorphism and K is the fixed field of σ. The
stabilizer subgroup GP of P of this action is called the decomposition group. More
explicitly, we have

GP = {σ ∈ G | σ(P) = P}.

We conclude that any σ ∈ GP restricts to automorphism of OL which reduces to
an automorphism σ of LP = OL/P, since σ(P) = P. Moreover σ ∈ Gal(LP/Kp),
since σ fixes K. Hence for all primes P above p we find a natural map

πP : GP −→ Gal(LP/Kp) σ 7→ σ.

The kernel of πP is called the inertia group IP of P. That is,

IP = {σ ∈ G | σ = id}

We are now ready to define the Artin symbol and Artin map.

Definition 2.12.2 (Artin symbol). Let L/K be a finite abelian extension of global
fields. Let p be an unramified prime of L/K, let P be a prime of L extending p and
let FrP be the Frobenius automorphism of LP/Kp. Then

(p, L/K) := π−1
P (FrP)
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is called the Artin symbol of p. Let m be a modulus which is divisible by all ramified
primes of L/K. Then the homomorphism

(·, L/K) : Clm(K) −→ G, pn1
1 · · · p

nt
t 7→

t∏
i=1

(p, L/K)ni

for all integers ni and places pi not dividing m, is called the Artin map with respect
to m. 4

Let L/K be an abelian extension of global fields. For the remainder of this
paragraph we will show that the Artin symbol and Artin map are well-defined.
Indeed, we need to show that the preimage π−1

P (FrP) is independent of P and
that this preimage contains exactly one element. Note that the Artin map is only
determined on the primes of K relatively prime to m. It is clear that this extends
uniquely to a homomorphism from Clm(K) to G.

We will now investigate the maps πP. The following theorem shows that there
is a strong connection between the maps πP for different primes P.

Theorem 2.12.3. The Galois group G acts transitively on the primes P of L
extending p.

Proof. See Proposition 11 at page 12 of Lang [5].

Corollary 2.12.4. The subset π−1
P (FrP) ⊆ G only depends on the choice p.

Proof. Theorem 2.12.3 implies that if P and Q are primes extending p, then there
exists a σ ∈ G such that σ(P) = Q. Hence we have that σGPσ

−1 = GQ and
GP = GQ, because G is assumed to be abelian. Furthermore this σ reduces to a
Kp-isomorphism σ : LP → LQ given by x + P 7→ σ(x) + Q. Hence conjungation
with σ induces an isomorphism from Gal(LP/Kp) to Gal(LQ/Kp) which takes FrP
to FrQ. Indeed, let k be the integer

|Gal(LP/Kp)| = |Gal(LQ/Kp)|.

Then we have for all x in LQ that

(σ FrP σ
−1)(x) = σ(σ−1(x))k = σ(σ−1(xk)) = xk = FrQ(x).

In other words, we have the following diagram:

GP Gal(LP/Kp) FrP

GQ Gal(LQ/Kp) FrQ

πP

πQ

∼

3

3

which is commutative. Indeed for all τ ∈ GP = GQ and all x + Q in LQ we have
that (πQ(τ))(x+ Q) = τ(x) + Q and

(σπP(τ)σ−1)(x+Q) = (σπP(τ))(σ−1(x) +P) = σ(τσ−1(x) +P) = στσ−1(x) +Q.

Hence we find that σπP(τ)σ−1 = πQ(τ), since G is abelian. We conclude that
π−1
P (FrP) = π−1

Q (FrQ), which proves the corollary.

We will show that the Artin symbol exists and is unique. Recall from Example
1.12.11 that the Frobenius automorphism of LP/Kp is a generator for Gal(LP/Kp).
Hence the existence of the Artin symbol is equivalent to the surjectivity of πP.

Theorem 2.12.5. The following sequence is exact:

0 −→ IP −→ GP −→ Gal(LP/Kp) −→ 0.

Proof. Since K and L are global fields, Lemma 2.1.4 tells us that Kp and LP are
both finite fields. By Example 1.12.11 we conclude that LP/Kp is a Galois exten-
sion. Then Theorem 1.12.9 implies that LP/Kp is normal. Now apply Proposition
14 at page 15 of Lang [5].
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For the uniqueness we focus on the injectivety of πP.

Corollary 2.12.6. The natural map GP → Gal(LP/Kp) is an isomorphism if and
only if p is unramified.

Proof. By the fundamental formula for Galois extensions the order of GP equals
e(P/p)f(P/p) and the order of Gal(LP/Kp) equals f(P/p). Therefore IP is of
order e(P/p). Hence from Proposition 2.12.5 we conclude that the natural map
GP → Gal(LP/Kp) is an isomorphism if and only if p is unramified.

Artin’s reciprocity law. We will now further investigate the properties of the
Artin map. Without going into details we summarize the most important properties.
Notice that the Artin map depends on the choice of a modulus. It turns out that
the Artin map has nice properties, whenever this modulus is admissible.

Recall that ordp has a unique extension to the completion Kp, which implies
that x ≡ 1 mod m is a relation on K∗p .

Definition 2.12.7. Let L/K be an extension of global fields. A modulus m of K
is called admissible if and only if

Wm(p) := {x ∈ K∗p | x ≡ 1 mod m} ⊆ NLP/Kp
(L×p )

for every place p of K and P/p of L. 4

Let L/K be an extension of global fields. If n is a modulus of L and m is a
modulus of K, then we say that n extends m if and only if p | m implies P | n for
all extensions P/p of places.

The following theorem from Artin is of fundamental importance:

Theorem 2.12.8 (Artin’s reciprocity law). Let L/K be an abelian extension of
global fields, let m be an admissible modulus of K which is divisible by all ramified
places and n be the modulus of L extending m. Then the Artin map a 7→ (a, L/K)
on ideals induces an isomorphism

Clm(K)/N(Cln(L)) −→ G.

Proof. This is the combination of Theorem 1 and the remark below at page 199,
Theorem 2 at page 204 and Theorem 3 at page 205 of [5]. Notice that Proposition
2.2.3 shows that N : IL → IK factors through a map Cln(L)→ Clm(K).

Remark. Artin’s reciprocity law does not exhibit any symmetry that would justify
the term “reciprocity”. The name derives from the fact that it extends the quadratic
reciprocity law. See for example [7] for an introduction.

Now we will translate this theorem to the language of idèles which allows us to
decompose the Artin map into local Artin maps.

Recall the definition of j : IK → IK from the proof of Proposition 2.8.7.

Proposition 2.12.9. Let L/K be an abelian extension of global fields, let m be an
admissible modulus of K and n be the modulus of L above m. Then j : IK → IK
induces an isomorphism

C(K)/N(C(L)) −→ Clm(K)/N(Cln(L)).

Proof. See Theorem 8 (and below) at page 150 of Lang [5].

Using j, we may consider the Artin map on idèles:

IK −→ G, a 7→ (a, L/K) :=
∏

p(p, L/K)ordp(ap).

If we apply Proposition 2.12.9 to Theorem 2.12.8, we are able to determine the
kernel of the Artin map on idèles.

Theorem 2.12.10 (Global Artin’s reciprocity law). Let L/K be an abelian exten-
sion of global fields. The Artin map on idèles induces the isomorphism

C(K)/N(C(L)) −→ G, a 7→ (a, L/K)
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The global reciprocity law may be reformulated into a local theorem.

Theorem 2.12.11 (Local Artin’s reciprocity law). For every place p of K an
isomorphism

(·, L/K)p : Kp/NLP/Kp
(LP) −→ GP,

such that for all x ∈ K× we have∏
p(x, L/K)p = 1.

Proof. If we precompose (·, L/K) with the map x 7→ xp = (. . . , 1, x, 1, . . .) from Kp

to IK , we find the isomorphism (·, L/K)p. Moreover for any x ∈ K× we have in
C(K) that 1 = (. . . , x, x, x, . . .) =

∏
p xp. Therefore in G we find

1 = (1, L/K) = (
∏

p xp, L/K) =
∏

p(xp, L/K) =
∏

p(x, L/K)p.

This proves the corollary.

Remark. Notice that the local and global version of the reciprocity law are equiva-
lent. Indeed suppose that for every place p of K we are given an isomorphism

(·, L/K)p : Kp/NLP/Kp
(LP) −→ GP,

such that for all x ∈ K× we have
∏

p(x, L/K)p = 1. Then we define a global map
by

(·, L/K) : IK −→ G, a 7→
∏
p

(ap, L/K)p.

Since
∏

p(x, L/K)p = 1, this map factors through a map C(K)→ G. By the Hasse
norm theorem we see that its kernel is N(C(L)). Hence we found the global Artin
map on idèles: C(K)/N(C(L))→ G.
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Chapter 3

First-Order Logic

In this chapter we will reformulate the questions from the introduction into precise
questions. To be able to do this we need to provide precise definitions of what
is meant by a statements and an objects. These will be introduced in section 3.1
and 3.2, where we will define statements to be L-sentences and objects to be L-
structures. Then in section 3.3 we will define the concept of proofs and in section
3.4 we define when a map f : N→ N is considered to be computable. In section 3.5
we will introduce Gödel numberings, which allows us to view computable maps as
algorithms on the set of all L-sentences and L-formulas. Hence we able to define
decidability. In section 3.6 we will discuss some properties of sets of L-sentences.
Then we have developed enough terminology to reformulate the questions form the
introduction and we will do this in section 3.7.

The final goal of this chapter is to prepare for Chapter 5. There we will show
that the theory of a global field is undecidable. This will be done by showing
that the theory of of natural numbers is undecidable and that this theory can be
interpreted in the theory of a global field. We will make this precise in section 3.8,
3.9 and 3.10.

3.1. Syntax

The syntax of first-order logic defines what a language is, i.e. it determines which
expressions are valid. The goal of this section is to define this syntax.

Let us start with the most elementary object in the syntax: a symbol. It should
be clear what a symbol is, and hence our definition will be a bit informal. A k-ary
function/relation symbol is character c together with the following data: an integer
k ≥ 0 indicating the arity and a boolean value indicating whether c is a function or
not. A nullary function symbol is called a constant and a nullary relation symbol
is either a tautology (>) or falsum (⊥).

Having settled this notion, we now turn to the definition of a language.

Definition 3.1.1 (Language). A language L is a collection of k-ary function and
relation symbols which contains a binary relation symbol = and a nullary relation
symbol ⊥. 4

The main examples of languages of this thesis are the following:

Example 3.1.2 (Language of rings). The language Lring of rings consist of two
binary function symbols + and ×, a binary relation symbol < and two constants
0 and 1 together with the auxiliary symbols = and ⊥. In general this auxiliary
symbols are left unmentioned. ♦

Example 3.1.3 (Language of arithmetic). The language Larith of arithmetic is the
expansion of the language of rings with a binary relation symbol <. ♦

Definition 3.1.4 (Strings). Let L be a language. An L-string of length k ≥ 0 is a
sequence “c1c2c3 · · · ck”, of characters from the alphabet

L ∪ {∨,¬,∃} ∪ {vi | i ∈ N} ∪ {); , ; (}.

Here ∨, ¬ and ∃ are called the logical connectives and the vi are called variables.
If r, s and t are L-strings or symbols then rs is the L-string which concatenates r
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with s and r[s/t] is the L-string in which every occurrence of t in r is replaced by
s. 4

The quotation marks may be dropped if there is no risk of confusion.

Definition 3.1.5 (Terms). Let L be a language. A string t is an L-term if and
only if either

1) t equals vi for some i ∈ N, or

2) t equals F (t1, . . . , tk), where t1, . . . , tk, k ≥ 0, are L-terms and F is a k-ary
function symbol of L.

An L-term t is called closed if and only if vi does not occur t for all i ∈ N. 4

We use the convention that the list t1, . . . , tk is empty for k = 0, hence the
second property implies for k = 0 that the constants are terms. Furthermore note
that this definition is not completely self-referential, because of the first case and
the second case for k = 0. This definition is therefore an inductive definition.

In practice we will often write t1 F t2 instead of F (t1, t2) and t1R t2 instead
of R(t1, t2), for all L-terms t1 and t2 and binary function symbols f and binary
relation symbols R of L.

We will also use symbols like x, y and z to denote variables, instead of restricting
ourselves to use only the symbols vi. This however should not lead to confusion as
long as the variables are not denoted by a symbol of the language, i.e. a function
or relation symbol.

Before we define which L-strings are L-formulas, we need the following definition.

Definition 3.1.6 (Free variables). Let L be a language and φ an L-string. A
variable vi is called bound in φ if and only if ∃vi occurs in φ and vi is called free in
φ otherwise. 4

Note that in the above definition, vi does not need to occur in φ. We will now
define the L-formulas.

Definition 3.1.7 (Formulas). Let L be a language. A L-string φ is called an
L-formula if and only if either

1) φ is atomic, i.e., φ equals R(t1, . . . , tk), k ≥ 0, where t1, . . . , tk are L-terms
and R is a k-ary relation symbol of L, or

2) φ equals ψ0 ∨ψ1, where ψ0 and ψ1 are L-formulas such that if vi occurs in ψj
then vi is free in ψ1−j for all i ∈ N and j ∈ {0, 1}, or

3) φ equals ¬ψ, where ψ is an L-formula, or

4) φ equals ∃viψ, where i ∈ N, ψ an L-formula and vi free in ψ.

The set of all L-formulas variables is denoted by FL. Let φ an L-formula. The
set of all L-formulas φ with at most n free variables occurring in φ, is denoted by
FnL . A formula φ is called a sentence if and only if φ ∈ F0

L. A formula φ is called
quantifier-free if and only if ∃ and ∀ do not occur in φ. If φ is a formula, then we
write φ(vi1 , . . . , vin), n ≥ 1, or just φ(~v) to mean that the free variables of φ are
vi1 , . . . , vin . 4

Example 3.1.8. The Lring-string ∃v1(v1 = 0 ∨ ∃v2(v1 × v2 = 1)) is an example
of an Lring-sentence, as it can be build from the atomic Lring-formulas v1 = 0 and
v1 × v2 = 1. ♦

Note that there is an important condition in the second item. The Lring-string

s = v2 = 0 ∨ ∃v2(v2 = v1 + 1)

is not considered to be an Lring-formula, because v2 occurs in v2 = 0 while ∃v2

occurs in ∃v2(v2 = v1 + 1). In other words, v2 occurs both free (in a subformula)
and bound in this formula.
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Although s has a uniquely defined interpretation (in the sense of Definition
3.2.7), we will exclude it from the set of formulas. The reason is that there are
problems with substitution. For example, the substitution

(v2 = 0 ∨ ∃v2(v2 = v1 + 1))[t/v2] = (t = 1 ∨ ∃t(t = v1 + 1))

makes no sense for any term t other then a variable vi. However, we have the
following:

Lemma 3.1.9. Let L be a language, φ an L-formula and vk a free variable of φ.
Let t be an L-term such that vi occurs in t implies vi is free in φ for all i ∈ N. Then
the substitution φ[t/vk] is an L-formula.

Proof. If vi does not occur in φ, then φ[t/vk] is trivially an L-formula. Suppose that
vi occurs in φ. We show that φ[t/vk] is an L-formula, by induction on formulas.

atomic formula: Suppose that φ is atomic. Then φ[t/vk] is clearly an atomic
L-formula.

disjuction: Suppose that φ equals ψ0∨ψ1, where ψ0 and ψ1 are L-formulas such
that if vi occurs in ψj then vi is free in ψ1−j for all i ∈ N and j ∈ {0, 1}. Using
the induction hypothesis, we find that both ψ0[t/vk] and ψ1[t/vk] are L-formulas.
Since φ[t/vk] equals ψ0[t/vk] ∨ ψ1[t/vk], it remains to check whether the ψj [t/vk]
satisfy the additional property on the variables. Suppose that vi occurs in ψj [t/vk].
Then vi occurs in ψj or vi occurs in t. If vi occurs in ψj , then vi is free in ψ1−j .
If vi occurs in t, then vi is free in φ, hence vi is free in ψ1−j . We find that vi is
free in ψ1−j in both cases. Now since vi is free in ψ1−j if and only if vi is free in
ψ1−j [t/vk], we conclude that φ[t/vk] is an L-formula.

negation: Suppose that φ equals ¬ψ, where ψ is an L-formula. Then φ[t/vk] is
clearly an L-formula.

existential quantifier : Suppose that φ equals ∃viψ, with vi free in ψ.
We conclude that φ[t/vk] is an L-formula.

At first sight it seems that the symbols 6=, ∧, →, ↔ and ∀ are missing from this
definition. However this is not a problem since these symbols are definable using
only symbols from Definition 3.1.7. Indeed, let φ and ψ be L-formulas and i ∈ N
an integer, we define the following abbreviations:

1) t1 6= t2 for ¬(t1 = t2);

2) φ ∧ ψ for ¬(¬φ ∨ ¬ψ);

3) φ→ ψ for ¬φ ∨ ψ;

4) φ↔ ψ for (φ→ ψ) ∧ (ψ → φ);

5) ∀viφ for ¬∃vi¬φ;

6) ∃!viφ for ∃viφ ∧ ∀vj(φ→ vi = vj).

3.2. Semantics

In the previous section we introduced the notion of L-sentence φ. This φ can be
viewed as property. In this section we will define the object of which φ is a property
and also how one should interpret φ in a given object.

Structures and substructures. We will now introduce the objects.

Definition 3.2.1 (Structures). Let L be a language. An L-structure consists of

1) a set M such that M 6= ∅ and M ∩ L = ∅;

2) a function FM : Mk →M for each k-ary, k ≥ 0, function symbol F of L;

3) a subset RM ⊆Mk for each k-ary, k ≥ 0, relation symbol R of L, such that

a) =M equals {(m,m) | m ∈M};



62 3.2. Semantics

b) ⊥M equals ∅.

The function FM and relation RM are called the interpretation of f respectively R
in M . 4

In the above definition we use the convention that M0 is a singleton set {∗}.
Therefore a nullary function (i.e., a constant) defines an element FM (∗) of M .

First we list some examples of structures.

Example 3.2.2. If R is a ring then R is an Lring-structure, where Lring is the
language of rings. The converse is not always true, since we want some axioms to
be true. ♦

Example 3.2.3. The set N of natural numbers with usual ordering, addition and
multiplication and interpretation of 0 and 1 is an Larith-structure. ♦

In Example 3.2.2 we see that Lring-structures generalize the concept of a ring.
We will now generalize the concept of a subring.

Definition 3.2.4 (Substructures). Let L be a language an let M and N be L-
structures. Then N is a substructure of M if and only if for all k ≥ 0, ~n ∈ Nk,
k-ary function symbol F and k-ary relation symbol R we have

1) N ⊆M ;

2) FN (~n) = FM (~n);

3) RN = Rk ∩Mk. 4

Truth. Consider an L-structure M . In the previous section we defined syntacti-
cally the notion of formulas and sentences. These notions are useful because they
are connected with “reality” by means of interpretations. Such an interpretation
allow us to assign truth to each sentence. It turns out that we will need to define
an interpretation of sentences in a larger (generally much larger) language in order
to define truth.

Definition 3.2.5 (Language of a structure). Let M be an L-structure. Then the
language of M (notation: LM ) is the language L together with a constant m for all
m ∈M . 4

The definition of a structure gives us the interpretation of constants and function
symbols. We now inductively define the interpretation of closed terms.

Definition 3.2.6 (Interpretation of terms). Let L be a language and M an L-
structure and t a closed LM -term. Then t = F (t1, . . . , tk) where t1, . . . , tk, k ≥ 0,
are LM -terms and F is a k-ary function symbol of L. Expand M to an LM -
structure by defining mM = m for all m ∈M . The interpretation tM of t is defined
by FM (tM1 , . . . , tMk ), where tM1 , . . . , tMk are the interpretations of t1, . . . , tk. 4

For k = 0 this definition coincides with the interpretation of a constant m ∈M
in the LM -structure m. This provides the base of the inductive definition.

Finally we define the notion of truth of closed L-formulas using reverse induction.

Definition 3.2.7 (Truth). Let L be a language and M an L-structure and φ an
LM -sentence. Then φ is true for M or M satisfies φ (notation: M |= φ) if and only
if either

1) φ equals R(t1, . . . , tk) for some closed LM -terms t1, . . . , tk, k ≥ 0, and a k-ary
relation symbol R of L such that (tM1 , . . . , tMk ) ∈ RM , or

2) φ equals ψ0 ∨ ψ1 where ψ0 and ψ1 are LM -formulas such that M |= ψ0 or
M |= ψ1, or

3) φ equals ¬ψ where ψ is an LM -formula such that not M |= ψ (notation:
M 6|= ψ), or
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4) φ equals ∃viψ where ψ is an LM -formula and i ∈ N such that there exists a
m ∈M with M |= ψ[m/vi].

If Γ ⊆ FL is a set of L-sentences, then M is a model of Γ (notation: M |= Γ) if and
only if M |= φ, for all φ ∈ Γ. 4

Note that property 4) of this definition forced us to use the extended language
LM .

Structure homomorphisms. As seen in Example 3.2.2, an Lring-structure is a
generalization of a ring. It is not a surprise that we can also generalize the notion
of a ring homomorphism. We will do this for an arbitrary language.

Definition 3.2.8 (Homomorphisms). Let L be a language and let M and N be
L-structures. A map j : M → N is called an L-homomorphism if and only if

1) j(cM ) = cM , for every constant c in L.

2) j(FM (~m)) = FN (j ~m), for each function symbol F of L;

3) if ~m ∈ RM then j(~m) ∈ RN , for each relation symbol R of L.

An L-homomorphism j : M → N is called an L-isomorphism if and only if there
exist a j′ : N →M with j′ ◦ j = idM and j ◦ j′ = idN . 4

If N is an L-substructure of a L-structure M , then the inclusion map induces an
L-homomorphism. The converse is not true: if j : N →M is an L-homomorphism,
then j(N) need not be an L-substructure of M , as we only have that RN ⊆ Rk∩Mk.
This motivates the definition of L-embeddings.

Definition 3.2.9 (Embeddings). Let L be a language and let M and N be L-
structures. A map j : M → N is called an L-embedding if and only if j is an
L-homomorphism with j(RM ) = RN , for each relation symbol R of L. 4

Notice that an L-embedding is injective, as j(m1) = j(m2) implies m1 = m2.
This justifies the term embedding.

If j is an L-isomorphism, then it is easy to see that j is an L-embedding.
The following theorem gives another characterization of L-homomorphisms and

L-embeddings and a useful property of L-isomorphisms.

Theorem 3.2.10. Let L be a language and M and j : M → N a map of L-
structures.

1) If j is an L-homomorphism, then M |= φ(~m) implies N |= φ(j ~m) for all
atomic L-formulas φ(~x) and all ~m in M .

2) If j is an L-embedding, then M |= φ(~m) if and only if N |= φ(j ~m) for all
quantifier-free L-formulas φ(~x) and all ~m in M .

3) If j is an L-isomorphism, then M |= φ(~m) if and only if N |= φ(j ~m) for all
L-formulas φ(~x) and all ~m in M .

Proof. We first prove a preliminary result. Suppose that j is an L-homomorphism.
Let t be an L-term with free variables among x1, . . . , xn, ~m ∈Mn and n ∈M . We
will show with induction on terms that j(tM (~m)) = tN (j ~m).

If t is a variable, then we trivially have that j(tM (~m)) = tN (j ~m).
If t equals F (t1, . . . , tk), with f a k-ary, k ≥ 0, function symbol of L and ti an

L-term with free variables among x1, . . . , xn, then

j(tM (~m)) = j(FM (t1(~m), . . . , tk(~m))).

Now since j is an L-homomorphism we see that

j(tM (~m)) = FN (j(t1(~m)), . . . , j(tk(~m)))

and with the induction hypothesis we find that j(tM (~m)) = tN (j ~m).
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We conclude that j(tM (~m)) = tN (j ~m) for all L-terms t(~x), ~m ∈Mn and n ∈M .
1) Suppose that j is an L-homomorphism and let φ be an atomic formula with

free variables among x1, . . . , xn and ~m ∈ Mn. We show that M |= φ(~m) implies
N |= φ(j ~m). Suppose that M |= φ(~m). As φ is atomic, φ equals R(t1(~x), . . . , tk(~x)),
with R a k-ary relation symbol and ti(~x) an L-term. Then this is equivalent to

(t1(~m), . . . , tk(~m)) ∈ RM .

This implies that
(j(t1(~m)), . . . , j(tk(~m))) ∈ RN ,

since j is an L-homomorphism. Note that this would be an equivalence, whenever j
was an L-embedding. We conclude from the preliminary result that (ti(j ~m))ki=1 ∈
RN and N |= φ(j ~m).

2) Suppose that j is an L-embedding and let φ be a quantifier-free L-formula
with free variables among x1, . . . , xn and ~m ∈Mn. We will show with induction on
formulas that M |= φ(~m) if and only if N |= φ(j ~m).

If φ is atomic, we conclude from the proof of the first item that M |= φ(~m) if
and only if N |= φ(j ~m).

If φ equals ψ0 ∨ ψ1, then the induction hypothesis implies that M |= ψi(~m) if
and only if N |= ψi(j ~m) for both i. Hence M |= φ(~m) if and only if N |= φ(j ~m).

If φ equals ¬ψ, then the induction hypothesis implies that M |= ψ(~m) if and
only if N |= ψ(j ~m). With contraposition we find that M 6|= ψ(~m) if and only if
N 6|= ψ(j ~m). This shows that M |= φ(~m) if and only if N |= φ(j ~m).

If φ equals ∃xψ, then φ is not quantifier-free, which contradicts the assumption.
We conclude that M |= φ(~m) if and only if N |= φ(j ~m) for all quantifier-free

L-formulas φ(~x) and all ~m in M .
3) Suppose that j is an L-isomorphism. Let φ be an L-formula with free variables

among x1, . . . , xn and ~m ∈ Mn. We will show with induction on formulas that
M |= φ(~m) if and only if N |= φ(j ~m).

If φ is atomic, then the fact that j is an L-embedding shows that M |= φ(~m) if
and only if N |= φ(j ~m).

If φ equals ψ0 ∨ ψ1, then the induction hypothesis implies that M |= ψi(~m) if
and only if N |= ψi(j ~m) for both i. Hence M |= φ(~m) if and only if N |= φ(j ~m).

If φ equals ¬ψ, then the induction hypothesis implies that M |= ψ(~m) if and
only if N |= ψ(j ~m). With contraposition we find that M 6|= ψ(~m) if and only if
N 6|= ψ(j ~m). This shows that M |= φ(~m) if and only if N |= φ(j ~m).

If φ equals ∃xψ, then M |= ψ(~m) is equivalent to M |= ψ(a, ~m) for some a ∈M .
Hence with the induction hypothesis and the fact the j is surjective, we find that
this is equivalent to N |= ψ(j(a), j ~m), which shows that M |= φ(~m) if and only if
N |= φ(j ~m).

We conclude that M |= φ(~m) if and only if N |= φ(j ~m) for all L-formulas φ(~x)
and all ~m in M .

Elementary equivalence. As we now have a good notion of truth, we also have
a good notion of whether two structures have the same properties:

Definition 3.2.11 (Elementary equivalence). Let M and N be L-structures. Then
M is elementary equivalent to N (notation M ≡ N) if and only if M |= φ if and
only if N |= φ, for all L-sentences φ. 4

An example of elementary equivalent structures are isomorphic structures. In-
deed, if j : M → N an L-isomorphism between L-structures, then application of
Theorem 3.2.10 shows that M and N are elementary equivalent. In the following
chapters we will determine whether the converse is true for some specific Lring-
structures.

Formulas and properties. Let L be a language and M an L-structure. Then
an L-sentence can be seen as a property of M . Two L-sentences φ and ψ may define
the same property in every L-structure; M |= φ↔ ψ, for every L-structure M . In
this case φ and ψ are called equivalent.



Chapter 3. First-Order Logic 65

If φ(~v) is an L-formula with free variables among v1, . . . , vn for some integer
n ≥ 0, then φ(~v) can be seen as a property of an n-tuple ~m ∈Mn. Two L-formulas
φ(~v) and ψ(~v) may define the same property in every L-structure; M |= ∀~v(φ(~v)↔
ψ(~v)), for every L-structure M . In this case φ(~v) and ψ(~v) are called equivalent.

In general we will only be interested in whether two formulas define the same
property in a special kind of L-structure, namely an L-structure M with M |= φ
for every φ in a given set Γ of L-sentences. In order to make this generalization, we
define the following:

Definition 3.2.12 (Semantical consequence). Let L be a language, Γ a set of L-
sentences and φ an L-sentence. Then φ is a (semantical) consequence of Γ (notation:
Γ |= φ) if and only if M |= Γ implies M |= φ for every L-structure M . 4

Using this definition we generalize the above definition of equivalent formulas.

Definition 3.2.13 (Equivalent formulas). Let L be a language, Γ a set of L-
sentences and φ and ψ two L-formulas with free variables among x1, . . . , xn. Then
φ and ψ are called Γ-equivalent if and only if Γ |= ∀~x(φ ↔ ψ). Moreover φ and ψ
are called equivalent if and only if Γ = ∅. 4

It is easy to see that this relation is an equivalence relation on the set of L-
formulas and its equivalence classes are called properties.

For notational convenience in the following theorem we will say that an L-
formula λ is an L-literal if and only if either λ = α or λ = ¬α for some atomic
L-formula α.

Theorem 3.2.14 (Disjunctive normal form). Let L be a language. Every quantifier-
free L-formula is equivalent to an L-formula of the form

n∨
i=1

m∧
j=1

λij ,

where m,n ≥ 1 are integers and λij are L-literals, i.e., either λij = α or λij = ¬α
for some atomic L-formula α.

Proof. Let φ be a quantifier-free L-formula. We will show by induction on the
formulas that φ is equivalent to an L-formula of the form

∨n
i=1

∧m
j=1 λij , where

m,n ≥ 1 are integers and λij are L-literals.
If φ is atomic, then this is trivial.
If φ equals ψ0∨ψ1, then it follows trivially from the induction hypothesis on ψi.
If φ equals ¬ψ, then with the induction hypothesis we find that ψ is equivalent

to an L-formula of the form
∨n
i=1

∧m
j=1 λij . Now ψ states the following: there is

an i ∈ {1, . . . , n} such that for all j ∈ {1, . . . ,m} we have that λij is true. Now ψ
states: for all i ∈ {1, . . . , n} there is an j ∈ {1, . . . ,m} such that that λij is false.
This can be rewritten as: there is a map f : {1, . . . , n} → {1, . . . ,m} such that for
all i ∈ {1, . . . , n} we have that λif(i) is false. The above discussion shows that we
have proved the following equivalences:

¬
n∨
i=1

m∧
j=1

λij ↔
n∧
i=1

m∨
j=1

¬λij ↔
∨
f

n∧
i=1

¬λif(i).

Hence φ is of the correct form.
If φ equals ∃xψ, then φ is not quantifier-free which contradicts the assumption.
We conclude that for all quantifier-free L-formulas φ are equivalent to an L-

formula of the form
∨n
i=1

∧m
j=1 λij , where m,n ≥ 1 are integers and λij are L-

literals.

3.3. Proofs

Definition 3.3.1 (Labelled trees). Let L be a language. An L-labelled tree T is
a finite set T together with a partial order ≤, a function f : T → FL and a set
M ⊆ T such that
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1) T has a least element;

2) the set {x ∈ T | x ≤ y} is totally ordered for all y ∈ T ;

3) every x ∈M is maximal in T

The function f is called the labelling function of T and the set M is called the
set of marked leaves of T . The least element of T is called the root of T . Any
maximal element of T is called a leaf of T . If r is the root of T , then f(r) is called
the conclusion of T . If a is a (marked) leaf of T , then f(a) is called an (marked)
assumption of T . 4

We will not care about the specific elements of a tree, but we will only be
interested in the labels of that elements. Therefore we will consider two labelled
trees to be identical whenever they are isomorphic as a partially ordered set and
the labels are fixed under the isomorphism.

Example 3.3.2 (Assumption tree). Let T be a singleton set (i.e., T consist of one
element r) and let φ be an L-formula, for some language L. Then T together with
partial order =, the function f(r) = φ and the empty set ∅, is called the assumption
tree with conclusion φ (notation: ass(φ)). ♦

Example 3.3.3 (Joining trees). Let k be a positive integer, L a language, Ti be
an L-labelled tree with labelling function fi and marked leaves Mi for i = 1, . . . , k.
For any element r, let Tr be the disjoint union {r} t T1 t · · · t Tk, together with
the partial order ≤ defined by x ≤ y if and only if x = r or x ≤i y for some i, the
labelling function f given by

f(x) :=

{
φ if x = r

fi(x) if x ∈ Ti
,

and the marked leaves given by the disjoint union M1 t · · · tMk. Then Tr is the
tree which joins T1, . . . , Tk by adding the conclusion φ (notation: (T1, . . . , Tk)φ).
Note that we do not care about the specific element r, which implies that this tree
is well defined. ♦

Example 3.3.4 (Marking trees). Let L be a language, T an L-labelled tree with
labelling function f and marked leaves M , and φ an L-formula. Then the L-labelled
tree T with marked leaves M ∪ f−1(φ) is the tree which marks all assumptions φ
in T (notation: Tφ). ♦

Definition 3.3.5 (Proof trees). Let L be a language. An L-labelled tree T is called
a proof tree if and only if either

1) T = ass(φ), where φ is an L-formula (assumption);

2) T = (T0, T1)ψ0∨ψ1
, where ψi is an L-formula and Ti a proof tree with conclu-

sion ψi (∨-introduction), or

3) T = (S, Tψ0

0 , Tψ1

1 )χ, where χ and ψi are L-formulas, S a proof tree with
conclusion ψ0 ∨ ψ1 and Ti a proof tree with conclusion χ (∨-elimination), or

4) T = (Tψ)¬ψ, where ψ is an L-formula and T a proof tree with conclusion ⊥
(¬-introduction), or

5) T = (S, T )⊥, where ψ is an L-formula, S a proof tree with conclusion ψ and
T a proof tree with conclusion ¬ψ (¬-elimination), or

6) T = (T¬ψ)ψ, where ψ is an L-formula and T a proof tree with conclusion ⊥
(⊥-elimination), or

7) T = (T )∃viψ, where ∃viψ and φ[t/vi] are L-formulas and T a proof tree with
conclusion φ[t/vi] (∃-introduction), or

8) T = (T, Sφ[vj/vi])χ, with T and S a proof trees with conclusions ∃viφ and χ
respectively, and vj is a variable such that vj does not occur in φ, in χ or in
any unmarked assumptions of Sφ[vj/vi] (∃-elimination), or



Chapter 3. First-Order Logic 67

9) T = (T, S)φ[s/vi], with t and s an L-terms, T and S proof trees with con-
clusions φ[t/vi] and s = t respectively, and φ[s/vi] an L-formula (substitu-
tion). 4

Note that, since an L-labelled tree is finite, every proof tree can be constructed
from finitely many assumption trees.

Definition 3.3.6 (Provability). Let L be a language, Γ ⊆ FL a set of L-formulas
and φ an L-formula. Then φ is provable from Γ (notation: Γ ` φ) if and only if
there exists a proof tree T with unmarked assumptions among Γ ∪ {∀vi(vi = vi) |
i ∈ N}. 4

We will abbreviate {φ} ` ψ as φ ` ψ and abbreviate ∅ ` ψ as ` ψ. In view of
Definition 3.2.12, our definition of provability is sound in the following sense:

Theorem 3.3.7 (Soundness). Let L be a language, Γ a set of L-formulas and φ
an L-formula. If Γ ` φ then Γ |= φ.

Proof. See Theorem 3.2.1 on page 87 of [9].

Gödel proved, using the axiom of choice, that the converse of this theorem is
also true. This is very useful as we shall see.

Theorem 3.3.8 (Completeness). Let L be a language, Γ a set of L-formulas and
φ an L-formula. If Γ |= φ then Γ ` φ.

Proof. See Theorem 3.2.2 on page 87 of [9].

3.4. Computable functions

In this section we will define when an arithmetic function is computable. The
following definition does this in an inductive way.

Definition 3.4.1 (Computable functions). A partial function f : Nk → N, k ≥ 1,
is called computable or recursive if and only if either

1) f is the zero function, i.e., k = 1 and f(x) = 0 for all x ∈ N, or

2) f is the successor function, i.e., k = 1 and f(x) = x+ 1 for all x ∈ N;

3) f is a projection function, i.e., f(~x) = xi for some 1 ≤ i ≤ k and all ~x =
(x1, . . . , xk) ∈ Nk, or

4) f is obtained by composition, i.e., f(~x) = g(h1(~x), . . . , h`(~x)) for all ~x ∈ Nk,
where g : N` → N and hj : Nk → N for all 1 ≤ j ≤ ` are partial recursive
functions, or

5) f is obtained by recursion, i.e., k = 2 and f(x, 0) = g(x) and f(x, y + 1) =
h(x, y, f(x, y)) for all x, y ∈ N, where g : N → N and h : N3 → N are partial
recursive functions, or

6) f is obtained by minimization, i.e., f(~x) = min{y ∈ N | g(~x, y) = 0} for all
~x ∈ Nk, where g : Nk+1 → N is a partial recursive function. 4

Any property of a partial function may be translated to subsets A ⊆ N of the
domain by means of its characteristic function χA defined by

χA : x 7→

{
1 x ∈ A
0 x /∈ A

Definition 3.4.2 (Decidable subsets). A subset A ⊆ N is called computable or
decidable if and only if its characteristic function is computable. 4

Example 3.4.3. The following functions/relations are computable

1) {(n,m) | n = m} (see Example 7.1 in [2]);
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2) {(n,m) | n ≤ m} (see Example 7.1 in [2]);

3) (n,m) 7→ n+m (see Example 6.2 in [2]);

4) (n,m) 7→ n ·m (see Example 6.3 in [2]);

5) The (n+ 1)-th prime number π(n) (see Example 7.12 in [2]);

6) The order of n at m:

ord(n,m) =

{
max{k | mk divides n} if n,m ≥ 2

0 otherwise

(see Example 7.11 in [2]);

7) The remainder of n up to division by m: rem(n,m) (see Example 7.7 in [2]).

♦

3.5. Gödel numberings

In this section we will show that in some languages the set of all formulas may be
identified in a nice way with a subset of the natural numbers.

Definition 3.5.1 (Code of a sequence). Let n be a non-negative integer and
(ai)

n
i=1 a finite sequence in N. Then x ∈ N is called the code of (ai)

n
i=1 (nota-

tion: 〈a1, . . . , an〉) if and only if

x = 2n3a15a2 · · ·π(n)an ,

where π(i) is the (i+ 1)-th prime number (i.e, π(0) = 2). 4

Since every non-zero natural number admits a factorization into prime numbers,
we see that every non-zero natural number encodes some sequence.

Let x and y in N be the codes of the sequences (ai)
n
i=1 and (bi)

m
i=1 respectively.

Then define lh(x) := n,

xi :=

{
ai if 1 ≤ i ≤ lh(x)

0 otherwise

and x ∗ y = 〈a1, . . . , an, b1, . . . , bm〉. The maps lh, (·)i and ∗ are in fact computable
by Example 3.4.3.

Definition 3.5.2 (Gödel Numbering). Let L be a language, d·e be a map from the
set of L-strings to N and let g : N→ N be the partial map given by

〈1, dvie〉 7→ 〈1, i〉,
〈2, dfi(t1, . . . , tk)e〉 7→ 〈2, i, dt1e, . . . , dtke〉,
〈3, dRi(t1, . . . , tk)e〉 7→ 〈3, i, dt1e, . . . , dtke〉,

〈4, dφ0 ∨ φ1e〉 7→ 〈4, dφ0e, dφ1e〉,
〈5, d¬φe〉 7→ d5, φe,
〈6, d∃viφe〉 7→ 〈6, dvie, dφe〉.

Then d·e is called a Gödel numbering of L if and only if g is injective, both g and
g−1 are computable and both the domain and the image of g are decidable. 4

Example 3.5.3. Let A ⊆ N be a undecidable subset. Consider the language LA
which has an a-ary relation symbol Ra for all a ∈ A. Then LA does not admit any
Gödel numbering. Indeed, suppose that d·e is a Gödel numbering and let a ∈ N be
given. Then since the image of f is decidable, we have an algorithm that checks
whether 〈3, a, dv1e, . . . , dvae〉 ∈ N is in the image of f . Hence we find an algorithm
which checks whether a ∈ A, which is a contradiction. ♦
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We will now focus on the language of arithmetic. Recall that this language has
two binary function symbols + and × a binary relation symbol < and two constants
0, 1.

Theorem 3.5.4. Every finite language admits a Gödel numbering.

Proof. Suppose that L-consist of a ki-ary function symbol fi for 1 ≤ i ≤ r and an
`j-ary relation symbol Rj for 1 ≤ j ≤ s. Then define

dvie := 〈1, i〉
dfi(t1, . . . , tki)e := 〈2, i, dt1e, . . . , dtkie〉
dRj(t1, . . . , t`j )e := 〈3, j, dt1e, . . . , dt`je〉

dψ0 ∨ ψ1e := 〈4, dψ0e, dψ1e〉
d¬ψe := 〈5, dψe〉
d∃viψe := 〈6, dψe, dvie〉

We will show that there exists a partial map g which satisfies the conditions in
the definition of the Gödel numbering. Take g by 〈i, x〉 7→ x and g−1 is given
by x 7→ 〈x1, x〉. These functions are computable. Moreover the domain of g is
computable, since dom(g) = {x ∈ N | x1 = (x2)1}. The image of g is computable,
since im(g) = {x ∈ N | f−1(x) ∈ dom(g)}. We conclude that d·e is a Gödel
numbering.

Theorem 3.5.4 applies to the languages of our interest.

Corollary 3.5.5. The language of arithmetic Larith and the language of rings Lring

admit a Gödel numbering.

3.6. Theories

In this section we study properties of collections of sentences, which we will call
theories.

Definition 3.6.1 (Theories). Let L be a language. An L-theory is a set T of
L-sentences. An element of T is called a theorem of T . 4

We now list some theories which are important for us.

Example 3.6.2 (Theory of a structure). Let L be a language andM an L-structure.
Then Th(M) := {φ ∈ F0

L |M |= φ} is called the theory of M . ♦

Example 3.6.3 (Elementary diagram). Let L be a language and M an L-structure.
Then the set diag(M) of all quantifier-free LM -sentences φ with M |= φ is called
the elementary diagram of M .

Let M be an L-structure and let N be a model of diag(M). Then the map
j : M → N given by m 7→ mN is a LM -embedding. We first show that j is a
L-homomorphism. If c is a constant in L. Then cM = m for some m ∈ M and
c = m ∈ diag(M) and mN = cN and j(cM ) = j(m) = mN = cN . If f is a function
symbol of L and fM (~m) = n for some ~m, n in M , then f(~m) = n ∈ diag(M)
and hence fN (j ~m) = j(n). If R is a relation symbol of L and ~m ∈ RM for some
~m in M , then R(~m) ∈ diag(M) and hence ~m ∈ RN . We conclude that j is an
L-homomorphism. It remains to show that j(RM ) = RN . We have ~m ∈ RM if
and only if M |= R(~m). Since N |= diag(M) we see that M |= R(~m) if and only if
N |= R(j ~m) or equivalently j ~m ∈ Rn. This shows that j(RM ) = RN ♦

Example 3.6.4 (Theory of fields). The theory Tring of rings is the following set of
sentences in the language of rings:

∀x, y, z(x+ (y + z) = (x+ y) + z)

∀x(x+ 0 = x)

∀x∃y(x+ y = 0)

∀x, y(x+ y = y + x)
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which encode that any model of Tring is a commutative group. Furthermore Tring

contains the additional senctences:

∀x, y, z(x · (y · z) = (x · y) · z)
∀x, y, z(x · (y + z) = x · y + x · z)

∀x(x · 1 = x)

∀x, y(x · y = y · x).

Clearly R is a model of Tring if and only if R is a ring. Similarly we are able to
define the theory of fields Tfield, which has the additional sentences

0 6= 1

∀x∃y(x = 0 ∨ xy = 1).

We clearly have Tfield |= Tring ♦

Let us now examine two important properties of theories, namely consistency
and decidability.

Consistency. A general theory T may consist of contradictory sentences, i.e.,
T ` ⊥. In this case T does not have a model. On the other hand, if T does not
have a model, then trivially T |= ⊥. By the completeness theorem, we conclude
that T ` ⊥. This leads to the following definition.

Definition 3.6.5 (Consistency). A theory T in a language L is called consistent if
and only if T has a model. 4

If T is an infinite theory it is hard to see whether T is consistent. However the
compactness theorem gives a solution to this.

Theorem 3.6.6 (Compactness theorem). Let L be a language. An L-theory is
consistent if and only every finite subtheory is consistent.

Proof. Let Γ be an L-theory. If Γ is consistent, then it has a model. Hence every
finite subtheory has a model and is consistent. Conversely suppose that Γ is not
consistent. Then trivially Γ |= ⊥, since there are no L-structures with M |= Γ (c.f.,
Definition 3.2.12). By the completeness theorem we find that Γ ` ⊥. Hence there
exists a proof tree T with unmarked assumptions among Γ∪ {∀vi(vi = vi) | i ∈ N}.
Let Γ0 be the set of unmarked assumptions of T . Since T is finite, we see that Γ0

is finite. Moreover, Γ0 ` ⊥. By the soundness theorem, we conclude that Γ0 |= ⊥.
Hence we found a finite subtheory Γ0 of Γ which is not consistent. This proves the
theorem.

Decidability. Using the Gödel numbering we find a correspondence of theories
and of subsets of N. Properties of subsets of N translate to properties of theories:

Definition 3.6.7 (Decidability). Let L be a language with Gödel numbering d·e
and T a set of L-sentences. Then T is called decidable if and only if the image
dT e ⊆ N is decidable. 4

The following lemma shows that decidability is independent of the Gödel num-
bering.

Lemma 3.6.8. Let L be a language and T a set of L-sentences. If T is decidable
with respect to one Gödel numbering of L then decidable with respect to any Gödel
numbering of L.

Proof. Suppose that T is decidable with respect to a Gödel numbering d·e and let
d·e′ be an arbitrary Gödel numbering. We will show with induction on the formulas
that the partial map f : dφe′ 7→ dφe is computable. Then T is decidable with
respect to d·e′, because the image x ∈ dT e′ if and only if f(x) ∈ dT e.

Then Algorithm 1 on page 71 shows that the partial map dφe′ 7→ dφe is com-
putable. Hence the image dT e′ ⊆ N is decidable.
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Algorithm 1: Transition function from d·e0 to d·e1
1 Function Trans(n) : N→ N is
2 if n = dte0 for some L-term t then
3 if n = dfi(t1, . . . , tk)e0 for some L-formula fi(t1, . . . , tk) then
4 compute (i, dt1e0, . . . , dtke0)← n
5 compute dtje1 ← Trans(dtje0) for all j
6 return dfi(t1, . . . , tk)e1 ← (i, dt1e1, . . . , dtke1)

7 else if n = dvie0 for some variable vi then
8 compute i← n
9 return dvie1 ← i

10 else if n = dφe0 for some L-formula φ then
11 if n = dψ0 ∨ ψ1e0 for some φi then
12 compute dψie0 ← n and dψie1 ← Trans(dψie0)
13 return dψ0 ∨ ψ1e1 ← (dψ0e1, dψ1e1)

14 else if n = d∃viψe0 for some L-formula ψ and variable vi then
15 compute dvie0 ← n and dvie1 ← Trans(dvie0)
16 compute dψe0 ← n and dψe1 ← Trans(dψe0)
17 return d∃viψe1 ← (dvie1, dψe1)

18 else if n = d¬ψe0 for some L-formula ψ then
19 compute dψe0 ← n and dψe1 ← Trans(dψe0)
20 return d¬ψe1 ← dψe1
21 else if n = dRi(t1, . . . , tk)e0 for some L-formula Ri(t1, . . . , tk) then
22 compute (i, dt1e0, . . . , dtke0)← n
23 compute dtje1 ← Trans(dtje0) for all j
24 return dRi(t1, . . . , tk)e1 ← (i, dt1e1, . . . , dtke1)

25 else
26 return 0

Definition 3.6.9 (Axiomatizable). A theory T in a language L is called axiomati-
zable if and only if there exists a decidable subtheory A ⊆ T with A |= T . 4

Clearly the assumption that A is decidable makes this definition non-trivial.
Otherwise A = T would work.

If M is a model of a theory T in a language L, then every L-sentence φ is either
true or false in M . This means that either Th(M) |= φ or Th(M) |= ¬φ, since φ or
¬φ is in Th(M). This need not be true for T ⊆ Th(M), since there may exists an
L-sentence with M |= φ and N |= ¬φ for some models M and N of T .

Definition 3.6.10 (Completeness). A theory T in a language L is called complete
if and only if either T |= φ or T |= ¬φ. 4

Theorem 3.6.11. If T is axiomatizable and complete, then T is decidable.

Proof. Our aim is to find an algorithm which decides whether T |= φ is true or not.
Since T is complete, this reduces to deciding whether T |= φ or T |= ¬φ holds.
Using the completeness theorem, we see that we have to find an algorithm which
decides whether T ` φ or T ` ¬φ is true. We will construct an algorithm which
simultaneously seeks a proof for both φ and ¬φ. This algorithm will terminate after
finitely many steps, because either φ or ¬φ has a proof.

A first step in constructing this algorithm is to encode proof trees, so that finding
a proof reduces to finding a natural number which corresponds to that proof. We
will define the code dT e ∈ N of a proof tree T by induction on proof trees. This code
will determine the code of its conclusion, the code of the sequence of all unmarked
assumptions and the codes of the proof trees from which it is constructed. To be
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precise, we define

dass(φ)e := 〈1, dφe〉
d(T0, T1)ψ0∨ψ1

e := 〈2, dψ0 ∨ ψ1e, a0 ∗ a1, dT0e, dT1e〉
d(Tψ0

0 , Tψ1

1 , T2)χe := 〈3, dχe, (a0 \ dψ0e) ∗ (a1 \ dψ1e) ∗ a2, dT0e, dT1e, dT2e〉
d(Tψ0 )¬ψe := 〈4, d¬ψe, a0 \ dψe, dT e〉
d(T0, T1)⊥e := 〈5, d⊥e, a0 ∗ a1, dT0e, dT1e〉
d(T¬ψ0 )ψe := 〈6, dψe, a0 \ d¬ψe, dT e〉
d(T0)∃viψe := 〈7, d∃viψe, a0, dT e〉

d(T0, T
φ[vj/vi]
1 )χe := 〈8, dχe, a0 ∗ (a1 \ dφ[vj/vi]e), dT0e, dT1e〉

d(T0, T1)φ[s/vi]e := 〈9, dφ[s/vi]e, a0 ∗ a1, dT0e, dT1e〉

where ai is the second entry of sequence encoded by dT1e. Here \ is defined as
follows: if a and b are the codes of sequences (ai) and (bj), then a \ b is the code
of the sequence (ai), where ai is left out whenever ai ∈ (bj). This is a computable
function.

We will now sketch an algorithm which determines whether n is the code of a
proof tree. Let n ∈ N be given. Compute the first entry n0 of the sequence encoded
by n. Then check if the rest of the sequence is consistent with this first entry. That
is, we check if n1 is the code of a formula and if n3, n4 and n5 (if applicable) are the
codes of proof trees. Note that this is a recursive algorithm. We come back to this
later. Then we check whether the conclusion n1 is correct in view of the conclusion
and unmarked assumptions of the subtrees. Note that is most cases we just need to
compute the conclusion of the subtrees. However, if n0 = 8, then we need to check

that vj does not occur in φ, χ and the unmarked assumptions of T
φ[vj/vi]
1 . This is

why we need to be able to compute the unmarked assumptions from a proof tree
without recursion.

There is also a recursive algorithm A which decides whether x ∈ N is the code
of a proof three with unmarked assumptions in a decidable decidable subset A ⊆ N
and with conclusion equal to y ∈ N.

Using A we construct an algorithm B which, given the code dφe of an L-formula
φ and the set of codes dAe ⊆ N of an axiomatization A of a complete theory T ,
determines whether T |= φ. For all n ∈ N, B checks, using A whether n ∈ N is the
code of a proof three with unmarked assumptions in a decidable decidable subset
A ⊆ N and with conclusion equal to dφe ∈ N or d¬φe. Then using the remarks
at the beginning of the proof, B decides whether T |= φ. This shows that T is
decidable.

3.7. Reformulating the goal

In the preceding sections we have introduced the very basic notions of formal logic.
In this section we will prepare for the final three chapters by formulating the three
questions from the introduction into our developed mathematical language.

We first clarify what the objects and the statements from the introduction are.
The set of objects is a family of isomorphism classes of Lring-structures. The state-
ments about these objects are Lring-formulas.

Before we reformulate the questions, we first introduce some notation. Let E be
a family of isomorphism classes Lring-structures (e.g., E consists of all algebraically
closed fields) and let e be an isomorphism class in E. Then Theorem 3.2.10 shows
that for all fields K and L in e we have that Th(K) = Th(L). Hence we may just
write Th(e) instead of Th(K) or Th(L).

Now we will reformulate the first question. This question ask if it is decidable
whether a given statement is true for a given object. In other words it asks:

Question 1. Is Th(e) decidable, for all e ∈ E?

In order to reformulate the second question, we will need a good definition of
what is meant by a distinguished class.
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Definition 3.7.1 (Definable subset of E). A subset S ⊆ E is called definable if
and only if there exists an Lring-sentence φ such that for all e ∈ E

e ∈ S if and only if φ ∈ Th(e).

An isomorphism class e ∈ E is definable if and only if the subset {e} ⊆ E is
definable. 4

Now the second question may be reformulated as follows.

Question 2. What are the definable subsets of E?

The third question asks if it is true that objects with the same properties are
equal. Thus, in terms of isomorphism classes of Lring-structures and Lring-formulas,
this question asks:

Question 3. Is e = f whenever Th(e) = Th(f), for all e, f ∈ E?

If this question has a positive answer, then the terms ‘isomorphic’ and ‘elemen-
tary equivalent’ are interchangeable.

If every isomorphism class is definable, then Question 3 has a positive answer.
Indeed if Th(e) = Th(f), then f satisfies the defining formula of e, hence e = f .

3.8. Representability

In the remaining sections of this chapter we will make preparations for chapter 4.
There we will show that the theory of a global field is not decidable. The proof of
this fact can be divided into two steps. We first show that the theory of natural
number in the language of arithmetic is not decidable by proving that it is not
definable. Then we show how to interpret the theory of natural numbers in the
theory of a global field and prove that de undecidability is preserved under this
interpretation.

In this section we will introduce the notion of definability and representability.
The former is used in the next section and the latter is used in the last section.

Definition 3.8.1 (Representable functions). Let M be an L-structure. A partial
k-ary function F : Mk → M , k ≥ 0, is called L-representable if and only if there
exists an L-formula φ(y, ~x) such that for all m ∈M and ~n ∈ dom(F ) we have

M |= φ(m,~n) if and only if m = F (~n).

In this case we say that φ(y, ~x) represents F . 4

If L is understood, then we may write just representable. Notice that the prop-
erty of representability translates to relations by means of the characteristic func-
tion.

Definition 3.8.2 (Representable relations). Let M be an L-structure, k ≥ 0 an
integer and R a k-ary relation in L. Then R is called L-representable if and only if
the characteristic function χR : Mk → {0, 1} is L-representable. 4

If R is nullary, then A = RM is just a subset of M . We call a subset A an
L-definable if and only if A is L-representable as a relation. Suppose that the
characteristic function χA of A ⊆ M is L-representable. Then we find a formula
φ(y, x) which represents χA. Now we have that

A = {x ∈M |M |= χA(1, x)},

which explains why A is called L-definable.
We will now study the intersection of two L-definable sets.

Lemma 3.8.3. Let M be an L-structure and A and B be L-definable sets in M .
Then A ∩B is an L-definable subset of M .

Proof. Let φ(x) and ψ(x) be the defining formulas for A and B respectively. Then
φ(x) ∧ ψ(x) is the defining formula for the intersection.
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It turns out that some L-definable subsets are related, that is, they are a member
of the same family.

Definition 3.8.4 (Definable families). Let M be an L-structure. An L-definable
family in M is a collection F of subsets parametrized by an L-formula φ(x; ~y) with
n parameters satisfying ψ(~y), that is,

F = {A~c | ~c ∈Mn,M |= ψ(~c)}, with A~c = {m ∈M |M |= φ(m;~c)}. 4

Note that members of a L-definable family in M are in fact LM -definable

Lemma 3.8.5. Let M be an L-structure and F a L-definable family in M . Then⋂
S∈F S is a L-definable set.

Proof. Let φ(x, ~y) be the formula which parametrizes F and let ψ(~y) determine the
parameters. Then it is clear that ∀~y(ψ(~y) ∧ φ(x, ~y)) defines the intersection.

3.9. Theory of natural numbers

In this section we will show that the set of Gödel numbers dTh(N)e ⊆ N of the
theory of natural numbers in the language of arithmetic is not Larith-definable.
This will imply that the theory of natural numbers is not decidable. Furthermore
we will show that some specific arithmetic function are representable in Lring.

Gödels bèta function. In this paragraph we will show that certain arithmetic
functions are representable. Gödel realized that there is a strong connection be-
tween computable arithmetic maps and Larith-representable arithmetic maps. This
connection simplifies our task, when we need to show that a function is Larith-
representable.

Theorem 3.9.1 (Gödel). If a partial arithmetic function f is computable then f
is Larith-representable.

Proof. See Theorem 16.16 and the remark below it on page 212 in [2].

A direct consequence of Theorem 3.9.1 is the following:

Corollary 3.9.2. If a subset A ⊆ N is decidable then A is Larith-definable.

We start with the definition of one of the most useful arithmetic function: the
bèta function. This function encodes all finite sequences.

Theorem 3.9.3. There exists an Larith-representable function β : N3 → N such
that for all n ∈ N and k1, . . . , kn ∈ N there exists ~x ∈ N2 with β(~x, 0) = n and
β(~x, i) = ki for all 1 ≤ i ≤ n.

Proof. Take β(m, k, i) = rem(k,mi+1). Then β is computable (see Example 3.4.3),
hence Larith-representable. We now show that β satisfies the condition. Let n ∈ N
and k1, . . . , kn ∈ N. Choose m = (max{n, k1, . . . , kn})! and choose with the Chinese
remainder theorem k ∈ N with k ≡ ki modulo mi + 1 for all 1 ≤ i ≤ n. This is
possible, because mi+ 1 and mj+ 1 are coprime for 1 ≤ i < j ≤ n. Indeed, let p be
a common prime divisor. Then p | (mj+ 1)− (mi+ 1), hence p | m(j− i) and p | m
or p | j − i as p is prime. Now since j − i < n, we have that j − i | m. Therefore
we find that p | m in both cases and since p | mi+ 1 we conclude that p | 1. Thus
mi+ 1 and mj + 1 are coprime.

The Gödel bèta function can be used to make inductive definitions, like finite
sums, finite products or powers.

Corollary 3.9.4. There exists an Larith-formula φ(y, x, i) such that φ represents
the function (x, i) 7→ xi.

Proof. Consider the Larith-formula

φ(y, x, i) := ∃~a(β(~a, 1) = 1 ∧ β(~a, i+ 1) = y

∧ ∀k(1 < k ≤ i+ 1→ β(~a, k) = x · β(~a, k − 1)))

It is clear that φ represents (x, i) 7→ xi.
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We are now able to represent the order at a prime.

Corollary 3.9.5. There exists an Larith-formula φ(n, x; p) such that φ represents
the function ordp : N→ N.

Proof. Using Corollary 3.9.4, we may consider the Larith-formula

φ(y, x; p) := pn | x ∧ pn+1 - x.

It is clear that φ represents ordp.

Undefinability of natural numbers. In this paragraph we will establish a result
which shows that the theory of the natural numbers has self reference. This is done
via Gödel numbering.

Lemma 3.9.6 (Diagonal lemma). Let d·e be a Gödel numbering of the language
Larith of arithmetic. For every Larith-formula φ(x) with one free variable x there
exists an Larith-sentence ψ such that

N |= ψ ↔ φ(dψe)

Proof. Let ∆ : N → N be the partial mapping defined by dθe 7→ dθ(dθe)e for all
Larith-formulas θ(x) with at most one free variable x. This mapping is well-defined
and computable by Definition 3.5.2 and is called the diagonalization mapping. In
fact, this map corresponds under the Gödel numbering by the substitution θ 7→
θ[dθe/x]. By Theorem 3.9.1 we conclude that ∆ is Larith-definable: there exists an
Larith-formula δ(z, y) such that

N |= ∀y(δ(dθe, y)↔ y = dθ(dθe)e)

Let β(z) be the formula defined by β(z) := ∀y(δ(z, y)→ φ(y)). Then by substitution
of dβe we have

N |= β(dβe)↔ ∀y(δ(dβe, y)→ φ(y)).

Using the definition of δ gives

N |= β(dβe)↔ ∀y(y = dβ(dβe)e → φ(y))

Hence we conclude by substitution of y = dβ(dβe)e that

N |= β(dβe)↔ φ(dβ(dβe)e)

Now the conclusion follows for ψ := β(dβe)

We now turn our attention to Tarski’s undefinability theorem:

Theorem 3.9.7 (Tarski’s undefinability theorem). Let d·e be a Gödel numbering
of the language Larith of arithmetic. Then set dTh(N)e ⊆ N of all Gödel numbers
of true Larith-sentences is not Larith-definable.

Proof. Suppose that dTh(N)e is definable by an Larith-formula True(x), i.e., we
have N |= True(x) if and only if x ∈ dTh(N)e. By the diagonal lemma there exists a
formula ψ such that N |= ψ ↔ ¬True(dψe). Now we have that N |= ψ if and only if
N |= ¬True(dψe). Hence by the completeness of Th(N) we find N |= ψ if and only if
N 6|= True(dψe). By the definition of True we conclude N |= ψ if and only if N 6|= ψ,
which gives a contradiction. Therefore dTh(N)e is not Larith-definable.

Corollary 3.9.8. The Larith-theory Th(N) is not decidable.

Proof. If we apply the theorem of Tarski to Corollary 3.9.2, the set dTh(N)e ⊆ N
of all Gödel numbers of true Larith-sentences is not decidable.

3.10. Interpretations

In this section we investigate the second step of in proving that the theory of a
global fields is undecidable by showing how one interprets the theory of the natural
numbers in this theory. We will study two types of interpretations: interpretations
of theories and interpretations of models.
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Interpretations of theories. The most natural way to interpret a given theory
in another one is as follows:

Definition 3.10.1 (Interpretation of theories). Let L1 and L2 be languages. Let
T1 be an L1-theory and T2 an L2-theory. An interpretation λ of T1 in T2 (notation:
λ : T1  T2) is a map λ : F0

L1
→ F0

L2
such that for all L1-sentences φ

φ ∈ T1 if and only if λ(φ) ∈ T2

We say that T1 is interpretable in T2 if there exists an interpretation λ : T1  T2. 4

Let us now examine whether decidability is preserved under interpretations.

Proposition 3.10.2. Let L1 and L2 be languages which admit a Gödel numbering
d·e1 and d·e2 respectively. Let Ti be an Li-theory for i = 1, 2. Let λ : T1  T2 be
an interpretation such that the partial map dφe1 7→ dλφe2 is computable. If T2 is
decidable then T1 is decidable.

Proof. Assume that dT2e2 ⊆ N is decidable. Hence, the characteristic function
χ2 : N → {0, 1} with χ2(x) = 1 if and only if x ∈ dT2e2 is then a computable
function. If we compose χ2 with the computable partial map dφe1 7→ dλφe2, we
conclude that the characteristic function of dT1e1 ⊆ N is computable, which shows
that T1 is decidable.

If we apply Proposition 3.10.2 to Corollary 3.9.8 we find:

Corollary 3.10.3. Let Th(N) be the theory of N in language of arithmetic and T be
an L-theory. If there exists an interpretation λ : Th(N)→ T , then T is undecidable.

Interpretations of models. The definition of an interpretation is a rather ab-
stract: it just uses the syntax. We will now give a connection to models. We place
ourselves in the following setting: consider that we are given an L1-structure M1

and an L2-structure M2. We will investigate which connection between M1 and
M2 is sufficient for the existence of an interpretation of Th(M1) in Th(M2). It
turn out that is suffices to assume the existence of an injective map f : M1 → M2

such that the image f(M1) is an L2-definable and the push forwards along f of the
interpretations of the function and relation symbols of L1 are L2-representable on
f(M1).

Let us first make precise what is meant by a push forward of a function.

Definition 3.10.4 (Push forward of functions). Let f : M1 → M2 be an injective
map of an L1-structure M1 to an L2-structure M2 and let F be a k-ary function
symbol of L1. Then the push forward of FM1 along f is the partial function

f∗F
M1 : f(M1) −→ f(M1), ~x 7→ f(FM1(f−1~x)). 4

We can define the same for relations:

Definition 3.10.5 (Push forward of relations). Let f : M1 → M2 be an injective
map of an L1-structure M1 to an L2-structure M2 and let R be a k-ary relation
symbol of L1. Then the push forward of RM1 along f is the partial relation

f∗R
M1 := f(RM1) ⊆ f(M1)k. 4

Notice that the push forward is well-defined as f is injective. Furthermore the
function F f(M1) is clearly an interpretation of F on the image f(M1).

Definition 3.10.6 (Interpretation of models). Given an L1-structure M1 and an
L2-structure M2. An interpretation f of M1 in M2 is an injective map f : M1 →M2

such that for all function symbols F and relation symbols R in L1:

1) the image f(M1) is L2-definable in M2;

2) the push forward f∗F
M1 is L2-representable on f(M1);

3) the push forward f∗R
M1 is L2-representable on f(M1).
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We say that M1 is interpretable in M2 if and only if there exists an interpretation
f : M1 →M2. 4

A map µ : FL1 → FL2 is called graded if and only if µFnL1
⊆ FnL2

, for all
n ∈ N. Now the following theorem shows that an interpretation of models induces
an interpretation of theories.

Theorem 3.10.7. Let L1 and L2 be languages. Let f : M1 →M2 be an interpreta-
tion of an L1-structure M1 in an L2-structure M2. Then there exists a graded map
µ : FL1

→ FL2
such that for all n ∈ N and for all φ ∈ FnL1

and all ~m ∈Mn
1

M1 |= φ(~m) if and only if M2 |= (µφ)(f ~m)

Moreover there exists an interpretation λ : Th(M1) Th(M2).

Proof. We construct by induction on the formulas a graded map µ : FL1 → FL2 .
As a preliminary result, we show that the L1-terms are L2-definable. To be more
precise, we construct for all L1-terms t(x1, . . . , x`) an L2-formula χt(x0, ~x) with the
following condition: for all m0 ∈M1 and ~m ∈M `

1 we have

m0 = t(~m) if and only if M2 |= χt(fm0, f ~m). (3.1)

Here (fm0, f ~m) is shorthand for (f(m0), f(m1), . . . , f(m`)). We now construct the
L2-formula χt(y, ~x) is constructed by induction on the number of function symbols
occurring in t(~x). Let t(~x) be a L1-term and N the number of function symbols
occurring in t.

(N = 0): Suppose t(~x) does not contain a function symbol. Then t(~x) is a
variable xi for some i. Now define χt(y, ~x) by y = xi. It is clear that χt satisfies
(3.1).

(N =⇒ N + 1): Suppose t(~x) contains N + 1 function symbols and assume
that χt(y, ~x) is constructed whenever t(~x) contains at most N function symbols.
Since N + 1 6= 0, we find using Definition 3.1.5 that t(~x) equals F (t1, . . . , tk) where
k ≥ 0, F is a k-ary function symbol of L1 and ti(~x) us ab L1-term for all i. By the
hypotheses χti(yi, ~x) is defined for all i, since ti(~x) has at most N function symbols
occurring in it. Hence we may define

χt(y, ~x) := ∃~y

(
φF (y, ~y) ∧

k∧
i=1

χ(yi) ∧ χti(yi, ~x)

)
,

where χ(x) is a L2-formula that defines the inclusion f(M1) ⊂ M2 and φF (y, ~y)
represents F f(M1): the push forward along f of the interpretation FM1 of F in M1.
Notice that for k = 0, χt(y, ~x) reduces to just φF (y) which defines the constant f(t)
in f(M1). It is clear that χt satisfies (3.1). We conclude that for all L1-terms t(~x)
there exists an L2-formula χt(y, ~x) such that (3.1) holds.

Now we are ready to define µ. Let φ be an L1-formula and N denote the number
of occurrences of ∃, ¬ and ∨.

(N = 0): Suppose φ does not contain ∃, ¬ and ∨. Then φ equals R(t1, . . . , tk),
k ≥ 0, where t1, . . . , tk are L-terms and R is a k-ary relation symbol of L. Define
λφ to be the L2-formula

χt(y, ~x) := ∃~y

(
φR(~y) ∧

k∧
i=1

χ(yi) ∧ χti(yi, ~x)

)
,

where φR(~y) represents the k-ary relation symbol R of L1.
(N =⇒ N + 1): Suppose φ contains N + 1 occurrences of ∃, ¬ and ∨. Since

N + 1 6= 0, we find using Definition 3.1.7 that φ equals either ψ0 ∨ ψ1, ¬ψ or ∃xψ
for some L1-formulas ψ,ψ0 and ψ1. We define µφ to be µ(ψ0) ∨ µ(ψ1), ¬µ(ψ) and
∃x(χ(x) ∧ µ(ψ)) respectively, where χ defines the image of f .

We now constructed µ by induction on the formulas. It is clear that µ satisfies
the conditions in the theorem.

If we restrict the graded map µ to a map λ : F0
L1
→ F0

L2
, we find an interpreta-

tion of Th(M1) Th(M2).
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If we apply Theorem 3.10.7 to the theory Th(N) we find, using Corollary 3.9.8,
that:

Corollary 3.10.8. Let N be the structure of the natural numbers in language of
arithmetic and K be a ring. If there exists an interpretation f : N → K then the
theory Th(K) in the language of rings is undecidable.



Chapter 4

Algebraically Closed Fields

A field K is called algebraically closed precisely whenever every algebraic extension
L/K is trivial. In this chapter we will study the family of countable algebraically
closed fields Ecacf in order to answer the three questions from the introduction,
which were reformulated in section 3.7. We restrict ourselves to algebraically closed
fields which are countable, since then Ecacf is a set and the transcendence degree
over the prime subfield is at most countably infinite. This will be used to completely
describe the family Ecacf .

It turns out that the questions about Ecacf are rather easy, when one knows that
the theory of an algebraically closed field admits quantifier elimination. This will
be shown in the first section. In the second section, we will then answer the three
questions from the introduction.

4.1. Quantifier elimination

An important tool in the study of algebraically closed fields is quantifier elimination.
In view of Definition 3.2.13 we define the following:

Definition 4.1.1 (Quantifier elimination). A theory T in a language L admits
quantifier elimination if and only if every L-formula is T -equivalent to a quantifier-
free L-formula. 4

Example 4.1.2. Consider the Lring-formula

φ(~x) := ∃~y(x1y1 + x2y3 = 1∧ x1y2 + x2y4 = 0∧ x3y1 + x4y3 = 0∧ x3y2 + x4y4 = 1)

Then φ(~x) asserts that the matrix ( x1 x2
x3 x4

) is invertible. Hence the determinant test
shows that φ is Tfield-equivalent to a quantifier-free formula

Tfield |= ∀~x(φ↔ x1x4 − x2x3 6= 0). ♦

To prove that a theory admits quantifier elimination we have to show something
about a general L-formula. Recall that an L-formula λ is a literal if and only if
λ = α or λ = ¬α, where α is an atomic L-formula. The next theorem reduces the
complexity of formulas we have to check.

Theorem 4.1.3. Let L be a language, T an L-theory. Then the following are
equivalent:

1) T admits quantifier elimination.

2) ∃x(
∧n
i=1 λi) is T -equivalent to a quantifier-free L-formula, for all integers

n ≥ 1 and all L-literals λi.

Proof. 1)⇒ 2). Trivial.
2) ⇒ 1). We show that T admits quantifier elimination with induction on

formulas. Let φ be an L-formula. If φ equals R(t1, . . . , tk), ψ0 ∨ ψ1 or ¬ψ, then
φ is quantifier-free by the induction hypothesis. If φ equals ∃xψ, then using the
induction hypothesis we find a quantifier-free L-formula θ which is T -equivalent to
ψ. Using the disjunctive normal form (Theorem 3.2.14) we find L-literals λij such
that

∨m
j=1

∧n
i=1 λij is equivalent to θ. Hence φ is equivalent to ∃x

∨m
j=1

∧n
i=1 λij

79
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or equivalently
∨m
j=1 ∃x

∧n
i=1 λij . Using the assumption we see that ∃x

∧n
i=1 λij

is equivalent to a quantifier free L-formula ψj , for all j. We find that φ is T -
equivalent to

∨m
j=1 ψj , which is quantifier-free. We conclude that every L-formula

φ is T -equivalent to a quantifier-free L-formula.

Although we simplified the complexity of the formula which we want to free from
quantifiers, this is still not at all easy to accomplish. However the following theorem
will give an equivalent condition for a formula to be T -equivalent to a quantifier-free
formula. Before we continue to that theorem, let us prove a clever standard trick
to get rid of the universal quantifier in the definition of quantifier elimination.

Lemma 4.1.4. Let T be a theory in a language L, let φ be an L-formula with free
variables x1, . . . , xk, for some k ≥ 0, and let c1, . . . , ck be constant symbols of L. If
no ci occurs in T or φ, then

T |= ∀~xφ(~x) if and only if T |= φ(~c).

Proof. If T |= ∀~xφ(~x) then trivially T |= φ(~c). On the other hand, suppose that
T |= φ(~c). Define L′ to be the language L without the ci. We will show that
T |= ∀~xφ(~x). In other words, we show that for every L-structure M with M |= T
we have M |= ∀~xφ(~x). Notice that, since no ci occurs in T or φ, it suffices to show
that for every L′-structure N with N |= T we have N |= ∀~xφ(~x). Hence let N
be an L′-structure and ~n ∈ Nk. Then expand N to an L-structure M by defining
cMi = ni for 1 ≤ i ≤ k. Then we still have that M |= T and from the assumption
T |= φ(~c) we see that M |= φ(~n). Hence we conclude that T |= ∀~xφ(~x), which
proves the lemma.

The following theorem gives a model-theoretic interpretation of being equivalent
to a quantifier-free formula.

Theorem 4.1.5. Let T a theory in a language L and φ an L-formula with free
variables x1, . . . , xk, for some k ≥ 0. Then the following are equivalent:

1) φ is T -equivalent to a quantifier-free L-formula.

2) If M and N are models of T and A is an L-structure contained in M ∩ N
then for all ~a ∈ Ak we have that M |= φ(~a) whenever N |= φ(~a).

Proof. 1) ⇒ 2). Let M and N be models of T and A an L-structure contained
in M ∩ N . Suppose that there exists a quantifier-free L-formula ψ(~x) which is T -
equivalent to φ. Then M,N |= φ(~a) if and only if M,N |= ψ(~a) for all ~a ∈ An.
Applying Theorem 3.2.10 to the inclusions A → M and A → N , we find that
M,N |= ψ(~a) if and only if A |= ψ(~a), which proves the second statement.

2) ⇒ 1). Suppose that for every model M and N of T and every L-structure
A ⊆ M ∩ N we have M |= φ(~a) if and only if N |= φ(~a) for all ~a ∈ Ak. Let
c1, . . . , ck be constant symbols which do not occur in L, and consider the language
Lc = L ∪ {c1, . . . , ck}. We will show that there is a quantifier-free L-formula ψ(~x)
such that T |= ∀~x(φ ↔ ψ), i.e., for all L-structures M with M |= T we have
M |= ∀~x(φ↔ ψ).

Notice that the map ψ(~x) → ψ(~c) from the set of quantifier-free L-formulas
with free variables among x1, . . . , xk to the set of quantifier-free Lc-formulas is a
bijection, because it is invertible. Using this and Lemma 4.1.4 it suffices to show
that there is a quantifier-free Lc-sentence ψ such that for all Lc-structures M with
M |= T we have M |= φ(~c)↔ ψ. In other words, it suffices to show that there is a
quantifier-free Lc-sentence ψ such that T |= φ(~c)↔ ψ.

Now let Γ be the set of all quantifier-free Lc-formulas ψ with T |= φ(~c) → ψ.
Thus Γ is the set of all quantifier-free consequences of φ(~c). We claim that T ∪Γ |=
φ(~c). The compactness theorem then shows that there are ψ1, . . . , ψn ∈ Γ with
T |=

∧n
i=1 ψi → φ(~c), and by construction of Γ we also have T |= φ(~c) →

∧n
i=1 ψi.

Thus ψ :=
∧n
i=1 ψi is a quantifier-free Lc-sentence such that T |= φ(~c) ↔ ψ. We

conclude that φ is T -equivalent to the quantifier-free L-formula corresponding with
the Lc-sentence ψ.
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It remains to prove the claim: T ∪ Γ |= φ(~c). Suppose that the claim is false.
Let M be an Lc-structure such that M |= T ∪ Γ ∪ {¬φ(~c)}. Let A be the prime
Lc-substructure of M : A := {tM | t is an Lc-term}.

Let n ≥ 0 and let θ1, . . . , θn ∈ diag(A) be be arbitrary. Then the construction

of A shows that each LA-sentence θi is equivalent to an Lc-sentence θ̂i. If T ∪
{θ̂1, . . . , θ̂n} ∪ {φ(~c)} is inconsistent, then T |= φ(~c)→ ¬

∧n
i=1 θ̂i. Thus ¬

∧n
i=1 θ̂i is

an element of Γ, which implies that M |= ¬
∧n
i=1 θ̂i. But this contradicts the fact

that M |= θ̂i for all i, because θi ∈ diag(A) and A ⊆M . The compactness theorem
shows that there exists an Lc-structure with N |= T ∪ diag(A) ∪ {φ(~c)}.

Now M , N and A violate the assumption, since M |= ¬φ(~a) and N |= φ(~a) for
~a := ~cM = ~cN ∈ Ak. This contradiction proves the claim.

4.2. Richness of algebraically closed fields

In this section we will provide an answer to the questions from section 3.7 for E
equal to the set of isomorphism classes of countable algebraically closed fields Ecacf .

We start with the definition of an algebraically closed field:

Definition 4.2.1 (Algebraically closed fields). A field K is called algebraically
closed if and only if every algebraic extension L/K is trivial. 4

Now let Ecacf denote the set of isomorphism classes of countable algebraically
closed fields.

The following theorem provides a classification of the isomorphism classes in
Ecacf .

Theorem 4.2.2. Let K and L be countable algebraically closed fields. Then K and
L are isomorphic if and only if char(K) = char(L) and trdeg(K) = trdeg(L).

Proof. If K and L are isomorphic then clearly char(K) = char(L) and trdeg(K) =
trdeg(L). Suppose that char(K) = char(L) and trdeg(K) = t = trdeg(L) and
let K0 and L0 be the prime subfield of K and L respectively. Then K0 and L0

are isomorphic, because char(K) = char(L). Hence we find an isomorphism f0 :
K0 → L0. Let X = {xi | 0 ≤ i < t} and Y = {yi | 0 ≤ i < t} be trancendence
bases of K/K0 and L/L0 (note that t may be infinite). Define K1 = K0(X) and
L1 = L0(Y ). Clearly f0 can be extended to an isomorphism f1 : K1 → L1, by
declaring f1(xi) = yi, for all 0 ≤ i < t. We will now construct the following
diagram

K0 K1 K2 K

L0 L1 L2 L

f0 f1 f2 f

where the horizontal maps are inclusions and all vertical maps are isomorphisms.
Let k2, k3, . . . be an enumeration of K, which is possible since K is countable.

Define Kn = Kn−1(kn) for all integers n ≥ 2. Furthermore define Ln = Ln−1(ln)
for all integers n ≥ 2, where ln is chosen as follows: Notice that kn is algebraic over
Kn−1, since X ∪ {kn} is algebraically dependent. Let

∑d
i=1 aiT

i be the minimal
polynomial of kn over Kn−1. Then choose ln to be a root in K of the polynomial∑d
i=1 fn−1(ai)T

i, which is irreducible over Kn−1, since fn−1 : Kn−1 → Ln−1 is an
isomorphism. Note that this is possible, since L is algebraically closed.

Now define fn(kn) = ln. Notice that fn : Kn−1(kn) → Ln is completely deter-
mined by the value of fn(kn). Indeed 1, kn, . . . , k

d−1
n is a basis of Kn over Kn−1,

where d is the degree of the minimal polynomial of kn.
We inductively defined fn for all n ∈ N. Now, let f be the union of all fn

(formally, f is the union of all graphs fn ⊆ K × L). Then f is an injective ring
homomorphism from K to L, since all fn are injective ring homomorphisms. Fur-
thermore note that f(K) is algebraically closed, since K is algebraically closed and
f is injective. Hence L/f(K) is either trivial, or transcendental. Now L/f(K) is
not transcendental, since this implies an extension of the trancendence basis Y of
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L/L0. Hence L/f(K) is trivial, which means that f is surjective and hence an
isomorphism.

We conclude that K and L are isomorphic.

Decidability of Th(K). We will now provide an answer to the first question from
in introduction: is Th(K) decidable, where K is an algebraically closed field. We
will apply Theorem 3.6.11 to find an answer.

First notice that Th(K) is complete, for every Lring-structure K. Hence it
suffices to find an axiomatization A of Th(K) for every algebraically closed field
K. Recall that A ⊆ Th(K) is called an axiomatization if and only if A is decidable
and A |= Th(K). The difficult task is to prove that A |= Th(K). In other words:
A |= φ for all φ ∈ Th(K).

Notice that for all n ≥ 2 we have that φn ∈ Th(K), where

φn := ∀a0 · · · ∀an((an 6= 0 ∨ · · · ∨ a1 6= 0 ∨ a0 = 0)↔ ∃x(anx
n + · · ·+ a0 = 0)).

Furthermore we have either p = 0 ∈ Th(K) or p 6= 0 ∈ Th(K), for all primes p. It
turns out that these Lring-sentences completely determine Th(K).

Let Tacf be the theory of algebraically closed fields is the theory of rings Tfield

together with the axiom φn for all integers n ≥ 2. It is easy (but tedious) to prove
that Tacf is decidable. Using the Theorems from the previous section, we are able
to show that Tacf admits quantifier elimination.

Theorem 4.2.3. The Lring-theory Tacf admits quantifier elimination.

Proof. With induction on formulas, one can show that every atomic Lring-formula
free variables among x1, . . . , xk is Tring-equivalent to an atomic Lring-formula of the
form ∑

ci1,...,ikx
i1
1 · · ·x

ik
k = 0

with ci1,...,ik := ±(1+ · · ·+1) and x
ij
j := xj · · ·xj . Hence every Lring-literal is Tring-

equivalent to an Lring-literal of the form P = 0 or P 6= 0 for some P ∈ Z[x1, . . . , xk].
Now notice that

∧n
i=1 Pi 6= 0 is Tfield-equivalent to P1 · · ·Pn 6= 0. Hence, Theorem

4.1.3 shows that it suffices to show that

φ := ∃x(P0 6= 0 ∧ P1 = 0 ∧ · · · ∧ Pn = 0)

is Tacf -equivalent to a quantifier free Lring-formula, where each Pi has free variables
among x1, . . . , xk. Without loss of generality we may assume that x1 = x.

We will apply Theorem 4.1.5. Let K and L be algebraically closed fields, let R
be a subring of K ∩ L, let ~a ∈ Rk and suppose that L |= φ(~a).

If n = 0, then φ says that P0(~a, x) ∈ R[X] is not identically zero. Thus not all
coefficients of P0(~a, x) are zero in R. Hence P0(~a, x) has only finitely many zeros in
K ⊇ R, Since K is infinite (no finite field is algebraically closed) we conclude that
K |= ∃xP0(~a, x).

If n > 0, then there exists an b ∈ L with L |= P0(~a, b) 6= 0 and L |= Pi(~a, b) = 0
for all 0 < i ≤ n. Then b is algebraic over R and since the algebraic closure embeds
into K, we find some c ∈ K with K |= P0(~a, c) 6= 0 and K |= Pi(~a, c) = 0 for all
0 < i ≤ n.

Now Theorem 4.1.5 applies and we conclude that Tacf admits quantifier elimi-
nation.

Let us expand Tacf a little more. For each p ∈ N, which is either prime or zero,
define the theory

T pacf :=

{
Tacf ∪ {p = 0} if p > 0

Tacf ∪ {q 6= 0 | q prime} if p = 0

It is easy (but tedious) to prove that T pacf is decidable. Moreover, T pacf is a complete
theory.

Corollary 4.2.4. Let φ be an Lring-sentence and let p ≥ 0 be either zero or prime.
Then φ is Tacf-equivalent to an Lring-sentence of the form

∨n
i=1 ti = 0 or ¬

∨n
i=1 ti =

0, with ti = 1 + · · ·+ 1 for all i. Thus we have either T pacf |= φ or T pacf |= ¬φ.
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Proof. Let φ be an Lring-sentence. Since Tacf admits quantifier elimination, we
find a Tacf -equivalent quantifier-free Lring-formula ψ. Using the disjunctive normal
form we find λij such that φ is Tacf -equivalent to

∨
i

∧
j λij . Now notice that λij

is Lring-equivalent to either tij = 0 or tij 6= 0 for some closed Lring-term tij (i.e.,
tij = 1 + · · · + 1). Let µij(t) be either tij = t or tij 6= t, depending on λij . Then
the set Si := {t ∈ N |

∧
j µij(t)} is either finite or cofinite. Hence

S := {t ∈ N |
∨
i

∧
j µij(t)} =

⋃
i Si

is also either finite or cofinite. Hence we find closed Lring-terms t1, . . . , tn such that
S = {t ∈ N |

∨n
i=1 ti = 0} or S = {t ∈ N | ¬

∨n
i=1 ti = 0}. This shows that φ is

Tacf -equivalent to an Lring-sentence of the form
∨n
i=1 ti = 0 or ¬

∨n
i=1 ti = 0.

The second part of the corollary follows immediately.

From this corollary we know that T pacf is a complete axiomatization of Th(K).
If we apply Theorem 3.6.11, we find a positive answer to the Question 1:

Theorem 4.2.5. The theory Th(e) is decidable for every e ∈ Ecacf .

Definable subsets of Ecacf . We will now turn our attention to the description
of all definable subsets of Ecacf . The following theorem provides an answer to the
Question 2, as it completely describes the definable subsets of Ecacf .

Theorem 4.2.6. Let S ⊆ Ecacf be a subset. Then S is definable if and only if
there exists primes p1, . . . , pn in N, such that S or Ecacf − S equals {[K] ∈ Ecacf |
char(K) = pi for some i}.

Proof. Let S ⊆ Ecacf be a definable subfamily and φ be the defining formula of S.
Then by Corollary 4.2.4 we find closed Lring-terms ti such that φ is Tacf -equivalent
to
∨n
i=1 ti = 0 or ¬

∨n
i=1 ti = 0. Notice that the closed Lring-terms correspond with

the natural numbers and that the Lring-sentence m · n = 0 is Tfield-equivalent to
m = 0 ∨ n = 0. This implies that ti we may assume without loss of generality that
the ti correspond with prime numbers. This proves the theorem.

From Theorem 4.2.6 we see that Question 3 has a negative answer:

Corollary 4.2.7. There is no Lring-sentence φ such that K |= φ if and only if
char(K) = 0 for all algebraically closed fields K.

Theorem 4.2.6 also shows that the transcendence degree is not definable. More-
over, no isomorphism class in Ecacf can be defined.

Corollary 4.2.8. There is no Lring-sentence φn such that K |= φn if and only if
trdeg(K) = n for all algebraically closed fields K.

Proof. Suppose that φn exists. Let K be an algebraically closed field with K |= φn.
Consider L = K(X), i.e., L is the algebraic closure of the quotient field of the
polynomial ring over K. Then trdeg(L) = n + 1 and φn 6|= L. Moreover we have
char(L) = char(K). Hence Theorem 4.2.6 implies that φn ∈ Th(K) = Th(L), which
gives a contradiction.

If we restrict ourselves to some fixed transcendence degree, then almost all iso-
morphism classes are definable, except for characteristic zero. But it is clear that
the theory of characteristic zero is distinct from the theory of positive characteristic.
Hence isomorphism classes are determined by its theory.
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Chapter 5

Global Fields

In this chapter we will study the isomorphism classes of global fields Egf by answer-
ing the questions from section 3.7.

In order to answer Question 1, we will apply the results from the final sections
of Chapter 3 and show how to interpret the theory of natural numbers inside the
theory Th(K) of a global field K. We will follow [14] and define an interpretation
I : N→ K, which implies a negative answer to the first question.

Then we focus on the Question 2 and 3. We will show that the definable subsets
of Egf are in one-to-one correspondence with the Larith-definable subsets of N. This
will imply a positive answer to Question 3.

The structure of this chapter is as follows. From section 5.1 up to section 5.5 we
will prove that there exists an interpretation I : N → K. It is quite easy to define
such a map, but it is a bit harder to show that the image is an Larith-structure with
Lring-representable functions and relations. We will deal with this in section 5.5.
By far the hardest part is to show that the image is Lring-definable. We will prove
this by showing in section 5.1 and 5.2 that the valuation domains Op, with p finite
place, are Lring-definable. Then, using Proposition 1.9.4, we will derive in section
5.3 that the ring of integers OK is an Lring-definable subset. This will allow us
to introduce divisibility in OK , which will be used in section 5.4 to show that the
family of all finite subsets is Lring-definable. Then in section 5.5 we will see that this
implies that the image of I is definable, which proves that I is an interpretation.

Then we will turn our attention to Question 2 and 3. In section 5.6 we prove that
the Gödel function is Lring-representable, which enables us to make make inductive
definitions. We will apply this to polynomials over the prime subfield in section 5.7,
where we will give a one-to-one correspondence between N and the polynomials in
K[X]. This enables us to show in section 5.8 that the definable subsets of Egf are
in one-to-one correspondence with the Larith-definable subsets of N.

5.1. Reduction to local norms

The first goal of this section is to show that for every global field K there is a
definable family F , which consists of almost all valuation rings Op, with p an finite
place K. To be more explicit, we will define Lring-formulas φ(x; ~y) and χ(~y) with
free variables x and y1, . . . , yn, n ≥ 1, such that φ(x; ~y) defines valuation ring Op

at some finite place p whenever χ(~y) holds. Almost all valuation rings should occur
in this way.

The first step is to define an individual valuation ring Op for some finite place
p, by providing an LK-formula (the coefficients from M will eventually be replaces
by parameters). In this section we will reduce the definability of Op to finding a
first-order definition of local norms.

Let ` be some prime number. Let N `
p denote the set of all non-zero elements of

K such that ordp(x) ≡ 0 modulo `, i.e.

N `
p := {x ∈ K× | ordp(x) ≡ 0 mod `}.

The following lemma simplifies our task of defining Op:

85
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Lemma 5.1.1. Let p be a finite place of a global field K, ` ≥ 2 a prime number
and Lring the language of rings. If N `

p is defined by an Lring-formula φ(x), then Op

is defined by the Lring-formula

ψ(x) := ∃z(φ(z) ∧ 1 + πx` = z),

with π ∈ K× such that ordp(π) = 1.

Proof. Let x be an element of K. If x 6= 0 then ordp(πx`) = 1 + ` ordp(x) ≡ 1
modulo ` and ordp(πx`) =∞ whenever x = 0. Therefore ordp(1) = 0 6= ordp(πx`)
and hence by Lemma 2.5.7 we have

ordp(1 + πx`) = min{0, ordp(πx`)} = min{0, 1 + ` ordp(x)}.

We find that ordp(1 + πx`) ≡ 0 modulo ` if and only if ordp(x) ≥ 0.
Using the assumption on φ(x) and definition of ψ(x) we find that the conditions

K |= ψ(x), K |= φ(1 + πx`) and ordp(1 + πx`) ≡ 0 modulo ` are equivalent.
Therefore K |= ψ(x) if and only if ordp(x) ≥ 0, i.e., x ∈ Op.

The above lemma remains true if ` ≥ 1 is an integer, but we do not need this.
This lemma reduced the problem to finding an Lring-formula φ(x) that defines

N `
p. We will now apply the class field theory in order to define N `

p. Following

Rumely [14], we conclude from the second part of Theorem 2.11.4 that N `
p equals

the intersection of K with the local norm group at p of the cyclic Kummer extension
K(d1/`) of K, for some d and `.

Theorem 5.1.2. Let p be a finite place of a global field K. Suppose that ` 6=
char(Kp) is a prime number such that K contains the 2`-th roots of unity. Let
Ld = K(d1/`) be an extension of K and P an extension of p. Let ∆p the set of all
d ∈ K such that Ld/K is non-trivial and unramified at p. Then for all d ∈ ∆p we
have that

N `
p = K ∩NLdP/Kp

((LdP)×).

Proof. This is the second item of Theorem 2.11.4.

In view of this theorem we call N `
p the local norm group at p.

For general K such prime ` which satisfies the conditions of Theorem 5.1.2 does
not exist. However the next lemma, which will be is slightly more general then
needed, shows that we are able to reduce to this case. This generality is needed
when we turn our attention to Lring-definable families.

Lemma 5.1.3. Let L/K be a non-trivial finite separable extension of global fields
of degree m and let

FL ⊆ {OP | P finite place of L}

an Lring-definable family of valuation rings of L, parametrized by φ(x; ~y) with n
parameters satisfying χ(~y). Then

FK = {OP ∩K | OP ∈ FL}

is an Lring-definable family of valuation rings of K, parametrized by φm(x; ~y) with
m(n+ 1)− 1 parameters satisfying χm(~y).

Proof. First notice that OP ∩K = Op, with p = P ∩K, because

Op = {x ∈ K | ordp(x) ≥ 0} = {x ∈ L ∩K | ordP(x)/e(P/p) ≥ 0} = OP ∩K.

Therefore FK is a family of valuation rings of K. It remains to show that FK

is Lring-definable, whenever FL is Lring-definable. This is done via an explicit
construction of φm and χm from φ and χ. Notice that by the primitive element
theorem we have L = K(α), since L/K is a finite separable extension. The idea is
to regard L as a vector space over K with basis 1, α, . . . , αm−1. Then every element
of L may be viewed as an m-tuple of elements of K. Replace every occurrence of a
variable u in both φ and χ with (u1, . . . , um), every occurrence of 0 with (0, . . . , 0)
and every occurrence of 1 with (1, 0, . . . , 0). Then replace every substring of φ
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of the form (u1, . . . , um) + (v1, . . . , vm) with (u1 + v1, . . . , un + vm) and replace
every substring of φ of the form (u1, . . . , um)× (v1, . . . , vm) with (w1, . . . , wm), with

wi =
∑i
k=0 ukvi−k. Finally replace every substring of φ of the form (u1, . . . , um) =

(v1, . . . , vm) with (u1 = v1 ∧ · · · ∧ um = vm). Now we obtained Lring-formulas

ψ̃m(x1, . . . , xm; y11, . . . , y1m, . . . , yn1, . . . , ynm)

χ̃m(y11, . . . , y1m, . . . , yn1, . . . , ynm).

Rename the variable x1 to x, xi+1 to yi for 1 ≤ i < n and yij to yim+j−1 for
1 ≤ i ≤ n and 1 ≤ j ≤ m. Then it is clear that FK is parametrized by ψm(x; ~y)
with m(n+ 1)− 1 parameters satisfying

χm(~y) := y1 = 0 ∧ · · · ∧ ym−1 = 0 ∧ χ̃m(ym, . . . , ym(n+1)−1).

This proves the lemma.

Let L be the extension of K obtained by adjoining the 2`-th roots of unity. Then
L/K is a finite separable extension, since every 2`-th root of unity is separable over
K. Application of Lemma 5.1.3 shows that Op is Lring-definable in K whenever OP

is Lring-definable in L. Therefore we may assume without loss of generality that K
contains the 2`-th roots of unity.

Furthermore we may always choose ` such that ` 6= char(Kp). Indeed, either
` = 2 or ` = 3 will suffice. This shows that we are able to apply Theorem 5.1.2 for
general K.

5.2. Construction of local norms

Let K be a global field, p a finite prime of K and ` a prime number with ` 6=
char(Kp). In this section we will prove that N `

p is Lring-definable. Then Lemma
5.1.1 shows that Op is definable.

In view of Theorem 5.1.2, we will abbreviate K(d1/`) to Ld and we will write
∆p for the set of all d ∈ K such that Ld/K is non-trivial and unramified at p. Since
every global norm is a local norm, we know that

NLd/K((Ld)×) ⊆ K ∩NLdP/Kp
((LdP)×) = N `

p

Lemma 5.2.1 will show that the global norms from Ld are Lring-definable. The
aim of this section is to ‘construct’ the local norms N `

p from the global norms

NLd/K(L×). If this construction is ‘nice enough’, then the Lring-definability of N `
p

will follow from the Lring-definability of the global norms from Ld.
The construction will be as follows: if D ⊆ K is an Lring-definable subset with

D ⊆ ∆p, then it follows from Lemma 5.2.1 that

ND =
⋃
d∈D

NLd/K((Ld)×)

is an Lring-definable subset of N `
p. Then, using Proposition 5.2.2 and Theorem

5.2.6, we will show that there exists Lring-definable subsets D1, D2 ⊆ K such that
D1, D2 ⊆ ∆p and

N `
p = ND1

ND2
,

which implies that N `
p is Lring-definable.

The first step is to show that, using norm forms, the global norms of Ld are
Lring-definable.

Lemma 5.2.1. There is an Lring-term N`(x; ~y) such that for every non-`th power
d in K we have that ∃~a(x = N`(d;~a)) defines NLd/K((Ld)×).

Proof. The extension Ld/K is non-trivial, because d is not an `-th power. The
powers of d1/` form a basis of Ld as a vector space over K. Thus the norm map
NLd/K : Ld → K defines a norm form

N`(d,~a) = NLd/K(a0 + a1d
1/` + · · ·+ a`−1d

(`−1)/`).
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Now it suffices to show that N`(d,~a) is a polynomial in d and ~a with integer coeffi-
cients, since N`(d,~a) is then an Lring-term which satisfies the condition.

We calculate the norm using Theorem 2.2.5. For any α ∈ K, let Mα denote the
`× ` matrix representing the linear map x 7→ αx from Ld to Ld, with respect to the
power basis 1, d1/`, . . . , d(`−1)/`. Write α = a0 + a1d

1/` + · · · + a`−1d
(`−1)/`. Then

it is easily seen that

Mα = a0M1 + a1Md1/` + · · ·+ a`−1Md(`−1)/` .

Now since for all i, every entry of Mdi/` is either 0, 1 or d, we conclude that the
entries of Mα consist of polynomials in d and ~a with integer coefficients. The same
hold for the determinant of Mα, hence also for N`(d,~a).

To be more explicit; the Lring-term N`(x; y1, . . . , y`) equals N2 = y2
1 − y2

2x for
` = 2 and for ` = 3 we find N3 = y3

1 + y3
2x+ y3

3x
2 − 3y1y2y3x.

It follows from Lemma 5.2.1 that ND is Lring-definable. Indeed, ND is defined
by

ψ`(x) := ∃~a∃d (δ(d) ∧ x = N`(d,~a)), (5.1)

whenever D is defined by δ(x).

Proposition 5.2.2. Consider the Lring-formula

δ`(x; y1, y2) = ∃~a1∃~a2(d = N`(y1,~a1) ∧ xy2 = N`(y1y2,~a2)) (5.2)

If δ`(x;u, π), then x ∈ ∆p, for all x, u, π ∈ K with u ∈ Up − U `p and ordp(π) = 1.

Proof. Suppose that d satisfies δ(x;u, π). Note that ordp(u) = 0 with u /∈ (K×p )`

and that ordp(π) = 1 6= 0 modulo `. Hence by Theorem 2.11.4 we find that
Kp(u1/`)/Kp is unramified of degree ` and Kp((uπ)1/`)/Kp is totally ramified. Fur-
themore d is a norm local norm of Kp(u1/`)/Kp at p and dπ is a local norm of
Kp((uπ)1/`)/Kp at p. From the description of the norm groups in Theorem 2.11.4
and the fact that ordp(π) = 1 we conclude that for some m,n ∈ N and v, w ∈ Up

d = vπn`, dπ = w`(uπ)m.

If we multiply the first by π we find vπn`+1 = w`(uπ)m. Hence

n`+ 1 = ordp(vπn`+1) = ordp(w`(uπ)m) = m,

because the order of u, v and w at p are all zero. We now find that d = u(wunπn)`

and hence Kp(d1/`)/Kp = Kp(u1/`)/Kp is unramified of degree `. Again by Theo-
rem 2.11.4 we find that ordp(x) ≡ 0 modulo `, as x is a local norm at p.

We will now construct u and π, such that ND, with D ⊆ ∆p the subset of K
defined by δ`(x, u, π), is a large subgroup of N `

p. For this construction, we need
some preliminary lemmas.

Lemma 5.2.3. Let K be a global field and n ∈ N an integer. For all elements
a1, . . . , an ∈ K and all pairwise distinct places p1, . . . , pn there exists an x ∈ OK
such that (x) is a prime ideal and x ≡ ai modulo pi for all i.

Proof. By the approximation theorem we find an x0 ∈ K such that x0 ≡ ai mod-
ulo pi for all i. Now consider the ray class of (x0) modulo m = p1 · · · pn (i.e.,
[(x0)] ∈ Clm(K)). By Theorem 2.10.6, [(x0)] contains infinitely many prime ideals.
Furthermore notice that every ideal in [(x0)] is principal. Hence we find some x
such that (x) is a prime ideal of OK and that (x/x0) ∈ Pm, i.e., x/x0 ≡ 1 modulo
pi for all i. Therefore we find that x ≡ ai modulo pi for all i. Notice that x ∈ OK ,
since (x) is a prime ideal. This completes the proof.

Lemma 5.2.4. Let Ld = K(d1/`) be an extension of a global field K and let p and
q be distinct totally ramified places of K. Then there exists ξp, ξq ∈ K such that
ξp ∈ Up − U `p and ξq ∈ Uq − U `q and (ξp, L

d/K)p · (ξq, Ld/K)q = 1.
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Proof. As Ld/K is totally ramified above p and q we find that Gp = Gq =
Gal(Ld/K). Therefore (·, Ld/K)p : Kp → Gal(Ld/K) and (·, Ld/K)q : Kq →
Gal(Ld/K) are both surjective. Now notice that Theorem 2.11.4 implies that
NLdP/Kp

((LdP)×) = 〈d, (K×p )`〉 and that ` - ordp(d), because p is totally ramified.

Hence we have that ordP is surjective on NLdP/Kp
((LdP)×)). Since norms are in the

kernel of the Artin map, we see that (·, Ld/K)p : Up → Gal(Ld/K) is still surjective.
The same argument shows that (·, Ld/K)q : Uq → Gal(Ld/K) is surjective.

Pick σ ∈ Gal(Ld/K) with σ 6= 1. Then by the surjectivity there exists ξp and ξq
with (ξp, L

d/K)p = σ and (ξq, L
d/K)q = σ−1. Furthermore Lemma 2.11.3 implies

that NLd/K(UP) = U `p and NLd/K(UQ) = U `q, hence σ, σ−1 6= 1 implies ξp ∈ Up−U `p
and ξq ∈ Uq − U `q.

Lemma 5.2.5. Let p be a finite place of a global field K, let ` 6= char(Kp) be a
prime number and x, y ∈ OK with x ≡ y modulo p. Then y ∈ (K×p )` implies that

x ∈ (K×p )` ⊆ NLdP/Kp
((LdP)×),

where Ld = K(d1/`) is an extension of K and P a place of Ld above p.

Proof. If x ≡ y modulo p, with x, y ∈ OK , then X = 1 is a solution of the primitive
polynomial yX`− x over Kp = OK/p. Using Hensel’s lemma we conclude that x/y
is an `-th power in K×p , i.e., x/y ∈ (K×p )`. Hence if y ∈ (K×p )`, then x ∈ (K×p )`.
Furthermore since NLdP/Kp

(x) = x` for all x ∈ K×p we see that x is a local norm at

p.

Recall the definition of δ` from (5.2). We are now ready to prove the following
theorem:

Theorem 5.2.6. Let p be a finite place of a global field K. Suppose that ` 6=
char(Kp) is a prime number such that K contains the 2`-th roots of unity. Then
there are infinitely many places q 6= p for which there exist u, π ∈ K such that
δ`(x;u, π) defines a subset D ⊆ ∆p with

ND = N `
p ∩N `

q = {x ∈ N `
p | ordq(x) ≡ 0 mod `}.

Proof. For notational convenience we will write p0 and q0 for p and q emphasize
that p and q are fixed. The proof consists of three steps.

The first step is to construct q0, u and π. Let m ∈ N be an integer so large
that for all p | ` and x ∈ K such that x ≡ 1 modulo pm we have x ∈ (K×p )`. I do
not know how to prove the existence of m. Consider the ray class group Clm(K)
modulo

m =
(∏

p|∞ p
)(∏

p|` p
m
)
.

Then let q0 be any prime in the inverse class of p0, distinct from p0 (equality only
occurs when [p0]−1 = [p0] in Clm(K)). By Theorem 2.10.6 there are infinitely many
choices for q0. By construction we find an element π in OK such that

(π) = p0q0, π ≡ 1 mod m.

Now consider the extension Lπ = K(π1/`) of K. By Theorem 2.11.4 the extension
Lπ/K is totally ramified above p0 and q0, since ordp0

(π) = ordq0
(π) = 1. Hence

using Lemma 5.2.3 and Lemma 5.2.4 we find some u ∈ OK such that (u) is prime
prime ideal of OK and

u ≡ 1 mod m

u ≡ ξp0 mod p0

u ≡ ξq0 mod q0,

where ξp0 ∈ Up0 − U `p0
and ξq0 ∈ Uq0 − U `q0

and (ξp0 , L
π/K)p0 · (ξq0 , L

π/K)q0 = 1.
This completes the construction of q0, u and π.

The second step is to show that D ⊆ ∆p0
∩ ∆q0

, where D is the subset of K
which is defined by δ`(x;u, π). This follows form Proposition 5.2.2 applied to both
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p0 and q0 and hence it suffices to show that u ∈ Up0 − U `p0
, u ∈ Uq0 − U `q0

and
ordp0

(π) = ordq0
(π) = 1. The first condition follows from u ≡ ξp0

modulo p0

and u ≡ ξq0
modulo q0 applied to Lemma 5.2.5. The latter condition is a trivial

consequence from (π) = p0q0.
The final step is to show that ND = N `

p0
∩N `

q0
, which is done the standard way

by proving the two inclusions.
Let x ∈ ND be arbitrary. Then there exists some d ∈ D such that x ∈

NLd/K((Ld)×). As every global norm is a local norm we find that x ∈ K satis-

fies x ∈ NLdP0
/Kp0

((LdP0
)×) and x ∈ NLdQ0

/Kq0
((LdQ0

)×). Now since D ⊆ ∆p0
∩∆q0

we may apply Theorem 5.1.2 for p0 and q0 and conclude that x ∈ N `
p0

and x ∈ N `
q0

.

We conclude that ND ⊆ N `
p0
∩N `

q0
.

Conversely let x0 ∈ N `
p0
∩N `

q0
be arbitrary. We will prove that x0 ∈ ND. Write

(x0) = pp`0 qq`0 qk11 · · · qkss ,

for some integer s ≥ 1 and integers p, q, k1, . . . , ks ∈ Z. It suffices to find some
d ∈ D such that x0 ∈ NLd/K((Ld)×). We choose d as follows: by Lemma 5.2.3
there exists some d ∈ OK such that (d) is a prime ideal of OK and

d ≡ 1 mod m

d ≡ ξp0
mod p0

d ≡ ξq0
mod q0

d ≡ 1 mod (u)

d ≡ 1 mod qi, i = 1, . . . , s.

The remainder of the proof consists of checking that d ∈ D and x0 ∈ NLd/K((Ld)×).
We prove that d satisfies

δ`(x;u, π) = ∃~a1∃~a2(x = N`(u,~a1) ∧ xπ = N`(uπ,~a2)),

which means that d ∈ D. In other words, we show that d is a global norm from Lu

and that dπ is a global norm from Luπ.
We show that d is a global norm from Lu = K(u1/`). By the Hasse norm

theorem applied to the cyclic Kummer extension Lu/K we conclude that it suffices
to prove that d is a local norm of Lu/K at every prime. Let p be a prime of K and
let P be an extension of p in Lu.

• If p is an infinite place then Ostrowski’s theorem implies Kp
∼= C, since K

contains the s`-th roots of unity. Thus LuP/Kp is trivial and d is a local norm
at p.

• If p | ` then LuP/Kp is trivial, because u ≡ 1 modulo m implies u ≡ 1 modulo

pm and by construction of m we find that u ∈ (K×p )`. Thus NLuP/Kp
(x) = x

for all x ∈ K×p and hence d is a local norm at p.

• If p = (u) then d ≡ 1 modulo p and d ∈ OK , since (d) is a prime ideal. Now
Lemma 5.2.5 shows that d is a local norm at p.

• If p is a finite prime with p - `, p 6= (u) and p 6= (d) then ordp(u) = 0 and
ordp(d) = 0. Hence Theorem 2.11.4 shows that Lu is unramified at p (either
trivial or non-trivial). Therefore d is a local norm at p.

• If p = (d) then we find by Artin’s reciprocity law that

1 =
∏

q(d, Lu/K)q = (d, Lu/K)p,

because the previous items show that (d, Lu/K)q = 1 for all q 6= p. Therefore
d is a local norm at p.

We conclude that d is a global norm form Lu.
Next we show that dπ is a global norm from Luπ = K((uπ)1/`). By the Hasse

norm theorem applied to the cyclic Kummer extension Luπ/K we conclude that it
suffices to prove that dπ is a local norm of Luπ/K at every prime. Let p be a prime
of K and let P be an extension of p in Luπ.
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• If p is an infinite place then Ostrowski’s theorem implies Kp
∼= C, since K

contains the s`-th roots of unity. Thus LuπP /Kp is trivial and dπ is a local
norm at p.

• If p | ` then LuπP /Kp is trivial, because u, π ≡ 1 modulo m implies uπ ≡
1 modulo pm and by construction of m we find that uπ ∈ (K×p )`. Thus
NLuπP /Kp

(x) = x for all x ∈ K×p and hence dπ is a local norm at p.

• If p equals p0 or q0 then d ≡ ζp ≡ u modulo p and d/u ≡ 1 modulo p. Now
Lemma 5.2.5 shows that d/u is a local norm at p. But Theorem 2.11.4 shows
that uπ is also a norm from Luπ/K, hence dπ = (d/u)(uπ) is a local norm at
p.

• If p = (u) then d, π ≡ 1 modulo p and d ∈ OK , since (d) is a prime ideal.
Now Lemma 5.2.5 shows that d is a local norm at p. We claim that π is also
a local norm at p. Then it follows that dπ is a local norm at p.

We prove the claim. Notice that (u, L/K)q is different from 1 only if q is
p0, q0 or p: at infinite places (u, L/K)q = 1 because u ≡ 1 modulo m; at
q | `, (u, L/K)q because u ∈ (K×q )`; and for all other finite places other then
p0, q0 or p, (u, L/K)q = 1 because LQ/Kq is unramified and ordq(u) = 0.
Furthermore u differs from ξp0

by an `-th power in Kp0
, since p0 - ` and

similarly for ξq0 . Therefore

(u, L/K)p0
= (ξp0

, L/K)p0
= (ξq0

, L/K)−1
q0

= (u, L/K)q0
.

By Artin’s reciprocity law and we have

1 =
∏
q

(u, L/K)q = (u, L/K)p0
· (u, L/K)q0

· (u, L/K)p = (u, L/K)p

which means that u is a local norm from LuP/Kp. But L/K is unramified at

p and ordp(u) = 1, hence LuP/Kp must be trivial. This means that u ∈ K`
p

and that u is a local norm at p = (u).

• If p is a finite prime with p - `, p 6= p0, q0, (u), (d) then ordp(d) = 0 and
Theorem 2.11.4 shows that Luπ is unramified at p (either trivial or non-trivial).
Therefore we find that d is a local norm at p.

• If p = (d) then we find by Artin’s reciprocity law that

1 =
∏

q(d, Luπ/K)q = (d, Luπ/K)p,

because the previous items show that (d, Luπ/K)q = 1 for all q 6= p. Therefore
d is a local norm at p.

We conclude that dπ is a norm from Luπ. Furthermore we have that d ∈ D. In
other words: d satisfies δ`(x;u, π).

Finally we show that x0 ∈ NLd/K((Ld)×). By the Hasse norm theorem applied

to the cyclic Kummer extension Ld/K we conclude that it suffices to prove that x0

is a local norm of Ld/K at every prime. Let p be a prime of K and let P be an
extension of p in Ld.

• If p is an infinite place then Ostrowski’s theorem implies Kp
∼= C, since K

contains the s`-th roots of unity. Thus LdP/Kp is trivial and x0 is a local norm
at p.

• If p | ` then LdP/Kp is trivial, because d ≡ 1 modulo m implies d ≡ 1 modulo

pm and by construction of m we find that d ∈ (K×p )`. Thus NLdP/Kp
(x) = x

for all x ∈ K×p and hence x0 is a local norm at p.

• If p equals p0 or q0 then d ≡ ζp modulo p. So Lemma 5.2.5 shows that d is
a non-`-th power unit in Kp and LdP/Kp is unramified of degree `. Theorem

2.11.4 now shows that x0 is a local norm at p because x0 ∈ N `
p0
∩N `

q0
.
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• If p - ` and p = qi with 1 ≤ i ≤ s then d ≡ 1 modulo p. Hence since d ∈ OK
and p - ` we conclude from Lemma 5.2.5 that d ∈ (K×p )`. Therefore LdP/Kp

is trivial and that x0 is a local norm at p.

• If p is a finite prime with p - `, p 6= (d), p 6= p0 and p 6= qi for all 0 ≤ i ≤ s,
then ordp(x0) = 0 and Theorem 2.11.4 shows that Ld is unramified at p (either
trivial or non-trivial). Therefore we find that x0 is a local norm at p.

• If p = (d) then we find by Artin’s reciprocity law that

1 =
∏

q(d, Ld/K)q = (d, Ld/K)p,

because the previous items show that (d, Ld/K)q = 1 for all q 6= p. Therefore
d is a local norm at p.

We conclude that x ∈ NLd/K((Ld)×).
We now have shown that x0 ∈ ND, which finishes the proof of the equality

ND = N `
p0
∩N `

q0
.

Recall the definition of ψ` from (5.1) and δ` from (5.2) at page 88. We now show
that we can find Lring-definable subsets D1, D2 ⊆ ∆p such that N `

p = ND1ND2 and
conclude that Op is Lring-definable.

Corollary 5.2.7. Let K be a global field and suppose that ` is a prime number such
that K contains the 2`th roots of unity. Consider the Lring-formula

φ`(x; ~y) := ∃x1∃x2(x = x1x2 ∧ ψ`(x1; y1, y2) ∧ ψ`(x2; y3, y4)). (5.3)

For all finite places p of K with ` 6= char(Kp) there exists some ~c ∈ K4 such that
φ`(x;~c) defines the valuation ring Op in K.

Proof. Let q1 and q2 be two distinct primes as in Theorem 5.2.6, i.e., the subsets Di,
for i = 1, 2, satisfy NDi = N `

p ∩N `
qi are defined by δ(x;ui, πi) for some ui, πi ∈ K.

We claim that ND1ND2 = N `
p. In this case every x ∈ N `

p is a product of an x1 ∈ ND1

and some x2 ∈ ND2
. Furthermore NDi is defined by

ψ`(x;ui, πi) := ∃~a, d(δ(d;ui, πi) ∧ x = N`(d,~a)).

Hence φ`(x;u1, π1, u2, π2) defines N `
p. Using Lemma 5.1.1 we conclude that Op is

Lring-definable.
It remains to show that ND1

ND2
= N `

p. Observe that ND1
, ND2

, ND1
ND2

and

N `
p are all subgroups of K× as they contain 1 and are closed under multiplication.

Since ND1 is a subgroup of the product ND1ND2 we find a tower of groups

ND1 ( ND1ND2 ⊆ N `
p,

where the proper inclusion follows form the fact that ND1 6= ND2 . Since this index
of ND1 in N `

p equals ` we conclude that the index of ND1ND2 in N `
p divides `. But

since ` is prime and the first inclusion is proper, we find that this index equals 1.
This proves the claim.

5.3. Definability of valuation domains

Corollary 5.2.7 and Lemma 5.1.3 provide a huge step towards defining a large family
of valuation rings. But there is still one thing missing, namely the formula which
determines the parameters (c.f., Definition 3.8.4). This problem is solved in the
following lemma.

Lemma 5.3.1. Let p be a finite place of a global field K. Suppose that ` 6= char(Kp)
is a prime number such that K contains the 2`-th roots of unity. Then there exists
Lring-formulas φ`(x; ~y) and χ`(~y) such that

F =

{
{Op | p finite} if char(K) > 0

{Op | p finite and p - `} if char(K) = 0

is parametrized by φ` with parameters satisfying χ`.
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Proof. Recall the definition of φ` from (5.3). Consider the Lring-formulas

θ`(~y) = ∀x1∀x2((φ`(x1; ~y) ∧ φ`(x2; ~y))→ (φ`(x1 − x2; ~y) ∧ φ`(x1x2; ~y)))

ρ`(~y) = ∀x(x 6= 0→ (φ`(x; ~y) ∧ φ`(1/x; ~y)))

χ`(~y) = θ`(~y) ∧ ρ`(~y).

Suppose that ~c ∈ K4 satisfies χ`(~y). Then φ`(x;~c) defines a valuation domain in L
(c.f., Definition 1.9.1). Hence by Corollary 2.5.16 we conclude that φ`(x;~c) defines
Op for some finite place p of L. On the other hand, Corollary 5.2.7 implies that for
every p with char(Kp) 6= ` there exists some ~c ∈ K4 such that φ`(x;~c) defines the
valuation ring Op in K. It is clear that ~c ∈ K4 satisfies χ`(~y).

Let F be the family parametrized by φ`(x; ~y) with parameters satisfying χ`(~y).
If char(K) > 0, then ` 6= char(K) = char(Kp) and we find by the above discussion
that F = {Op | p finite}. If char(K) = 0, then the above discussion implies that
F = {Op | p finite and p - `}. This concludes the proof.

Notice that the Lring-formulas φ` and χ` depend on specific properties of K.
Thus we did not found a uniform definition of the family of valuation rings. This
will be solved in the following theorem, which is a reformulation of the results of
paragraph 3 of [14].

Theorem 5.3.2. There exists Lring-formulas and val(x; y1, . . . , y9) and isval(~y)
such that if K is a global field, then val and isval parametrize the family

F =

{
{Op | p finite and p - 2} if char(K) = 0

{Op | p finite} if char(K) > 0

Proof. Recall the definition of φ` from (5.3) and the construction of φm` from the
proof of Lemma 5.1.3. Then Lemma 5.1.3 and Lemma 5.3.1 show that the Lring-
formula

val(x, y1, . . . , y9) :=


φ3(x; y1, . . . , y4) if 2 = 0 ∧ ∃x(x2 + x+ 1 = 0)

φ2
3(x; y1, . . . , y9) if 2 = 0 ∧ ¬∃x(x2 + x+ 1 = 0)

φ2(x; y1, . . . , y4) if 2 6= 0 ∧ ∃x(x2 + 1 = 0)

φ2
2(x; y1, . . . , y9) if 2 6= 0 ∧ ¬∃x(x2 + 1 = 0)

with parameters satisfying

isval(y1, . . . , y9) :=


χ3(y1, . . . , y4) if 2 = 0 ∧ ∃x(x2 + x+ 1 = 0)

χ2
3(y1, . . . , y9) if 2 = 0 ∧ ¬∃x(x2 + x+ 1 = 0)

χ2(y1, . . . , y4) if 2 6= 0 ∧ ∃x(x2 + 1 = 0)

χ2
2(y1, . . . , y9) if 2 6= 0 ∧ ¬∃x(x2 + 1 = 0)

defines the family F .

Let F be the prime subfield of K. Then k ⊆ K is called the field of constants
of K if and only if k is the relative algebraic closure of the F in K. The following
corollary shows that k is definable in positive characteristic.

Corollary 5.3.3. There exists an Lring-formula int(x) such that

{x ∈ K | K |= int(x)} =

{
OK if char(K) = 0

k if char(K) > 0

for every global field K.

Proof. Note that the choice of 2 was not necessary and 3 also leads to an Lring-
formulas and val′(x; y1, . . . , y9) and isval′(~y) that defines the family

F =

{
{Op | p finite and p - 3} if char(K) = 0

{Op | p finite} if char(K) > 0
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Consider the Lring-formula

int(x) := ∀~y(isval(~y)→ val(x; ~y)) ∧ ∀~y(isval′(~y)→ val′(x; ~y)).

Then int(x) defines
⋂

pOp, where p runs over all finite places of K. Proposition
1.9.4 shows that this is equal to the integral closure of R in K, where R is the prime
subring of K (i.e., R is the intersection of all subrings of K). If char(K) = 0, then
R = Z = OK and int(x) defines OK . If char(K) = p > 0, then R = Fp and int(x)
defines the integral closure of Fp. As Fp is a field, the integral closure of Fp equals
the algebraic closure of Fp. Thus int(x) defines the field of constants k of K.

Corollary 5.3.3 allows us to choose uniformy a non-integral t in K. Further-
more this allows us to define the notion of divisibility in the ring of integers in
characteristic zero. If K is a number field, then we define

y | x := ∃z(int(z; t) ∧ x = yz). (5.4)

The following corollary is very interesting as it allows us to distinguish number
fields from function fields. This will be very important in defining a model of the
natural numbers in a general global field, as we may treat the number field case
and the function field case separately.

Corollary 5.3.4. There exists an Lring-sentence χ0 such that K |= χ0 if and only
if char(K) = 0 for all global fields K.

Proof. Consider the sentence

χ0 := ∀x(int(x) ∧ 2 6= 0 ∧ 2 · x 6= 1).

If char(K) = 0, then int(x) defines OK . Thus χ0 is true, since 2 is not invertible in
OK . If char(K) = p > 0 with p 6= 2, then 2 is invertible in Fp and χ0 is false.

This corollary can be used to find a uniform definition of the ring of integers.

Corollary 5.3.5. There exists an Lring-formula rin(x; t) such that if K is a global
field and t ∈ K non-integral, then rin defines OK .

Proof. Define the Lring-formula

rin(x; t) :=

{
int(x) if χ0

∀~y(isval(~y)→ (val(x; ~y)→ φ(t; ~y))) otherwise

If char(K) = 0, then rin(x; t) defines OK by Corollary 5.3.3. If char(K) = p > 0,
then rin(x; t) defines

⋂
pOp, where p runs over the finite places p of K with t ∈ Op.

Then Proposition 1.9.4 shows that rin(x; t) defines the integral closure of Fp[t].
Then, by definition, rin(x; t) defines OK .

This corollary allows us to define the notion of divisibility in the ring of integers.
If K is a global field and t ∈ K is non-integral, then we define

y |t x := ∃z(rin(z; t) ∧ x = yz). (5.5)

This clearly generalizes the notion of divisibility defined by (5.4) to arbitrary char-
acteristic. Notice that x and y need not lie in OK . However if y |t x and either x
or y is in OK , then both are in OK .

5.4. Definability of finite subsets

Our next step in defining a model of the natural numbers is to find a predicate
which enables us to quantify over all finite subsets of K. In other words we will
show that the family of all finite subsets of K is an Lring-definable family F .

We will first show that it suffices to define a cofinal subfamily F ′ of F with
respect to inclusion, that is, every member of F is contained in a member of F ′.
Then F can be constructed from F ′ by shrinking the members of F ′.

Finally we will show that such a cofinal subfamily is definable for both zero and
positive characteristic.

In order to prove that the definability of the cofinal subfamily is sufficient, we
need two preliminary lemmas.



Chapter 5. Global Fields 95

Lemma 5.4.1. Let K be a global field and n a positive integer. Then for all non-
zero k1, . . . , kn ∈ K there exists only finitely many x ∈ K such that 1 + xki is zero
or a unit in OK for some i.

Proof. The idea is to find a non-zero polynomial P ∈ K[X] with the following
property: for all x ∈ K we have that 1 + xki is zero or a unit in OK for some i
implies P (x) = 0. Consider the function P : K→ K given by

P (x) =

n∏
i=1

(1 + xki)
∏
c∈O×K

(
NK/K(1 + xki)− c

)
Notice that this product is finite, since O×K equals either {±1} or F×p whenever
char(K) = p.

We first show that P is a non-zero polynomial in x over K. If ki ∈ K, then
NK(ki)/K(1 + xki) = 1 + xki is a non-zero polynomial in x over K, since all ki 6= 0.
Hence P is a non-zero polynomial over K. Suppose that ki /∈ K and let d =
deg(ki) ≥ 2 be the degree of ki over K. Recall that

NK(ki)/K(1 + xki) = det(M1+xki),

where M1+xki : K(ki)→ K(ki) is the linear map defined by multiplication by 1+xki.
Notice that M1+xki = M1 +MxMki = I+xMki , because 1, x ∈ K. Now find aj ∈ K
for 0 ≤ j < d such that Xd − ad−1X

n−1 − · · · − a0 is the minimal polynomial of ki
over K. Then with respect to the power basis 1, ki, . . . , k

d−1
i of K(ki)/K, the linear

map Mki is represented by the matrix

Mki =


0 0 · · · 0 a0

1 0 · · · 0 a1

...
...

. . .
...

...
0 0 · · · 0 ad−2

0 0 · · · 1 ad−1

 .

Now it is clear that det(M1+xki) is a non-zero polynomial in x over K. Hence if
x ∈ K, then NK/K(ki)(1 + xki) = (1 + xki)

[K:K(ki)]. Using the transitivity of the
norm we conclude that

NK/K(1 + xki) = NK(ki)/K(NK/K(ki)(1 + xki)) = NK(ki)/K(1 + xki)
[K:K(ki)]

is a non-zero polynomial in x over K. This implies that P is a non-zero polynomial
over K.

Finally we show that P satisfies the desired property. Let x ∈ K be arbitrary. If
1 + xki = 0 for some i, then P (x) = 0. If 1 + xki ∈ O×K for some i, then NK/K(1 +

xki) ∈ O×K , because NK/K : K× → K× is a homomorphism with NK/K(OK) ⊆ OK.
Hence P (x) = 0. We conclude that P satisfies the property.

The lemma follows from the fact that P has only finitely many roots, because
P is non-zero.

Lemma 5.4.2. Let K be a global field with non-integral t ∈ K and let n be a
positive integer. Then for all non-zero k1, . . . , kn ∈ K there exists a non-zero ideal
a ∈ OK such that for all h ∈ a

1 + hk1 · · · 1 + hkn

are pairwise relatively prime elements of OK .

Proof. Suppose we are given non-zero k1, . . . , kn ∈ K for some positive integer n.
Consider a ideal non-zero ideal a ⊆ OK such that for all p

ordp(a) ≥ max
j

ordp(k−1
j ) (5.6)

and for all p with ordp(kj − kj′) ≥ 1 for some j and j′

ordp(a) ≥ max
j,j′

ordp(kj − kj′). (5.7)
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Note that a is well-defined, because there are only finitely many primes p such that
we demand ordp(a) > 0.

We will show that a satisfies the conditions. Let h ∈ a be arbitrary. Then we
have that (h) ⊆ a and hence a | (h). This implies that ordp(h) ≥ ordp(a). Using
equation (5.6) we find for all p and j that ordp(h) ≥ ordp(k−1

j ), which means that
ordp(hkj) ≥ 0 and 1 + hkj ∈ OK . Moreover, if there exists a prime p and j and j′

such that p | (1 + hkj) and p | (1 + hkj′), then p | hkj − hkj′ . Hence using (5.7) we
have that

1 ≤ ordp(h(kj − kj′)) = ordp(h) + ordp(kj − kj′) ≤ 2 ordp(h).

This implies that p | (h). Now, since p | (1 + hkj), we have p | (1). We conclude
that

1 + hk1 · · · 1 + hkn

are pairwise relatively prime elements of OK .

We will now show that it suffices to define a cofinal subfamily of F .

Theorem 5.4.3. Let n be a positive integer and let φ(x; ~y; t) be an Lring-formula,
with parameters satisfying χ(~y), such that if K is a global field and t ∈ K non-
integral, then φ and χ define a cofinal subfamily of the family F of all finite subsets
of K. Then the Lring-formula

ψ(x; ~y, ~z; t) := φ(x; ~y; t) ∧ 1 + (x− z1)z2 |t z3,

with parameters satisfying χ(~y) defines F .

Proof. Suppose that φ(x; ~y; t) and χ(~y) define a cofinal subfamily of the family F
of all finite subsets of K. Then it is clear from the definition that ψ(x; ~y, ~z; t) with
parameters satisfying χ(~y) defines a subfamily of F . It remains to show that for
all finite subsets S there exists parameters ~y and ~z such that χ(~y) and ψ(x; ~y, ~z; t)
defines S.

Let S = {k1, . . . , km} be a finite subset of K. We construct ~y and ~z. By
the assumption on φ(x; ~y, t), we can find ~y such that χ(~y) and φ(x; ~y, t) defines
{k1, . . . , km, . . . , kn}, with n ≥ m. Pick z1 such that 0 6= k′i := ki − z1 for all
1 ≤ i ≤ n. Using Lemma 5.4.2 we find a non-zero ideal a ⊆ OK such that for all
h ∈ a

1 + hk′1 · · · 1 + hk′m · · · 1 + hk′n

are pairwise relatively prime elements of OK . From Lemma 5.4.1 we know that
only finitely many h ∈ K for which 1 + xyk′i is zero or a unit in OK for some i. As
a is non-zero, we see that |a ∩ OK| = |OK| is infinite. Hence we find some non-zero
h ∈ a ∩ OK such that

1 + hk′1 · · · 1 + hk′m · · · 1 + hk′n

are non-zero non-unit pairwise relatively prime elements of OK . Now define z2 := h
and z3 := (1 + hk′1) · · · (1 + hk′m).

We show that ψ(x; ~y, ~z; t) defines S. If k satisfies ψ(x; ~y, ~z, t), then k = kr for
some 1 ≤ r ≤ n, since k satisfies φ(x; ~y, t). Furthermore we have that 1 + hk′ |
(1 + hk′1) · · · (1 + hk′m), with k′ = k − z1, because 1 + (k − z1)z2 divides z3 in OK .
Let p be a prime ideal of OK dividing the proper principal ideal (1 + hk′). Such
prime p exists, since all 1 + hk′i are non-zero non-unit elements of OK . Then since
p is prime we find some 1 ≤ s ≤ m such that p | (1 + hk′s). Using the fact that all
1 + hk′i are pairwise relatively prime, we find that 1 + hk′ = 1 + hk′r = 1 + hk′s.
Since h is non-zero we conclude that k = ks with 1 ≤ s ≤ m. Conversely it is easy
to see that ki satisfies ψ(x; ~y, ~z; t) for all 1 ≤ i ≤ m, which means that ψ(x; ~y, ~z; t)
defines S.

We conclude that ψ(x; ~y, ~z; t), with parameters satisfying χ(~y) defines the family
F of all finite subsets of K.

Now we are going to show that such a cofinal subfamily is definable. In view
of Corollary 5.3.4, we may treat the number field case and the function field case
separately. We start with the number field case, which is proven by Robinson [13].
Recall the definition of divisibility in number fields by formula (5.4).
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Theorem 5.4.4 (Robinson). There exists an Lring-formula φN (x; y1, y2; y3) with
parameters satisfying χN (~y) such that if K is a number field, then φN and χN define
a cofinal subfamily of the family F of all finite subsets of K.

Proof. Consider the Lring-formula

φN (x; y1, y2, y3) := (x− y1)y2(1 + (x− y1)y2) | y3,

with parameters satisfying

χN (~y) := y2, y3 6= 0 ∧ int((x− y1)y2) ∧ int(y3).

Let K be a number field. We first show that φN (x; ~y) defines a finite subset of K,
whenever K |= χN (~y). Siegel (page 204 and 205 of [15]) proved that if t ≥ 0 is real
and f(X) ∈ OK [X] with at least two distinct roots, then there are finitely many
a ∈ OK such that NK(f(a)) ≤ t. Notice that NK(f(a)) ≤ NK(b) implies f(a) | b.
Take f(X) = X(X + 1) and a = (x − y1)y2. Then f has two distinct roots, and
a ∈ OK since K |= χN (~y). Now apply Siegels result to f and a and conclude that
there are only finitely many x that satisfy a(1 + a) | y3. Thus φN defines a finite
subset.

Let K be a number field and let S be a finite subset K. Pick y1 such that x−y1

is non-zero for all x ∈ S and take y2 such that (x− y1)y2 ∈ OK . If we take

y3 =
∏
x∈S

f((x− y1)y2),

then is it easy to see that K |= φN (x; y1, y2, y3) for all x ∈ S.

We now show an analogues result for function fields.

Theorem 5.4.5 (Rumely). There exists an Lring-formula φF (x; y1, y2; t) with pa-
rameters satisfying χF (~y) such that if K is a function field and t ∈ K non-integral,
then φF and χF define a cofinal subfamily of the family F of all finite subsets of
K.

Proof. Consider the Lring-formula

φF (x; y1, y2; t) := ∀~z(isval(~z)→ (val(x/y1;~z) ∨ val(x/y2;~z))),

with parameters satisfying χF (~y, t) := y1, y2 6= 0. Let K be a global field with
non-integral t ∈ K and let ~y ∈ K2 with K |= χF (~y, t). Suppose that x satisfies
φF (x; ~y; t). Then for all p we have either ordp(x/y1) ≥ 0 or ordp(x/y2) ≥ 0. Hence
ordp(x) ≥ mini ordp(yi) for all p. Now consider the adèle a such that ordp(ap) =
mini ordp(gi) for all p. Then ordp(x) ≥ ordp(ap) for all p and we have x ∈ K∩D(a).
From Theorem 2.8.5 we see that D(a) is compact and from Lemma 2.8.4 we know
that K is discrete in AK . Hence K ∩D(a) is finite and we conclude that φF defines
a finite subset.

On the other hand let K be a function field and let S be a finite subset of K.
Choose y1 such that ordp(y1) ≤ minx∈S ordp(x) for all p with minx∈S ordp(x) <
0 and then choose y2 such that ordp(y2) = 0 for all p with ordp(y1) > 0. We
show that φF (s; ~y; t) for all x ∈ S. Let x0 ∈ S, ~z ∈ K9 and suppose that K 6|=
val(x0/y1;~z). Then ordp(x0) < ordp(y1) and from the construction of y1 it follows
that 0 ≤ minx∈S ordp(x). Hence, from x0 ∈ S we see that ordp(y1) > ordp(x0) ≥ 0.
The construction of y2 shows that ordp(y2) = 0. This implies that ordp(x0/y2) =
ordp(x0) ≥ 0, which means that K |= val(x0/y2;~z). Therefore x0 satisfies φF .

If we apply the above theorems to Theorem 5.4.3, we find a tool to quantify over
all finite sets.

Theorem 5.4.6. There exists an Lring-formula set(x; y1, . . . , y6; t) with parameters
satisfying isset(~y), such that if K is a global field and t ∈ K non-integral, then set
and isset define the family F of all finite subsets of K.
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Proof. Let φN and χN be the Lring-formulas from Theorem 5.4.4, let φN and χN
be the Lring-formulas from Theorem 5.4.5 and let χ0 be the Lring-sentence from
Corollary 5.3.4. Then for every global field K, the Lring-formula

φ(x; y1, y2, y3; t) :=

{
φN (x; y1, y2, y3) if χ0

φF (x; y1, y2; t) otherwise

with parameters satisfying

χ(x; y1, y2, y3) :=

{
χN (y1, y2, y3) if χ0

χF (y1, y2) otherwise

defines a cofinal subfamily of F , where F is the family of all finite subsets of
K. Then Theorem 5.4.3 gives an Lring-formula set(x; y1, . . . , y6; t) with parameters
satisfying isset(~y), which satisfies the conditions of the theorem.

5.5. Model of the natural numbers

In this section we will prove that for every global field, there exist an interpretation
from N to K. Let us first describe the image of this map. Let K be a global field
and t ∈ K be non-integral. Then we define

Nt :=

{
{0, 1, 2, . . .} if char(K) = 0

{1, t, t2, . . .} otherwise

Then consider the natural map

It : N→ Nt n 7→

{
n if char(K) = 0

tn otherwise
(5.8)

If t is understood we will abbreviate It(n) to n. In this section we will show that
It is an interpretation.

We first show that the image of It is definable.

Lemma 5.5.1. There exists an Lring-formula nat(x; t) such that for all global fields
K and non-integral t ∈ K, nat defines Nt, with

Proof. Given a global field K and t ∈ K non-integral. Consider the Lring-formulas

natN (x; t) := ∃~a(isset(~a)→ (set(0;~a, t)∧∀y(set(y;~a, t)→ (y = x∨set(y+1;~a, t)))))

and

natF (x; t) := ∃~a(isset(~a)→ (set(1;~a, t) ∧ ∀y(set(y;~a, t)→ (y = x ∨ set(ty;~a, t)))))

and let χ0 be an Lring-sentence such that K |= χ0 if and only if char(K) = 0. We
will show that the Lring-formula

nat(x; t) :=

{
natN (x) if χ0

natF (x; t) otherwise

defines the set Nt.
Let x ∈ K be arbitrary. If x ∈ Nt, then it is clear that K |= nat(x; t),

since we can take ~a such that setN (~a, y) defines {0, 1, . . . , x} or setF (~a, y; t) defines
{1, t, . . . , x}. Conversely suppose that K |= nat(x; t). If x /∈ Nt, then both setN (~a, y)
and setF (~a, y; t) define an infinite set, which is impossible. Hence x ∈ Nt.

Consider the maps ⊕,⊗ : Nt × Nt → Nt defined by

n⊕m := n+m, n⊗m := n×m (5.9)

and the binary relation on Nt defined by

n ≤ m if and only if n ≤ m (5.10)

We now show that addition, multiplication and the order relation are uniformly
Lring-representable.
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Lemma 5.5.2. There are Lring-formulas φ+, φ× and φ≤ such that for all global
fields K and non-integral t ∈ K, φ+, φ× and φ≤ represent ⊕, × and ≤ respectively.

Proof. Consider the Lring formula

φ+(y;x1, x2) :=

{
y = x1 + x2 if χ0

y = x1 × x2 otherwise

Then φ+ represents ⊕, since

n⊕m =

{
n+m if char(K) = 0

tn+m = tn × tm otherwise

Using Lemma 5.5.1 we find that

φ≤(x1, x2; t) := ∃y(nat(y; t) ∧ x1 + z = x2)

represents the order relation on Nt. Finally, consider the map ft : Nt → Nt given
by n⊗n+ 1. Using the fact that n and n+ 1 are coprime for all n ∈ N, we see that
the Lring-formula

ψ(y;x; t) := ∀z(y |t z ↔ (x |t z ∧ x+ 1 |t z))

represents ft. Then the Lring-formula

φ×(y;x1, x2; t) :=

{
y = x1x2 if χ0

ft(x1 ⊕ x2) = ft(x1) + ft(x2) + y + y otherwise

represents ⊗, which concludes the proof of the lemma.

From Lemma 5.5.1 and Lemma 5.5.2 we conclude that It is an interpretation.

Theorem 5.5.3. If K is a global field, then the map It : N→ K given by equation
(5.8) is an interpretation of models.

If we apply Theorem 3.10.7 and Corollary 3.10.8 to Theorem 5.5.3 we conclude
that Question 1 has a negative answer for Egf .

Corollary 5.5.4. There exists a graded map µ : FLarith
→ FLring such that for all

global fields K, n ∈ N and for all φ ∈ FnLarith
and all ~m ∈ Nn

N |= φ(~m) if and only if K |= (µφ)(It ~m)

Moreover the theory Th(K) of a global field K is undecidable.

5.6. The Gödel function

As we have answered Question 1, we will now focus on Question 2 and 3. In this
section we will introduce the Gödel function for global fields and show that it is
Lring-representable. This will allow us to make inductive definitions, such as finite
sums and products of variable finite length.

We start with the definition of the Gödel function.

Definition 5.6.1 (Gödel functions). Let K be a global field with non-integral t ∈ K
and n ≥ 1 an integer. A function F : Kn × Nt → K is called a Gödel function for
K if and only if

1) F (~x, 0) ∈ Nt for all ~x ∈ Kn;

2) for all m ∈ N and k1, . . . , km in K there exists some ~x ∈ Kn such that
F (~x, 0) = m and F (~x, i) = ki for all 1 ≤ i ≤ m. 4

Gödel functions allow us to represent all finite sequences in Nt. Indeed, F (~x, 0)
defines the length and F (~x, i) returns the i-th entry of the sequence defined by ~x.

We will show that every global field K admits a Gödel function. We first prove
some preliminary results.
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Lemma 5.6.2. Let p be a prime number. Then for each f ∈ Fp[X] there exists
infinitely many m ∈ N such that f | X2m −Xm.

Proof. Let g be an irreducible polynomial in Fp[X] and let L be the splitting field of
g over Fp. Note that L/Fp is algebraic, hence finite. Then L contains pd elements,
where d = [L : Fp]. Thus |L×| = pd−1 and Lagrange theorem shows that every x ∈
L× satisfies Xpd−1 = 1. Thus if x ∈ L and k ∈ N, then satisfies Xk(pd−1)(Xk(pd−1)−
1) = X2m−Xm = 0 for m = k(pd−1). Since g is irreducible, f is separable. Hence
f | X2m −Xm.

Let f be a polynomial in Fp[X]. Factor f into irreducibles: f = f1 · · · fn and
let d be a common multiple of the degrees of the fi. Then fi | X2m − Xm with
m = pd − 1. Now for all e ∈ N with pe ≥ n we have that

f = f1 · · · fn | (X2m −Xm)n | (X2m −Xm)p
e

= X2m′ −Xm′ ,

with m′ = pem. Since d and e do not have an upper bound in N, we conclude that
there are infinitely many m ∈ N such that f | X2m −Xm.

Lemma 5.6.3. Let K be a global field with non-integral t ∈ K and let n be a
positive integer. Then for all non-zero k1, . . . , kn ∈ K there exist h1, . . . , hn ∈ OK
such that

1 + h1k1 · · · 1 + h1kn
...

. . .
...

1 + hnk1 · · · 1 + hnkn

is a matrix of non-zero non-unit pairwise relatively prime elements of OK . Moreover
if char(K) > 0 then hi = t2mi + tmi for some mi ∈ N.

Proof. We will construct the hs in OK by induction on s. Given s ∈ N with
1 ≤ s ≤ n and suppose we have determined h1, . . . , hs−1 (for s = 1 there is no
assumption). The construction of hs consists of three steps.

Using Lemma 5.4.2 we find some x ∈ OK such that for all y ∈ OK

1 + xyk1 · · · 1 + xykn

are non-zero pairwise relatively prime elements of OK .
Consider the ideal a ⊆ OK such that for all p with p | 1 + hikj for some i and j

ordp(a) > max
i<s,j,j′

ordp(hikj/xkj′) (5.11)

Note that a is well-defined, because there are only finitely many primes p such that
we demand ordp(a) > 0. Choose any y ∈ a∩OK, with y 6= (xkj)

−1 for all j. Now if
there exists a prime p and i, j and j′ such that p | 1 + xykj′ and p | 1 + hikj , then
p | xykj′ − hikj . Using Lemma 2.5.7 we see that

1 ≤ ordp(xykj′ − hikj) = min{ordp(xykj′), ordp(hikj)} = ordp(hikj),

because ordp(xykj′) > ordp(hikj) by equation (5.11). We conclude that p | hikj
and hence p | 1. Therefore, using the induction hypothesis, the whole matrix

1 + h1k1 · · · 1 + h1kn
...

. . .
...

1 + hs−1k1 · · · 1 + hs−1kn
1 + xyk1 · · · 1 + xykn

consists of non-zero pairwise relatively prime elements of OK .
It remains to find z ∈ OK such that 1 + xyzki is a non-zero non-unit element

of OK , for all i. Then for hs = xyz, the matrix (1 + hikj)
n
i,j=1 consists of non-

zero non-unit pairwise relatively prime elements of OK , because yz ∈ a ∩ OK with
yz 6= (xkj)

−1 for all j. Using Lemma 5.4.1 with xj = xykj 6= 0 and y = z, we find
a non-zero polynomial P over K such that for all z ∈ OK we have P (z) = 0 if and
only if 1 + xyzkj is a unit in OK for some j. Since P is non-zero, there are at most
deg(P ) <∞ elements z ∈ OK such that P (z) = 0. If char(K) = 0, then choose any
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z ∈ OK = Z with P (z) 6= 0. If char(K) = p > 0 then Lemma 5.6.2 shows that there
are infinitely many z ∈ OK = Fp[t] such that xyz = t2m − tm for some m ∈ M .
Hence there exist some z ∈ Fp[t] such that P (z) 6= 0 and xyz = t2m − tm for some
m ∈M . Now define hs := xyz. This concludes the proof.

We are now ready to show that every global field admits a Gödel function.

Theorem 5.6.4. There exists an Lring-formula φ(k, x1, . . . , x9, i; t) such that for
all global fields K and non-integral t ∈ K, φ represents Ft : K9 × Nt → K which
satisfies

1) Ft(~x, 0) ∈ Nt for all ~x ∈ K9;

2) for all m ∈ N and k1, . . . , km in K there exists some ~x ∈ K9 such that
Ft(~x, 0) = m and Ft(~x, i) = ki for all 1 ≤ i ≤ m.

Proof. Let χ0 be the Lring-formula with K |= χ0 if and only if char(K) = 0, and
let βt be the push forward of the Gödel bèta function along It. Consider the Lring-
formula

ρ(h, ~n, i; t) :=

{
h = βt(~n, i) if χ0

h = βt(~n, i)
2 − βt(~n, i) otherwise

and let ht(~n, i) : N3
t → OK be the function represented by ρ. Now define the

Lring-formula

ψ(k, ~x, i; t) := set(k;x1, . . . , x6; t) ∧ 1 + ht(x7, x8, i)(k − x4) | x9.

We will show that

φ(k, ~x, i; t) :=


k = βt(x7, x8, 0) if i = 0 and nat(x7; t) ∧ nat(x8; t)

k = 0 if i = 0 and ¬nat(x7; t) ∨ ¬ nat(x8; t)

ψ(k, ~x, i; t) if i > 0 and ∃!k(ψ(k, ~x, i; t))

k = 0 otherwise

represents a function Ft which satisfies the desired properties.
First notice that this formula defines a function, because for all ~x, i and t there

is a unique k with φ(k, ~x, i; t).
The first property is easy, since for all ~x ∈ K9 we have Ft(~x, 0) = βt(x7, x8, 0) ∈

Nt if natt(x7) and natt(x8) and Ft(~x, 0) = 0 ∈ Nt otherwise.
For the second property, suppose we are given m ∈ N and k1, . . . , km in K. In

view of the proof of Theorem 5.4.6, we may take x1, . . . , x6 ∈ K such that sett(k; ~x)
defines the set {k1, . . . , km} and 0 6= k′i := ki − x4 for all i. Using Lemma 5.6.3 we
find for all 1 ≤ i ≤ m natural numbers mi ∈ N such that (1 + hik

′
j)
n
i,j=1, with

hi :=

{
mi if χ0

t2mi − tmi otherwise
,

is a matrix of non-zero non-unit pairwise relatively prime elements of OK .
Pick x7, x8 ∈ K such that Ft(~x, 0) := βt(x7, x8, 0) = m and β(x7, x8, i) = mi for

all 1 ≤ i ≤ n. Then hi = ht(x7, x8, i) for all 1 ≤ i ≤ n.
Now comes the main trick. Define x8 :=

∏n
i=1(1 + hik

′
i). Then for all k ∈ K

and all 1 ≤ i ≤ n we have that K |= ψ(k, ~x, i; t) if and only if k = ki. The ‘if’ part
is trivial. For the other direction notice that k = ks for some s and k−x4 = k′s 6= 0,
because K |= sett(k, x1, . . . , x6). Since 1 + hik

′
s is neither a zero nor a unit in OK ,

we may consider a prime ideal p which divides both (1 + hik
′
s) and (x9). Thus the

product x9 is in p and hence some factor 1+hjk
′
j is in p or equivalently p | (1+hjk

′
j)

for some j. Now we have s = j = i, since 1 +hik
′
s and 1 +hjk

′
j are relatively prime

otherwise. We conclude that k = ks = ki, which shows that Ft(~x, i) = ki

Theorem 5.6.4 allows us to make inductive definitions. We will list a few exam-
ples, which will be used in the next sections.

Corollary 5.6.5. There exists an Lring-formula φ(x, ω, i; t) such that for all global
fields K and all non-integral t ∈ K and all i ∈ Nt and all ω ∈ K, φ defines ωi.



102 5.7. Polynomials over the prime subfield

Proof. Consider the Lring-formula

φ(x,ω, i; t) := ∃~a(Ft(~a, 0) = 1 ∧ Ft(~a, i) = x

∧ ∀k ∈ Nt(1 ≤ k ≤ i→ Ft(~a, k) = ω · Ft(~a, k 	 1))).

It it clear that φ defines ωi.

We have a similar result for sums.

Corollary 5.6.6. Let ψ(y, x; t) be an Lring-formula such that for all global fields
K and all non-integral t ∈ K, ψ represents a function f : Nt → K. Then there
exists an Lring-formula φ(x, i; t) such that for all global fields K and all non-integral

t ∈ K and all i ∈ Nt, φ defines
∑i
k=0 f(k).

Proof. Consider the Lring-formula

φ(x,i; t) := ∃~a(ψ(Ft(~a, 0), 0; t) ∧ ψ(Ft(~a, i), x; t)

∧ ∀k ∈ Nt(1 ≤ k ≤ i→ ∃f(ψ(f, k; t) ∧ Ft(~a, k) = f + Ft(~a, k 	 1)))).

It it clear that φ defines
∑i
k=0 f(k).

Corollary 5.6.7. There exists an Lring-formula φ(y, x, s, t) such that for all global
fields K with non-integral s, t ∈ K we have that φ represents Is,t : Ns → Nt which
satisfies for all n ∈ N and all non-integral s, t ∈ K

1) Is,t ◦ Is = It, and

2) Is,t = Iu,t ◦ Is,u.

Proof. Consider the Lring-formula

φ(y, x, s, t) := ∃c∃~a∃n(¬ int(c) ∧ nat(n; c) ∧ Fc(~a, 0) = Fc(~a, 1) = 0

∧ Fc(~a, 2n) = x ∧ Fc(~a, 2n+ 1) = y

∧ ∀i ∈ Nc(2 ≤ i ≤ 2n+ 1→ (

(2 |c i ∧ Fc(~a, i) = s · Fc(~a, i	 2))∨
(2 -c i ∧ Fc(~a, i) = t · Fc(~a, i	 2)))))

It is clear that φ represents Is,t and that Is,t has the required properties.

5.7. Polynomials over the prime subfield

In this section we will show that there is a partial map Nt → K[X], with Lring-
definable domain At, such that the evaluation Pt at X = ω is a uniformly Lring-
representable function.

Consider the map π : N → N that maps n to the (n + 1)-th prime number
and consider for each prime p the map ordp : N → N determined by the formula
n =

∏
p|n p

ordp(n). Then using Theorem 5.5.4 and the fact that π and ordp are
Larith-representable, we conclude that the push forwards πt and ordp,t of π and
ordp along It are uniformly Lring-representable. Hence using Corollary 5.6.5 and
5.6.6 we find that there is a uniformly Lring-representable function Pt : K×Bt → K
given by

Pt(ω, n) :=

n0∑
i=0

at(ni+1)ωi, ni = ordπt(i),t(n). (5.12)

with Bt := {n ∈ Nt | ni+1 ∈ At, i = 0, . . . , n0}.

Enumeration of K. In this paragraph we show that there is an Lring-representable
partial surjective map at : Nt → K, with Lring-definable domain At. Recall that F is
the prime subfield of K. Then the following theorem provides a general surjection.

Proposition 5.7.1. For all n ≥ 0 there exists an Lring-formula φn(y, k; t, x1, . . . , xn)
such that for all global fields K and all non-integral t0 ∈ K, φ represents a surjection
s~xt : Nt → F[x1, . . . , xn].
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Proof. We construct sn~t by induction on n. For n = 0, consider the function

st(k) :=

{
(−1)k2 ⊗ k3 if χ0∑k
i=1 1 otherwise

,

where kp = ordp,t(k). If char(K) = 0 then Corollary 3.9.5 and Corollary 5.6.5
show that the first case is uniformly representable. If char(K) > 0 then Corollary
5.6.6 implies that this case is also uniformly representable. Hence s0

~t
is uniformly

representable.
Suppose that s~xt is uniformly representable. Then define

s
~x,xn+1

t (k) :=

k0∑
i=0

s~xt (ki+1) · xin+1, ki = ordπt(i),t(k).

Corollary 5.6.5 and 5.6.6 show that sn+1
t is uniformly representable, which proves

the theorem.

This proposition show that there exists an Lring-formula φ(x) such that for all
global fields K, φ defines F. Indeed, the Lring-formula φ(x) := ∃t(¬ int(t) ∧ ∃i ∈
Nt(st(i) = x)) defines F.

Corollary 5.7.2. There exists an Lring-formula φ(x, i; t) such that for all global
fields K with non-integral t, φ represents a surjective map qt : Nt → OK.

Proof. Let χ0 be the Lring-sentence such that K |= χ0 if and only if char(K) = 0.
Then the Lring-formula

φ(x, i; t) :=

{
st(i) = x if χ0

stt(i) = x otherwise

represents a surjection qt : Nt → OK.

As K = Q(OK), we are now able to prove that the following:

Theorem 5.7.3. There exists Lring-formulas φ(x, i; t) and ψ(x; t) such that for
all global fields K with non-integral t, ψ defines At ⊆ K, with At ⊆ Nt, and φ
represents a surjective map at : At → K.

Proof. Let qt : Nt → OK be the surjection from Corollary 5.7.2. Consider the
Lring-formula

ψ(x; t) := qt(ord3,t(x)) 6= 0.

and the Lring-formula

φ(x, i; t) := qt(ord3,t(i)) · x = qt(ord2,t(i)).

Then Corollary 5.7.2 shows that φ represents a surjective map at : At → K.

From At one can easily provide an Lring-formula that defines Bt. Hence Theorem
5.7.3 shows that Pt from equation (5.12) is uniformly Lring-representable.

Definability of the degree. If K is a global field, then we have a map degK :
K → N which maps x ∈ K to the degree [K(x) : K] of x over K. If we compose
this map with It, we find a map degK,t : K → Nt. In this paragraph we will show
that this maps is Lring-representable.

We will need two preliminary lemmas. Recall from Theorem 5.6.4 the definition
of the Gödel function Ft : K9 × Nt → K.

Lemma 5.7.4. There exists an Lring-formula φ(y, ~x, ω,m; t) such that for all global
fields K and all non-integral t ∈ K and all ω ∈ K, φ represents that map

Pt(~x, ω,m) =

m∑
i=0

Ft(~x, i+ 1)ωi.
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Proof. Consider the Lring-formula

φ(y,~x, ω,m; t) := ∃~a(Ft(~a, 0) = Ft(~x, 0) ∧ Ft((~a,m) = y

∧ ∀k ∈ Nt(1 ≤ k ≤ m→ Ft(~a, k) = Ft(~x, k ⊕ 1)ωk + Ft(~a, k 	 1))).

It is clear that φ represents Pt.

Lemma 5.7.5. For all Lring-formulas ψ there exists an Lring-formulas φ≤(m; t)
and φ≥(m; t) such that for all global fields K and all non-integral t ∈ K, φ≤ defines
min{n ∈ Nt | ψ(n)} and φ≥ defines max{n ∈ Nt | ψ(n)}.

Proof. Consider the Lring-formula(s) given by

φ≤(m; t) := ψ(m) ∧ ∀n ∈ Nt(ψ(n)→ m ≤ n)

φ≥(m; t) := ψ(m) ∧ ∀n ∈ Nt(ψ(n)→ m ≥ n)

It is clear that φ≤ and φ≥ define the constants min{n ∈ Nt | ψ(n)} and max{n ∈
Nt | ψ(n)}.

Now we are ready to show that degK,t is Lring-representable.

Theorem 5.7.6. There exists an Lring-formula φ(d, ω; t) such that for all global
fields K and all non-integral t ∈ K, φ defines degK,t : K → Nt.

Proof. Consider the Lring-formula

φ(d, ω; t) := d = min{n ∈ Nt | ∃~a(Pt(~a, ω, n) = 0)}.

It is clear that φ represents degK,t.

As we know from Lemma 5.7.5 that the maximum is Lring-definable, we have
the following corollary.

Corollary 5.7.7. There exists an Lring-formula φ(d; t) such that for all global fields
K and all non-integral t ∈ K, φ defines [K : K]t.

Proof. Consider the Lring-formula φ(d; t) given by

φ(d; t) := d = max{n ∈ Nt | ∃ω(n = degK,t(ω))}

We will now show that φ defines the constant [K : K]t. Suppose that K |= φ(d; t).
Since K/K is seperable, we find by the primitive element theorem an ω ∈ K with
K = K(ω) or equivalently degK(ω) = [K : K]. Moreover we have that degK(ω)
divides [K : K] for all ω ∈ K. Hence [K : K] is the maximum of all degK(ω) with
ω ∈ K.

5.8. Richness of global fields

In this section we will apply the results of the previous sections to the family
isomorphism classes of global fields Egf .

Just like algebraically closed fields in chapter 4, we will first determine the
isomorphism classes.

Theorem 5.8.1. Let K be a global field. Then K = K(ω) with ω algebraic over K.

Proof. Note that K/Q is seperable by Theorem 1.11.9 when char(K) = 0. Fur-
thermore, using Lemma 1 at page 48 of Weil [17], we can choose t ∈ K such that
K/Fp(t) is separable, whenever char(K) > 0. The theorem follows from the primi-
tive element theorem.
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Interpretation of K in N. Let K be a global field, t ∈ K be non-integral and
ω ∈ K such that K = K(ω). In this paragraph we will construct an injective map
Jt,ω : K → N and show that it is a uniform interpretation, i.e., there are Larith-
formulas φ+, φ×, φ0, φ1, φ= and φim, with some parameters ~y, which make Jt into
an interpretation, and these Lring-formulas do not depend on K. With Theorem
3.10.7 this gives rise to a map λ : F0

Lring
→ FnLarith

such that for every global field
K and every Lring-sentence φ we have

K |= φ if and only if N |= (λφ)(~y).

The map Jt,ω and the related formulas are constructed in several steps.

Lemma 5.8.2. There are Larith-formulas φ1
+(z, x, y;χ), φ1

×(z, x, y;χ), φ1
0(x;χ),

φ1
1(x;χ), φ1

=(x, y;χ) and φ1
im(x;χ) such that if K is a global field with prime subring

R, then the map J1 : R→ N given by

x 7→


2x− 1 if char(K) = 0 and x > 0

−2x if char(K) = 0 and x ≤ 0

y if 0 ≤ y < p := char(K) and p | x− y

is an interpretation, by these Lring-formulas with χ = char(K).

Proof. Define φ1
+(z, x, y;χ) by the Lring-formula

φ1
+ :=



z = 2(x+1
2 + y+1

2 )− 1 if χ = 0, 2 - x and 2 - y
z = −2( x

−2 + y+1
2 ) if χ = 0, 2 | x and 2 - y and x

−2 + y+1
2 ≤ 0

z = 2( x
−2 + y+1

2 )− 1 if χ = 0, 2 | x and 2 - y and x
−2 + y+1

2 > 0

z = −2(x+1
2 + y

−2 ) if χ = 0, 2 - x and 2 | y and x+1
2 + y

−2 ≤ 0

z = 2(x+1
2 + y

−2 )− 1 if χ = 0, 2 - x and 2 | y and x+1
2 + y

−2 > 0

z = −2( x
−2 + y

−2 ) if χ = 0, 2 | x and 2 | y
z = x+ y − kχ if 0 ≤ x+ y − kχ < χ for some k ∈ {−1, 0, 1}

Define φ1
× by the Lring-formula

φ1
×(z, x, y;χ) :=



z = 2(x+1
2 ×

y+1
2 )− 1 if χ = 0, 2 - x and 2 - y

z = −2( x
−2 ×

y+1
2 ) if χ = 0, 2 | x and 2 - y

z = −2(x+1
2 ×

y
−2 ) if χ = 0, 2 - x and 2 | y

z = 2( x
−2 ×

y
−2 )− 1 if χ = 0, 2 | x and 2 | y

z = x× y − kχ if 0 ≤ x× y − kχ < χ for some k ∈ N

Furthermore define φ1
0(x) := x = 0, φ1

1(x) := x = 1, φ1
=(x, y;χ) := x = y and

φ1
im(x;χ) := χ > 0→ 0 ≤ x < χ.

It is clear that these Lring-formulas satisfy the desired properties.

Lemma 5.8.3. There are Larith-formulas φ2
+(z, x, y;χ), φ2

×(z, x, y;χ), φ2
0(x;χ),

φ2
1(x;χ), φ2

=(x, y;χ) and φ2
im(x;χ) such that if K is a global field and t ∈ K is

non-integral, then the map J2
t : OK → N given by

x 7→

{
J1(x) if char(K) = 0

min{n ∈ N | x =
∑n0

i=0 I
1(ni+1)ti} if char(K) > 0

where nk = ordπ(k)(n) for all k ∈ N and I1 = (J1)−1, is an interpretation, by these
Lring-formulas with χ = char(K).

Proof. Let f1
+ : N3 → N be the function represented by φ1

+(z, x, y;χ). Define

φ2
+ :=

{
z = f1

+(x, y; 0) if χ = 0

z = min{n ∈ N | nk = f1
+(xk, yk;χ), 1 ≤ k ≤ x0 + y0} if χ > 0
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Let f1
× : N3 → N be the function represented by φ1

×(z, x, y;χ). Define

φ2
× :=

{
z = f1

×(x, y; 0) if χ = 0

z = min{n ∈ N | nk =
∑k
i=0 f

1
+(xi+1, yk−i+1;χ), 1 ≤ k ≤ x0y0} if χ > 0

Define φ2
0 by

φ2
0(x;χ) :=

{
x = 0 if χ = 0

x = 1 if χ > 0

Define φ2
1 by

φ2
1(x;χ) :=

{
x = 1 if χ = 0

x = 6 if χ > 0

Define φ2
=(x, y;χ) := x = y. Finally define φ2

im by

φ2
im(x;χ) :=

{
φ1

im(x; 0) if χ = 0

∀kφ1
im(xk+1;χ) ∧ ¬φ1

0(xx0+1;χ)) ∧ ∀k > x0 φ
1
0(xk+1;χ) if χ > 0

where xk = ordπ(k)(x) for all k ∈ N. It is clear that these Lring-formulas satisfy the
desired properties.

Lemma 5.8.4. There are Larith-formulas φ3
+(z, x, y;χ), φ3

×(z, x, y;χ), φ3
0(x;χ),

φ3
1(x;χ), φ3

=(x, y;χ) and φ3
im(x;χ) such that if K is a global field and t ∈ K is

non-integral, then the map J3
t : K→ N given by

x 7→ min{n ∈ N | x = I2
t (n0)/I2

t (n1)}

where nk = ordπ(k)(n) for all k ∈ N and I2
t = (J2

t )−1, is an interpretation, by these
Lring-formulas with χ = char(K).

Proof. For all n, k ∈ N, we write nk := ordπ(k)(n). Let +2
χ be the relation repre-

sented by φ2
+(z, x, y;χ) and ×2

χ be the relation represented by φ2
×(z, x, y;χ). Define

for � = +,× the Lring-formula

φ3
� := z = min{n ∈ N | ψ�(n, x, y;χ)},

where

ψ+(n, x, y;χ) := n0 ×2
χ x1 ×2

χ y1 = n1 ×2
χ (x0 ×2

χ y1 +2
χ x1 ×2

χ y0)

and
ψ×(n, x, y;χ) := n0 ×2

χ x1 ×2
χ y1 = n1 ×2

χ x0 ×2
χ y0

Furthermore define φ3
0(x;χ) := φ2

0(x0, χ) and φ3
1(x;χ) := φ2

1(x0, χ) ∧ φ2
1(x1, χ) and

φ3
=(x, y;χ) := x = y. Finally we define

φ3
im(x;χ) := φ2

im(x0;χ) ∧ φ2
im(x1;χ) ∧ ¬φ2

0(x1, χ) ∧ θ,

with
θ := ∀n(n ≤ x ∧ n0 ×2

χ x1 = n1 ×2
χ x0 → n = x).

It is clear that these Lring-formulas satisfy the desired properties.

The following proposition encodes all polynomials over K:

Proposition 5.8.5. There are Larith-formulas φ4
+(z, x, y;χ), φ4

×(z, x, y;χ), φ4
0(x;χ),

φ4
1(x;χ), φ4

=(x, y;χ) and φ4
im(x;χ) such that if K is a global field and t ∈ K is non-

integral, then the map J4
t : K[X]→ N given by

x 7→ min{n ∈ N | x =

n0∑
i=0

I3
t (ni+1)Xi}

with nk = ordπ(k)(n) for all k ∈ N and I3
t = (J3

t )−1, is an interpretation, by these
Lring-formulas with χ = char(K).
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Proof. For all n, k ∈ N, we write nk := ordπ(k)(n). Let +3
χ be the relation repre-

sented by φ3
+(z, x, y;χ) and ×3

χ be the relation represented by φ3
×(z, x, y;χ). Define

for � = +,× the Lring-formula where

ψ�(n, x, y;χ) := ∀k(1 ≤ k ≤ x0 + y0 → nk = xk +3
χ yk)

and

ψ×(n, x, y;χ) := ∀k(1 ≤ k ≤ x0y0 → nk =

k∑
i=0

xi+1 ×3
χ yk−i+1)

Furthermore define φ4
0(x;χ) := ∀kφ3

0(xk, χ), φ4
=(x, y;χ) := x = y and

φ4
1(x;χ) := φ2

1(x1, χ) ∧ ∀k(k 6= 1→ φ3
0(xk, χ)).

Finally we define

φ4
im(x;χ) := ∀kφ3

im(xk+1;χ) ∧ ¬φ3
0(xx0+1;χ)) ∧ ∀k > x0 φ

3
0(xk+1;χ).

It is clear that these Lring-formulas satisfy the desired properties.

Using the encoding of all polynomials over K, we can now construct an encoding
of the factor ring K ∼= K[X]/(f), where f is the minimal polynomial of a primitive
element ω ∈ K. But in order to provide an Lring-representation of the push-forwards
of addition and multiplication, we will need to know the code g of f .

Proposition 5.8.6. There are Larith-formulas φ+(z, x, y;χ, g), φ×(z, x, y;χ, g),
φ0(x;χ, g), φ1(x;χ, g), φ=(x, y;χ, g) and φim(x;χ, g) such that if K is a global field,
t ∈ K is non-integral and ω ∈ K with K = K(ω), then the map Jt,ω : K → N given
by

x 7→ min{n ∈ N | x =

n0∑
i=0

I3
t (ni+1)ωi}

with nk = ordπ(k)(n) for all k ∈ N and I3
t = (J3

t )−1, is an interpretation, with
χ = char(K) and g = J4

t (fω).

Proof. For all n, k ∈ N, we write nk := ordπ(k)(n). Let +4
χ be the relation repre-

sented by φ4
+(z, x, y;χ) and ×4

χ be the relation represented by φ4
×(z, x, y;χ). Define

for � = +,× the Lring-formula

φ2
� := z = min{n ∈ N | ψ�(n, x, y;χ, g)},

where

ψ�(n, x, y;χ, g) := ∃h(n = x�4
χx+4

χ h×4
χ g).

Furthermore define φ0(x;χ) := φ4
0(x, χ) and φ1(x;χ) := φ4

1(x, χ) and φ=(x, y;χ) :=
x = y. Finally we define

φim(x;χ, g) := ∀n(n ≤ x ∧ ∃h(n = x+4
χ h×4

χ g)→ n = x)

It is clear that these Lring-formulas satisfy the desired properties.

If we apply Theorem 3.10.7 to Proposition 5.8.6 we conclude the following:

Theorem 5.8.7. There exists a map λ : F0
Lring

→ F2
Larith

such that for every global
field K and every Lring-sentence φ we have

K |= φ if and only if N |= (λφ)(χ, g),

with χ = char(K) and g = J4
t (f) where f ∈ K[X] such that K ∼= K[X]/(f).
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Code of a global field. In this paragraph we will assign to every global field K
a natural number dKe ∈ N with the following properties:

1) there is an Lring-formula code(x; t) such that if K is a global field and t ∈ K
non-integral, then code(x, t) defines It(dKe) ∈ K;

2) there is an Larith-formula char(x, y) such that if K is a global field, then
N |= char(χ, dKe) if and only if K has characteristic χ, for all χ ∈ N;

3) there is an Larith-formula gen(x, y; t) such that if K is a global field and t ∈ K
is non-integral, then N |= gen(g, dKe; t) if and only if J4

t (f) = g, for some
f ∈ K[X] such that K ∼= K[X]/(f).

We will first define a constant char(t) ∈ Nt, such that for all p ∈ N

K |= ∃t(¬ int(t) ∧ It(p) = char(t))

if and only if char(K) = p. It is easy to see that

φ(x, t) :=

{
x = 0 if χ0

x = min{n ∈ Nt | n = 0} otherwise

defines this constant.
Recall that we can enumerate the polynomials over K using Pt from (5.12).

Hence we can define the minimal polynomial over K of a given ω ∈ K by the
Lring-formula

minpol(ω, n; t) := Pt(ω, n) = 0 ∧ ord2,t(n) = degK,t(ω), (5.13)

which defines a subset of K × Bt of pairs (ω, n), such that n is the code of a
minimal polynomial of ω. Recall from Corollary 5.6.7 the definition of the map It,s
and consider the Lring-formula

genpol(n; t) := ¬n ∈ Bt ∧ ∃s∃ω(¬ int(s) ∧ degK,s(ω) = [K : K]s

∧minpol(ω, It,s(n)); s). (5.14)

Then K |= genpol(n; t) if and only if n encodes the minimal polynomial of a gener-
ating (i.e., primitive) element of K/K. Therefore we can define the following:

Definition 5.8.8 (Coding of global fields). The map d·e : Egf → N defined by
dee = m if and only if for all primes p with p | m we have p = 2, 3 and for some
K ∈ e

K |= ∃t(¬ int(t) ∧ It(m0) = char(t) ∧ It(m1) = min{n ∈ Nt | genpol(n; t)})

is called the coding of global fields. 4

For notational convenience we will write dKe instead of d[K]e. We now show
that dee is well-defined. First of all, if K and K ′ are isomorphic, then they are
elementary equivalent. Therefore the definition does not depend on the choice of K
in e. Furthermore notice that K |= genpol(n; t) if and only if genpol(It,t′(n); t′), for
all non-integral t, t′ ∈ K, because It,s(n) = It′,s(It,t′(n)) by Corollary 5.6.7. Now
using that It′(m) = It,t′(It(m)), we conclude that m does not depend on the choice
of t.

The reason that we have defined the coding d·e in this way is because there is
now a uniform definition of dKe in a global field K.

Lemma 5.8.9. There is an Lring-formula code(x; t) such that if K is a global field,
then

K |= ∀x(code(x; t)↔ x = It(dKe)).

Proof. Consider the Lring-formula

code(x; t) := x = min{n ∈ Nt | genpol(n; t)}.

It is clear from the definition that φ(x) defines It(dKe).

It is easy to see that we have reached the goal of this section, since we can define
char(x, y) := x = y0 and gen(x, y; t) := x = y1.
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Characterization of definable subsets. The following theorem characterizes
completely the definable subsets of Egf . This provides an answer to Question 2 in
the case of global fields.

Theorem 5.8.10. Let S ⊆ Egf be a set of isomorphism classes of global fields.
Then there exists an Lring-sentence φ with S = {e ∈ Egf | e |= φ} if and only if
there exists an Larith-formula ψ(x) with S = {e ∈ Egf | N |= ψ(dee)}.

Proof. Let S ⊆ Egf be a set of isomorphism classes of global fields. Suppose that
there exists an Larith-formula ψ(x) with S = {e ∈ Egf | N |= ψ(dee)}. Then let µ
be the uniform interpretation of Th(N) in the theory of global fields from Corollary
5.5.4. Then it is clear that

φ := ∃t∃m(¬ int(t) ∧ code(m; t) ∧ (µψ)(m))

is an Lring-sentence such that S = {e ∈ Egf | e |= φ}.
On the other hand, let λ be the map from Theorem 5.8.7. Then

ψ(x) := (λφ)(x0, x1)

is an Larith-formula ψ(x) with S = {e ∈ Egf | N |= ψ(dee)}.

The strength of Theorem 5.8.10 becomes clear by its corollaries.

Corollary 5.8.11. For all global fields K there is a sentence φK which is true in
K and false for all global fields L with L 6∼= K.

Proof. Let K be a global field and consider the Larith-formula

ψ(x) := x = 1 + · · ·+ 1 (dKe times).

Then application of Theorem 5.8.10 yields an Lring-sentence φK , which is true for
K and false for every global fields L with L 6≡ K.

Thus Corollary 5.8.11 shows that every global field is definable by a single Lring-
sentence. This implies that two global fields are isomorphic whenever their theories
are equal (i.e., whenever they are elementary equivalent). This provides a positive
answer to Question 3.

Corollary 5.8.12. For all global fields K and L we have that K ≡ L if and only
if K ∼= L.

Proof. Let K and L be global fields. If K ∼= L then clearly K ≡ L. Conversely
suppose that K ≡ L and let φK be the Lring-sentence from Corollary 5.8.11. Then
L |= φK , hence L ∼= K.
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Chapter 6

Finitely Generated Fields

Let K be a field and F its prime subfield. If K/F is finitely generated, then K is
called a finitely generated field. Let Eifgf denote the set of all isomorphism classes of
infinite finitely generated fields. Note that we will consider only finitely generated
fields which are infinite, as then we are able to reduce global fields. In this chapter
we will provide a negative answer to Question 1 with E = Eifgf .

To achieve this, we show that for every infinite finitely generated field K there
exists an interpretation from N to K. Just as with the interpretation of N into
a global field, the hardest part is to show that the image is definable. We will
prove this by reducing to global fields using results from Poonen [11]. These will
be discussed in section 6.1. Then in section 6.2 we conclude that Question 1 has a
negative answer.

The answer of Question 2 and 3 is not yet known in the case of infinite finitely
generated fields.

6.1. Reduction to global fields

In this section we will show that there exists an Lring-formula that defines a global
field inside every infinite finitely generated field K. We will first describe this global
field and then show that it is definable, using results of Poonen [11].

We first extend our notations about global fields from section 2.1. Let K be
a infinite finitely generated field. Then t ∈ K is called integral if and only if t is
integral over the prime subring of K. For every non-integral t ∈ K define

OK :=

{
Z if char(K) = 0

Fp[t] if char(K) = p > 0
(6.1)

Then define Kt to be the algebraic closure K = Q(OK) in K. It is clear that Kt is
a global field, as it is finitely generated over the prime subfield and has Kronecker
dimension one. We will provide a first order definition of Kt in K.

Characteristic zero. If K is an infinite finitely generated field, then the algebraic
closure k of F in K is called the field of constants. Notice that if char(K) = 0, then
F = K and k = Kt is a global field. Hence the following theorem allows us to define
Kt in characteristic zero.

Theorem 6.1.1 (Poonen). There exists a Lring-formula φ(x) such that for all
finitely generated fields K with field of constants k we have

{x ∈ K | K |= φ(x)} =

{
k if char(K) = 0

∅ otherwise

Proof. See Lemma 3.7 of [11].

Poonen proved (proof of Theorem 1.1 on page 15 of [11]), using the theory from
Chapter 5, that the above theorems implies that characteristic zero is definable.
However, the proof could be much easier.
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Corollary 6.1.2. There exists an Lring-sentence χ0 such that K |= χ0 if and only
if char(K) = 0 for all infinite finitely generated fields.

Proof. Let φ(x) be the Lring-formula from Theorem 6.1.1 and consider the Lring-
sentence χ0 := ∃xφ(x). It is clear that K |= χ0 if and only if char(K) = 0.

This corollary generalizes Corollary 5.3.4. Hence we are now able to separate
positive characteristic from characteristic zero.

Positive characteristic. Let K be an infinite finitely generate field. We will now
show that Kt is definable in positive characteristic. It clearly suffices to show that
the family

FK := {Kt | t non-integral} (6.2)

is Lring-definable, whenever char(K) > 0.
We first investigate some basic properties of F .

Lemma 6.1.3. Let K be an infinite finitely generate field with char(K) > 0 and
let s, t ∈ K be non-integral. If t ∈ Ks, then Ks = Kt.

Proof. Suppose that t ∈ Ks. Then we have Ks ∩ Kt 6= k, where k is the field
of constants of K. Since Ks and Kt are algebraically closed in K we find that
k ⊆ Ks ∩Kt. Thus there exists some non-integral x ∈ K with x ∈ Ks ∩Kt. This
implies that F[x] ⊆ Ks ∩Kt and since Ks and Kt are algebraically closed in K we
find that Ks and Kt both equal the relative integral closure of F[x] in K. Hence
Ks = Kx = Kt.

Theorem 6.1.4 (Poonen). There exists Lring-formulas φ(x; ~y) and χ(~y) such that
if K is an infinite finitely generated field with char(K) > 0, then φ and χ define
FK .

Proof. We claim that F ∈ FK if and only if F is algebraically closed in K and
trdeg(F/k) = 1. Then Proposition 4.10 of [11] proves the theorem.

If F = Kt, for some non-integral t ∈ K, then by definition F is algebraically
closed and trdeg(F/k) = 1. Conversely suppose that F ⊆ K is a subfield such that
F is algebraically closed in K and trdeg(F/k) = 1. Pick t ∈ K − k non-integral.
Then from the uniqueness of the relative algebraic closure it follows that F equals
the relative algebraic closure of Fp[t], where p = char(K) > 0. Hence F = Kt.

We are now ready to show that Kt is Lring-definable.

Corollary 6.1.5. There exists an Lring-formula gf(x; t) such that if K is an infinite
finitely generated field and t ∈ K is non-integral, then gf defines Kt.

Proof. Let φ(x) be the Lring-formula from Theorem 6.1.1, χ0 the Lring-sentence from
Corollary 6.1.2, ψ(x; ~y) and χ(~y) the Lring-formulas from Theorem 6.1.4. Consider
the Lring-formula

gf(x; t) :=

{
φ(x) if χ0

∀~y(χ(~y)→ (ψ(x; ~y)→ ψ(t; ~y))) otherwise

If char(K) = 0, then Theorem 6.1.1 shows that gf defines Kt. If char(K) > 0, then
Theorem 6.1.4 shows that gf defines

⋃
{Ks | t ∈ Ks}. Then Lemma 6.1.3 shows

that gf defines Kt.

6.2. Richness of finitely generated fields

Let us first describe the image of this map. Let K be an infinite finitely generated
field and t ∈ K be non-constant. Then we define the map

It : N→ K n 7→

{
n if char(K) = 0

tn otherwise
(6.3)

We will prove that It is an interpretation.
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Lemma 6.2.1. Let K be an infinite finitely generated field and t ∈ K be non-
integral. Then there exists a graded map µ : FLring

→ FLring
such that for all n ∈ N

and for all φ ∈ FnLring
and all ~m ∈ Kn

t

Kt |= φ(~m) if and only if K |= (µφ)(~m)

Proof. Let ι : Kt → K be the inclusion of Kt in K. Then Corollary 6.1.5 shows
that the image of ι is definable. Hence ι : Kt → K is an interpretation of models,
since addition and multiplication are trivially Lring-representable. The lemma now
follows from Theorem 3.10.7.

Theorem 6.2.2. Let K be an infinite finitely generated field and t ∈ K be non-
integral. Then the map It : N → K given by equation (6.3) is an interpretation of
models.

Proof. Notice that It factors through a map I ′t : N → Kt and the inclusion ι :
Kt ⊆ K. Now let µ : FLring

→ FLring
be the map from Lemma 6.2.1. Then

µnat(x; t) defines the image of Jt in K. Using µ rin(x; t) instead of rin(x; t) shows
that divisibility |t is Lring-representable in K. Hence the proof of Lemma 5.5.2 also
applies to infinite finitely generated fields. Thus It is an interpretation.

If we apply Theorem 3.10.7 and Corollary 3.10.8 to Theorem 6.2.2 we conclude
that Question 1 has a negative answer for Eifgf .

Corollary 6.2.3. The theory Th(K) of an infinite finitely generated field K is
undecidable.

Question 2 and 3 will remain unanswered in this thesis. At the time of writing,
they are open questions in this field of mathematics.

Pop showed some strong evidence that Question 3 should have a positive answer.
He showed in [12] that if K and L are finitely generated fields with Th(K) = Th(L)
and K is a function field of general type then K is isomorphic to L. He furthermore
shows that the set of isomorphism classes of global fields is a definable subset of
Eifgf .
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AK adèle ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
rin(x; t) Lring-formula that defines the ring of integers . . . . . . . . . . 94
ass(φ) assumption tree with conclusion φ . . . . . . . . . . . . . . . . 66
C set of complex numbers . . . . . . . . . . . . . . . . . . . . . . . 4
χ Dirichlet character . . . . . . . . . . . . . . . . . . . . . . . . . 49
χ0 Lring-sentence with K |= χ0 if and only if char(K) = 0 . . . . . 94
χA characteristic function of A . . . . . . . . . . . . . . . . . . . . 67
Cl(K) class group of K . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Clm(K) ray class group modulo m . . . . . . . . . . . . . . . . . . . . . 47
diag(M) elementary diagram of M . . . . . . . . . . . . . . . . . . . . . 69
Ecacf isomorphism classes of countable algebraically closed fields . . . 81
∅ empty set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
F prime subfield of K . . . . . . . . . . . . . . . . . . . . . . . . 93
Fq finite field with q = pn elements, p prime and n ≥ 0 . . . . . . . 25
a + b ideal sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ab ideal product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
b | a ideal division . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
m0 finite part of m . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
mv valuation ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
FnL L-formulas with at most n free variables . . . . . . . . . . . . . 60
p place of K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
P/p extension of places . . . . . . . . . . . . . . . . . . . . . . . . . 38
P/p extension of primes . . . . . . . . . . . . . . . . . . . . . . . . . 31
R ideal class in Cl(K) . . . . . . . . . . . . . . . . . . . . . . . . . 34
Γ ∼= Γ′ order isomorphic . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Γ value group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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