

Background extraction from videos
produced in laboratory experiments

MSc Thesis
December 2013

Cecilia Herrera

Professor: Prof. dr. Massimo Menenti
Supervisor: Dr. ir. Ben Gorte

Background extraction from videos produced in laboratory
experiments

Thesis submitted in partial fulfillment of the degree

Master of Science

 in

Geographical Information Management and Applications

December 2013

Author: Cecilia Herrera

Professor: Prof. dr. Massimo Menenti (Delft University of Technology)
Supervisor: Dr. ir. Ben Gorte (Delft University of Technology)
Coordinator: Dr. dipl. ing. Sisi Zlatanova (Delft University of Technology)

DISCLAIMER

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my supervisors.

I understand that my thesis may be made electronically available to the public.

i

Abstract

In laboratory cages or arenas, animals are tracked to study their behavior, movement and activity.
But before animals can be tracked, they first have to be detected separate from the background. In
order to do this, the background without the animal (e.g. “empty” or reference background) needs to
be available. This background is sometimes easy to obtain, i.e. when the animal is hidden or absent.
Other times, it has to be extracted from sequences of images while the animal is present. This
involves estimating the background in the places where the animal is located over time.

There are different methods or algorithms to extract the background. One of these is the
background modeling component of the so-called “Background Subtraction” methods, which are
commonly used to extract moving objects from video sequences. The objective of this study was to
find the algorithm among a set of different algorithms that best provides the empty background for
videos produced in laboratory experiments. To achieve this, the requirements of a good algorithm
were identified and different algorithms were studied. An evaluation method to derive the best
algorithm was devised. The evaluation was then performed and the best algorithm was identified.
The chosen algorithm was thereafter tested to see how it performed using videos showing different
situations in the laboratory.

The identified requirements of a good algorithm were high speed, good quality of the extracted
background and applicability to different situations in the laboratory. A total of 24 algorithms were
examined. The identified measures used to evaluate the algorithms were (1) Speed or the time it
takes to run the algorithm, (2) Minimum Thresholded Difference, which is calculated as the lowest
“thresholded” difference between the extracted and reference background images, taken over all
the frames in the video, and (3) the Frequency by which this lowest difference value was calculated
in the whole video. The algorithms were run with 2 sample videos and the values for the 3 measures
were obtained. The multi-criteria evaluation (MCE) procedure was then used with the extracted
values to rank the different algorithms. The best algorithm found was the LBMixtureOfGaussians.
This algorithm was run with 37 videos showing different situations in the laboratory, and empty
backgrounds were extracted in most of the cases. Only in videos where the animal hardly moved or
in multiple arenas where more than one animal was present, were empty backgrounds not obtained.

There were some results which were not as expected. For example, the algorithms FrameDifference,
StaticFrameDifference, and AdaptiveBackgroundLearning, which always produced backgrounds with
animal or traces of animal, got relatively high scores in the MCE analysis. Reasons for this behavior
were sought and recommendations were made. It was also suggested to optimize the extraction of
the background.

Keywords:
Background extraction, background subtraction, background modeling, empty background, reference
background, minimum (thresholded) difference, Mixture of Gaussians algorithm, Multi-criteria
evaluation, videos, laboratory experiments.

ii

Acknowledgements

I would like to thank my husband and children for bearing with me while I spend many hours and
nights alone in the room to study. Thanks for the support and exchange of ideas on how I should
proceed with the thesis and my study.

I also want to thank my parents, brothers and sisters who are always there to support me in all
aspects. I am sorry that I could not spend time with you as much as I wanted because I was busy
with my study.

I would like to acknowledge Wil van Dommelen, my supervisor at Noldus Information Technology,
b.v., for giving me time and allowing me to use resources at the office for my thesis. I know that the
topic of my thesis is relevant to our work in the office.

I would like to thank my thesis supervisors Massimo Menenti and Ben Gorte, as well as the Module 8
coordinator Sisi Zlatanova for their support and patience in dealing with me, and for encouraging me
to improve my thesis.

To the rest of the GIMA staff involved over the past three years, thank you for providing the
necessary background and foundation in our course work leading up to this thesis. I am glad that the
GIMA curriculum is structured so that working people like me could also participate.

And last but not the least, I would like to thank my fellow part- and full time students for their
company and friendship during the study. I have enjoyed the time I had with you, especially the
dinners, drinks and walks we had during the contact weeks.

Cecilia Herrera
Ede, 2013

iii

Table of Contents

Abstract .. i
Acknowledgements .. ii

List of tables ... iv
List of figures ... iv

I. Introduction ... 1
 Background Subtraction ... 2
 Background subtraction algorithms .. 2
 Challenges to background modeling ... 3
 Objectives .. 4
 Scope of the research ... 5
II. Literature Review .. 6
 A. Background representation ... 6
 A.1. Type of method ... 6
 A.2. Classification based on features ... 9
 B. Background initialization ... 9
 C. Background adaptation ... 10
 Other considerations .. 11
 Background extraction algorithms .. 11
 Evaluation method ... 12
III. Methodology .. 15
 Find a suitable background extraction algorithm – Which is the best algorithm? 15
 1. Which algorithms can be tested ... 15
 2. Which quantitative and reproducible measures ... 15
 3. How can the evaluation be performed ... 16
 4. How does the algorithm perform ... 17
IV. Results and Discussion .. 19
 Find a suitable background extraction algorithm – Which is the best algorithm? 19
 1. Which algorithms can be tested ... 19
 2. Which quantitative and reproducible measures ... 21
 3. How can the evaluation be performed ... 27
 4. How does the algorithm perform ... 37
V. Summary and Conclusions ... 39

References ... 41

Appendix I. Algorithms used to extract the background .. 44
Appendix II. Comparison of GrimsonGMM and LBMOG using different videos. 47
Appendix III. Frames corresponding to quality measures for different background extraction

methods using BS2 video. .. 50
Appendix IV. Multi-criteria evaluation to select the best method using BS2 video with thresholded

Difference values. .. 52
Appendix V. Frames corresponding to quality measures for different background extraction

methods using Video1. .. 54
Appendix VI. Multi-criteria evaluation to select the best method using Video1 video with

thresholded Difference values. .. 56
Appendix VII. Extracted backgrounds using LBMOG .. 58

iv

List of tables

Table 1. Speed (msec) results for LBMOG and GrimsonGMM using 500 samples.......................... 23
Table 2. Minimum and maximum values for runs with BS2, sampling interval 1 (Number represents

the frequency of the same value of minimum Difference. .. 24
Table 3. Methods which produced at least one empty background for BS2 video. 28
Table 4. Summary of calculated values for the different criteria for the BS2 video. 29
Table 5. Frequency values of minimum threshold difference plus different number of pixels, using

BS2 video. .. 32
Table 6. Top ranking algorithms for different scenarios and frequency values (minimum

thresholded difference plus the factor), for BS2 video. .. 32
Table 7. Summary of calculated values for the different criteria for the Video1 video. 34
Table 8. Frequency values of minimum threshold difference plus different number of pixels, using

Video1 video. ... 36
Table 9. Top ranking algorithms for different scenarios and frequency values (minimum

thresholded difference plus the factor), for Video1 video. ... 36

List of figures

Figure 1. Flow diagram of a generic background subtraction algorithm (after Cheung and Kamath,
2003) ... 2

Figure 2. CPU, Memory and Time Consumption of Background Subtraction algorithms in
BGSLibrary (from Sobral, 2013). .. 13

Figure 3. Steps undertaken in the methodology ... 18
Figure 4. Speed results for LBMOG and GrimsonGMM using 500 samples 24
Figure 5. Difference values for LBMOG using video BS2, sampling interval 1, (normal values in

blue, left axis; thresholded values in red, right axis). ... 25
Figure 6. Difference values for GrimsonGMM using video BS2, sampling interval 1 (normal values

in blue, left axis; thresholded values in red, right axis)... 25
Figure 7. LBMOG reference and resulting images for BS2, sampling rate 1 26
Figure 8. GrimsonGMM reference and resulting images for BS2, sampling rate 1 26
Figure 9. Relation between Speed results with Type of algorithm (left axis) and Modality (right

axis) for BS2 video. ... 30
Figure 10. Relation between Quality results with Type of algorithm (left axis) and Modality (right

axis) for BS2 video. ... 30
Figure 11. Relation between Speed results with Type of algorithm (left axis) and Modality (right

axis) for Video1 video. .. 34
Figure 12. Relation between Quality results with Type of algorithm (left axis) and Modality (right

axis) for Video1 video. .. 35

1

I. Introduction

Computer applications that locate and track moving objects are popular nowadays. These
applications are normally used to study what the objects do. Some applications make use of sensors,
like the Global Positioning System (GPS) for locating the objects. Others make use of images taken
live or from videos.

An example of such applications is software which is used in experiments to track animals placed in
cages in the laboratory. Videos of the animals are taken and studied with the software. One
requirement to do the tracking is to be able to distinguish the background from the moving objects
(also called the foreground objects), i.e. the animals. When this is possible, the background can be
extracted or removed from the images and only the animals will be seen. The extracted background
is considered an “empty background”.

The empty background is sometimes easy to obtain, i.e. when foreground object(s) is hidden or
absent. At other times, the background has to be extracted using “cluttered sequences” where parts
of the background are obstructed (Reddy, et al., 2009). Background extraction involves detecting
where changes took place between two images, and estimating the background in the places where
the changes took place. Here, the changes in the images are assumed to correspond to the location
of the foreground object. This thesis was undertaken to find a method that will best provide the
empty background for videos produced in laboratory experiments. There have been many studies in
background extraction applied in different domains, but none was found to have been applied in
different laboratory situations.

There are various methods to get the empty background. They work on pixel-level, region-level, or
hybrid of the two. Examples of pixel methods are image inpainting (Criminisi, et al., 2004), median
filter, pixels of stable intensity, use of codewords and clustering (Reddy, et al., 2011). These methods
can perform well, but can suffer from degraded visual quality and can fail when the time interval of
exposure of the foreground object is more than that of the background. Region or block level
methods (Reddy, et al., 2011) can use temporal sum of absolute differences, clustered blocks,
Markov Random Fields or motion parameters (Varadarajan, et al., 2009). They can result in errors if
objects are quite stationary for extended periods, can have problems with blending of foreground
and backgrounds, can be quite complex and can fail when the background is dynamic (e.g. waving
trees). Hybrid approaches (Reddy, et al., 2011) can make use of motion information and energy
function with data and smoothness terms, but can be computationally quite complex.

Other background extraction methods have been proposed, some of which do simultaneous
foreground tracking and background extraction and updating (Varadarajan, et al., 2009). These
methods were criticized before as being computationally very expensive. However, with the
capacity of computers nowadays, this is becoming less and less of a problem. This study examines
the so-called “Background Subtraction” methods, which are commonly used to extract moving
objects from video sequences. These methods contain components which model the background.
The background modeling part of these methods will be examined in this study. They will be tested
to see if one can be used to properly extract the background for laboratory situations.

Following is a general introduction to background subtraction concept and its applications. Then the
background modeling part will be discussed in more detail.

2

Background Subtraction

For many years, the method of locating and tracking objects in video frames has been to use (1) an
image of the stationary background, (2) a second image with animals or moving objects and (3)
consider the difference of the two images (e.g. the parts that have significantly changed) as the
animal or moving object (Freedman and Russel, 1997). This process is called “background
subtraction”, and the stationary background is called the background model (Elgammal, 2011).
Background subtraction is the basis (Reddy, et al., 2011) of a “quick and dirty” (Benezeth, et al. 2008)
way of detecting moving objects. It is a “computationally affordable” method for real time
applications (Maddalena and Petrosino, 2008).

The roots of background subtraction date back to photography in the 19th century when the
background image was obtained by allowing exposure of the film to continue for a period of time
longer than needed for moving objects to traverse the field of view (Freedman and Russel, 1997).
The technique has been used in Landsat Imagery by Eghbali (1979) where he successfully isolated
regions of change using the absolute value of maximum difference. In 1979, Jain and Nagel,
compared the first frame with the second and subsequent frames of a TV-image sequence to detect
moving objects. The concept of background subtraction was also used in early human motion
analysis systems (Elgammal, 2011), multimedia applications (El Baf, et al., 2008b) and video
compression (Maddalena and Petrosino, 2009). Another important application of background
subtraction is video surveillance. Humans or vehicles are observed in real time to provide a
description about the activities of the objects with respect to the environment and among
themselves (Chen, et al., 2005). Example environments are banks, shopping malls, airports, train
stations and roads. Animals, like pigs, mice and rats have also been the subject of video surveillance
(McFarlane and Schofield, 1995 and Noldus, et al. 2001). Video surveillance is also related to video
analysis (e.g. in sports) and motion capture applications.

Background subtraction algorithms

Figure 1. Flow diagram of a generic background subtraction algorithm (after Cheung and Kamath,

2003)

Most background subtraction algorithms follow a flow diagram as shown in Figure 1. Preprocessing
changes the raw input video into a format that can be processed. This can involve applying temporal
and/or spatial smoothing to reduce camera noise. For real-time systems, frame-size and frame-rate
are reduced to lower data processing rate. Image registration is employed when the camera is
moving or multiple cameras are involved. The choice of the feature type (intensity or color in HSV or

3

RGB) is also made in this step. Background modeling uses each new video frame to calculate and
update the background model. If a good background is already available, this step could be skipped.
Foreground detection identifies pixels in the frame that are not classified as background and outputs
them as candidates of the foreground mask. Data validation examines the candidate foreground
masks and eliminates the pixels that do not correspond to actual moving objects. After this, the
algorithm can update the background model again, causing a delay, until data validation is sufficient.
The final output is the foreground mask.

The general requirements (Elhabian, et al., 2008) for background subtraction algorithms are accuracy
in object contour detection and temporal stability. Sensitivity to changes of small magnitude and
good accuracy under varying conditions is also desired.

The background modeling activity, where the background is extracted and updated, is the main
interest in this study.

Challenges to background modeling

There are some well-known issues or challenges in background modeling (Madalena and Petrosino,
2008, Elgammal, 2011). They are caused by changes that occur to the background over time. The
changes can affect only part of the background (local), or can affect the entire background (global).
The background model should tolerate these changes by being invariant or adapting to them. The
following lists the background changes that can occur, the conditions in the laboratory, and how the
changes are dealt with.

1. light changes: gradual illumination changes could be due to change in the relative location of the

sun during the day, whereas sudden illumination changes could be due to switching the lights on
or off or changing between sunny or cloudy conditions. Indoor laboratory experiments do not
suffer from gradual illumination changes due to sun or weather conditions, but can be affected
by sudden changes due to lights switching on or off. To prevent problems with sudden changes,
the period to be considered for running the background extraction algorithm can be limited to
only the part where no sudden changes in lighting occurs.

2. moving background: global changes could be due to camera displacements, whereas local

changes could be due to moving background objects like tree branches or rippling water due to
wind. Most laboratory experiments do not suffer much from moving background, since the
camera position is not changed (remains stationary) during the course of the experiment, and
there are no external moving objects like trees. However, the video can:

a. contain parts where the laboratory technician changes his own position, moves objects

outside the cage, or moves the cages, and
b. the animal in the cage can also move and affect its surroundings like moving straw bedding

or creating ripples in the water.

For (a), the video frames can be masked so that only the part inside the arena will be considered
in the algorithms. This will remove the effects of movements outside the cages. The algorithm
can also be run starting at the point when the laboratory technician is already finished setting up
the experiment.

It would be good if the algorithm can take the changes mentioned in (b) into account.

4

3. cast shadows: shadows can be formed from background objects (e.g. mouse shelter) or by the

moving foreground objects themselves. This happens in laboratory situations. There are some
algorithms which take this into account.

4. bootstrapping: empty (free of moving objects) background image(s) at the beginning of the

sequence could be absent. There are laboratory experiments which start with empty
background, but there are also some which start with the animal already in the cage. There are
many algorithms which can estimate the background from obstructed parts of the video, as long
as each pixel reveals the background for at least a short interval, or the foreground object does
not remain stationary longer than the interval where the background is revealed.

5. camouflage: the moving objects to be detected could have chromatic features similar to those of

the background model. In many laboratory situations, care is taken to clearly distinguish the
background from the animal, like use a white straw bedding with a black mouse. There are some
algorithms that use features other than color to model the background.

6. structural changes: background objects can be added or removed from the background, and the

background itself can change in geometry and appearance. Examples are: car parked or moved
out of the background, or a person stays stationary for an extended period. Because laboratory
experiments are controlled, there are hardly structural changes occurring. But the animal can
remain stationary for some time, which can be mistaken as part of the background.

It should be added here that because of the different changes that happen in the background, a
completely stationary background may not exist. There is not one empty background image that
could be considered as the only “correct” background, unless the reference background is defined as
the image before the animal was introduced in the cage. Therefore, the extracted background is
already considered acceptable when the animal (foreground object) is not present in the image.

Following are requirements of a good background extraction algorithm in laboratory situations:

1. The algorithm should perform fast. This is especially true if background extraction is just in the

initial part of the tracking process.
2. The algorithm should output an empty background, that is, a background without the foreground

object or animal.
3. The algorithm should work for different type of animals: fast or slow moving, small or large, one

or more animals, one colored or multi-colored animals.
4. The algorithm should work for different types of setups: one arena or multiple arena setup, open

field, Y maze, Plus maze, etc.

To summarize, the above list looks at the speed, quality (obtains empty background), and
applicability (can be applied to different situations in the laboratory) of the algorithms.

Objectives

The objectives and research questions (RQ) of the study are:

Objective: Find a suitable background extraction algorithm that can be used in laboratory situations.

5

General research question: Which is the best algorithm?

Subquestions:

RQ1: Which algorithms can be tested, what are their characteristics and how good are they expected

to produce an empty background?
RQ2: Which quantitative and reproducible measures can be used as criteria to evaluate the

performance of the different methods?
RQ3: How can the evaluation be performed to get the best algorithm?
RQ4: How does the algorithm perform in the different laboratory situations?

Scope of the research

The study was concerned with the extracted background, as the output of the background modeling
part of a background subtraction method. Detection and tracking of the animals themselves are not
the output of the study.

The emphasis of the study in on acquiring algorithms and choosing the best one to extract
background and to apply it. The applicability of the algorithm to different situations in the laboratory
is much desired.

Only the algorithms that were available with source code were implemented and tested.

The study focused on the laboratory situation. The algorithm may be applied to outdoor situations
but this was not considered in the study.

The study was limited to videos taken from a single static camera, and not from multiple or moving
cameras. The videos to be used should be of good quality.

The report is divided into five sections. The next section presents a literature review on background
subtraction algorithms, since background extraction is part of it. It also contains methods used in the
literature to evaluate performance of algorithms. The methodology is described in Section III, and
the results are presented and discussed in Section IV. The last section is on the conclusions and
recommendations.

6

II. Literature Review

As has been explained in Section I, background subtraction involves background modeling where the
background is calculated and updated. The background modeling process consists of model
representation, model initialization and model adaptation (Cristani, et al., 2003). The first refers to
the kind of model used to represent the background, the second deals with initialization of the
model, and the third describes the mechanism used to adapt the model to changes in the
background.

A. Background representation

The simplest background model is a known background. This can occur when the empty background
is available at the start of the video. If this is not available then the background has to be modeled.

Many background modeling techniques have been developed and presented in surveys (Cheung, et
al. 2004, Elhabian, et.al. 2008, Piccardi, 2004, Radke, et.al. 2005). These methods can be classified
according to the complexity or nature of the method as in the following categories (Bouwmans, et.al.
2008, El Baf, et al. 2008a):

1. Basic Background Modeling,
2. Statistical Background Modeling (parametric/non parametric, uni-modal/multi-modal)
3. Fuzzy Background Modeling
4. Background estimation

The methods can also be classified according to the features they use, which can be based on:

1. feature type (color, edge, stereo, motion and texture)
2. feature size or data-abstraction level (pixel, block or cluster or region, or frame).

A.1. Type of method

1. Basic Background Modeling – These methods model the background at each pixel location
based on the pixels history (Piccardi, 2004). The methods are quite easy to employ. Some are
statistical in type (e.g. median or average), but they are put in this category for their
simplicity. The method can use a learning rate and selectivity parameter (e.g. Running
Average). This includes the following methods (Elhabian, et.al., 2008):

Frame differencing – uses each previous video frame (time t-1) as the background model for
the current frame (time t). The technique is sensitive to noise and changes in illumination.

Average filtering – takes the average of the images over time. All information from the
background and foreground is used. The method is not robust with moving objects,

7

especially if they move slowly. It does not handle backgrounds which are bi-modal, and
recovers slowly.

Median filtering – takes the median at each pixel location as the background. It assumes that
in more than half of the frames in the buffer, the pixel shows the background.

Both average and median filtering can perform fast, but are memory consuming (Piccardi,
2004).

2. Statistical Background Modeling

a. Uni-modal vs. multi-modal: this is employed when the intensity, color or other features of
the pixel are assumed to follow a single uni-modal or multi-modal distribution. Uni-modal
distributions implicitly assume a static background. Multi-model distributions are used for
modeling non-static or moving backgrounds.

b. Parametric vs. non-parametric: parametric models makes assumptions on the data and
uses parameters to describe the model. Non-parametric models use more flexible
representation of the probability distribution at each pixel, without any assumptions on
the underlying distribution. It can rely heavily on the data and can be computationally
costly.

The following methods (Elgammal, 2011) belong to this group:

Single Gaussian Model – uni-modal and parametric. This model assumes that the intensity
observed at each pixel is a random variable with a Gaussian distribution, N(µ, σ2), with the
mean and variance estimated from history of pixel observations. The method determines
whether a new observation at each pixel comes from the estimated background distribution.
Assuming a uniform foreground distribution, the classification rule marks a pixel as
foreground if:

where and are estimates of the mean and standard deviation, and k is a threshold. This
model reduces to subtracting a background image from each new frame and checking if the
difference is bigger than the threshold. Here the background image is the mean of the
history of background images. The model can be adapted to slow changes in the background.

Mixed Gaussian Model (MoG) – multi-modal and parametric. Here the pixel intensity is
modeled as a weighted mixture of more than one Gaussian distributions. This can represent
the colors or different parts of the background. Stauffer and Grimson (1999) used a number
of Gaussians from 3 to 5, and weighted the mixture using the frequency by which the
background is explained by each of the Gaussians. The probability that a pixel has intensity xt
at time t is estimated as:

where , , and refer to the weight, mean and covariance for the
Gaussian mixture component i at time t, respectively. K-means approximation is used to

8

update the parameters recursively. Each new pixel value is compared to existing K Gaussians
and when there is a match, the weight, mean and variance for that distribution are updated.

The MoG model performed well in indoor and outdoor situations.

Kernel Density Estimation (KDE, Elhabian, et.al. 2008) – multi-modal and nonparametric.
Kernel density estimators are applied to situations where the scenes contain dynamic areas,
like waving trees and rippling water. It is a more flexible representation of the probability
distribution of the background at each pixel. Given a sample of intensity

values for a pixel, the intensity of the density can be estimated using:

where is a kernel function (also called “window” function), and is the bandwidth

(scale), such that , and . With sufficient
samples, KDE estimators converge to any density function asymptotically. It is a general
approach in the sense that it does not assume any specific density function. It can be
extended to use color or other high dimensional features. Using the probability estimate

, the pixel is considered part of the foreground if the estimate is less than a global
threshold value over all the image. The global threshold can be adjusted to achieve a desired
percentage of false positives. The N samples can be determined using a sliding window over
time.

3. Fuzzy Background Modeling – applies Fuzzy theory in background modeling. This can involve

using a saturating linear function instead of a hard limiter function. The result will be a real
value in the [0,1] range. For example, in Fuzzy running average, the learning rate is not a
fixed overall value, but is based on the current value of fuzzy background subtraction, which
can be computed for each pixel (Sigari, et al., 2008). Fuzzy Gaussian, uses a fuzzy
classification rule and employs fuzzy on-line cumulative averages for selective update of the
mean and the covariance matrix. The selective update of the background provides better
segmentation of the foreground objects than simple Gaussian (Bender, 2013). The Fuzzy
Mixture of Gaussians Model (El Baf, et al., 2008b) improves on the Mixture of Gaussians
model for critical situations like presence of camera jitter, waving trees and rippling water.

Another method used fuzzy integral to fuse the texture and color features or edge and
intensity for background subtraction (El Baf, et al., 2008a, Zhang and Xu, 2006). Maddalena
and Petrosino (2010) proposed a spatial coherence variant to self-organization through
artificial neural networks method and used a fuzzy model to deal with problems of using crisp
settings.

4. Background Estimation – the background model is estimated using a filter. Any pixel that
significantly deviates from its predicted value is considered foreground. Examples are Wiener
filter, Kalman filter, and Tchebychev filter (El Baf, et al., 2008a).

There are other methods that are extensions of the methods mentioned above. For example,
instead of using one value for learning rate or fixing the number of components per pixel as in
some methods above, different learning rates or number of components are used (Bouwmans, et

9

al., 2008, Zivkovic and van der Heijden, 2006)). Some methods utilize different equations at
different phases (KaewTraKulPong and Bowden, 2001).

A.2. Classification based on features

1. Feature type: some of the features used in calculating backgrounds are intensity, color, and

texture. Some methods also use edges or motion in the algorithms.

If the camera is fixed and the background stays constant, it can be modeled using a single
static image. The measurement used is the intensity for gray level images, or color
components for color images. If the background is not constant, then the mean intensity and
variance of a pixel can be modeled to adapt to the variation in the background. If the
background contains motion, then more tolerant models are required. One approach
predicts the motion pattern of each pixel, using optic flow. However, this can fail when the
motion fields of the foreground and background pixels are not different. Another type of
background model uses a linear predictor of the intensity of a pixel using history of intensity
values in that pixel. This can account for periodic variations. Hidden Markov Models can
represent different states of a pixel, e.g. background, foreground, shadow, and sudden
changes in illumination. Group of clusters which are ordered according to the likelihood that
they model the background can also be used.

2. Feature size or data-abstraction level

Following are the methods developed based on feature size:

a. Pixel –level processing – is low level processing of each pixel independently. It classifies

the pixel as either foreground or background, and manages adaptation to changes in the
background. This level can have problems with local or global sudden illumination
changes.

b. Block or region – level processing – here the image is divided into blocks and special
features of the block are used in the calculation (Zhang and Xu, 2006). This is considered a
higher level representation; modeling also inter-pixel relationships. For example, the
spatial motion of the foreground is detected by segmenting foreground patterns and
intersecting successive segmentations. Reddy et al. (2011) based their method on
combined frequency response of blocks and their neighborhoods.

c. Frame – level processing – looks for changes in large parts of the image and swaps in more
expressive background models.

d. Combination of pixel and region – integrates pixel level information with region
information obtained from spatial segmentation of the background. The spatial
segmentation can be done using chromatic, spatial and temporal information (Cristani, et
al., 2003) or optical flow of blocks between successive frames (Reddy, et al., 2011). The
use of optical flow can make the processing computationally intensive.

B. Background initialization

10

Most background models use initial parameters which are derived from short sequences where no
foreground objects are present. Sometimes this is difficult to achieve, and the model has to be
“trained” using a sequence which contains foreground objects. Several assumptions are made to
make this possible. Gutchess, et al. (2001) said that each pixel in the frame should reveal the
background for at least a short time interval. Moreover, the background should be close to
stationary or background motion may occur but should be small only. Wang and Suter (2005) added
that a foreground object can appear stationary for a short time, but no longer than the interval
where the background is revealed.

Some methods used for model initialization are:

1. Median Filtration – assumes that the background at each pixel is visible more than 50% of
the time during the training sequence.

2. Stable intensity extraction – this uses the longest, most stable interval to represent the
background. This has problems when foreground objects stay stationary for a long period of
time.

3. Relative Constant Intensity Extraction – this is similar to stable intensity extraction, but
overcomes the stationary foreground problem by considering the optical flow in the
neighborhood around each pixel. This approach suffers from computational complexity and
sensitivity to noise.

4. Background with a Mixture of Gaussians Distributions – this estimates the values that are
used for the parameters of the mixture of Gaussians distributions. The estimates can be
calculated offline using expectation maximization or use an online data-driven adaptive
approach.

Other methods are Kernel Density Estimation, Hidden Markov Models, Codebook based and others.
Many of the methods mentioned in the Introduction can be used at this stage.

C. Background adaptation

Background adaptation methods can be classified into either predictive or non-predictive. Predictive
methods use time series and dynamic models estimate current input from past observations. The
difference between the predicted and actual are considered measure of change. Non-predictive
methods build a probabilistic representation of the observations at the current pixel.

Another classification used for background adaptation is based on the history of the frames that are
used in updating the model:

1. Recursive: updates the background model based on each input frame. Input frames from
distant past can have an effect on the current background. Some schemes use exponential
weighing to discount the past. In any case, an error in the model can be carried out for a long
time. Recursive techniques require less storage. Examples of this type of technique are:
Approximated median filter, Kalman filter, Single Gaussian or Mixture of Gaussians, Clustering-
Based, and Hidden Markov Models (Cheung and Kamath, 2003, , Elhabian et al., 2008).

2. Non-recursive: stores a buffer of a certain number of previous frames and estimates the

background based on the temporal variation of each pixel within the buffer. It is highly
adaptive because they do not depend on history beyond those included in the buffer. The
memory requirements can be significant if a large buffer is used, but there are ways to partially

11

alleviate this (e.g. lower the frame rate). Examples of non-recursive methods are Frame
Differencing, Average/Median/Maximum-minimum filter, and Linear predictive filter (Cheung
and Kamath, 2003, Elhabian et al., 2008).

There are other classification types mentioned in Elhabian et al., 2008. One is about selective or
blind update. Selective update adds the new frame only if it is classified as a background sample.
This could enhance detection of targets, but can lead to a deadlock situation when incorrect
detection decision persists. Blind update adds new samples to the model. It can lead to bad
detection of targets as they falsely become part of the model.

There are also short-term and long-term models. The first is very recent model, adapts quickly to
allow sensitive detection and updates each sample using selective-update mechanism. Long-term
model captures a more stable representation and adapts slowly. The update mechanism used is
blind update.

Other considerations

Piccardi, (2004) discussed several methods and summarized them according to speed and memory
requirements:

1. Speed

- Fast: Average, Median, Running average
- Intermediate: Mixture of Gaussians, KDE, Eigenbackgrounds, SKDA, Optimized mean-shift
- Slow: Standard mean-shift

2. Memory requirements

- High: Average, Median, KDE, Mean-shift
- Intermediate: Mixture of Gaussians, Eigenbackgrounds, SKDA
- Low: Running average

Background extraction algorithms

The internet was searched for background extraction algorithms. The BGSLibrary (Sobral, 2012) was
found to contain 24 background subtraction algorithms which contained components that model the
background. Radke et al. (2005) mentioned algorithms which were available from Andra and Al-
Kofahi (2004). The algorithms were examined, but were considered not different from the ones
already available in BGSLibrary.

The algorithms in BGSLibrary came with a range of characteristics, like types, modality, data
abstraction level, feature size, etc., (see Appendix I). There were 8 Basic methods, 9 Statistical
methods, and 7 Fuzzy methods. From the Statistical and Fuzzy methods, 12 were multi-modal and 4
were uni-modal. The multi-modal methods were especially developed to consider changes
happening in the background. Also from the Statistical and Fuzzy methods, 6 were non-parametric
and 10 were parametric. Gaussian distribution (single or mixture) was used by the parametric types.
Of the 24 methods, 16 were recursive and 8 were non-recursive. Non-recursive methods can be

12

memory consuming when a large buffer is used. Most of the methods used pixel as data abstraction
level or feature size, and color as feature type. Most methods are non-predictive. The methods have
been tested in different situations by their authors.

In general, basic methods like FrameDifferencing, mean-based and median-based methods are
simple to calculate and pretty fast. But they use a global threshold which does not change in time.
Other algorithms deal with changes happening in the background (see Challenges to background
modeling in the Introduction). The algorithms that are based on Mixture Of Gaussian model
(LBMixtureOfGaussians, MixtureOfGaussianV1, MixtureOfGaussianV2, DPGrimsonGMM,
DPZivkovicAGMM, T2FGMM_UM, and MultiLayer_Learn) consider changes due to light, moving
background, structural changes, and cast shadows. The Self Organizing Map (SOM) models
(LBAdaptiveSOM, LBFuzzyAdaptiveSOM) consider the changes due to light, moving background,
camoufladge, bootstrapping, and cast shadows. DPPratiMediod considers shadow information.
DPWrenGA deals with bootstrapping. FuzzyChoqueIntegral considers cast shadow and light changes,
whereas FuzzySugenoIntegral considers moving background and light changes.

In 2013, Sobral compared the performances of the 24 algorithms, as well as newly added ones. His
results are given in Figure 2. Except for two algorithms, the average CPU use of most algorithms are
about the same. Most basic modeling algorithms (algorithms 1-7) use low average private memory
and low average execution time. The Fuzzy methods 9 and 10, as well as the multi-layer method 20,
use high average execution time. Methods 8, 20-22, and 25-26 use relatively longer average
memory.

The descriptions, classifications and features of the different methods are important to consider in
choosing the method for background extraction in laboratory situations. Specifically, methods that
can provide the empty background fast and with not much complexity and memory requirements are
preferred.

Evaluation Method

Since part of the objective is to find a quantitative and reproducible measure to use as criteria to
evaluate the performance of the different algorithms, literature was searched on available methods
to use. Elhabian, et. al. (2008) discussed evaluation of algorithms that are used in separating objects
and their background (also called video segmentation). Since this study is on extracting background,
which entails separating the background from the foreground, it was thought that the methods they
used could be helpful. They gave two alternatives: standalone evaluation, when the reference
segmentation is not available (so-called ground truth) and relative evaluation, when the reference
segmentation is available for comparison. Standalone evaluation provides qualitative information for
the ranking of algorithms, and work mainly with available a priori information on the expected
properties of objects and their difference to neighboring objects. Relative evaluation is expected to
provide more reliable results. Since the objective of the study is to use quantitative measures,
relative evaluation methods were examined.

There are three approaches in relative evaluation: pixel-based, template-based and object-based.
Pixel based includes all active pixels in a given image. It is a binary detection problem based on the
ground truth. Example measures are misdetection rate, false alarm rate, receiver operating
characteristics (ROC) and perturbation detection rate characteristics. Template-based and object-
based methods were deemed not relevant since the interest of the study is the background and not
object or foreground detection.

13

Figure 2. CPU, Memory and Time Consumption of Background Subtraction algorithms in BGSLibrary (from Sobral, 2013).

14

From the literature, ground truth can be generated using synthetic data, like ellipse fitting, edge
detection, corner detection and optic flow. Another method is manual annotation, e.g. to mark edge
and no-edge pixels. The third approach relies on evaluating the output of the algorithms by a human
panel (e.g. all vote, majority rule, set union or consensus markup). The first two methods are more
appropriate to detecting foreground objects than extracting the background. The last methods is not
objective and is therefore not very satisfactory. Another method of generating the ground truth has
to be devised.

In pixel-based evaluation methods, the following quantities were used in comparing the ground truth
to a candidate binary foreground map:

True postivies (TP) : number of foreground pixels correctly detected
False positives (FP): number of background pixels incorrectly detected as foreground (“false alarms”)
True negatives (TN): number of background pixels correctly detected
False negatives (FN): number of foreground pixels incorrectly detected as background (“misses”)

Since the study is on background extraction, the above quantities has to be translated into
“background” terms as in the following:

True postivies (TP) : number of background pixels correctly detected
False positives (FP): number of foreground pixels incorrectly detected as background (“false alarms”)
True negatives (TN): number of foreground pixels correctly detected
False negatives (FN): number of background pixels incorrectly detected as foreground (“misses”).

For a given “empty” background which is extracted by an algorithm, the whole output is then
supposed to be the background. From the 4 quantities above, TN and FN are not relevant.

Cohen and Medioni (1999) proposed metrics for moving object detection evaluation. The False
Alarm Rate (FAR) shown below looks appropriate for the study:

Maddalena and Petrosino (2008, 2010) used a similar metric which they called Precision or positive
prediction. According to them, Precision gives the percentage of detected true-positive pixels as
compared to the total number of pixels detected by the method. The metric is shown below:

As can be seen in the formula’s one is the opposite of the other. Whereas FAR emphasizes on
incorrectly detected pixels, Precision emphasizes on the correctly detected pixels. Another way of
saying this is that FAR measures how different the detected pixels are from the ground truth,
whereas Precision measures how similar the detected pixels are from the ground truth.

15

III. Methodology

The study is concerned with finding an algorithm that can extract the background from videos taken
in the laboratory and applying the algorithm in different situations. From the requirements stated in
the Introduction, a good algorithm is fast, has good quality (produces an empty background) and
applicability (can be applied to different types of animals and setups). The methodology that was
designed to meet the requirements, achieve the objectives and answer the research questions are
given below:

Find a suitable background extraction algorithm – Which is the best algorithm?

1. Which algorithms can be tested, what are their characteristics and how good are they expected

to produce an empty background?

A total of 24 algorithms from BGSLibrary (Sobral, 2012) were selected for the study. The
program codes for BGSLibrary were downloaded from Sobral (2012) and adapted to run in Visual
Studio 2010 with C++ as the programming language. The OpenCV library (OpenCV, 2013) was
used in the program.

The algorithms were analyzed and expectations on how they would perform in producing empty
backgrounds were made.

2. Which quantitative and reproducible measures can be used as criteria to evaluate the
performance of the different methods?

The quantitative and reproducible measures to use for evaluating the algorithms should answer
the requirements set at the beginning of this study (Introduction). The requirements summarize
to speed, quality and applicability. At this stage of the study, only the first two were be
addressed. This is because for applicability, the algorithms would have to be tested in different
situations using different videos, and that would take a lot of effort. The decision was then to
first find the best algorithm using the speed and quality criteria, and then test the chosen
algorithm if it can perform well in different situations (Step 4).

Since the criteria will be used to compare different algorithms, they were chosen so that they are
independent of the algorithms themselves and independent of each other. Speed was measured
by taking the time it took to run the same number of frames. For the quality measures, a metric
that is similar to False Alarm Rate (FAR, see Literature Review) was used. It was measured by
determining how different each extracted background was from a ground truth, the difference
being considered as equivalent to the “incorrectly detected” pixels. The minimum of the
difference values over all the frames, as well as the frequency by which the minimum occurred
were considered as measures of quality. The frequency indicates how often the extracted
background was close to the ground truth. The best algorithm would ideally have the lowest
difference and the most frequent occurrence of the minimum value. Note that in contrast to
FAR, the proportion of incorrect detection is not computed. This is to preserve the precision of

16

the difference values. Moreover, since all algorithms use the same video, the denominator in FAR
will all be the same value.

Two representative algorithms were selected as examples to see how good the criteria were able
to differentiate the performance of the algorithms. They were run with 7 different videos. The
following were done to study the performances:

a. The disappearance and appearance of animals, which determines the rate of obtaining the

empty background were examined.
b. The speed it took to run the same number of frames were calculated.
c. For one of the videos, the values of the quality measures were computed for extracted

backgrounds using the two algorithms.

At the end of this exercise, the speed and quality measures were found to satisfactorily
differentiate the two algorithms. The identified measures were used as criteria to evaluate the
24 algorithms in the following step.

3. How can the evaluation be performed to get the best algorithm?

The following steps were done in the evaluation:

a. All the algorithms were run using the same video to calculate the speed and quality

measures. Two videos were used, which differed in complexity and color of the animal.
More videos could have been used for this step, but since further analyses will be done on
the results, it was decided to better limit the number of videos and spend more time in
analyzing the results.

The images in the videos were masked so that only the arena areas were used. The
reference images were taken at the start of the videos before the animal was put in the case.
The algorithms were run starting at a point in the video when the animal is already present.
The algorithm calculated/extracted backgrounds were taken and compared with the
reference backgrounds. The speed and measures of quality were calculated. The frames
where the measures of quality occurred were checked if the extracted background were
without traces of the animal. The calculated values were inspected to see if they have
relation with the characteristics of the algorithm, such as type of algorithm and modality.

b. Several multiple criteria evaluation (MCE, Heywood, et al., 2006) were performed using the
different measures (criteria). MCE analysis is commonly used when choosing the best option
(e.g. the best algorithm) given different considerations (criteria). Three MCE analyses were
made corresponding to three scenarios. These scenarios represent different preferences of
users of the outputs. They were:

Speed = Quality: equal weights were given to Speed (50%) and Quality (50%).

Speed > Quality: more weight was given to Speed (60%) than Quality (40%).

Speed < Quality: less weight was given to Speed (40%) than Quality (60%).

For the MCE, the values for the different criteria were standardized before applying the
weights and obtaining the scores. The quality weights were distributed to the different
measures of quality. The algorithm with the highest score was taken as the best in the list.

17

The MCE analyses were extended by doing a sensitivity analysis on the frequency measure.
The results were obtained for the cases when the frequency were calculated for minimum
difference plus 10 pixels, plus 25 pixels, plus 50 pixels and plus 100 pixels. The results would
indicate which algorithms have frequently low values of the differences.

4. How does the algorithm perform in the different laboratory situations?

The best algorithm was tested using 37 videos representing a wide range of situations in the
laboratory. This includes situations with different animal size and color, constant and non-
constant background (water, beddings), arena’s with reflections and poor lighting, arena’s
containing novel objects, low contrast animals, shadows, long tails, etc. There were experiments
with single and multiple arenas. The set also includes movies for which the algorithm is known to
fail (animal hardly move). It was expected that the videos were of good quality. Each pixel in the
video should reveal the background for at least a short interval.

Before the images in the videos were subjected to the algorithm, they were first masked so that
only the part inside the arenas were left. This was done to increase speed (area outside arena
were not important and need not be calculated). For multiple arenas, the algorithm was applied
to all arenas at the same time.

For the runs, the values of the parameters in the algorithm were initially set equal to the values
used in the BGSLibrary. The program was made such that it is possible for the user to change the
parameter values to better adapt to the situation. For example, for a fast animal, a higher
learning rate can be used.

The runs started at the beginning of the video. Once the run proceeds, a feedback on how the
background changes was shown. The user could stop the run at any time and use the resulting
background extracted.

The extracted images from the 37 videos were analyzed to see in which cases the algorithm
performed well and in which cases it did not perform well.

A summary of the methodology is shown in Figure 3.

18

 Figure 3. Steps undertaken in the methodology

19

IV. Results and Discussion

Find a suitable background extraction algorithm – Which is the best algorithm?

1. Which algorithms can be tested, what are their characteristics and how good are they expected

to produce an empty background?

The BGSLibrary (Sobral, 2012) contained 24 background subtraction algorithms or methods.
These algorithms have components that extract the background. The programs were made to
run in Microsoft Visual Studio 2010 with C++ as the programming language. Default values of the
parameters in the algorithms were used.

The algorithms came with a range of characteristics, like types, modality, data abstraction level,
feature size, etc., (see Appendix I). After examining the descriptions, the literature, the source
codes and results of sample runs, the following are the expectations on each of the algorithms:

AdaptiveBackgroundLearning – it is not possible to get a background that is completely “clean”

or empty. There is always a trace of the animal left, especially if the animal is visible at all
times, when the color of the animal is different from the background and when the alpha
value is small.

DPAdaptiveMedian – the algorithms works well for simple backgrounds, but may have problems

extracting empty backgrounds when there are significant changes occurring in the
background and if the animal stays stationary more than half of the time.

DPEigenbackground – the background was updated in the program; runs with the algorithm

produced backgrounds which were dark, which make the background unusable.

DPGrimsomGMM – the algorithm, as created by the authors of the paper (Stauffer and Grimson,

1999), had been the basis of other mixture of Gaussian algorithms. Runs with the
algorithm showed the background continuously being adapted with appearance and
disappearance of the animal. Empty background can be obtained with the algorithm.

DPMean - the algorithm is simple and quite fast, but runs of the algorithm always showed the

animal in the background.

DPPratiMediod - it is possible to get an empty background with this algorithm, especially if the
animal does not stay stationary for more than half of the time.

DPWrenGA - without adjusting the parameters for the animal in the laboratory, runs of the
algorithm outputted backgrounds which were sometimes free of animal.

DPZivkovicAGMM – the background is continuously updated; it is possible to get a background

free of animal.

FrameDifference – the algorithm is simple and fast, but it is impossible to get an empty

background with the algorithm if the animal is always in view.

20

FuzzyChoqueIntegral – the backgrounds were updated during the learning period in the

algorithm, but the outputted backgrounds were completely dark and therefore unusable.

FuzzySugenoIntegral – the backgrounds were updated during the learning period in the

algorithm, but the outputted backgrounds were completely dark and therefore unusable

LBAdaptiveSOM – runs with the algorithm showed the background being updated, like traces of

the animal disappearing. It is possible to get an empty background with the algorithm.

LBFuzzyAdaptiveSOM - runs with the algorithm showed the background being updated, like

traces of the animal disappearing. It is possible to get an empty background with the
algorithm.

LBFuzzyGaussian – this is supposed to be an improvement of LBMixtureOfGaussian. It is possible

to get an empty background with this algorithm.

LBMixtureOfGaussian – this is based on the mixture of Gaussians distribution like

DPGrimsonGMM; the changes in the background are considered, and it is possible to get
an empty background with this algorithm.

LBSimpleGaussian – it is possible to get an empty background with this algorithm however, being

unimodal it is limited in dealing changes in the background.

MixtureOfGaussianV1 – the algorithm did not output any background. There was an assertion

error in using the OpenCV function. Other people reported similar problem in using the
function in the internet.

MixtureOfGaussianV2 – the algorithm did not output any background. There was an assertion
error in using the OpenCV function. Other people reported similar problem in using the
function in the internet.

MultiLayer – the learn phase of this algorithm could produce a background free of animal, the

background produced with one video appeared layered.

StaticFrameDifference – if the first frame in the video has an animal, then the background will

always contain an animal, otherwise, the background is empty.

T2FGMM_UM – supposed to be an improvement to the ordinary mixture of Gaussian algorithm;

runs of the algorithm showed the background being updated; could produce an empty
background

T2FGMM_UV – runs of the algorithm showed the background being updated; could produce an

empty background

WeightedMovingMean – runs of the model showed the background always filled with traces of

the animal.

WeightedMovingVariance – runs of the model showed the background was not produced at all.

21

From the above list, one can say that many of the algorithms fulfill the characteristics described
in Section IV A, like good speed and quality. It is possible to obtain empty backgrounds with
many of them. Exceptions are the following:

- Some algorithms produce backgrounds that contain the animal or traces of the animal. This

includes the algorithms: AdaptiveBackgroundLearning, DPMean, FrameDifference, and
StaticFrameDifference.

- Other algorithms like DPEigenbackground, FuzzyChoqueIntegral and FuzzySugenoIntegral
produced backgrounds which were dark or all black.

- The algorithms MixtureOfGaussiansV1 and MixtureOfGaussiansV2 resulted in run errors.
- The WeightedMovingVariance algorithm did not produce any background.

Looking at the speed indications in Figure 2, the following groups could be made according to
relative speed of the algorithms:

Slow: MultiLayer, FuzzySugenoIntegral, FuzzyChoquetIntegral, LBFuzzyAdaptiveSOM,

T2FGMM, LBAdaptiveSOM, DPPratiMediod and DPGrimsomGMM
Fast: StaticFrameDifference, FrameDifference, DPAdaptiveMedian
Intermediate: all the rest.

According to Figure 2, the following algorithms use lots of private memory: MultiLayer_Learn,
LBFuzzyAdaptiveSOM, LBAdaptiveSOM, DPPratiMediod, LBMixtureOfGaussians,
DPEigenbackground and MixtureOfGaussiansV1. Most computers nowadays are equipped with
considerable memory, so the requirements of some of these algorithms may not be a problem.

2. Which quantitative and reproducible measures can be used as criteria to evaluate the
performance of the different methods?

The following measures were identified as possible criteria for evaluating the algorithms: Speed,
minimum Difference, and the frequency of occurrence of Difference measure. Speed measured
the amount of time it took to run the same number of frames. The other criteria measured the
quality of the extracted background. They measured how different the extracted background
was to the ground truth or reference background. The ground truth was the background without
any animal, taken at the start of the video before the animal was put in the cage. The
background extraction algorithm was started at the point in the video when the animal was
already in the cage. The background was calculated or “extracted” for each succeeding frame in
the video. Each extracted background was then compared to the reference image by taking the
difference between the extracted and reference backgrounds. The lowest (minimum) of these
values was taken as measure of the quality of the algorithm. The frequency by which the
minimum occurred was also added as an additional measure of quality to indicate how often an
algorithm can output a background that is not different from the reference background.

The values of the Difference metric was calculated using OpenCV’s functions:

 cv::Mat img_diff;

 cv::absdiff(img_start, img_output, img_diff);

 int iDiff = cv::countNonZero(img_diff);

where:

22

img_start: is the reference image, taken from the start of the video when the animal was
not in the cage yet.

Img_output: contains the extracted background image of an algorithm for a given input
frame

img_diff: contains the difference values between img_start and img_output
cv::absdiff : is an OpenCV method for calculating the absolute difference of corresponding

pixels of two images. If corresponding pixels are the same, then the value 0.
cv::countNonZero: is an OpenCV method that counts the number of non-zero pixels, i.e., the

number of pixels were difference between the images were observed.

In another calculation, the difference values were first “thresholded” before the number of non-
zero values were counted. This was done using the following:

 cv::Mat img_thrDiff;

 cv::threshold(img_diff,img_thrDiff,30,255,cv::THRESH_BINARY);

where:

img_thrDiff: contains the thresholded difference values
cv::threshold: is an OpenCV method that applies threshold operation for each pixel in the

image.

The threshold function cv::threshold is used to filter (e.g. remove noise) and segment values of
the pixels. With the CV_THRESH_BINARY parameter in the threshold function, a binary image
can be obtained where a cut off value for pixels between 0 and 255 can be made. For the study
the cut off value was set to 30. This value was taken after testing with different values. Pixel
values above this threshold value get the maximum value set (here it is 255); and all other pixels
get the value 0. The number of non-zero values are then limited to values above the threshold.
The pixel difference values under the threshold were considered to be noise, since it is
impossible to compare 2 images which are exactly alike due to change in conditions over time.

The minimum “thresholded” difference and its frequency were used as candidate quality
measures together with Speed.

Testing the identified criteria on two sample algorithms

The identified criteria were tested to see if they can differentiate the performance of the
different algorithms. The 24 algorithms from BGSLibrary were shortly examined and two
algorithms were chosen for the test. They were DPGrimsonGMM (GrimsonGMM) and
LBMixtureOfGaussians (LBMOG).

a. The algorithms were first examined by looking at how the animals “disappear” and “appear”

in the backgrounds. The disappear and appear events can be seen while the algorithms
update the backgrounds. For example, for both GrimsonGMM and LBMOG, when the animal
moves a lot, the picture of the animal slowly disappears in the background. On the other
hand, when the animal stays in the same location for a certain time, the background starts to
show the animal again. The rates of appearance and disappearance indicate how sensitive
the algorithms are to the movements of the animals. They affect the time the empty
background can be extracted or maintained by the algorithm. Ideally, later appearance and
earlier disappearance are better for empty background extraction.

23

The examination was done by running both algorithms using the same video at the same
time. A sample interval of 1 (all frames considered) was used in most cases. Seven videos
were used for the examination. They represent different situations which can be
encountered in the laboratory. They were:

green: “open field” arena containing, 2 mice
BM1: multiple (6) arena, rectangular shape, one rat per arena (in 5 arenas)
BS8: Y maze, slightly varying lighting conditions, 1 mouse
BS9: Zero maze (backlight), darker part in 2 sides, 1 mouse
BD15: arena (small aquarium), 1 small zebra fish
BS2: rectangular arena, 2 background objects, 1 hooded rat
BD4: rectangular arena, 2 mouse with lots of small background objects (droppings?)

The results are given in Appendix II. In the figures, the video frame when the algorithm was
started are shown. In some videos, the algorithm started with an animal in the cage, whereas
in others not. It can be seen that in general, appearance of the animal occurred earlier in
LBMOG (rows 2, 3, 5, 7, and 9). The disappearance of the animal occurred earlier in
GrimsonGMM in rows, 4, 6, and 8. However, in some cases, the disappearance of the animal
also occurred earlier in LBMOG (rows 1, 10, 1, 12). The rates of appearance and
disappearance affect the rate by which the empty background is extracted or maintained. It
is affected by the learning rate parameter in the model. Generally, a higher learning rate
should be used with a faster animal.

b. The speed it takes to run the same number of frames were also examined. The two
algorithms were run separately. The same 7 videos as above were used. The speed of
running 500 frames using a sample interval of 1 were calculated. Table 1 and Figure 4 show
the results

 Table 1. Speed (msec) results for LBMOG and GrimsonGMM using 500 samples

Number Video LBMOG GrimsonGMM

1 green 0.12 0.12

2 BM1 13.22 15.97

3 BS8 32.26 43.48

4 BS9 13.25 15.30

5 BD15 33.59 43.94

6 BS2 14.79 21.97

7 BD4 20.37 23.23

As can be seen in the table and figure, LBMOG is in general faster than GrimsonGMM for all
seven videos. Only exception is the “green” video. This means that the earlier
disappearance in GrimsonGMM that were observed in some videos in Appendix II, actually
occurred later in time than in LBMOG. The results in the table is also consistent with what is
shown in Figure 2. In the figure, LBMOG (Method 18) has a lower average execution time
than GrimsonGMM (Method 14). This means that in terms of speed, LBMOG is better.

From the above results on different videos, it can be said that Speed can be used as one
criteria to differentiate algorithms.

24

 Figure 4. Speed results for LBMOG and GrimsonGMM using 500 samples

c. The values of the quality measures were calculated after comparing the reference and

“calculated” (extracted) backgrounds.

The BS2 video was used in the evaluation activity because it has an “empty background” at
the start of the video. Representative frame at the start of the video was taken to serve as
reference image. The LBMOG and GrimsonGMM algorithms were run from the time the
animal was already present in the video using a sample interval of 1. The extracted
background images were compared with the reference image by calculating the Difference
and “thresholded” Difference values for each frame input. The minimum and maximum
Difference values, as well as the frequencies of the minimum values, are given in Table 3 and
shown Figures 5 to 8.

Table 3 shows that the minimum and maximum difference values in LBMOG are lower than
the corresponding values in GrimsonGMM. A Difference minimum value of 0 was even
derived after thresholding. The number of occurences of the minimum Difference values
show that there were 768 counts of the 0 “thresholded” Difference value in LBMOG. There
were 2 counts of the minimum thresholded Difference value for GrimsonGMM. These
results show that LBMOG is a good method.

Table 2. Minimum and maximum values for runs with BS2, sampling interval 1 (Number

represents the frequency of the same value of minimum Difference.

Algorithm Statistic Difference
Difference
Threshold

LBMOG Minimum 56953 0

 Maximum 71919 3207

GrimsonGMM Minimum 59649 1477

 Maximum 72337 4564

LBMOG Number 1 768

GrimsonGMM Number 1 2

25

Figures 5 and 6 show the trends in the Difference values using video BS2 for both LBMOG and
GrimsonGMM. The scales in the figures were made similar. The figures show that the rates of
increase and decrease in values are more pronounced in LBMOG than in GrimsonGMM. The
Difference values in LBMOG are in general lower than in GrimsonGMM.

 Figure 5. Difference values for LBMOG using video BS2, sampling interval 1, (normal values

in blue, left axis; thresholded values in red, right axis).

 Figure 6. Difference values for GrimsonGMM using video BS2, sampling interval 1 (normal

values in blue, left axis; thresholded values in red, right axis).

26

The reference and extracted images for LBMOG and GrimsonGMM are given in Figures 7 and 8.
It can be seen that the images in GrimsonGMM are grayed (the algorithm used gray images). The
movement of the rat has changed the bedding a little, as shown in the results of both algorithms.
The lower left corner in GrimsonGMM has remnants of the animal left. The extracted
background for LBMOG is closer to the reference background than GrimsonGMM.

Reference Result

 Figure 7. LBMOG reference and resulting images for BS2, sampling rate 1

 Reference Result

 Figure 8. GrimsonGMM reference and resulting images for BS2, sampling rate 1

The examinations done above using two algorithms show that it is possible to differentiate
algorithms based on Speed, Difference, and the number of occurences of the minimum
Difference values.

To summarize, the following criteria will be considered in looking for the best algorithm in the
following section: Speed, minimum Difference, minimum thresholded Difference, and the
frequences of occurrence of the minimum difference values.

27

3. How can the evaluation be performed to get the best algorithm?

The Speed, minimum Difference, minimum “thresholded” Difference and frequencies of the
minimum difference criteria selected above were incorporated in the program for the 24
different algorithms. Each algorithms was run with two videos representing different
complexities and containing animals with different colors:

“BS2” video (352 x 288 resolution): contains a hooded rat in a quite complex background
with hay and static objects.

Video1 video (320 x 240 resolution): contains a small active rat in an “open” field without
other objects except the bedding.

For both videos, the lighting was more or less the same from beginning to end. Aside from the
animal, there were no other objects added nor removed throughout the video. The images in
the videos were masked so that only the arena areas were analyzed.

Both videos contained empty background at the start. The reference backgrounds were taken
from this part of the video where the animal was not yet present. The algorithm runs were
started at the same point in the video after the animals had already been introduced. The
algorithm runs were also stopped at the same frame numbers. The durations of running each
algorithm were taken as the Speed of the algorithm.

The algorithm calculated background was extracted for each frame input. The extracted and
reference backgrounds were compared, and the Difference and “thresholded” Difference values
were calculated. The lowest (minimum) of the difference values were taken, and the frequency
of occurrence of this value was noted. The frames that correspond to the minimum values were
checked to see if the extracted background did not contain traces of the animal. Using the
results, it was decided whether to use the “thresholded” or “non-thresholded” Differences. The
calculated values were then examined in relation to the type and modality of the algorithm, to
see if there is any relation.

The last step was to perform MCE analyses using the calculated values of the different criteria.
The following steps were done in the MCE analyses:

a. Standardize the values. This was done using the following formula:

 Valuestd = (Valuecalc - Valueworst) / (Valuebest - Valueworst)

where:

Valuestd : standardized value
Valuecalc: calculated value for the algorithm
Valueworst: worst calculated value for the criteria
Valuebest : best calculated value for the criteria

b. Apply the weights. The weights were determined according to the different scenarios (Speed

= Quality, Speed > Quality, and Speed < Quality). For example, for the case Speed = Quality,
the weight assigned to Speed was 50% and the weight assigned to Quality was 50%. The
Quality weight was distributed over the minimum Difference (25%) and it’s frequency (25%).

28

c. Calculate the score. The scores per criteria for each algorithm was calculated by multiplying

the standardized value and the weight. Then the total score for the algorithm was computed
by summing the scores of each criteria.

d. Rank the scores. Finally, the total scores were ranked from highest (rank 1) to lowest (rank
24).

The results are discussed below for each video.

a. BS2 video

Appendix III, Figures 1 and 2 show the frames from the BS2 video with the minimum
Difference and minimum “thresholded” Difference for each algorithm. It can be seen that
not all algorithms show empty backgrounds. For example, Frame Difference method use the
previous frame as the background frame always. For BS2, the previous frames always had
animals in them. WeightedMovingMean assigns weights to 2 previous images and the
current image to calculate the background, but this still resulted to backgrounds which were
not empty. Few methods like FuzzyChoquetIntegral and FuzzySugenoIntegral always
produced black backgrounds. From the figures, those with animals or animal traces in the
background could be considered “false positives”, meaning those frames do not really give
empty background.

Appendix III Figure 1 shows that none of the algorithms produced empty background using
the minimum Difference measure. Appendix III Figure 2 on the other hand, shows that some
algorithms produced empty backgrounds using the minimum “thresholded” Difference
measure. The algorithms that produced empty backgrounds are listed in Table 3. This
indicates that for these algorithms, it was necessary to remove the noise in order to get good
correspondence between the extracted and reference backgrounds. The results also show
that there is more than one method that can produce empty background.

Table 3. Methods which produced empty background for BS2 video using the Minimum

Thresholded Difference measure.

Methods

AdaptiveBackgroundLearning

DPAdaptiveMedian

DPGrimsonGMM

DPPratiMediod

DPWrenGA

DPZivkovicAGMM

LBAdaptiveSOM

LBFuzzyGaussian

LBMixtureOfGaussians

LBSimpleGaussian

Because no empty background was found in the case with minimum Difference, this criteria
was not used in further analyses. The algorithms which did not show the backgrounds (all

29

dark), like DPEigenbackground, FuzzyChoquetIntegral and FuzzySugenoIntegral, were also
not included in further analyses to increase the sensitivity of the results to the remaining
algorithms.

The calculated values for Speed and minimum “thresholded” Difference were examined to
see if there is any relation of the results with the type of algorithm and modality used in the
algorithm. A summary of the calculated values is given in Table 4, and a graph of the results
in Figure 9. High values are highlighted in the table.

Looking at the Speed results, it can be seen that except for 1 algorithm (MultiLayer_Learn),
the basic types have in general faster speed (lower in number), which is followed by
Statistical types, then Fuzzy types. Unimodal types are in general faster than multi-modal
types.

There is no distinct relation between minimum “thresholded” Difference and algorithm type
or modality. The algorithms with the lowest minimum “thresholded” Difference values are
LBMixtureOfGaussians, LBFuzzyGaussians and AdaptiveBackgroundLearning, respectively.
T2FGMM_UM and T2FGMM_UV have higher minimum “thresholded” Difference than the
rest.

 Table 4. Summary of calculated values for the different criteria for the BS2 video.

Algorithm Type U/M

Speed

(msec)

Diff_thr

(nr pixels)

AdaptiveBackgroundLearning 1 1 182,308 42

DPAdaptiveMedian 1 1 184,703 1458

DPGrimsonGMM 2 2 284,060 1477

DPMean 1 1 213,691 2364

DPPratiMediod 1 2 288,668 1482

DPWrenGA 2 1 204,972 1485

DPZivkovicAGMM 2 2 210,601 1496

FrameDifference 1 1 164,027 879

LBAdaptiveSOM 3 2 289,133 802

LBFuzzyAdaptiveSOM 3 2 309,041 1133

LBFuzzyGaussian 3 1 221,139 1

LBMixtureOfGaussians 2 2 224,250 0

LBSimpleGaussian 2 1 201,017 69

MultiLayer_Learn 2 2 544,312 81

StaticFrameDifference 1 1 161,367 2938

T2FGMM_UM 3 2 380,989 4538

T2FGMM_UV 3 2 375,522 4136

WeightedMovingMean 2 1 182,971 875

Note: Type: (1) basic, (2) statistical, (3) fuzzy
 U/M: unimodal (U) or multimodal (M)
 Diff_thr = minimum “thresholded” Difference,

 Although modality refers to Statistical and Fuzzy types, they were also considered in Basic types.

30

Figure 9. Relation between Speed results with Type of algorithm (left axis) and Modality
(right axis) for BS2 video.

Figure 10. Relation between Quality results with Type of algorithm (left axis) and Modality
(right axis) for BS2 video.

The MCE results for BS2 is given in Appendix IV. Because there were no empty backgrounds
produced with minimum Difference, only the minimum “thresholded” Difference values
were used. The frequency (number) of minimum “thresholded” Difference was included in
the analysis. Originally, the StaticFrameDifference algorithm contained a high value for the
frequency, because it used the same background (the first image in the sequence) for all the
frames. The frequency for this method was set to 1. Note that Appendix IV contains 3 parts,
corresponding to each scenario (or criteria as stated in the Tables).

31

The top scorers in the MCE analyses are as follows:

Speed = Quality and Speed > Quality:

(1) LBMixtureOfGaussians
(2) AdaptiveBackgroundLearning
(3) FrameDifference

Speed < Quality:

(1) LBMixtureOfGaussians
(2) AdaptiveBackgroundLearning
(3) LBSimpleGaussian

The LBMixtureOfGaussians algorithm ranked first in all the scenarios. This was influenced by
the very low minimum thresholded difference value, high frequency of this value and
relatively acceptable speed. Frame difference is in the top 3, for the cases when Speed was
given importance, even if the background in Appendix III, Figure 2 was not empty.
AdaptiveBackgroundLearning has a similar case; the extracted background still showed traces
of the animal. The background were not empty because the algorithms were based on
frames which always contained animals in the video. The MCE analyses could not prevent
these algorithms from being chosen. Probably other factors should be included in the MCE
analysis, or other preliminary steps should be considered which will exclude these algorithms
in the final analysis.

Sensitivity analysis of the Frequency criteria was done to determine how the ranking of the
algorithms is affected by the number of samples at a certain distance from the minimum
“thresholded” Difference value. It shows how stable the rankings are over the ranges from
the minimum “thresholded” Difference value. An algorithm which maintains a high rank as
the range from the minimum value is increased means it’s estimate of the empty background
or close to it, occurs more frequently. To perform this analysis, the following frequency
values were calculated: frequency of the minimum “thresholded” Difference plus 10, plus 25,
plus 50 and plus 100 pixels. Table 5 shows the frequency values calculated and the Table 6
shows the top 3 (or 4) ranked algorithms using MCE analyses with Speed, minimum
“thresholded” Difference, and the frequency factor. The tables show that the frequency of
LBMixtureOfGaussians was the highest until minimum “thresholded” Difference plus 25
pixels. This had contributed to its first ranking in the MCE analyses. However, although the
frequency of AdaptiveBackgroundLearning for the different plus factors were not high in
Table 5, it still ranked high in the MCE analyses (Table 6). This could be because of good
values in the other criteria (Speed and minimum “thresholded” Difference).
DPZivkovicAGMM also performed well.

32

 Table 5. Frequency values of minimum threshold difference plus different number of pixels,
using BS2 video.

Algorithms plus 0 plus 10 plus 25 plus 50 plus 100

AdaptiveBackgroundLearning 1 2 3 6 16

DPAdaptiveMedian 7 56 238 1092 2485

DPGrimsonGMM 2 50 363 1197 1918

DPMean 1 4 6 8 12

DPPratiMediod 5 45 70 255 415

DPWrenGA 1 65 203 493 1033

DPZivkovicAGMM 2 234 1213 3327 3381

FrameDifference 1 3 4 9 16

LBAdaptiveSOM 1 56 621 1899 3448

LBFuzzyAdaptiveSOM 3 119 462 863 2661

LBFuzzyGaussian 5 52 112 175 280

LBMixtureOfGaussians 768 1069 1254 1378 1530

LBSimpleGaussian 2 34 59 100 153

MultiLayer_Learn 1 5 6 8 11

StaticFrameDifference 1 1 1 1 1

T2FGMM_UM 1 17 26 29 44

T2FGMM_UV 1 3 7 19 47

WeightedMovingMean 1 2 5 15 21

Frequency minimum thresholded difference

 Table 6. Top ranking algorithms for different scenarios and frequency values (minimum
thresholded difference plus the factor), for BS2 video.

Freq Rank Speed = Quality Speed > Quality Speed < Quality

1 LBMixtureOfGaussians LBMixtureOfGaussians LBMixtureOfGaussians

2 AdaptiveBackgroundLearning AdaptiveBackgroundLearning AdaptiveBackgroundLearning

3 FrameDifference FrameDifference LBSimpleGaussian

1 LBMixtureOfGaussians LBMixtureOfGaussians LBMixtureOfGaussians

2 AdaptiveBackgroundLearning AdaptiveBackgroundLearning AdaptiveBackgroundLearning

3 LBSimpleGaussian FrameDifference LBSimpleGaussian

1 LBMixtureOfGaussians LBMixtureOfGaussians LBMixtureOfGaussians

2 DPZivkovicAGMM DPZivkovicAGMM DPZivkovicAGMM

3 AdaptiveBackgroundLearning AdaptiveBackgroundLearning AdaptiveBackgroundLearning

1 DPZivkovicAGMM DPZivkovicAGMM DPZivkovicAGMM

2 LBMixtureOfGaussians LBMixtureOfGaussians LBMixtureOfGaussians

3 DPAdaptiveMedian AdaptiveBackgroundLearning LBAdaptiveSOM

1 DPZivkovicAGMM DPZivkovicAGMM DPZivkovicAGMM

2 DPAdaptiveMedian DPAdaptiveMedian LBAdaptiveSOM

3 LBAdaptiveSOM LBMixtureOfGaussians DPAdaptiveMedian

4 LBMixtureOfGaussians AdaptiveBackgroundLearning LBMixtureOfGaussians

Plus 100

Plus 0

Plus 10

Plus 25

Plus 50

33

b. Video1 video

The same analysis was done with the Video1 video. For the runs, some changes were made
in some algorithms because of the number of frames that were accessible from the video.
For example, for FuzzySugenoIntegral and FuzzyChoqueIntegral the initial number of frames
used for learning were initially 200. They were both limited to 10 because of the limited
number of frames in Video1. For LBMixtureOfGaussians, the learning rate was change from
59 to 80 to account for the fast mouse. Appendix V shows frames from the video that
corresponds with the minimum Difference (Figure 1) and minimum “thresholded” Difference
(Figure 2) for each algorithm. Looking at the frames, both DPPratiMediod and
LBMixtureOfGaussians showed empty backgrounds in both Figures. MultiLayer also looked
empty in Figure 2 (minimum “thresholded” Difference).

To be comparable with the results for BS2, the results for minimum Difference were not
included in further analyses. The algorithms which did not show the backgrounds well
(black), like DPEigenbackground, FuzzyChoquetIntegral and FuzzySugenoIntegral, were also
not included in further analyses to increase the sensitivity of the results to the remaining
algorithms.

The calculated Speed and Quality values were examined in relation to the type of algorithm
and the modality used in the algorithm. The results are given in Table 7 and Figures 11 and
12. High values are highlighted in the Table.

Looking at the Speed results, it can be seen that except for 2 algorithms (DPPratiMideod and
MultiLayer_Learn), the basic types have in general faster (lower duration), which is followed
by Statistical types, then the Fuzzy types. Unimodal types are in general faster than multi-
modal types.

There is no distinct relation between minimum “thresholded” Difference and algorithm type
nor modality. Low values of minimum “thresholded” Difference can be found in
LBMixtureOfGaussians, LBAdaptiveSOM and LBFuzzyAdaptiveSOM. High values can be found
in DPGrimsonGMM, DPZivkovicAGMM, and T2FGMM_UV.

The MCE analyses applied to Video1 is given in Appendix VI. The frequency for
StaticFrameDifference which uses the first frame as background for succeeding frames, was
set to 1. To make the analysis similar to BS2, Appendix VI contains minimum thresholded
Difference values.

34

 Table 7. Summary of calculated values for the different criteria for the Video1 video.

Algorithm Type U/M

Speed

(msec)

Diff_thr

(nr pixels)

AdaptiveBackgroundLearning 1 1 6,750 158

DPAdaptiveMedian 1 1 7,060 872

DPGrimsonGMM 2 2 7,553 901

DPMean 1 1 7,327 826

DPPratiMediod 1 2 9,960 473

DPWrenGA 2 1 7,265 851

DPZivkovicAGMM 2 2 7,199 900

FrameDifference 1 1 7,255 353

LBAdaptiveSOM 3 2 7,852 38

LBFuzzyAdaptiveSOM 3 2 8,026 90

LBFuzzyGaussian 3 1 7,473 423

LBMixtureOfGaussians 2 2 7,286 0

LBSimpleGaussian 2 1 7,188 425

MultiLayer_Learn 2 2 11,660 11

StaticFrameDifference 1 1 6,686 429

T2FGMM_UM 3 2 7,805 887

T2FGMM_UV 3 2 7,544 906

WeightedMovingMean 2 1 7,373 377
Note: Type: (1) basic, (2) statistical, (3) fuzzy
 U/M: unimodal (U) or multimodal (M)
 Diff_thr = minimum “thresholded” Difference,
 Although modality refers to Statistical and Fuzzy types, they were also considered in Basic types.

Figure 11. Relation between Speed results with Type of algorithm (left axis) and Modality
(right axis) for Video1 video.

35

Figure 12. Relation between Quality results with Type of algorithm (left axis) and Modality
(right axis) for Video1 video.

The top scorers in Appendix VI are:

Speed = Quality:

(1) LBMixtureOfGaussians
(2) AdaptiveBackgroundLearning
(3) DPAdaptiveMedian

Speed > Quality:

(1) LBMixtureOfGaussians
(2) AdaptiveBackgroundLearning
(3) StaticFrameDifference

Speed < Quality:

(1) LBMixtureOfGaussians
(2) AdaptiveBackgroundLearning
(3) LBAdaptiveSOM

From the results, the LBMixtureOfGaussians scored the best in all scenarios. Just like with BS2,
there were two algorithms, the AdaptiveBackgroundLearning and StaticFrameDifference, which
came to the top 3 but which showed the animal or traces of it in the extracted background
(Appendix VI, Figure 2). This was due to the effect of Speed in the MCE result.

Just like with BS2, sensitivity analysis of the Frequency criteria was performed to determine how
the ranking of the algorithms is affected by the number of samples at a certain distance from the
minimum “thresholded” Difference value.. Table 8 shows the frequency values calculated and
the Table 9 shows the top 3 ranked algorithms using MCE analyses with Speed, minimum
“thresholded” Difference, and the frequency factor. The tables show that the frequency of

36

LBMixtureOfGaussians was the highest only in Plus 0 (before minimum “thresholded” Difference
value + 10 pixels). Other algorithms like DPGrimsonGMM, DPZivkovicAGMM, LBFuzzyGaussian
and LBSimpleGaussian had all their samples included in the range minimum “thresholded”
Difference plus 10 pixels. This is the reason why, in the MCE analyses which also considered
Speed and minimum “thresholded” Difference, LBSimpleGaussian and LBFuzzyGaussian also
ranked well (Table 9). Still, the results show that LBMixtureOfGaussians performed in the
different ranges well.

Table 8. Frequency values of minimum threshold difference plus different number of pixels,

using Video1 video.

Algorithms plus 0 plus 10 plus 25 plus 50 plus 100

AdaptiveBackgroundLearning 1 1 1 3 4

DPAdaptiveMedian 7 28 61 62 62

DPGrimsonGMM 2 62 62 62 62

DPMean 1 1 2 4 23

DPPratiMediod 5 31 36 41 41

DPWrenGA 2 13 42 57 62

DPZivkovicAGMM 1 62 62 62 62

FrameDifference 1 3 3 4 28

LBAdaptiveSOM 1 2 3 3 3

LBFuzzyAdaptiveSOM 1 2 2 8 14

LBFuzzyGaussian 1 62 62 62 62

LBMixtureOfGaussians 10 27 31 32 33

LBSimpleGaussian 1 62 62 62 62

MultiLayer_Learn 1 28 35 38 43

StaticFrameDifference 1 1 1 1 1

T2FGMM_UM 1 15 46 60 62

T2FGMM_UV 2 24 28 62 62

WeightedMovingMean 1 1 5 12 34

Frequency minimum thresholded difference

Table 9. Top ranking algorithms for different scenarios and frequency values (minimum
thresholded difference plus the factor), for Video1 video.

Freq Rank Speed = Quality Speed > Quality Speed < Quality

1 LBMixtureOfGaussians LBMixtureOfGaussians LBMixtureOfGaussians

2 AdaptiveBackgroundLearning AdaptiveBackgroundLearning AdaptiveBackgroundLearning

3 DPAdaptiveMedian StaticFrameDifference LBAdaptiveSOM

1 LBSimpleGaussian LBSimpleGaussian LBSimpleGaussian

2 LBFuzzyGaussian LBMixtureOfGaussians LBFuzzyGaussian

3 LBMixtureOfGaussians LBFuzzyGaussian LBMixtureOfGaussians

1 LBSimpleGaussian LBSimpleGaussian LBSimpleGaussian

2 LBMixtureOfGaussians LBMixtureOfGaussians LBMixtureOfGaussians

3 LBFuzzyGaussian LBFuzzyGaussian LBFuzzyGaussian

1 LBSimpleGaussian LBSimpleGaussian LBSimpleGaussian

2 LBMixtureOfGaussians LBMixtureOfGaussians LBMixtureOfGaussians

3 LBFuzzyGaussian LBFuzzyGaussian LBFuzzyGaussian

1 LBSimpleGaussian LBSimpleGaussian LBSimpleGaussian

2 LBMixtureOfGaussians LBMixtureOfGaussians LBMixtureOfGaussians

3 LBFuzzyGaussian LBFuzzyGaussian LBFuzzyGaussian

Plus 0

Plus 10

Plus 25

Plus 50

Plus 100

37

The overall result of the MCE is reasonable in the sense that the best scorer, the
LBMixtureOfGaussians consistently showed empty background in the frames corresponding to
the minimum “thresholded” Difference. The LBMixtureOfGaussians algorithm also consistently
scored high when different frequency ranges from the minimum “thresholded” Difference were
considered. But what is quite strange in the results is that sometimes an algorithm which shows
the animal in the extracted background, like FrameDifference, can get a high score. This could
mean that the criteria put in the MCE analyses were not good. Another implication is that the
Speed and Quality measures may not have been well defined. Speed could, for example, have
been defined by taking the time until the first empty image was extracted. Also, a minimum
Difference can occur when the animal is standing (less pixel area used). Moreover, the
difference value could have been caused by other factors, like noise, and not only by the
presence of the animal in the background. Another way of dealing with this problem is probably
to give Speed, which is the big reason why Frame Difference ranked high, less weight. In any
case, taking all results together, LBMixtureOfGaussians can reasonably be considered as the best
algorithm.

The LBMixtureOfGaussians method will be used for the rest of the study. Its source code can be
downloaded from Sobral (2013a).

4. How does the algorithm perform in different laboratory situations

The best algorithm was used with different videos to check if it can extract empty backgrounds.
Of the default settings in the program, only the Learning rate setting was changed from 59 to 80
to accommodate to fast moving animals.

The program was run for 37 different videos, representing different animals, animal size and
color, different background (constant and non-constant, water, beddings, with reflections, poor
lighting, objects in arena, etc). There were experiments with single and multiple arenas, and
single and multiple animal in one case. The set also includes videos for which the algorithm is
known to fail (animal hardly move).

The results for the different videos are shown in Appendix VII, Figure 1. The last result for 96
arenas is enlarged in Appendix VII, Figure 2, to show the arena contents better. The first column
in the Appendix VII Figure 1 shows the name and resolution of the videos. The second column
shows the arenas with animal. The third column shows the extracted empty background. The
last column contains some comments on the results.

As can be seen in the images, an empty background is extracted in most situations. Exceptions to
this are in BD2, BD6, BM4, BM5, BM6 and BS11. In the first five of these videos (e.g. except for
BS11), the animals hardly moved so that a part (or whole) of the animal was left in the extracted
backgrounds. For BS11, the run was stopped when a considerable number of arenas were
emptied. This is because for multiple arenas, especially when the number of arenas is more than
4, it was observed that the animals moved in different ways and speeds. It was sometimes
difficult to wait for the time when all arenas did not contain traces of the animal anymore.

From the above results, it can be said that the algorithm fulfills the other criteria for a good
method, as stated in Section IV A. It can successfully handle most of the situations in the
laboratory:

38

1. It works for different type of animals: fast or slow moving, small or large, one or more

animals, one or more-colored animal. However, the algorithm cannot estimate the
background when the animal hardly moves. But this is acceptable since in the assumptions
in Section IV A, it was said that: a foreground object can remain stationary for a short
interval, but no longer than the interval where the background is revealed. So for animals
that hardly move, the background should be taken before putting the animal in the cage.

2. It works for different types of setups: one arena or multiple arena setup, open field, Y maze,

Plus maze, etc. However, for some multiple arena cases, it was difficult to get empty
background for all arenas, especially when the animals moved differently. It is probably good
to run the algorithm a second time for only the arena’s that are left with part of the animal
present.

3. It works when there is no animal at the start of the run.

4. It deals or tolerate the changes affecting the background which are not caused by the
foreground object like change in lighting, shadows cast, and moving background (changes in
the bedding or ripples in the water caused by movement of the animal).

It is possible to influence the results by changing the values of the parameters used in the model.

39

V. Summary and Conclusions

The study identified characteristics of a good algorithm for background extraction to be fast
(speed), of good quality (produce empty backround) and applicability (can be used for different
situations in the laboratory). The internet was sought for available algorithms, and background
subtraction algorithms which contain background modeling components were used to extract
the background. The algorithms came with a range of characteristics, like types, modality, data
abstraction level, feature size, etc. Studying each algorithm suggested that there are a number
of them which can produce empty backgrounds and fulfil the desired characteristics of a good
algorithm.

Different quantifiable criteria were selected to use for selecting the best algorithm. To make
good comparisons among different algorithms, these criteria were suppose to be independent of
the characteristics of the algorithms used. The criteria identified were Speed, minimum
Difference, and the frequency of occurrence of the minimum Difference value. The last two
(except for Speed) were measurements of quality. They were calculated by comparing extracted
backgrounds from the algorithms and reference background. The calculations were done on
normal and thresholded images. Test of the the criteria on two algorithms showed that they
could differentiate the performances of the algorithms.

When the criteria was applied to all the algorithms, it showed that for some algorithms, the
frames corresponding to minimum Difference or minimum “thresholded” Difference did not
always show empty backgrounds. When the criteria were examined against the type of method
and modality of the method, it showed that Speed is in general related to type and modality of
the method, but the other criteria not. This means that Speed as criteria was not really
independent of the algorithms. MCE analyses were performed for the scenarios that considered
different preferences of users, like Speed = Quality, Speed > Quality and Speed < Quality. The
results showed that LBMixtureOfGaussians (LBMOG) was the best algorithm for the videos used.
LBMOG is based on the Gaussian distribution. It is multi-modal, parametric, recursive and adapts
to changes in the background.

The LBMOG algorithm was used to extract the background of videos representing different
situations. Empty background was obtained in many cases. Exceptions were in videos where the
animal hardly moved. It also did not perform well in multiple arenas, because it was difficult to
find the same moment of time when the arenas were all empty.

LBMOG answers the requirements on the characteristics of a good algorithm for laboratory use,
as was initially defined in the study. It is applicable in many situations, has low computational
and memory requirement, and is relatively fast. It contains settings, whose values can be
changed to improve the performance of the algorithm. It is recommended for use in the
laboratory situation.

However, there were some results which were not as expected. For example, FrameDifference,
StaticFrameDifference, and AdaptiveBackgroundLearning, which always had backgrounds with
animal or traces of animal, got relatively high scores in the MCE analysis. This could mean that
the Speed criteria which was related to the type of algorithm, should probably not have been
added as criteria in the MCE analyses, or should have gotten less weight, or should have been
defined in another way. Another implication is that Quality measures could have been not very
well defined. The minimum Difference, for example, compare the intensities of each pixel and

40

gets the total number of pixels with differences. However, the differences could have been
caused by various factors, and not only by the presence of the animal in the extracted
background. The cut off value for thresholding should probably have been higher.

For future study, it is suggested to:

1. Examine the MCE analysis method and device a way to prevent algorithms that cannot

produce empty backgrounds from ending up with high scores. The frequencies of the values
with minimum difference was included to do this task, but still some of these algorithms
ended up with high scores.

2. Optimize the extraction of the final background. The algorithms considered here run from
start to end. User intervention is needed to stop the algorihtm when an empty background
is obtained. It would be good if the algorithm themselves are able to stop once an empty
background is obtained.

Lastly, from literature review, it was realized that many studies have already been made, and
algorithms created to extract empty backgrounds. Many of the reported studies are without
source codes, but there are authors who are willing to share their programs. There are good
algorithms which work well for many situations, but not for all situations. For this case, it is
handy to be able to change parameters in the algorithm to tune it better to a particular
application.

41

References

Bender, L. (2013). "Backgound Subtraction Models." Retrieved 16 June, 2013, from
http://scene.sourceforge.net/models.html.

Benezeth, Y., Jodoin, P.M., Emile, B., Laurent, H., and Rosenberger, C. (2008). "Review and
Evaluation of Commonly-Implemented Background Subtraction Algorithms." IEEE International
Conference on Pattern Recognition: 1-4.

Bouwmans, T., El Baf, F., and Vachon, B. (2008). "Background Modeling using Mixture of Gaussians
for Foreground Detection – A Survey." Recent Patents on Computer Science 1(3): 219-237.

Chen, T. P., Haussecker, H,. Bovyrin, A., Belenov, R., Rodyushkin, K. Kuranov, A., and Eruhimov, V.
(2005). "Computer Vision Workload Analysis: Case Study of Video Surveillance Systems." Inter
Technology Journal 9(2).

Cheung, S.-C., and Kamath, C. (2004). "Robust Techniques for Background Subtraction in Urban
Traffic Video." SPIE Electronic Imaging - Video Communications and Image Processing: 881–892.

Cohen, I and Medioni, G. (1999). “Detecting and tracking moving objects for video surveillance.” IEEE
Proc. Computer Vision and Pattern Recognition, Jun 23-25, 1999.

Criminisi, A., Perez, P., and Toyama, K. (2004). "Region Filling and Object Femoval by Exemplar-Based
Image Inpainting." IEEE Transactions on Image Processing 13(9).

Cristani, M., Bicego, M., and Murino, V. (2003). "Multi-level background initialization using Hidden
Markov Models." First ACM SIGMM International Workshop on Video Surveillance.

Cucchiara, R., Grana, C., Piccardi, M., and Prati, A. (2003). "Detecting moving objects, ghosts, and
shadows in video streams." IEEE Transactions on Pattern Analysis and Machine Intelligence 25(10):
1337-1342.

Eghbali, H. J. (1979). "K-s test for Detecting Changes from Landsat imagery data." IEEE Transactions
on Systems, Man and Cybernetics 9(1): 17–23.

El Baf, F., Bouwmans, T., and Vachon, B. (2008a). “Fuzzy Integral for Moving Object Detection.” FUZZ-
IEEE 2008, Hong Kong.

El Baf, F., Bouwmans, T., and Vachon, B. (2008b). “Type-2 Fuzzy Mixture of Gaussians Model:
Application to Background Modeling. “ ISVC 2008, Las Vegas, USA.

Elgammal, A. (2011). “Figure-Ground Segmentation – Pixel-Based.” Visual Analysis of Humans, T.B.
Moeslund et al. (Eds), Springer-Verlag London Limited 2011.

Elhabian, S. Y., El-Sayed, K.M., and Ahmed, S.H. (2008). "Moving Object Detection in Spatial Domain
using Background Removal Techniques - State-of-Art." Recent Patents on Computer Science 1: 32–
54.

Freedman, N., and Russell, S (1997). “Image segmentation in video sequences: A probabilistic

42

approach.” Conference on Uncertainty in Artificial Intelligence.

Gutchess, D., Trajkovic, M., Cohen-Solal, E., Lyons, D., and Jain, A.K. (2001). "A Background Model
Initialization Algorithm for Video Surveillance." Eight International Conference on Computer Vision 1:
733-740.

Heywood, I., Cornelius, S., and Carver, S. (2006). An Introduction to Geographical Information
Systems. England, Pearson Education Limited.

Jain, R. C., and Nagel, H.H. (1979). "On the analysis of accumulative difference pictures from image
sequences of real world scenes." IEEE Transactions on Pattern Analysis and Machine Intelligence 1(2):
206–214.

KaewTraKulPong, P., and Bowden, R. (2001). “An Improved Adaptive Background Mixture Model for
Real-time Tracking with Shadow Detection.” Proc. 2nd European Workshop on Advanced Video
Based Surveillance Systems, AVBS01, September 2001.

Madalena, L., and Petrosino, A. (2008). "A Self-Organizing Approach to Background Subtraction for
Visual Surveillance Applications." IEEE Transactions on Image Processing 17(7): 1168-1177.

Madalena, L., and Petrosino, A. (2009). “Multivalued Background/Foreground Separation for Moving
Object Detection. “ WILF 2009, LNAI 5571, DiGesu, V., Pal, S.K., and Petrosino, A. (Eds) 263-270.

Madalena, L., and Petrosino, A. (2010). "A fuzzy spatial coherence-based approach to
background/foreground separation for moving object detection." Neural Computing and Applications
19: 179-186.

McFarlane, N. J. B., and Schofield, C.P. (1995). "Segmentation and tracking of piglets in images."
Machine Vision and Applications 8: 187-193.

Noldus, L. P., Spink, A.J., and Tegelenbosch, R.A. (2001). "EthoVision: a versatile video tracking
system for automation of behavioral experiments." Behavior Research Methods, Instruments &
Computers 33(3): 398–414.

Oliver, N. M., Rosario, B., and Pentland, A.P. (2000). "A Bayesian Computer Vision System for
Modeling Human Interactions." IEEE Transactions On Pattern Analysis and Machine Intelligence
22(8): 831-843.

OpenCV (2013). Retrieved 19 November, 2012, from http://opencv.org/.

Piccardi, M. (2004). "Background Subtraction Techniques: a Review." IEEE International Conference
on Systems, Man and Cybernetics: 3099–3104.

Radke, R. J., Andra, S., Al-Kofahi, O., and Roysam, B. (2005). "Image Change Detection Algorithms: A
Systematic Survey." IEEE Transactions on Image Processing 14: 294–307.

Reddy, V., Sanderson, C., Lovell, B., and Bigdeli, A. (2009). “An efficient background estimation
algorithm for embedded smart cameras.” Distributed Smart Cameras, ICDSC 2009, Third ACM/IEEE
International Conference.

Reddy, V., Sanderson, C., and Lovell, B. (2011). "A low-complexity algorithm for static background
estimation from cluttered image sequences in surveillance contexts." EURASIP Journal on Image and

http://opencv.org/

43

Video Processing, Volume 2011, 13 pages.

Sigari, M. H., Mozayani, N., and Pourreza, H. R. (2008). "Fuzzy running average and fuzzy background
subtraction: concepts and application." IJCSNS International Journal of Computer Science and
Network Security 8(2): 138-143.

Sobral, A. (2012). "BGSLibrary." Retrieved 19 November, 2012, from
http://code.google.com/p/bgslibrary/.

Sobral, A. (2013). “BGSLibrary: An OpenCV C++ Bacground Subtraction Library.” IX Workshop de
Visão Computacional. Rio de Janeiro, Brazil, June 2013.

Sobral, A. (2013a). “BGSLibrary: A Background Subtraction Library. Downloads”. Retrieved 19
November, 2012, from http://code.google.com/p/bgslibrary/downloads/list.

Stauffer, C., and Grimson, W.E.L. (1999). "Adaptive background mixture models for real-time
tracking." IEEE Conference on Computer Vision and Pattern Recognition, Volume 2.

Varadarajan, S., Karan, L., and Florencio, D. (2009). "Background Recovery from Video Sequences
using Motion Parameters." IEEE International Conference on Acoustics, Speech and Signal Processing
: 989-992.

Wang, H., and Suther, D. (2005). "Background initialization with a new robust statistical approach."
IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and
Surveillance : 153-159.

Wren, C. R., Azerbayejani, A., Darrell, T., and Pentland, A.P. (1997). "Pfinder: Real-Time Tracking of
the Human Body." IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7): 780-785.

Yao, J., and Odobez, J.M. (2007). Multi-Layer Background Subtraction Based on Color and Texture.
IEEE Computer Vision and Pattern Recognition Conference. Minneapolis, MN.

Zhang, H., and Xu, D. (2006). “Fusing color and texture features for background model.” Fuzzy
Systems and Knowledge Discovery 2006, Lecture Notes in Computer Science 4223 : 887-893.

Zivkovic, Z., and van der Heijden, F. (2006). "Efficient Adaptive Density Estimation per Image Pixel for
the Task of Background Subtraction." Pattern Recognition Letters 27(7): 773-780.

44

Appendix I. Algorithms used to extract the background

Method Type U/MP/N Type Size R/N Description of algorithm or paper which was the basis of the algorithm

AdaptiveBackgroundLearning Basic - - intensity frame R adapts background model using temporal blending or exponential forgetting, where the current background is made

equal to img_backgroundt = alpha * img_input + (1-alpha)*img_backgroundt-1; where alpha controls the speed of

forgetting the information (Elgammal, 2011)

DPAdaptiveMedian Basic - - blob

edges

pixel N employs image differencing with respect to a median background and a Laplacian operator; uses a reference

background image which is calculated using the running median of the image sequence; uses a mask to differentiate

stationary objects from the background; the algorithm performed good in distinguishing the animals from the

background (McFarlane and Schofield, 1995)

DPEigenbackground Statistical M N color,

texture,

or others

pixel,

blobs

N detects and tracks moving objects and outputs a feature vector describing motion and heading of the moving object

and spatial relationship to other moving objects; the feature vectors are the inputs to a stochastic state-based

behavior model and the behaviors are classified; uses an eigenspace model that is formed by computing the mean

background image and its covariance matrix from N samples, the covariance matrix is diagonalized through an

eigenvalue decomposition; only M largest eigenvalues are kept in the principal component analysis (PCA) for the

eigenbackgrounds; the background is modeled by projecting each input image onto the space expanded by the

eigenbackground images and their means (Oliver et al., 2000)

DPGrimsonGMM Statistical M P color pixel R models values of each pixel as a mixture of Gaussians; pixels that coorespond to background distributions are

considered background; adapts robustly to lighting changes, repetitive motions in the background, cluttered regions

slow moving objects, and introduction/removal of objects from the background; applied in different environments

and animals (Stauffer and Grimson, 1999)

DPMean Basic - - color pixel N for each pixel and channel in the image, the background is updated by taking the half of the mean; the mean is

calculated by mean = alpha * previous mean + (1-alpha) * img_input, where alpha controls the speed of forgetting

the information; a pixel is considered to be from the background if the squared distance between it and the

background model is less than the threshold

DPPratiMediod Basic - - color,

motion

pixel N uses an object-level classification of moving objects into moving visual objects (MVOs), ghosts and shadows; uses

motion and shadow information to exclude MVOs and shadows, while retaining ghosts in the background;

differentiates shadows by analyzing chromaticity in the HSV color space; background update is done by taking the

median value between values in previous frames and the current background (Cucchiara, et al., 2003)

Feature

Following abbreviations were used: U/M = unimodal or multi-modal; P/N =- parameteric or non-parametric; R/N = recursive or non-recursive

45

Method Type U/MP/N Type Size R/N Description of algorithm or paper which was the basis of the algorithm

DPWrenGA Statistical U P color pixel,

blobs

R originally used for tracking people and interpreting their behavior (Pfinder software), but the algorithm can be

applied to track vehicles and animals; adopts a Maximum A Posteriori Probability (MAP) approach in detection and

tracking using 2D models; incorporates a priori knowledge on the foreground in bootstrapping and recovering from

errors; feature vectors at each pixel are clustered to form blobs, which are coherent, connected regions; models

background as a texture surface with each point in the surface associated with mean color value and color

distribution modeled with Gaussian distribution (Wren, et al., 1997).

DPZivkovicAGMM Statistical M P color pixel R similar to MixtureOfGaussianV2, but used Donovan Parks (see Sobral, 2012) own C++ implementation

FrameDifference Basic - - gray or

color

frame N uses previous frame as background and calculates the absolute difference between the background and the current

image as the foreground

FuzzyChoquetIntegral Fuzzy M N color,

edge,

texture,

stereo

pixel R fuses color and texture features using Choquet integral as aggregating operator; transforms RGB color space to YCrCb

color space and uses local binary pattern operator for the texture model; uses similarity measures for color and

texture, which are then aggregated by the Choquet integral; uses a background update rule that quickly adapts a

pixel classified as background and slowly adapts a pixel that is classified as foreground; robust to changes happening

in the background (El Baf, et. al., 2008a)

FuzzySugenoIntegral Fuzzy M N color,

texture

pixel R fuses color and texture features using fuzzy integral; transforms RGB color space to Ohta color space and uses local

binary pattern operator for the texture model; uses pixel motion character to decide if the pixel has to be updated

to the background or not; robust to changes in the background (Zhang and Xu, 2006)

LBAdaptiveSOM Fuzzy M N neural

map

pixel R uses competitive neural network similar to Kohonen Self-Organizing Map (SOM) to adaptively model the

background; a neuronal map of 3x3 vectors is defined for each pixel; incoming source pixels are mapped to the

closest weight vectors according to Euclidean distance metric, and the weights are updated; the set up weights act

as background model (Bender, 2013)

LBFuzzyAdaptiveSOM Fuzzy M N neural

map

pixel R modified version of LBAdaptiveSOM; uses fuzzy rule for neural network background model update; more robust to

illumination changes compared to LBAdaptiveSOM (Bender, 2013, and Madalena and Petrosino, 2008)

LBFuzzyGaussian Fuzzy U P color pixel R modified version of LBSimpleGaussian using fuzzy classification rule and fuzzy online cumulative averages; provides

better segmentation of stationary foreground objects than the simple Gaussian model (Bender, 2013, and Sigari, et

al., 2008)

Feature

Following abbreviations were used: U/M = unimodal or multi-modal; P/N =- parameteric or non-parametric; R/N = recursive or non-recursive

46

Method Type U/MP/N Type Size R/N Description of algorithm or paper which was the basis of the algorithm

LBMixtureOfGaussians Statistical M P color pixel R similar to LBSimpleGaussian except that this uses classic multivariate Gaussian mixture model representing each

pixel by a mixture of 4 Gaussians (Bender, 2013, and Bouwmans, et al. 2008)

LBSimpleGaussian Statistical U P color pixel R uses single Gaussian probability density function based on recent pixel values; updates mean and covariance matrix

using online cumulative average; calculates Mahalanobis distance between source and background pixels and

compares this to a threshold (Bender, 2013, Benezeth, et al., 2008)

MixtureOfGaussianV1 Statistical M P color pixel R uses OpenCV's cv::BackgroundSubtractorMOG class based on KaewTraKulPong and Borden (2001); improved the

update mechanism in the algorithm of Stauffer and Grimson (1999) leading to faster and more accurate learning

phase and improved shadow detection.

MixtureOfGaussianV2 Statistical M P color pixel R uses OpenCV's cv::BackgroundSubtractorMOG2 class based on Zivkovic and van der Heijden (2006); improved the

algorithm of Stauffer and Grimson (1999) by automatically updating the parameters of the model and selecting the

needed number of components per pixel to fully adapt to the observed scene.

MultiLayer_Learn Statistical M N color,

texture

pixel R uses photometric invariant color measurements in RGB color space and texture features represented by local binary

pattern; using simple layer based strategy, moving background pixels are modelled using quasi-periodic flickering;

robust to changes in the background (Yao and Odobez, 2007)

StaticFrameDifference Basic - - gray or

color

frame N similar to FrameDifference only it uses first frame as background.

T2FGMM_UM Fuzzy M P color pixel R this is an improvement to the mixture of gaussians model to handle dynamic changes in the background and false

initialization; uses T2 membership functions to represent uncertainty in the mean vector of the multivariate

Gaussian model (El Baf, et al., 2008b)

T2FGMM_UV Fuzzy M P color pixel R similar to T2FGMM_UM, only the T2 membership functions represent uncertainty in the variance vector of the

multivariate Gaussian model; T2GMM_UM is a better estimator than T2GMM_UV (El Baf, et al., 2008b)

WeightedMovingMean Basic - - intensity pixel N uses weighted average to model the background; the current image gets 50% weight, the previous image 30% and

the pre-previous image 20%; if weights are not used, then uses simple average of the three images

WeightedMovingVariance Basic - - intensity pixel N similar to WeightedMovingMean, but also calculated weighted variance using the same proportions as the mean;

uses the square root of the total variance to estimate the foreground.

Feature

Following abbreviations were used: U/M = unimodal or multi-modal; P/N =- parameteric or non-parametric; R/N = recursive or non-recursive

47

Appendix II. Comparison of GrimsonGMM and LBMOG using different videos.

 Note: The SInt = sample interval (frames), SR = video sample rate; the status of change is indicated as Dissappear (D) or Appear (A).

No Video SInt Start image GrimsonGMM LBMOG D/A

1 Green 1

D

2 Green 1

A

3 BM1 1

A

4 BS8 1

D

48

5 BS8 1

A

6 BS9 1

D

7 BS9 1

A

8 BD15 1

D

49

9 BS2 1

A

10 BD4 1

D

11 BD4 10

D

12 BD4 SR

D

50

Appendix III. Frames corresponding to quality measures for different background extraction methods using BS2 video.

 Figure 1. Minimum Difference Frames for BS2 video.

51

 Figure 2. Minimum Thresholded Difference Frames for BS2 video.

52

Appendix IV. Multi-criteria evaluation to select the best method using BS2 video with thresholded Difference values.
Criteria: Speed = Quality TOTAL TOTAL

Method Val Val (std) Weight Score Val Val (std) Weight Score Val Val (std) Weight Score SCORE RANK

AdaptiveBackgroundLearning 182,308 0,945 0,5 0,473 42 0,991 0,25 0,248 1 0,000 0,25 0,000 0,720 2

DPAdaptiveMedian 184,703 0,939 0,5 0,470 1458 0,679 0,25 0,170 7 0,008 0,25 0,002 0,641 7

DPGrimsonGMM 284,060 0,680 0,5 0,340 1477 0,675 0,25 0,169 2 0,001 0,25 0,000 0,509 13

DPMean 213,691 0,863 0,5 0,432 2364 0,479 0,25 0,120 1 0,000 0,25 0,000 0,551 11

DPPratiMediod 288,668 0,668 0,5 0,334 1482 0,673 0,25 0,168 5 0,005 0,25 0,001 0,503 14

DPWrenGA 204,972 0,886 0,5 0,443 1485 0,673 0,25 0,168 1 0,000 0,25 0,000 0,611 8

DPZivkovicAGMM 210,601 0,871 0,5 0,436 1496 0,670 0,25 0,168 2 0,001 0,25 0,000 0,604 9

FrameDifference 164,027 0,993 0,5 0,497 879 0,806 0,25 0,202 1 0,000 0,25 0,000 0,698 3

LBAdaptiveSOM 289,133 0,666 0,5 0,333 802 0,823 0,25 0,206 1 0,000 0,25 0,000 0,539 12

LBFuzzyAdaptiveSOM 309,041 0,614 0,5 0,307 1133 0,750 0,25 0,188 3 0,003 0,25 0,001 0,495 15

LBFuzzyGaussian 221,139 0,844 0,5 0,422 1 1,000 0,25 0,250 5 0,005 0,25 0,001 0,673 6

LBMixtureOfGaussians 224,250 0,836 0,5 0,418 0 1,000 0,25 0,250 768 1,000 0,25 0,250 0,918 1

LBSimpleGaussian 201,017 0,896 0,5 0,448 69 0,985 0,25 0,246 2 0,001 0,25 0,000 0,695 4

MultiLayer_Learn 544,312 0,000 0,5 0,000 81 0,982 0,25 0,246 1 0,000 0,25 0,000 0,246 16

StaticFrameDifference 161,367 1,000 0,5 0,500 2938 0,353 0,25 0,088 1 0,000 0,25 0,000 0,588 10

T2FGMM_UM 380,989 0,426 0,5 0,213 4538 0,000 0,25 0,000 1 0,000 0,25 0,000 0,213 18

T2FGMM_UV 375,522 0,441 0,5 0,220 4136 0,089 0,25 0,022 1 0,000 0,25 0,000 0,243 17

WeightedMovingMean 182,971 0,944 0,5 0,472 875 0,807 0,25 0,202 1 0,000 0,25 0,000 0,674 5

Minimum 161,367 0 1

Maximum 544,312 4538 768

Difference_frequency (25%)Speed (msec, 50%) Difference (nr of pixels, 25%)

Criteria: Speed > Quality TOTAL TOTAL

Method Val Val (std) Weight Score Val Val (std) Weight Score Val Val (std) Weight Score SCORE RANK

AdaptiveBackgroundLearning 182,308 0,945 0,6 0,567 42 0,991 0,2 0,198 1 0,000 0,2 0,000 0,765 2

DPAdaptiveMedian 184,703 0,939 0,6 0,563 1458 0,679 0,2 0,136 7 0,008 0,2 0,002 0,701 7

DPGrimsonGMM 284,060 0,680 0,6 0,408 1477 0,675 0,2 0,135 2 0,001 0,2 0,000 0,543 13

DPMean 213,691 0,863 0,6 0,518 2364 0,479 0,2 0,096 1 0,000 0,2 0,000 0,614 11

DPPratiMediod 288,668 0,668 0,6 0,401 1482 0,673 0,2 0,135 5 0,005 0,2 0,001 0,536 14

DPWrenGA 204,972 0,886 0,6 0,532 1485 0,673 0,2 0,135 1 0,000 0,2 0,000 0,666 9

DPZivkovicAGMM 210,601 0,871 0,6 0,523 1496 0,670 0,2 0,134 2 0,001 0,2 0,000 0,657 10

FrameDifference 164,027 0,993 0,6 0,596 879 0,806 0,2 0,161 1 0,000 0,2 0,000 0,757 3

LBAdaptiveSOM 289,133 0,666 0,6 0,400 802 0,823 0,2 0,165 1 0,000 0,2 0,000 0,564 12

LBFuzzyAdaptiveSOM 309,041 0,614 0,6 0,369 1133 0,750 0,2 0,150 3 0,003 0,2 0,001 0,519 15

LBFuzzyGaussian 221,139 0,844 0,6 0,506 1 1,000 0,2 0,200 5 0,005 0,2 0,001 0,707 6

LBMixtureOfGaussians 224,250 0,836 0,6 0,501 0 1,000 0,2 0,200 768 1,000 0,2 0,200 0,901 1

LBSimpleGaussian 201,017 0,896 0,6 0,538 69 0,985 0,2 0,197 2 0,001 0,2 0,000 0,735 4

MultiLayer_Learn 544,312 0,000 0,6 0,000 81 0,982 0,2 0,196 1 0,000 0,2 0,000 0,196 18

StaticFrameDifference 161,367 1,000 0,6 0,600 2938 0,353 0,2 0,071 1 0,000 0,2 0,000 0,671 8

T2FGMM_UM 380,989 0,426 0,6 0,256 4538 0,000 0,2 0,000 1 0,000 0,2 0,000 0,256 17

T2FGMM_UV 375,522 0,441 0,6 0,264 4136 0,089 0,2 0,018 1 0,000 0,2 0,000 0,282 16

WeightedMovingMean 182,971 0,944 0,6 0,566 875 0,807 0,2 0,161 1 0,000 0,2 0,000 0,728 5

Minimum 161,367 0 1

Maximum 544,312 4538 768

Difference_frequency (20%)Speed (msec, 60%) Difference (nr of pixels, 20%)

53

Criteria: Speed < Quality TOTAL TOTAL

Method Val Val (std) Weight Score Val Val (std) Weight Score Val Val (std) Weight Score SCORE RANK

AdaptiveBackgroundLearning 182,308 0,945 0,4 0,378 42 0,991 0,3 0,297 1 0,000 0,3 0,000 0,675 2

DPAdaptiveMedian 184,703 0,939 0,4 0,376 1458 0,679 0,3 0,204 7 0,008 0,3 0,002 0,582 7

DPGrimsonGMM 284,060 0,680 0,4 0,272 1477 0,675 0,3 0,202 2 0,001 0,3 0,000 0,475 13

DPMean 213,691 0,863 0,4 0,345 2364 0,479 0,3 0,144 1 0,000 0,3 0,000 0,489 12

DPPratiMediod 288,668 0,668 0,4 0,267 1482 0,673 0,3 0,202 5 0,005 0,3 0,002 0,471 15

DPWrenGA 204,972 0,886 0,4 0,354 1485 0,673 0,3 0,202 1 0,000 0,3 0,000 0,556 8

DPZivkovicAGMM 210,601 0,871 0,4 0,349 1496 0,670 0,3 0,201 2 0,001 0,3 0,000 0,550 9

FrameDifference 164,027 0,993 0,4 0,397 879 0,806 0,3 0,242 1 0,000 0,3 0,000 0,639 4

LBAdaptiveSOM 289,133 0,666 0,4 0,267 802 0,823 0,3 0,247 1 0,000 0,3 0,000 0,514 10

LBFuzzyAdaptiveSOM 309,041 0,614 0,4 0,246 1133 0,750 0,3 0,225 3 0,003 0,3 0,001 0,472 14

LBFuzzyGaussian 221,139 0,844 0,4 0,338 1 1,000 0,3 0,300 5 0,005 0,3 0,002 0,639 5

LBMixtureOfGaussians 224,250 0,836 0,4 0,334 0 1,000 0,3 0,300 768 1,000 0,3 0,300 0,934 1

LBSimpleGaussian 201,017 0,896 0,4 0,359 69 0,985 0,3 0,295 2 0,001 0,3 0,000 0,654 3

MultiLayer_Learn 544,312 0,000 0,4 0,000 81 0,982 0,3 0,295 1 0,000 0,3 0,000 0,295 16

StaticFrameDifference 161,367 1,000 0,4 0,400 2938 0,353 0,3 0,106 1 0,000 0,3 0,000 0,506 11

T2FGMM_UM 380,989 0,426 0,4 0,171 4538 0,000 0,3 0,000 1 0,000 0,3 0,000 0,171 18

T2FGMM_UV 375,522 0,441 0,4 0,176 4136 0,089 0,3 0,027 1 0,000 0,3 0,000 0,203 17

WeightedMovingMean 182,971 0,944 0,4 0,377 875 0,807 0,3 0,242 1 0,000 0,3 0,000 0,620 6

Minimum 161,367 0 1

Maximum 544,312 4538 768

Difference_frequency (30%)Speed (msec, 40%) Difference (nr of pixels, 30%)

54

Appendix V. Frames corresponding to quality measures for different background extraction methods using Video1.

Figure 1. Minimum Difference Frames for Video1 video

55

 Figure 2. Minimum thresholded Difference Frames for Video1 video

56

Appendix VI. Multi-criteria evaluation to select the best method using Video1 video with thresholded Difference values.

Criteria: Speed = Quality TOTAL TOTAL

Method Val Val (std) Weight Score Val Val (std) Weight Score Val Val (std) Weight Score SCORE RANK

AdaptiveBackgroundLearning 6,750 0,987 0,5 0,494 158 0,826 0,25 0,206 1 0,000 0,25 0,000 0,700 2

DPAdaptiveMedian 7,060 0,925 0,5 0,463 872 0,038 0,25 0,009 7 0,667 0,25 0,167 0,639 3

DPGrimsonGMM 7,553 0,826 0,5 0,413 901 0,006 0,25 0,001 2 0,111 0,25 0,028 0,442 14

DPMean 7,327 0,871 0,5 0,436 826 0,088 0,25 0,022 1 0,000 0,25 0,000 0,458 12

DPPratiMediod 9,960 0,342 0,5 0,171 473 0,478 0,25 0,119 5 0,444 0,25 0,111 0,402 16

DPWrenGA 7,265 0,884 0,5 0,442 851 0,061 0,25 0,015 2 0,111 0,25 0,028 0,485 11

DPZivkovicAGMM 7,199 0,897 0,5 0,449 900 0,007 0,25 0,002 1 0,000 0,25 0,000 0,450 13

FrameDifference 7,255 0,886 0,5 0,443 353 0,610 0,25 0,153 1 0,000 0,25 0,000 0,595 6

LBAdaptiveSOM 7,852 0,766 0,5 0,383 38 0,958 0,25 0,240 1 0,000 0,25 0,000 0,622 5

LBFuzzyAdaptiveSOM 8,026 0,731 0,5 0,365 90 0,901 0,25 0,225 1 0,000 0,25 0,000 0,591 7

LBFuzzyGaussian 7,473 0,842 0,5 0,421 423 0,533 0,25 0,133 1 0,000 0,25 0,000 0,554 10

LBMixtureOfGaussians 7,286 0,879 0,5 0,440 0 1,000 0,25 0,250 10 1,000 0,25 0,250 0,940 1

LBSimpleGaussian 7,188 0,899 0,5 0,450 425 0,531 0,25 0,133 1 0,000 0,25 0,000 0,582 8

MultiLayer_Learn 11,660 0,000 0,5 0,000 11 0,988 0,25 0,247 1 0,000 0,25 0,000 0,247 18

StaticFrameDifference 6,686 1,000 0,5 0,500 429 0,526 0,25 0,132 1 0,000 0,25 0,000 0,632 4

T2FGMM_UM 7,805 0,775 0,5 0,388 887 0,021 0,25 0,005 1 0,000 0,25 0,000 0,393 17

T2FGMM_UV 7,544 0,828 0,5 0,414 906 0,000 0,25 0,000 2 0,111 0,25 0,028 0,442 15

WeightedMovingMean 7,373 0,862 0,5 0,431 377 0,584 0,25 0,146 1 0,000 0,25 0,000 0,577 9

Minimum 6,686 0 1

Maximum 11,660 906 10

Difference_frequency (25%)Speed (msec, 50%) Difference (nr of pixels, 25%)

Criteria: Speed > Quality TOTAL TOTAL

Method Val Val (std) Weight Score Val Val (std) Weight Score Val Val (std) Weight Score SCORE RANK

AdaptiveBackgroundLearning 6,750 0,987 0,6 0,592 158 0,826 0,2 0,165 1 0,000 0,2 0,000 0,757 2

DPAdaptiveMedian 7,060 0,925 0,6 0,555 872 0,038 0,2 0,008 7 0,667 0,2 0,133 0,696 4

DPGrimsonGMM 7,553 0,826 0,6 0,495 901 0,006 0,2 0,001 2 0,111 0,2 0,022 0,519 15

DPMean 7,327 0,871 0,6 0,523 826 0,088 0,2 0,018 1 0,000 0,2 0,000 0,540 12

DPPratiMediod 9,960 0,342 0,6 0,205 473 0,478 0,2 0,096 5 0,444 0,2 0,089 0,390 17

DPWrenGA 7,265 0,884 0,6 0,530 851 0,061 0,2 0,012 2 0,111 0,2 0,022 0,565 11

DPZivkovicAGMM 7,199 0,897 0,6 0,538 900 0,007 0,2 0,001 1 0,000 0,2 0,000 0,540 13

FrameDifference 7,255 0,886 0,6 0,531 353 0,610 0,2 0,122 1 0,000 0,2 0,000 0,653 5

LBAdaptiveSOM 7,852 0,766 0,6 0,459 38 0,958 0,2 0,192 1 0,000 0,2 0,000 0,651 6

LBFuzzyAdaptiveSOM 8,026 0,731 0,6 0,438 90 0,901 0,2 0,180 1 0,000 0,2 0,000 0,619 9

LBFuzzyGaussian 7,473 0,842 0,6 0,505 423 0,533 0,2 0,107 1 0,000 0,2 0,000 0,612 10

LBMixtureOfGaussians 7,286 0,879 0,6 0,528 0 1,000 0,2 0,200 10 1,000 0,2 0,200 0,928 1

LBSimpleGaussian 7,188 0,899 0,6 0,539 425 0,531 0,2 0,106 1 0,000 0,2 0,000 0,646 7

MultiLayer_Learn 11,660 0,000 0,6 0,000 11 0,988 0,2 0,198 1 0,000 0,2 0,000 0,198 18

StaticFrameDifference 6,686 1,000 0,6 0,600 429 0,526 0,2 0,105 1 0,000 0,2 0,000 0,705 3

T2FGMM_UM 7,805 0,775 0,6 0,465 887 0,021 0,2 0,004 1 0,000 0,2 0,000 0,469 16

T2FGMM_UV 7,544 0,828 0,6 0,497 906 0,000 0,2 0,000 2 0,111 0,2 0,022 0,519 14

WeightedMovingMean 7,373 0,862 0,6 0,517 377 0,584 0,2 0,117 1 0,000 0,2 0,000 0,634 8

Minimum 6,686 0 1

Maximum 11,660 906 10

Difference_frequency (20%)Speed (msec, 60%) Difference (nr of pixels, 20%)

57

Criteria: Speed < Quality TOTAL TOTAL

Method Val Val (std) Weight Score Val Val (std) Weight Score Val Val (std) Weight Score SCORE RANK

AdaptiveBackgroundLearning 6,750 0,987 0,4 0,395 158 0,826 0,3 0,248 1 0,000 0,3 0,000 0,643 2

DPAdaptiveMedian 7,060 0,925 0,4 0,370 872 0,038 0,3 0,011 7 0,667 0,3 0,200 0,581 4

DPGrimsonGMM 7,553 0,826 0,4 0,330 901 0,006 0,3 0,002 2 0,111 0,3 0,033 0,365 14

DPMean 7,327 0,871 0,4 0,349 826 0,088 0,3 0,026 1 0,000 0,3 0,000 0,375 13

DPPratiMediod 9,960 0,342 0,4 0,137 473 0,478 0,3 0,143 5 0,444 0,3 0,133 0,413 11

DPWrenGA 7,265 0,884 0,4 0,353 851 0,061 0,3 0,018 2 0,111 0,3 0,033 0,405 12

DPZivkovicAGMM 7,199 0,897 0,4 0,359 900 0,007 0,3 0,002 1 0,000 0,3 0,000 0,361 16

FrameDifference 7,255 0,886 0,4 0,354 353 0,610 0,3 0,183 1 0,000 0,3 0,000 0,537 7

LBAdaptiveSOM 7,852 0,766 0,4 0,306 38 0,958 0,3 0,287 1 0,000 0,3 0,000 0,594 3

LBFuzzyAdaptiveSOM 8,026 0,731 0,4 0,292 90 0,901 0,3 0,270 1 0,000 0,3 0,000 0,562 5

LBFuzzyGaussian 7,473 0,842 0,4 0,337 423 0,533 0,3 0,160 1 0,000 0,3 0,000 0,497 10

LBMixtureOfGaussians 7,286 0,879 0,4 0,352 0 1,000 0,3 0,300 10 1,000 0,3 0,300 0,952 1

LBSimpleGaussian 7,188 0,899 0,4 0,360 425 0,531 0,3 0,159 1 0,000 0,3 0,000 0,519 9

MultiLayer_Learn 11,660 0,000 0,4 0,000 11 0,988 0,3 0,296 1 0,000 0,3 0,000 0,296 18

StaticFrameDifference 6,686 1,000 0,4 0,400 429 0,526 0,3 0,158 1 0,000 0,3 0,000 0,558 6

T2FGMM_UM 7,805 0,775 0,4 0,310 887 0,021 0,3 0,006 1 0,000 0,3 0,000 0,316 17

T2FGMM_UV 7,544 0,828 0,4 0,331 906 0,000 0,3 0,000 2 0,111 0,3 0,033 0,364 15

WeightedMovingMean 7,373 0,862 0,4 0,345 377 0,584 0,3 0,175 1 0,000 0,3 0,000 0,520 8

Minimum 6,686 0 1

Maximum 11,660 906 10

Difference_frequency (30%)Speed (msec, 40%) Difference (nr of pixels, 30%)

58

Appendix VII. Extracted backgrounds using LBMOG

Figure 1: Results of runs with videos showing a description of the video, an image with
the animal, the empty background image

Video

Video Image with animal Extracted background Comments

BD1
4:18 min;
720 x 576;

no animal at the start
extracted background
– good

BD2
33.4 sec;
352 x 288

animal hardly moved
extracted background
– not good

BD3
10:00 min;
720 x 576

lively mouse with 2
colors
extracted background
– good

BD4
40:44 min;
352 x 288

lively mouse
extracted background
– good

BD5
2:10 min,
720 x 576

active big rat
extracted background
– good

59

BD6
3:00 min

big rat with 2 colors;
stayed in
 place
extracted background
– not good

BD7
10:03 min

lively rat, second
animal added later;
extracted background
– good

BD8
5:00 min;
352 x 288

plus maze
extracted background
– good

BD9
10:00 min;
352 x 288

quite some light in the
arena
extracted background
– good

BD10
2:09 min;
720 x 576

no animal at the start
extracted background
– good

BD11
8:55 min,
352 x 288

no animal at the start,
light turned off then
on
extracted background
– good

60

BD12
12:05 min;
352 x 288

single rat rarely in
hidden zone;
no animal at start
extracted background
– good

BD13
9:41 min

no animal at start;
hooded rats; 2 arenas
extracted background
– good

BD14
10:00 min

no animal at start
extracted background
– good

BD15
6:02 min

animal at start; zebra
fish
extracted background
– good

BS1
12.03 min;
720 x 576

animal at start; grid;
different “floor”
lighting
extracted background
– good

BS2
3:14 min;
352 x 288

no animal at start;
hooded rat
extracted background
– good

61

BS3
1:53 min;
720 x 576

no animal at start
extracted background
– good

BS4
1:19 min;
720 x 576

no animal at start;
with reflections
extracted background
– good

BS5
10:00 min;
720 x 576

animal at start
extracted background
– good

BS6
4:60 min

no animal at start;
elevated plus maze
extracted background
– good

BS7
2:02 min

no animal at start;
with holes; barnes
maze
extracted background
– good

BS8
2:01 min

animal at start; Y
maze
extracted background
– good

62

BS9
5:07 min;
352 x 288

animal at start; Zero
maze with backlight
extracted background
– good

BS10
5:02 min

animal at start;
“sociability maze”
extracted background
– good

BS12
1:03 min;
352 x 288

no animal at start;
radial maze
extracted background
– good

BS13
10:04 min

animal at start; hole
board
extracted background
– good

BS14
10:05 min;
352 x 288

animal at start; 2 petri
dishes
extracted background
– good

BS15
7:40 min;
352 x 288

no animal at start;
water maze (small
ripples when moved)
extracted background
– good

63

BS16
1:00 min

no animal at start;
water maze (small
ripples when moved)
extracted background
– good

BM1
4:35 min;
720 x 576

no animal at start; 6
arenas, 5 filled
extracted background
– good

BM2
14:31 min;
352 x 288

animal at start; only
one arena used
extracted background
– good

BM3
18:12 min;
352 x 288

no animal at start; 4
boxes rats inserted by
user with shadows;
second trial after 50
mins.
extracted background
– good

BM4
2:50:06 hr

no animal at start; 10
arenas, all animal
were in after
10.06.44; at this time
one or 2 did not move
anymore
extracted background
– good except for 2

64

BM5
3:00:20 hr

no animal at start; all
animals in at 9.24.6;
some arenas
displaced
extracted background
– good except for 3

BM6
22.5 sec

animals at start; 4
arenas
extracted background
– good

BS11
0:30 min;
640 x 480

animals at start; well
plate; 96 arenas filled
with fish
extracted background
– good

 Figure 2. Result for 96 arenas (did not wait until all arenas were emptied).

