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Abstract 

 
 
In laboratory cages or arenas, animals are tracked to study their behavior, movement and activity.  
But before animals can be tracked, they first have to be detected separate from the background. In 
order to do this, the background without the animal (e.g. “empty” or reference background) needs to 
be available.  This background is sometimes easy to obtain, i.e. when the animal is hidden or absent.  
Other times, it has to be extracted from sequences of images while the animal is present.  This 
involves estimating the background in the places where the animal is located over time. 
 
There are different methods or algorithms to extract the background.  One of these is the 
background modeling component of the so-called “Background Subtraction” methods, which are 
commonly used to extract moving objects from video sequences. The objective of this study was to 
find the algorithm among a set of different algorithms that best provides the empty background for 
videos produced in laboratory experiments.  To achieve this, the requirements of a good algorithm 
were identified and different algorithms were studied.  An evaluation method to derive the best 
algorithm was devised.  The evaluation was then performed and the best algorithm was identified.  
The chosen algorithm was thereafter tested to see how it performed using videos showing different 
situations in the laboratory. 
 
The identified requirements of a good algorithm were high speed, good quality of the extracted 
background and applicability to different situations in the laboratory.  A total of 24 algorithms were 
examined.  The identified measures used to evaluate the algorithms were (1) Speed or the time it 
takes to run the algorithm, (2) Minimum Thresholded Difference, which is calculated as the lowest 
“thresholded” difference between the extracted and reference background images, taken over all 
the frames in the video, and (3) the Frequency by which this lowest difference value was calculated 
in the whole video.  The algorithms were run with 2 sample videos and the values for the 3 measures 
were obtained. The multi-criteria evaluation (MCE) procedure was then used with the extracted 
values to rank the different algorithms.  The best algorithm found was the LBMixtureOfGaussians.  
This algorithm was run with 37 videos showing different situations in the laboratory, and empty 
backgrounds were extracted in most of the cases.  Only in videos where the animal hardly moved or 
in multiple arenas where more than one animal was present, were empty backgrounds not obtained. 

 
There were some results which were not as expected.  For example, the algorithms FrameDifference, 
StaticFrameDifference, and AdaptiveBackgroundLearning, which always produced backgrounds with 
animal or traces of animal, got relatively high scores in the MCE analysis.  Reasons for this behavior 
were sought and recommendations were made.  It was also suggested to optimize the extraction of 
the background. 

 

 

 

Keywords:  
Background extraction, background subtraction, background modeling, empty background, reference 
background, minimum (thresholded) difference, Mixture of Gaussians algorithm, Multi-criteria 
evaluation, videos, laboratory experiments. 
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I.  Introduction 
 
 
Computer applications that locate and track moving objects are popular nowadays.  These 
applications are normally used to study what the objects do.  Some applications make use of sensors, 
like the Global Positioning System (GPS) for locating the objects.  Others make use of images taken 
live or from videos.   
 
An example of such applications is software which is used in experiments to track animals placed in 
cages in the laboratory.  Videos of the animals are taken and studied with the software.  One 
requirement to do the tracking is to be able to distinguish the background from the moving objects  
(also called the foreground objects), i.e. the animals.  When this is possible, the background can be 
extracted or removed from the images and only the animals will be seen.  The extracted background 
is considered an “empty background”. 
 
The empty background is sometimes easy to obtain, i.e. when foreground object(s) is hidden or 
absent.  At other times, the background has to be extracted using “cluttered sequences” where parts 
of the background are obstructed (Reddy, et al., 2009).  Background extraction involves detecting 
where changes took place between two images, and estimating the background in the places where 
the changes took place.  Here, the changes in the images are assumed to correspond to the location 
of the foreground object.  This thesis was undertaken to find a method that will best provide the 
empty background for videos produced in laboratory experiments.  There have been many studies in 
background extraction applied in different domains, but none was found to have been applied in 
different laboratory situations. 
 
There are various methods to get the empty background.  They work on pixel-level, region-level, or 
hybrid of the two.  Examples of pixel methods are image inpainting (Criminisi, et al., 2004), median 
filter, pixels of stable intensity, use of codewords and clustering (Reddy, et al., 2011).  These methods 
can perform well, but can suffer from degraded visual quality and can fail when the time interval of 
exposure of the foreground object is more than that of the background.  Region or block level 
methods (Reddy, et al., 2011) can use temporal sum of absolute differences, clustered blocks,  
Markov Random Fields or motion parameters (Varadarajan, et al., 2009).  They can result in errors if 
objects are quite stationary for extended periods, can have problems with blending of foreground 
and backgrounds, can be quite complex and can fail when the background is dynamic (e.g. waving 
trees).   Hybrid approaches (Reddy, et al., 2011) can make use of motion information and energy 
function with data and smoothness terms, but can be computationally quite complex. 
 
Other background extraction methods have been proposed, some of which do simultaneous 
foreground tracking and background extraction and updating (Varadarajan, et al., 2009).  These 
methods were criticized before as being computationally  very expensive.  However, with the 
capacity of computers nowadays, this is becoming less and less of a problem.  This study examines 
the so-called “Background Subtraction” methods, which are commonly used to extract moving 
objects from video sequences.  These methods contain components which model the background.  
The background modeling part of these methods will be examined in this study.  They will be tested 
to see if one can be used to properly extract the background for laboratory situations.   
 
Following is a general introduction to background subtraction concept and its applications.  Then the 
background modeling part will be discussed in more detail. 
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Background Subtraction 

 
 
For many years, the method of locating and tracking objects in video frames has been to use (1) an 
image of the stationary background, (2) a second image with animals or moving objects and (3) 
consider the difference of the two images (e.g. the parts that have significantly changed) as the 
animal or moving object (Freedman and Russel, 1997).  This process is called “background 
subtraction”, and the stationary background is called the background model (Elgammal, 2011).  
Background subtraction is the basis (Reddy, et al., 2011) of a “quick and dirty” (Benezeth, et al. 2008) 
way of detecting moving objects.  It is a “computationally affordable” method for real time 
applications (Maddalena and Petrosino, 2008). 
 
The roots of background subtraction date back to photography in the 19th century when the 
background image was obtained by allowing exposure of the film to continue for a period of time 
longer than needed for moving objects to traverse the field of view (Freedman and Russel, 1997).  
The technique has been used in Landsat Imagery by Eghbali (1979) where he successfully isolated 
regions of change using the absolute value of maximum difference.  In 1979, Jain and Nagel, 
compared the first frame with the  second and subsequent frames of a TV-image sequence to detect 
moving objects.  The concept of background subtraction was also used in early human motion 
analysis systems (Elgammal, 2011), multimedia applications (El Baf, et al., 2008b) and video 
compression (Maddalena and Petrosino, 2009).  Another important application of background 
subtraction is video surveillance.  Humans or vehicles are observed in real time to provide a 
description about the activities of the objects with respect to the environment and among 
themselves (Chen, et al., 2005).  Example environments are banks, shopping malls, airports, train 
stations and roads.  Animals, like pigs, mice and rats have also been the subject of video surveillance 
(McFarlane and Schofield, 1995 and Noldus, et al. 2001).  Video surveillance is also related to video 
analysis (e.g. in sports) and motion capture applications. 
 
 

Background subtraction algorithms 

 

 
 
Figure 1.  Flow diagram of a generic background subtraction algorithm (after Cheung and Kamath, 

2003) 
 
 
Most background subtraction algorithms follow a flow diagram as shown in Figure 1.  Preprocessing 
changes the raw input video into a format that can be processed.  This can involve applying temporal 
and/or spatial smoothing to reduce camera noise.  For real-time systems, frame-size and frame-rate 
are reduced to lower data processing rate.  Image registration is employed when the camera is 
moving or multiple cameras are involved.  The choice of the feature type (intensity or color in HSV or 
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RGB) is also made in this step.  Background modeling uses each new video frame to calculate and 
update the background model.  If a good background is already available, this step could be skipped.  
Foreground detection identifies pixels in the frame that are not classified as background and outputs 
them as candidates of the foreground mask.  Data validation examines the candidate foreground 
masks and eliminates the pixels that do not correspond to actual moving objects.  After this, the 
algorithm can update the background model again, causing a delay, until data validation is sufficient.  
The final output is the foreground mask. 
 
The general requirements (Elhabian, et al., 2008) for background subtraction algorithms are accuracy 
in object contour detection and temporal stability.  Sensitivity to changes of small magnitude and 
good accuracy under varying conditions is also desired. 
 
The background modeling activity, where the background is extracted and updated, is the main 
interest in this study. 
 
 

Challenges to background modeling 

 
 
There are some well-known issues or challenges in background modeling (Madalena and Petrosino, 
2008, Elgammal, 2011).  They are caused by changes that occur to the background over time.  The 
changes can affect only part of the background (local), or can affect the entire background (global).  
The background model should tolerate these changes by being invariant or adapting to them. The 
following lists the background changes that can occur, the conditions in the laboratory, and how the 
changes are dealt with. 
 
1. light changes:  gradual illumination changes could be due to change in the relative location of the 

sun during the day, whereas sudden illumination changes could be due to switching the lights on 
or off or changing between sunny or cloudy conditions.  Indoor laboratory experiments do not 
suffer from gradual illumination changes due to sun or weather conditions, but can be affected 
by sudden changes due to lights switching on or off.  To prevent problems with sudden changes, 
the period to be considered for running the background extraction algorithm can be limited to 
only the part where no sudden changes in lighting occurs. 

 
2. moving background:  global changes could be due to camera displacements, whereas local 

changes could be due to moving background objects like tree branches or rippling water due to 
wind.  Most laboratory experiments  do not suffer much from moving background, since the 
camera position is not changed (remains stationary) during the course of the experiment, and 
there are no external moving objects like trees.  However, the video can: 

 
a. contain parts where the laboratory technician changes his own position, moves objects 

outside the cage, or moves the cages, and  
b. the animal in the cage can also move and affect its surroundings like moving straw bedding 

or creating ripples in the water. 
 

For (a), the video frames can be masked so that only the part inside the arena will be considered 
in the algorithms. This will remove the effects of movements outside the cages.  The algorithm 
can also be run starting at the point when the laboratory technician is already finished setting up 
the experiment. 

 
It would be good if the algorithm can take the changes mentioned in (b) into account. 
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3. cast shadows:  shadows can be formed from background objects (e.g. mouse shelter) or by the 

moving foreground objects themselves.  This happens in laboratory situations.  There are some 
algorithms which take this into account. 

 
4. bootstrapping:  empty (free of moving objects) background image(s) at the beginning of the 

sequence could be absent.  There are laboratory experiments which start with empty 
background, but there are also some which start with the animal already in the cage.  There are 
many algorithms which can estimate the background from obstructed parts of the video, as long 
as each pixel reveals the background for at least a short interval, or the foreground object does 
not remain stationary longer than the interval where the background is revealed. 

 
5. camouflage:  the moving objects to be detected could have chromatic features similar to those of 

the background model.  In many laboratory situations, care is taken to clearly distinguish the 
background from the animal, like use a white straw bedding with a black mouse.  There are some 
algorithms that use features other than color to model the background. 

 
6. structural changes:  background objects can be added or removed from the background, and the 

background itself can change in geometry and appearance.  Examples are: car parked or moved 
out of the background, or a person stays stationary for an extended period.  Because laboratory 
experiments are controlled, there are hardly structural changes occurring.  But the animal can 
remain stationary for some time, which can be mistaken as part of the background. 

 
It should be added here that because of the different changes that happen in the background, a 
completely stationary background may not exist.  There is not one empty background image that 
could be considered as the only “correct” background, unless the reference background is defined as 
the image before the animal was introduced in the cage.  Therefore, the extracted background is 
already considered acceptable when the animal (foreground object) is not present in the image. 
 
Following are requirements of a good background extraction algorithm in laboratory situations:  
 
1. The algorithm should perform fast. This is especially true if background extraction is just in the 

initial part of the tracking process. 
2. The algorithm should output an empty background, that is, a background without the foreground 

object or animal. 
3. The algorithm should work for different type of animals: fast or slow moving, small or large, one 

or more animals, one colored or multi-colored animals. 
4. The algorithm should work for different types of setups: one arena or multiple arena setup, open 

field, Y maze, Plus maze, etc. 
 
To summarize, the above list looks at the speed, quality (obtains empty background), and 
applicability (can be applied to different situations in the laboratory) of the algorithms. 

 
 

Objectives 

 
 
The objectives and research questions (RQ) of the study are:  
 
Objective: Find a suitable background extraction algorithm that can be used in laboratory situations. 
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General research question:  Which is the best algorithm? 

 
Subquestions:  

 
RQ1:  Which algorithms can be tested, what are their characteristics and how good are they expected 

to produce an empty background? 
RQ2: Which quantitative and reproducible measures can be used as criteria to evaluate the 

performance of the different methods? 
RQ3:  How can the evaluation be performed to get the best algorithm? 
RQ4:  How does the algorithm perform in the different laboratory situations? 

 
 

Scope of the research 

 
 
The study was concerned with the extracted background, as the output of the background modeling 
part of a background subtraction method.  Detection and tracking of the animals themselves are not 
the output of the study. 
 
The emphasis of the study in on acquiring algorithms and choosing the best one to extract 
background and to apply it.  The applicability of the algorithm to different situations in the laboratory 
is much desired. 
 
Only the algorithms that were available with source code were implemented and tested. 
 
The study focused on the laboratory situation.  The algorithm may be applied to outdoor situations 
but this was not considered in the study.   
 
The study was limited to videos taken from a single static camera, and not from multiple or moving 
cameras.  The videos to be used should be of good quality.   
 
 
 
The report is divided into five sections.  The next section presents a literature review on background 
subtraction algorithms, since background extraction is part of it.  It also contains methods used in the 
literature to evaluate performance of algorithms.  The methodology is described in Section III, and 
the results are presented and discussed in Section IV.  The last section is on the conclusions and 
recommendations. 
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II.  Literature Review 
 
 
As has been explained in Section I, background subtraction involves background modeling where the 
background is calculated and updated.  The background modeling process consists of model 
representation, model initialization and model adaptation (Cristani, et al., 2003).  The first refers to 
the kind of model used to represent the background, the second deals with initialization of the 
model, and the third describes the mechanism used to adapt the model to changes in the 
background.   
 
 

A.  Background representation 

 
 
The simplest background model is a known background.  This can occur when the empty background 
is available at the start of the video.  If this is not available then the background has to be modeled. 
 
Many background modeling techniques have been developed and presented in surveys (Cheung, et 
al. 2004, Elhabian, et.al. 2008, Piccardi, 2004, Radke, et.al. 2005).  These methods can be classified 
according to the complexity or nature of the method as in the following categories (Bouwmans, et.al. 
2008, El Baf, et al. 2008a): 
 

1. Basic Background Modeling, 
2. Statistical Background Modeling (parametric/non parametric,  uni-modal/multi-modal) 
3. Fuzzy Background Modeling 
4. Background estimation 

 
The  methods can also be classified according to the features they use, which can be based on: 
 

1. feature type (color, edge, stereo, motion and texture) 
2. feature size or data-abstraction level (pixel, block or cluster or region, or frame). 

 
 

A.1.  Type of method  

 
 

1. Basic Background Modeling – These methods model the background at each pixel location 
based on the pixels history (Piccardi, 2004).  The methods are quite easy to employ. Some are 
statistical in type (e.g. median or average), but they are put in this category for their 
simplicity.  The method can use a learning rate and selectivity parameter (e.g. Running 
Average).  This includes the following methods (Elhabian, et.al., 2008): 
 
Frame differencing – uses each previous video frame (time t-1) as the background model for 
the current frame (time t).  The technique is sensitive to noise and changes in illumination. 
 
Average filtering – takes the average of the images over time.  All information from the 
background and foreground is used.  The method is not robust with moving objects, 
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especially if they move slowly.  It does not handle backgrounds which are bi-modal, and 
recovers slowly. 
 
Median filtering – takes the median at each pixel location as the background.  It assumes that 
in more than half of the frames in the buffer, the pixel shows the background. 
 
Both average and median filtering can perform fast, but are memory consuming (Piccardi, 
2004). 
  

2.   Statistical Background Modeling 
 

a. Uni-modal vs. multi-modal: this is employed when the intensity, color or other features of 
the pixel are assumed to follow a single uni-modal or multi-modal distribution.  Uni-modal 
distributions implicitly assume a static background.   Multi-model distributions are used for 
modeling non-static or moving backgrounds. 
 

b. Parametric vs. non-parametric: parametric models makes assumptions on the data and 
uses parameters to describe the model.  Non-parametric models use more flexible 
representation of the probability distribution at each pixel, without any assumptions on 
the underlying distribution.  It can rely heavily on the data and can be computationally 
costly.   

 
The following methods (Elgammal, 2011) belong to this group: 
 
Single Gaussian Model  – uni-modal and parametric.  This model assumes that the intensity 
observed at each pixel is a random variable with a Gaussian distribution, N(µ, σ2), with the 
mean and variance estimated from history of pixel observations.  The method determines 
whether a new observation at each pixel  comes from the estimated background distribution.  
Assuming a uniform foreground distribution, the classification rule marks a pixel as 
foreground if: 

 
where  and  are estimates of the mean and standard deviation, and k is a threshold.  This 
model reduces to subtracting a background image from each new frame and checking if the 
difference is bigger than the threshold.  Here the background image is the mean of the 
history of background images.  The model can be adapted to slow changes in the background. 
 
Mixed Gaussian Model  (MoG) – multi-modal and parametric.  Here the pixel intensity is 
modeled as a weighted mixture of more than one Gaussian distributions.  This can represent 
the colors or different parts of the background.  Stauffer and Grimson (1999) used a number 
of Gaussians from 3 to 5, and weighted the mixture using the frequency by which the 
background is explained by each of the Gaussians.  The probability that a pixel has intensity xt 
at time t is estimated as: 
 

    
 

where , , and  refer to the weight, mean and covariance for the 
Gaussian mixture component i at time t, respectively.  K-means approximation is used to 
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update the parameters recursively.  Each new pixel value is compared to existing K Gaussians 
and when there is a match, the weight, mean and variance for that distribution are updated.  
 
The MoG model performed well in indoor and outdoor situations. 
 
Kernel Density Estimation (KDE, Elhabian, et.al. 2008) – multi-modal and nonparametric.  
Kernel density estimators are applied to situations where the scenes contain dynamic areas, 
like waving trees and rippling water.  It is a more flexible representation of the probability 
distribution of the background at each pixel.  Given a sample of intensity 

values for a pixel, the intensity  of the density can be estimated using: 
 

 
where  is a kernel function (also called “window” function), and is the bandwidth 

(scale), such that ,  and .  With sufficient 
samples, KDE estimators converge to any density function asymptotically. It is a general 
approach in the sense that it does not assume any specific density function. It can be 
extended to use color or other high dimensional features.  Using the probability estimate 

, the pixel is considered part of the foreground if the estimate is less than a global 
threshold value over all the image.  The global threshold can be adjusted to achieve a desired 
percentage of false positives.  The N samples can be determined using a sliding window over 
time. 

 
3. Fuzzy Background Modeling – applies Fuzzy theory in background modeling.  This can involve 

using a saturating linear function instead of a hard limiter function.  The result will be a real 
value in the [0,1] range.  For example, in Fuzzy running average, the learning rate is not a 
fixed overall value, but is based on the current value of fuzzy background subtraction, which 
can be computed for each pixel (Sigari, et al., 2008).  Fuzzy Gaussian, uses a fuzzy 
classification rule and employs fuzzy on-line cumulative averages for selective update of the 
mean and the covariance matrix.  The selective update of the background provides better 
segmentation of the foreground objects than simple Gaussian (Bender, 2013).  The Fuzzy 
Mixture of Gaussians Model (El Baf, et al., 2008b) improves on the Mixture of Gaussians 
model for critical situations like presence of camera jitter, waving trees and rippling water. 
 
Another method used fuzzy integral to fuse the texture and color features or edge and 
intensity for background subtraction (El Baf, et al., 2008a, Zhang and Xu, 2006).  Maddalena 
and Petrosino (2010) proposed a spatial coherence variant to self-organization through 
artificial neural networks method and used a fuzzy model to deal with problems of using crisp 
settings. 
 

4. Background Estimation – the background model is estimated using a filter.  Any pixel that 
significantly deviates from its predicted value is considered foreground.  Examples are Wiener 
filter, Kalman filter, and Tchebychev filter (El Baf, et al., 2008a). 
 
 

There are other methods that are extensions of the methods mentioned above.  For example, 
instead of using one value for learning rate or fixing the number of components per pixel as in 
some methods above, different learning rates or number of components are used (Bouwmans, et 
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al., 2008, Zivkovic and van der Heijden, 2006)).  Some methods utilize different equations at 
different phases (KaewTraKulPong and Bowden, 2001). 
 
 

A.2.  Classification based on features 

 
 
1. Feature type:  some of the features used in calculating backgrounds are intensity, color,  and 

texture.  Some methods also use edges or motion in the algorithms. 
 

If the camera is fixed and  the background stays  constant, it can be modeled using a single 
static image.  The measurement used is the intensity for gray level images, or color 
components for color images.  If the background is not constant, then the mean intensity and 
variance of a pixel can be modeled to adapt to the variation in the background.  If the 
background contains motion, then more tolerant models are required.  One approach 
predicts the motion pattern of each pixel, using optic flow.   However, this can fail when the 
motion fields of the foreground and background pixels are not different.  Another type of 
background model uses a linear predictor of the intensity of a pixel using history of intensity 
values in that pixel.  This can account for periodic variations.  Hidden Markov Models can 
represent different states of a pixel,  e.g. background, foreground, shadow, and sudden 
changes in illumination.  Group of clusters which are ordered according to the likelihood that 
they model the background can also be used. 

 
2.  Feature size or data-abstraction level 

 
Following are the methods developed based on feature size: 
 
a. Pixel –level processing – is low level processing of each pixel independently.  It classifies 

the pixel as either foreground or background, and manages adaptation to changes in the 
background.  This level can have problems with local or global sudden illumination 
changes. 

b. Block or region – level processing – here the image is divided into blocks and special 
features of the block are used in the calculation (Zhang and Xu, 2006).  This is considered a 
higher level representation; modeling also inter-pixel relationships.  For example, the 
spatial motion of the foreground is detected by segmenting foreground patterns and 
intersecting successive segmentations.  Reddy et al. (2011) based their method on 
combined frequency response of blocks and their neighborhoods. 

c. Frame – level processing – looks for changes in large parts of the image and swaps in more 
expressive background models. 

d. Combination of pixel and region – integrates pixel level information with region 
information obtained from spatial segmentation of the background.  The spatial 
segmentation can be done using chromatic, spatial and temporal information (Cristani, et 
al., 2003) or optical flow of blocks between successive frames (Reddy, et al., 2011).  The 
use of optical flow can make the processing computationally intensive. 

 
 

B.  Background initialization 
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Most background models use initial parameters which are derived from short sequences where no 
foreground objects are present.  Sometimes this is difficult to achieve, and the model has to be 
“trained” using a sequence which contains foreground objects.  Several assumptions are made to 
make this possible.  Gutchess, et al. (2001) said that each pixel in the frame should reveal the 
background for at least a short time interval.  Moreover, the background should be close to 
stationary or background motion may occur but should be small only.  Wang and Suter  (2005) added 
that a foreground object can appear stationary for a short time, but no longer than the interval 
where the background is revealed. 
 
Some methods used for model initialization are: 
 

1. Median Filtration – assumes that the background  at each pixel is visible more than 50% of 
the time during the training sequence. 

2. Stable intensity extraction – this uses the longest, most stable interval to represent the 
background.  This has problems when foreground objects stay stationary for a long period of 
time. 

3. Relative Constant Intensity Extraction – this is similar to stable intensity extraction, but 
overcomes the stationary foreground problem by considering the optical flow in the 
neighborhood around each pixel.  This approach suffers from computational complexity and 
sensitivity to noise. 

4. Background with a Mixture of Gaussians Distributions – this estimates the values that are 
used for the parameters of the mixture of Gaussians distributions.  The estimates can be 
calculated offline using expectation maximization or use an online data-driven adaptive 
approach. 

 
Other methods are Kernel Density Estimation, Hidden Markov Models, Codebook based and others.  
Many of the methods mentioned in the Introduction can be used at this stage. 
 
 

C.  Background adaptation 

 
 
Background adaptation methods can be classified into either predictive or non-predictive.  Predictive 
methods use time series and dynamic models estimate current input from past observations.  The 
difference between the predicted and actual are considered measure of change.  Non-predictive 
methods build a probabilistic representation of the observations at the current pixel. 
 
Another classification used for background adaptation is based on the history of the frames that are 
used in updating the model: 
 

1. Recursive: updates the background model based on each input frame.  Input frames from 
distant past can have an effect on the current background.  Some schemes use exponential 
weighing to discount the past.  In any case, an error in the model can be carried out for a long 
time.  Recursive techniques require less storage.  Examples of this type of technique are: 
Approximated median filter, Kalman filter, Single Gaussian or Mixture of Gaussians, Clustering-
Based, and Hidden Markov Models (Cheung and Kamath, 2003, , Elhabian et al., 2008). 

 
2. Non-recursive:  stores a buffer of a certain number of previous frames and estimates the 

background based on the temporal variation of each pixel within the buffer.  It is highly 
adaptive because they do not depend on history beyond those included in the buffer.  The 
memory requirements can be significant if a large buffer is used, but there are ways to partially 
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alleviate this (e.g. lower the frame rate).  Examples of non-recursive methods are Frame 
Differencing, Average/Median/Maximum-minimum filter, and Linear predictive filter (Cheung 
and Kamath, 2003, Elhabian et al., 2008). 

 
There are other classification types mentioned in Elhabian et al., 2008.  One is about selective or 
blind update.  Selective update adds the new frame only if it is classified as a background sample.  
This could enhance detection of targets, but can lead to a deadlock situation when incorrect 
detection decision persists.  Blind update adds new samples to the model.  It can lead to bad 
detection of targets as they falsely become part of the model. 
 
There are also short-term and long-term models.  The first is very recent model, adapts quickly to 
allow sensitive detection and updates each sample using selective-update mechanism.  Long-term 
model captures a more stable representation and adapts slowly.  The update mechanism used is 
blind update. 
 
 

Other considerations 

 
 
Piccardi, (2004) discussed several methods and summarized them according to speed and memory 
requirements: 
 
1.  Speed 

- Fast: Average, Median, Running average 
- Intermediate: Mixture of Gaussians, KDE, Eigenbackgrounds, SKDA, Optimized mean-shift 
- Slow: Standard mean-shift 

 
2.  Memory requirements 

- High: Average, Median, KDE, Mean-shift 
- Intermediate: Mixture of Gaussians, Eigenbackgrounds, SKDA 
- Low: Running average 

 
 

Background extraction algorithms 

 
 
The internet was searched for background extraction algorithms.  The BGSLibrary (Sobral, 2012) was 
found to contain 24 background subtraction algorithms which contained components that model the 
background.  Radke et al. (2005) mentioned algorithms which were available from Andra and Al-
Kofahi (2004).  The algorithms were examined, but were considered not different from the ones 
already available in BGSLibrary. 
 
The algorithms in BGSLibrary came with a range of characteristics, like types, modality, data 
abstraction level, feature size, etc., (see Appendix I).  There were 8 Basic methods, 9 Statistical 
methods, and 7 Fuzzy methods.  From the Statistical and Fuzzy methods, 12 were multi-modal and 4 
were uni-modal.  The multi-modal methods were especially developed to consider changes 
happening in the background.  Also from the Statistical and Fuzzy methods, 6 were non-parametric 
and 10 were parametric.  Gaussian distribution (single or mixture) was used by the parametric types.  
Of the 24 methods, 16 were recursive and 8 were non-recursive.  Non-recursive methods can be 
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memory consuming when a large buffer is used.  Most of the methods used pixel as data abstraction 
level or feature size, and color as feature type.  Most methods are non-predictive.  The methods have 
been tested in different situations by their authors.   
 
In general, basic methods like FrameDifferencing, mean-based and median-based methods are 
simple to calculate and pretty fast.  But they use a global threshold which does not change in time.  
Other algorithms deal with changes happening in the background (see Challenges to background 
modeling in the Introduction).  The algorithms that are based on Mixture Of Gaussian model 
(LBMixtureOfGaussians, MixtureOfGaussianV1, MixtureOfGaussianV2, DPGrimsonGMM, 
DPZivkovicAGMM, T2FGMM_UM, and MultiLayer_Learn) consider changes due to light, moving 
background, structural changes, and cast shadows.  The Self Organizing Map (SOM)  models 
(LBAdaptiveSOM, LBFuzzyAdaptiveSOM) consider the changes due to light, moving background, 
camoufladge, bootstrapping, and cast shadows.  DPPratiMediod considers shadow information.  
DPWrenGA deals with bootstrapping.  FuzzyChoqueIntegral considers cast shadow and light changes, 
whereas FuzzySugenoIntegral considers moving background and light changes.   
 
In 2013, Sobral compared the performances of the 24 algorithms, as well as newly added ones.  His 
results are given in Figure 2.   Except for two algorithms, the average CPU use of most algorithms are 
about the same.  Most basic modeling algorithms (algorithms 1-7) use low average private memory 
and low average execution time.  The Fuzzy methods 9 and 10, as well as the multi-layer method 20,  
use high average execution time.  Methods 8, 20-22, and 25-26 use relatively longer average 
memory. 
 
The descriptions, classifications and features of the different methods are important to consider in 
choosing the method for background extraction in laboratory situations.  Specifically, methods that 
can provide the empty background fast and with not much complexity and memory requirements are 
preferred. 
 
 

Evaluation Method 

 
 
Since part of the objective is to find a quantitative and reproducible measure to use as criteria to 
evaluate the performance of the different algorithms, literature was searched on available methods 
to use.  Elhabian, et. al. (2008) discussed evaluation of algorithms that are used in separating objects 
and their background (also called video segmentation).  Since this study is on extracting background, 
which entails separating the background from the foreground, it was thought that the methods they 
used could be helpful.  They gave two alternatives: standalone evaluation, when the reference 
segmentation is not available (so-called ground truth) and relative evaluation, when the reference 
segmentation is available for comparison.  Standalone evaluation provides qualitative information for 
the ranking of algorithms, and work mainly with available a priori information on the  expected 
properties of objects and their difference to neighboring objects.  Relative evaluation is expected to 
provide more reliable results.  Since the objective of the study is to use quantitative measures, 
relative evaluation methods were examined.   
 
There are three approaches in relative evaluation: pixel-based, template-based and object-based.  
Pixel based includes all active pixels in a given image.  It is a binary detection problem based on the 
ground truth.  Example measures are misdetection rate, false alarm rate, receiver operating  
characteristics (ROC) and perturbation detection rate characteristics.  Template-based and object-
based methods were deemed not relevant since the interest of the study is the background and not 
object or foreground detection. 
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Figure 2.  CPU, Memory and Time Consumption of Background Subtraction algorithms in BGSLibrary (from Sobral, 2013). 
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From the literature, ground truth can be generated using synthetic data, like ellipse fitting, edge 
detection, corner detection and optic flow.  Another method is manual annotation, e.g. to mark edge 
and no-edge pixels.  The third approach relies on evaluating the output of the algorithms by a human 
panel (e.g. all vote, majority rule, set union  or consensus markup).  The first two methods are more 
appropriate to detecting foreground objects than extracting the background.  The last methods is not  
objective and is therefore not very satisfactory.  Another method of generating the ground truth has 
to be devised. 
 
In pixel-based evaluation methods, the following quantities were used in comparing the ground truth 
to a candidate binary foreground map: 
 
True postivies (TP) : number of foreground pixels correctly detected 
False positives (FP): number of background pixels incorrectly detected as foreground (“false alarms”) 
True negatives (TN): number of background pixels correctly detected 
False negatives (FN): number of foreground pixels incorrectly detected as background (“misses”) 
 
Since the study is on background extraction, the above quantities has to be translated into 
“background” terms as in the following: 
 
True postivies (TP) : number of background pixels correctly detected 
False positives (FP): number of foreground pixels incorrectly detected as background (“false alarms”) 
True negatives (TN): number of foreground  pixels correctly detected 
False negatives (FN): number of background pixels incorrectly detected as foreground (“misses”). 
 
For a given “empty” background which is extracted by an algorithm, the whole output is then 
supposed to be the background.  From the 4 quantities above, TN and FN are not relevant. 
 
Cohen and Medioni (1999) proposed metrics for moving object detection evaluation.  The False 
Alarm Rate (FAR) shown below looks appropriate for the study: 

  
Maddalena and Petrosino (2008, 2010) used a similar metric which they called Precision or positive 
prediction. According to them, Precision gives the percentage of detected true-positive pixels as 
compared to the total number of pixels detected by the method.  The metric is shown below: 

 
As can be seen in the formula’s one is the opposite of the other.  Whereas FAR emphasizes on 
incorrectly detected pixels, Precision emphasizes on the correctly detected pixels.  Another way of 
saying this is that FAR measures how different the detected pixels are from the ground truth, 
whereas Precision measures how similar the detected pixels are from the ground truth.  
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III.  Methodology 
 
 
The study is concerned with finding an algorithm that can extract the background from videos taken 
in the laboratory and applying the algorithm in different situations.  From the requirements stated in 
the Introduction, a good algorithm is fast, has good quality (produces an empty background) and 
applicability (can be applied to different types of animals and setups).   The methodology that was 
designed to meet the requirements, achieve the objectives and answer the research questions are 
given below: 
 
 

Find a suitable background extraction algorithm – Which is the best algorithm? 

 
 
1. Which algorithms can be tested, what are their characteristics and how good are they expected 

to produce an empty background? 
 

A total of 24 algorithms from BGSLibrary (Sobral, 2012) were selected for the study.  The 
program codes for BGSLibrary were downloaded from Sobral (2012) and adapted to run in Visual 
Studio 2010 with C++ as the programming language.  The OpenCV library (OpenCV, 2013) was 
used in the program.   
 
The algorithms were analyzed and expectations on how they would perform in producing empty 
backgrounds were made. 

 
 

2. Which quantitative and reproducible measures can be used as criteria to evaluate the 
performance of the different methods? 

 
The quantitative and reproducible measures to use for evaluating the algorithms should answer 
the requirements set at the beginning of this study (Introduction).  The requirements summarize 
to speed, quality and applicability.  At this stage of the study, only the first two were be 
addressed.  This is because for applicability, the algorithms would have to be tested in different 
situations using different videos, and that would take a lot of effort.  The decision was then to 
first find the best algorithm using the speed and quality criteria, and then test the chosen 
algorithm if it can perform well in different situations (Step 4). 
 
Since the criteria will be used to compare different algorithms, they were chosen so that they are 
independent of the algorithms themselves and independent of each other.  Speed was measured 
by taking the time it took to run the same number of frames.  For the quality measures, a metric 
that is similar to False Alarm Rate (FAR, see Literature Review) was used.  It was measured by 
determining how different each extracted background was from a ground truth, the difference 
being considered as equivalent to the “incorrectly detected” pixels.  The minimum of the 
difference values over all the frames, as well as the frequency by which the minimum occurred 
were considered as measures of quality.  The frequency indicates how often the extracted 
background was close to the ground truth.  The best algorithm would ideally have the lowest 
difference and the most frequent occurrence of the minimum value.  Note that in contrast to  
FAR, the proportion of incorrect detection is not computed.  This is to preserve the precision of 
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the difference values. Moreover, since all algorithms use the same video, the denominator in FAR 
will all be the same value. 
 
Two representative algorithms were selected as examples to see how good the criteria were able 
to differentiate the performance of the algorithms.  They were run with 7 different videos.  The 
following were done to study the performances: 

 
a. The disappearance and appearance of animals, which determines the rate of obtaining the 

empty background were examined. 
b. The speed it took to run the same number of frames were calculated. 
c. For one of the videos, the values of the quality measures were computed for extracted 

backgrounds using the two algorithms.   
 

At the end of this exercise, the speed and quality measures were found to satisfactorily 
differentiate the two algorithms.  The identified measures were used as criteria to evaluate the 
24 algorithms in the following step. 
 

 
3. How can the evaluation be performed to get the best algorithm? 

 
The following steps were done in the evaluation: 
 
a.  All the algorithms were run using the same video to calculate the speed and quality 

measures. Two videos were used, which differed in complexity and color of the animal.  
More videos could have been used for this step, but since further analyses will be done on 
the results, it was decided to better limit the number of videos and spend more time in 
analyzing the results.   
 
The images in the videos were masked so that only the arena areas were used.  The 
reference images were taken at the start of the videos before the animal was put in the case.  
The algorithms were run starting at a point in the video when the animal is already present.  
The algorithm calculated/extracted backgrounds were taken and compared with the 
reference backgrounds.  The speed and measures of quality were calculated.  The frames 
where the measures of quality occurred were checked if the extracted background were 
without traces of the animal.  The calculated values were inspected to see if they have 
relation with the characteristics of the algorithm, such as type of algorithm and modality.   
 

b. Several multiple criteria evaluation (MCE, Heywood, et al., 2006) were performed using the 
different measures (criteria).  MCE analysis is commonly used when choosing the best option 
(e.g. the best algorithm) given different considerations (criteria).  Three MCE analyses were 
made corresponding to three scenarios.  These scenarios represent different preferences of 
users of the outputs.  They were: 
 
Speed = Quality:  equal weights were given to Speed (50%) and Quality (50%). 
 
Speed > Quality:  more weight was given to Speed (60%) than Quality (40%). 
 
Speed < Quality:  less weight was given to Speed (40%) than Quality (60%). 
 
For the MCE, the values for the different criteria were standardized before applying the 
weights and obtaining the scores.  The quality weights were distributed to the different 
measures of quality.  The algorithm with the highest score was taken as the best in the list. 
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The MCE analyses were extended by doing a sensitivity analysis on the frequency measure.  
The results were obtained for the cases when the frequency were calculated for minimum 
difference plus 10 pixels, plus 25 pixels, plus 50 pixels and plus 100 pixels.  The results would 
indicate which algorithms have frequently low values of the differences. 
 

4. How does the algorithm perform in the different laboratory situations? 
 

The best algorithm was tested using 37 videos representing a wide range of situations in the 
laboratory.  This includes situations with different animal size and color, constant and non-
constant background (water, beddings), arena’s with reflections and poor lighting, arena’s 
containing novel objects, low contrast animals, shadows, long tails, etc.  There were experiments 
with single and multiple arenas.  The set also includes movies for which the algorithm is known to 
fail (animal hardly move).  It was expected that the videos were of good quality. Each pixel in the 
video should reveal the background for at least a short interval.   
 
Before the images in the videos were subjected to the algorithm, they were first masked so that 
only the part inside the arenas were left.  This was done to increase speed (area outside arena 
were not important and need not be calculated).  For multiple arenas, the algorithm was applied 
to all arenas at the same time. 
 
For the runs, the values of the parameters in the algorithm were initially set equal to the values 
used in the BGSLibrary.  The program was made such that it is possible for the user to change the 
parameter values to better adapt to the situation.  For example, for a fast animal, a higher 
learning rate can be used. 
 
The runs started at the beginning of the video. Once the run proceeds, a feedback on how the 
background changes was shown.  The user could stop the run at any time and use the resulting 
background extracted. 
 
The extracted images from the 37 videos were analyzed to see in which cases the algorithm 
performed well and in which cases it did not perform well. 
 
 

A summary of the methodology is shown in Figure 3.  
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           Figure 3.  Steps undertaken in the methodology 
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IV.  Results and Discussion 
 
 

Find a suitable background extraction algorithm – Which is the best algorithm? 

 
 
1. Which algorithms can be tested, what are their characteristics and how good are they expected 

to produce an empty background? 
 
The BGSLibrary (Sobral, 2012) contained 24 background subtraction algorithms or methods. 
These algorithms have components that extract the background.  The programs were made to 
run in Microsoft Visual Studio 2010 with C++ as the programming language.  Default values of the 
parameters in the algorithms were used. 
 
The algorithms came with a range of characteristics, like types, modality, data abstraction level, 
feature size, etc., (see Appendix I).  After examining the descriptions, the literature, the source 
codes and results of sample runs, the following are the expectations on each of the algorithms: 
 
AdaptiveBackgroundLearning – it is not possible to get a background that is completely “clean” 

or empty.  There is always a trace of the animal left, especially if the animal is visible at all 
times, when the color of the animal is different from the background and when the alpha 
value is small. 

  
DPAdaptiveMedian – the algorithms works well for simple backgrounds, but may have problems 

extracting empty backgrounds when there are significant changes occurring in the 
background and if the animal stays stationary more than half of the time.  

 
DPEigenbackground – the background was updated in the program; runs with the algorithm  

produced backgrounds which were dark, which make the background unusable.  
 
DPGrimsomGMM – the algorithm, as created by the authors of the paper (Stauffer and Grimson, 

1999), had been the basis of other mixture of Gaussian algorithms. Runs with the 
algorithm showed the background continuously being adapted with appearance and 
disappearance of the animal.  Empty background can be obtained with the algorithm. 

 
DPMean - the algorithm is simple and quite fast, but runs of the algorithm always showed the 

animal in the background. 
 

DPPratiMediod - it is possible to get an empty background with this algorithm, especially if the 
animal does not stay stationary for more than half of the time. 
 

DPWrenGA - without adjusting the parameters for the animal in the laboratory, runs of the 
algorithm outputted backgrounds which were sometimes free of animal. 

 
DPZivkovicAGMM – the background is continuously updated; it is possible to get a background 

free of animal. 
 
FrameDifference – the algorithm is simple and fast, but it is impossible to get an empty 

background with the algorithm if the animal is always in view. 
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FuzzyChoqueIntegral – the backgrounds were updated during the learning period in the 

algorithm, but the outputted backgrounds were completely dark and therefore unusable. 
 
FuzzySugenoIntegral – the backgrounds were updated during the learning period in the 

algorithm, but the outputted backgrounds were completely dark and therefore unusable 
 
LBAdaptiveSOM – runs with the algorithm showed the background being updated, like traces of 

the animal disappearing.  It is possible to get an empty background with the algorithm. 
 
LBFuzzyAdaptiveSOM - runs with the algorithm showed the background being updated, like 

traces of the animal disappearing.  It is possible to get an empty background with the 
algorithm. 

 
LBFuzzyGaussian – this is supposed to be an improvement of LBMixtureOfGaussian.  It is possible 

to get an empty background with this algorithm. 
 
LBMixtureOfGaussian – this is based on the mixture of Gaussians distribution like 

DPGrimsonGMM; the changes in the background are considered, and it is possible to get 
an empty background with this algorithm. 

 
LBSimpleGaussian – it is possible to get an empty background with this algorithm however, being 

unimodal it is limited in dealing changes in the background. 
 
MixtureOfGaussianV1 – the algorithm did not output any background.  There was an assertion 

error in using the OpenCV function.  Other people reported similar problem in using the 
function in the internet. 
 

MixtureOfGaussianV2 – the algorithm did not output any background.  There was an assertion 
error in using the OpenCV function.  Other people reported similar problem in using the 
function in the internet. 

 
MultiLayer – the learn phase of this algorithm could produce a background free of animal, the 

background produced with one video appeared layered. 
 
StaticFrameDifference – if the first frame in the video has an animal, then the background will 

always contain an animal, otherwise, the background is empty. 
 
T2FGMM_UM – supposed to be an improvement to the ordinary mixture of Gaussian algorithm; 

runs of the algorithm showed the background being updated; could produce an empty 
background 

 
T2FGMM_UV – runs of the algorithm showed the background being updated; could produce an 

empty background 
 
WeightedMovingMean – runs of the model showed the background always filled with traces of 

the animal.   
 
WeightedMovingVariance – runs of the model showed the background was not produced at all. 
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From the above list, one can say that many of the algorithms fulfill the characteristics described 
in Section IV A, like good speed and quality.  It is possible to obtain empty backgrounds with 
many of them.  Exceptions are the following: 
 
- Some algorithms produce backgrounds that contain the animal or traces of the animal.  This 

includes the algorithms: AdaptiveBackgroundLearning, DPMean, FrameDifference, and 
StaticFrameDifference. 

- Other algorithms like DPEigenbackground, FuzzyChoqueIntegral and FuzzySugenoIntegral 
produced backgrounds which were dark or all black. 

- The algorithms MixtureOfGaussiansV1 and MixtureOfGaussiansV2 resulted in run errors. 
- The WeightedMovingVariance algorithm did not produce any background. 

 
Looking at the speed indications in Figure 2, the following groups could be made according to 
relative speed of the algorithms: 
 
Slow:     MultiLayer, FuzzySugenoIntegral, FuzzyChoquetIntegral, LBFuzzyAdaptiveSOM, 

T2FGMM, LBAdaptiveSOM, DPPratiMediod and DPGrimsomGMM 
Fast:    StaticFrameDifference, FrameDifference, DPAdaptiveMedian 
Intermediate:   all the rest. 
 
According to Figure 2, the following algorithms use lots of private memory: MultiLayer_Learn, 
LBFuzzyAdaptiveSOM, LBAdaptiveSOM, DPPratiMediod, LBMixtureOfGaussians, 
DPEigenbackground and MixtureOfGaussiansV1.  Most computers nowadays are equipped with 
considerable memory, so the requirements of some of these algorithms may not be a problem. 
 
 

2. Which quantitative and reproducible measures can be used as criteria to evaluate the 
performance of the different methods? 
 
 
The following measures were identified as possible criteria for evaluating the algorithms: Speed, 
minimum Difference, and the frequency of occurrence of Difference measure.  Speed measured 
the amount of time it took to run the same number of frames.  The other criteria measured the 
quality of the extracted background.  They measured how different the extracted background 
was to the ground truth or reference background.  The ground truth was the background without 
any animal, taken at the start of the video before the animal was put in the cage.  The 
background extraction algorithm was started at the point in the video when the animal was 
already in the cage.  The background was calculated or “extracted” for each succeeding frame in 
the video.  Each extracted background was then compared to the reference image by taking the 
difference between the extracted and reference backgrounds.  The lowest (minimum) of these 
values was taken as measure of the quality of the algorithm.  The frequency by which the 
minimum occurred was also added as an additional measure of quality to indicate how often an 
algorithm can output a background that is not different from the reference background. 
 
The values of the Difference metric was calculated using OpenCV’s functions: 

    

          cv::Mat img_diff; 

          cv::absdiff(img_start, img_output, img_diff); 

          int iDiff = cv::countNonZero(img_diff); 

 
where: 
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img_start:             is the reference image, taken from the start of the video when the animal was 
not in the cage yet. 

Img_output:            contains the extracted background image of an algorithm for a given input 
frame 

img_diff:                  contains the difference values between img_start and img_output 
cv::absdiff :         is an OpenCV method for calculating the absolute difference of corresponding 

pixels of two images.  If corresponding pixels are the same, then the value 0. 
cv::countNonZero: is an OpenCV method that counts the number of non-zero pixels, i.e., the  

number of pixels were difference between the images were observed. 
 
In another calculation, the difference values were first “thresholded” before the number of non-
zero values were counted.  This was done using the following: 
 

       cv::Mat img_thrDiff; 

       cv::threshold(img_diff,img_thrDiff,30,255,cv::THRESH_BINARY); 

 
where: 
 
img_thrDiff:           contains the thresholded difference values 
cv::threshold:    is an OpenCV method that applies threshold operation for each pixel in the 

image.   
 
The threshold function cv::threshold is used to filter (e.g. remove noise) and segment values of 
the pixels.  With the CV_THRESH_BINARY parameter in the threshold function, a binary image 
can be obtained where a cut off value for pixels between 0 and 255 can be made.  For the study 
the cut off value was set to 30.  This value was taken after testing with different values. Pixel 
values above this threshold value get the maximum value set (here it is 255); and all other pixels 
get the value 0.  The number of non-zero values are then limited to values above the threshold.  
The pixel difference values under the threshold were considered to be noise, since it is 
impossible to compare 2 images which are exactly alike due to change in conditions over time. 
 
The minimum “thresholded” difference and its frequency were used as candidate quality 
measures together with Speed. 

 

 
Testing the identified criteria on two sample algorithms 
 
 
The identified criteria were tested to see if they can differentiate the performance of the 
different algorithms.  The 24 algorithms from BGSLibrary were shortly examined and two 
algorithms were chosen for the test.  They were DPGrimsonGMM (GrimsonGMM) and 
LBMixtureOfGaussians (LBMOG). 
 
a. The algorithms were first examined by looking at how the animals “disappear” and “appear” 

in the backgrounds.  The disappear and appear events can be seen while the algorithms 
update the backgrounds.  For example, for both GrimsonGMM and LBMOG, when the animal 
moves a lot, the picture of the animal slowly disappears in the background.  On the other 
hand, when the animal stays in the same location for a certain time, the background starts to 
show the animal again.  The rates of appearance and disappearance indicate how sensitive 
the algorithms are to the movements of the animals.  They affect the time the empty 
background can be extracted or maintained by the algorithm.  Ideally, later appearance and 
earlier disappearance are better for empty background extraction.   
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The examination was done by running both algorithms using the same video at the same 
time.  A sample interval of 1 (all frames considered) was used in most cases.  Seven videos 
were used for the examination.  They represent different situations which can be 
encountered in the laboratory.  They were: 
 
green:     “open field” arena containing, 2 mice 
BM1:       multiple (6) arena, rectangular shape, one rat per arena (in 5 arenas) 
BS8:         Y maze, slightly varying lighting conditions, 1 mouse 
BS9:         Zero maze (backlight), darker part in 2 sides, 1 mouse 
BD15:      arena (small aquarium), 1 small zebra fish 
BS2:         rectangular arena, 2 background objects, 1 hooded rat 
BD4:        rectangular arena, 2 mouse with lots of small background objects (droppings?) 
 
The results are given in Appendix II.  In the figures, the video frame when the algorithm was 
started are shown. In some videos, the algorithm started with an animal in the cage, whereas 
in others not.   It can be seen that in general, appearance of the animal occurred earlier in 
LBMOG (rows 2, 3, 5, 7, and 9). The disappearance of the animal occurred earlier in 
GrimsonGMM in rows, 4, 6, and 8.  However, in some cases, the disappearance of the animal 
also occurred earlier in LBMOG (rows 1, 10, 1, 12).  The rates of appearance and 
disappearance affect the rate by which the empty background is extracted or maintained.  It 
is affected by the learning rate parameter in the model.  Generally, a higher learning rate 
should be used with a faster animal. 
 

b. The speed it takes to run the same number of frames were also examined.  The two 
algorithms were run separately.  The same 7 videos as above were used.  The speed of 
running 500 frames using a sample interval of 1 were calculated.  Table  1 and Figure 4 show 
the results 

 
   Table 1.  Speed (msec) results for LBMOG and GrimsonGMM using 500 samples          

 

Number Video LBMOG GrimsonGMM 

1 green 0.12 0.12 

2 BM1 13.22 15.97 

3 BS8 32.26 43.48 

4 BS9 13.25 15.30 

5 BD15 33.59 43.94 

6 BS2 14.79 21.97 

7 BD4 20.37 23.23 

 
 

As can be seen in the table and figure, LBMOG is in general faster than GrimsonGMM for all 
seven videos.  Only exception is the “green” video.  This means that the earlier 
disappearance in GrimsonGMM that were observed in some videos in Appendix II, actually 
occurred later in time than in LBMOG.  The results in the table is also consistent with what is 
shown in Figure 2.  In the figure, LBMOG (Method 18) has a lower average execution time 
than GrimsonGMM (Method 14).  This means that in terms of speed, LBMOG is better. 
 
From the above results on different videos, it can be said that Speed can be used as one 
criteria to differentiate algorithms. 
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    Figure 4.  Speed results for LBMOG and GrimsonGMM using 500 samples                
 

 
c. The values of the quality measures were calculated after comparing the reference and 

“calculated” (extracted) backgrounds. 
 

The BS2 video was used in the evaluation activity because it has an “empty background” at 
the start of the video.  Representative frame at the start of the video was taken to serve as 
reference image.  The LBMOG and GrimsonGMM algorithms were run from the time the 
animal was already present in the video using a sample interval of 1.   The extracted 
background images were compared with the reference image by calculating the Difference 
and “thresholded” Difference values for each frame input.  The minimum and maximum 
Difference values, as well as the frequencies of the minimum values, are given in Table 3 and 
shown Figures 5 to 8. 

  
Table 3 shows that the minimum and maximum difference values in LBMOG are lower than 
the corresponding values in GrimsonGMM.  A Difference minimum value of 0 was even 
derived after thresholding.   The number of occurences of the minimum Difference values 
show that there were 768 counts of the 0 “thresholded” Difference value in LBMOG.  There 
were 2 counts of the minimum thresholded Difference value for GrimsonGMM.  These 
results show that LBMOG is a good method. 
 

 
Table 2.  Minimum and maximum values for runs with BS2, sampling interval 1 (Number 

represents the frequency of the same value of minimum Difference. 

 

Algorithm Statistic Difference 
Difference 
Threshold 

LBMOG Minimum 56953 0 

 Maximum 71919 3207 

GrimsonGMM Minimum 59649 1477 

 Maximum 72337 4564 

LBMOG Number 1 768 

GrimsonGMM Number 1 2 
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Figures 5 and 6 show the trends in the Difference values using video BS2 for both LBMOG and 
GrimsonGMM.  The scales in the figures were made similar.  The figures show that the rates of 
increase and decrease in values are more pronounced in LBMOG than in GrimsonGMM.  The 
Difference values in LBMOG are in general lower than in GrimsonGMM.   
 

                            

           
 
          Figure 5.  Difference values for LBMOG using video BS2, sampling interval 1,  (normal values 

in blue, left axis; thresholded values in red, right axis). 

 
 

     
 
     Figure 6.  Difference values for GrimsonGMM using video BS2, sampling interval 1  (normal 

values in blue, left axis; thresholded values in red, right axis). 
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The reference and  extracted images for LBMOG and GrimsonGMM are given in Figures 7 and 8.  
It can be seen that the images in GrimsonGMM are grayed (the algorithm used gray images).  The 
movement of the rat has changed the bedding a little, as shown in the results of both algorithms.  
The lower left corner in GrimsonGMM has remnants of the animal left.  The extracted 
background for LBMOG is closer to the reference background than GrimsonGMM. 

 
 
Reference                             Result 

        
                    Figure 7.  LBMOG reference and resulting images for BS2, sampling rate 1 
 
 

                               Reference                             Result 

        
               Figure 8.  GrimsonGMM reference and resulting images for BS2, sampling rate 1                        

 
 
The examinations done above using two algorithms show that it is possible to differentiate 
algorithms based on Speed, Difference, and the number of occurences of the minimum 
Difference values.   
 
To summarize, the following criteria will be considered in looking for the best algorithm in the 
following section:  Speed, minimum Difference, minimum thresholded Difference, and the 
frequences of occurrence of the minimum difference values. 
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3. How can the evaluation be performed to get the best algorithm? 
 
 
The Speed, minimum Difference, minimum “thresholded” Difference and frequencies of the 
minimum difference criteria selected above were incorporated in the program for the 24 
different algorithms.  Each algorithms was run with two videos representing different 
complexities and containing animals with different colors: 
 

“BS2” video (352 x 288 resolution): contains a hooded rat in a quite complex background 
with hay and static objects.   
 
Video1 video (320 x 240 resolution): contains a small active rat in an “open” field without 
other objects except the bedding.  

 
For both videos, the lighting was more or less the same from beginning to end.  Aside from the 
animal, there were no other objects added nor removed throughout the video.  The images in 
the videos were masked so that only the arena areas were analyzed. 
 
Both videos contained empty background at the start.  The reference backgrounds were taken 
from this part of the video where the animal was not yet present.  The algorithm runs were 
started at the same point in the video after the animals had already been introduced.  The 
algorithm runs were also stopped at the same frame numbers.  The durations of running each 
algorithm were taken as the Speed of the algorithm. 
 
The algorithm calculated background was extracted for each frame input.  The extracted and 
reference backgrounds were compared, and the Difference and “thresholded” Difference values 
were calculated.  The lowest (minimum) of the difference values were taken, and the frequency 
of occurrence of this value was noted.  The frames that correspond to the minimum values were 
checked to see if the extracted background did not contain traces of the animal.  Using the 
results, it was decided whether to use the “thresholded” or “non-thresholded” Differences.  The 
calculated values were then examined in relation to the type and modality of the algorithm, to 
see if there is any relation.   
 
The last step was to perform MCE analyses using the calculated values of the different criteria.  
The following steps were done in the MCE analyses: 
 
a. Standardize the values.  This was done using the following formula: 
 

  Valuestd = (Valuecalc - Valueworst) / (Valuebest - Valueworst) 
 
where: 
 
Valuestd : standardized value 
Valuecalc: calculated value for the algorithm 
Valueworst: worst calculated value for the criteria 
Valuebest : best calculated value for the criteria 
 
b. Apply the weights.  The weights were determined according to the different scenarios (Speed 

= Quality, Speed > Quality, and Speed < Quality).  For example, for the case Speed = Quality, 
the weight assigned to Speed was 50% and the weight assigned to Quality was 50%.  The 
Quality weight was distributed over the minimum Difference (25%) and it’s frequency (25%). 
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c. Calculate the score.  The scores per criteria for each algorithm was calculated by multiplying 

the standardized value and the weight.  Then the total score for the algorithm was computed 
by summing the scores of each criteria. 
 

d. Rank the scores.  Finally, the total scores were ranked from highest (rank 1) to lowest (rank 
24). 
 

 
The results are discussed below for each video. 
 
 
a. BS2 video 

 
Appendix III, Figures 1 and 2 show the frames from the BS2 video with the minimum 
Difference and minimum “thresholded” Difference for each algorithm.   It can be seen that 
not all algorithms show empty backgrounds.  For example, Frame Difference method use the 
previous frame as the background frame always.  For BS2, the previous frames always had 
animals in them.  WeightedMovingMean assigns weights to 2 previous images and the 
current image to calculate the background, but this still resulted to backgrounds which were 
not empty.  Few methods like FuzzyChoquetIntegral and FuzzySugenoIntegral always 
produced black backgrounds.  From the figures, those with animals or animal traces in the 
background could be considered “false positives”, meaning those frames do not really give 
empty background. 
 
Appendix III Figure 1 shows that none of the algorithms produced empty background using 
the minimum Difference measure.  Appendix III Figure 2 on the other hand, shows that some 
algorithms produced empty backgrounds using the minimum “thresholded” Difference 
measure.  The algorithms that produced empty backgrounds are listed in Table 3.  This 
indicates that for these algorithms, it was necessary to remove the noise in order to get good 
correspondence between the extracted and reference backgrounds.  The results also show 
that there is more than one method that can produce empty background. 
 
Table 3. Methods which produced empty background for BS2 video using the Minimum 

Thresholded Difference measure. 

   
Methods 

AdaptiveBackgroundLearning 

DPAdaptiveMedian 

DPGrimsonGMM 

DPPratiMediod 

DPWrenGA 

DPZivkovicAGMM 

LBAdaptiveSOM 

LBFuzzyGaussian 

LBMixtureOfGaussians 

LBSimpleGaussian 

 
 

Because no empty background was found in the case with minimum Difference, this criteria 
was not used in further analyses.  The algorithms which did not show the backgrounds  (all 
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dark), like DPEigenbackground, FuzzyChoquetIntegral and FuzzySugenoIntegral, were also 
not included in further analyses to increase the sensitivity of the results to the remaining 
algorithms.   
 
The calculated values for Speed and minimum “thresholded” Difference were examined to 
see if there is any relation of the results with the type of algorithm and modality used in the 
algorithm.  A summary of the calculated values is given in Table 4, and a graph of the results 
in Figure 9.  High values are highlighted in the table. 
 
Looking at the Speed results, it can be seen that except for 1 algorithm (MultiLayer_Learn), 
the basic types have in general faster speed (lower in number), which is followed by 
Statistical types, then Fuzzy types.  Unimodal types are in general faster than multi-modal 
types. 
 
There is no distinct relation between minimum “thresholded” Difference and algorithm type 
or modality. The algorithms with the lowest minimum “thresholded” Difference values are 
LBMixtureOfGaussians, LBFuzzyGaussians and AdaptiveBackgroundLearning, respectively.   
T2FGMM_UM and T2FGMM_UV have higher minimum “thresholded” Difference than the 
rest. 
 
       Table 4.  Summary of calculated values for the different criteria for the BS2 video.  
    

Algorithm Type U/M

Speed 

(msec)

Diff_thr 

(nr pixels)

AdaptiveBackgroundLearning 1 1 182,308 42

DPAdaptiveMedian 1 1 184,703 1458

DPGrimsonGMM 2 2 284,060 1477

DPMean 1 1 213,691 2364

DPPratiMediod 1 2 288,668 1482

DPWrenGA 2 1 204,972 1485

DPZivkovicAGMM 2 2 210,601 1496

FrameDifference 1 1 164,027 879

LBAdaptiveSOM 3 2 289,133 802

LBFuzzyAdaptiveSOM 3 2 309,041 1133

LBFuzzyGaussian 3 1 221,139 1

LBMixtureOfGaussians 2 2 224,250 0

LBSimpleGaussian 2 1 201,017 69

MultiLayer_Learn 2 2 544,312 81

StaticFrameDifference 1 1 161,367 2938

T2FGMM_UM 3 2 380,989 4538

T2FGMM_UV 3 2 375,522 4136

WeightedMovingMean 2 1 182,971 875  
 
Note: Type: (1) basic, (2) statistical, (3) fuzzy 
           U/M: unimodal (U) or multimodal (M) 
           Diff_thr = minimum “thresholded” Difference, 

                                 Although modality refers to Statistical and Fuzzy types, they were also considered in Basic types. 
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Figure 9.  Relation between Speed results with Type of algorithm (left axis) and Modality 
(right axis) for BS2 video. 

 
 

       
 
 

Figure 10.  Relation between Quality results with Type of algorithm (left axis) and Modality 
(right axis) for BS2 video. 

 
 
The MCE results for BS2 is given in Appendix IV.  Because there were no empty backgrounds 
produced with minimum Difference, only the minimum “thresholded” Difference values 
were used.  The frequency (number) of minimum “thresholded” Difference was included in 
the analysis.  Originally, the StaticFrameDifference algorithm contained a high value for the 
frequency, because it used the same background (the first image in the sequence) for all the 
frames.  The frequency for this method was set to 1.  Note that Appendix IV contains 3 parts, 
corresponding to each scenario (or criteria as stated in the Tables). 
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The top scorers in the MCE analyses are as follows: 
 
Speed = Quality and Speed > Quality: 
 

(1) LBMixtureOfGaussians 
(2) AdaptiveBackgroundLearning 
(3) FrameDifference 

 
Speed < Quality:  
 

(1) LBMixtureOfGaussians 
(2) AdaptiveBackgroundLearning 
(3) LBSimpleGaussian  

 
 

The LBMixtureOfGaussians algorithm ranked first in all the scenarios.  This was influenced by 
the very low minimum thresholded difference value, high frequency of this value and 
relatively acceptable speed.  Frame difference is in the top 3, for the cases when Speed was 
given importance, even if the background in Appendix III, Figure 2 was not empty.  
AdaptiveBackgroundLearning has a similar case; the extracted background still showed traces 
of the animal. The background were not empty because the algorithms were based on 
frames which always contained animals in the video.  The MCE analyses could not prevent 
these algorithms from being chosen.  Probably other factors should be included in the MCE 
analysis, or other preliminary steps should be considered which will exclude these algorithms 
in the final analysis. 
 
Sensitivity analysis of the Frequency criteria was done to determine how the ranking of the  
algorithms is affected by the number of samples at a certain distance from the minimum 
“thresholded” Difference value.  It shows how stable the rankings are over the ranges from 
the minimum “thresholded” Difference value.  An algorithm which maintains a high rank as 
the range from the minimum value is increased means it’s estimate of the empty background 
or close to it, occurs more frequently.  To perform this analysis, the following frequency 
values were calculated: frequency of the minimum “thresholded” Difference plus 10, plus 25, 
plus 50 and plus 100 pixels.   Table 5 shows the frequency values calculated and the Table 6 
shows the top 3 (or 4) ranked algorithms using MCE analyses with Speed, minimum 
“thresholded” Difference, and the frequency factor.  The tables show that the frequency of 
LBMixtureOfGaussians was the highest until minimum “thresholded” Difference plus 25 
pixels.  This had contributed to its first ranking in the MCE analyses.  However, although the 
frequency of AdaptiveBackgroundLearning for the different plus factors were not high in 
Table 5, it still ranked high in the MCE analyses (Table 6).  This could be because of good 
values in the other criteria (Speed and minimum “thresholded” Difference).  
DPZivkovicAGMM also performed well.  
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    Table 5.  Frequency values of minimum threshold difference plus different number of pixels, 
using BS2 video. 

 

Algorithms plus 0 plus 10 plus 25 plus 50 plus 100

AdaptiveBackgroundLearning 1 2 3 6 16

DPAdaptiveMedian 7 56 238 1092 2485

DPGrimsonGMM 2 50 363 1197 1918

DPMean 1 4 6 8 12

DPPratiMediod 5 45 70 255 415

DPWrenGA 1 65 203 493 1033

DPZivkovicAGMM 2 234 1213 3327 3381

FrameDifference 1 3 4 9 16

LBAdaptiveSOM 1 56 621 1899 3448

LBFuzzyAdaptiveSOM 3 119 462 863 2661

LBFuzzyGaussian 5 52 112 175 280

LBMixtureOfGaussians 768 1069 1254 1378 1530

LBSimpleGaussian 2 34 59 100 153

MultiLayer_Learn 1 5 6 8 11

StaticFrameDifference 1 1 1 1 1

T2FGMM_UM 1 17 26 29 44

T2FGMM_UV 1 3 7 19 47

WeightedMovingMean 1 2 5 15 21

Frequency minimum thresholded difference

 
 

     Table 6.  Top ranking algorithms for different scenarios and frequency values (minimum 
thresholded difference plus the factor), for BS2 video. 

 
Freq Rank Speed = Quality Speed > Quality Speed < Quality

1 LBMixtureOfGaussians LBMixtureOfGaussians LBMixtureOfGaussians

2 AdaptiveBackgroundLearning AdaptiveBackgroundLearning AdaptiveBackgroundLearning

3 FrameDifference FrameDifference LBSimpleGaussian

1 LBMixtureOfGaussians LBMixtureOfGaussians LBMixtureOfGaussians

2 AdaptiveBackgroundLearning AdaptiveBackgroundLearning AdaptiveBackgroundLearning

3 LBSimpleGaussian FrameDifference LBSimpleGaussian

1 LBMixtureOfGaussians LBMixtureOfGaussians LBMixtureOfGaussians

2 DPZivkovicAGMM DPZivkovicAGMM DPZivkovicAGMM

3 AdaptiveBackgroundLearning AdaptiveBackgroundLearning AdaptiveBackgroundLearning

1 DPZivkovicAGMM DPZivkovicAGMM DPZivkovicAGMM

2 LBMixtureOfGaussians LBMixtureOfGaussians LBMixtureOfGaussians

3 DPAdaptiveMedian AdaptiveBackgroundLearning LBAdaptiveSOM

1 DPZivkovicAGMM DPZivkovicAGMM DPZivkovicAGMM

2 DPAdaptiveMedian DPAdaptiveMedian LBAdaptiveSOM

3 LBAdaptiveSOM LBMixtureOfGaussians DPAdaptiveMedian

4 LBMixtureOfGaussians AdaptiveBackgroundLearning LBMixtureOfGaussians

Plus 100

Plus 0

Plus 10

Plus 25

Plus 50
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b. Video1 video 
 
The same analysis was done with the Video1 video.  For the runs, some changes were made 
in some algorithms because of the number of frames that were accessible from the video.  
For example, for FuzzySugenoIntegral and FuzzyChoqueIntegral the initial number of frames 
used for learning were initially 200.  They were both limited to 10 because of the limited 
number of frames in Video1.  For LBMixtureOfGaussians, the learning rate was change from 
59 to 80 to account for the fast mouse.  Appendix V shows frames from the  video that 
corresponds with the minimum Difference (Figure 1) and minimum “thresholded” Difference 
(Figure 2) for each algorithm.   Looking at the frames, both DPPratiMediod and 
LBMixtureOfGaussians showed empty backgrounds in both Figures.  MultiLayer also looked 
empty in Figure 2 (minimum “thresholded” Difference). 
 
To be comparable with the results for BS2, the results for minimum Difference were not 
included in further analyses.  The algorithms which did not show the backgrounds well 
(black), like DPEigenbackground, FuzzyChoquetIntegral and FuzzySugenoIntegral, were also 
not included in further analyses to increase the sensitivity of the results to the remaining 
algorithms.   
 
The calculated Speed and Quality values were examined in relation to the type of algorithm 
and the modality used in the algorithm.  The results are given in Table 7 and Figures 11 and 
12.  High values are highlighted in the Table.   
 
Looking at the Speed results, it can be seen that except for 2 algorithms (DPPratiMideod and 
MultiLayer_Learn), the basic types have in general faster (lower duration), which is followed 
by Statistical types, then the Fuzzy types.  Unimodal types are in general faster than multi-
modal types. 
 
There is no distinct relation between minimum “thresholded” Difference and algorithm type 
nor modality.  Low values of minimum “thresholded” Difference can be found in 
LBMixtureOfGaussians, LBAdaptiveSOM and LBFuzzyAdaptiveSOM.  High values can be found 
in DPGrimsonGMM, DPZivkovicAGMM, and T2FGMM_UV. 
 
The MCE analyses applied to Video1 is given in Appendix VI.  The frequency for 
StaticFrameDifference which uses the first frame as background for succeeding frames, was 
set to 1.  To make the analysis similar to BS2, Appendix VI contains minimum thresholded 
Difference values. 
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   Table 7.  Summary of calculated values for the different criteria for the Video1 video. 

Algorithm Type U/M

Speed 

(msec)

Diff_thr 

(nr pixels)

AdaptiveBackgroundLearning 1 1 6,750 158

DPAdaptiveMedian 1 1 7,060 872

DPGrimsonGMM 2 2 7,553 901

DPMean 1 1 7,327 826

DPPratiMediod 1 2 9,960 473

DPWrenGA 2 1 7,265 851

DPZivkovicAGMM 2 2 7,199 900

FrameDifference 1 1 7,255 353

LBAdaptiveSOM 3 2 7,852 38

LBFuzzyAdaptiveSOM 3 2 8,026 90

LBFuzzyGaussian 3 1 7,473 423

LBMixtureOfGaussians 2 2 7,286 0

LBSimpleGaussian 2 1 7,188 425

MultiLayer_Learn 2 2 11,660 11

StaticFrameDifference 1 1 6,686 429

T2FGMM_UM 3 2 7,805 887

T2FGMM_UV 3 2 7,544 906

WeightedMovingMean 2 1 7,373 377  
Note: Type: (1) basic, (2) statistical, (3) fuzzy 
           U/M: unimodal (U) or multimodal (M) 
           Diff_thr = minimum “thresholded” Difference, 
           Although modality refers to Statistical and Fuzzy types, they were also considered in Basic types. 

 
 

      
 

Figure 11.  Relation between Speed results with Type of algorithm (left axis) and Modality  
(right axis) for Video1 video. 
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Figure 12.  Relation between Quality results with Type of algorithm (left axis) and Modality  
(right axis) for Video1 video. 

 
      

The top scorers in Appendix VI are: 
      

Speed = Quality: 
 

(1) LBMixtureOfGaussians 
(2) AdaptiveBackgroundLearning 
(3) DPAdaptiveMedian 

 
Speed > Quality: 
 

(1) LBMixtureOfGaussians 
(2) AdaptiveBackgroundLearning 
(3) StaticFrameDifference  

 
Speed < Quality:  
 

(1) LBMixtureOfGaussians 
(2) AdaptiveBackgroundLearning 
(3) LBAdaptiveSOM  

 
From the results, the LBMixtureOfGaussians scored the best in all scenarios.   Just like with BS2, 
there were two algorithms, the AdaptiveBackgroundLearning and StaticFrameDifference, which 
came to the top 3 but which showed the animal or traces of it in the extracted background 
(Appendix VI, Figure 2).  This was due to the effect of Speed in the MCE result. 
 
Just like with BS2, sensitivity analysis of the Frequency criteria was performed to determine how 
the ranking of the  algorithms is affected by the number of samples at a certain distance from the 
minimum “thresholded” Difference value..  Table 8 shows the frequency values calculated and 
the Table 9 shows the top 3 ranked algorithms using MCE analyses with Speed, minimum 
“thresholded” Difference, and the frequency factor.  The tables show that the frequency of 
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LBMixtureOfGaussians was the highest only in Plus 0 (before minimum “thresholded” Difference 
value + 10 pixels).  Other algorithms like DPGrimsonGMM, DPZivkovicAGMM, LBFuzzyGaussian 
and LBSimpleGaussian had all their samples included in the range minimum “thresholded” 
Difference plus 10 pixels.  This is the reason why, in the MCE analyses which also considered 
Speed and minimum “thresholded” Difference, LBSimpleGaussian and LBFuzzyGaussian also 
ranked well (Table 9).  Still, the results show that LBMixtureOfGaussians performed in the 
different ranges well.  
 
Table 8.  Frequency values of minimum threshold difference plus different number of pixels, 

using Video1 video. 

Algorithms plus 0 plus 10 plus 25 plus 50 plus 100

AdaptiveBackgroundLearning 1 1 1 3 4

DPAdaptiveMedian 7 28 61 62 62

DPGrimsonGMM 2 62 62 62 62

DPMean 1 1 2 4 23

DPPratiMediod 5 31 36 41 41

DPWrenGA 2 13 42 57 62

DPZivkovicAGMM 1 62 62 62 62

FrameDifference 1 3 3 4 28

LBAdaptiveSOM 1 2 3 3 3

LBFuzzyAdaptiveSOM 1 2 2 8 14

LBFuzzyGaussian 1 62 62 62 62

LBMixtureOfGaussians 10 27 31 32 33

LBSimpleGaussian 1 62 62 62 62

MultiLayer_Learn 1 28 35 38 43

StaticFrameDifference 1 1 1 1 1

T2FGMM_UM 1 15 46 60 62

T2FGMM_UV 2 24 28 62 62

WeightedMovingMean 1 1 5 12 34

Frequency minimum thresholded difference

 
 

 

Table 9. Top ranking algorithms for different scenarios and frequency values (minimum 
thresholded difference plus the factor), for Video1 video. 

Freq Rank Speed = Quality Speed > Quality Speed < Quality

1 LBMixtureOfGaussians LBMixtureOfGaussians LBMixtureOfGaussians

2 AdaptiveBackgroundLearning AdaptiveBackgroundLearning AdaptiveBackgroundLearning

3 DPAdaptiveMedian StaticFrameDifference LBAdaptiveSOM

1 LBSimpleGaussian LBSimpleGaussian LBSimpleGaussian

2 LBFuzzyGaussian LBMixtureOfGaussians LBFuzzyGaussian

3 LBMixtureOfGaussians LBFuzzyGaussian LBMixtureOfGaussians

1 LBSimpleGaussian LBSimpleGaussian LBSimpleGaussian

2 LBMixtureOfGaussians LBMixtureOfGaussians LBMixtureOfGaussians

3 LBFuzzyGaussian LBFuzzyGaussian LBFuzzyGaussian

1 LBSimpleGaussian LBSimpleGaussian LBSimpleGaussian

2 LBMixtureOfGaussians LBMixtureOfGaussians LBMixtureOfGaussians

3 LBFuzzyGaussian LBFuzzyGaussian LBFuzzyGaussian

1 LBSimpleGaussian LBSimpleGaussian LBSimpleGaussian

2 LBMixtureOfGaussians LBMixtureOfGaussians LBMixtureOfGaussians

3 LBFuzzyGaussian LBFuzzyGaussian LBFuzzyGaussian

Plus 0

Plus 10

Plus 25

Plus 50

Plus 100
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The overall result of the MCE is reasonable in the sense that the best scorer, the 
LBMixtureOfGaussians consistently showed empty background in the frames corresponding to 
the minimum “thresholded” Difference.  The LBMixtureOfGaussians algorithm also consistently 
scored high when different frequency ranges from the minimum “thresholded” Difference were 
considered.  But what is quite strange in the results is that sometimes an algorithm which shows 
the animal in the extracted background, like FrameDifference, can get a high score.  This could 
mean that the criteria put in the MCE analyses were not good.  Another implication is that the 
Speed and Quality measures may not have been well defined.  Speed could, for example, have 
been defined by taking the time until the first empty image was extracted.  Also, a minimum 
Difference can occur when the animal is standing (less pixel area used).  Moreover, the 
difference value could have been caused by other factors, like noise, and not only by the 
presence of the animal in the background.  Another way of dealing with this problem is probably 
to give Speed, which is the big reason why Frame Difference ranked high, less weight.  In any 
case, taking all results together, LBMixtureOfGaussians can reasonably be considered as the best 
algorithm.     
 
The LBMixtureOfGaussians method will be used for the rest of the study.  Its source code can be 
downloaded from Sobral (2013a). 
 
 

4.  How does the algorithm perform in different laboratory situations 

 
 
The best algorithm was used with different videos to check if it can extract empty backgrounds.  
Of the default settings in the program, only the Learning rate setting was changed from 59 to 80 
to accommodate to fast moving animals. 

 
The program was run for 37 different videos, representing different animals, animal size and 
color, different background (constant and non-constant, water, beddings, with reflections, poor 
lighting, objects in arena, etc). There were experiments with single and multiple arenas, and 
single and multiple animal in one case.  The set also includes videos for which the algorithm is 
known to fail (animal hardly move). 
 
The results for the different videos are shown in Appendix VII, Figure 1.  The last result for 96 
arenas  is enlarged in Appendix VII, Figure 2, to show the arena contents better.  The first column 
in the Appendix VII Figure 1 shows the name and resolution of the videos.  The second column 
shows the arenas with animal. The third column shows the extracted empty background.  The 
last column contains some comments on the results.  
 
As can be seen in the images, an empty background is extracted in most situations.  Exceptions to 
this are in BD2, BD6, BM4, BM5, BM6 and BS11.  In the first five of these videos (e.g. except for 
BS11), the animals hardly moved so that a part (or whole) of the animal was left in the extracted 
backgrounds.  For BS11, the run was stopped when a considerable number of arenas were 
emptied.  This is because for multiple arenas, especially when the number of arenas is more than 
4, it was observed that the animals moved in different ways and speeds.  It was sometimes 
difficult to wait for the time when all arenas did not contain traces of the animal anymore. 
 
From the above results, it can be said that the algorithm fulfills the other criteria for a good 
method, as stated in Section IV A.  It can successfully handle most of the situations in the 
laboratory:   



38 
 

 
1. It works for different type of animals: fast or slow moving, small or large, one or more 

animals, one or more-colored animal.  However, the algorithm cannot estimate the 
background when the animal hardly moves.  But this is acceptable since in the assumptions 
in Section IV A, it was said that:  a foreground object can remain stationary for a short 
interval, but no longer than the interval where the background is revealed.  So for animals 
that hardly move, the background should be taken before putting the animal in the cage. 

  
2. It works for different types of setups: one arena or multiple arena setup, open field, Y maze, 

Plus maze, etc.  However, for some multiple arena cases, it was difficult to get empty 
background for all arenas, especially when the animals moved differently.  It is probably good 
to run the algorithm a second time for only the arena’s that are left with part of the animal 
present. 
 

3. It works when there is no animal at the start of the run. 
 

4. It deals or tolerate the changes affecting the background which are not caused by the 
foreground object like change in lighting, shadows cast, and moving background (changes in 
the bedding or  ripples in the water caused by movement of the animal). 

 
It is possible to influence the results by changing the values of the parameters used in the model.   
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V.  Summary and Conclusions 
 
 
The study identified characteristics of a good algorithm for background extraction to be fast 
(speed), of good quality (produce empty backround) and applicability (can be used for different 
situations in the laboratory).  The internet was sought for available algorithms, and background 
subtraction algorithms which contain background modeling components were used to extract 
the background.  The algorithms came with a range of characteristics, like types, modality, data 
abstraction level, feature size, etc.  Studying each algorithm suggested that there are a number 
of them which can produce empty backgrounds and fulfil the desired characteristics of a good 
algorithm. 
 
Different quantifiable criteria were selected to use for selecting the best algorithm.   To make  
good comparisons among different algorithms, these criteria were suppose to be independent of 
the characteristics of the algorithms used.  The criteria identified were Speed, minimum 
Difference, and the frequency of occurrence of the minimum Difference value.  The last two 
(except for Speed) were measurements of quality.  They were calculated by comparing extracted 
backgrounds from the algorithms and reference background.  The calculations were done on 
normal and thresholded images.  Test of the the criteria on two algorithms showed that they 
could differentiate the performances of the algorithms. 
 
When the criteria was applied to all the algorithms, it showed that for some algorithms, the 
frames corresponding to minimum Difference or minimum “thresholded” Difference did not 
always show empty backgrounds.  When the criteria were examined against the type of method 
and modality of the method, it showed that Speed is in general related to type and modality of 
the method, but the other criteria not.  This means that Speed as criteria was not really 
independent of the algorithms.  MCE analyses were performed for the scenarios that considered 
different preferences of users, like Speed = Quality, Speed > Quality and Speed < Quality.  The 
results showed that LBMixtureOfGaussians (LBMOG) was the best algorithm for the videos used.  
LBMOG is based on the Gaussian distribution. It is multi-modal, parametric, recursive and adapts 
to changes in the background. 
 
The LBMOG algorithm was used to extract the background of videos representing different 
situations.  Empty background was obtained in many cases.  Exceptions were in videos where the 
animal hardly moved.  It also did not perform well in multiple arenas, because it was difficult to 
find the same moment of time when the arenas were all empty.  
 
LBMOG answers the requirements on the characteristics of a good algorithm for laboratory use, 
as was initially defined in the study.  It is applicable in many situations, has low computational 
and memory requirement, and is relatively fast.  It contains settings, whose values can be 
changed to improve the performance of the algorithm.  It is recommended for use in the 
laboratory situation. 
 
However, there were some results which were not as expected.  For example, FrameDifference, 
StaticFrameDifference, and AdaptiveBackgroundLearning, which always had backgrounds with 
animal or traces of animal, got relatively high scores in the MCE analysis.  This could mean that 
the Speed criteria which was related to the type of algorithm, should probably not have been 
added as criteria in the MCE analyses,  or should have gotten less weight, or should have been 
defined in another way.  Another implication is that Quality measures could have been not very 
well defined.  The minimum Difference, for example, compare the intensities of each pixel and 
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gets the total number of pixels with differences.  However, the differences could have been 
caused by various factors, and not only by the presence of the animal in the extracted 
background.  The cut off value for thresholding should probably have been higher.   
 
 
For future study, it is suggested to: 
 
1. Examine the MCE analysis method and device a way to prevent algorithms that cannot 

produce empty backgrounds from ending up with high scores.  The frequencies of the values 
with minimum difference was included to do this task, but still some of these algorithms 
ended up with high scores. 
 

2. Optimize the extraction of the final background.  The algorithms considered here run from 
start to end.  User intervention is needed to stop the algorihtm when an empty background 
is obtained.  It would be good if the algorithm themselves are able to stop once an empty 
background is obtained. 

 
Lastly, from literature review, it was realized that many studies have already been made, and 
algorithms created to extract empty backgrounds.  Many of the reported studies are without 
source codes, but there are authors who are willing to share their programs.  There are good 
algorithms which work well for many situations, but not for all situations.  For this case, it is 
handy to be able to change parameters in the algorithm to tune it better to a particular 
application. 
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Appendix I.  Algorithms used to extract the background 

Method Type U/MP/N Type Size R/N Description of algorithm or paper which was the basis of the algorithm

AdaptiveBackgroundLearning Basic - - intensity frame R adapts background model using temporal blending or exponential forgetting, where the current background is made 

equal to img_backgroundt = alpha * img_input + (1-alpha)*img_backgroundt-1; where alpha controls the speed of 

forgetting the information (Elgammal, 2011)

DPAdaptiveMedian Basic - - blob 

edges

pixel N employs image differencing with respect to a median background and a Laplacian operator; uses a reference 

background image which is calculated using the running median of the image sequence; uses a mask to differentiate 

stationary objects from the background; the algorithm performed good in distinguishing the animals from the 

background (McFarlane and Schofield, 1995)

DPEigenbackground Statistical M N color, 

texture, 

or others

pixel, 

blobs

N detects and tracks moving  objects and outputs a feature vector describing motion and heading of the moving object 

and spatial relationship to other moving objects; the feature vectors are the inputs to a stochastic state-based 

behavior model and the behaviors are classified; uses an eigenspace model that is formed by computing the mean 

background image and its covariance matrix from N samples, the covariance matrix is diagonalized through an 

eigenvalue decomposition; only M largest eigenvalues are kept in the principal component analysis (PCA) for the 

eigenbackgrounds; the background is modeled by projecting each input image onto the space expanded by the 

eigenbackground images and their means (Oliver et al., 2000)

DPGrimsonGMM Statistical M P color pixel R models values of each pixel as a mixture of Gaussians; pixels that coorespond to background distributions are 

considered background; adapts robustly to lighting changes, repetitive motions in the background, cluttered regions 

slow moving objects, and introduction/removal of objects from the background; applied in different environments 

and animals (Stauffer and Grimson, 1999)

DPMean Basic - - color pixel N for each pixel and channel in the image, the background is updated by taking the half of the mean; the mean is 

calculated by mean = alpha * previous mean + (1-alpha) * img_input, where alpha controls the speed of forgetting 

the information; a pixel is considered to be from the background if the squared distance between it and the 

background model is less than the threshold

DPPratiMediod Basic - - color, 

motion

pixel N uses an object-level classification of moving objects into moving visual objects (MVOs), ghosts and shadows; uses 

motion and shadow information to exclude MVOs and shadows, while retaining ghosts in the background; 

differentiates shadows by analyzing chromaticity in the HSV color space; background update is done by taking the 

median value between values in previous frames and the current background (Cucchiara, et al., 2003)

Feature

 
Following abbreviations were used:   U/M = unimodal or multi-modal;   P/N =- parameteric or non-parametric;   R/N = recursive or non-recursive 
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Method Type U/MP/N Type Size R/N Description of algorithm or paper which was the basis of the algorithm

DPWrenGA Statistical U P color pixel, 

blobs

R originally used for tracking people and interpreting their behavior (Pfinder software), but the algorithm can be 

applied to track vehicles and animals; adopts a Maximum A Posteriori Probability (MAP) approach in detection and 

tracking using 2D models; incorporates a priori knowledge on the foreground in bootstrapping and recovering from 

errors; feature vectors at each pixel are clustered to form blobs, which are coherent, connected regions; models 

background as a texture surface with each point in the surface associated with mean color value and color 

distribution modeled with Gaussian distribution (Wren, et al., 1997).

DPZivkovicAGMM Statistical M P color pixel R similar to MixtureOfGaussianV2, but used Donovan Parks (see Sobral, 2012) own C++ implementation

FrameDifference Basic - - gray or 

color

frame N uses previous frame as background and calculates the absolute difference between the background and the current 

image as the foreground

FuzzyChoquetIntegral Fuzzy M N color, 

edge, 

texture, 

stereo

pixel R fuses color and texture features using Choquet integral as aggregating operator; transforms RGB color space to YCrCb 

color space and uses local binary pattern operator for the texture model; uses similarity measures for color and 

texture, which are then aggregated by the Choquet integral; uses a background update rule that quickly adapts a 

pixel classified as background and slowly adapts a pixel that is classified as foreground; robust to changes happening 

in the background (El Baf, et. al., 2008a)

FuzzySugenoIntegral Fuzzy M N color, 

texture

pixel R fuses color and texture features using fuzzy integral; transforms RGB color space to Ohta color space and uses local 

binary pattern operator for the texture model; uses pixel motion character to decide if the pixel has to be updated 

to the background or not; robust to changes in the background (Zhang and Xu, 2006)

LBAdaptiveSOM Fuzzy M N neural 

map

pixel R uses competitive neural network similar to Kohonen Self-Organizing Map (SOM) to adaptively model the 

background; a neuronal map of 3x3 vectors is defined for each pixel; incoming source pixels are mapped to the 

closest weight vectors according to  Euclidean distance metric, and the weights are updated; the set up weights act 

as background model (Bender, 2013)

LBFuzzyAdaptiveSOM Fuzzy M N neural 

map

pixel R modified version of LBAdaptiveSOM; uses fuzzy rule for neural network background model update; more robust to 

illumination changes compared to LBAdaptiveSOM (Bender, 2013,  and Madalena and Petrosino, 2008)

LBFuzzyGaussian Fuzzy U P color pixel R modified version of LBSimpleGaussian using fuzzy classification rule and fuzzy online cumulative averages; provides 

better segmentation of stationary foreground objects than the simple Gaussian model (Bender, 2013, and Sigari, et 

al., 2008)

Feature

 
Following abbreviations were used:   U/M = unimodal or multi-modal;   P/N =- parameteric or non-parametric;   R/N = recursive or non-recursive 
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Method Type U/MP/N Type Size R/N Description of algorithm or paper which was the basis of the algorithm

LBMixtureOfGaussians Statistical M P color pixel R similar to LBSimpleGaussian except that this uses classic multivariate Gaussian mixture model representing each 

pixel by a mixture of 4 Gaussians (Bender, 2013, and Bouwmans, et al. 2008)

LBSimpleGaussian Statistical U P color pixel R uses single Gaussian probability density function based on recent pixel values; updates mean and covariance matrix 

using online cumulative average; calculates Mahalanobis distance between source and background pixels and 

compares this to a threshold (Bender, 2013, Benezeth, et al., 2008)

MixtureOfGaussianV1 Statistical M P color pixel R uses OpenCV's cv::BackgroundSubtractorMOG class based on KaewTraKulPong and Borden (2001); improved the 

update mechanism in the algorithm of Stauffer and Grimson (1999) leading to faster and more accurate learning 

phase and improved shadow detection.

MixtureOfGaussianV2 Statistical M P color pixel R uses OpenCV's cv::BackgroundSubtractorMOG2 class based on Zivkovic and van der Heijden (2006); improved the 

algorithm of Stauffer and Grimson (1999) by automatically updating the parameters of the model and selecting the 

needed number of components per pixel to fully adapt to the observed scene.

MultiLayer_Learn Statistical M N color, 

texture

pixel R uses photometric invariant color measurements in RGB color space and texture features represented by local binary 

pattern; using simple layer based strategy, moving background pixels are modelled using quasi-periodic flickering; 

robust to changes in the background (Yao and Odobez, 2007)

StaticFrameDifference Basic - - gray or 

color

frame N similar to FrameDifference only it uses first frame as background.

T2FGMM_UM Fuzzy M P color pixel R this is an improvement to the mixture of gaussians model to handle dynamic changes in the background and false 

initialization; uses T2 membership functions to represent uncertainty in the mean vector of the multivariate 

Gaussian model (El Baf, et al., 2008b)

T2FGMM_UV Fuzzy M P color pixel R similar to T2FGMM_UM, only the T2 membership functions represent uncertainty in the variance vector of the 

multivariate Gaussian model; T2GMM_UM is a better estimator than T2GMM_UV (El Baf, et al., 2008b)

WeightedMovingMean Basic - - intensity pixel N uses weighted average to model the background; the current image gets 50% weight, the previous image 30% and 

the pre-previous image 20%; if weights are not used, then uses simple average of the three images

WeightedMovingVariance Basic - - intensity pixel N similar to WeightedMovingMean, but also calculated weighted variance using the same proportions as the mean; 

uses the square root of the total variance to estimate the foreground.

Feature

 
Following abbreviations were used:   U/M = unimodal or multi-modal;   P/N =- parameteric or non-parametric;   R/N = recursive or non-recursive 
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Appendix II.  Comparison of GrimsonGMM and LBMOG using different videos. 
 

          Note: The SInt = sample interval (frames), SR = video sample rate; the status of change is indicated as Dissappear (D) or Appear (A). 

  

No Video SInt             Start image                                       GrimsonGMM                                   LBMOG D/A 

1 Green 1 

 

D 

2 Green 1 

 

A 

3 BM1 1 

 

A 

4 BS8 1 

 

D 
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5 BS8 1 

 

A 

6 BS9 1 

 

D 

7 BS9 1 

 

A 

8 BD15 1 

 

D 
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9 BS2 1 

 

A 

10 BD4 1 

 

D 

11 BD4 10 

 

D 

12 BD4 SR 

 

D 
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Appendix III.  Frames corresponding to quality measures for different background extraction methods using BS2 video. 

  Figure 1.  Minimum Difference Frames for BS2 video. 
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   Figure 2.  Minimum Thresholded Difference Frames for BS2 video. 
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Appendix IV.  Multi-criteria evaluation to select the best method using BS2 video with thresholded Difference values. 
Criteria: Speed = Quality TOTAL TOTAL

Method Val Val (std) Weight Score Val Val (std) Weight Score Val Val (std) Weight Score SCORE RANK

AdaptiveBackgroundLearning 182,308 0,945 0,5 0,473 42 0,991 0,25 0,248 1 0,000 0,25 0,000 0,720 2

DPAdaptiveMedian 184,703 0,939 0,5 0,470 1458 0,679 0,25 0,170 7 0,008 0,25 0,002 0,641 7

DPGrimsonGMM 284,060 0,680 0,5 0,340 1477 0,675 0,25 0,169 2 0,001 0,25 0,000 0,509 13

DPMean 213,691 0,863 0,5 0,432 2364 0,479 0,25 0,120 1 0,000 0,25 0,000 0,551 11

DPPratiMediod 288,668 0,668 0,5 0,334 1482 0,673 0,25 0,168 5 0,005 0,25 0,001 0,503 14

DPWrenGA 204,972 0,886 0,5 0,443 1485 0,673 0,25 0,168 1 0,000 0,25 0,000 0,611 8

DPZivkovicAGMM 210,601 0,871 0,5 0,436 1496 0,670 0,25 0,168 2 0,001 0,25 0,000 0,604 9

FrameDifference 164,027 0,993 0,5 0,497 879 0,806 0,25 0,202 1 0,000 0,25 0,000 0,698 3

LBAdaptiveSOM 289,133 0,666 0,5 0,333 802 0,823 0,25 0,206 1 0,000 0,25 0,000 0,539 12

LBFuzzyAdaptiveSOM 309,041 0,614 0,5 0,307 1133 0,750 0,25 0,188 3 0,003 0,25 0,001 0,495 15

LBFuzzyGaussian 221,139 0,844 0,5 0,422 1 1,000 0,25 0,250 5 0,005 0,25 0,001 0,673 6

LBMixtureOfGaussians 224,250 0,836 0,5 0,418 0 1,000 0,25 0,250 768 1,000 0,25 0,250 0,918 1

LBSimpleGaussian 201,017 0,896 0,5 0,448 69 0,985 0,25 0,246 2 0,001 0,25 0,000 0,695 4

MultiLayer_Learn 544,312 0,000 0,5 0,000 81 0,982 0,25 0,246 1 0,000 0,25 0,000 0,246 16

StaticFrameDifference 161,367 1,000 0,5 0,500 2938 0,353 0,25 0,088 1 0,000 0,25 0,000 0,588 10

T2FGMM_UM 380,989 0,426 0,5 0,213 4538 0,000 0,25 0,000 1 0,000 0,25 0,000 0,213 18

T2FGMM_UV 375,522 0,441 0,5 0,220 4136 0,089 0,25 0,022 1 0,000 0,25 0,000 0,243 17

WeightedMovingMean 182,971 0,944 0,5 0,472 875 0,807 0,25 0,202 1 0,000 0,25 0,000 0,674 5

Minimum 161,367 0 1

Maximum 544,312 4538 768

Difference_frequency (25%)Speed (msec, 50%) Difference (nr of pixels, 25%)

 
 
Criteria: Speed > Quality TOTAL TOTAL

Method Val Val (std) Weight Score Val Val (std) Weight Score Val Val (std) Weight Score SCORE RANK

AdaptiveBackgroundLearning 182,308 0,945 0,6 0,567 42 0,991 0,2 0,198 1 0,000 0,2 0,000 0,765 2

DPAdaptiveMedian 184,703 0,939 0,6 0,563 1458 0,679 0,2 0,136 7 0,008 0,2 0,002 0,701 7

DPGrimsonGMM 284,060 0,680 0,6 0,408 1477 0,675 0,2 0,135 2 0,001 0,2 0,000 0,543 13

DPMean 213,691 0,863 0,6 0,518 2364 0,479 0,2 0,096 1 0,000 0,2 0,000 0,614 11

DPPratiMediod 288,668 0,668 0,6 0,401 1482 0,673 0,2 0,135 5 0,005 0,2 0,001 0,536 14

DPWrenGA 204,972 0,886 0,6 0,532 1485 0,673 0,2 0,135 1 0,000 0,2 0,000 0,666 9

DPZivkovicAGMM 210,601 0,871 0,6 0,523 1496 0,670 0,2 0,134 2 0,001 0,2 0,000 0,657 10

FrameDifference 164,027 0,993 0,6 0,596 879 0,806 0,2 0,161 1 0,000 0,2 0,000 0,757 3

LBAdaptiveSOM 289,133 0,666 0,6 0,400 802 0,823 0,2 0,165 1 0,000 0,2 0,000 0,564 12

LBFuzzyAdaptiveSOM 309,041 0,614 0,6 0,369 1133 0,750 0,2 0,150 3 0,003 0,2 0,001 0,519 15

LBFuzzyGaussian 221,139 0,844 0,6 0,506 1 1,000 0,2 0,200 5 0,005 0,2 0,001 0,707 6

LBMixtureOfGaussians 224,250 0,836 0,6 0,501 0 1,000 0,2 0,200 768 1,000 0,2 0,200 0,901 1

LBSimpleGaussian 201,017 0,896 0,6 0,538 69 0,985 0,2 0,197 2 0,001 0,2 0,000 0,735 4

MultiLayer_Learn 544,312 0,000 0,6 0,000 81 0,982 0,2 0,196 1 0,000 0,2 0,000 0,196 18

StaticFrameDifference 161,367 1,000 0,6 0,600 2938 0,353 0,2 0,071 1 0,000 0,2 0,000 0,671 8

T2FGMM_UM 380,989 0,426 0,6 0,256 4538 0,000 0,2 0,000 1 0,000 0,2 0,000 0,256 17

T2FGMM_UV 375,522 0,441 0,6 0,264 4136 0,089 0,2 0,018 1 0,000 0,2 0,000 0,282 16

WeightedMovingMean 182,971 0,944 0,6 0,566 875 0,807 0,2 0,161 1 0,000 0,2 0,000 0,728 5

Minimum 161,367 0 1

Maximum 544,312 4538 768

Difference_frequency (20%)Speed (msec, 60%) Difference (nr of pixels, 20%)
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Criteria: Speed < Quality TOTAL TOTAL

Method Val Val (std) Weight Score Val Val (std) Weight Score Val Val (std) Weight Score SCORE RANK

AdaptiveBackgroundLearning 182,308 0,945 0,4 0,378 42 0,991 0,3 0,297 1 0,000 0,3 0,000 0,675 2

DPAdaptiveMedian 184,703 0,939 0,4 0,376 1458 0,679 0,3 0,204 7 0,008 0,3 0,002 0,582 7

DPGrimsonGMM 284,060 0,680 0,4 0,272 1477 0,675 0,3 0,202 2 0,001 0,3 0,000 0,475 13

DPMean 213,691 0,863 0,4 0,345 2364 0,479 0,3 0,144 1 0,000 0,3 0,000 0,489 12

DPPratiMediod 288,668 0,668 0,4 0,267 1482 0,673 0,3 0,202 5 0,005 0,3 0,002 0,471 15

DPWrenGA 204,972 0,886 0,4 0,354 1485 0,673 0,3 0,202 1 0,000 0,3 0,000 0,556 8

DPZivkovicAGMM 210,601 0,871 0,4 0,349 1496 0,670 0,3 0,201 2 0,001 0,3 0,000 0,550 9

FrameDifference 164,027 0,993 0,4 0,397 879 0,806 0,3 0,242 1 0,000 0,3 0,000 0,639 4

LBAdaptiveSOM 289,133 0,666 0,4 0,267 802 0,823 0,3 0,247 1 0,000 0,3 0,000 0,514 10

LBFuzzyAdaptiveSOM 309,041 0,614 0,4 0,246 1133 0,750 0,3 0,225 3 0,003 0,3 0,001 0,472 14

LBFuzzyGaussian 221,139 0,844 0,4 0,338 1 1,000 0,3 0,300 5 0,005 0,3 0,002 0,639 5

LBMixtureOfGaussians 224,250 0,836 0,4 0,334 0 1,000 0,3 0,300 768 1,000 0,3 0,300 0,934 1

LBSimpleGaussian 201,017 0,896 0,4 0,359 69 0,985 0,3 0,295 2 0,001 0,3 0,000 0,654 3

MultiLayer_Learn 544,312 0,000 0,4 0,000 81 0,982 0,3 0,295 1 0,000 0,3 0,000 0,295 16

StaticFrameDifference 161,367 1,000 0,4 0,400 2938 0,353 0,3 0,106 1 0,000 0,3 0,000 0,506 11

T2FGMM_UM 380,989 0,426 0,4 0,171 4538 0,000 0,3 0,000 1 0,000 0,3 0,000 0,171 18

T2FGMM_UV 375,522 0,441 0,4 0,176 4136 0,089 0,3 0,027 1 0,000 0,3 0,000 0,203 17

WeightedMovingMean 182,971 0,944 0,4 0,377 875 0,807 0,3 0,242 1 0,000 0,3 0,000 0,620 6

Minimum 161,367 0 1

Maximum 544,312 4538 768

Difference_frequency (30%)Speed (msec, 40%) Difference (nr of pixels, 30%)
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Appendix V.  Frames corresponding to quality measures for different background extraction methods using Video1. 

Figure 1. Minimum Difference Frames for Video1 video 
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  Figure 2.  Minimum thresholded Difference Frames for Video1 video 
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Appendix VI.  Multi-criteria evaluation to select the best method using Video1 video with thresholded Difference values. 
 
Criteria: Speed = Quality TOTAL TOTAL

Method Val Val (std) Weight Score Val Val (std) Weight Score Val Val (std) Weight Score SCORE RANK

AdaptiveBackgroundLearning 6,750 0,987 0,5 0,494 158 0,826 0,25 0,206 1 0,000 0,25 0,000 0,700 2

DPAdaptiveMedian 7,060 0,925 0,5 0,463 872 0,038 0,25 0,009 7 0,667 0,25 0,167 0,639 3

DPGrimsonGMM 7,553 0,826 0,5 0,413 901 0,006 0,25 0,001 2 0,111 0,25 0,028 0,442 14

DPMean 7,327 0,871 0,5 0,436 826 0,088 0,25 0,022 1 0,000 0,25 0,000 0,458 12

DPPratiMediod 9,960 0,342 0,5 0,171 473 0,478 0,25 0,119 5 0,444 0,25 0,111 0,402 16

DPWrenGA 7,265 0,884 0,5 0,442 851 0,061 0,25 0,015 2 0,111 0,25 0,028 0,485 11

DPZivkovicAGMM 7,199 0,897 0,5 0,449 900 0,007 0,25 0,002 1 0,000 0,25 0,000 0,450 13

FrameDifference 7,255 0,886 0,5 0,443 353 0,610 0,25 0,153 1 0,000 0,25 0,000 0,595 6

LBAdaptiveSOM 7,852 0,766 0,5 0,383 38 0,958 0,25 0,240 1 0,000 0,25 0,000 0,622 5

LBFuzzyAdaptiveSOM 8,026 0,731 0,5 0,365 90 0,901 0,25 0,225 1 0,000 0,25 0,000 0,591 7

LBFuzzyGaussian 7,473 0,842 0,5 0,421 423 0,533 0,25 0,133 1 0,000 0,25 0,000 0,554 10

LBMixtureOfGaussians 7,286 0,879 0,5 0,440 0 1,000 0,25 0,250 10 1,000 0,25 0,250 0,940 1

LBSimpleGaussian 7,188 0,899 0,5 0,450 425 0,531 0,25 0,133 1 0,000 0,25 0,000 0,582 8

MultiLayer_Learn 11,660 0,000 0,5 0,000 11 0,988 0,25 0,247 1 0,000 0,25 0,000 0,247 18

StaticFrameDifference 6,686 1,000 0,5 0,500 429 0,526 0,25 0,132 1 0,000 0,25 0,000 0,632 4

T2FGMM_UM 7,805 0,775 0,5 0,388 887 0,021 0,25 0,005 1 0,000 0,25 0,000 0,393 17

T2FGMM_UV 7,544 0,828 0,5 0,414 906 0,000 0,25 0,000 2 0,111 0,25 0,028 0,442 15

WeightedMovingMean 7,373 0,862 0,5 0,431 377 0,584 0,25 0,146 1 0,000 0,25 0,000 0,577 9

Minimum 6,686 0 1

Maximum 11,660 906 10

Difference_frequency (25%)Speed (msec, 50%) Difference (nr of pixels, 25%)

 
 
Criteria: Speed > Quality TOTAL TOTAL

Method Val Val (std) Weight Score Val Val (std) Weight Score Val Val (std) Weight Score SCORE RANK

AdaptiveBackgroundLearning 6,750 0,987 0,6 0,592 158 0,826 0,2 0,165 1 0,000 0,2 0,000 0,757 2

DPAdaptiveMedian 7,060 0,925 0,6 0,555 872 0,038 0,2 0,008 7 0,667 0,2 0,133 0,696 4

DPGrimsonGMM 7,553 0,826 0,6 0,495 901 0,006 0,2 0,001 2 0,111 0,2 0,022 0,519 15

DPMean 7,327 0,871 0,6 0,523 826 0,088 0,2 0,018 1 0,000 0,2 0,000 0,540 12

DPPratiMediod 9,960 0,342 0,6 0,205 473 0,478 0,2 0,096 5 0,444 0,2 0,089 0,390 17

DPWrenGA 7,265 0,884 0,6 0,530 851 0,061 0,2 0,012 2 0,111 0,2 0,022 0,565 11

DPZivkovicAGMM 7,199 0,897 0,6 0,538 900 0,007 0,2 0,001 1 0,000 0,2 0,000 0,540 13

FrameDifference 7,255 0,886 0,6 0,531 353 0,610 0,2 0,122 1 0,000 0,2 0,000 0,653 5

LBAdaptiveSOM 7,852 0,766 0,6 0,459 38 0,958 0,2 0,192 1 0,000 0,2 0,000 0,651 6

LBFuzzyAdaptiveSOM 8,026 0,731 0,6 0,438 90 0,901 0,2 0,180 1 0,000 0,2 0,000 0,619 9

LBFuzzyGaussian 7,473 0,842 0,6 0,505 423 0,533 0,2 0,107 1 0,000 0,2 0,000 0,612 10

LBMixtureOfGaussians 7,286 0,879 0,6 0,528 0 1,000 0,2 0,200 10 1,000 0,2 0,200 0,928 1

LBSimpleGaussian 7,188 0,899 0,6 0,539 425 0,531 0,2 0,106 1 0,000 0,2 0,000 0,646 7

MultiLayer_Learn 11,660 0,000 0,6 0,000 11 0,988 0,2 0,198 1 0,000 0,2 0,000 0,198 18

StaticFrameDifference 6,686 1,000 0,6 0,600 429 0,526 0,2 0,105 1 0,000 0,2 0,000 0,705 3

T2FGMM_UM 7,805 0,775 0,6 0,465 887 0,021 0,2 0,004 1 0,000 0,2 0,000 0,469 16

T2FGMM_UV 7,544 0,828 0,6 0,497 906 0,000 0,2 0,000 2 0,111 0,2 0,022 0,519 14

WeightedMovingMean 7,373 0,862 0,6 0,517 377 0,584 0,2 0,117 1 0,000 0,2 0,000 0,634 8

Minimum 6,686 0 1

Maximum 11,660 906 10

Difference_frequency (20%)Speed (msec, 60%) Difference (nr of pixels, 20%)
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Criteria: Speed < Quality TOTAL TOTAL

Method Val Val (std) Weight Score Val Val (std) Weight Score Val Val (std) Weight Score SCORE RANK

AdaptiveBackgroundLearning 6,750 0,987 0,4 0,395 158 0,826 0,3 0,248 1 0,000 0,3 0,000 0,643 2

DPAdaptiveMedian 7,060 0,925 0,4 0,370 872 0,038 0,3 0,011 7 0,667 0,3 0,200 0,581 4

DPGrimsonGMM 7,553 0,826 0,4 0,330 901 0,006 0,3 0,002 2 0,111 0,3 0,033 0,365 14

DPMean 7,327 0,871 0,4 0,349 826 0,088 0,3 0,026 1 0,000 0,3 0,000 0,375 13

DPPratiMediod 9,960 0,342 0,4 0,137 473 0,478 0,3 0,143 5 0,444 0,3 0,133 0,413 11

DPWrenGA 7,265 0,884 0,4 0,353 851 0,061 0,3 0,018 2 0,111 0,3 0,033 0,405 12

DPZivkovicAGMM 7,199 0,897 0,4 0,359 900 0,007 0,3 0,002 1 0,000 0,3 0,000 0,361 16

FrameDifference 7,255 0,886 0,4 0,354 353 0,610 0,3 0,183 1 0,000 0,3 0,000 0,537 7

LBAdaptiveSOM 7,852 0,766 0,4 0,306 38 0,958 0,3 0,287 1 0,000 0,3 0,000 0,594 3

LBFuzzyAdaptiveSOM 8,026 0,731 0,4 0,292 90 0,901 0,3 0,270 1 0,000 0,3 0,000 0,562 5

LBFuzzyGaussian 7,473 0,842 0,4 0,337 423 0,533 0,3 0,160 1 0,000 0,3 0,000 0,497 10

LBMixtureOfGaussians 7,286 0,879 0,4 0,352 0 1,000 0,3 0,300 10 1,000 0,3 0,300 0,952 1

LBSimpleGaussian 7,188 0,899 0,4 0,360 425 0,531 0,3 0,159 1 0,000 0,3 0,000 0,519 9

MultiLayer_Learn 11,660 0,000 0,4 0,000 11 0,988 0,3 0,296 1 0,000 0,3 0,000 0,296 18

StaticFrameDifference 6,686 1,000 0,4 0,400 429 0,526 0,3 0,158 1 0,000 0,3 0,000 0,558 6

T2FGMM_UM 7,805 0,775 0,4 0,310 887 0,021 0,3 0,006 1 0,000 0,3 0,000 0,316 17

T2FGMM_UV 7,544 0,828 0,4 0,331 906 0,000 0,3 0,000 2 0,111 0,3 0,033 0,364 15

WeightedMovingMean 7,373 0,862 0,4 0,345 377 0,584 0,3 0,175 1 0,000 0,3 0,000 0,520 8

Minimum 6,686 0 1

Maximum 11,660 906 10

Difference_frequency (30%)Speed (msec, 40%) Difference (nr of pixels, 30%)
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Appendix VII.  Extracted backgrounds using LBMOG 

Figure 1: Results of runs with videos showing a description of the video, an image with 
the  animal, the empty background image 

      

Video 
 

Video Image with animal Extracted background Comments 

BD1 
4:18 min; 
720 x 576; 

  

no animal at the start 
extracted background  
–  good 
 

BD2 
33.4 sec;  
352 x 288 

  

animal hardly moved 
extracted background 
– not   good 

BD3 
10:00 min; 
720 x 576 

  

lively mouse with 2 
colors 
extracted background 
– good 
 

BD4 
40:44 min; 
352 x 288 

  

lively mouse  
extracted background 
– good 
 

BD5 
2:10 min, 
720 x 576 

  

active big rat 
extracted background 
– good 
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BD6 
3:00 min 

  

big rat with 2 colors; 
stayed in  
    place 
extracted background 
–  not    good 
 

BD7 
10:03 min 

  

lively rat, second 
animal  added later; 
extracted background 
– good 
 

BD8 
5:00 min; 
352 x 288 

  

plus maze 
extracted background 
– good 
 

BD9 
10:00 min; 
352 x 288 

  

quite some light in the 
arena 
extracted background 
– good 
 

BD10 
2:09 min; 
720 x 576 

  

no animal at the start 
extracted background 
– good 
 

BD11 
8:55 min, 
352 x 288 

  

no animal at the start, 
light  turned off then 
on 
extracted background 
– good 
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BD12 
12:05 min; 
352 x 288 

  

single rat rarely in 
hidden     zone;  
no animal at start 
extracted background 
– good 
 

BD13 
9:41 min 

  

no animal at start; 
hooded  rats; 2 arenas 
extracted background 
– good 
 

BD14 
10:00 min 

  

no animal at start 
extracted background 
– good 
 

BD15 
6:02 min 

  

animal at start; zebra 
fish 
extracted background 
– good 
 

BS1 
12.03 min; 
720 x 576 

  

animal at start; grid; 
different “floor” 
lighting 
extracted background 
– good 
 

BS2 
3:14 min; 
352 x 288 

  

no animal at start; 
hooded rat 
extracted background 
– good 
 



61 
 

BS3 
1:53 min; 
720 x 576 

  

no animal at start 
extracted background 
– good 
 

BS4 
1:19 min; 
720 x 576 

  

no animal at start; 
with  reflections 
extracted background 
– good 
 

BS5 
10:00 min; 
720 x 576 

  

animal at start 
extracted background 
– good 
 

BS6 
4:60 min 

  

no animal at start; 
elevated plus maze 
extracted background 
– good 
 

BS7 
2:02 min 

  

no animal at start; 
with holes;  barnes 
maze 
extracted background 
– good 
 

BS8 
2:01 min 

  

animal at start; Y 
maze 
extracted background 
– good 
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BS9 
5:07 min; 
352 x 288 

  

animal at start; Zero 
maze with backlight 
extracted background 
– good 
 

BS10 
5:02 min 

  

animal at start; 
“sociability  maze” 
extracted background 
– good 
 

BS12 
1:03 min; 
352 x 288 

  

no animal at start; 
radial maze 
extracted background 
– good 
 

BS13 
10:04 min 

  

animal at start; hole 
board 
extracted background 
– good 
 

BS14 
10:05 min; 
352 x 288 

  

animal at start; 2 petri 
dishes 
extracted background 
– good 
 

BS15 
7:40 min; 
352 x 288 

  

no animal at start; 
water maze (small 
ripples when moved) 
extracted background 
– good 
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BS16 
1:00 min 

  

no animal at start; 
water maze (small 
ripples when moved) 
extracted background 
– good 
 

BM1 
4:35 min; 
720 x 576 

  

no animal at start; 6 
arenas, 5 filled 
extracted background 
– good 
 

BM2 
14:31 min; 
352 x 288 

  

animal at start; only 
one arena used 
extracted background 
– good 
  

BM3 
18:12 min; 
352 x 288 

  

no animal at start; 4 
boxes  rats inserted by 
user with  shadows; 
second trial after 50 
mins. 
extracted background 
– good 
 

BM4 
2:50:06 hr 

  

no animal at start; 10 
arenas,   all animal 
were in after     
10.06.44; at this time 
one or 2 did not move 
anymore 
extracted background 
– good except for 2 
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BM5 
3:00:20 hr 

  

no animal at start;  all 
animals in at 9.24.6; 
some arenas   
displaced 
extracted background 
– good except for 3 
 

BM6 
22.5 sec 

  

animals at start; 4 
arenas 
extracted background 
– good 
 

BS11 
0:30 min; 
640 x 480 

  

animals at start; well 
plate; 96 arenas filled 
with fish 
extracted background 
– good  
     
 

 
 

                    

 
                    Figure 2.  Result for 96 arenas (did not wait until all arenas were emptied).                  


