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Abstract

Homoclinic orbits to saddle fixed points of planar diffeomorphisms
generically imply complicated dynamics due to Smale Horseshoes. Such
orbits can be computed only numerically, which is time-consuming.
The aim of this project is to explore an alternative method to compute
homoclinic orbits near degenerate fixed points of codimension 2 with
a double multiplier 1. The method will be based on approximating
the map near the bifurcation by the time-1-shift along orbits of a pla-
nar ODE and evaluating the Mel’nikov function along its homoclinic
loop. Zeroes of this Mel’nikov function are intersections of the stable
and unstable manifold and will approximate the homoclinic orbit. The
main part of this project is devoted to the derivation of a prediction
for both the homoclinic orbit and the homoclinic bifurcation curve in
the case of the normal form of 1:1 resonance.
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Preface

Writing these sentences, I realize that my master’s project is almost finished.
I can look back on a good year in which I learned a lot on bifurcations,
homoclinic orbits, the Mel’nikov function and programming in Matlab.
What is contained in this Master Thesis is only a fraction of the beautiful
things I have seen in the past year — of course, the most important part.
I invite you to go through my work and to see what I have seen. But let’s
first introduce the main subject and the process.

Introduction to the subject As one may, or may not, know, the sta-
ble and unstable manifolds of a hyperbolic saddle of a map can have very
complex behaviour, including infinitely many intersections (see section 1.2).
In some cases, such behaviour can also show up for non-hyperbolic saddles,
for example, in the case of the normal form of 1:1 resonance. Arrowsmith
et al. [1] have described the dynamics of a map with similar behaviour,
the Bogdanov map. In this useful article they look at the development of
invariant circles near a homoclinic tangle.

With MatCont — a continuation and bifurcation toolbox for Matlab
— it is possible to compute the stable and unstable manifolds to the saddle
of a chosen map, locate their intersection points and subsequently continue
to find the whole region for which these intersections are present. This,
however, requires a lot of (human) effort.

Some work to improve on this method, is already done by Chávez by
starting the continuation of tangential homoclinic orbits near 1:1 resonances
using a center manifold reduction and flow approximation [3]. His method is
not completely satisfying, since he has to make an initial guess of an intersec-
tion point to start his method. One has to be lucky to choose a point which
is good enough to get useful results out of the process. Moreover, the work
of Chávez contains errors inherited from earlier publications and related to
the prediction in the parameter space. In this project I investigate a way
to obtain such initial points in a correct and efficient way. For that purpose
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I make use of the so-called Mel’nikov function, which gives a prediction for
the location of the intersection points of the stable and unstable manifolds
of a certain map (see section 1.3) and thus providing us with a good initial
guess to start the continuation with.

First of all, I test the Mel’nikov function on the McMillan map, which
is well-known for having transversal intersections. The resulting prediction
of the intersection points is superb for this map and very promising (see
section 2.2).

To apply the Mel’nikov function to the normal form of 1:1 resonance,
some more work has to be done, because the corresponding flow does not
posses a Hamiltonian part, nor is the solution of the homoclinic orbit known
explicitly. Its approximating ODE is already calculated by Kuznetsov [8].
Using more Picard iterations I have improved his result. These Picard itera-
tions also provide the flow of this system, which turns out to be very close to
the original map. The next step — and this is one of the main parts of my
project — is to find beforehand an accurate expression for the homoclinic
orbit of the ODE. For this, I make use of the method of center manifold re-
duction as given in [9]. This method relates the approximating ODE of the
normal form of 1:1 resonance to the normal form of the Bogdanov-Takens
bifurcation. The result is a good prediction of the homoclinic orbit and the
homoclinic bifurcation curve for the 1:1 resonance case, which are needed
to compute the Mel’nikov function. Since I have gone through all the cal-
culations in that specific article independently, I give a summary of it and
details of some of the derivations in Appendix A.

As a final step, I actually compute the Mel’nikov function for the de-
scribed situation with small values of ε, the perturbation parameter. How-
ever, there are still open questions on this part, which can be investigated
in further research. For example, by numerically computing the invariant
manifolds of the saddle for values of parameters near the bifurcation point
of 1:1 resonance I am not able to see transversal intersections of these man-
ifolds and therefore I cannot really check if the outcome of the Mel’nikov
function indeed gives a valuable result to start the continuation with. Sec-
ondly, the Mel’nikov function for this map does not show — as it does for the
McMillan map — a kind of vertical translation when I modify only one pa-
rameter in order to obtain tangencies instead of intersections. Furthermore,
one can wonder what the outcome of the Mel’nikov function means in this
case. Having solved these problems, it remains to implement this method in
numerical software, which gives the opportunity to continue directly from
its results for a given system.

During this research I also obtained a transformation of a general system,
which satisfies the Bogdanov-Takens conditions, to a specific form of the
Bogdanov-Takens normal form. This transformation has not been performed
explicitly anywhere in the literature. Its result is used further to derive a
system which has a Hamiltonian part with a perturbation part added. This
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specific form turns out to be particularly useful when it is related to the
approximating ODE for the normal form of 1:1 resonance.
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1
Theory

1.1 Introduction to Dynamical Systems

Mathematics can be viewed in some sense as an idealistic branch of science:
reality is represented in such a simplified form that mathematical analysis is
possible, equations can be solved and something can be proven. There are
many other sciences — as physics, biology, economics and even social science
— where one uses mathematical models of a real phenomenon on the basis
of data. With such simplifications one can trace back in the past or looking
forward in the future how the real configuration will behave approximately
by knowing its present state, assuming that its laws wouldn’t change in
time. Preferably, such a model of a real situation has known or even exact
solutions. But, in this respect, reality and its models are far from ideal:
results in accordance with practice almost never have such nice properties.

Therefore, it is necessary to make approximations or to look at only part
of a system, that is, its local or global behaviour. To reduce further, one
can look at the interesting parameters only and keep the other parameters
fixed. This can give the opportunity to determine and analyse for each
point of the system its possible states and evolution in time, under certain
(initial) conditions and restricted to a suitable subarea. Loosely speaking,
this describes the notion of a dynamical system: it consists of the set of all
possible states, a certain range of time and specified laws, describing the
behaviour in time and space.

Depending on the situation, time can be viewed in two ways, namely

1. as continuous with t ∈ R. That is how we often perceive reality: as
a fluently and permanently changing world. Systems with continuous
time are most often defined by differential equations, depending on n
spatial variables and m parameters,

ẋ = f(x, α), x ∈ Rn, α ∈ Rm. (1.1)

1



1.2 Bifurcations 2

2. as discrete with t ∈ Z. Such a system changes step-by-step, each
new time it is in a (possibly) new state. Such systems occur often in
statistics or economics and can be viewed as taking measurements one
time in a hour or year. In general a discrete-time dynamical system is
a map f , sufficiently smooth in its n coordinates and m parameters,

x 7→ f(x, α), x ∈ Rn, α ∈ Rm, (1.2)

describing the behaviour of the system in time as a discrete sequence
{f t(x, α), t ∈ Z} = {. . . , f−2(x, α), f−1(x, α), x, f(x, α), f2(x, α), . . .},
(assuming the invertibility of f).

In this thesis we restrict ourselves to systems with only two coordinates
(i.e. planar maps) and two parameters — that is to say, there can be more
parameters but they are kept fixed during the research.

Given a general system, its behaviour is determined by specifying an
initial state and the values of the parameters. Once we know these, we can
investigate how the system will evolve when time is running (either to the
past or the future). Doing this, one will find orbits (trajectories of points,
defined by the dynamics), equilibria or fixed points, cycles (periodic orbits),
and other sets invariant under f . To make the behaviour clear, it is helpful
to determine for each invariant set its stability, that is to say whether it is
attracting or repelling nearby orbits. All interesting orbits of a dynamical
system are combined in a phase portrait. In order to be able to predict
accurate things after a long time, one might need to enlarge the area of
consideration or to improve the model.

In many cases it is very interesting to know what the effect is of changing
the values of (some of the) parameters. This can influence the behaviour
not only in time but also on a local or global scale of the system. This
phenomenon is described in the next section.

1.2 Bifurcations

Indeed, varying the parameters can cause a sudden change in the local or
global behaviour of the system. Two equilibria, for example, can collide and
disappear. Loosely speaking, such a change is called a bifurcation. In formal
language one would say that a bifurcation is the appearance of a topolog-
ically nonequivalent phase portrait under variation of parameters, see [8].
Such a change of topology occurs as the parameters pass through bifurcation
(critical) values. Topologically equivalent situations can be transformed into
each other via a homeomorphism: a continuous, invertible map such that
the inverse is also continuous.

Such a bifurcation can be described by specifying a phase object (e.g.
equilibrium or cycle) and one or more bifurcation conditions, equations that
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describe a smooth submanifold in the parameter space Rm, at which the
change in the dynamics takes place. The number of independent bifurca-
tion conditions is called the codimension of the bifurcation, which — as it
indicates — depends on the dimension of the parameter space. For each
bifurcation that can happen in some system, one can make a bifurcation
diagram by visualising the bifurcation conditions in the parameter space as
smooth submanifolds — that is as points, curves, surfaces, etc. —, together
with the characteristic phase portraits. If these submanifolds divide the pa-
rameter space in several regions, then the system should have topologically
equivalent phase portraits at each point of a separate region. So, if the bi-
furcation diagram of a system is known, then it is easy to determine which
behaviour and behaviour changes can happen at which point.

It might be difficult to draw the phase portrait or bifurcation diagram for
a general system immediately by hand. For most of the standard bifurcations
there is a simple system, called topological normal form, which exhibits that
particular bifurcation at or near the origin with parameters equal to zero.
If we can show that a generic system (1.1) or (1.2) is locally topologically
equivalent to this normal form, then such a system will exhibit the same
bifurcation with (topologically) the same local bifurcation diagram. Often,
there are some conditions that need to be fulfilled before we can speak about
a ‘generic’ system. We can distinguish them in nondegeneracy conditions,
stating that the critical equilibrium is not too degenerate, and transversality
conditions, which guarantee that this equilibrium is ‘unfolded’ in a generic
way.

In the following we discuss three bifurcations that are relevant for this
study, which mainly concerns the normal form of 1:1 resonance:

1. First of all, the Bogdanov-Takens bifurcation of codimension 2, since
its normal form is closely related to the approximating flow of the
normal form of 1:1 resonance.

2. Secondly, we shortly introduce the codimension 1 Neimark-Sacker bi-
furcation to make the conditions we meet in the case of 1:1 resonance
more clear.

3. And then, as third one, we describe the important case: the codimen-
sion 2 bifurcation of 1:1 resonance, which is a bifurcation related to
the Neimark-Sacker bifurcation.

For other possible bifurcations one can have a look at [8] for a list and a
description of them.

1.2.1 Bogdanov-Takens bifurcation

Consider a continuous-time system (1.1) with n = m = 2, and suppose that
it has at (x, α) = (0, 0) an equilibrium with two zero eigenvalues for which
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the Jacobian matrix A = fx(0, 0) 6= 0. This is the so-called Bogdanov-Takens
condition. The following consideration is preliminary to the derivation of the
corresponding normal form, see [8].

At α = 0 we can write the system as

ẋ = Ax+ f̂(x),

where f̂(x) = f(x, 0) − Ax, a smooth function of second order in x. The
Jacobian A is a matrix satisfying trA = detA = 0. There exist two real,
linearly independent vectors q1,2 ∈ R2, such that

Aq1 = 0, Aq2 = q1.

Note that q1 is an eigenvector of A, while the vector q2 is called a generalized
eigenvector corresponding to the eigenvalue 0. Similarly, let p1,2 ∈ R2 be
the adjoint eigenvectors of the transposed matrix AT , given by

AT p2 = 0, AT p1 = p2.

Choose these eigenvectors such that they also satisfy

〈q1, p1〉 = 〈q2, p2〉 = 1,

〈q2, p1〉 = 〈q1, p2〉 = 0,

using the standard inner product.
Take q1,2 as the basis for the plane of the system, then each vector x ∈ R2

gets a unique representation

x = y1q1 + y2q2,

for real numbers y1,2 = 〈p1,2, x〉. Rewrite system (1.1) in the new coordinates
(y1, y2) to obtain for small α the general form{

ẏ1 = 〈p1, f(y1q1 + y2q2, α)〉,
ẏ2 = 〈p2, f(y1q1 + y2q2, α)〉.

(1.3)

Notice that the matrix A for this system at α = 0 is given by

A =

(
0 1
0 0

)
,

which is the form of the zero Jordan block.
The Taylor expansion of the right-hand side of (1.3) with respect to y

at y = 0 reads{
ẏ1 = a00 + a10y1 + a01y2 + a20y

2
1 + a11y1y2 + a02y

2
2 +O(‖y‖3),

ẏ2 = b00 + b10y1 + b01y2 + b20y
2
1 + b11y1y2 + b02y

2
2 +O(‖y‖3),

(1.4)
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with akl, bkl smooth functions in α, satisfying a00(0) = a10(0) = b00(0) =
b10(0) = b01(0) = 0 and a01(0) = 1. This system can be turned via certain
smooth transformations into a much simpler form: the Bogdanov-Takens
(BT) normal form. Actually, there are two popular forms: one of them,
where the y1-term survives in the ẏ2-part, is also described by Kuznetsov [8];
the other, where the y2-term survives, is not done explicitly anywhere. We
discuss the last one first, since we will use it frequently in this project.

Transformation to BT normal form

In this section we transform system (1.4) into a system which has a Hamilto-
nian part with a perturbation part proportional to ε added. First, we bring
a general system with unknown coefficients and satisfying certain condi-
tions into the Bogdanov-Takens normal form with the y2-term in the second
equation.

Lemma 1. Consider the smooth planar system

ξ̇ = F (ν, ξ) = F0(ν) + F1(ν, ξ) + F2(ν, ξ), ξ ∈ R2, ν ∈ R2, (1.5)

with each function Fk defined by

F0(ν) =

(
a00(ν)

b00(ν)

)
,

F1(ν, ξ) =

(
a10(ν)ξ1 + a01(ν)ξ2

b10(ν)ξ1 + b01(ν)ξ2

)
,

F2(ν, ξ) =

(
a20(ν)ξ2

1 + a11(ν)ξ1ξ2 + a02(ν)ξ2
2

b20(ν)ξ2
1 + b11(ν)ξ1ξ2 + b02(ν)ξ2

2

)
.

The coefficients akl(ν), bkl(ν) are smooth functions of ν and satisfy

a00(0) = a10(0) = b00(0) = b10(0) = b01(0) = 0.

Assume that the following conditions hold

a01(0) 6= 0, (1.6a)

b20(0) 6= 0, (1.6b)

b11(0) 6= 0, (1.6c)

the map (ν, ξ) 7→
(
F (ν, ξ), tr

(
∂F (ν, ξ)

∂ξ

)
, det

(
∂F (ν, ξ)

∂ξ

))
(1.6d)

is regular at (ν, ξ) = (0, 0).

Then there are smooth invertible variable transformations, smoothly depend-
ing on the parameters, smooth invertible parameter changes and direction-
preserving time reparametrisations, reducing (1.5) to the two-parameter Bog-
danov-Takens normal form{

η̇1 = η2,

η̇2 = β1 + β2η2 + η2
1 + sη1η2 +O(‖η‖3),

(1.7)
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where s = sign (a01(0)b20(0)b11(0)) = ±1.

Proof. The proof is subdivided into four steps.

Step 1 First, introduce new variables (u1, u2), using (1.5), as follows:

u1 = ξ1,

u2 = ξ̇1 = a00 + a10ξ1 + a01ξ2 + a20ξ
2
1 + a11ξ1ξ2 + a02ξ

2
2 .

This reduces (1.5) to a nonlinear oscillator, written as
u̇1 = u2,

u̇2 = f00(ν) + f10(ν)u1 + f01(ν)u2

+ f20(ν)u2
1 + f11(ν)u1u2 + f02(ν)u2

2 +O(‖u‖3),

where the functions fkl, smoothly depending on ν, are defined by

f00 = b00 + a00
a301

(
a00a01b02 − (a2

01 + a00a02)b01

)
;

f10 = b10 + 1
a301

(
a00a01(a11b01 + 2a10b02)− 2a00a10a02b01

− a2
01(a10b01 + a00b11)

)
;

f01 = 1
a301

(
a2

01b01 + 2a00a02b01 − 2a00a01b02

)
;

f20 = b20 + 1
a301

(
a01(a10a11b01 − a01a20b01 + a2

10b02 − a10a01b11)− a2
10a02b01

)
;

f11 = 1
a301

(
2a10a02b01 + a01(a01b11 − 2a10b02 − a11b01)

)
;

f02 = 1
a301

(
a01b02 − a02b01

)
,

using condition (1.6a). Note that we have at ν = 0, f00(0) = f10(0) =

f01(0) = 0 and f20(0) = b20(0), f11(0) = b11(0)
a01(0) , f02(0) = b02(0)

a201(0)
.

Step 2 Next, change the time t into the new time τ , via

dt = (1 + ϑ(ν)u1)dτ, (1.8)

where ϑ(ν) is some smooth function of ν which we define later on. This time
reparametrisation preserves the direction of time in the neighbourhood of
the origin for small ‖ν‖. It yields the system

u̇1 = d
dτ u1 = d

dtu1
dt
dτ = u2(1 + ϑu1),

u̇2 = d
dτ u2 = d

dtu2
dt
dτ = f00 + (f10 + ϑf00)u1 + f01u2

+ (f20 + ϑf10)u2
1 + (f11 + ϑf01)u1u2 + f02u

2
2 +O(‖u‖3).

Since we want only the u2-term in the expression for u̇1, we transform the
system again like in step 1:

v1 = u1,

v2 = u̇1 = u2(1 + ϑu1).
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In these new coordinates the system becomes{
v̇1 = v2,

v̇2 = g00 + g10v1 + g01v2 + g20v
2
1 + g11v1v2 + g02v

2
2 +O(‖v‖3),

(1.9)

with the functions gkl, smoothly depending on ν, defined by

g00(ν) = f00(ν);

g10(ν) = f10(ν) + 2ϑ(ν)f00(ν);

g01(ν) = f01(ν);

g20(ν) = f20(ν) + 2ϑ(ν)f10(ν);

g11(ν) = f11(ν) + ϑ(ν)f01(ν);

g02(ν) = f02(ν) + ϑ(ν).

We are now ready to eliminate g02, the term proportional to v2
2, by defining

ϑ as

ϑ(ν) = −f02(ν),

which makes the time reparametrisation (1.8) explicit. The other functions
involving ϑ are now defined as

g10 = f10 − 2f00f02;

g20 = f20 − 2f10f02;

g11 = f11 − f01f02.

For completeness, we point out that g00(0) = g10(0) = g01(0) = 0, g20(0) =
f20(0) and g11(0) = f11(0).

Step 3 Change the coordinates in the v1-direction by the following para-
meter-dependent shift,

v1 = w1 + δ(ν),

v2 = w2.

The system (1.9) then takes the form

ẇ1 = w2,

ẇ2 = g00 + g10(w1 + δ) + g01w2

+ g20(w1 + δ)2 + g11(w1 + δ)w2 +O(‖w‖3)

=
(
g00 + g10δ + g20δ

2 +O(δ3)
)

+
(
g10 + 2g20δ +O(δ2)

)
w1

+
(
g01 + g11δ +O(δ2)

)
w2 +

(
g20 +O(δ)

)
w2

1

+
(
g11 +O(δ)

)
w1w2 +O(‖w‖3).

(1.10)
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In order to eliminate the term proportional to w1, we have to find a suitable
definition of δ(ν) such that h10(ν) := g10 +2g20δ+O(δ2) becomes equal to 0.
To achieve this, we make the assumption that g20(0) = f20(0) = b20(0) 6= 0,
which is precisely condition (1.6b). The Implicit Function Theorem then
guarantees the local existence of a smooth function δ(ν), which is for small
ν approximately equal to

δ(ν) ≈ − g10(ν)

2g20(0)
.

With this definition of δ the system becomes{
ẇ1 = w2,

ẇ2 = h00(ν) + h01(ν)w2 + h20(ν)w2
1 + h11(ν)w1w2 +O(‖w‖3),

(1.11)

with the functions hkl(ν) smoothly defined in accordance with (1.10), as

h00(ν) = g00(ν)− g210(ν)
2g20(0) +O(δ2);

h01(ν) = g01(ν)− g11(ν) g10(ν)
2g20(0) +O(δ2);

h20(ν) = g20(ν) +O(δ);

h11(ν) = g11(ν) +O(δ).

Note that we have h00(0) = h01(0) = 0, h20(0) = g20(0) and h11(0) = g11(0),
as one can easily check.

Step 4 In the last step we scale the coefficients of (1.11) to appropriate
forms and set the surviving ones as new parameters. Beforehand, introduce
the simpler notation A(ν) = h20(ν) and B(ν) = h11(ν) and assume that
b11(0) 6= 0, which is condition (1.6c). This and the conditions (1.6a) and

(1.6b) guarantee that A(0) = h20(0) = g20(0) = f20(0) = b20(0)
a201(0)

6= 0 and

B(0) = h11(0) = g11(0) = f11(0) = b11(0) 6= 0.
First, we rescale the time τ — and call it t again — by

t =

∣∣∣∣A(ν)

B(ν)

∣∣∣∣ τ.
This rescaling is now well-defined. Secondly, declare the new variables η1

and η2, by stating

η1 =
B2(ν)

A(ν)
w1,

η2 = sign

(
A(ν)

B(ν)

)
B3(ν)

A2(ν)
w2.
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These three rescalings transform the system into the simple form{
η̇1 = η2,

η̇2 = β1(ν) + β2(ν)η2 + η2
1 + sη1η2 +O(‖η‖3),

with

s = sign

(
A(0)

B(0)

)
,

β1(ν) =
B4(ν)

A3(ν)
h00(ν),

β2(ν) =
sB(ν)

A(ν)
h01(ν).

The coefficients βj both satisfy β1(0) = β2(0) = 0. In order to get a system
depending only on the parameters β instead of ν, we have to assume that β
as function of ν is regular at ν = 0:

det

(
∂β

∂ν

)∣∣∣∣
ν=0

6= 0.

This condition is equivalent to our fourth condition (1.6c), saying that the
map

(ν, ξ) 7→
(
F (ν, ξ), tr

(
∂F (ν, ξ)

∂ξ

)
,det

(
∂F (ν, ξ)

∂ξ

))
,

is regular at (ν, ξ) = (0, 0), which in turn implies that the determinant of
the Jacobian matrix does not vanish.

Hence, we can define our system in terms of the parameters β1,2 and s,
and thus derive the desired form of the Bogdanov-Takens normal form{

η̇1 = η2,

η̇2 = β1 + β2η2 + η2
1 + sη1η2 +O(‖η‖3),

(1.12)

where s = sign (A(0) ·B(0)) = sign (a01(0)b20(0)b11(0)).

Derivation of a Hamiltonian normal form

Our next goal is to rescale system (1.12) such that it gets the form of a
Hamiltonian part with some perturbation terms added. This transforma-
tion, done previously by Guckenheimer and Holmes [5], is the aim of the
following lemma.

Lemma 2. The smooth planar system, depending on two parameters,{
η̇1 = η2,

η̇2 = β1 + β2η2 + η2
1 ± η1η2 +O(‖η‖3),

(1.13)
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can be transformed, using a singular rescaling, into the three parameter pla-
nar system{

ζ̇1 = ζ2,

ζ̇2 = γ1 + εγ2ζ2 + ζ2
1 ± εζ1ζ2 +O(‖ζ‖3).

Proof. Let ε > 0 be small. Then the transformation is performed by rescal-
ing the time t to s = εt and setting

η1 = ε2ζ1;

η2 = ε3ζ2;

β1 = ε4γ1;

β2 = ε2γ2.

These changes brings (1.13) into a system with (η1, η2)-coordinates,

d
dsζ1 = d

dtζ1
dt
ds = 1

ε2·ε η̇1 = 1
ε2·εη2 = 1

ε2·εε
3ζ2 = ζ2,

d
dsζ2 = d

dtζ2
dt
ds = 1

ε3·ε η̇2

= 1
ε4

(
ε4γ1 + ε2γ2 · ε3ζ2 + ε4ζ2

1 ± ε2η1 · ε3ζ2 + ε6O(‖ζ‖3)
)

= γ1 + εγ2ζ2 + ζ2
1 ± εζ1ζ2 + ε2O(‖ζ‖3).

The coefficients γ1,2 and ε are the new parameters.

Theorem 3. Consider a smooth planar system

ẋ = f(x, α), x ∈ R2, α ∈ R2, (1.14)

with a double zero eigenvalue λ1,2 = 0 for α = 0 at the equilibrium x = 0 and
assume that A(0) = fx(0, 0) 6= 0. Then system (1.14) can be transformed
into system (1.4), with akl, bkl smooth functions in α, satisfying a00(0) =
a10(0) = b00(0) = b10(0) = b01(0) = 0 and a01(0) = 1.

Suppose that the following conditions hold:

a01(0) 6= 0, (1.15a)

b20(0) 6= 0, (1.15b)

b11(0) 6= 0, (1.15c)

the map (x, α) 7→
(
f(x, α), tr

(
∂f(x, α)

∂x

)
,det

(
∂f(x, α)

∂x

))
(1.15d)

is regular at (x, α) = (0, 0).

Then (1.14) can be reduced via smooth invertible variable transformations,
smoothly depending on the parameters, direction-preserving time reparametri-
sations, smooth invertible parameter changes and a singular rescaling to the
system{

u̇ = v,

v̇ = γ1 + εγ2v + u2 + sεuv + ε2O(‖u, v‖3),
(1.16)

with s = sign (a01(0)b20(0)b11(0)) = ±1.
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Proof. The proof is constituted by subsequently applying the lemmas 1
and 2. The new independent parameters are γ1,2 and a small perturbation-
parameter ε. The expression for s is obtained by substituting the needed
coefficients in the formula given in lemma 1.

The right-hand-side of system (1.16) can be written in the form(
u̇

v̇

)
= G1(u, v) + εG2(u, v) + ε2O(‖u, v‖3), ε ∈ R,

with G1,2 : R2 → R2 defined by

G1(u, v) =

(
v

γ1 + u2

)
,

G2(u, v) =

(
0

γ2v ± uv

)
.

If we now let ε→ 0,then only G1 survives, which actually provides us with
an integrable Hamiltonian system with Hamiltonian

H(u, v) = −γ1u+ 1
2v

2 − 1
3u

3.

Its equations of motion form the system
u̇ =

∂H

∂v
= v,

v̇ = −∂H
∂u

= γ1 + u2.

(1.17)

Choosing γ1 = −4 gives the phase portrait in figure 1.1. At the fixed points
(±
√
−γ1, 0) = (±2, 0) the Hamiltonian has the values H(±2, 0) = ±51

3 . The
left part of the level curve for this value is homoclinic to the saddle (2, 0),
described by

(u0(t), v0(t)) =
(
2− 6 sech2(t), 12 sech2(t) tanh(t)

)
. (1.18)

This useful expression is used later on to obtain an approximation of the
homoclinic orbit for the general system with ε 6= 0.
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-4 -2 2
u

v

Figure 1.1: The phase portrait of (1.17) with γ1 = −4. The blue level curve is the
saddle connection with value H(u, v) = 5 1

3 and is explicitly given by (1.18). The
indicated points are the intersections of the level curves H = ±5 1

3 with the u-axis.

Transformation to BT normal form II

Theorem 4. Consider a smooth planar system

ẋ = f(x, α), x ∈ R2, α ∈ R2, (1.19)

with a double zero eigenvalue λ1,2 = 0 for α = 0 at the equilibrium x = 0 and
assume that A(0) = fx(0, 0) 6= 0. Then system (1.19) can be transformed
into system (1.4), with coefficients akl(α), bkl(α) smooth in α and satisfying
a00(0) = a10(0) = b00(0) = b10(0) = b01(0) = 0 and a01(0) = 1.

Assume furthermore that the following conditions hold,

a20(0) + b11(0) 6= 0, (1.20a)

b20(0) 6= 0, (1.20b)

the map (x, α) 7→
(
f(x, α), tr

(
∂f(x, α)

∂x

)
, det

(
∂f(x, α)

∂x

))
(1.20c)

is regular at (x,α) = (0, 0).

Then there are smooth invertible variable transformations, smoothly depend-
ing on its parameters, smooth invertible parameter changes and direction-
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preserving time reparametrisations, reducing (1.19) to the two-parameter
Bogdanov-Takens normal form{

η̇1 = η2,

η̇2 = β1 + β2η1 + η2
1 + sη1η2 +O(‖η‖3),

(1.21)

where s = sign (b20(0)(a20(0) + b11(0))) = ±1.

Proof. The first transformation of (1.19) into the form with the Taylor
series (1.4) is already shown above. The further transformation to the
Bogdanov-Takens normal form can be done in an almost similar way as
we transformed the same system to the slightly different normal form (1.7).
The transformation is obtained by repeating the procedure described for
Lemma 1, while interchanging step 2 and 3 and taking some other suitable
(and obvious) choices for δ(α), ϑ(α) and for the new variables.

Observe that system (1.21) also has a Hamiltonian part. The solution to
this Hamiltonian system is less known in the literature, however. For exam-
ple, Guckenheimer & Holmes [5], Beyn [2] and Kuznetsov et al. [9] all use
the formulation (1.7) of the Bogdanov-Takens normal form. We follow the
same method as in the last paper to obtain an expression for the homoclinic
orbit in the case of 1:1 resonance; see section 2.3.3 and Appendix A.

T
+

2

4

1

3 2

T
+

β 2

T-

1

P

0
β

H

,H3

1
4

T-P

0

Figure 1.2: Bifurcation diagram for the Bogdanov-Takens normal form (1.21)
with s = −1.
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The bifurcation diagram of the normal form (1.21) for s = −1 and with-
out the higher order terms, is shown in figure 1.2. The system has at most
two equilibria at η2 = 0 with η1 a solution of β1 + β2η1 + η2

1 = 0. At the
parabola T , given by 4β1 = β2

2 , the two equilibria collide into one non-
hyperbolic equilibrium with eigenvalue zero. Indeed, at the left side of this
line there are two equilibria, a saddle and a node, which collide at T and
thus leading to a fold bifurcation.

The line H = {(β1, β2) : β1 = 0, β2 < 0} gives rise to equilibria with
purely complex eigenvalues λ1,2 = ±iω. This is a nondegenerate Hopf bifur-
cation: crossing the line from right to left yields a stable limit cycle.

The most important curve for our purposes is the one denoted by P ,
locally given by β1 = − 6

25β
2
2 + O(β2

2) for β2 < 0. This line corresponds
to a saddle-homoclinic bifurcation, i.e. for small parameter values on this
line we will find an orbit homoclinic to the saddle equilibrium, i.e. an orbit
that is asymptotic to the same equilibrium as t → ∞ and t → −∞. The
appearance of the homoclinic orbit, which is a global change, can be checked
by a blow-up of the normal form (1.21) and using a split function (see for
example [8]). We will meet this curve again by looking at the normal form
of 1:1 resonance, but in that case it will become a narrow region wherein
homoclinic structures arise.

The case s = +1 can be studied similarly, by substituting t 7→ −t and
η2 7→ −η2 into (1.21). Thus, the parametric portrait remains the same,
except for the cycle, which becomes unstable near the Bogdanov-Takens
bifurcation.

1.2.2 Neimark-Sacker bifurcation

Consider a discrete-time system (1.2), with n = 2, m = 1. The system
undergoes a Neimark-Sacker bifurcation if, for sufficiently small |α|, there
exists for the fixed point x = 0 a pair of complex-conjugate eigenvalues
(called multipliers in this case) crossing the unit circle: λ1,2(α) = r(α)e±iϕ(α)

with r(0) = 1 and ϕ(0) = ϑ0, satisfying µ1,2 = e±iϑ0 , 0 < ϑ0 < π at α =
0. Suppose that a transversality condition and a nondegeneracy condition
holds. To wit:

r′(0) 6= 0, (1.22a)

eikϑ0 6= 1 for k = 1, 2, 3, 4. (1.22b)

Then, it can be proven that any such system exhibiting the Neimark-Sacker
bifurcation can be transformed smoothly into the form(
y1

y2

)
7→ (1 + β)

(
cosϑ(β) − sinϑ(β)
sinϑ(β) cosϑ(β)

)(
y1

y2

)
(1.23)

+ (y2
1 + y2

2)

(
cosϑ(β) − sinϑ(β)
sinϑ(β) cosϑ(β)

)(
d(β) −b(β)
b(β) d(β)

)(
y1

y2

)
+O(‖y‖4),
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where ϑ(0) = ϑ0, see [8]. We can rewrite this system (1.23) in complex
notation as

z 7→ zeiϑ0(1 + d1|z|2) +O(|z|4),

where d1(β) = d(β) + ib(β) ∈ C1. For a generic system to have Neimark-
Sacker bifurcation we need the conditions in (1.22) and the extra nondegen-
eracy condition

d(0) = Re d1(0) 6= 0.

If a generic discrete system satisfies the properties and conditions de-
scribed above, then there is a neighbourhood of x0 in which a unique closed
invariant curve originates from the fixed point as α passes the bifurcation
value 0. Depending on the sign of d at zero, the closed invariant curve is
either stable (d(0) < 0, supercritical, see figure 1.3) or unstable (d(0) > 0,
subcritical).

x
2

x
2

x
2

x
1

α = 0

x
1

x
1

α > 0α < 0

Figure 1.3: Phase portraits for the supercritical Neimark-Sacker bifurcation.

Note that the system (1.23) includes the higher order terms O(‖y‖4). If
we truncate at order three (leaving out all terms of order four and higher), we
end up with a system which is in general not locally topologically equivalent.
Therefore, we cannot simply remove these higher order terms in order to
obtain a topological normal form for the Neimark-Sacker bifurcation, they do
affect the bifurcation behaviour of the system. Nevertheless, some important
features remain, such as the bifurcation of the locally unique invariant curve
from the origin with the same direction and stability as in the system without
the O(‖y‖4)-terms.
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1.2.3 Resonance 1:1

Condition (1.22b) actually forms the connection with the codimension 2
bifurcation cases of 1:k resonance, k = 1, 2, 3, 4. To have such a bifurcation
for k = 1, 2, 3, 4, by definition this condition is violated. Indeed, in the case
of 1:1 resonance there is a double eigenvalue

λ1,2(α0) = e±ikϑ0 = 1, (1.24)

with k = 1, ϑ0 = 0. Such a codim 2 bifurcation can be located on the codim 1
curve of the Neimark-Sacker bifurcation (in a two-parameter-space) exactly
at the point where (1.24) holds. (See for example figure 2.29 for the case of
the normal form of 1:1 resonance.)

In a generic situation of 1:1 resonance, we consider a smooth map (1.2)
with n = m = 2 which has at α0 = 0 a fixed point x = 0 (arrange this by
a smooth translation) with a double unit multiplier λ1,2 = 1. Assume that
the generalized and adjoint eigenvectors q1,2 and p1,2 of the Jacobian matrix
A = fx(0, 0) 6= 0 and its inverse AT , respectively, satisfy

Aq1 = q1, Aq2 = q1 + q2,

AT p2 = p2, AT p1 = p1 + p2,

〈q1, p1〉 = 〈q2, p2〉 = 1,

〈q2, p1〉 = 〈q1, p2〉 = 0,

using the standard inner product. Then we can use a similar reasoning as in
the Bogdanov-Takens case (cf. section 1.2.1) to expand the right-hand-side
of a generic map with the given properties as a Taylor series with respect
to y at y = 0, up to and including second order. We arrive then at the
expansion

y1 7→ y1 + y2 + c00 + c10y1 + c01y2

+ c20y
2
1 + c11y1y2 + c02y

2
2 +O(‖y‖3),

y2 7→ y2 + d00 + d10y1 + d01y2

+ d20y
2
1 + d11y1y2 + d02y

2
2 +O(‖y‖3),

(1.25)

where the general coefficients ckl, dkl smoothly depend on α and satisfy
c00(0) = c10(0) = c01(0) = d00(0) = d10(0) = d01(0) = 0. These coefficients
can be computed directly from the original map f and the generalized and
adjoint eigenvectors q1,2 and p1,2, by

ckl(α) =
∂k+l

∂ky1∂ly2

∣∣∣∣
y=0

〈p1, f(y1q1 + y2q2, α)〉,

dkl(α) =
∂k+l

∂ky1∂ly2

∣∣∣∣
y=0

〈p2, f(y1q1 + y2q2, α)〉.
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In this situation the Jacobian matrix A gets the particular form

A =

(
1 1
0 1

)
,

a Jordan block of order 2.
One can prove (see [8]) that system (1.25) can be transformed under

certain conditions into the normal form map.

Theorem 5. Consider the expansion in (1.25) and suppose that the follow-
ing conditions hold

d20(0) 6= 0; (1.26a)

det

(
∂ν

∂α

)∣∣∣∣
α=0

6= 0. (1.26b)

Then, for sufficiently small ‖α‖, there are smooth invertible transformations
that transform (1.25) into the normal form of 1:1 resonance:

N(ν, ·) :

(
ξ1

ξ2

)
7→
(

ξ1 + ξ2

ξ2 + ν1 + ν2ξ2 +B1(ν)ξ2
1 +B2(ν)ξ1ξ2

)
+O(‖ξ‖3),(1.27)

for smooth functions B1(ν) and B2(ν) and satisfy

B1(0) = a0 := 1
2d20(0), B2(0) = b0 := c20(0) + d11(0).

The first condition is a nondegeneracy condition, while the second guar-
antees that, for small ‖ν‖, we may use ν as the new parameter via the
Inverse Function Theorem, such that α(ν = 0) = 0.

We want to approximate the map (1.27) by the unit-time shift ϕ1 of a
flow ϕt corresponding to a certain system of autonomous differential equa-
tions. For sufficiently small ‖ν‖ the following map represents the normal
form (1.27):

N(ν, ξ) = ϕ1(ν, ξ) +O(‖ν‖2) +O(‖ξ‖2‖ν‖) +O(‖ξ‖3).

The flow ϕt(ν, ·) here is obtained from the smooth planar system

ξ̇ = F (ν, ξ) = F0(ν) + F1(ν, ξ) + F2(ξ), ξ ∈ R2, ν ∈ R2, (1.28)

with each function Fk defined by

F0(ν) =

(−1
2ν1 + 1

20(−a0 + 2b0)ν2
1 + 1

3ν1ν2

ν1 + 1
60(2a0 − 5b0)ν2

1 − 1
2ν1ν2

)
,

F1(ν, ξ) =

(
ξ2 +

(
−1

2a0 + 1
3b0
)
ν1ξ1 +

((
1
5a0 − 5

12b0
)
ν1 − 1

2ν2

)
ξ2(

2
3a0 − 1

2b0
)
ν1ξ1 +

( (
−1

6a0 + 1
2b0
)
ν1 + ν2

)
ξ2

)
,
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F2(ξ) =

(−1
2a0ξ

2
1 +

(
2
3a0 − 1

2b0
)
ξ1ξ2 +

(
−1

6a0 + 1
3b0
)
ξ2

2

a0ξ2
1 + (−a0 + b0)ξ1ξ2 +

(
1
6a0 − 1

2b0
)
ξ2

2

)
.

This system is obtained using Picard iterations to find the unknown co-
efficients up to the desired order (see section 1.4). We compute this flow
up to the given order in section 2.3.2, which yields a unit-time shift that
approximates the normal form well.

Under the additional nondegeneracy condition for the map (1.25),

c20(0) + d11(0)− d20(0) 6= 0, (1.29)

we can apply Theorem 4 to the approximating ODE (1.28) to show that it is
locally topologically equivalent to the Bogdanov-Takens normal form (1.21)
with s = sign

(
B1(0)(B2(0) − 2B1(0))

)
, see [8]. Moreover, if we change

condition (1.29) into

c20(0) + d11(0)− 1
2d20(0) 6= 0, (1.29′)

then — by Lemma 1 — system (1.28) is locally topologically equivalent to
the other formulation of the Bogdanov-Takens normal form (1.7):{

η̇1 = η2,

η̇2 = β1 + β2η2 + η2
1 + sη1η2 +O(‖η‖3),

with s = sign
(
B1(0)(B2(0) − B1(0))

)
. It follows that the behaviour of the

flow ϕt can be obtained from the Bogdanov-Takens theory, provided that
the nondegeneracy and transversality conditions (1.6) or (1.20) are satisfied.
These conditions are indeed satisfied for this system or they are described by
the already posed conditions (1.26) and (1.29 or 1.29′). (Note that (1.26a)
also gives the transversality of the Bogdanov-Takens bifurcation for free.)

Bifurcation diagram

Following the reasoning before in the first case (the equivalence of the ap-
proximating ODE to the Bogdanov-Takens normal form (1.21)), a similar
bifurcation diagram as figure 1.2 for the Bogdanov-Takens normal form with
s = −1 can be drawn for the approximating flow ϕ1 (for both s = ±1), if we
take into account the correspondence between its variables (η, β) and (ξ, ν).
Because the Bogdanov-Takens normal form is an ODE, while the time-one-
shift is a map, equilibria are changed into fixed points and limit cycles into
closed invariant curves. We will meet the same bifurcation curves, but with
the corresponding bifurcations for maps. For example the curve denoted by
H now gives a Neimark-Sacker bifurcation (also called Hopf-bifurcation for
maps), generating a stable closed invariant curve, which disappears via a
saddle-homoclinic bifurcation at P . The curve T , producing a saddle and
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a stable fixed point, still corresponds to a fold bifurcation, but now in the
case for maps.

However, the topological equivalence holds for the flow which only ap-
proximates the normal form. Therefore, the bifurcation diagram near the
1:1 resonance point is different from the diagram near a Bogdanov-Takens
bifurcation. Although some features are still present, in the case of 1:1 res-
onance things become more difficult. A schematic bifurcation diagram for a
generic map with 1:1 resonance is given in figure 1.4, with only some of the
known bifurcations.

Figure 1.4: Bifurcation diagram of a generic planar map with 1:1 resonance.

The bifurcation curve T again corresponds to a fold bifurcation: crossing
T from right to left leads to the appearance of two fixed points, a stable and
an unstable one. The curve labelled H denotes a Neimark-Sacker bifurca-
tion. A closed invariant curve bifurcating from the stable fixed point exists
for parameter values near H; it might be destroyed if we move away from
H, due to complex behaviour in the generic situation.

The region enclosed by the curves P̃1,2 is very interesting for the scope of
this project. Did we have only one single curve P for the Bogdanov-Takens
case and even for the flow, in the generic situation of 1:1 resonance this
curve has grown to a small region with the shape of a horn. The width
of this ‘horn’ is somewhat exaggerated for clarity; in reality this region is
exponentially narrow as can be seen in figure 2.18 where a real, computed
version of this region is shown. What is going on in this region is explained
below in more detail.

The four curves T , H, and P̃1,2 meet each other tangentially at 0, the
codimension 2 point of 1:1 resonance. We should warn the reader that both
the flow ϕ1 and the truncation of the normal form (1.27) do not provide
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a topological normal form, since adding higher order terms alter the bi-
furcation diagram into a topologically nonequivalent one. However, both
maps grant important information on the behaviour of systems close to the
bifurcation point of 1:1 resonance.

Homoclinic behaviour

The approximating flow ϕ1 has a homoclinic orbit for parameter values ex-
actly at the curve P , i.e. the stable and unstable manifolds of the saddle
coincide. This coincidence disappears in the generic case of 1:1 resonance.
In the region between the mentioned curves P̃1,2 the stable and unstable
manifold will intersect each other transversally. At the boundary curves
P1,2 these intersections disappear and we are left with only homoclinic tan-
gencies: the manifolds are just tangent to each other. If we move away from
P̃1,2 at the outside of that region, then the stable and unstable manifold do
not touch each other, so there are no intersections or tangencies at all.

The transversal intersections provide a homoclinic structure and thus
infinitely many intersections. This can be seen from the fact that an in-
tersection point, say x0, belongs to both the stable and unstable manifold.
An orbit starting at x0 would therefore converge to the saddle xs in both
directions. So, if we apply the map f or f−1 repeatedly to x0, we find a
sequence of points converging as fk(x0)→ xs as k → ±∞. And again, each
iteration fk(x0) is an intersection point and belongs to both the stable and
unstable manifold.

The resulting complex behaviour, called Poincaré homoclinic structure,
is shown in case of the McMillan map in figure 1.5. One sees that both
manifolds are oscillating faster and faster to gain the infinite intersections.
The oscillations become bigger and more narrow for intersections near the
saddle point xs.



1.2 Bifurcations 21

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

y

x

Figure 1.5: Transversal intersections of the stable and unstable manifolds in case
of the McMillan map (2.1).

The homoclinic structure also results in infinitely many periodic points
near the homoclinic orbit with arbitrarily high periods. This can be shown
using the concept of a Smale horseshoe: consider for a sufficiently high
number N , iterations fN (S) of a rectangle S surrounding the stable man-
ifold. The intersection of S with fN (S) then forms several horseshoes. It
is known from a theorem of Smale that the occurrence of each horseshoe
implies a countable set of periodic orbits of arbitrarily long period, see [8].
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1.3 Mel’nikov function

It is possible to compute the intersection points of the stable and unstable
manifolds numerically, but there is also a way to approximate them up to
first order in ε using analytical methods. This is done by the so-called
Mel’nikov function, which we describe in this section.

Consider a family of diffeomorphisms, given by

Ωε : x 7→ F (x) + εG(x), F,G : R2 → R2, x ∈ R2, ε ∈ R. (1.30)

For ε = 0 this will give the unperturbed original map F , while for ε 6= 0
but small, an extra term comes into play. This extra term εG denotes the
perturbation of the original map F .

Assume that the original map F has a saddle at xs and that the stable
and unstable manifolds for this point coincide with each other, at least at
one side. For small perturbations the equilibrium remains a saddle point
close to the original one, but the stable and unstable manifolds do not
longer coincide. In fact, they might intersect each other infinitely often
as is described in section 1.2.3.

Figure 1.6: Perturbation of a loop (W s,u
0 , dashed) homoclinic to the saddle point

xs for ε = 0. For small ε 6= 0 this saddle changes into xε with W s,u
ε as local stable

and unstable manifolds, respectively. The initial point x0 is chosen freely along the
homoclinic loop W s

0 = Wu
0 .

Choose an initial point x0 on the loop W0 of the unperturbed map, with
corresponding unit tangent vector v0. Let xs,u0 (ε) denote the two intersection
points of the perturbed, not explicitly known, stable resp. unstable manifolds
W s,u
ε with the normal to W0. The Mel’nikov distance ∆ between these points

— considered to be vectors from the origin — depends on the perturbation-
parameter ε and is given by

∆(ε) = ∆u(ε)−∆s(ε) := (xu0(ε)− x0) ∧ v0 − (xs0(ε)− x0) ∧ v0

= (xu0(ε)− xs0(ε)) ∧ v0, (1.31)
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where ∧ denotes a ‘wedge’-product, defined by (x1, x2) ∧ (y1, y2) := x1y2 −
x2y1. We can expand this distance in ε as follows:

∆(ε) = ε(M +O(ε)),

where M denotes the Mel’nikov function. If we take the derivative of the
expression for ∆ with respect to ε at ε = 0, we obtain the value of M .
When M is equal to zero, the corresponding initial xu,s0 (ε) is approximately
an intersection point of the two manifolds.

We can add a t-component to ∆,M and x0, which denotes our free
choice of the initial point x0 along the homoclinic loop, if there is an explicit
expression of it in t. Define for k ≥ 0 the k-th iterate of the initial point
xs0(ε) on the stable manifold W s

ε by xsk := Ωk
ε(x

s
0(ε)) and similarly for k ≤ 0

the k-th iterate of the initial point xu0(ε) on the unstable manifold W u
ε by

xuk := Ωk
ε(x

u
0(ε)). Note that for ε = 0 these definitions are complement to

each other, so that we can define xk by

xk :=

{
xsk(0), if k ≥ 0;
xuk(0), if k ≤ 0;

in particular, x0 = xs0(0) = xu0(0). Furthermore, let vk := (D(F k)x0)v0 be
an ‘iterate’ of the initial tangent vector v0 to x0 for k ∈ Z.

The rate of change of the distance between the two manifolds can be
computed via the formula in the following proposition, see also [4]:

Proposition 6. Assume that F is an orientation-preserving mapping. The
derivative of the distance between the stable and unstable manifolds of the
family of diffeomorphisms (1.30) is given by the Mel’nikov function

M = ∆′(0) :=
d

dε

∣∣∣∣
ε=0

∆(ε) =
∞∑

k=−∞
|DF k(xk)|−1G(xk−1) ∧ vk, (1.32)

where | · | denotes the determinant of a square matrix.

Proof. According to equation (1.31), we want to find ∆′(0) = d
dε

∣∣
ε=0

(xu0(ε)−
xs0(ε))∧ v0. We show only the stable part d

dε

∣∣
ε=0

xs0(ε)∧ v0 = y0 ∧ v0, where
we define in general yk for k ≥ 0 as the derivative of xs0(ε) at ε = 0. The
unstable part goes in a similar way.

In order to derive an expression for y0 ∧ v0, we first look at a formula
for general k ≥ 0. By definition of xk, it holds that xsk+1 = Ωε(x

s
k(ε)) =

F (xsk(ε)) + εG(xsk(ε)). This gives for yk+1,

yk+1 =
d

dε

∣∣∣∣
ε=0

xsk+1(ε) = DF (xk)yk +G(xk).

Wedging this by vk+1 gives then

yk+1 ∧ vk+1 = (DF (xk)yk) ∧ vk+1 +G(xk) ∧ vk+1
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= (DF (xk)yk) ∧ (DF (xk)vk) +G(xk) ∧ vk+1 (1.33)

= |DF (xk)|(yk ∧ vk) +G(xk) ∧ vk+1,

which is valid for k ≥ 0. For k = 0 this yields, after rearranging,

y0 ∧ v0 = |DF (xs0)|−1(y1 ∧ v1 −G(x0) ∧ v1),

which is our first induction step to derive the general formula

y0 ∧ v0 =
yk+1 ∧ vk+1

|DF k(xk)|
−

k∑
j=0

G(xj) ∧ vj+1

|DF j(xj)|
. (1.34)

Assume that the last equation is also valid for all integers up to m = k, then
for m = k + 1, using (1.33), it holds that

|DF k(xk)|−1(yk+1 ∧ vk+1) =
yk+2 ∧ vk+2 −G(xk+1) ∧ vk+2

|DF k(xk)||DF (xk+1)|
.

Substituting this expression into (1.34) yields then,

y0 ∧ v0 =
yk+2 ∧ vk+2 −G(xk+1) ∧ vk+2

|DF k(xk)||DF (xk+1)|
−

k∑
j=0

G(xj) ∧ vj+1

|DF j(xj)|

=
yk+2 ∧ vk+2

|DF k(xk+1)|
−
k+1∑
j=0

G(xj) ∧ vj+1

|DF j(xj)|
.

Hence, (1.34) is valid for each integer k ≥ 0.
The next task is to take the limit k → ∞. We may assume for sim-

plicity that |DF (x)| is constant — with some adjustments, the proof still
holds for nonconstant |DF (x)|. Let λ1,2 be the eigenvalues of DF at xs, cor-
responding to the contracting and expanding directions, and assume that
F is orientation-preserving. Since the point xs is a saddle, we then have
two eigenvalues satisfying 0 < λ1 < 1 < λ2. This gives the following re-
strictions on each term in (1.34) as k → ∞: vk → 0 in the order λk2;
|DF k(xk)| = (λ1λ2)k and yk is bounded. Hence, in the limit the term
|DF k(xk)|−1(yk+1 ∧ vk+1) vanishes, resulting in the following expression for
the stable part:

d

dε

∣∣∣∣
ε=0

xs0(ε) ∧ v0 = y0 ∧ v0 = −
∞∑
j=0

|DF j(xj)|−1G(xj) ∧ vj+1. (1.35)

The unstable part gives similarly,

d

dε

∣∣∣∣
ε=0

xu0(ε) ∧ v0 =
−1∑

j=−∞
|DF j(xuj )|−1G(xuj ) ∧ vj+1. (1.36)

Combining the formulas (1.35) and (1.36) then gives the desired result (1.32)
for M = ∆′(0).
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The Mel’nikov function (1.32) can be simplified when F is an area-
preserving mapping. In that case it holds that |DF k(x)| = 1, so that the
formula for the distance reduces to

M = ∆′(0) :=

∞∑
k=−∞

G(xk−1) ∧ vk. (1.37)

In other cases the function F can be complicated and therefore it might be
difficult to compute its determinant. In such cases the determinant of F k can
be approximated and computed in another way. Consider the determinant
|DF k(xk)| for arbitrary positive k > 0. (The case k < 0 is treated similarly,
but gets an extra power -1.) First, we approximate for each k

F l(xk) ≈ xk+l.

Using the chain-rule for DF k, then gives

DF k(xk) = D(F ◦ F k−1)(xk) = DF (F k−1(xk))DF
k−1(xk)

≈ DF (x2k−1)DF k−1(xk).

Obviously, the determinant for k = 0 is just 1, while k = 1 gives only the
term DF (x1). By induction we thus obtain the following

DF k(xk) ≈ DF (x2k−1)DF k−1(xk) =
k−1∏
j=0

DF (xk+j).

The determinant of the last expression can be taken inside or outside,

|DF k(xk)| =

∣∣∣∣∣∣
k−1∏
j=0

DF (xk+j)

∣∣∣∣∣∣ =

k−1∏
j=0

|DF (xk+j)|,

using the rule that the determinant of the product of two equal-sized square
matrices is equal to the product of the determinants of both separate ma-
trices.

1.4 Picard iterations

Suppose we want to unravel the behaviour and bifurcations of a general
map (1.2). When we analyse such a system it is not guaranteed that one
would find all the information to construct a bifurcation diagram. To over-
come this problem, at least partly, we approximate the map in question by
shifts along the orbits of an approximating system of autonomous ordinary
differential equations. Although maps and approximating ODE’s have dif-
ferent properties, we can use the information provided in this way to say
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more about the bifurcation structure of a map. For example, global bi-
furcations of closed invariant curves occur in a map near the homo- and
heteroclinic bifurcations of the approximating ODE.

The approximating ODE for a map can be obtained by means of Picard
iterations, see [8]. Start with the Taylor expansion of the map around the
fixed point x0 = 0,

x 7→ f(x) = Ax+ f (2)(x) + f (3)(x) + . . . , x ∈ Rn, (1.38)

with A = fx(x0) and f (k)(x) a smooth homogeneous polynomial vector-
valued function of order k. Next, consider the Taylor expansion of approxi-
mating system

ẋ = F (x) = Λx+ F (2)(x) + F (3)(x) + . . . , x ∈ Rn, (1.39)

with an equilibrium at x0 = 0, Λ a matrix and the functions F (k)(x) have
the same properties as the f (k)(x). If the unit-time shift along the orbits
of (1.39) coincides with the Taylor expansion of the map (1.38) up to and
including terms of order k, i.e. it satisfies,

f(x) = ϕ1(x) +O(‖x‖k+1),

then the map (1.38) is said to be approximated up to order k by sys-
tem (1.39).

To obtain the Taylor series of the unit-time shift, we use Picard iterations
as follows: start with the initial solution of the linear equation ẋ = Λx,

x(1)(t) = eΛtx.

The next iterates k > 1 are given in terms of the F (k) as follows,

x(k)(t) = eΛtx+

∫ t

0
eΛ(t−τ)

(
F (2)(x(k−1)(τ)) + . . .+ F (k)(x(k−1)(τ))

)
dτ,

for k ≥ 2. If k increases, then the approximation becomes better: each
new iterate l only affects terms of order l and higher. For t = 1 and a
chosen k > 0 we obtain the right k-th order Taylor expansion of ϕ1(x) up
to including terms of order k:

ϕ1(x) = x(k)(x) = eΛx+ g(2)(x) + . . .+ g(k)(x) +O(‖x‖k+1),

where each function g(j) is a smooth homogeneous polynomial of order j.
Since this unit time shift needs to approximate the map as good as possible,
we can recover the ODE (1.39) by equating each of its terms as

eΛ = A, g(j)(x) = f (j)(x), j > 1.

Solving these equations — which is not always possible — gives an expression
for the unit-time shift ϕ1(x) and for the system (1.39).



2
Applications and results

At this point, it is time to put the previous theoretical part into prac-
tice. This chapter is devoted to the preparation for and the computation
of the Mel’nikov function. Two different maps will be studied, namely the
McMillan map and the normal form of 1:1 resonance, which have homoclinic
structures in a certain region of the parameter space. We investigate the
behaviour of these maps by numerical computation of, for example, its sta-
ble and unstable manifolds, homoclinic orbits and continuations. For this
purpose we make extensively use of the software MatCont, see [6, 7]. After
that, we do the preparing computations for the application of the Mel’nikov
function. Our ultimate goal, at the end, is to apply the Mel’nikov function
to each map.

2.1 Numerical computation of homoclinic orbits

Let’s first shortly explain how homoclinic orbits are actually computed nu-
merically. Via the definition of a homoclinic orbit, we can view such an orbit
(homoclinic to x0) as the solution of the infinite boundary value problem,{

Γ(ξZ, α0) = 0,

lim
n→±∞

ξn = x0,

where Γ is the operator

Γ : SNZ × Rp → SNZ

(xZ, α) 7→ (xn+1 − f(xn, α))n∈Z,

defined on the Banach space (with supremum-norm),

SNJ :=

{
xJ ∈ (RN )J : sup

n∈J
‖xn‖ <∞

}
,

27
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for any norm ‖·‖ on RN and J = [N−, N+]∩Z for N+, N− ∈ Z∪{±∞} with
N− < 0 < N+. But in numerical calculations we do not want to deal with
infinitely long sets and hence, infinitely long computations, so we truncate
the problem and replace Γ by its finite version Γ̂, defined as,

Γ̂ : SNJ × Rp → SNJ

(xJ , α) 7→
(
(xn+1 − f(xn, α))n∈Ĵ , b(xN− , xN+ , α)

)
,

where b : R2N ×Rp → RN is a boundary condition and Ĵ = [N−, N+−1]∩Z
for N+ <∞.

Suppose ξZ ∈ SNZ is a transversal orbit, homoclinic to the saddle x0 ∈
RN of a given system (1.2) at parameter values α0. For sufficiently large
−N−, N+ and under certain assumptions, there exist a unique zero ξ0,J ∈ SNJ
of Γ̂(·, α0), which lies close to ξZ|J . Moreover, one can show (see [3]) that
the following estimate holds,

sup
n∈J
‖ξZ|J − ξ0,J‖ ≤ C

(
‖ξN− − x0‖s + ‖ξN+ − x0‖s

)
,

for C > 0, while s = 1 or 2, if b is a periodic or a projection boundary
condition, respectively.

Tangential1 homoclinic orbits can be approximated by turning points of
Γ̂, that is to say, as zeroes of the operator Θ:

Θ : SNJ × SNJ × Rp → SNJ × SNJ × R

(xJ , uJ , α) 7→

 Γ̂(xJ , α)

Γ̂xJ (xJ , α)uJ∑N+

i=N−
‖ui‖2 − 1

 ,

where ‖ · ‖ denotes the Euclidean norm on RN .

2.2 McMillan map

The first system of study is the McMillan map, for which the method of the
Mel’nikov function is known to work, see [4]. So, this is a good test case to
see how the procedure works, how to set it up (although the McMillan map
is much easier to handle than the normal form of 1:1 resonance) and how to
interpret the outcome of the Mel’nikov function.

1The orbit ξZ is called tangential, if the homogeneous difference equation un+1 =
fx(ξn, α0)un, n ∈ Z has only one independent bounded solution u.
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2.2.1 Properties

The McMillan map is given by(
x
y

)
7→
(

y
−x+ 2µ y

1+y2
+ ε(βx+ γy)

)
, (2.1)

with parameters µ > 1, β, γ, and ε a small perturbation coefficient. The
fixed points of (2.1) are a0 = (0, 0) and

a1,2 = ±

(√
2µ

2− ε(β + γ)
− 1,

√
2µ

2− ε(β + γ)
− 1

)
.

The first, a0, is a hyperbolic fixed point (saddle) for certain values of the
parameters, as can be seen from the eigenvalues of the Jacobian matrix at
a0:  0 1

εβ − 1
2µys

1 + y2
s

− 4µys
(1 + y2

s)
2

+ εγ

 =

(
0 1

εβ − 1 2µ+ εγ

)
,

which are given by

λ± = 1
2(2µ+ εγ)± 1

2

√
(2µ+ εγ)2 + 4(εβ − 1).

In the following numeric calculations, we use these useful values of the
parameters to start with:

(µ, ε, β, γ) = (2, 0.05, 0.1, 1.9), (2.2)

The corresponding eigenvalues of a0 are

λ− = 0.259413, λ+ = 3.83559,

showing that, for these parameter values, a0 is indeed a hyperbolic saddle.

2.2.2 Hamiltonian

The unperturbed McMillan map — obtained by taking ε = 0 — is an area-
preserving and invertible map with invariant curves satisfying

x2y2 + x2 + y2 − 2µxy = C, (2.3)

where C is a constant depending on the initial condition. In particular,
if C = 0, we obtain the lemniscate in figure 2.1. This indicates that the
stable and unstable manifold exactly coincide if there is no perturbation.
We can find exact solutions for the x- and y-coordinates of this homoclinic
orbit by treating (2.3) as a Hamiltonian. Consider therefore the continuous
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system derived from the same equation (multiplied by 1
2) for C = 0 with

Hamiltonian

H(x, y) =
x2

2
+
y2

2
− µxy +

x2y2

2
.

The corresponding equations of motion read,

ẋ =
∂H

∂y
= y − µx+ x2y,

ẏ = −∂H
∂x

= −x+ µy − xy2.

(2.4)

From these equations we can eliminate y, to obtain for H = 0 the differential
equation,

ẋ2 = x2(µ2 − 1− x2),

which has the positive solution,2

x(t) =
√
µ2 − 1 sech

(√
µ2 − 1 · t− t0

)
, (2.5)

with t0 an initial choice on the homoclinic orbit. Substituting the solution
for x in the second equation of (2.4) yields a similar solution for y,

y(t) =
√
µ2 − 1 sech

(√
µ2 − 1 · t+ arccoshµ− t0

)
. (2.6)
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Figure 2.1: The original, unperturbed McMillan map (2.1) with parameter values
µ = 2 and ε = 0. Note that the stable and unstable manifolds exactly coincide, as
it should be.

2Here, we make use of the hyperbolic function sechx = (coshx)−1.
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Since the McMillan map itself is a discrete map, we have to switch back
from a continuous Hamiltonian system to the discrete system. This is done
by substituting for t a certain time step kτ (where τ denotes the stepsize),
such that for each integer k we obtain a solution on the homoclinic orbit of
the unperturbed McMillan map. The fact that xk+1 = yk holds (by the first
component of the map), implies τ = arccoshµ sinh(arccoshµ)−1. Substitut-
ing this result in (2.5) and (2.6), we have found the following parametrisation
for the (homoclinic) orbit of the unperturbed McMillan map:{

xk(t0) =
√
µ2 − 1 sech(t0 − k arccoshµ),

yk(t0) =
√
µ2 − 1 sech(t0 − (k + 1) arccoshµ),

(2.7)

where t0 is a choice of the initial point on the homoclinic orbit, defining
(x0, y0).

2.2.3 Homoclinic structures and continuations

The equilibrium point (0, 0) is a saddle with coinciding stable and unstable
manifolds, i.e. a homoclinic orbit, as demonstrated in figure 2.1. For small
perturbations the equilibrium remains a saddle point, but the stable and
unstable manifolds may not longer coincide: they come apart from each
other and eventually intersect each other. The numerical values in (2.2)
result in such stable and unstable manifolds of the McMillan map with
transversal intersections, as displayed in the figures 2.2 and 2.3.

We vary only β and keep the other parameters fixed to obtain stable and
unstable manifolds that do not intersect each other transversally anymore,
but only show homoclinic tangencies, (Fig. 2.4). We would like to know
for which values of β and corresponding fixed point x such a homoclinic
structure exist. This is provided by a process called continuation (see [6]);
the result is shown in figure 2.5.

Thereafter, we continue the curve of limit points in the two parame-
ters µ and β in order to find all possible combinations of parameter values
µ and β (while the others are fixed) for which the homoclinic structure,
like figure 2.2, would exist. This continuation yields a ‘crater-like’ shape,
visualised in figure 2.6. One would expect that this crater reaches to the
point (β, µ) = (0, 1), because for µ ≤ 1 there is no homoclinic loop present
for the unperturbed McMillan map. Moreover, for these parameter values
the eigenvalues for the saddle (in the unperturbed case ε = 0) become both
equal to 1, which means that it is not longer hyperbolic. If we take µ smaller
than 1, then the eigenvalues become complex. Numerically, however, we do
not reach the point (0, 1), but it is possible to get closer to it, as we discuss
in the next section.
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Figure 2.2: Transversal intersections and tangencies of the stable (blue) and
unstable (red) manifolds of the saddle point (0, 0) of the McMillan map (2.1) with
parameter values as in (2.2).
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Figure 2.3: Close-up of the first quadrant of figure 2.2. Also shown is the location
of the intersection points of the two manifolds in pink and green (8 and 9 points,
respectively).
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Figure 2.4: Homoclinic tangencies of the stable (blue) and unstable (red) mani-
folds of the saddle point (0, 0) of the McMillan map (2.1) with parameter values as
in (2.2), but with β = 0.2593.
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Figure 2.5: Continuation in β of the homoclinic orbit for the McMillan map (2.1)
with starting parameters given in (2.2).The points marked “LP”, indicate the values
for which the stable and unstable manifold are just tangent to each other.
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2.2.4 Extension of the number of intersections

The continuation in two parameters, as mentioned above, is done with only
nine of the located intersection points. This is not sufficient to come close
to the point (0, 1) of the parameter space. Therefore, we want to improve
on this by taking more intersection points into account in the continuation,
giving us the possibility to come closer to (0, 1). The procedure to get more
intersection points can be applied to the McMillan map as well as to other
maps and it goes as follows:

1. Compute the eigenvalues of the Jacobian matrix of the map at the
saddle (xs, ys), which yields one eigenvalue, λs, inside the unit circle
and the other one, λu, outside.

2. The last, numerically obtained, intersection point (i.e. the point closest
to the saddle point) is close enough to the saddle, to use linearity of
the orbit. So, take this intersection-point and multiply it with the
appropriate eigenvalue (in the direction of the saddle point). This will
produce another ’intersection’ point, which lies closer to the saddle.

3. Repeat step 2 several times, each time taking the newly obtained in-
tersection point and multiplying it with an extra factor λu,s. You will
get a sequence of points moving towards the saddle fixed point along
the homoclinic orbit.

4. The same can be done with the last, closest to the saddle, point, on
the other side of the manifold.

We repeated step 2 in the procedure for the McMillan map 15 times at both
sides, so that we gain 30 extra ‘intersection’ points. In total, we have now 39
points to do both continuations, in one and in two parameters, again. The
continuation of the homoclinic orbit in one parameter doesn’t change qual-
itatively from the original one (see Fig. 2.5), since x = 0 remains the fixed
point and the limit points should not alter when more points are taken into
consideration. Therefore, we don’t show a figure of this continuation with
the computed intersection points included. The continuation in two param-
eters gives now the picture in figure 2.7. Compare this with the original fig-
ure 2.6: originally, the tip of the horn lies at (β, µ) = (6.2709 · 10−3, 1.2418),
while in the extension we reach the point (β, µ) = (2.6298 · 10−9, 1.0048).
This is indeed much closer to the point (0, 1).

2.2.5 Mel’nikov applied to McMillan

We are almost ready for the application of the Mel’nikov theory to the
McMillan map. The functions F and G for the McMillan map are given by:

F

(
x
y

)
=

(
y

−x+ 2µ y
1+y2

)
,
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Figure 2.6: Branch of homoclinic tangencies of the McMillan map (2.1), with
parameter-values (2.2).

−0.5 0 0.5 1 1.5 2
1

1.5

2

2.5

3

3.5

4

4.5

β

µ

Figure 2.7: Extension of the branch in figure 2.6 of homoclinic tangencies of the
McMillan map (2.1), with parameter-values (2.2).
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G

(
x
y

)
=

(
0

βx+ γy

)
.

Since F is an area-preserving map, we are allowed to use the simplified form
of the Mel’nikov function (1.37).

To calculate the tangent vector vk, we use the invariant curve (2.3) to
get uk = (µxk − yk − x2

kyk, xk − µyk + xky
2
k). The tangent vectors vk are

then for each k ∈ Z given by

vk =
uk
‖u0‖

,

where we normalize such that v0 is a unit tangent vector. Using these
expressions for the tangent vectors vk at the point (xk, yk) and the explicit
formulae (2.7) for xk and yk, we are able to compute the Mel’nikov function
immediately. Notice that each xn, yn, and therefore also un and vn, still has
a (suppressed) t-component, which denotes the chosen initial point along
the homoclinic orbit.

In the computation of the Mel’nikov function, we let t run along the
curve of the McMillan map from -4 till 5.5 with stepsize 0.01. At each time
t we compute Mel’nikov’s function again. We do not compute this infinite
sum completely, but truncate it at a certain number of terms. Here, we
compute up to and including k = ±10, because adding more terms does not
have much effect, compared with the result of order 1: the terms for k = 10
are already of order 10−4 up to 10−10 (depending on t in our range).

The application of the Mel’nikov function gives useful results if the pa-
rameters µ and β are chosen above the crater in figure 2.7, and close to
(0, 1). This results in graphs as figures 2.8 and 2.10 (each time ε = 0.05
and γ = 1.9 are fixed). The intersection points of these graphs with the
t-axis indeed correspond to the intersection points for the McMillan map.
In order to compare the predicted values by the Mel’nikov function with the
actual values of these intersection points, we show the first on a plot of the
unperturbed McMillan map (ε = 0) together with the numerical obtained
intersection points on the stable and unstable manifolds for ε = ±0.05,
(Fig. 2.9).
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Figure 2.8: The approximated Mel’nikov function (1.37) for the McMillan map
with µ = 2.3, β = 0, while k runs from -10 to 10.
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Figure 2.9: Plot of the unperturbed McMillan map for µ = 2.3 in gray with the
zeroes of the Mel’nikov function located thereon in green using (2.7). The stable
and unstable manifolds of the McMillan map with β = 0 and ε = ±0.05 (shown
in blue and red for positive, and in light-blue and orange for negative ε), intersect
each other at the magenta and purple points, resp.
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Figure 2.10: The approximated Mel’nikov function (1.37) in blue and its deriva-
tive with respect to t in green for the McMillan map with µ = 2.0, β = 0.251571,
while k runs from -10 to 10.
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Figure 2.11: Plot of the unperturbed McMillan map for µ = 2.0 in gray with the
tangent points of the Mel’nikov function for β = 0.251571 located thereon in green
using (2.7). The stable and unstable manifolds of the McMillan map for ε = ±0.05
(shown in blue and red for positive, and in light-blue and orange for negative ε),
are tangent to each other for β = 0.2591.
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Figure 2.12: Close-up of figure 2.7, showing the branch of homoclinic tangencies
of the McMillan map in the (β, µ)-plane with ε = 0.05 and γ = 1.9 fixed. The
connected red dots display an approximated crater at which one would expect
homoclinic tangencies according to the Mel’nikov theory.

We investigate for which parameter values the Mel’nikov function pre-
dicts that the manifolds would not longer intersect each other, but only
show homoclinic tangencies. In figure 2.12 the connected red points show
the approximate boundary of the region for which the homoclinic structure
is present, according to the Mel’nikov theory. As one can see, the boundary
of the crater predicted by the Mel’nikov theory (which is entirely symmetric)
doesn’t exactly coincide with the one we found by numerical continuation.
That is precisely the reason why we need to include in the tangent case the
McMillan map with a different value for β in figure 2.11, in order to have in
both cases — predicted and numerical — tangencies.
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Numerically obtained Mel’nikov prediction

x y x y

0.016330 0.062619 0.016438 0.061333
0.037245 0.142650 0.037694 0.140463
0.062619 0.239198 0.061333 0.227974
0.142650 0.535715 0.140463 0.513287
0.239198 0.865431 0.227974 0.805513
0.535715 1.573972 0.513287 1.484553
0.865430 1.823505 0.805513 1.726144
1.573972 1.427012 1.484553 1.340145
1.823505 0.998540 1.726144 0.929490
1.427012 0.449359 1.340145 0.432685
0.998541 0.280471 0.929490 0.268520
0.449359 0.118279 0.432685 0.117669
0.280471 0.073166 0.268520 0.072355
0.118279 0.030713 0.117669 0.031563
0.073166 0.018987 0.072355 0.019395

Table 2.1: The numerical computed intersection points for the McMillan map
with values (2.2) compared with the ones predicted by the Mel’nikov theory.

In table 2.1 we list the coordinates of the intersection points we found
at (µ, β) = (2, 0.1) using both methods. For small values of x and y, the
intersection points in both ways are close together (about 2% deviation); if
we go further away from the origin, they diverge more (about 7% deviation).
(See also figure 2.9). This behaviour is not very surprising, since the per-
turbation causes already a little expansion of the shape of the map: adding
a perturbation blows up or shrinks down the graph a little, depending on
the sign. Taking this phenomenon into account we may conclude that the
location of the intersection points (on the unperturbed McMillan map) is
very well predicted by the Mel’nikov function.
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2.3 Normal form of 1:1 resonance (second order)

The most important system in this study is obviously the normal form of
1:1 resonance. When we speak in the following about the normal form of 1:1
resonance, we mean the form given in (1.27), truncated at second order. This
version is studied extensively in this section, while we compare it shortly to
a third order version in the next section.

2.3.1 Homoclinic structure

The second order normal form of 1:1 resonance has the following form

Nν :

(
x

y

)
7→
(

x+ y

y + ν1 + ν2y + a0x2 + b0xy

)
, (2.8)

with parameters ν1, ν2 and a0, b0 fixed. In the following, we set the coef-
ficients a0 and b0 equal to one. The two fixed points of the map are then
given by

(x0,1, y0,1) =
(
±
√
−ν1, 0

)
,

for ν1 ≤ 0. The eigenvalues of the Jacobian matrix at the fixed point
(x0, y0) = (

√
−ν1, 0),(

1 1
2x0 + y0 1 + ν2 + b0x0

)
=

(
1 1

2
√
−ν1 1 + ν2 +

√
−ν1

)
,

are given by

λ± = 1
2

(
2 +
√
−ν1 + ν2 ±

√
8
√
−ν1 +

(√
−ν1 + ν2

)2)
.

So, for ν1 < 0, we can easily choose a value ν2 > −2 (and vice versa), making
the positive fixed point a hyperbolic saddle.

As described in section 1.2.3, the normal form of 1:1 resonance shows a
homoclinic structure for well-chosen parameter values within a small region
of the parameter space. In the following couple of figures we present the vi-
sual results of the numerical computations. The first, figure 2.13, shows the
stable and unstable manifolds of the positive saddle with transversal inter-
sections. Fixing the value of ν2 and with the help of 15 intersection points,
we continue the parameter ν1 to obtain the range of ν1 and corresponding
values of x0 for which a homoclinic structure is present, (Fig. 2.14). If we
substitute the values of ν1 and x0 =

√
−ν1 of the thus obtained limit points

into the normal form, we get back homoclinic tangencies of the stable and
unstable manifold. One situation for which this tangency occurs, is depicted
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in figure 2.15. Continuation in both parameters supplies the ‘horn’-like re-
gion of parameter values ν1,2 near 0 for which the homoclinic structure is
present, (Fig. 2.16).

Again, to get more accurate results — that is, results closer to the origin
—, we perform the method described in section 2.2.4 to obtain more ‘inter-
section’ points. For our initial parameter values, (ν1, ν2) = (−0.3,−0.326),
we have a saddle point at x0 = 0.547723 with eigenvalues λs = 0.0583712, λu =
2.16335. We repeated step 2 of the procedure 25 times at both sides, so that
we gain 50 extra ‘intersection’ points. In total, we have now 65 points to do
both continuations again. The continuation in ν1 gives — as it should be —
a result similar to the one in figure 2.14. The result of the continuation in
two parameters is depicted in figure 2.17. One can compare with figure 2.16
that the resulting region comes indeed closer to the origin than without the
extra intersection points. To be precise in the first case (Fig. 2.16) the tip
of the horn lies at (ν1, ν2) = (−0.1006,−0.2097), while in the extended case
(Fig. 2.17) we reach the point (ν1, ν2) = (−0.0068847,−0.0583).

The bifurcation diagram near the Resonance 1:1 point, i.e. near the
origin, is shown in figure 2.18. In this diagram the ‘horn’, bounding the
region of homoclinic structures, is shown in red and labelled T . Note that
these curves, together with the Neimark-Sacker curve, are or would become
tangent to the Fold -line at the origin.
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Figure 2.13: Transversal intersections of the stable (blue) and unstable (red)
manifolds of the saddle point (x0, 0) of the normal form for 1:1 resonance (2.8) for
parameter values (ν1, ν2) = (−0.3,−0.326).
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Figure 2.14: Continuation in ν1 of the homoclinic orbits for the normal form of
1:1 resonance (2.8). The starting parameters are (ν1, ν2) = (−0.3,−0.326). The
points marked “LP”, indicate the values for which homoclinic tangencies occur.
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Figure 2.15: Homoclinic tangencies of the stable (blue) and unstable (red) man-
ifolds of the saddle point (x0, 0) of the normal form of 1:1 resonance (2.8) at the
parameter values (ν1, ν2) = (−0.3,−0.3293211317).
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Figure 2.16: Branch of homoclinic tangencies of the normal form of 1:1 reso-
nance (2.8). The continuation is done with respect to ν1 and ν2.
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Figure 2.17: Branch of homoclinic tangencies of the normal form of 1:1 reso-
nance (2.8) with the computed extra extension points included. Note that the tip
of the ‘horn’ is closer to the origin than in figure 2.16. The two sides of the region
become very close to each other near the origin, so that it is hard to distinguish
them from each other.
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Figure 2.18: Bifurcation diagram of the normal form of 1:1 resonance (2.8) near
the Resonance 1:1 point at the origin. The green line is the path of Fold points
(F ); the upper part (NS) of the blue curve corresponds to the Neutral Saddle line,
while the other one (NSk) is the Neimark-Sacker curve. The red curves, bounding
the region of homoclinic structures, are labeled by T .

2.3.2 Approximation of the flow

Our purpose is to compute and predict the intersection points of the stable
and unstable manifolds for the normal form via the Mel’nikov function,
described in section 1.3. In order to be able to do so, we need to approximate
the normal form (2.8) by the unit-time shift ϕ1

ν , which originates from the
flow ϕtν of an approximating system of autonomous differential equations.
The unit-time shift will allow us to write the normal form in the shape of
a ‘normal’ (i.e. unperturbed) part plus a perturbation term. Moreover, the
corresponding ODE possesses, as we will see, a homoclinic orbit, which can
be derived explicitly.

The approximating ODE for the normal form of 1:1 resonance is derived
using the method of the so-called Picard iteration in section 1.4. Start
with a function F (2)(x) with unknown coefficients. The outcome should
then be, at least up to second order, equal to the normal form. Equate
these two formula’s to recover the expressions of the unknown coefficients.
After performing two Picard iterations, we obtain for sufficiently small ν the
following smooth planar system:

ξ̇ = F (ν, ξ) = F0(ν) + F1(ν, ξ) + F2(ξ), ξ ∈ R2, ν ∈ R2, (2.9)
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with each function Fk defined by

F0(ν) =

(−1
2ν1 + 1

20(−a0 + 2b0)ν2
1 + 1

3ν1ν2

ν1 + 1
60(2a0 − 5b0)ν2

1 − 1
2ν1ν2

)
,

F1(ν, ξ) =

(
ξ2 +

(
−1

2a0 + 1
3b0
)
ν1ξ1 +

((
1
5a0 − 5

12b0
)
ν1 − 1

2ν2

)
ξ2(

2
3a0 − 1

2b0
)
ν1ξ1 +

((
−1

6a0 + 1
2b0
)
ν1 + ν2

)
ξ2

)
,

F2(ξ) =

(−1
2a0ξ

2
1 +

(
2
3a0 − 1

2b0
)
ξ1ξ2 +

(
−1

6a0 + 1
3b0
)
ξ2

2

a0ξ2
1 + (−a0 + b0)ξ1ξ2 +

(
1
6a0 − 1

2b0
)
ξ2

2

)
.

This system is locally topologically equivalent to the Bogdanov-Takens nor-
mal form (1.21) and, hence, it has the property that there exist a homoclinic
orbit for suitably chosen parameter values, see [8]. These homoclinic orbits
fit nicely to the manifolds of the normal form map, as is demonstrated in
figures 2.19 and 2.20.

Let ϕt(ν, ·) denote the flow of the smooth planar system (2.9), then for
t = 1 and sufficiently small ν the flow forms a map representing the normal
form,

N(ν, ξ) = ϕ1(ν, ξ) +O(‖ν‖2) +O(‖ξ‖2‖ν‖) +O(‖ξ‖3). (2.10)

To obtain the flow ϕt(ν, ·) we need to integrate the ODE (2.9), using again
the method of Picard iterations. The matrix Λ for the first-order terms
reads,

Λ =

(
0 1
0 0

)
,

obtained by the linear part of the system. In our case, we have the function
F defined up to k = 2, only, so we have in equation (1.39), F (k)(x) = 0 for
all k ≥ 3.

Unfortunately, our system doesn’t have the property that it is zero at
ξ = 0. Therefore we need a trick, which is presented by Kuznetsov (see [8]):
construct for small ν 6= 0 the four-dimensional flow

X 7→ φ1(ν, ξ) =

(
ϕ1(ν, ξ)

ν

)
, X =

(
ξ

ν

)
∈ R4.

Suppose, this flow is generated by a four-dimensional system

Ẋ = Y (X) = JX + Y2(X) + Y3(X) + . . . ,

with

J =


0 1 −1

2 0
0 0 1 0
0 0 0 0
0 0 0 0

 , Yk(X) =

(
Zk(X)

0

)
,
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Figure 2.19: The stable (blue) and unstable (red) manifolds of the normal
form of 1:1 resonance at the equilibrium point for parameter values (ν1, ν2) =
(−0.0049357243,−0.05). The green curve is the homoclinic orbit of the approxi-
mating ODE (2.9) for the same parameter values.
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Figure 2.20: Close-up of figure 2.19 near the saddle.
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where Zk(X) is a homogeneous polynomial function from R4 to R2 of order k.
Z2 is given by the sum of all second-order terms in ν and ξ of (2.9), namely
Z2(X) = F0(ν) +F1(ν, ξ) +F2(ξ)− (ξ2− 1

2ν1, ν1)T . For k ≥ 3 we have again
that Zk(X) = 0 and therefore also Yk(X) = 0, since there are no third order
terms in F . So, the Picard iterations have to be done only with Y2.

The first Picard iteration gives X(1)(t) = eJtX. The second iterate yields
(for t = 1),

X(2)(1) =


ξ1 + ξ2

ν1 + (1 + ν2)ξ2 + a0ξ
2
1 + b0ξ1ξ2

ν1

ν2

 .

Indeed, the upper part of X(2)(1) is precisely the normal form. This is not
very surprising, because system (2.9) is constructed in such a way that it
will give back the normal form after performing two iteration steps. In the
third step we use the full X(2)(t) for general t, so that the integrand reads
eJ(1−τ)Y2(X(2)(τ)). Integrating gives a big expression with many terms of
order higher than 2, however. Therefore, we first throw away all these un-
necessary components, consisting of all the cubic terms in ξ and all quadratic
terms in ν except the ones without ξ. This leaves us, for t = 1, with a result
of the following form:

X(3)(1) =

(
ϕ1

3(ν, ξ)
ν

)
=


ξ1 + ξ2 + f20ξ

2
1 + f11ξ1ξ2 + f02ξ

2
2

ν1 + (1 + ν2)ξ2 + g20ξ
2
1 + g11ξ1ξ2 + g02ξ

2
2

ν1

ν2

 ,(2.11)

where each coefficient fjk, gjk is determined by

f20 = 1
144a0(−2a0 + b0)ν1 − 1

12ν2,

f11 =
(
− 1

420a
2
0 − 1

180a0b0 + 1
90b

2
0

)
ν1 + 1

6(a0 − b0)ν2,

f02 = 1
5040

(
10a2

0 − 17a0b0 + 21b20
)
ν1 + 1

120(3a0 + 10b0)ν2,

g20 = a0 − 1
120

(
14a2

0 − 15a0b0 + 10b20
)
ν1 + a0

2 ν2,

g11 = b0 − 1
120

(
2a2

0 + 13a0b0
)
ν1 +

(
−5

6a0 + b0
)
ν2,

g02 = − 1
5040

(
50a2

0 − 21a0b0 + 280b20
)
ν1 − 1

6(a0 + 2b0)ν2.

These computations give an approximation of the flow, considered as the
map ϕ1

3(ν, ξ). This is taken to be the unperturbed map F in computing the
Mel’nikov function. The normal form is considered as our ‘full’ perturbed
map, so we can compute the perturbation part by taking the difference
between the full map and the unperturbed part (see (2.10)). This yields

εG(ξ) = N(ν, ξ)−ϕ1
3(ν, ξ) =

(
−f20ξ

2
1 − f11ξ1ξ2 − f02ξ

2
2

(a0 − g20)ξ2
1 + (b0 − g11)ξ1ξ2 − g02ξ

2
2

)
,(2.12)

which is in terms of the coefficients fkl and gkl of ϕ1
3(ν, ξ).
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2.3.3 Prediction of a homoclinic orbit

In order to obtain an explicit expression for the homoclinic orbit of the
ODE (2.9), we can relate this system to another system for which we know
the homoclinic orbit explicitly and the parameter values at which the ho-
moclinic orbit shows up. One example is the case of the truncation of the
Bogdanov-Takens normal form (1.7), that we can use in our case. There are
two ways to transfer the expression of the homoclinic orbit from one to the
other: one way is following the smooth transformations from system (2.9)
to the Bogdanov-Takens normal form (see Lemma 1 and 2) in the reverse
order. The other way is using the direct method as presented in [9]. Since
the last one is much easier, we use it here. This method is explained in more
detail in Appendix A; here we list only the relevant results.

Suppose, the truncated Bogdanov-Takens normal form (1.7) has the ho-
moclinic orbit, approximated up to fourth order in ε,(

ε2

a

(
u0(εt) + εu1(εt) + ε2u2(εt)

)
,
ε3

a
(v0(εt) + εv1(εt))

)
, (2.13)

where u0 and v0 = u̇0 are the homoclinic solutions to (1.17) — the Hamil-
tonian part of the rescaled Bogdanov-Takens normal form — with γ1 = −4,

(u0(t), v0(t)) =
(
2− 6 sech2(t), 12 sech2(t) tanh(t)

)
,

while u1, v1 and u2 are given by (see Appendix A.2 for the derivation)

u1(t) = −72b

7a

sinh t

cosh3 t
log (cosh t) ,

v1(t) =
72b

7a

log(cosh t)(1− 2 sinh2 t) + sinh2 t

cosh4 t
,

u2(t) = −216b2

49a2

log2(cosh t)

cosh4 t
(cosh 2t− 2)− 216b2

49a2

log(cosh t)

cosh4 t
(1− cosh 2t),

− 18b2

49a2

6t sinh 2t− 7 cosh 2t+ 8

cosh4 t
.

The homoclinic orbit is supposed to appear at parameter values

β1 = −4

a
ε4 +O(ε5),

β2 =
b

a
τ0ε

2 +
b

a
τ2ε

4 +O(ε5),

(2.14)

where

τ0 =
10

7
, τ2 =

288b2

2401a2
.

We can transfer these known results of the homoclinic orbit and homo-
clinic bifurcation curve in the Bogdanov-Takens case to our initial problem
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of the 1:1 resonance, by specifying the relations between the coordinates and
parameters of both systems. Applying (A.5) to (2.13) provides an expres-
sion of the following form for the approximation of the homoclinic orbit in
case of the normal form of 1:1 resonance up to order four in ε:

ξ0(t, ε) = ε2

(
b

a
τ0H0001 +

1

a
u0(εt)q1

)
+ ε3

(
1

a
v0(εt)q2 +

1

a
u1(εt)q1

)
(2.15)

+ ε4

(
−4

a
H0010 +

b

a
H0001τ2 +

1

a
u2(εt)q1 +

1

a
v1(εt)q2+

+
1

2a2
H2000u

2
0(εt) +

b

a2
τ0H1001u0(εt) +

b2

2a2
τ2

0H0002

)
.

The same is done for the parameters, by applying (A.6) to (2.14), which
results in a formula for ν of order four in ε:

ν(ε) =
b

a
τ0K01ε

2 +

(
−4

a
K10 +

b

a
τ2K01 +

b2

2a2
τ2

0K02

)
ε4. (2.16)

In section A.4.1 of the appendix we show in detail how the unknown coeffi-
cients of these two formulae are obtained. In the following we only display
the results of the coefficients needed for this computation.

First of all, to compute these coefficients, we use the following Taylor
expansion of the approximating system F (ν, ξ) in (2.9),

F (ν, ξ) = Aξ + 1
2B(ξ, ξ) +A1(ξ, ν) + J1ν + 1

2J2(ν, ν),

where A,A1, B, J1, J2 are explicitly given by

A = Fξ(ν0, ξ0)
(ν0,ξ0)=(0,0)

=

(
0 1
0 0

)
, J1 = Fν(ν0, ξ0) =

(
−1

2 0
1 0

)
,

A1(ξ, ν) =

((
−1

2a0 + 1
3b0
)
ν1ξ1 +

((
1
5a0 − 5

12b0
)
ν1 − 1

2ν2

)
ξ2(

2
3a0 − 1

2b0
)
ν1ξ1 +

((
−1

6a0 + 1
2b0
)
ν1 + ν2

)
ξ2

)
,

B(ξ, η) = 2

(
−1

2a0ξ1η1 +
(

2
3a0 − 1

2b0
)

(ξ1η2 + ξ2η1) +
(
−1

6a0 + 1
3b0
)
ξ2η2

a0ξ1η1 + (−a0 + b0)(ξ1η2 + ξ2η1) +
(

1
6a0 − 1

2b0
)
ξ2η2

)
J2(µ, ν) =

(
1
10(−a0 + 2b0)µ2 + 2

3µν
1
30(2a0 − 5b0)µ2 − µν

)
.

Furthermore, let q1,2 and p1,2 be the real, linearly independent eigenvectors
of A and AT , respectively, satisfying Aq1 = 0, Aq2 = q1 and AT p2 = 0,
AT p1 = p2. In our case we find q1 = (1, 0)T = p1, q2 = (0, 1)T = p2.

The constants a and b are then given by

a = 1
2p
T
1 B(q1, q1) = a0, (2.17)

b = pT1 B(q1, q1) + pT2 B(q1, q2) = b0 − 2a0. (2.18)
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If we define AINV as the operator such that x = AINV y by solving the
non-singular bordered system(

A p2

qT1 0

)(
x
s

)
=

(
y
0

)
,

then we find the term H1100 by

H2000 = AINV (2aq2 −B(q1, q1)) = (0, a0)T ,

H1100 = AINV (bq2 +H2000 −B(q1, q2)) = (0,−2
3a0 + 1

2b0)T .
(2.19)

With these preliminary computations, we are able to solve (A.27) for Ĥ01

and K̂1:

Ĥ01 = [H0010, H0001] =

(
− b0

4a0
0

1
2 0

)
,

K1 = [K10,K01] =

(
1 0

1
2a0 − 5

4b0 +
b20

4a0
1

)
.

The mixed component H1001 is supplied by the formula

H1001 = −AINV (B(q1, H0001) +A1(q1,K01)) = 0,

which uses previous results. Finally, the remaining quadratic coefficients
K02 and H0002 are computed by

K02 = −
(
pT2 z

)
K10 = 0,

H0002 = −AINV (z + J1K02) = 0,
(2.20)

where

z = B(H0001, H0001) + 2A1(H0001,K01) + J2(K01,K01),

which is equal to 0, since both H0001 and J2 are equal to 0.

At this point we have gathered all necessary ingredients to know (2.15)
completely, which provides us with the following approximation for the ho-
moclinic orbit in the approximating ODE (2.9),

ξ0(t, ε) =
(
π2(t, ε)ε2 + π3(t, ε)ε3 + π4(t, ε)ε4, ρ3(t, ε)ε3 + ρ4(t, ε)ε4

)
, (2.21)

where each component is given by,

π2(t, ε) =
1

a0

(
2− 6 sech2(εt)

)
π3(t, ε) =

72(2a0 − b0)

7a2
0

log(cosh(εt)) sinh(εt)

cosh3(εt)
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π4(t, ε) =
b0
a2

0

− 216(2a0 − b0)2

49a2
0

log2(cosh(εt))

cosh4(εt)
(cosh(2εt)− 2)

− 216(2a0 − b0)2

49a2
0

log(cosh(εt))

cosh4(εt)
(1− cosh(2εt))

− 18(2a0 − b0)2

49a2
0

6εt sinh(2εt)− 7 cosh(2εt) + 8

cosh4(εt)

ρ3(t, ε) =
12

a0
tanh(εt) sech2(εt)

ρ4(t, ε) = − 2

a0
+

1

2a0

(
2− 6 sech2(εt)

)2
+

+
72(2a0 − b0)

7a2
0

log(cosh(εt))(1− 2 sinh2(εt)) + sinh(εt)2

cosh4(εt)

The homoclinic orbit is expected to show up at the homoclinic bifurca-
tion curve, that is where the parameter values satisfy (2.16),

ν(ε) =

(
− 4

a0
ε4,

10(b0 − 2a0)

7a0
ε2 +

(
288(b0 − 2a0)3

2401a3
0

− 2a2
0 − 5a0b0 + b20

a2
0

)
ε4

)
=

(
−4ε4,−10

7
ε2 +

4514

2401
ε4

)
, (2.22)

where in the second equality we set a0 = b0 = 1. We can rewrite this formula
in order to obtain the following simple expression of ν2 as a function of ν1:

ν2 = −5

7

√
−ν1 −

2257

4802
ν1. (2.23)

In figure 2.21 and 2.22 we compare the predicted homoclinic orbit (2.21)
with the numerically obtained homoclinic orbit at almost the same param-
eter values. This is because the predicted curve of parameter values (2.22)
deviates a bit from the numerical, real values for which a homoclinic orbit is
present, as can be seen in figure 2.23. So, to get numerically a homoclinic or-
bit, we need to change the predicted parameter values a bit; we only change
the value of ν2 because that leaves the location of the saddle untouched. As
one can see, for small values of ε this prediction is quite good. There is only
a small displacement in the x-direction. This is caused by the term ε4 b0

a20
.

The predicted curve of parameters in equation (2.22) is compared in
figure 2.23 with the regions we detected by continuation for the normal
form and for the approximating ODE. As one can see the predicted curve
differs quite a lot from the real values, so we need to stay close to the origin.
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Figure 2.21: Three homoclinic orbits: the green one is numerically ob-
tained from the approximating ODE (2.9) at parameter values (ν1, ν2) =
(−0.0049357243,−0.05); the red one is the predicted homoclinic orbit (2.21) but
with ν2 = −0.0478621, using (2.23); for the blue orbit we use only the quadratic
and cubic terms in ε of (2.21) at the same parameter values as the red one.
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Figure 2.22: The predicted (2.21) (red) and numerical (blue) homoclinic orbits
for the ODE (2.9) compared for parameter values (2.22) with ε running from 0 to
0.2 with steps of 0.01.
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Figure 2.23: Comparison of the different regions for which a homoclinic orbit can
be expected. The blue ‘horn’ (the two lines are very close to each other in this
region) is obtained from the continuation in two parameters for the second order
normal form (2.8) (as figure 2.17). The purple curve is the homoclinic bifurcation
curve for the approximating ODE (2.9). The green line is the prediction (2.22).
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Figure 2.24: Close-up of figure 2.23 near the origin.
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In order to get a discrete mapping along the homoclinic orbit from the
expression (2.21), we replace the continuous time t by the stepwise t0 +k, for
some initial time choice t0 and integers k. This leads to points ξk(t0, ε) :=
ξ0(t0 + k, ε) along the homoclinic orbit for k ∈ Z. At each of these points
the normal vector vk is given by

vk(t0, ε) =
ξ′k(t0, ε)

‖ξ′0(t0, ε)‖
, (2.24)

by taking the derivative of (2.21) with respect to t at t0 + k and normalize
with respect to v0.

2.3.4 Mel’nikov theory in the 1:1 resonance case

All the ingredients to compute the Mel’nikov function (1.32) for the normal
form of 1:1 resonance are now in store. To summarize: as unperturbed map
F serves the third Picard iterate ξ(3)(1) given in (2.11). The perturbation
part εG is given by equation (2.12). In the previous section we gave an
approximation for the homoclinic orbit ξ0 in (2.21), together with its unit
normal vector v in (2.24). Lastly, we have a prediction (2.22) at which values
of the parameters ν1, ν2 this homoclinic orbit will occur.

We show here a few figures with computations of the Mel’nikov function
for values of parameters at ε = 0.1 or 0.15. The time t runs between ±20
with steps of 0.1. Because our predicted homoclinic bifurcation curve does
not lie inside the numerically obtained region of homoclinic structure (see
figure 2.23), we vary the value of ν2 and fix ν1 in order to compute the
Mel’nikov function for values inside the mentioned region.

Since we didn’t work out the results of these computations, there has
to be done some future work on this, i.e. to make the intersections of the
normal form of 1:1 resonance visible at these small values of parameters and
to verify that the predicted intersection points by the Mel’nikov function (at
least one) is good enough. Moreover, we may ask the question what these
graphs, the output of the Mel’nikov function, in this situation mean. What
does a zero of this special function indicate?

Can we compare the situation of the McMillan map with the normal
form of 1:1 resonance? In fact, these cases are different in the sense that
in the case of the McMillan map we had a Hamiltonian system from which
we derived (most of the) needed expressions; in this 1:1 resonance case, we
didn’t have a Hamiltonian in the original system, only via a transformation
in the Bogdanov-Takens situation. Furthermore, we have to remark that
the role of the parameter values, in particular of ε, is different in both maps.
Besides that, we are able to compute the Mel’nikov function also outside the
curve for which the ODE has a homoclinic orbit — in fact, we did it most
of the time. Is our predictor (2.22) too far away from the real values? And
how to interpret the result, in particular the ‘intersection points’, then?
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Figure 2.25: The Mel’nikov function for the case of the normal form of 1:1
resonance, computed with ε = 0.15, ν as in (2.22) and k running from -10 to +10.
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Figure 2.26: The Mel’nikov function for the case of the normal form of 1:1
resonance, computed with ε = 0.15, ν2 = −0.03184, ν1 as in (2.22) and k running
from -10 to +10.
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Figure 2.27: The Mel’nikov function for the case of the normal form of 1:1
resonance, computed with ε = 0.1, ν as in (2.22) and k running from -10 to +10.
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2.4 Normal form of 1:1 resonance (third order)

In this section we add some cubic terms to our ‘standard’ normal form of
1:1 resonance (2.8) to try to improve on the results for the first case. In
third order the normal form is generally stated as(
x

y

)
7→
(

x+ y

y + ν1 + ν2y +Ax2 +Bxy +Kx3 + Lx2y +Mxy2 +Ny3

)
,(2.25)

with parameters α, β,A,B,K,L,M and N . Its fixed points are given by
(x0,1,2, y0,1,2), where y0,1,2 = 0 and x0,1,2 are solutions of the third-order
polynomial α+Ax2+Kx3. From these three equilibrium points we select, for
suitably chosen parameter values, the hyperbolic saddle (x0, 0) determined
by the eigenvalues of the Jacobian at these points.

We compute the stable and unstable manifolds with the following pa-
rameters fixed to

(A,B,K,L,M,N) = (1.01, 1, 0.1, 0.1, 0.1, 0.2). (2.26)

Choosing suitable ν1 and ν2 gives figures with transversal intersections like
figure 2.28. The outcome doesn’t differ much from the second order case,
(Fig. 2.13): only the shape of the homoclinic connection is a bit changed and
the oscillations became more wide. Variation of ν1 leads to the occurrence
of homoclinic tangencies.
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Figure 2.28: Transversal intersections of the stable (blue) and unstable (red)
manifolds of the saddle point (x0, 0) of the third order normal form of 1:1 resonance
(2.25) with parameter values (ν1, ν2) = (−0.3,−0.375) and the others as in (2.26).
Also shown, is the location of the intersection points between the two manifolds.
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After doing the continuation of the homoclinic orbit with respect to
ν1, we continue the curve of limit points in the two parameters ν1 and ν2.
Adding some extra intersection points, as described in section 2.2.4, yields
again a ‘horn-like’ shape for the region of homoclinic behaviour.

In figure 2.29 we show a bifurcation diagram near the resonance 1:1
point, i.e. near the origin. The just computed ‘horn’ is shown in blue and
labelled T . If we compare this figure to the one in case of the second order
normal form, Fig. 2.18, we see that they are (insofar as we calculated it)
locally topologically the same. As far as we can see, we may conclude that
third order terms in the normal form do not change the bifurcation diagram
near the point of 1:1 resonance dramatically.
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Figure 2.29: Bifurcation diagram of the third order normal form of 1:1 reso-
nance (2.25) near the resonance 1:1 point at the origin. The green line is the path
of Fold points (F ); the upper part (NS) of the red curve corresponds to the Neu-
tral Saddle line, while the other one (NSk) is the Neimark-Sacker curve. The red
curves, bounding the region of homoclinic structures, are labelled by T .



A
Deriving a homoclinic predictor

A.1 The center manifold reduction

In this section we explain the method of center manifold reduction for a
general n-dimensional system, as presented in [9]. With the help of this
method we are able to find a homoclinic predictor near a Bogdanov-Takens
bifurcation. We use this result to obtain the predictors (2.21) for the ho-
moclinic orbit and (2.22) for the homoclinic bifurcation curve in the case of
the normal form of 1:1 resonance.

First of all, we start with the ODE for which we want to compute the
homoclinic orbit, here generally stated as a Taylor expansion at (0,0),

ẋ = f(x, α) = Ax+ 1
2B(x, x) +A1(x, α) + J1α+ 1

2J2(α, α) (A.1)

+O
(
‖x‖3 + ‖α‖‖x‖2 + ‖α‖2‖x‖+ ‖α‖3

)
,

for x ∈ Rn, α ∈ Rm, while A = fx(x0, α0), J1 = fα(x0, α0) and B,A1 and
J2 are the standard multilinear forms. Suppose, for n ≥ 2 and m = 2, this
system can have a (codim 2) bifurcation and let’s assume the codimension
2 equilibrium for this bifurcation is x = 0 at α = 0. We want to relate this
system to the normal form corresponding to this bifurcation on its center
manifold (i.e. the invariant manifolds on which the system exhibits this
bifurcation), via,

ẇ = G(w, β), G : Rnc+2 → Rnc . (A.2)

Here, nc is the dimension of the center manifold, which itself is parametrised
by w ∈ Rnc with β ∈ R2 the unfolding parameters.

Suppose, a formula for the codim 1 bifurcation branch is available for
(A.2). Then, in order to relate both systems to each other, we need a
parametrisation H of the center manifold in terms of the original variables

60
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x and a transformation K of the bifurcation branch to the original param-
eters α,

x = H(w, β), H : Rnc+2 → Rn,
α = K(β), K : R2 → R2.

We thus obtained the center manifold (x, α) = (H,K) for this system. The
fact that the center manifold should be invariant under system (A.1), yields
the homological equation,

ẋ = Hw(w, β)G(w, β) = f(H(w, β),K(β)) = f(x, α). (A.3)

Solving this equation will eventually lead to an explicit expression for the
mappings H and K, and that allows us to transfer the known facts of the
normal form (A.2) to our system of current study (A.1).

In the present case, we are dealing with a function f which exhibits a
Bogdanov-Takens bifurcation (see section 1.2.1), in which case the homo-
clinic orbit is well-known. A normal form on the center manifold (with
nc = 2) in this situation reads,

ẇ = G(w, β) =

(
w2

β1 + β2w2 + aw2
1 + bw1w2

)
+O(‖w‖3 + ‖β‖‖w‖2). (A.4)

We can expand the mappings H and K as

H(w, β) = q1w1 + q2w2 +H0010β1 +H0001β2 (A.5)

+ 1
2H2000w

2
1 +H1100w1w2 + 1

2H0200w
2
2

+H1010β1w1 +H1001β2w1 +H0110β1w2 +H0101β2w2

+ 1
2H0020β

2
1 +H0011β1β2 + 1

2H0002β
2
2 +O(|wβ|3),

K(β) = K10β1 +K01β2 + 1
2K20β

2
1 +K11β1β2 + 1

2K02β
2
2 +O(|β|3). (A.6)

The solution of equation (A.3) provides us with the unknown coefficients
of H and K. The derivation of these coefficients is demonstrated in sec-
tion A.4.1. We want to end up with results which are of order 4 in ε, so we
truncate the previous expressions at second order in w and β.

A.2 An accurate homoclinic orbit for BT

In order to obtain accurate results for our system, we need to have an
explicit expression for the homoclinic orbit of the Bogdanov-Takens normal
form which is as close as possible to the real homoclinic orbit. We obtain
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by applying an almost similar singular rescaling to the truncated normal
form (A.4) as in Lemma 2 (choosing γ1 = −4),

w1 = 1
aε

2u;

w2 = 1
aε

3v;

β1 = − 4
aε

4;

β2 = b
aε

2τ,

(A.7)

leading to the system{
u̇ = v,

v̇ = −4 + u2 + ε bav(τ + u).
(A.8)

As we pointed out in section 1.2.1, this system is Hamiltonian for ε = 0 and
has the well-known solution

(u0(t), v0(t)) =
(
2− 6 sech2(t), 12 sech2(t) tanh(t)

)
. (A.9)

In order to obtain a proper homoclinic orbit for the system with ε 6= 0,
we follow Beyn [2] in requiring the solutions u and v to satisfy

(u(t), v(t)) ∈ C1(R,R)× C1(R,R),

for ε, τ ∈ R and that the limits limt→±∞(u(t), v(t)) and limt→±∞(u̇(t), v̇(t))
exist. Moreover, we determine the phase of the homoclinic orbit by asking,

v(0) = 0, (A.10)

which means that the homoclinic orbit passes the u-axis at t = 0. Note that
the given solution v0 has this property already. The homoclinic solutions to
(A.8) can be parametrised by ε up to any order, by u(t) = u0(t) + εu1(t) +
ε2u2(t) + . . ., v(t) = v0(t) + εv1(t) + ε2v2(t) + . . .. The same can be done for
τ = τ0+ετ1+ε2τ2+. . ., which we will need in the next section to complete the
description of the predicted homoclinic orbit and the homoclinic bifurcation
curve up to order four in ε. Substituting these expressions up to order 2 into
the system (A.8) gives four independent, linear, inhomogeneous systems,
each of them corresponding to a different order of ε.

The case of ε0 is already solved by (A.9). This solution is already ho-
moclinic to the saddle fixed point of system (A.8), so we have to require all
higher order corrections to the Hamiltonian homoclinic orbit should be zero
in the limit. We therefore have to impose the conditions

lim
t→±∞

(uk(t), vk(t)) = (0, 0), (A.11)

on our solutions uk(t) and its derivatives vk(t) = d
dtuk(t), for all k ≥ 1.

What follows, is the derivation of these solution to the higher order systems.
We don’t give all explicit computations; in section A.4.2 we provide the
Mathematica-notebook with which these solutions are obtained.
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After substituting the parametrisations in ε of u, v and τ , we collect all
ε1-terms. These constitute the system,{

u̇1 = v1,

v̇1 = 2u0u1 + b
av0(τ0 + u0).

(A.12)

One can easily verify that ϕ1(t) = v0(t) = u̇0 forms a solution to the homo-
geneous part of this system,

ü1 = 2u0u1. (A.13)

The other homoclinic solution ϕ2 is derived from this one by setting ϕ2(t) =
χ(t)ϕ1(t). Substituting this into (A.13) leads to

ϕ̈2 = χ̈v0 + 2χ̇v̇0 + χv̈0 = 2u0χv0,

and hence, since v0 itself satisfies (A.13),

χ̈v0 + 2χ̇v̇0 = 0.

We can solve this for χ̇(t) and recover χ itself by integrating the solution.1

We thus get as second solution to the homogeneous problem,

ϕ2 = 2 cosh2(t)− 15 sech2(t) + 15t tanh(t) sech2(t) + 5.

The general solution u1 to the inhomogeneous problem (A.12) can be
found by variation of constants. First of all, the Wronskian W of ϕ1 and
ϕ2 is defined by,

W (ϕ1, ϕ2)(t) =

∣∣∣∣ϕ1(t) ϕ2(t)
ϕ̇1(t) ϕ̇2(t)

∣∣∣∣ .
Then the general solution u1 is given by,

u1(t) = ϕ1(t)(c1 − g1(t)) + ϕ2(t)(c2 + f1(t)),

where f1 and g1 are defined, using the Wronskian, by,

f1(t) =

∫ b
aϕ1(t)v0(τ0 + u0)

W (ϕ1, ϕ2)(t)
dt,

g1(t) =

∫ b
aϕ2(t)v0(τ0 + u0)

W (ϕ1, ϕ2)(t)
dt.

The condition (A.11) together with the phase condition sets the integration
constants and defines

τ0 =
10

7
,

1A suitable choice of the arbitrary integration constant in Mathematica is C = − 2
3
.
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in accordance with the result obtained by Beyn [2]. The desired functions
u1 and v1 are thus derived and read as,

u1(t) = −72b

7a

sinh t

cosh3 t
log (cosh t) ,

v1(t) =
72b

7a

log(cosh t)(1− 2 sinh2 t) + sinh2 t

cosh4 t
.

Collecting all ε2-terms together gives the following pair of inhomogeneous
differential equations:{

u̇2 = v2,

v̇2 = 2u0u2 + u2
1 + b

av1(τ0 + u0) + b
av0(τ1 + u1).

(A.14)

Note that the homogeneous part is of the same form as in (A.12), which
makes it easy for us, in that we can use the same homogeneous solutions
ϕ1 and ϕ2. Again, we write the general solution as u2(t) = ϕ1(t)(c3 −
g2(t)) + ϕ2(t)(c4 + f2(t)), with c3,4 some integration constants. With the
conditions (A.10) and (A.11) taking into account, we derive the solution to
(A.14),

u2(t) = −216b2

49a2

log2(cosh t)

cosh4 t
(cosh 2t− 2)− 216b2

49a2

log(cosh t)

cosh4 t
(1− cosh 2t)

− 18b2

49a2

6t sinh 2t− 7 cosh 2t+ 8

cosh4 t
,

v2(t) =
288b2

49a2

sinh t

cosh3 t

(
3 log2(cosh t)− 6 log(cosh t)− 1

)
− 216b2

49a2

sinh t

cosh5 t

(
12 log2(cosh t)− 14 log(cosh t)− 3

)
+

216b2

49a2

t(2 cosh2 t− 3)

cosh4 t
,

together with

τ1 = 0,

consistently with Beyn’s statement that τ ′(0) = 0, see [2].

Lastly, collecting all ε3-terms, we get the inhomogeneous system,{
u̇3 = v3,

v̇3 = 2u0u3 + 2u1u2 + b
av2(τ0 + u0) + b

av1(τ1 + u1) + b
av0(τ2 + u2).

Again, the homogeneous part is the same, so the same procedure as for the
first- and second-order case is applicable here. So, set the general solution
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to u3(t) = ϕ1(t)(c5 − g3(t)) + ϕ2(t)(c6 + f3(t)), with c5,6 some integration
constants, and require that (A.10) and (A.11) hold. This leads to the solu-
tions

u3(t) = − 27b3

2401a3
sech5(t)

(
−273 sinh t+ 91 sinh 3t− 1232 sinh t log3(cosh t)

− 84t cosh t(6 log(cosh t)− 1) + 84t cosh 3t(2 log(cosh t)− 1)

+ 112 sinh 3t log3(cosh t) + 2016 sinh t log2(cosh t)

− 336 sinh 3t log2(cosh t) + 904 sinh t log(cosh t)

− 104 sinh 3t log(cosh t)) ,

v3(t) =
27b3

2401a3
sech6(t)

(
840t sinh 2t− 168t sinh 4t+ 3696 log3(cosh t)

− 7896 log2(cosh t) + cosh 2t
(
−2912 log3(cosh t) + 7392 log2(cosh t)

+ 40 log(cosh t)− 1414) + cosh 4t
(
112 log3(cosh t)− 504 log2(cosh t)

+ 148 log(cosh t) + 185)− 444 log(cosh t)

− 1680t sinh 2t log(cosh t) + 168t sinh 4t log(cosh t) +1229) ,

and finally the value,

τ2 =
288b2

2401a2
,

which completes the description of τ up to second order in ε.

A.3 The homoclinic predictors

At this point we have determined an approximation of the emanating ho-
moclinic orbit for the rescaled Bogdanov-Takens normal form (A.8). Using
(A.7) we obtain the following expressions for the homoclinic orbit of (A.4)
up to second order (i.e. up to fourth order in ε),

w1(t, ε) =
ε2

a

(
u0(εt) + εu1(εt) + ε2u2(εt)

)
+O(ε5);

w2(t, ε) =
ε3

a

(
v0(εt) + εv1(εt) + ε2v2(εt)

)
+O(ε6),

where u0, v0 are given by (A.9), u1, v1 by (A.12) and u2, v2 by (A.14). Also,
for the homoclinic bifurcation curve we find

β1(ε) = −4

a
ε4 +O(ε5);

β2(ε) =
b

a
τ0ε

2 +
b

a
τ2ε

4 +O(ε5),

where

τ0 =
10

7
, τ2 =

288b2

2401a2
. (A.15)
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From the expression (A.5) of H we are now able to derive an approxi-
mation for the homoclinic orbit in our original system (A.1) by collecting
all terms that are quadratic, cubic or of order four in ε:

x0(t) = H(w, β) = ε2

(
b

a
τ0H0001 +

1

a
u0(εt)q1

)
(A.16)

+ ε3

(
1

a
v0(εt)q2 +

1

a
u1(εt)q1

)
+ ε4

(
−4

a
H0010 +

b

a
H0001τ2 +

1

a
u2(εt)q1 +

1

a
v1(εt)q2+

+
1

2a2
H2000u

2
0(εt) +

b

a2
τ0H1001u0(εt) +

b2

2a2
τ2

0H0002

)
.

The same goes for the parameters using the expansion of K, (A.6), also up
to order four in ε:

α = K(β) =
b

a
τ0K01ε

2 +

(
−4

a
K10 +

b

a
τ2K01 +

b2

2a2
τ2

0K02

)
ε4. (A.17)

Formulae (A.16) and (A.17) complete the derivation of the predictors of
both the homoclinic orbit and the homoclinic bifurcation curve for a general
ODE (A.1).

A.4 Formulae for all elements of the predictor

A.4.1 Derivation of ingredients of homological equation

The left-hand-side of equation (A.3) is obtained explicitly as follows. Using
the normal form (A.4) and the expansions (A.5) and (A.6) of H and K,
respectively, we find — put in lexicographical order and the terms of order
3 and higher omitted —,

Hw(w, β)G(w, β) =
∂H

∂w1
· w2 +

∂H

∂w2
· (β1 + β2w2 + aw2

1 + bw1w2)

= (q1 +H2000w1 +H1100w2 +H1010β1 +H1001β2)w2

+ (q2 +H1100w1 +H0200w2 +H0110β1 +H0101β2)·
· (β1 + β2w2 + aw2

1 + bw1w2)

= q1w2 + q2β1 (A.18)

+ aq2w
2
1 + (bq2 +H2000)w1w2 +H1100w

2
2

+H1100β1w1 + (H1010 +H0200)β1w2 + (H1001 + q2)β2w2

+H0110β
2
1 +H0101β1β2.

SubstitutingH andK into f(x, α), the right-hand-side of (A.3) reads (again,
we omit terms of order 3 and higher),

f(H(w, β),K(β)) = A
(
q1w1 + q2w2 +H0010β1 +H0001β2+
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+ 1
2H2000w

2
1 +H1100w1w2 + 1

2H0200w
2
2

+H1010β1w1 +H1001β2w1 +H0110β1w2 +H0101β2w2

+ 1
2H0020β

2
1 +H0011β1β2 + 1

2H0002β
2
2

)
+ 1

2B(q1w1 + q2w2 +H0010β1 +H0001β2, q1w1 + q2w2 +H0010β1 +H0001β2)

+A1(q1w1 + q2w2 +H0010β1 +H0001β2,K10β1 +K01β2)

+ J1

(
K10β1 +K01β2 + 1

2K20β
2
1 +K11β1β2 + 1

2K02β
2
2

)
+ 1

2J2(K10β1 +K01β2,K10β1 +K01β2)

= Aq1w1 +Aq2w2 +AH0010β1 +AH0001β2

+ 1
2AH2000w

2
1 +AH1100w1w2 + 1

2AH0200w
2
2

+AH1010β1w1 +AH1001β2w1 +AH0110β1w2 +AH0101β2w2

+ 1
2AH0020β

2
1 +AH0011β1β2 + 1

2AH0002β
2
2

+ 1
2

(
B(q1, q1)w2

1 +B(q1, q2)w1w2 +B(q1, H0010)β1w1 +B(q1, H0001)β2w1

+B(q2, q1)w1w2 +B(q2, q2)w2
2 +B(q2, H0010)β1w2 +B(q2, H0001)β2w2

+B(H0010, q1)β1w1 +B(H0010, q2)β1w2 +B(H0010, H0010)β2
1

+B(H0010, H0001)β1β2 +B(H0001, q1)β2w1 +B(H0001, q2)β2w2

+B(H0001, H0010)β1β2 +B(H0001, H0001)β2
2

)
+A1(q1,K10)β1w1 +A1(q1,K01)β2w1 +A1(q2,K10)β1w2

+A1(q2,K01)β2w2 +A1(H0010,K10)β2
1 +A1(H0010,K01)β1β2

+A1(H0001,K10)β1β2 +A1(H0001,K01)β2
2

+ J1K10β1 + J1K01β2 + 1
2J1K20β

2
1 + J1K11β1β2 + 1

2J1K02β
2
2

+ 1
2

(
J2(K10,K10)β2

1 + J2(K10,K01)β1β2

+ J2(K01,K10)β1β2 + J2(K01,K01)β2
2

)
= Aq1w1 +Aq2w2 (A.19)

+ (AH0010 + J1K10)β1 + (AH0001 + J1K01)β2

+ 1
2(AH2000 +B(q1, q1))w2

1

+ (AH1100 +B(q1, q2))w1w2

+ 1
2(AH0200 +B(q2, q2))w2

2

+
(
AH1010 +B(q1, H0010) +A1(q1,K10)

)
β1w1

+
(
AH1001 +B(q1, H0001) +A1(q1,K01)

)
β2w1

+
(
AH0110 +B(q2, H0010) +A1(q2,K10)

)
β1w2

+
(
AH0101 +B(q2, H0001) +A1(q2,K01)

)
β2w2

+ 1
2

(
AH0020 +B(H0010, H0010) + 2A1(H0010,K10)

+ J1K20 + J2(K10,K10)
)
β2

1

+
(
AH0011 +B(H0010, H0001) +A1(H0010,K01)

+A1(H0001,K10) + J1K11 + J2(K10,K01)
)
β1β2+



A.4 Formulae for all elements of the predictor 68

+ 1
2

(
AH0002 +B(H0001, H0001) + 2A1(H0001,K01)

+ J1K02 + J2(K01,K01)
)
β2

2 .

Note that we use in the last step the properties of multilinear forms that
we can take out scalars and — for the symmetric form B — that we can
interchange both sides. The homological equation is now simply obtained
by equating (A.18) and (A.19). We can solve the unknown coefficients of
H and K by collecting the terms with equal components in w and β. This
leads to the following fourteen equations:

0 = Aq1, (A.20a)

q1 = Aq2, (A.20b)

q2 = AH0010 + J1K10, (A.20c)

0 = AH0001 + J1K01, (A.20d)

aq2 = 1
2(AH2000 +B(q1, q1)), (A.20e)

bq2 +H2000 = AH1100 +B(q1, q2), (A.20f)

H1100 = 1
2(AH0200 +B(q2, q2)), (A.20g)

H1100 = AH1010 +B(q1, H0010) +A1(q1,K10), (A.20h)

0 = AH1001 +B(q1, H0001) +A1(q1,K01), (A.20i)

H1010 +H0200 = AH0110 +B(q2, H0010) +A1(q2,K10), (A.20j)

H1001 + q2 = AH0101 +B(q2, H0001) +A1(q2,K01), (A.20k)

H0110 = 1
2

(
AH0020 +B(H0010, H0010) + 2A1(H0010,K10) (A.20l)

+ J1K20 + J2(K10,K10)
)
,

H0101 = AH0011 +B(H0010, H0001) +A1(H0010,K01) (A.20m)

+A1(H0001,K10) + J1K11 + J2(K10,K01),

0 = 1
2

(
AH0002 +B(H0001, H0001) + 2A1(H0001,K01) (A.20n)

+ J1K02 + J2(K01,K01)
)
,

Obviously, the first two do not show anything, but just the definition of
the generalized eigenvectors q1,2. The next two, (A.20c) and (A.20d), will
become useful later on to compute Ĥ01 and K̂1.

Before we proceed, we remark that, by the properties of the generalized
eigenvectors, it holds that pT2 A = 0, pT1 A = p2, pT1 q2 = 0 and pT2 q2 = 1.
These facts can be used to get orthogonal relations in the equations in
(A.20), and thus simplify them.

First of all, we multiply (A.20e) with pT2 from the left and obtain,

a = apT2 q2 = 1
2(pT2 AH2000 + pT2 B(q1, q1)) = 1

2p
T
2 B(q1, q1),

which is equation (2.17). Moreover, by multiplying the same equation with
pT1 from the left, we gain,

1
2(pT1 AH2000 + pT1 B(q1, q1)) = 1

2(pT2 H2000 + pT1 B(q1, q1)) = apT1 q2 = 0,
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and hence,

pT2 H2000 = −pT1 B(q1, q1), (A.21)

which is useful in the computation of b. To compute b, multiply (A.20f)
with pT2 from the left and use (A.21) in the result to obtain equation (2.18):

b = bpT2 q2 = pT2 AH1100 + pT2 B(q1, q2)− pT2 H2000

= pT2 B(q1, q2) + pT1 B(q1, q1).

The equations (A.20e) and (A.20f) also provide us with expressions for H2000

and H1100. But A is not invertible, since it has λ = 0 as eigenvalues, so we
have to use another operator AINV which is defined such that x = AINV y
by solving the non-singular bordered system (see [8]),(

A p2

qT1 0

)(
x
s

)
=

(
y
0

)
,

where x, y ∈ Rn and s ∈ R. This operator then returns formulae (2.19):

H2000 = AINV (2aq2 −B(q1, q1)),

H1100 = AINV (bq2 +H20,0 −B(q1, q2)).

From (A.20g) we obtain by multiplying with pT2 from the left, the useful
relation,

pT2 H1100 = 1
2(pT2 AH0200 + pT2 B(q2, q2)) = 1

2p
T
2 B(q2, q2). (A.22)

The same equation (A.20g) multiplied with pT1 yields

pT1 H1100 = 1
2(pT1 AH0200 + pT1 B(q2, q2)) = 1

2(pT2 H0200 + pT1 B(q2, q2)),

and hence

pT2 H0200 = 2pT1 H1100 − pT1 B(q2, q2). (A.23)

Multiplying both (A.20h) and (A.20i) from the left with pT2 yields,

pT2 H1100 = pT2 B(q1, H0010) + pT2 A1(q1,K10),

0 = pT2 B(q1, H0001) + pT2 A1(q1,K01).

In the first equation we can replace the term pT2 H1100 with (A.22). Reversing
left and right sides, we then obtain,

pT2 B(q1, Ĥ01) + pT2 A1(q1,K1) = [1
2p
T
2 B(q2, q2), 0], (A.24)

where Ĥ01 is short-hand notation for [H0010, H0001] and K̂1 for [K10,K01].
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Equations (A.20h) and (A.20i), being multiplied from the left with pT1 ,
give

pT1 H1100 = pT1 AH1010 + pT1 B(q1, H0010) + pT1 A1(q1,K10)

= pT2 H1010 + pT1 B(q1, H0010) + pT1 A1(q1,K10),

0 = pT1 AH1001 + pT1 B(q1, H0001) + pT1 A1(q1,K01)

= pT2 H1001 + pT1 B(q1, H0001) + pT1 A1(q1,K01).

These provide us, after rearranging, with the two following useful expres-
sions,

pT2 H1010 = −pT1 B(q1, H0010)− pT1 A1(q1,K10) + pT1 H1100,

pT2 H1001 = −pT1 B(q1, H0001)− pT1 A1(q1,K01).
(A.25)

The next two, (A.20j) and (A.20k), multiplied with pT2 from the left,

pT2 H1010 + pT2 H0200 = pT2 AH0110 + pT2 B(q2, H0010) + pT2 A1(q2,K10),

pT2 H1001 + pT2 q2 = pT2 AH0101 + pT2 B(q2, H0001) + pT2 A1(q2,K01)

and each first term on the left-hand-side replaced with (A.25),

−pT1 B(q1, H0010)− pT1 A1(q1,K10) + pT1 H1100 + pT2 H0200

= pT2 B(q2, H0010) + pT2 A1(q2,K10),

−pT1 B(q1, H0001)− pT1 A1(q1,K01) + 1

= pT2 B(q2, H0001) + pT2 A1(q2,K01),

give the rearranged and combined equation

pT1 B(q1, Ĥ01) + pT1 A1(q1,K1) + pT2 B(q2, Ĥ01) + pT2 A1(q2,K1)

= [pT1 H1100 + pT2 H0200, 1],

where we use again the short-hand Ĥ01 = [H0010, H0001] and K̂1 = [K10,K01].
We can reduce the number of unknowns in this formula further by substi-
tuting pT2 H0200 with (A.23):

pT1 B(q1, Ĥ01) + pT1 A1(q1,K1) + pT2 B(q2, Ĥ01) + pT2 A1(q2,K1)

= [−pT1 B(q2, q2) + 3pT1 H1100, 1].
(A.26)

Summarizing, when we collect (A.20c), (A.20d), (A.24) and (A.26), we gain
the 4-dimensional system A J1

pT2 Bq1 pT2 A1q1

pT1 Bq1 + pT2 Bq2 pT1 A1q1 + pT2 A1q2

(Ĥ01

K̂1

)

=

 q2 0
1
2p
T
2 B(q2, q2) 0

−pT1 B(q2, q2) + 3pT1 H1100 1

 ,

(A.27)

from which we can determine Ĥ01 and K̂1.
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Next, we want to determine the remaining quadratic coefficients, to start
with K02 and H0002. These two can be obtained from (A.20n). Multiply
this equation from the left with pT2 to obtain

0 = pT2 B(H0001, H0001) + 2pT2 A1(H0001,K01) (A.28)

+ pT2 J1K02 + pT2 J2(K01,K01).

Apply the vector pT2 also to (A.20c) to get

1 = pT2 q2 = pT2 AH0010 + pT2 J1K10 = pT2 J1K10.

This result removes the J1 in front of K02 at the cost of an extra (known)
K10. Furthermore, using the abbreviation

z = B(H0001, H0001) + 2A1(H0001,K01) + J2(K01,K01),

formula (A.28) provides a short equation for K02:

K02 = −(pT2 z)K10.

Knowing K02, we can get rid of the other unknown H0002 in the same equa-
tion (A.20n) by applying the operator AINV as described above. This yields
the other part of equation (2.20),

H0002 = −AINV (z + J1K02).

The operator AINV can serve to tackle the seven remaining unknowns
in equations (A.20e)–(A.20m):

H0200 = AINV (2H1100 −B(q2, q2)),

H1010 = AINV (H1100 −B(q1, H0010)−A1(q1,K10)),

H1001 = −AINV (B(q1, H0001) +A1(q1,K01)),

H0110 = AINV (H1010 +H0200 −B(q2, H0010)−A1(q2,K10)),

H0101 = AINV (H1001 + q2 −B(q2, H0001)−A1(q2,K01)),

H0020 = AINV
(
2H0110 −B(H0010, H0010)− 2A1(H0010,K10)

− J1K20 − J2(K10,K10)
)
,

H0011 = AINV (H0101 −B(H0010, H0001)−A1(H0010,K01)

−A1(H0001,K10)− J1K11 − J2(K10,K01)).

In the last two expressions, we use the components K20 and K11, which still
have to be determined . These can be computed from (A.20l) and (A.20m)
in the same manner as we obtained K02, giving,

K20 = pT2
(
2H0110 −AH0020 −B(H0010, H0010)

− 2A1(H0010,K10)− J2(K10,K10)
)
K10,

K11 = pT2
(
H0101 −AH0011 −B(H0010, H0001)−A1(H0010,K01)

−A1(H0001,K10)− J2(K10,K01)
)
K10.

This completes the calculation of all unknown coefficients in the expan-
sions (A.5) and (A.6) of H and K, respectively.
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A.4.2 Mathematica-code to compute homoclinic orbit for
rescaled BT

In this section we present the Mathematica-code which is used to obtain
the solutions u1, v1, u2, v2, u3, v3 and τ0, τ1, τ2 to (A.12), (A.14) and (A.15),
presented in section A.2. The script is structured as follows: there are four
sections according to each power of ε. Within each section there are first the
known functions stated. The computation of the needed functions follows.
After that we take the required limits from the results and equate them to
0. The last part gives the final answers of the section.

Solutions for ε0-components

u0[t_]:=2(1-3*Sech[t]^2)

v0[t_]:=12*Sech[t]^2*Tanh[t]

Solutions for ε1-components

phi1[t_]:=v0[t]

phi2[t_]:=2*Cosh[t]^2+5+15*t*Sinh[t]/Cosh[t]^3-15/Cosh[t]^2

W=Wronskian[{phi1[t],phi2[t]},t];

W1[t_]:=phi1[t]*b/a*v0[t]*(tau0+u0[t])

W2[t_]:=phi2[t]*b/a*v0[t]*(tau0+u0[t])

uf1[t_]:=Integrate[W1[t]/W,t]

ug1[t_]:=Integrate[W2[t]/W,t]

u1[t_]:=phi1[t]*(C2-ug1[t])+phi2[t]*(C1+uf1[t])

v1[t_]:=D[u1[s],s]/.{s->t}

Limit[phi1[t],t->Infinity]

Limit[phi2[t],t->Infinity]

coef1=Solve[{Limit[C1+uf1[t],t->Infinity],

Limit[C1+uf1[t],t->-Infinity]}=={0,0},{tau0,C1}];

v1[0]/.%[[1]];

coefC2=Solve[%==0,C2];

repl1=Union[coef1[[1]],coefC2[[1]]]

u1[t]/.repl1//Simplify

v1[t]/.repl1//Simplify

Solutions for ε2-components

f2[t_]:=u1[t]^2+b/a*tau1*v0[t]+b/a*u1[t]*v0[t]

+b/a*tau0*v1[t]+b/a*u0[t]*v1[t]/.repl1
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W3[t_]:=phi1[t]*f2[t]

W4[t_]:=phi2[t]*f2[t]

uf2[t_]:=Integrate[W3[t]/W,t]

ug2[t_]:=Integrate[W4[t]/W,t]

u2[t_]:=phi1[t]*(C4-ug2[t])+phi2[t]*(C3+uf2[t])

v2[t_]:=D[u2[s],s]/.{s->t}

coef2=Solve[{Limit[C3+uf2[t],t->Infinity],

Limit[C3+uf2[t],t->-Infinity]}=={0,0},{C3,tau1}];

v2[0]/.%[[1]];

coefC4=Solve[%==0,C4];

repl2=Union[coef2[[1]],coefC4[[1]]]

u2final[t_]:=u2[t]/.repl2//Simplify

v2final[t_]:=v2[t]/.repl2//Simplify

u2final[t]

v2final[t]

Solutions for ε3-components

f3[t_]:=2*u1[t]*u2final[t]+b/a*tau2*v0[t]+b/a*u2final[t]*v0[t]

+b/a*tau1*v1[t]+b/a*u1[t]*v1[t]+b/a*tau0*v2final[t]

+b/a*u0[t]*v2final[t]/.repl1/.repl2

W5[t_]:=phi1[t]*f3[t]

W6[t_]:=phi2[t]*f3[t]

uf3[t_]:=Integrate[W5[t]/W,t]

ug3[t_]:=Integrate[W6[t]/W,t]

u3[t_]:=phi1[t]*(C6-ug3[t])+phi2[t]*(C5+uf3[t])

v3[t_]:=D[u3[s],s]/.{s->t}

coef3=Solve[{Limit[C5+uf3[t],t->Infinity],

Limit[C5+uf3[t],t->-Infinity]}=={0,0},{C5,tau2}];

v3[0]/.%[[1]];

coefC6=Solve[%==0,C6];

repl3=Union[coef3[[1]],coefC6[[1]]]

u3final[t_]:=u3[t]/.repl3//Simplify

v3final[t_]:=D[u3final[t],t]//Simplify

u3final[t]

v3final[t]
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