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Abstract

This thesis presents the research done on human head and body orientation estimation. This
problem can be subdivided in two tasks, namely human tracking and orientation estimation.
The first task is accomplished using the framework described by Choi et al. which is capable
of estimating and tracking the positions of human targets in real worlds coordinates, starting
from a video stream captured using a single monoscopic moving camera. The approach of
Chen et al. is implemented for solving the second task, namely head and body orientation
estimation. My approach for solving this task starts from the main ideas outlined in the
original method, such as using HOG descriptors for describing the visual appearance of the
targets and additional cues such as the velocity direction and head-body coupling. To ad-
dress some of the limitations of the original method, as well as to incorporate new elements,
a different framework is conceived. Under this new framework, the responses of 3 differ-
ent classifiers (Gaussian Mixture Model, Neural Network and Support Vector Machine) are
combined with information from additional cues. These include the original ones, velocity
direction and magnitude and head-body coupling, as well as new ones, face detections and
temporal smoothness. The performance of the method is evaluated and the contribution to
the final prediction of each classifier and additional cue is assessed. Overall, the performance
of the proposed approach is satisfactory, outperforming my own implementation of the orig-
inal method in an experiment, both in terms of estimation accuracy, as well as computation
time. However, a thorough comparison between the proposed and the original approaches
was not possible, due to the unavailability of the annotations used by Chen et al.
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Chapter 1

Introduction

Although Computer Vision emerged as a research field more than 30 years ago, impressive
results to notoriously difficult problems began to appear only recently. This can be attributed
mainly to advances in the broader field of Artificial Intelligence and Machine Learning, as
well as the significant increase in available computing power, supporting progressively more
demanding algorithms and techniques.

Among the many problems addressed by Computer Vision, tasks focused on human sub-
jects are increasingly more popular. These include human and face detection and tracking, as
well as more detailed analysis of their appearance, such as body pose estimation or emotion
recognition.

The estimation of human body and head orientation is a task with many potential use,
mainly focused in the area of modeling human activity and interaction. Determining how peo-
ple move in an environment, either indoor or outdoor, is a key first step in understanding their
actions. On top of human tracking, orientation estimation can provide more detailed informa-
tion regarding a person’s activity, such as targets of their attention focus. This information
can be useful in building automated systems focused on human interaction, anticipating and
detecting abnormal behaviour and commercial applications. One such example is presented
in [3], where the authors present a framework capable of assessing how people direct their
attention towards outdoor advertising panels. Moreover, other applications such as video
surveillance systems can benefit from these techniques, yielding better, more accurate and
more informative results.

Moreover, being able to perform this task without specialized equipment, such as stereo-
scopic video cameras or additional sensors, is particularly important, as such a technique can
be applied using existing systems (such as surveillance cameras), or reduce the costs for new
systems by only requiring the installation of standard, relatively low-cost equipment.

The task of estimating orientation of the people is a complex one and implies multiple
stages including human body and head detection and tracking. Additional computation, such
as determining real-world 3D position coordinates of the targets and velocity orientation,
can provide useful information for improving the results of the body orientation. Thus, the
problem addressed in this thesis is the estimation of the head and body orientation of multiple
human targets from a video sequence captured by a single monoscopic moving camera.
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Figure 1.1: Orientations for body discretized in 8 directions.

1.1 Challenges

Solving the above mentioned main tasks, namely human tracking and orientation estimation,
is not trivial due to various reasons. Identifying these challenges is important for a proper
formulation of the task, as well as exploring and deciding the ways in which they can be
addressed.

One such challenge is the large variation in human appearance. There are many causes
for this, including inherent variations in the individual physiognomy of the human targets,
as well as differences in clothing and accessories. Additionally, since the movement of the
targets is considered to be unconstrained, meaning they move freely around the scene, their
appearance can vary greatly due to their position and orientation relative to the camera.

Furthermore, the environment in which people undertake their activities are usually clut-
tered, making detection and tracking hard. Also, numerous objects in the environment can
generate total or partial occlusions of the people.

Certain limitations of the camera also hinder tracking. Such limitations include narrow
fields of view or inability to correctly capture images in difficult lighting conditions. Addi-
tionally, the resolution of the images captured by many systems is relatively low, which may
restrict the extraction of robust and more detailed characteristics, such as face detection.

1.2 Approach

To mitigate the effects of the above mentioned challenges, several assumptions and simplifi-
cations must be added to make the development of a robust system possible.

My approach builds upon the ideas lined out in [2] and thus many assumptions introduced
there are also applicable to the methods described in this thesis. The task of determining
human orientation is formulated as a multi-class classification task; body and head rotation
angles are grouped into 8 distinct classes, as shown in Figure 1.1. It is worth noting that
only the rotation in the ground plane (i.e. yaw) is assessed, as it is the only one commonly
encountered in most human activities. Complex human motion involving more degrees of
freedom defines the subject of human pose estimation, in which individual body parts are
tracked and analyzed. However, this task will not be addressed in this thesis.

The appearance of human targets is modeled by a dense grid of HOG descriptors, which
are robust to scaling and light conditions, thus increasing the uniformity of appearances
within a given class. Since the direct visual information in a video frame provides the main
informational content, classification based on these HOG descriptors constitutes an important
part of the method as a whole.
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Additional cues are also used, such as the velocity orientation of the targets or the coupling
between the head and body orientations (which cannot differ greatly because of anatomical
restrictions). These cues are also based on the visual information from the frames, but
indirectly, as they are the result of additional techniques.

The resemblance between the approach described in [2] and mine is that both make use
of HOG descriptors as a basis for classification, as well as incorporating additional cues such
as the ones previously mentioned. The differences occur in how these elements are used. The
original method is based on computing a linear classifier in a high-dimensional space, where
datapoints are projected using a kernel function. The additional cues are included as terms in
the objective function of the linear classifier which is then optimized. My approach makes use
of several classifiers based on the annotated HOG data which are trained offline. The response
of these classifiers is combined online with the additional cues for the final estimation result.
The way in which this combination takes place is described using a Bayesian framework,
under which the Maximum Likelihood solution is considered.

1.3 Contributions

The contributions made by my approach aim at reducing the effects of the limitations of the
method from [2], as well as making better use of the various additional cues.

Although the framework proposed in [2] has an elegant mathematical model, some tech-
nical limitations make its use cumbersome in an online setting. This is mainly because their
approach requires computing a linear classifier in a high dimensional space for every frame of
the video. Furthermore, since the HOG descriptors used for modeling the body appearance
have 2268 dimensions, projecting them in an even higher dimensional space and determining
a linear classifier implies computations with very large matrices.

To address this limitation, I have decided to separate the classification using HOG de-
scriptors from the additional cues such as velocity direction or head-body coupling. This
enabled me to have a separate initial training phase for the HOG-based classifiers.

This decision also allows me more flexibility in choosing the classification methods, my
best results being obtained using the combined response from several classifiers (committee).

Another contribution refers to the way velocity information is taken into consideration.
In the original method, the classes corresponding to the velocity angle class and adjacent
ones were favored over the others, provided the magnitude of the velocity was above a certain
threshold. Because of the greater flexibility of my approach, I have modeled the velocity
as a pseudo-classifier using a Gaussian distribution centered around the class indicated by
the velocity direction, but having a variance inversely proportional to the magnitude of the
velocity.

An important cue which allows human individuals to recognize and estimate the orien-
tation of other human targets is the presence of the face. Since face detection can be made
relatively fast and is reliable if a minimal set of conditions regarding the image quality are
met, another contribution is the consideration of face detection in determining the final result.

The method proposed in [2] considered the features of the targets independently from one
frame to the other. However, since the video frames represent successive moments in time, and
since human targets cannot abruptly change their orientation in a very short amount of time
(such as the one between two consecutive frames), it is also reasonable to include temporal
information in the estimation process. Thus, another contribution is the consideration of
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temporal smoothness of the orientation change.

1.4 Layout

My thesis is organized as follows. In Chapter 2 I will briefly introduce some relevant related
work. Next, in Chapter 3, I will provide the underlying theory of the techniques and meth-
ods implemented, as well as a detailed overview of my approach. Chapter 4 describes the
experimental setup, datasets used, as well as results obtained. Finally, in Chapter 5 several
conclusions are drawn and possible directions for future work are presented.

4



Chapter 2

Related work

The related work most relevant to this thesis consists of [1] and [2]. The framework of the first
paper is used for solving the tracking task and the approach of the second paper represents
a starting point for my method. Since they play an important role, both will be described in
more detail in Section 3.2 and Section 3.3.1, respectively. This chapter briefly presents other
related work addressing similar problems.

Tosato et al.[5] address the problem of human orientation estimation by introducing a
novel descriptor, Weighted ARay of COvariances (WARCO). This descriptor is based on the
covariance of the features, which has been previously used for pedestrian detection. The im-
provements implemented through WARCO make the classification of human targets possible
according to their orientation, in the context of their appearance being encoded by few, noisy
pixels. To be able to apply standard machine learning techniques for classification, the covari-
ance matrices relying in a Riemannian manifold need to be projected onto a unique tangent
space. For this task, the authors introduce a new measure to compute distances between
projected points, better preserving the original geodesic distance. Furthermore, this novel
approach greatly improved the computation times needed for the computation of distances,
over previous methods. Once projected, the points are classified into 4 classes (corresponding
to the front, back, left and right orientations) using a Support Vector Machine classifier.

An approach more closely related to the method described in this thesis is introduced in
Lu et al. [6]. The authors consider a template-based framework for tracking and recognizing
athletes’ actions using only visual information. The considered targets are encoded with a
PCA-HOG descriptor, obtained by applying Principal Component Analysis (PCA) to the
Histogram of Oriented Gradients (HOG) descriptor. This ensures a robust representation
under variations in illumination and scale, while at the same time keeping computational
costs low. The tracking and action recognition are merged into a single task, solved by using
a hybrid Hidden Markov Model with two first-order Markov processes. The first is responsible
for the estimation of the templates encoding the actions of the targets, while the second is
responsible for keeping track of their position.

In their work, Smith et al. [3] address the problem of tracking and estimating the head
pose of multiple targets in a video sequence, task defined by the authors as finding the visual
focus of attention for a varying number of wandering people (VFOA-W). Their approach is
based on a dynamic Bayesian network responsible for simultaneously estimating the number
of people in a scene, their body and head locations, as well as their head pose. An efficient
exploration of the variable-dimension state space is achieved by using a Reversible Jump
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Markov Chain Monte Carlo sampling scheme, in a similar fashion to the one described in [1].
Based on the head pose and location information, the authors propose two models in order to
determine if a person is looking or not towards an outdoor advertisement, which constitutes
an application of their method. The first is based on a Gaussian Mixture Model, while the
second relies on a Hidden Markov Model to take into account the temporal dependencies
between focus states.

Munder et al. [7] have run an in-depth experimental study on the task of pedestrian de-
tection, assessing the performance of various features and classifiers. The features considered
aimed at highlighting the differences in performance between global and local features, as
well as between adaptive and non-adaptive features. Thus, the features tested were PCA
coefficients (global, non-adaptive), Haar Wavelets (local, non-adaptive) and Local Receptive
Fields (local, adaptive). The classifiers used were the Support Vector Machine, a popular
method for a wide range of classification problems, a feed-forward neural network and, as a
baseline, k-nearest neighbors. The best results were obtained using the adaptive local features
and the SVM classifier.

The final decision of choosing the works of [1] and [2] as a starting point for my thesis is
motivated by the more complete and specific approaches addressing the problem presented
in Chapter 1. In contrast, [5] addresses only the classification task based on visual features,
while [7] is focused more on evaluating the performance of different techniques, rather than
addressing a specific problem as a whole. [6] is concerned with both tracking and classification,
but focused on a more slightly different problem, namely the classification of athletes’ actions
for improving tracking performance.

6



Chapter 3

Theory

In this chapter I will present my approach from a theoretical standpoint. I will start by
presenting a general overview of the method, emphasizing the process pipeline. Next, I will
present in more detail the two necessary tasks: human tracking and orientation estimation.
Human tracking is done using the method proposed in [1] and is described in Section 3.2.
The orientation estimation is described in Section 3.3.

3.1 Overview

3.1.1 Problem description

For a better understanding of the following chapters, I will clearly define the goals of the
method and the expected circumstances under which it will be applied.

The input data of the system is represented by a video sequence from a single, monoscopic,
moving camera, depicting one or more human targets moving unconstrained into, within and
away from the scene. The goal of the system is to estimate the orientation angle around the
vertical axis (i.e. yaw) of the body and head for each human target at each frame of the
video. The output values of the angle are discretized into 8 distinct classes: {0, 45, 90, 135,
180, 225, 270, 315} degrees or, alternatively, {E, NE, N, NW, W, SW, S, SE}, as depicted
in Figure 3.1. Additional data for training of the classifiers consists of an annotated dataset
with body and head samples.

3.1.2 Pipeline

Two variations of the proposed approach for orientation estimation are presented, which will
be referred to as ’Method 1’ and ’Method 2’. The classifiers and additional cues used in both
of them are the same, but the way in which they interact is different, as indicated in the
following pipeline description.

Method 1

The processing pipeline for estimating the body orientation using the first method can be
summarized in the diagram presented in Figure 3.2, where the detailed classification block is
shown in Figure 3.3.

7



Contents 8

Figure 3.1: Discretization of angles into 8 classes.

Figure 3.2: Pipeline for body angle estimation using method 1.

The input of the system is represented by video frames upon which human tracking is
performed using the method described in [1]. This is preferred over other tracking methods
as the video sequences come from a single moving camera and, apart from improved stability
and overall performance, it is able to provide estimates of the positions of human targets in
the real world coordinate system (not only bounding boxes in the image coordinate system).
This additional information is particularly useful in determining the velocity direction and
magnitude of the targets, an important cue useful in a later stage.

Apart from the coordinates of the targets, the tracker also returns bounding boxes desig-
nating the regions in the frame containing the targets. From these regions HOG descriptors
are extracted, encoding the visual appearance of the individuals. These are then supplied
to several pre-trained classifiers which output probability estimates for each of the 8 angle
classes.

Also performed on the regions specified by the bounding boxes is face detection. This is
also an important cue, restricting the plausible angle values, if a face is detected. To maintain

8
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Figure 3.3: Classification block from pipeline.

the consistency of the probabilistic framework, an uniform distribution is generated, whose
parameters are determined by the presence or absence of a face detection.

The previously determined velocity is integrated in the framework by fitting a standard
Gaussian distribution centered around the velocity direction angle class whose variance is
scaled inversely proportional to the velocity magnitude. Thus, relatively high velocity would
yield a high probability for the angle class corresponding to the velocity direction and low for
the other angles, while a relatively low velocity would yield an almost constant velocity for
all angle classes.

The response from all the above classifiers and additional cues are combined and the esti-
mated angle is considered to be the one with the highest probability. However, the final result
is filtered using a sliding window. This additional step is performed to insure the temporal
smoothness of the change in velocity and to minimize the effect of punctual misclassifications.

Figure 3.4: Pipeline for head angle estimation using method 1.

The head angle estimation is similar to the body angle estimation, as shown in Figure 3.4,
with the exception that the velocity direction is not used. Instead, the body angle estimation
is used in a similar fashion, by mapping a standard Gaussian distribution centered around
the estimated angle class of the body. This is introduced to model the coupling between the
head and body.

Method 2

The formulation of the second method is based on the observation that the appearance of
human targets is similar for the diametrically opposed angle classes (i.e. angle classes 180
degrees apart). This can be observed visually, as indicated in Figure 3.5 and can also be
confirmed by examining the HOG descriptors. As it will be described in Subsection 3.3.2,
each target is described by a 2268-dimensional feature vector. Obviously, this cannot be

9
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visualized directly. By using Principal Component Analysis (PCA), these feature vectors can
be reduced to 2 dimensions which can be plotted. Such a plot, for body HOG descriptors,
can be observed in Figure 3.6. Although not fully separable (due to the loss of information
inherent to the dimensionality reduction process), clear clusters for angle classes are visible.
Also noticeable is the fact that most of the points belonging to diametrically opposed classes
(plotted in common colors with different symbols) seem to be distributed around the same
clusters. This confirms to some degree the visual observation of the opposed angle classes
being similar in appearance.

Figure 3.5: Similarity between HOG features and human appearance on diametri-
cally opposed classes.

Following the above described observation, the pipeline of method 2 is described in Figure
3.7.

Figure 3.7: Pipeline for body angle estimation using method 2.
In the first stage, human tracking is done in the same way as previously described for

method 1.
The main difference occurs in the way the HOG based classifiers are trained and used.

Since there is little distinction between the HOG descriptors of diametrically opposed classes,
I have decided to relabel the training dataset in a way such that diametrically opposed angle
classes receive the same label (basically describing 4 axes: N-S, E-W, NE-SW, NW-SE). This
way, the HOG classifiers will output probabilities for each of the 4 axes. The results are
combined and the axis with the highest probability is selected.

Determining which angle class of the two described by the previously determined axis

10
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Figure 3.6: Body HOG descriptors reduced to 2 dimensions using PCA.

is the correct one is done by considering the additional cues, namely the velocity direction
and face detection, through a simple weighted voting scheme. Thus, the vote of the velocity
direction cue is determined by selecting the axis angle closest to the velocity direction. The
vote of the face detection (if such a detection is made) is determined by selecting the axis
angles under which the presence of a face is plausible. This translates in selecting the S, SE,
SW angles if their corresponding axes are determined by the HOG classifiers. In the case of
the E-W axis, the type of the face detection is taken into consideration (left or right profile).
In this case, if the detection is frontal, none of the angles is preferred (the decision thus being
influenced only by the velocity direction). The weighting of the vote is necessary for breaking
ties in case both cues are available and their responses are different. Thus, since the face
detection is usually more reliable than the velocity direction (which may be inaccurate due
to noisy coordinate estimates for the targets’ positions), the face detection vote has a higher
weight, and it will take precedence in the case in which it is different than the vote based on
the velocity.

Lastly, the temporal smoothness of the orientation change is achieved in the same way as
for method 1.

It is important to note that the head orientation computation is the same as in method 1,
since the assumption of resemblance between diametrically opposed classes does not hold for
the appearance of the human head. This can be observed in Figure 3.8, where the clusters
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corresponding to diametrically opposed angle classes do not overlap as in the case of the body
appearance.
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Figure 3.8: Head HOG descriptors reduced to 2 dimensions using PCA.

3.2 Human tracking

As shown in Section 3.1, the first step in the orientation estimation is the tracking of targets.
Since my framework takes into account higher level information such as velocity orientation,
this task is performed using the technique described in [1]. The goals of their framework are
to track the movement of human targets in a video sequence, as well as to determine their
position in the 3D coordinates of the world, along with the movement characteristics of the
camera.

The assumptions made by the authors include the availability of weak detections hypoth-
esis and initial camera parameters such as focal length, the estimated height in the frame
of the horizon line and camera height. Also, all stationary features aiding in the tracking
process are assumed to be on the ground (i.e. below the horizon line) and the rotation of the
camera is restricted on the vertical axis (i.e. yaw).

The workflow of the method is summarized in the diagram from Figure ??.
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Figure 3.9: Workflow diagram of the approach from [1]

3.2.1 Model representation

Formally, the output of the algorithm for each time step t is a configuration Ωt = {Θt, Zt, Gt}
consisting of several elements. Zt = {Zit} represents the set of positions for each of the
targets, expressed as points in the 3D world coordinate system, Gt = {Gjt} represents a
set of stationary features aiding the tracking process and Θt = {f, uc, vh,Φ, µ, hΘ, xΘ, zΘ}
represents camera parameters, namely the focal distance f , the image center uc, the horizon
line vh, the yaw angle Φ, velocity µ and the position in the 3D world coordinates hΘ, xΘ, zΘ.
This output is defined as the MAP solution:

Ω̂t = arg max
Ωt

P (Ωt|I1,...,t) (3.1)

where I1,...,t represents the set of images (frames) from time step 1 to t. The posterior
probability P (Ωt|I1,...,t) is formulated using a sequential Bayesian framework:

P (Ωt|I1,...,t) ∝ P (It|Ωt)︸ ︷︷ ︸
(a)

∫
P (Ωt|Ωt−1)︸ ︷︷ ︸

(b)

P (Ωt−1|I1,...,t−1)︸ ︷︷ ︸
(c)

dΩt−1 (3.2)

where the first term (a) represents the observation likelihood, (b) represents the motion prior
and (c) the posterior probability at time t− 1.

3.2.2 Tracking with RJ-MCMC

This distribution is computed using a sampling method, Reversible Jump Markov Chain
Monte Carlo (RJ-MCMC), as the exact computation of P (Ωt|I1,...,t) distribution is unfeasible
because of the high and changing dimensionality of Ωt. Because of the special nature of the
configuration space, an efficient exploration can be done through Reversible Jump moves.

Thus, the state that maximizes the posterior configuration is approximated using a number
of samples (each of them being indexed by r):

P (Ωt|I1,...,t) ≈ {Ω(r)
t }Nr=1 (3.3)

The basic sampling mechanism involves the generation of each new sample upon the
previous one by randomly choosing and perturbing one of its elements, namely one of the
targets, geometric features or camera parameters. A rejection mechanism insures that the
samples get closer to the real distribution.

A visual intuition of how this works is represented in Figure 3.10.

13
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Figure 3.10: Visual representation of
the Metropolis Hastings sampling al-
gorithm. The real distribution is sup-
posed to be a 2D Gaussian. The first
generated sample is represented with
red. It can be observed that each sub-
sequent sample is generated from the
last one, the pink being rejected (as it
deviates too far from the real distri-
bution) and the green being accepted.

Proposal distributions

The generation of each sample is done according to the proposal distribution Q(Ω
′
t,Ωt). This

has 3 components corresponding to perturbations of either targets, features or camera pa-
rameters.

Q(Ω
′
t,Ωt) = qZQZ(Ω

′
t,Ωt) + qGQG(Ω

′
t,Ωt) + qΘQΘ(Ω

′
t,Ωt) (3.4)

The proposal distribution for perturbing the targets (QZ(Ω
′
t,Ωt)) and the geometric fea-

tures (QG(Ω
′
t,Ωt)) are defined using so called reversible jump moves. These are a sort of

operators describing how the next sample is different from the previous one. To ensure the
convergence to the real distribution each of these moves must be a reversible counterpart of an-
other move. Because of the distinct structure of the camera parameters, the camera proposal
QΘ(Ω

′
t,Ωt) is just a normal distribution. Furthermore, qZ , qG, qΘ represent the probabilities

of perturbing each of the components.

Target proposal

For perturbing the target set, a random target is selected from the set as well as one of the
six reversible jump moves (Add, Delete, Stay, Leave, Update, Interaction Flip). A visual
intuition on the effects of these moves can be observed in Figure 3.11, which describes how

each new target Z
(r+1)
t is generated from current sample Z

(r)
t , using each of the moves.

The Add move guarantees that if a target is not present in the sample Z
(r)
t , it is added in

Z
(r+1)
t . Its counterpart, Delete, insures that a random sample is chosen and deleted from the

set of targets that has a new detection in the current frame and is also present in the previous
sample. The Stay move verifies if the target is present in the previous configuration, but
not in the previous sample, it is added in the current sample. Analogously, the Leave move
eliminates a target that was in the previous configuration and also in the previous sample.
The Update move alters the position of targets according to a normal distribution. Note that
the Update move is the reversible jump of itself. Lastly, the Interaction flip move switches
the configurations of two targets.

Each of these moves has a different probability of being chosen, which are fixed and given
as parameters of the system.
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Figure 3.11: Reversible Jump Moves.

Geometric features proposal

Similar jump moves are defined for geometric features: Stay, Leave and Update, have the
same behaviour as before. Add and Delete moves are not used since features are detected
at each frame and their validity is determined only by comparing their successive locations.
Each of the moves for geometric features has a different probability of being chosen.

Camera parameters proposal

Since there is a single camera, no reversible jump moves are defined for the camera parameters.
These are perturbed using a normal distribution:

QΘ(Θ
(r+1)
t ; Θ

(r)
t ) = N (Θ

(r+1)
t ; Θ

(r)
t ) (3.5)

Acceptance ratio

According to the Metropolis Hastings algorithm [10], the samples are accepted or rejected
according to their acceptance ratio, which conceptually reflects how close a sample is to the
real distribution, and it is formally defined as

a =
P (It|Ω(r+1)

t )

P (It|Ω(r)
t )︸ ︷︷ ︸

(a)

P (Ω
(r+1)
t |I1,2,..t−1)

P (Ω
(r)
t |I1,2,..,t−1)︸ ︷︷ ︸

(b)

Q(Ω
(r)
t ; Ω

(r+1)
t )

Q(Ω
(r+1)
t ; Ω

(r)
t )︸ ︷︷ ︸

(c)

(3.6)

where (a) represents the ratio between image likelihoods and reflects how likely the ob-
served image is under the current configuration, based on projecting the targets and geometric
features using the camera parameters and comparing them to the detections, (b) is the ratio
between approximated predictions and (c) is the ratio between proposal distributions.
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Detectors

For a more robust behaviour, multiple detectors can be used, which serve as weak hypotheses.
The authors briefly describe 7 options for the detectors, namely Pedestrian and Upper body
location based on HOG features / Deformable Part Model, Face Detector, Skin Color De-
tector, Depth-based Shape Detector, Motion Detector and Target Specific Appearance-based
tracker.

It should be noted that in isolation none of the detectors performs satisfactory, but com-
bining them can generate more reliable results.

To summarize, the framework presented is capable to track the positions of multiple targets
from frame to frame, based on weak detection hypothesis, as well as to estimate the movement
characteristics of the camera and to model interactions between targets. The feature space
is explored in an efficient manner, through the use of specialized operators, reversible jump
moves and insuring good real time performance.

3.3 Orientation estimation

As the approach presented in this thesis starts from the core ideas introduced in [2], I will
briefly present their original approach in the following subsection.

3.3.1 Original method of Chen et al.

The method presented in [2] assumes that bounding boxes for the bodies and heads of the
targets are given and information regarding their velocity direction and velocity magnitude
are known. Additionally, an annotated dataset for both body and head descriptors is assumed
to be available. The final result of the algorithm consists of orientation estimations for head
and body, discretized into 8 classes, as previously mentioned in Section 3.1.1.

The workflow of their method can be summarized in the diagram from Figure 3.12. The
image flow from video is provided to a tracker which provides information regarding the
bounding boxes of the targets, from which body and head features are extracted, as well
as movement characteristics, namely velocity information. These features are provided to
a classifier that also makes use of the annotated dataset and outputs the desired results.
The classifier is described as a coupled adaptive classifier, considering 2 datasets, one being
labeled, while the other one consists of the targets for which the orientation estimation is
computed, and thus unlabeled.
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Figure 3.12: Workflow of Cheng et al. approach [2].
The classification problem is formulated within a kernel-based framework. Thus, the

features describing the body of the targets are projected in a high dimensional Reproducing
Kernel Hilbert Space Fb through a non-linear mapping Φb : Rdb → Fb, where db represents the
number of body features. Under this framework, the classifier is defined as a linear function
f b : Rdb → R8 :

f b(xb) =

nb+nt∑
i=1

wb
iφ
b(zbi)

>φb(xb) = (Wb)>[Φb, Φ̃b]>φb(xb) (3.7)

where nb represents the number of unlabeled targets, nt represents the number of labeled
data points, Φb = [φb(xb1), ..., φb(xbnb

)], Φ̃b = [φb(x̃b1), ..., φb(x̃bnb
)], and Wb = [wb

1, ...,w
b
nb+nt

]> ∈
R(nb+nt)×8. Lastly, zbi is a short-hand notation for both the labeled and unlabeled data, zbi = xi

when i ≤ nb and zbi = x̃bi−nb
when i > nb.

Given the kernel function k(xbi , x
b
j) = φb(xbi)

>φb(xbj), the training of the classifier translates

into determining the optimal weights Wb. This is done by optimizing an objective function
which takes into consideration multiple factors:

E(W) = El + αEm + βEbhc + γEvbc + λEr (3.8)

where W =
[(

Wb
)>
,
(
Wh

)>]>
.

The El factor is responsible for insuring that the classifier function respects the labeled
information and is defined as the discrepancy between the output of the classifier and the label
measured on the labeled dataset. The Em factor is responsible for modeling the smoothness
of the classifier function over the manifold structure, a property more generally described
as the fact that similar features should generate similar labels. The Ebhc factor describes
the coupling between the body and the head orientation and is defined as the discrepancy
between the responses of the head and body classifiers. The Evbc factor models the coupling
between the body orientation and the velocity direction, if the velocity magnitude is large
enough. Finally, the Er is a regularization factor, controlling the complexity of W for better
generality. These factors are weighted with the non-negative parameters α, β, γ and δ.
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The authors mention that the objective function E(W) is convex and thus the optimal
value for W is found by imposing:

∂E(W)

∂W
= 0. (3.9)

It is worth noting that although the above equations refer to the body descriptor xb, they
are all defined analogously for the head descriptor xh.

To be able to improve upon this method, and mainly to address the issue of having to
compute a new classifier at each frame, which limits its use in an online setting, I have
decided to build a new, different framework. Under my approach the classifiers are trained
initially and offline, and are only used for predicting angles online, a task which is performed
relatively fast. Although not combined in a single, general objective function, the additional
cues such as velocity and body-head coupling are incorporated in the online decision process
of estimating the angles.

3.3.2 Histogram of Oriented Gradients (HOG) descriptor

Before I describe the framework under which the classifiers and additional cues interact, as
well as more in-depth information on each of the classifiers, I will describe here the features
used for characterizing the visual appearance of the targets, as this represents the foundation
upon which the orientation estimation is performed. This method is the same as used in [2].

Figure 3.13: Illustration of the HOG descriptor. (a) the original images, (b) the
inverted HOG features [4] back to natural images, (c) the HOG features.

The local human appearance and shape is invariant to illumination and can often be
characterized rather well by the distribution of local intensity gradients or edge detections,
even without precise knowledge of the corresponding gradient or edge positions. One such
feature that captures edge and gradient structure is the Histogram of Oriented Gradients,
introduced in [20] and illustrated in Figure 3.13.

The first step in obtaining the HOG features is the computation of the gradient values.
Given an image I, the gradient magnitude |G|, and orientation of the gradient θ are extracted
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as follows:

|G| =
√
I2
X + I2

Y , θ = arctan

(
IY
IX

)
, θ ∈ [−π, π] (3.10)

where IX = I ∗ DX , IY = I ∗ DY , DX = [−1 0 1], DY = [−1 0 1]T , symbol ’*’
representing the convolution operator.

The second step is the orientation binning and consists of creating the cell histograms.
Each pixel within the cell casts a weighted vote for an orientation-based histogram channel
based on the gradient centred on it, and the votes are accumulated into orientation bins
over local spatial regions. The cells are rectangular and the histogram channels are evenly
spread over 0 to 180 degrees, the gradient being unsigned. Dalal and Triggs show in [20] that
increasing the number of orientation bins improves performance significantly up to about 9
bins. Regarding the vote, it is considered a function of the gradient magnitude at the pixel
that gives the best results in practice.

The last step is to locally normalize the gradient strengths, which requires grouping the
cells together into larger, spatially-connected blocks. The HOG descriptor is a vector of
the components of the normalized cell histograms from all of the block regions. The block
geometry used was rectangular and consists of a squared grid.

Before extracting features a histogram equalization was done over the cropped region of
the image representing a target person in order to achieve better contrast and better capture
the gradients. The equalization process implies mapping histogram of the given image section
to a wider and more uniform distribution of intensity values. The intensity values are spread
over the whole range. The equalization effect is accomplished through remapping of the
cumulative distribution that is normalized such that the maximum value is the maximum
value for the intensity of the image. So given the histogram H(i), i representing intensity
values, its cumulative distribution H ′(i) is H ′(i) =

∑
0≤j<iH(j). The result of the application

of histogram equalization on the image can be seen in Figure 3.14.
Due to low resolution of both human body and head images, HOG features are extracted

from multiple levels: for the body 3 levels were used (1× 3, 2× 6, 4× 12 blocks), while for the
head 2 levels were used (2× 2, 4× 4 blocks). Each block is divided into 2× 2 cells. Each cell
accumulates a local 1D histogram of gradient directions (edge orientations) with 9 bins. The
HOG descriptor length is the product between the number of blocks, the number of cells per
block and the number of bins for the cells. Thus, the combination of the histograms results
in two feature vectors of length db = 2268 for body and dh = 720 for head.
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Figure 3.14: Histogram equalization over the region of interest is done before ap-
plying HOG extraction. The green star from each cell shows the strength of the
edge orientation in the histogram.

3.3.3 Probabilistic framework

To achieve a greater flexibility in improving the method described in [2], I have decided
to reformulate the problem under a Bayesian framework. Thus, the task of estimating the
orientation of a particular target at a given moment in time (frame) can be expressed as

α̂ = arg max
α

P (α|x) (3.11)

where the α variable represents the desired angle class, having 8 possible values, while the
x = (xb,xh, vd, vm, fd) variable encompasses the information known about the target, namely
its HOG features for the body (xb ∈ R2268), HOG features for the head (xh ∈ R720), velocity
direction vd ∈ {1, 2, ..., 8}, velocity magnitude vm ∈ R and face detection fd ∈ {0, 1, 2, 3}
(0 meaning no face detection, 1 meaning left facing face detection, 2 meaning frontal face
detection and 3 meaning right facing face detection).

Furthermore, the a posteriori probability P (α|x) can be expressed under the Bayesian
framework as:

P (α|x) =
P (x|α)P (α)

P (x)
(3.12)

To be noted is the fact that, assuming unconstrained movement of the targets, all ori-
entation values have the same probability P (α). Thus, the Maximum A Posteriori solution
described in equation (3.11) is equivalent to the Maximum Likelihood solution :

α̂ = arg max
α

P (α|x) = arg max
α

P (x|α) (3.13)

The likelihood P (x|α) is determined by the combined response of the classifiers and cues
mentioned in Section 3.1.2. This can be expressed as

P (x|α) ∝ exp(lGMM (x|α) + lNN (x|α) + lSVM (x|α) + lvelocity(x|α) + lface(x|α)) (3.14)
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where lGMM (x|α), lNN (x|α), lSVM (x|α), lvelocity(x|α) and lface(x|α) denote the log-
likelihood given by the Gaussian Mixture Model classifier, Neural Network classifier, Support
Vector Machine classifier, velocity cue and face detection cue, respectively. Details on the
definitions of each of these likelihoods are given in the following subsections.

My decision for using a combination of classifiers, rather than a single one is based on
the argumentation given in [8], where the author points out that the overall error of the
committee is at best ECOM = 1

MEAV and at worst ECOM = EAV, where ECOM denotes the
error of the committee, EAV denotes the average error of the classifiers and M denotes the
number of classifiers in the committee. The best-case scenario happens only if the errors
have zero mean and are uncorrelated. Obviously, for the proposed approach the errors will
be highly correlated, since the same data is used for training. However, the way in which the
data is used is different from one method to the other, assuring a certain degree of variability
in the response of each classifier. Thus, at least some improvement on the overall error is to
be expected.

Probabilistic framework for head orientation estimation

The above described framework applies for both the body and head orientation estimation,
with the remark that in the case of the head angle estimation the velocity direction value is
replaced by the estimated body angle. Additionally, in the previously mentioned formulae,
the body HOG features xb are replaced with the head HOG features xh.

3.3.4 Gaussian Mixture Model (GMM)

The first of the HOG based classifiers makes use of Gaussian Mixture Models to represent the
classes in the feature space. Thus, for each of the 8 classes, a Gaussian Mixture is computed
based on the data points in the training dataset belonging to that class. Thus, the likelihood
associated with the GMM classifier is:

lGMM (x|α) = logPGMM (x|α) = log

C∑
j=1

π
(α)
j N (xb|µ(α)

j ,Σ
(α)
j ) (3.15)

where C represents the number of components in a Gaussian Mixture, N denotes the

Gaussian distribution, π
(α)
j are mixing factors and µ

(α)
j and Σ

(α)
j represent the mean and

covariance of each Gaussian distribution. Note that the subscripted indices mark the Gaussian
within the Gaussian Mixture of a class, while the superscripted indices indicate the angle class
(the corresponding Gaussian Mixture).

The fitting of each Gaussian Mixture onto the training data points of a given class is ac-
complished using the Expectation-Maximization (EM) algorithm. This is an iterative general
optimization algorithm, whose goal in particular for the GMM is to maximize the likelihood of
the training data points with respect to the parameters, consisting of means and covariances
of each component, as well as the mixing coefficients.

An outline of the algorithm, as presented in [9], is given below:

1. Initialize the means µk, covariances
∑

k and mixing coefficients πk, and evaluate the
initial value of the likelihood.
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Note: because the EM algorithm takes many more iterations to reach convergence
compared with the K-means algorithm, and each cycle requires significantly more com-
putation, we run the K-means algorithm to find a suitable initialization for a Gaussian
mixture model that is subsequently adapted using EM.

2. E step. Evaluate the responsibilities using the current parameter values. The weighting
factor for data point xn is given by the posterior probability γ(znk) that component kth

was responasible for generating data point xn.

γ(znk) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj ,Σj)

3. M step. Re-estimate the parameters using the current responsibilities

µnewk =
1

Nk

N∑
n=1

γ(znk)xn

Σnew
k =

1

Nk

N∑
n=1

γ(znk)(xn − µnewk )(xn − µnewk )T

πnewk =
Nk

N

where

Nk =

N∑
n=1

γ(znk).

4. Evaluate the log likelihood

ln p(X|µ,Σ, π) =

N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}

and check for convergence of either the parameters or the log likelihood. If the conver-
gence criterion is not satisfied return to step 2.

To illustrate the final result of the EM algorithm, Figure 3.15 depicts the projection in 2
dimensions of some of the training datapoints for the classes 1 and 3, along with the fitted
GMM for each of the classes. Please note that Figure 3.15 is presented only for visualization
purposes, as for the actual classification task, a projection in more than 2 dimensions will be
used.

3.3.5 Principal Component Analysis (PCA)

One of the limitations of the GMM is the fact that the maximum likelihood estimation,
the optimization target of the EM algorithm, is prone to yielding singular or near-singular
covariance matrices if the data is high-dimensional, but residing on a lower dimensional man-
ifold (which is usually the case in practice, according to [14]). This happens as a Gaussian
distribution, part of the mixture, is driven towards modeling a single datapoint.
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Figure 3.15: 2D projection of training body features for classes 1 and 3, along with
their fitted GMM.

Another limitation of the GMM model is that fitting over high-dimensional data is a slow
process. This is due to the fact that the EM training algorithm is iterative and at each
iteration covariance matrices are computed for each Gaussian distribution in the mixture and
these matrices are quadratic in the number of dimensions of the datapoints.

To mitigate the above mentioned limitations, I have decided to reduce the dimensionality
of the HOG descriptors before using the GMM model for classification. One relatively simple
method, but effective in practice (according to [15]), is Principal Component Analysis. PCA
can be defined as the orthogonal projection of the data onto a lower dimensional linear space,
such that the variance of the projected data is maximized [16]. Because the variance of
the data is maximized, the separation between the points belonging to different classes is
preserved as much as possible. Additionally, the PCA can discard the redundant and noisy
information, thus improving the classification process.

3.3.6 Neural Network (NN)

The second HOG based classifier considered to be included in the committee is a Neural
Network. I have chosen this method to address the high dimensionality of the data in a
more natural way than the previously mentioned PCA. According to [11], the feed forward
neural network, which I have used, can be regarded as an approach to fix the number of
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basis functions (represented here by the individual neurons), but allowing them to be adap-
tive (represented by the connection weights between the neurons, which can be regarded as
parameters adapted during training). Furthermore, it can be considered that the extraction
of relevant features in the data and the classification process are merged together. The dis-
advantage raised by having this flexibility in automatically adapting the parameters of the
method (weights) to the training data is the fact that the objective function optimized during
training is no longer a convex function of the model parameters ([11]). This translates in a
more lengthy training process, but the model, given its architecture, is fast at processing new
data.

Figure 3.16: Structure of the Neural Netowk used.

Since the high dimensionality of the data does not represent an obstacle in implementing
the Neural Network classifier, as it was the case for the GMM, in this case I have decided
to use all the HOG features. Thus, the considered structure of the network, as depicted in
Figure 3.16, has 2268 input nodes for the body classifier and 720 input nodes for the head
classifier. The output of the network is given through 8 output nodes of the head classifier
and the body classifier of method 1, and through 4 output nodes in the case of the body
classifier of method 2. Each of these output nodes correspond to one of the possible angle
classes. Please note that the response of each of the output nodes is not binary, but rather
reflects the probability of the input data point belonging to a certain class (thus relying in
the [0 . . . 1] interval). Thus, denoting the response of the i -th output neuron (corresponding
to the i -th angle class) of the network when presented with the HOG features of a target, as
PNN (xb|α), the corresponding term from equation (3.14) becomes:

lNN (x|α) = logPNN (xb|α) (3.16)

The neurons in the hidden layer, as well as the output neurons have a Sigmoid activation
function f(t) = 1

1+e−t , where t represents the input of the neuron, namely the weighted
sum of the HOG descriptor in the case of the hidden neurons and the weighted sum of the
responses of the hidden neurons in the case of the output nodes. The weights of the links
between all neurons are computed during training using back-propagation. Because of the
above described network structure, the expected response of the network is defined using the
1-of-8 encoding (or 1-of-4 encoding in the case of the body classifier for the second method)
of the training labels.
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3.3.7 Support Vector Machine (SVM)

The last of the HOG based classifiers considered is the Support Vector Machine. The moti-
vation for this choice is the good performance obtained in various classification tasks, partic-
ularly in object recognition, where features such as the HOG descriptors are used.

The basic working principle of the SVM, as defined for a 2-class classification problem,
consists of projecting the data points x into a high dimensional space, through the use of a
mapping function φ(x), and then computing the weights of a linear classifier y(x):

y(x) = w>φ(x) + b (3.17)

such that

{
y(xn) > 0 for all tn = +1
y(xn) < 0 for all tn = −1

(3.18)

where tn represents the label of the n-th data point.
An additional constraint imposed to the linear classifier is the maximization of the margin

between the two classes, i.e. the orthogonal distance between the decision boundary and the
closest data points. As shown in [12], this translates into minimizing ‖w‖2 such that

tn(w>φ(xn) + b) ≥ 1 (3.19)

which can be solved using Lagrangian multipliers:

L(w, b,a) =
1

2
‖ w ‖2 −

N∑
n=1

an{tn(w>φ(xn + b)− 1} (3.20)

Setting the derivative of L(w, b,a) to zero we obtain the conditions

w =
N∑
n=1

antnφ(xn) (3.21)

0 =

N∑
n=1

antn (3.22)

Reintroducing these in equation (3.20), yields

L̃(a) =
N∑
n=1

an −
1

2

N∑
n=1

N∑
m=1

anamtntmk(xn,xm) (3.23)

where a is subject to the conditions

an ≥ 0, n = 1, ..., N (3.24)

25



Contents 26

N∑
n=1

antn = 0 (3.25)

and k(x,x′) = φ(x)>φ(x′) is a kernel function, thus eliminating the need of explicitly
considering the mapping function φ(x).

Although at its core the SVM is a 2-class, hard assignment classifier, various techniques
and algorithms have been developed for multi-class classification and probability estimates for
each of the classes. For my approach, I am using the variant described in [17], which allows
multi-class classification with soft assignments (probability estimates), as it can be integrated
seamlessly in the probabilistic framework previously described. Thus, as the SVM is able
to provide a probability estimate for a certain angle, given the HOG descriptors, denoted
PSVM (xb|α), the associated likelihood mentioned in equation (3.14) becomes:

lSVM (x|α) = logPSVM (xb|α) (3.26)

3.3.8 Velocity

As also mentioned in article [2], the velocity direction often represents a cue for the body
orientation. However, two factors affect the precision of this cue: the inaccuracy of the
estimation of 3D position for the targets and the dependency on the speed of the target. The
first disadvantage represents a limitation of the tracker and not much can be done to mitigate
this effect. The second observation relies on the fact that a target with a high velocity has
a lower chance of changing its orientation than one with a low velocity. In the framework
of article [2], this is taken into consideration by only using velocity directions for the targets
whose speed is above a certain threshold.

To make better use of both velocity direction and speed, as well as to incorporate this
information seamlessly into the previously described framework, I have decided to build a
pseudo-classifier by defining a Gaussian probability distribution centered in the angle class
corresponding to the velocity direction and with a variance inversely proportional to the speed
of the target. This way, in the case of a target moving with high speed, the probability of it
facing the direction of the movement is relatively high, while a near-stationary target (whose
speed is very low) will have a near equal probability for all angle classes, as the Gaussian with
a high variance will be close to an uniform distribution across all angles.

lvelocity(x|α) = logPvelocity(x|α) = logN (α|vd, 1/vm) (3.27)

where the vd represents the velocity direction, vm represents the velocity magnitude and
N denotes the normal distribution.

3.3.9 Face detection

One inherent limitation of the classifiers based on HOG descriptors is the fact that, given the
relatively low resolution of individual targets, the HOG descriptor is only able to represent
the rough outline of the human body. This represents a problem, as usually the appearance
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of the human body outline is very similar for diametrically opposed angles, as suggested in
Figure 3.6. In such cases, a strong cue differentiating the two orientations is the presence of
the face.

Face detection can be performed relatively fast, using for example a cascade Local Bi-
nary Pattern classifier [18], searching only upper section of bounding box. Furthermore, this
classifier is able to provide information regarding the type of face detection, i.e. frontal, left-
lateral or right-lateral, further aiding the orientation estimation process (as mentioned in the
description of method 2 in Section 3.1).

Given the probabilistic framework described so far, a reasonable approach to model this
information is by using an uniform probability distribution over the values of the angle cor-
responding to the body orientations in which the presence of a face is plausible. Thus, the
associated likelihood becomes:

lface(x|α) = logPface(x|α) (3.28)

Pface(x|α) =


1/5 if fd 6= 0 and α ∈ {1, 5, 6, 7, 8}
0 if fd 6= 0 and α ∈ {2, 3, 4}
1/8 if fd = 0

(3.29)

Please note that the numerical values from the above equation correspond to the values
of the uniform distribution. Thus, the first two lines correspond to the situation in which
a face is detected (fd 6= 0) and the probability is uniformly distributed over the 5 angles in
which the face can be visible (first line), all other angles have a zero probability (second line).
Lastly, if no face is detected (fd = 0), the probability is evenly distributed among all angles
(as the lack of a face detection does not necessarily imply the absence of a face in the image).

3.3.10 Temporal smoothness

Another cue for the orientation estimation is based on the fact that human targets do not
usually change their orientation suddenly from frame to frame, especially considering the fact
that frames succeed themselves at least at 1/24 seconds in most video sequences. This can
be regarded as a temporal smoothness of the change in orientation angle. Thus, to restrict
the abrupt changes in estimated orientation angles, I have decided to implement a sliding
window approach in which the final estimated angle is determined by a majority vote from
the angle estimations of the current frame and the past 5 frames (window size was determined
empirically). If there is a tie between the angle class estimated for the current frame and
another value, the former takes precedence.

3.3.11 Head coupling

As also mentioned in [2], the estimated head angle cannot be very different from the estimated
body angle, because of anatomical constraints of the human body. This is modeled in the
original approach using an additional term in the objective function, similar to the term used
for taking into account the velocity direction.

Given the different framework formulation, I have also decided to include this additional
cue in the similar fashion as the velocity, by fitting a standard Gaussian distribution centered
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around the estimated angle of the body. To be noted is the fact that, unlike in the case of
the velocity cue, the variance is not scaled anymore, as there is no additional cue equivalent
to the velocity magnitude which formed the basis of the scaling in the former case.

3.4 Final remarks

To verify the validity of my approach, I have run several experiments, whose results are pre-
sented in Chapter 4. Given the multiple classifiers and cues used, the goal of the experiments
is to assess the contribution of each of these elements towards improving the overall angle
estimation.
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Chapter 4

Experimentation

4.1 Meta-parameter estimation

As previously shown, the proposed method for orientation estimation has several meta-
parameters which influence the quality of the classification. These meta-parameters are the
number of dimensions to which the PCA reduces the HOG descriptors for the GMM, the num-
ber of components in each GMM, the number of neurons in the hidden layer of the Neural
Network and the kernel type used for the SVM.

To determine suitable values for these meta-parameters, I have employed a k-fold cross-
validation procedure using the available training dataset. Thus, for each parameter configura-
tion of a given classifier, its classification accuracy was computed as an average over the values
obtained by training the classifier with a fraction of (k − 1)/k of the dataset and estimating
the accuracy on the remaining 1/k fraction of the dataset. The results of the cross-validation
for each of the classifiers are given in the following subsections.

4.1.1 GMM validation

For determining the meta-parameters of the GMM classifier, namely the number of dimensions
to which the PCA reduces the HOG descriptors to and the number of components in each
mixture, I have employed 4-fold cross validation. The reason of choosing k = 4 instead of
the more common k = 10 is the lengthy computation time needed for the entire procedure.
However, despite the relatively low value for k, I still consider the results to be representative
due to the relatively high number of annotated data points used in training. Thus, even if
only 3/4 of the available data was used for training and 1/4 for estimating the error, the
overall error values suggest that the classifier was able to exploit the patterns in the data set
sufficiently well.

The results of the cross-validation are presented in Figure 4.1. It can be observed that
for relatively low numbers of dimensions, the performance of the classifier is poor, as too
much information is lost in the dimensionality reduction process, making robust classification
difficult. The performance improves significantly after 20 dimensions and it stabilizes between
30 and 40 dimensions, suggesting that the high-dimensional HOG features relay in a lower,
40 dimensional, manifold.

The number of components in each mixture has less impact on the performance, when
compared to the number of dimensions. However, the higher error obtained for a single
component indicates that the data has a more complex structure than a simple Gaussian
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Figure 4.1: Classification error of the GMM classifier for various parameter con-
figurations (namely the number of dimensions and the number of components),
during validation stage.

distribution, while a high number suggests overfitting taking place, as the performance drops.
The best values are obtained for 2-3 components per mixture, these providing the best ap-
proximation of the real structure of the data.

4.1.2 NN validation

The Neural Network classifier has a single parameter to be set, namely the number of neurons
in the hidden layer. This made it possible to do a 10-fold cross-validation for more accurate
results, instead of the previously employed 4-fold, as the computation times were reasonable.

The evolution of the classification error is shown in Figure 4.2. The decreasing evolution of
the classification error is obvious, stabilizing after a value approximately 60 nodes. Although
it is impossible to assess the role of each neuron and thus to provide a solid explanation
for the correlation between the number of neurons and performance of the network, one can
argue that this size of the hidden layer is influenced by the number of relevant features in
the data, similarly to the minimum number of dimensions that yield reasonable good results
(as shown in the previous section). Should that be the case, the activation of each neuron is
more heavily influenced by one of these implicit relevant features.
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Figure 4.2: Classification error of the NN classifier for various parameter configu-
rations, during validation stage.

4.1.3 SVM validation

For the SVM classifier, my initial intention was to also employ dimensionality reduction on the
features, to obtain faster training times. However, after assessing the performance for various
dimensions, as shown in Figure 4.3, and considering still manageable training durations, I
have decided to use all 2268 HOG dimensions for the SVM classifier.

The plot from Figure 4.3 shows the evolution of the SVM classification error for various
dimensions and using several kernel functions, obtained by 4-fold cross-validation. Having
used the SVM implementation of the LIBSVM library [13], the parameters of these kernel
functions have their default provided values. Thus, the kernel functions whose associated
performance is depicted in Figure 4.3 are:

• Linear kernel : K(u, v) = u> · v

• Polynomial kernel : K(u, v) = (γ · u> · v + c)d , γ = 1
#dimensions , c = 0 , d = 3

• Radial kernel : K(u, v) = exp(−γ · ‖u− v‖2) , γ = 1
#dimensions

• Sigmoid kernel : K(u, v) = tanh(γ · u> · v + c), γ = 1
#dimensions , c = 0
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Figure 4.3: Classification error of the SVM classifier for various parameter config-
urations, during validation stage.

The evolution of the error observed was unexpected, as relatively low error values are
yielded by the radial and Sigmoid kernels for a small number of dimensions, while for higher
dimensions, under which less information is lost due to the dimensionality reduction, the
error increases. The only kernel whose yielded error evolution follows an expected trend is
the linear kernel.

The most plausible explanation for this behaviour is the fact that I have used the default
parameter values of the kernels, as provided by LIBSVM, which may not be suitable for
the higher dimensional representations of the data. This explanation is also confirmed by
the fact that the only kernel behaving in an expected way is also the only kernel lacking
any parameters. Should this be the case, a proper course of action would have been to also
try various configurations for these parameters. These would have resulted in prohibitive
computation times, and since the performance of the linear kernel is similar to the ones
obtained by the other classifiers (judging by the classification error under optimal parameters),
I would not have expected significantly better results from the other kernels.

Thus, for the final version of the SVM classifier, I have used a linear kernel without
reducing the dimensionality of the data.
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Table 4.1: Number of data points per class (specified in Figure 3.1) for the datasets
used during training.

Dataset Type C1 C2 C3 C4 C5 C6 C7 C8 Total

TUD Multiview
Pedestrian [22]

Body 400 749 644 749 400 622 545 622 4731

CVC Pedestrian
[23]

Body 129 30 117 78 114 25 141 62 696

MIT Pedestrian
[24]

Body 0 0 478 0 0 0 446 0 924

VIPeR [25] Body 355 90 218 17 6 31 419 126 1262

Benfold [26] Head 91 313 202 196 85 290 159 139 1475

HIIT6 [27] Head 2000 0 2000 0 2000 2000 2000 2000 12000

QMUL [28] Head 2256 0 2256 0 2256 0 2256 0 9024

4.2 Evaluation

4.2.1 Dataset description

During the training of the classifiers I have used several datasets, to have a greater variety
of appearances. This, in turn, would be beneficial in achieving a better generalization of the
training data and a good exploitation of the existing patterns, which in turn would support
an efficient classification. Some characteristics of the datasets used during training are given
in Table 4.1.

For testing my approach, I have used video sequences from the Collective Activity dataset
[29]. These depict multiple human targets moving unrestricted in an urban environment. The
ground truth annotation is available once every 10 frames, for the body only.

4.2.2 Setup

To assess the influence of each individual component of the method, I have decided to measure
the error of the estimated angle class for various subsets of the classifiers and/or additional
cues.

Thus, for the first method, I have considered versions of the algorithm involving only 1, 2
or all 3 of the HOG based classifiers with no additional cues, with only the velocity cue, only
the face detection cue and with and without temporal smoothness.

Because of the nature of the second method, only versions involving various combinations
of the HOG based classifiers were tested.

The error is measured as the angle difference between the estimated angle and the ground
truth. The mean and standard deviation of the errors for all targets at all frames of a sequence
are computed and presented in the following section.

4.2.3 Results and discussion

The results for the experiments run to evaluate the performance of method 1 are presented
in Table 4.2.
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The first goal of these experiments was to assess the contribution of each HOG-based
classifier to the final angle estimation. Overall, the performances of the individual classifier
were relatively similar, slight variations being observed in the response of each of them. This
can be explained by the different ways in which each of them make use of the training data,
being either projected through PCA (in the case of the GMM classifier), used as it is (in
the case of the NN classifier) or projected in a higher dimensional space (in the case of the
SVM classifier). The variability in the individual responses also insures the capability of a
combination of classifiers to yield better results. A certain dependence on the video sequence
can also be observed, as all the classifiers obtained better results on Seq 42 than Seq 15. Since
these classifiers take into consideration only the visual appearance of the targets, modeled
by the HOG descriptors, the only explanation for this behaviour is the fact that the targets
from Seq 42 resemble more closely the targets used for the training of the classifier. This
visual resemblance can further be explained by a closer similarity of the angle of the camera
at which the images were captured, as well as a similarity of the resolution of the images.

The error obtained by combining the response of multiple classifiers proved to be better
than the individual responses, if there is no large variation between the individual responses.
Thus, in the case of Seq 42, all the combined responses yielded better results than the
individual ones. As expected, the combinations including the more performant classifiers, such
as GMM+NN, outperform the ones with the lower performing ones, such as GMM+SVM. In
the case of Seq 15, the more pronounced poor result of the SVM classifier has a detrimental
impact on the combined responses. Thus, only the GMM+NN combination has a better
performance than any of its components, all others being roughly similar or even worse than
the individual components.

The second goal of these experiments was to assess the impact of the individual cues
considered. The performance of the method when only the velocity is used proved to be
better than the responses of any of the individual or combined HOG-based classifiers, for
the considered video sequences Seq 15 and Seq 42, thus highlighting the importance of this
additional cue. However, one might expect that for more particular video sequences in which
the targets are mostly stationary, the velocity cue would provide less information and thus
yield poorer results. The next configuration tested was the combination of the response of
the HOG-based classifiers and the velocity cue. A significant improvement was observed over
the response of the HOG-based classifiers, for both videos. However, in the case of Seq 15,
where the HOG-based classifiers yielded poor performance, the overall result when taking
into account the velocity cue was worse than in the case of using just the velocity. This was
not the case for Seq 42, where the performance decreased dramatically, the mean error being
lower than either of the constituents’ responses.

Next, the face detection cue was assessed, also in combination with the response of the
HOG-based classifiers. For Seq 15 the performance improved in a similar fashion to the
velocity cue, suggesting a similar informational gain. However, in the case of Seq 42 the
performance dropped over one of the HOG-based classifiers, most probably due to the high
number of false face detections. When combining the two cues, velocity and face detection, the
performance increases in the case of Seq 15, where the two cues taken individually generate
similar results, while in the case of Seq 42, the performance is still lower than in the case of
using just the velocity cue, due to the poor performance given by the false face detection.

The last element tested was the effect of the temporal smoothing. When combined with the
response of the HOG-based classifiers, the performance increased, moderately for Seq 15 and
more significantly for Seq 42. The larger improvement in the second case can be explained
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Table 4.2: Mean and standard deviation of the error for various versions of the
method 1 of the approach, on two video sequences from Collective Activity dataset
[29].

Method 1 Seq 15 Seq 42

GMM 63.0446/28.1862 65.5102/31.1502

NN 69.7277/30.5169 56.3265/29.4306

SVM 82.2030/33.6133 59.6939/30.1965

GMM+NN 61.7079/ 28.7315 52.6531/28.4356

GMM+SVM 63.0446/28.9955 55.4082/29.1968

NN+SVM 70.6188/31.0409 50.5102/27.5921

GMM+SVM+NN 66.8317/ 30.2219 54.1837/28.8972

GMM+SVM+NN + Temporal 61.9307/29.3805 40.4082/25.1518

Velocity only 43.8861/21.8800 44.3878/22.5420

Velocity + Temporal 46.7822/23.0858 36.7347/20.7998

GMM+SVM+NN + Velocity 48.3416/24.7429 36.4286/23.2556

GMM+SVM+NN + Face 47.6733/24.8099 59.0816/30.2519

GMM+SVM+NN + Velocity + Face 37.4257/21.1888 42.5510/25.3564

GMM+SVM+NN + Velocity + Face + Temporal 38.9851/22.0431 23.2653/18.9088

by a higher number of punctual misclassification, whose influence is reduced. When combined
with only the velocity cue, the performance drops slightly for the first video, but increases for
the second. This can be explained by a better velocity estimation in Seq 15, in which case the
temporal smoothing only delays in response. The increase in the second case is also probably
explained by punctual inaccurate estimations of the velocity. Similar trends are followed in
the last configuration, involving all classifiers and cues, where the temporal smoothness factor
has little influence on the performance from Seq 15, in which the estimations provided by
the classifiers, the velocity and face detections seem to be more reliable. On the other hand,
in the case of Seq 42, the performance increase is significant, as the error drops to almost
half, due to the fact that punctual misclassification, inexact velocity estimation and false face
detections, are smoothed out.

For the second method, fewer experiments were run, since by its nature, it relies heavily
on the additional cues to determine final correct angle. Thus, the experiments focused on
evaluating the performance of the classifiers and the influence of the temporal smoothness
cue. The results obtained can be observed in Table 4.3.

The performance of the individual classifiers, as well as their combination, were either
identical, as in the case of Seq 15, or very similar, as in the case of Seq 42. This is to
be expected, since the HOG-based classifiers were trained to discriminate between only 4
classes, which were also more clearly separated in the feature space (as suggested in Figure
3.6). Thus, the classification task was easier, and the differences between the classifiers have a
minor impact. The improvement made by the temporal smoothness cue is similar to the one
observed in the case of the first method, minor for Seq 15 and more significant for Seq 42.

Table 4.4 shows the error obtained by the complete method 1 and method 2 on several
other video sequences. These sequences vary with respect to the duration, resolution, amount
of camera movement, number of targets present in the frames, amount and variation of the
targets’ movement. These differences are also reflected in the results of the approach, with a
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Table 4.3: Mean and standard deviation of the error for various versions of the
method 2 of the approach, on two video sequences from Collective Activity dataset
[29].

Method 2 Seq 15 Seq 42

GMM 34.7525/19.6425 48.9796/26.9089

NN 34.7525/ 19.6425 48.9796/25.5363

SVM 34.7525/19.6425 47.7551/26.3288

GMM+SVM+NN 34.7525/ 19.6425 47.1429/26.4905

All: GMM+SVM+NN + Temporal 33.4158/20.2192 35.8163/23.0919

Table 4.4: Error/Standard Deviation of method 1 and 2 of my approach for various
video sequences from Collective Activity dataset [29]

Video Method 1 Method 2

Seq 04 66.8382/25.2751 63.1985/24.1551

Seq 09 57.2485/25.1205 64.4379/27.3866

Seq 12 60.8084/23.5161 64.0419/24.4563

Seq 21 46.9565/16.4061 44.3478/15.1965

Seq 24 56.8681/22.3062 79.1209/28.5124

Seq 30 30.6250/18.2988 48.7500/22.6591

Seq 42 23.2653/18.9088 35.8163/23.0919

Seq 44 55.2273/21.4151 77.7273/27.7219

Seq 15 38.9851/22.0431 33.4158/20.2192

Seq 16 75.5447/28.1500 68.8827/25.9820

Seq 22 62.9348/24.2086 64.2391/24.9484

Seq 23 50.5618/24.9676 63.7079/28.5938

Seq 29 39.9057/24.4069 85.9670/37.4331

Seq 33 9.2308/7.7639 17.3077/10.0755

mean error ranging from 9.2308 degrees to 75.5447 for the first method and from 17.3077 to
85.9670 for the second method.

Unfortunately, the datasets used did not include ground truth values for the head angle
orientations and thus the performance of the head angle estimation could not be evaluated.
Furthermore, a direct comparison between my approach and the original approach of [2] could
not be made, because of the lack of availability of the annotations used in their experiments.
However, I have tested my own implementation of their approach on one of the videos evalu-
ated for my approach, the results being presented in Table 4.5. I must mention that since the
computation time is proportional to the squared number of training and testing data points,
only a fraction of the training set was used. For a better comparison, the results of my
approach (method 1 and method 2) using the same reduced training set are also presented.
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Table 4.5: Evaluation of the performance on a video sequence (Seq 15 from Col-
lective Activity dataset [29]) of the original method from [2] and both methods of
my approach. The annotated data used represents only a fraction of the available
training set (100 instances for each of the 8 classes for the body and 20 instances
for each of the 8 classes for the head).

Method Body label data Head label data Body Error/StdDev Average
processing
time per
frame (ms)

Original method
of [2]

100 x 8 20 x 8 79.52/30.37 29948

Own approach
(method 1)

100 x 8 20 x 8 56.58/22.73 73

Own approach
(method 2)

100 x 8 20 x 8 48.11/20.55 57

37



Chapter 5

Conclusions and future work

5.1 Conclusions

In this thesis I have implemented and evaluated a novel approach for the task of body and
head orientation estimation of freely moving human targets from a video sequence captured
with a single monoscopic moving camera. The main ideas upon which this approach is built
are inspired by the method described in [2], several contributions are made in order to improve
its performance.

One contribution aims at improving the computation time required for usage of an online
setting and consists in reformulating the problem under a different framework, allowing for
a separate, offline training phase. This new framework also allows for the usage of multiple
classifiers, their individual responses being combined for a more robust prediction. Another
contribution refers to the usage of additional cues, such as face detections and temporal
smoothness, as well as an improved method for taking into account the velocity cue.

The impact of each classifier and additional cue was evaluated and a discussion of the
results was given. Only a brief comparison of the performance of the original method was
possible, due to the unavailability of annotations used by the authors in their paper. Overall,
the performance of the approach was good both in terms of angle error and computation
time, and visually the results were satisfactory.

5.2 Future work

One limitation of the current method is the fact that the movement characteristics of the
targets are only taken into account in a rudimentary fashion, by the velocity (computed
based on possibly noisy 3D estimations of the targets’ positions in the world) and the temporal
smoothness cues. Thus, an improvement might concern the usage of an additional descriptor,
specialized in encoding these motion characteristics. One such descriptor is the Histogram
of Optical Flow, which takes into consideration the movement directions of various salient
points situated on the target. These can prove especially useful in the case in which the
target changes its facing while standing around a fixed point in space (and thus the velocity
direction estimate would not be informative).

Another limitation is the poor detection of the head within the entire body bounding box.
Although no annotations for the head bounding box were available for the video sequences
used during testing, and thus no objective measure of how poor these detections were can
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be made, visually the results indicated there is room for improvement. Thus, employing
a different classification method, using different / additional descriptors and an improved
training data set can yield better results.

The approach described in this thesis is built upon a new framework which aims at reduc-
ing the computation time required by the original method of [2]. Although this improvement
was achieved, this new framework fails to capture an interesting and powerful feature of the
original method, namely semi-supervised nature of the classifier. This refers to the usage of
the characteristics of the evaluated targets in the construction of the classifier, thus adapting
it to the input data. A direction for future work consists in exploring ways in which this
characteristic can be also exploited in the newly introduced framework.
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