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Abstract

This bachelor thesis offers a basic introduction to stit logic, before
looking into two possible problems with [1] noted by my supervisor Dr.
Jan Broersen.
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1 Introduction

Stit logic is a logic used to describe the concurrent actions that affect the
world performed by a group of agents. Stit stands for seeing to it that,
meaning that agent has done the specified action. In other words, that
agent is responsible for that action.

The theory of stit is interesting in the field of Al, because it offers an
alternative logic for groups of multiple agents. It differs from other multi-
agent logics in the way time is approached: time is less a sequence of states,
and more a continuous time line with certain relevant moments specific to
each agent. This approach resonates better with the intuitive human un-
derstanding of time.

In this paper I will explain the basics of stit logic, covering the necessary
background of Branching Time in the process.

After laying the background theory, I will investigate two specific ques-
tions asked by my supervisor, Jan Boersen, about the proofs for the alter-
native axioma’s in [1]. These questions are:

1. In the proof for lemma 2 of [1], is the step from line 5 to line 6 correct?
— Intuively, a distribution of the <& operator is not staightforward.

2. How does the expansion of the AAIA axioma from the two-agent case
to the three-agent case ensure Independence of Agents? — The exact
formulation of the AAIA axioma is quite short, and it is not immidi-
ately obvious how this axiom is supposed to work.

I will deal mainly with the deliberate version of stit logic and when
mentioning stit logics other than deliberative, I will explicitly say so.

I recommend that readers new to stit logic read the first three sections
from [1] after reading my introduction to stit logic, but before I investigate
the above problems.

2 What is stit logic?

Stit logic is a modal extension of proposition logic where the added operator
[i stit: o] accounts for the agency of agent i in ¢, meaning agent i has seen
to it that . Stit theories are set in a Branching Time theory, an non-
deterministic temporal framework first proposed by [4], and exhaustively
explained in [3]. I will cover Branching Time theory summarily, before
moving on to stit itself.

2.1 A branching tree theory of time

Branching Time (BT) is a structured way for looking at time, providing
the necessary abstraction to do so logically. The intuitive idea is as follows:



consider a segment of time as a line. Spread across this line are moments:
certain instances of time where something interesting happens. At every
moment there is an non-deterministic event which splits the timeline into
two or more possible continuations or possible futures, transforming the line
into a tree with many branches. In stit theories, these events represent mo-
ments in time whereat an agent can make a choice.

Branching Time consists of moments ordered in a forward branching treelike
structure, “with forward branching representing the openness or indetermi-
nacy of the future, and the absence of backward branching representing the
determinacy of the past”[3].

This is formally represented as the tuple (Moments, <) where Moments
is the non-empty set of moments and < is a tree-like ordering on Moments,
such that for any mi, me and mg in Moments if m; < mz and ms < mg,
then either m; = mg or my < mg or my > mo[3].

Every maximal set of linearly ordered moments is called a history, with
m € h meaning that moment m is in history h. Histories are essentially
possible timelines, while moments are points in time where two or more
histories are differentiated. All histories that run through a certain moment
m constitute the set H(m) = {h : m € h}.

2.2 Stit

In order to understand models of stit, it is necessary to define the concepts
Agents, Choices and Instants.

2.2.1 Agents, Choices and Instants

Stit deals with agency in logic and for there to be agency, there has to be
an agent. In any model of stit logic, a set AGT of agents is defined. These
agents are individuals that make choices influencing the world around them.

Next we introduce the concept of choices. At each moment m of our model
one or more agents can make a choice. An agent can make a choice if it
can constrain the possible future histories to a subset of all histories going
through m. In other words: an agents makes a choice by making certain fu-
ture histories impossible, whilst ensuring there is at least one possible future
history.

Formally, these choices are collected in the Choice function.

Choice : AGT x Moments — 2

is a function where Hist is the set of all histories. This function maps each
agent and each moment onto a partition of H(m) [1]. See figure 1.
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Figure 1: A BT tree containing three moments and six histories. hy, hs
and hg are Choice™ -equivalent, meaning that they fall in the same choice
partition for agent o at moment m;. Source: [3]

Finally we introduce the concept of instants. Instants are collections of
moments from different histories that can be thought of as occuring at the
same time. Moments from the same instant are therefore temporal alter-
natives to eachother. Instances are used to compare alternative histories at
certain moments.

Formally, all instants are collected in the set Instant, defined as the set of
instants partitioning the moments of Moments horizontally into equivalence
classes [3]. The instant to which a certain moment m belongs is given by

Z(m)

2.2.2 Choice-equivalence

We have established an intuitive framework of time wherein agents can make
choices. In order to reason about these choices we introduce proposition logic
and extend that with the stit operator: [i stit : ¢].

Before we turn to the definition of the stit operator, we will define the
auxilary concept of Choice]"-equivalence. Suppose that an agent o has a
choice with three options at moment m1, as seen in figure 1. He can make a
choice, ensuring that either 1) hy or hg is the future; 2) hg is the future; or
3) either hy, hs or hg is the future. The agent can not distinguish between
histories within a C'hoice]''-partition, because if there is a point at which
two histories differ at moment my from the perspective of the agent, said
agent could choose between them, neseccitating another choice-partition.
We capture this concept formally with with C'hoice}"-equivalence. Sup-



w

Figure 2: An example of a more complete stit model. Note that the agent
can not distinguish between choice-equivalent histories, and that m and m”
are part of the same instant. Source: [3]

pose that moments m; and mgy occur at the same instant, so i(,,,) = i(ny)-
If my and my fall within the same Choice;" -partition, they are said to be
Choice;""-equivalent.

2.3 The stit operator

The operator [i stit : ¢] tells us that agent 7 is agentive in ¢, in other words
1 sees to it that ¢ is true. Stit models are an extension of Branching Time
models, and thus every [i stit : ¢] has to happen at a certain moment m.
[i stit : @] can be understood as “agent i sees to it that the future history
is contained within those future histories where ¢ is true”. In other words:
the agent removes possible future histories where —p holds. See for example
figure 2. On top of the guarantee that ¢ is true, it is also necessary that on
at least one alternative to a future moment! ¢ is false. If not, how can an
agent claim to have seen to it that ¢ if ¢ would have been the case in every
possible future?

2.3.1 Historical necessity

In stit models, situations occur where in every possible future, a certain for-
mula ¢ is true. Here it can not be said that one of the agents is responsible,
because there is no alternative future history where —p holds.

When these situations occur, it is said that ¢ is historically necessary.
This is logically represented by the operator [J. Dual to formulas of the form

!This alternative moment comes from a history not in the set of future histories, but
it is in the same instant as a moment in the set of future histories.



Oy is the operator for historical possibility: <. It follows the standard
definition Gy =gep L=,
2.3.2 Future and Past operators

In stit models, it is necessery to reference past and future states. The stit
language incorporates the operators Fp and Py, for future and past respec-
tively, for just this purpose. Fy and Py follow conventional interpertations,
and will be fully defined in the coming paragraphs.

2.3.3 Languages of stit

A stit-language £4YT is now defined by the following Backus Naur Form:

@ == pl=pl(p A )i stit : p]|Op|Fe|Pp

where p is an atomic proposition and i € AGT.

Models of £ are defined as a tuple M = (Moments,<,Choice,V),
where (Moments, <) is a BT structure, Choice is the above defined choice-
function, and V is a valuation function V : ATM — 2Moments where ATM
is the set of atomic propositions and Moments is the set of all moments [1].

2.4 Truth conditions in stit models

To round out this introduction to stit I present the semantics of a stit for-
mula, even though we do not concern ourself with semantics in the core
section. The truth value of a formula in a stit model is calculated as follows:

e M,m/hE=Aiff m/h € V(A) for A an atomic formula,
e M,m/hE=AABiff M;m/h}= A and M, m/h = B,
e M,m/h | -Aiff M,m/hj;éA,

e M,m/h |=OAiff M,m/h' = A for all b € H,,

e M,m/h = PAiff there is an m’ € h such that m’ < m and M, m’/h |=
A,

e M,m/h = FAiff there is an m’ € h such that m < m/ and M, m’/h |=
A,

o M,m/h |= [i stit : ¢] iff (1) M, m/h = A for each b’ € Choicel*(h),
and (2) there is some h” € Hy,,) for which M, m/h£A.

As found in [3].



3 Possible problems with the Alternative Axioma
for Independence of Agents in [1]

In this section, I will examine the two main research questions of this paper:

1. How does the expansion of the AATA axioma from the two-agent case
to the three-agent case ensure Independence of Agents?

2. In the proof for lemma 2 of [1], is the step from line 5 to line 6 correct?

However, before doing this, I will define the subdomain in which these
problems take place.

As this is an inspection of certain aspects of [?], I highly recommend
reading the first three sections of that paper. Otherwise, the following might
not make sense.

3.1 Subdomain
The specific problems I will deal with all concern logical constructs within

an arbitrary moment. Therefore, the operators F' and P are not utilized.

3.2 Possible problem with the interpretation of three agent
case of AATA

The axiomatics of [1] are build upon those of Xu[5]. “Xu gave the following
axiomatics of Chellass STIT:

e S5(00) — the axiom schemas of S5 for [J

e S5(i) — the axiom schemas of S5 for every [i stit : ¢].

o (O—1i) — Op — [i stit : ¢]

o (AIA) — ({00 A+ A OfkIk) = OO0 A+ A K]

The last item is a family of axiom schemes for independence of agents that
is parameterized by the integer k.” These axioms are interpreted for k + 1
agents and [i stit : o] is shortened to [i]¢?.

Balbiani et al. replace Xu’s Aziom schema for Independence of Agents
(ATA) with their own version: the Alternative Aziom schema for Indepen-

dence of Agents (AAIA).
o (AAIAL) — O — (k) /\Ogi<k<i>4p for k>1

2The dual operator to [i stit : : (i stit : ) =4e5 i stit : =] is shortened as (i)p.
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Figure 3: Examples of choice space for one and two agents.

This, too, is a family of axiom schemes, for k£ + 1 agents. However, it is
not exactly clear how this translates into usable logic. For example, while
Xu's (Al Agy1) implies (Al Ag), Balbiani et al.’s (AAI Agy1) does not imply
(AAIAy).

I will first demonstrate what choice space is and what it looks like when
choices are independent. Then I will demonstrate how (AAIAy) fulfills
independence of agents.

3.2.1 Visualizing choices: choice space

This method of visualizing choices assists understanding of the concept in-
dependence of agents. This method is used in [3], but it is given no name.
I will call this method choice space, because the visualizing of choices with
this method depends on the visualizing of n-dimensional spaces.

See figure 3a for an example of the choice space for one agent a with three
options. This choice is called Choice])', because it is represents the options
agent « has in moment m.

Next we visualize the choice space for two agents. See figure 3b for an
example of the choice space where two agents each have three options. The
options for each agent are labeled, to facilitate discussion of the choice space.

The dimensionality of choice spaces is equal to the number of agents that
have a choice at that moment. So a three agent choice space would have
three dimensions, and so forth.

Finally, figure 4 is an example of 2 agents that have the ability to restrict
each others options. Here it is not possible for agent « to choose 3 and for
agent 8 to simultaniously choose c.

It now is easy to see if a particular choice space satisfies independence



of agents (IA): a two-agent choice space satisfies IA if the choice space is
a rectangle; a three-agent choice space satisfies IA is the choice space is a
cuboid; et cetera. We will call choice spaces satisfying TA complete.

To see why it is important that stit satisfies independence of agents at all,
remember that choice are made in moments. These moments are timeless,
i.e. time only progresses between moments, not during a moment itself. If
the agents from example 4 were to make their choices serially, there would
be no problem in one agent restricting the options of the other agent. How-
ever, agents « and 8 make their choices concurrently. If it were possible to
have choice spaces that do not satisfy independence of agents, it would be
possible to have agents choose in such a way that there is no future.

This is a rather meaningless situation, so therefore Independence of
Agents is fundamental to stit.

3.2.2 How Balbiani et al.’s (AAIAj) satisfies independence of
agents

To see how Balbiani et al.’s (AAI Ay,) satisfies indepence of agents, here are
some examples. I will not prove the correctness of (AAIAy) for any k, I will
only show how (AATAy) generates complete choice spaces.

The two agent case, where k = 1, looks like this:
(AAIAp): O — (1)(0)
Translated to english, this means that if ¢ is possible, then agent 1 possibly
sees to it that agent 0 possibly sees to it that ¢ is true.

In other words, It is impossible for agent 1 to make such a choice that
something that was possible becomes impossible for agent 0, thereby garan-
teeing a rectangular choice space.

The three agent case, where k = 2, looks like this:

c
Choicep'
a
1 2 3
Choicel}

Figure 4: Choice space for 2 agents, each with three options.



(AAIA3): O — (2)((0)p A (1))
Translated to english, this means that if ¢ is possible, then agent 2 possibly
sees to it that agents 0 and 1 possibly see to it that ¢ is true.

In other words, agent 2 cannot choose in a way that constricts the choices
of either agent 0 or 1. This in and of itself is not enough to satisfy inde-
pendence of agents, since agent 1 could now make a choice that eliminates
options for agent 0.

But [1] solved this problem. (AAIAy) is not simply a variable axiom schema
dependent on the number of agents, it is a family of axiom schemes depen-
dent on the number of agents. So, when looking at the three agent case,
not only do we have the axiom (AATA3): Cp — (2)((0)p A (1)), but we
also have (AATA;): ©Op — (1)(0)! The phrasing that hints at this inter-
pertation is rather awkward, but the intention becomes clearer when the
wording of this concept in [?] is taken into account. Xu defines his families
more explicit, where Balbiani et al./ thought the meaning of family of axiom
schemas apparent.

This means that agent 2 can not make a choice that limits any agent in
its choices (every slice of the choice space is equally shaped), and the choice
space for the other two agents is a rectangle, courtesy of (AAIA;). This
guarantees that the choice space, now shaped as a stack of rectangles, is a
cuboid, and thus complete.

By this method, all higher dimensional choice spaces are contructed: (AATAy)
states that the choice spaces of dimension & — 1 are equally shaped, and
(AAIAj_q) states that all choice spaces of dimension k — 1 satisfy IA.

3.3 Possible problem in lemma 2

In [1], Balbiani et al. prove lemma 2, a lemma that states that Xu’s Axiom
schema for the Independence of Agents (AIAg)[5] follows from their own
axiom schema AAI Ay, and the schemas S5(0J), S5(i) and (O — 3).

The proof of lemma 2 is fairly straightforward, except for the step from
line five to line six. In this step, a < is distributed to a lower level in the
formula. This seems counter-intuitive. The the exact step in the proof is:
Line 5:

O(O[0]po A [1ipr) = (1) ([0]o A [1]ep1)

is equivalent to line 6:
O[0]eo A 11 = S(1)([0]po A [L]epr)

Since these are rather cumbersome formula’s, I will use these notational
shorthands:
A = [0]¢o

10



B = [1]¢:
C = (1) (AN B)

To prove that this is a correct step, I will show the antecedents of both
formulas to be equivalent. This is enough for equivalence, since the conse-
quents of the formula’s are identical.

O(CAN B) < (CAAOB)

I will only need the schema S5 of the [ and <& operators for the following
proofs. I will split the proof in two seperate parts. The proofs are in the
fitch-style notation, introduced in [2].

3.3.1 The — direction

To prove: O(CAANB) - CANOB

1 O(CANB) Assumption

2 i O O

3 OCANB Assumption

4 G Elim A, from line 3

5 OB Intro <& |, from line 2,4

6 O O

7 CANB Assumption

8 ?A Elim A, from line 7

9 OCA Intro & | from line 2,8
10 CA Theorem 443, from line 9
11 OCANOB Intro A, from line 6,10

12 O(CAAB) - CANOB Intro —, from line 1,11

3.3.2 The + direction
To prove: (CANOB) — O(CAA B)

34¢ is the dual theorem to the regular theorem 4 (transitivity) in S5. 40: ©Op = Op

11



1 CANOB Assumption
2 714 Elim A, from line 1
3 OCA axiom b, from line 2
4 OB Elim A, from line 1
5 O O
6 B Assumption
7 714 Elim 0O, from line 3
8 OCANB Intro A, from line 6,7
9 O(CANB) Intro <, from line 8
10 (CAANOB) = O(CANB) Intro —, from line 1, 9

3.3.3 Equality

As shown in the two proofs above, G(CAA B) +» (CAA$B) is correct, and
therefore (O(CAAB) = C) « ((CAANCOB) — () is correct.
This proves the step from line 5 to line 6 in lemma 2 of [1] is correct.

4 Conclusion
4.1 Concluding remarks on axioms for stit
The questions I have investigated in this paper are:
1. In the proof for lemma 2 of [1], is the step from line 5 to line 6 correct?

2. How does the expansion of the AATA axioma from the two-agent case
to the three-agent case ensure Independence of Agents?

I have answered these questions as follows:
1. This step is indeed correct. See for the proof.

2. The AAIA axiom is defined as a ”"family of axiom schemes”. This
formulation is not as easily understandable as wanted, instead trusting
on the similarities between this axioma and Xu’s axioma in [5] for the
reader to figure it out. When interpreting the AATA axiom as intended,
the results are valid.

I conclude there is no fault in these two parts of [1].

12



4.2 Further investigation

The following subjects are interesting for further studies:
e producing a working implementation of stit logic;

e transforming the above set of axioms for multi-agent stit into a group
or multi-group set of axioms;

e investigating the possibility to use stit logic as a logical model for

responsibility.
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